Deploy Fernet on the Red Hat OpenStack Platform overcloud

OpenStack Team
rhos-docs@redhat.com
Abstract

Deploy Fernet on the Red Hat OpenStack Platform overcloud.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... 3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 4

CHAPTER 1. USING FERNET KEYS FOR ENCRYPTION IN THE OVERCLOUD 5
 1.1. REVIEWING THE FERNET DEPLOYMENT ... 5
 1.2. FERNET KEY ROTATION CYCLES ... 6
 1.3. ROTATING THE FERNET KEYS BY USING THE WORKFLOW SERVICE 6
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Please let us know how we could make it better.

- For simple comments on specific sentences, paragraphs, or code blocks, use the Feedback feature:
 1. View the documentation in the Multi-page HTML format. Ensure you see the Feedback button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the Add Feedback pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the Bugzilla website.
 2. As the Component, use Documentation.
 3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click Submit Bug.
CHAPTER 1. USING FERNET KEYS FOR ENCRYPTION IN THE OVERCLOUD

Fernet is the default token provider, that replaces \texttt{uuid}. You can review your Fernet deployment and rotate the Fernet keys.

1.1. REVIEWING THE FERNET DEPLOYMENT

Review your configuration to confirm that Fernet tokens are working correctly.

Procedure

1. Retrieve the IP address of the controller node:

 $ source ~/stackrc
 $ openstack server list

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Status</th>
<th>Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>756fb73-e47b-46e6-959c-e247fb71328</td>
<td>overcloud-controller-0</td>
<td>ACTIVE</td>
<td>ctlplane=192.0.2.16</td>
</tr>
<tr>
<td>62b869df-1203-4d58-8e45-fac64cdcfbee</td>
<td>overcloud-novocompute-0</td>
<td>ACTIVE</td>
<td>ctlplane=192.0.2.8</td>
</tr>
</tbody>
</table>

2. SSH into the Controller node:

 $ ssh heat-admin@192.0.2.16

3. Retrieve the values of the token driver and provider settings:

 $ sudo crudini --get /var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf token driver sql
 $ sudo crudini --get /var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf token provider fernet

4. Test the Fernet provider:

 $ exit
 $ source ~/overcloudrc
 $ openstack token issue

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>expires</td>
<td>2016-09-20 05:26:17+00:00</td>
</tr>
<tr>
<td>id</td>
<td>gAAAAABX4LppE8vaiFZ992eah2i3edpO1aDFxIKZq6a_RJzxUx56QVKORrmW0-oZK3-Xuu2wcnpYq_eek2SGLz250eLpZ0oxKBR0GsoMfxJU8mEFF8NzfLncbuS-iz7SV-N1re3XEywSDG90JcgwJQIXW-8jCm-r3LL5laZexAYlw059T_-cd8</td>
</tr>
<tr>
<td>project_id</td>
<td>26156621d0d54f39bf3adb98e63b63d</td>
</tr>
</tbody>
</table>
The result includes the long Fernet token.

1.2. FERNET KEY ROTATION CYCLES

When you decide the length of Fernet key rotation cycles, follow the security posture of your organization. If your organization does not have guidance, a monthly rotation cycle is good practice for security reasons.

Fernet uses three types of keys, which are stored in `/var/lib/config-data/puppet-generated/keystone/etc/keystone/fernet-keys`. The highest-numbered directory contains the primary key, which generates new tokens and decrypts existing tokens.

Fernet key rotation uses the following process: the primary key becomes the secondary key. The `<system>` issues a new primary key. The outgoing primary key is no longer valid. You can use secondary keys to decrypt tokens that were associated with previous primary keys, but you cannot issue new tokens.

1.3. ROTATING THE FERNET KEYS BY USING THE WORKFLOW SERVICE

By default, director manages the overcloud Fernet keys. This setting is managed in an environment file using `ManageKeystoneFernetKeys`. As a result, the Fernet keys are stored in the Workflow service (mistral), in the `KeystoneFernetKeys` section. This approach means that you can rotate the Fernet keys with the Workflow service and the keys persist after stack updates.

Procedure

1. Review the existing Fernet keys:
 a. Identify the Fernet key location. Log in to a Controller node as the heat-admin user and use the `crudini` command to query the Fernet keys:

   ```bash
   [stack@<undercloud_host> ~]$ ssh heat-admin@overcloud-controller-0
   [heat-admin@overcloud-controller-0 ~]$ sudo crudini --get /var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf fernet_tokens key_repository /etc/keystone/fernet-keys
   
   NOTE
   The `/etc/keystone/` directory refers to the container file system path.
   
   b. Inspect the current Fernet key directories:

   ```bash
 [heat-admin@overcloud-controller-0 ~]$ sudo ls /var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone/fernet-keys
 0 1 2

 • 0 – Contains the staged key, which becomes the next primary key) and is always numbered 0.
   ```
• 1 - Contains the secondary key.

• 2 - Contains the primary key. This number increments each time that the keys rotate. The highest number always serves as the primary key.

NOTE
- The maximum number of keys is set with `max_active_keys` property. The default is 5 keys.
- The keys propagate across all Controller nodes.

2. Rotate the Fernet keys by using the `workflow` command:

```
$ source ~/stackrc
$ openstack workflow execution create tripleo.fernet_keys.v1.rotate_fernet_keys
```

```
Field | Value
-------------|-------------
ID | 58c9c664-b966-4f82-b368-af5ed8de5b47
Workflow ID | 78f0990a-3d34-4bf2-a127-10c149bb275c
Workflow name | tripleo.fernet_keys.v1.rotate_fernet_keys
Description |
Task Execution ID | <none>
State | RUNNING
State info | None
Created at | 2017-12-20 11:13:50
Updated at | 2017-12-20 11:15:00
```

Verification

1. Retrieve the ID and ensure that the workflow is successful.

```
$ openstack workflow execution show 58c9c664-b966-4f82-b368-af5ed8de5b47
```

```
Field | Value
-------------|-------------
ID | 58c9c664-b966-4f82-b368-af5ed8de5b47
Workflow ID | 78f0990a-3d34-4bf2-a127-10c149bb275c
Workflow name | tripleo.fernet_keys.v1.rotate_fernet_keys
Description |
Task Execution ID | <none>
State | SUCCESS
State info | None
Created at | 2017-12-20 11:13:50
Updated at | 2017-12-20 11:15:00
```

2. On the Controller node, review the number of Fernet keys, and compare with the previous result.
0 - Contains the *staged* key and always be numbered 0. This key becomes a primary key during the next rotation.

1 & 2 - Contain the *secondary keys*.

3 - Contains the *primary key*. This number increments each time the keys rotate. The highest number always serves as the primary key.

**NOTE**
- The maximum number of keys is set with the `max_active_keys` property. The default is 5 keys.
- The keys propagate across all Controller nodes.