Menu Close
Settings Close

Language and Page Formatting Options

Chapter 1. Backing up the undercloud node

To back up the undercloud node, you configure the backup node, install the Relax-and-Recover tool on the undercloud node, and create the backup image. You can create backups as a part of your regular environment maintenance.

In addition, you must back up the undercloud node before performing updates or upgrades. You can use the backups to restore the undercloud node to its previous state if an error occurs during an update or upgrade.

1.1. Supported backup formats and protocols

The undercloud and backup and restore process uses the open-source tool Relax-and-Recover (ReaR) to create and restore bootable backup images. ReaR is written in Bash and supports multiple image formats and multiple transport protocols.

The following list shows the backup formats and protocols that Red Hat OpenStack Platform supports.

Bootable media formats
  • ISO
File transport protocols
  • SFTP
  • NFS

1.2. Installing and configuring an NFS server on the backup node

You can install and configure a new NFS server to store the backup file. To install and configure an NFS server on the backup node, create an inventory file, set up an SSH key, and run the openstack undercloud backup command with the NFS server options.

Important
  • If you previously installed and configured an NFS or SFTP server, you do not need to complete this procedure. You enter the server information when you set up ReaR on the node that you want to back up.
  • By default, the Relax and Recover (ReaR) configuration assumes that the IP address of the NFS server is 192.168.24.1. If your NFS server has a different IP address, add the parameter tripleo_backup_and_restore_nfs_server to the setup ReaR command.

Procedure

  1. On the undercloud node, source the undercloud credentials:

    [stack@undercloud ~]$ source stackrc
    (undercloud) [stack@undercloud ~]$
  2. On the undercloud node, create an inventory file for the backup node and replace the <ip_address> and <user> with the values that apply to your environment:

    (undercloud) [stack@undercloud ~]$ cat <<'EOF'> ~/nfs-inventory.yaml
    [BackupNode]
    <backup_node> ansible_host=<ip_address> ansible_user=<user>
    EOF
  3. On the undercloud node, create the following Ansible playbook and replace <backup_node> with the host name of the backup node:

    (undercloud) [stack@undercloud ~]$ cat <<'EOF' > ~/bar_nfs_setup.yaml
    # Playbook
    # Substitute <backup_node> with the host name of your backup node.
    - become: true
      hosts: <backup_node>
      name: Setup NFS server for ReaR
      roles:
      - role: backup-and-restore
    EOF
  4. Copy the public SSH key from the undercloud node to the backup node.

    (undercloud) [stack@undercloud ~]$ ssh-copy-id -i ~/.ssh/id_rsa.pub <backup_node>

    Replace <backup_node> with the path and name of the backup node.

  5. On the undercloud node, enter the following ansible-playbook commands to configure the backup node:

    (undercloud) [stack@undercloud ~]$ ansible-playbook \
        -v -i ~/nfs-inventory.yaml \
        --extra="ansible_ssh_common_args='-o StrictHostKeyChecking=no'" \
        --become \
        --become-user root \
        --tags bar_setup_nfs_server \
        ~/bar_nfs_setup.yaml

1.3. Installing ReaR on the undercloud node

Before you create a backup of the undercloud node, install and configure Relax and Recover (ReaR) on the undercloud.

Prerequisites

Procedure

  1. On the undercloud node, source the undercloud credentials and use the tripleo-ansible-inventory command to generate a static inventory file that contains hosts and variables for all the overcloud nodes:

    [stack@undercloud ~]$ source stackrc
    (undercloud) [stack@undercloud ~]$ tripleo-ansible-inventory \
    --ansible_ssh_user heat-admin \
    --static-yaml-inventory /home/stack/tripleo-inventory.yaml

    If you use a custom stack name, add the --stack <stack_name> option to the tripleo-ansible-inventory command.

  2. On the undercloud node, create the following Ansible playbook:

    (undercloud) [stack@undercloud ~]$ cat <<'EOF' > ~/bar_rear_setup-undercloud.yaml
    # Playbook
    # Installing and configuring ReaR on the undercloud node
    - become: true
      hosts: undercloud
      name: Install ReaR
      roles:
      - role: backup-and-restore
    EOF
  3. Choose one of the following options:

    1. If you use NFS, enter the following Ansible command to install ReaR on the undercloud node:

      (undercloud) [stack@undercloud ~]$ ansible-playbook \
          -v -i ~/tripleo-inventory.yaml \
          --extra="ansible_ssh_common_args='-o StrictHostKeyChecking=no'" \
          --become \
          --become-user root \
          -e tripleo_backup_and_restore_nfs_server=<nfs-ip> \
          --tags bar_setup_rear \
          ~/bar_rear_setup-undercloud.yaml
    2. If you use SFTP, enter the following Ansible command to install ReaR on the undercloud node:

      (undercloud) [stack@undercloud ~]$ ansible-playbook \
          -v -i ~/tripleo-inventory.yaml \
          --extra="ansible_ssh_common_args='-o StrictHostKeyChecking=no'" \
          --become \
          --become-user root \
          -e tripleo_backup_and_restore_output_url=sftp://<user>:<password>@<backup_node_ip>/ \
          -e tripleo_backup_and_restore_backup_url=iso:///backup/ \
          --tags bar_setup_rear \
          ~/bar_rear_setup-undercloud.yaml
  4. If your system uses the UEFI boot loader, perform the following steps on the undercloud node:

    1. Install the following tools:

      $ sudo dnf install dosfstools efibootmgr
    2. Enable UEFI backup in the ReaR configuration file located in /etc/rear/local.conf by replacing the USING_UEFI_BOOTLOADER parameter value 0 with the value 1.

1.4. Creating a standalone database backup of the undercloud nodes

If you are upgrading your Red Hat OpenStack Platform environment from 13 to 16.1, you must create a standalone database backup after you perform the undercloud upgrade and before you perform the Leapp upgrade process on the undercloud nodes.

You can optionally include standalone undercloud database backups in your routine backup schedule to provide additional data security. A full backup of an undercloud node includes a database backup of the undercloud node. But if a full undercloud restoration fails, you might lose access to the database portion of the full undercloud backup. In this case, you can recover the database from a standalone undercloud database backup.

Procedure

  • Create a database backup of the undercloud nodes:

    openstack undercloud backup --db-only

    The db backup file is stored in /home/stack with the name openstack-backup-mysql-<timestamp>.sql.

1.5. Configuring Open vSwitch (OVS) interfaces for backup

If you use an Open vSwitch (OVS) bridge in your environment, you must manually configure the OVS interfaces before you create a backup of the undercloud or control plane nodes. The restoration process uses this information to restore the network interfaces.

Procedure

  • In the /etc/rear/local.conf file, add the NETWORKING_PREPARATION_COMMANDS parameter in the following format:

    NETWORKING_PREPARATION_COMMANDS=('<command_1>' '<command_2>' ...')

    Replace <command_1> and <command_2> with commands that configure the network interface names or IP addresses. For example, you can add the ip link add br-ctlplane type bridge command to configure the control plane bridge name or add the ip link set eth0 up command to set the name of the interface. You can add more commands to the parameter based on your network configuration.

1.6. Creating a backup of the undercloud node

To create a backup of the undercloud node, use the backup-and-restore Ansible role. You can then use the backup to restore the undercloud node to its previous state in case the node becomes corrupted or inaccessible. The backup of the undercloud node includes the backup of the database that runs on the undercloud node.

If you are upgrading your Red Hat OpenStack Platform environment from 13 to 16.1, you must create a separate database backup after you perform the undercloud upgrade and before you perform the Leapp upgrade process on the overcloud nodes. For more information, see Section 1.4, “Creating a standalone database backup of the undercloud nodes”.

Prerequisites

Procedure

  1. Log in to the undercloud as the stack user.
  2. Retrieve the MySQL root password:

    [stack@undercloud ~]$ PASSWORD=$(sudo /bin/hiera -c /etc/puppet/hiera.yaml mysql::server::root_password)
  3. Create a database backup of the undercloud node:

    [stack@undercloud ~]$ sudo podman exec mysql bash -c "mysqldump -uroot -p$PASSWORD --opt --all-databases" | sudo tee /root/undercloud-all-databases.sql
  4. Source the undercloud credentials:

    [stack@undercloud ~]$ source stackrc
  5. On the undercloud node, create the following Ansible playbook:

    (undercloud) [stack@undercloud ~]$ cat <<'EOF' > ~/bar_rear_create_restore_images-undercloud.yaml
    # Playbook
    # Using ReaR on the undercloud node.
    - become: true
      hosts: undercloud
      name: Create the recovery images for the undercloud
      roles:
      - role: backup-and-restore
    EOF
  6. To create a backup of the undercloud node, enter the following ansible-playbook command:

    (undercloud) [stack@undercloud ~]$ ansible-playbook \
        -v -i ~/tripleo-inventory.yaml \
        --extra="ansible_ssh_common_args='-o StrictHostKeyChecking=no'" \
        --become \
        --become-user root \
        --tags bar_create_recover_image \
        ~/bar_rear_create_restore_images-undercloud.yaml