
Red Hat OpenStack Platform 16.0

Deploying an overcloud with containerized Red
Hat Ceph

Configuring the director to deploy and use a containerized Red Hat Ceph cluster

Last Updated: 2020-04-07

Red Hat OpenStack Platform 16.0 Deploying an overcloud with
containerized Red Hat Ceph

Configuring the director to deploy and use a containerized Red Hat Ceph cluster

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information about using the Red Hat OpenStack Platform director to create an
overcloud with a containerized Red Hat Ceph Storage cluster. This includes instructions for
customizing your Ceph cluster through the director.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. INTRODUCTION TO CEPH STORAGE
1.2. REQUIREMENTS

1.2.1. Ceph Storage node requirements
1.3. ADDITIONAL RESOURCES

CHAPTER 2. PREPARING OVERCLOUD NODES
2.1. CLEANING CEPH STORAGE NODE DISKS
2.2. REGISTERING NODES
2.3. MANUALLY TAGGING NODES INTO PROFILES
2.4. DEFINING THE ROOT DISK FOR MULTI-DISK CLUSTERS
2.5. USING THE OVERCLOUD-MINIMAL IMAGE TO AVOID USING A RED HAT SUBSCRIPTION ENTITLEMENT

CHAPTER 3. DEPLOYING CEPH SERVICES ON DEDICATED NODES
3.1. CREATING A CUSTOM ROLES FILE
3.2. CREATING A CUSTOM ROLE AND FLAVOR FOR THE CEPH MON SERVICE
3.3. CREATING A CUSTOM ROLE AND FLAVOR FOR THE CEPH MDS SERVICE

CHAPTER 4. CUSTOMIZING THE STORAGE SERVICE
4.1. ENABLING THE CEPH METADATA SERVER
4.2. ENABLING THE CEPH OBJECT GATEWAY
4.3. CONFIGURING THE BACKUP SERVICE TO USE CEPH
4.4. CONFIGURING MULTIPLE BONDED INTERFACES FOR CEPH NODES

4.4.1. Configuring bonding module directives

CHAPTER 5. CUSTOMIZING THE CEPH STORAGE CLUSTER
5.1. SETTING CEPH-ANSIBLE GROUP VARIABLES
5.2. CEPH CONTAINERS FOR RED HAT OPENSTACK PLATFORM WITH CEPH STORAGE
5.3. MAPPING THE CEPH STORAGE NODE DISK LAYOUT

5.3.1. Using BlueStore
5.3.2. Referring to devices with persistent names

5.4. ASSIGNING CUSTOM ATTRIBUTES TO DIFFERENT CEPH POOLS
5.5. MAPPING THE DISK LAYOUT TO NON-HOMOGENEOUS CEPH STORAGE NODES
5.6. INCREASING THE RESTART DELAY FOR LARGE CEPH CLUSTERS

CHAPTER 6. DEPLOYING SECOND-TIER CEPH STORAGE ON OPENSTACK
6.1. CREATE A CRUSH MAP
6.2. MAPPING THE OSDS
6.3. SETTING THE REPLICATION FACTOR
6.4. DEFINING THE CRUSH HIERARCHY
6.5. DEFINING CRUSH MAP RULES
6.6. CONFIGURING OSP POOLS
6.7. CONFIGURING BLOCK STORAGE TO USE THE NEW POOL
6.8. VERIFYING CUSTOMIZED CRUSH MAP

CHAPTER 7. CREATING THE OVERCLOUD
7.1. ASSIGNING NODES AND FLAVORS TO ROLES
7.2. INITIATING OVERCLOUD DEPLOYMENT

CHAPTER 8. POST-DEPLOYMENT
8.1. ACCESSING THE OVERCLOUD
8.2. MONITORING CEPH STORAGE NODES

4
4
4
5
6

7
7
7

10
11

13

15
15
15
17

19
20
20
21
22
24

26
27
27
27
28
29
30
31

34

35
35
35
36
36
39
40
41
41

42
42
43

46
46
46

Table of Contents

1

. .

. .

. .

. .

CHAPTER 9. REBOOTING THE ENVIRONMENT
9.1. REBOOTING A CEPH STORAGE (OSD) CLUSTER

CHAPTER 10. SCALING THE CEPH STORAGE CLUSTER
10.1. SCALING UP THE CEPH STORAGE CLUSTER
10.2. SCALING DOWN AND REPLACING CEPH STORAGE NODES
10.3. ADDING AN OSD TO A CEPH STORAGE NODE
10.4. REMOVING AN OSD FROM A CEPH STORAGE NODE
10.5. HANDLING DISK FAILURE

APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING A CEPH STORAGE CLUSTER

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES

48
48

50
50
52
54
55
57

58

60

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

2

Table of Contents

3

CHAPTER 1. INTRODUCTION
Red Hat OpenStack Platform director creates a cloud environment called the overcloud. The director
provides the ability to configure extra features for an overcloud, including integration with Red Hat
Ceph Storage (both Ceph Storage clusters created with the director or existing Ceph Storage clusters).

This guide contains instructions for deploying a containerized Red Hat Ceph Storage cluster with your
overcloud. Director uses Ansible playbooks provided through the ceph-ansible package to deploy a
containerized Ceph cluster. The director also manages the configuration and scaling operations of the
cluster.

For more information about containerized services in OpenStack, see Configuring a Basic overcloud with
the CLI Tools in the Director Installation and Usage Guide .

1.1. INTRODUCTION TO CEPH STORAGE

Red Hat Ceph Storage is a distributed data object store designed to provide excellent performance,
reliability, and scalability. Distributed object stores are the future of storage, because they
accommodate unstructured data, and because clients can use modern object interfaces and legacy
interfaces simultaneously. At the heart of every Ceph deployment is the Ceph Storage Cluster, which
consists of two types of daemons:

Ceph OSD (Object Storage Daemon)

Ceph OSDs store data on behalf of Ceph clients. Additionally, Ceph OSDs utilize the CPU and
memory of Ceph nodes to perform data replication, rebalancing, recovery, monitoring and reporting
functions.

Ceph Monitor

A Ceph monitor maintains a master copy of the Ceph storage cluster map with the current state of
the storage cluster.

For more information about Red Hat Ceph Storage, see the Red Hat Ceph Storage Architecture Guide .

IMPORTANT

This guide contains integration information for Ceph Block storage and the Ceph Object
Gateway (RGW). It does not include information about Ceph File (CephFS) storage.

1.2. REQUIREMENTS

This guide contains information supplementary to the Director Installation and Usage guide. The
Requirements section from that guide also applies to this guide. Implement these requirements as
necessary.

Before you deploy a containerized Ceph Storage cluster with your overcloud, your environment must
contain the following configuration:

An undercloud host with the Red Hat OpenStack Platform director installed. See Installing the
Undercloud.

Any additional hardware recommended for Red Hat Ceph Storage. For more information about
recommended hardware, see the Red Hat Ceph Storage Hardware Guide .

IMPORTANT

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

4

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/index#creating-a-basic-overcloud-with-cli-tools
https://access.redhat.com/documentation/en/red-hat-ceph-storage/1.3/architecture-guide/architecture-guide
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/director_installation_and_usage/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/director_installation_and_usage/chap-requirements
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/director_installation_and_usage/installing-the-undercloud
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html/hardware_guide/index

IMPORTANT

The Ceph Monitor service installs on the overcloud Controller nodes, so you must provide
adequate resources to avoid performance issues. Ensure that the Controller nodes in
your environment use at least 16 GB of RAM for memory and solid-state drive (SSD)
storage for the Ceph monitor data. For a medium to large Ceph installation, provide at
least 500 GB of Ceph monitor data. This space is necessary to avoid levelDB growth if
the cluster becomes unstable.

If you use the Red Hat OpenStack Platform director to create Ceph Storage nodes, note the following
requirements.

1.2.1. Ceph Storage node requirements

Ceph Storage nodes are responsible for providing object storage in a Red Hat OpenStack Platform
environment.

Placement Groups (PGs)

Ceph uses placement groups to facilitate dynamic and efficient object tracking at scale. In the case
of OSD failure or cluster rebalancing, Ceph can move or replicate a placement group and its
contents, which means a Ceph cluster can re-balance and recover efficiently. The default placement
group count that director creates is not always optimal so it is important to calculate the correct
placement group count according to your requirements. You can use the placement group calculator
to calculate the correct count: Placement Groups (PGs) per Pool Calculator

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Red Hat typically recommends a baseline of 16 GB of RAM per OSD host, with an additional 2 GB of
RAM per OSD daemon.

Disk layout

Sizing is dependent on your storage requirements. Red Hat recommends that your Ceph Storage
node configuration includes three or more disks in a layout similar to the following example:

/dev/sda - The root disk. The director copies the main overcloud image to the disk. Ensure
that the disk has a minimum of 40 GB of available disk space.

/dev/sdb - The journal disk. This disk divides into partitions for Ceph OSD journals. For
example, /dev/sdb1, /dev/sdb2, and /dev/sdb3. The journal disk is usually a solid state drive
(SSD) to aid with system performance.

/dev/sdc and onward - The OSD disks. Use as many disks as necessary for your storage
requirements.

NOTE

Red Hat OpenStack Platform director uses ceph-ansible, which does not
support installing the OSD on the root disk of Ceph Storage nodes. This
means that you need at least two disks for a supported Ceph Storage node.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although Red Hat recommends that you use at
least two NICs in a production environment. Use additional network interface cards for bonded

CHAPTER 1. INTRODUCTION

5

https://access.redhat.com/labs/cephpgc/

interfaces or to delegate tagged VLAN traffic. Red Hat recommends that you use a 10 Gbps
interface for storage nodes, especially if you want to create an OpenStack Platform environment
that serves a high volume of traffic.

Power management

Each Controller node requires a supported power management interface, such as Intelligent Platform
Management Interface (IPMI) functionality on the motherboard of the server.

1.3. ADDITIONAL RESOURCES

The /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-ansible.yaml
environment file instructs the director to use playbooks derived from the ceph-ansible project. These
playbooks are installed in /usr/share/ceph-ansible/ of the undercloud. In particular, the following file
contains all the default settings that the playbooks apply:

/usr/share/ceph-ansible/group_vars/all.yml.sample

WARNING

While ceph-ansible uses playbooks to deploy containerized Ceph Storage, do not
edit these files to customize your deployment. Instead, use heat environment files
to override the defaults set by these playbooks. If you edit the ceph-ansible
playbooks directly, your deployment will fail.

For more information about the playbook collection, see the documentation for this project
(http://docs.ceph.com/ceph-ansible/master/) to learn more about the playbook collection.

Alternatively, for information about the default settings applied by director for containerized Ceph
Storage, see the heat templates in /usr/share/openstack-tripleo-heat-templates/deployment/ceph-
ansible.

NOTE

Reading these templates requires a deeper understanding of how environment files and
heat templates work in director. See Understanding Heat Templates and Environment
Files for reference.

Lastly, for more information about containerized services in OpenStack, see "Configuring a Basic
Overcloud with the CLI Tools" in the Director Installation and Usage Guide .



Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

6

https://github.com/ceph/ceph-ansible/tree/master/
http://docs.ceph.com/ceph-ansible/master/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/advanced_overcloud_customization/sect-understanding_heat_templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/advanced_overcloud_customization/sect-understanding_heat_templates#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/director_installation_and_usage/chap-configuring_basic_overcloud_requirements_with_the_cli_tools

CHAPTER 2. PREPARING OVERCLOUD NODES
All nodes in this scenario are bare metal systems using IPMI for power management. These nodes do not
require an operating system because the director copies a Red Hat Enterprise Linux 8 image to each
node. Additionally, the Ceph Storage services on these nodes are containerized. The director
communicates to each node through the Provisioning network during the introspection and provisioning
processes. All nodes connect to this network through the native VLAN.

2.1. CLEANING CEPH STORAGE NODE DISKS

The Ceph Storage OSDs and journal partitions require GPT disk labels. This means the additional disks
on Ceph Storage require conversion to GPT before installing the Ceph OSD services. You must delete
all metadata from the disks to allow the director to set GPT labels on them.

You can configure the director to delete all disk metadata by default by adding the following setting to
your /home/stack/undercloud.conf file:

clean_nodes=true

With this option, the Bare Metal Provisioning service runs an additional step to boot the nodes and
clean the disks each time the node is set to available. This process adds an additional power cycle after
the first introspection and before each deployment. The Bare Metal Provisioning service uses the
wipefs --force --all command to perform the clean.

After setting this option, run the openstack undercloud install command to execute this configuration
change.

WARNING

The wipefs --force --all command deletes all data and metadata on the disk, but
does not perform a secure erase. A secure erase takes much longer.

2.2. REGISTERING NODES

Import a node inventory file (instackenv.json) in JSON format to the director so that the director can
communicate with the nodes. This inventory file contains hardware and power management details that
the director can use to register nodes:

{
 "nodes":[
 {
 "mac":[
 "b1:b1:b1:b1:b1:b1"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",



CHAPTER 2. PREPARING OVERCLOUD NODES

7

 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.205"
 },
 {
 "mac":[
 "b2:b2:b2:b2:b2:b2"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.206"
 },
 {
 "mac":[
 "b3:b3:b3:b3:b3:b3"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.207"
 },
 {
 "mac":[
 "c1:c1:c1:c1:c1:c1"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.208"
 },
 {
 "mac":[
 "c2:c2:c2:c2:c2:c2"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.209"
 },

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

8

 {
 "mac":[
 "c3:c3:c3:c3:c3:c3"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.210"
 },
 {
 "mac":[
 "d1:d1:d1:d1:d1:d1"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.211"
 },
 {
 "mac":[
 "d2:d2:d2:d2:d2:d2"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.212"
 },
 {
 "mac":[
 "d3:d3:d3:d3:d3:d3"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.213"
 }
]
}

Procedure

CHAPTER 2. PREPARING OVERCLOUD NODES

9

Procedure

1. After you create the inventory file, save the file to the home directory of the stack user
(/home/stack/instackenv.json).

2. Initialize the stack user, then import the instackenv.json inventory file into the director:

$ source ~/stackrc
$ openstack overcloud node import ~/instackenv.json

The openstack overcloud node import command imports the inventory file and registers each
node with the director.

3. Assign the kernel and ramdisk images to each node:

$ openstack overcloud node configure <node>

The nodes are now registered and configured in the director.

2.3. MANUALLY TAGGING NODES INTO PROFILES

After you register each node, you must inspect the hardware and tag the node into a specific profile. Use
profile tags to match your nodes to flavors, and then assign flavors to deployment roles.

To inspect and tag new nodes, complete the following steps:

1. Trigger hardware introspection to retrieve the hardware attributes of each node:

$ openstack overcloud node introspect --all-manageable --provide

The --all-manageable option introspects only the nodes that are in a managed state. In this
example, all nodes are in a managed state.

The --provide option resets all nodes to an active state after introspection.

IMPORTANT

Ensure that this process completes successfully. This process usually takes 15
minutes for bare metal nodes.

2. Retrieve a list of your nodes to identify their UUIDs:

$ openstack baremetal node list

3. Add a profile option to the properties/capabilities parameter for each node to manually tag a
node to a specific profile. The addition of the profile option tags the nodes into each respective
profile.

NOTE

As an alternative to manual tagging, use the Automated Health Check (AHC)
Tools to automatically tag larger numbers of nodes based on benchmarking data.

For example, a typical deployment contains three profiles: control, compute, and ceph-

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

10

For example, a typical deployment contains three profiles: control, compute, and ceph-
storage. Run the following commands to tag three nodes for each profile:

$ ironic node-update 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0 add
properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 6faba1a9-e2d8-4b7c-95a2-c7fbdc12129a add
properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 5e3b2f50-fcd9-4404-b0a2-59d79924b38e add
properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 484587b2-b3b3-40d5-925b-a26a2fa3036f add
properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update d010460b-38f2-4800-9cc4-d69f0d067efe add
properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update d930e613-3e14-44b9-8240-4f3559801ea6 add
properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update da0cc61b-4882-45e0-9f43-fab65cf4e52b add
properties/capabilities='profile:ceph-storage,boot_option:local'
$ ironic node-update b9f70722-e124-4650-a9b1-aade8121b5ed add
properties/capabilities='profile:ceph-storage,boot_option:local'
$ ironic node-update 68bf8f29-7731-4148-ba16-efb31ab8d34f add
properties/capabilities='profile:ceph-storage,boot_option:local'

TIP

You can also configure a new custom profile that you can use to tag a node for the Ceph MON
and Ceph MDS services. See Chapter 3, Deploying Ceph services on dedicated nodes for
details.

2.4. DEFINING THE ROOT DISK FOR MULTI-DISK CLUSTERS

Director must identify the root disk during provisioning in the case of nodes with multiple disks. For
example, most Ceph Storage nodes use multiple disks. By default, the director writes the overcloud
image to the root disk during the provisioning process

There are several properties that you can define to help the director identify the root disk:

model (String): Device identifier.

vendor (String): Device vendor.

serial (String): Disk serial number.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

wwn (String): Unique storage identifier.

wwn_with_extension (String): Unique storage identifier with the vendor extension appended.

wwn_vendor_extension (String): Unique vendor storage identifier.

rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

name (String): The name of the device, for example: /dev/sdb1.

CHAPTER 2. PREPARING OVERCLOUD NODES

11

IMPORTANT

Use the name property only for devices with persistent names. Do not use name to set
the root disk for any other devices because this value can change when the node boots.

Complete the following steps to specify the root device using its serial number.

Procedure

1. Check the disk information from the hardware introspection of each node. Run the following
command to display the disk information of a node:

(undercloud) $ openstack baremetal introspection data save 1a4e30da-b6dc-499d-ba87-
0bd8a3819bc0 | jq ".inventory.disks"

For example, the data for one node might show three disks:

[
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sda",
 "wwn_vendor_extension": "0x1ea4dcc412a9632b",
 "wwn_with_extension": "0x61866da04f3807001ea4dcc412a9632b",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380700",
 "serial": "61866da04f3807001ea4dcc412a9632b"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdb",
 "wwn_vendor_extension": "0x1ea4e13c12e36ad6",
 "wwn_with_extension": "0x61866da04f380d001ea4e13c12e36ad6",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380d00",
 "serial": "61866da04f380d001ea4e13c12e36ad6"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdc",
 "wwn_vendor_extension": "0x1ea4e31e121cfb45",
 "wwn_with_extension": "0x61866da04f37fc001ea4e31e121cfb45",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f37fc00",
 "serial": "61866da04f37fc001ea4e31e121cfb45"
 }
]

2. Run the openstack baremetal node set --property root_device= command to set the root
disk for a node. Include the most appropriate hardware attribute value to define the root disk.

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

12

(undercloud) $ openstack baremetal node set --property
root_device=’{“serial”:”<serial_number>”}' <node-uuid>

For example, to set the root device to disk 2, which has the serial number
61866da04f380d001ea4e13c12e36ad6 run the following command:

(undercloud) $ openstack baremetal node set --property root_device='{"serial":
"61866da04f380d001ea4e13c12e36ad6"}' 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0

+

NOTE

Ensure that you configure the BIOS of each node to include booting from the root disk
that you choose. Configure the boot order to boot from the network first, then to boot
from the root disk.

Director identifies the specific disk to use as the root disk. When you run the openstack overcloud
deploy command, director provisions and writes the overcloud image to the root disk.

2.5. USING THE OVERCLOUD-MINIMAL IMAGE TO AVOID USING A
RED HAT SUBSCRIPTION ENTITLEMENT

By default, director writes the QCOW2 overcloud-full image to the root disk during the provisioning
process. The overcloud-full image uses a valid Red Hat subscription. However, you can also use the
overcloud-minimal image, for example, to provision a bare OS where you do not want to run any other
OpenStack services or consume one of your subscription entitlements. A common use case is if you
want to provision nodes with only Ceph daemons. For this, and other similar cases, you can use the
overcloud-minimal image option to avoid reaching the limit of your paid Red Hat subscriptions.

NOTE

A Red Hat OpenStack Platform subscription contains Open vSwitch (OVS), but core
services, such as OVS, are not available when you use the overcloud-minimal image.
OVS is not required to deploy Ceph Storage nodes. Instead of using 'ovs_bond' to define
bonds, use 'linux_bond'. For more information about linux_bond, see
https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/16.0/html-
single/advanced_overcloud_customization/index#linux-bonding-options.

Procedure

1. To configure director to use the overcloud-minimal image, create an environment file that
contains the following image definition:

parameter_defaults:
 <roleName>Image: overcloud-minimal

2. Replace <roleName> with the name of the role and append Image to the name of the role. The
following example shows an overcloud-minimal image for Ceph storage nodes:

CHAPTER 2. PREPARING OVERCLOUD NODES

13

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/advanced_overcloud_customization/index#linux-bonding-options

parameter_defaults:
 CephStorageImage: overcloud-minimal

3. Pass the environment file to the openstack overcloud deploy command.

NOTE

The overcloud-minimal image supports only standard Linux bridges and not OVS
because OVS is an OpenStack service that requires a Red Hat OpenStack Platform
subscription entitlement.

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

14

CHAPTER 3. DEPLOYING CEPH SERVICES ON DEDICATED
NODES

By default, the director deploys the Ceph MON and Ceph MDS services on the Controller nodes. This is
suitable for small deployments. However, with larger deployments Red Hat recommends that you deploy
the Ceph MON and Ceph MDS services on dedicated nodes to improve the performance of your Ceph
cluster. Create a custom role for services that you want to isolate on dedicated nodes.

NOTE

For more information about custom roles, see Creating a New Role in the Advanced
Overcloud Customization guide.

The director uses the following file as a default reference for all overcloud roles:

/usr/share/openstack-tripleo-heat-templates/roles_data.yaml

3.1. CREATING A CUSTOM ROLES FILE

To create a custom role file, complete the following steps:

Procedure

1. Make a copy of the roles_data.yaml file in /home/stack/templates/ so that you can add custom
roles:

$ cp /usr/share/openstack-tripleo-heat-templates/roles_data.yaml
/home/stack/templates/roles_data_custom.yaml

2. Include the new custom role file in the openstack overcloud deploy command.

3.2. CREATING A CUSTOM ROLE AND FLAVOR FOR THE CEPH MON
SERVICE

Complete the following steps to create a custom role CephMon and flavor ceph-mon for the Ceph
MON role. You must already have a copy of the default roles data file as described in Chapter 3,
Deploying Ceph services on dedicated nodes .

Procedure

1. Open the /home/stack/templates/roles_data_custom.yaml file.

2. Remove the service entry for the Ceph MON service (namely,
OS::TripleO::Services::CephMon) from the Controller role.

3. Add the OS::TripleO::Services::CephClient service to the Controller role:

[...]
- name: Controller # the 'primary' role goes first
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::CACerts

CHAPTER 3. DEPLOYING CEPH SERVICES ON DEDICATED NODES

15

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/advanced_overcloud_customization/index#sect-Creating_a_New_Role
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/advanced_overcloud_customization/

 - OS::TripleO::Services::CephMds
 - OS::TripleO::Services::CephClient
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CephRbdMirror
 - OS::TripleO::Services::CephRgw
 - OS::TripleO::Services::CinderApi
[...]

4. At the end of the roles_data_custom.yaml file, add a custom CephMon role that contains the
Ceph MON service and all the other required node services:

- name: CephMon
 ServicesDefault:
 # Common Services
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::FluentdClient
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Tuned
 # Role-Specific Services
 - OS::TripleO::Services::CephMon

5. Run the openstack flavor create command to define a new flavor named ceph-mon for the
CephMon role:

$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 ceph-mon

NOTE

For details about this command, run openstack flavor create --help.

6. Map this flavor to a new profile, also named ceph-mon:

$ openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property "capabilities:profile"="ceph-mon" ceph-mon

NOTE

For details about this command, run openstack flavor set --help.

7. Tag nodes into the new ceph-mon profile:

$ ironic node-update UUID add properties/capabilities='profile:ceph-mon,boot_option:local'

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

16

1

For more information about tagging nodes, see Section 2.3, “Manually tagging nodes into profiles” . For
more information about custom role profiles, see Tagging Nodes Into Profiles.

3.3. CREATING A CUSTOM ROLE AND FLAVOR FOR THE CEPH MDS
SERVICE

Complete the following steps to create a custom role CephMDS and flavor ceph-mds for the Ceph
MDS role. You must already have a copy of the default roles data file as described in Chapter 3,
Deploying Ceph services on dedicated nodes .

Procedure

1. Open the /home/stack/templates/roles_data_custom.yaml file.

2. Remove the service entry for the Ceph MDS service (namely,
OS::TripleO::Services::CephMds) from the Controller role:

[...]
- name: Controller # the 'primary' role goes first
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::CACerts
 # - OS::TripleO::Services::CephMds 1
 - OS::TripleO::Services::CephMon
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CephRbdMirror
 - OS::TripleO::Services::CephRgw
 - OS::TripleO::Services::CinderApi
[...]

Comment out this line. In the next step, you add this service to the new custom role.

3. At the end of the roles_data_custom.yaml file, add a custom CephMDS role containing the
Ceph MDS service and all the other required node services:

- name: CephMDS
 ServicesDefault:
 # Common Services
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::FluentdClient
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Tuned

CHAPTER 3. DEPLOYING CEPH SERVICES ON DEDICATED NODES

17

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/#sect-Tagging_Nodes_into_Profiles

1

 # Role-Specific Services
 - OS::TripleO::Services::CephMds
 - OS::TripleO::Services::CephClient 1

The Ceph MDS service requires the admin keyring, which you can set with either the Ceph
MON or Ceph Client service. If you deploy Ceph MDS on a dedicated node without the
Ceph MON service, you must also include the Ceph Client service in the new CephMDS
role.

4. Run the openstack flavor create command to define a new flavor named ceph-mds for this
role:

$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 ceph-mds

NOTE

For details about this command, run openstack flavor create --help.

5. Map the new ceph-mds flavor to a new profile, also named ceph-mds:

$ openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property "capabilities:profile"="ceph-mds" ceph-mds

NOTE

For details about this command, run openstack flavor set --help.

6. Tag nodes into the new ceph-mds profile:

$ ironic node-update UUID add properties/capabilities='profile:ceph-mds,boot_option:local'

For more information about tagging nodes, see Section 2.3, “Manually tagging nodes into profiles” . For
more information about custom role profiles, see Tagging Nodes Into Profiles.

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

18

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/#sect-Tagging_Nodes_into_Profiles

CHAPTER 4. CUSTOMIZING THE STORAGE SERVICE
The heat template collection provided by the director already contains the necessary templates and
environment files to enable a basic Ceph Storage configuration.

The director uses the /usr/share/openstack-tripleo-heat-templates/environments/ceph-
ansible/ceph-ansible.yaml environment file to create a Ceph cluster and integrate it with your
overcloud during deployment. This cluster features containerized Ceph Storage nodes. For more
information about containerized services in OpenStack, see "Configuring a Basic Overcloud with the CLI
Tools" in the Director Installation and Usage Guide .

The Red Hat OpenStack director also applies basic, default settings to the deployed Ceph cluster. You
must also define any additional configuration in a custom environment file:

Procedure

1. Create the file storage-config.yaml in /home/stack/templates/. In this example, the
~/templates/storage-config.yaml file contains most of the overcloud-related custom settings
for your environment. Parameters that you include in the custom environment file override the
corresponding default settings from the /usr/share/openstack-tripleo-heat-
templates/environments/ceph-ansible/ceph-ansible.yaml file.

2. Add a parameter_defaults section to ~/templates/storage-config.yaml. This section contains
custom settings for your overcloud. For example, to set vxlan as the network type of the
networking service (neutron), add the following snippet to your custom environment file:

parameter_defaults:
 NeutronNetworkType: vxlan

3. If necessary, set the following options under parameter_defaults according to your
requirements:

Option Description Default value

CinderEnableIscsiBackend Enables the iSCSI backend false

CinderEnableRbdBackend Enables the Ceph Storage back
end

true

CinderBackupBackend Sets ceph or swift as the back
end for volume backups. For
more information, see
Section 4.3, “Configuring the
Backup Service to use Ceph”.

ceph

NovaEnableRbdBackend Enables Ceph Storage for
Nova ephemeral storage

true

GlanceBackend Defines which back end the
Image service should use: rbd
(Ceph), swift, or file

rbd

CHAPTER 4. CUSTOMIZING THE STORAGE SERVICE

19

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/director_installation_and_usage/chap-configuring_basic_overcloud_requirements_with_the_cli_tools

GnocchiBackend Defines which back end the
Telemetry service should use:
rbd (Ceph), swift, or file

rbd

Option Description Default value

NOTE

You can omit an option from ~/templates/storage-config.yaml if you intend to
use the default setting.

The contents of your custom environment file change depending on the settings that you apply in the
following sections. See Appendix A, Sample environment file: creating a Ceph Storage cluster for a
completed example.

The following subsections contain information about overriding the common default storage service
settings that the director applies.

4.1. ENABLING THE CEPH METADATA SERVER

The Ceph Metadata Server (MDS) runs the ceph-mds daemon, which manages metadata related to
files stored on CephFS. CephFS can be consumed through NFS. For more information about using
CephFS through NFS, see File System Guide and CephFS via NFS Back End Guide for the Shared File
System Service.

NOTE

Red Hat supports deploying Ceph MDS only with the CephFS through NFS back end for
the Shared File System service.

Procedure

To enable the Ceph Metadata Server, invoke the following environment file when you create your
overcloud:

/usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-mds.yaml

For more information, see Section 7.2, “Initiating overcloud deployment” . For more information about
the Ceph Metadata Server, see Configuring Metadata Server Daemons .

NOTE

By default, the Ceph Metadata Server will be deployed on the Controller node. You can
deploy the Ceph Metadata Server on its own dedicated node. For more information, see
Section 3.3, “Creating a custom role and flavor for the Ceph MDS service” .

4.2. ENABLING THE CEPH OBJECT GATEWAY

The Ceph Object Gateway (RGW) provides applications with an interface to object storage capabilities

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

20

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html/file_system_guide/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/cephfs_via_nfs_back_end_guide_for_the_shared_file_system_service/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html/file_system_guide/configuring-metadata-server-daemons

within a Ceph Storage cluster. When you deploy RGW, you can replace the default Object Storage
service (swift) with Ceph. For more information, see Object Gateway Configuration and Administration
Guide.

Procedure

To enable RGW in your deployment, invoke the following environment file when you create the
overcloud:

/usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-rgw.yaml

For more information, see Section 7.2, “Initiating overcloud deployment” .

By default, Ceph Storage allows 250 placement groups per OSD. When you enable RGW, Ceph Storage
creates six additional pools that are required by RGW. The new pools are:

.rgw.root

default.rgw.control

default.rgw.meta

default.rgw.log

default.rgw.buckets.index

default.rgw.buckets.data

NOTE

In your deployment, default is replaced with the name of the zone to which the pools
belongs.

Therefore, when you enable RGW, be sure to set the default pg_num using the
CephPoolDefaultPgNum parameter to account for the new pools. For more information about how to
calculate the number of placement groups for Ceph pools, see Section 5.4, “Assigning custom
attributes to different Ceph pools”.

The Ceph Object Gateway is a direct replacement for the default Object Storage service. As such, all
other services that normally use swift can seamlessly start using the Ceph Object Gateway instead
without further configuration. For more information, see the Block Storage Backup Guide .

4.3. CONFIGURING THE BACKUP SERVICE TO USE CEPH

The Block Storage Backup service (cinder-backup) is disabled by default. To enable the Block Storage
Backup service, complete the following steps:

Procedure

Invoke the following environment file when you create your overcloud:

/usr/share/openstack-tripleo-heat-templates/environments/cinder-backup.yaml

For more information, see the Block Storage Backup Guide .

4.4. CONFIGURING MULTIPLE BONDED INTERFACES FOR CEPH

CHAPTER 4. CUSTOMIZING THE STORAGE SERVICE

21

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html-single/object_gateway_configuration_and_administration_guide/index#overview-rgw
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/block_storage_backup_guide/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/block_storage_backup_guide/

4.4. CONFIGURING MULTIPLE BONDED INTERFACES FOR CEPH
NODES

Use a bonded interface to combine multiple NICs and add redundancy to a network connection. If you
have enough NICs on your Ceph nodes, you can create multiple bonded interfaces on each node to
expand redundancy capability.

You can then use a bonded interface for each network connection that the node requires. This provides
both redundancy and a dedicated connection for each network.

The simplest implementation of bonded interfaces involves the use of two bonds, one for each storage
network used by the Ceph nodes. These networks are the following:

Front-end storage network (StorageNet)

The Ceph client uses this network to interact with the corresponding Ceph cluster.

Back-end storage network (StorageMgmtNet)

The Ceph cluster uses this network to balance data in accordance with the placement group policy
of the cluster. For more information, see Placement Groups (PG) in the in the Red Hat Ceph
Architecture Guide.

To configure multiple bonded interfaces, you must create a new network interface template, as the
director does not provide any sample templates that you can use to deploy multiple bonded NICs.
However, the director does provide a template that deploys a single bonded interface. This template is
/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vlans/ceph-storage.yaml.
You can define an additional bonded interface for your additional NICs in this template.

NOTE

For more information about creating custom interface templates, see Creating Custom
Interface Templates in the Advanced Overcloud Customization guide.

The following snippet contains the default definition for the single bonded interface defined in the
/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vlans/ceph-storage.yaml
file:

 type: ovs_bridge // 1
 name: br-bond
 members:
 -
 type: ovs_bond // 2
 name: bond1 // 3
 ovs_options: {get_param: BondInterfaceOvsOptions} 4
 members: // 5
 -
 type: interface
 name: nic2
 primary: true
 -
 type: interface
 name: nic3
 -
 type: vlan // 6
 device: bond1 // 7

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

22

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/architecture-guide#placement_groups_pgs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/advanced_overcloud_customization/#sect-Creating_Custom_Interface_Templates

1

2

3

4

5

6

7

 vlan_id: {get_param: StorageNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}

A single bridge named br-bond holds the bond defined in this template. This line defines the bridge
type, namely OVS.

The first member of the br-bond bridge is the bonded interface itself, named bond1. This line
defines the bond type of bond1, which is also OVS.

The default bond is named bond1.

The ovs_options entry instructs director to use a specific set of bonding module directives. Those
directives are passed through the BondInterfaceOvsOptions, which you can also configure in this
file. For more information about configuring bonding module directives, see Section 4.4.1,
“Configuring bonding module directives”.

The members section of the bond defines which network interfaces are bonded by bond1. In this
example, the bonded interface uses nic2 (set as the primary interface) and nic3.

The br-bond bridge has two other members: a VLAN for both front-end (StorageNetwork) and
back-end (StorageMgmtNetwork) storage networks.

The device parameter defines which device a VLAN should use. In this example, both VLANs use
the bonded interface, bond1.

With at least two more NICs, you can define an additional bridge and bonded interface. Then, you can
move one of the VLANs to the new bonded interface, which increases throughput and reliability for both
storage network connections.

When you customize the /usr/share/openstack-tripleo-heat-templates/network/config/bond-with-
vlans/ceph-storage.yaml file for this purpose, Red Hat recommends that you use Linux bonds (type:
linux_bond) instead of the default OVS (type: ovs_bond). This bond type is more suitable for
enterprise production deployments.

The following edited snippet defines an additional OVS bridge (br-bond2) which houses a new Linux
bond named bond2. The bond2 interface uses two additional NICs, nic4 and nic5, and is used solely for
back-end storage network traffic:

 type: ovs_bridge
 name: br-bond
 members:
 -
 type: linux_bond
 name: bond1
 bonding_options: {get_param: BondInterfaceOvsOptions} // 1
 members:

CHAPTER 4. CUSTOMIZING THE STORAGE SERVICE

23

1

 -
 type: interface
 name: nic2
 primary: true
 -
 type: interface
 name: nic3
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: StorageNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
-
 type: ovs_bridge
 name: br-bond2
 members:
 -
 type: linux_bond
 name: bond2
 bonding_options: {get_param: BondInterfaceOvsOptions}
 members:
 -
 type: interface
 name: nic4
 primary: true
 -
 type: interface
 name: nic5
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}

As bond1 and bond2 are both Linux bonds (instead of OVS), they use bonding_options instead
of ovs_options to set bonding directives. For more information, see Section 4.4.1, “Configuring
bonding module directives”.

For the full contents of this customized template, see Appendix B, Sample custom interface template:
multiple bonded interfaces.

4.4.1. Configuring bonding module directives

After you add and configure the bonded interfaces, use the BondInterfaceOvsOptions parameter to
set the directives that you want each bonded interface to use. You can find this information in the
parameters: section of the /usr/share/openstack-tripleo-heat-templates/network/config/bond-with-
vlans/ceph-storage.yaml file. The following snippet shows the default definition of this parameter
(namely, empty):

BondInterfaceOvsOptions:
 default: ''

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

24

 description: The ovs_options string for the bond interface. Set
 things like lacp=active and/or bond_mode=balance-slb
 using this option.
 type: string

Define the options you need in the default: line. For example, to use 802.3ad (mode 4) and a LACP rate
of 1 (fast), use 'mode=4 lacp_rate=1':

BondInterfaceOvsOptions:
 default: 'mode=4 lacp_rate=1'
 description: The bonding_options string for the bond interface. Set
 things like lacp=active and/or bond_mode=balance-slb
 using this option.
 type: string

For more information about other supported bonding options, see Appendix C. Open vSwitch Bonding
Options in the Advanced Overcloud Optimization guide. For the full contents of the customized
/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vlans/ceph-storage.yaml
template, see Appendix B, Sample custom interface template: multiple bonded interfaces .

CHAPTER 4. CUSTOMIZING THE STORAGE SERVICE

25

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/advanced_overcloud_customization/#appe-Bonding_Options

CHAPTER 5. CUSTOMIZING THE CEPH STORAGE CLUSTER
Director deploys containerized Red Hat Ceph Storage using a default configuration. You can customize
Ceph Storage by overriding the default settings.

Prerequistes

To deploy containerized Ceph Storage you must include the /usr/share/openstack-tripleo-heat-
templates/environments/ceph-ansible/ceph-ansible.yaml file during overcloud deployment. This
environment file defines the following resources:

CephAnsibleDisksConfig - This resource maps the Ceph Storage node disk layout. For more
information, see Section 5.3, “Mapping the Ceph Storage node disk layout” .

CephConfigOverrides - This resource applies all other custom settings to your Ceph Storage
cluster.

Use these resources to override any defaults that the director sets for containerized Ceph Storage.

Procedure

1. Enable the Red Hat Ceph Storage 4 Tools repository:

$ sudo subscription-manager repos --enable=rhceph-4-tools-for-rhel-8-x86_64-rpms

2. Install the ceph-ansible package on the undercloud:

$ sudo dnf install ceph-ansible

3. To customize your Ceph Storage cluster, define custom parameters in a new environment file,
for example, /home/stack/templates/ceph-config.yaml. You can apply Ceph Storage cluster
settings with the following syntax in the parameter_defaults section of your environment file:

parameter_defaults:
 CephConfigOverrides:
 section:
 KEY:VALUE

NOTE

You can apply the CephConfigOverrides parameter to the [global] section of
the ceph.conf file, as well as any other section, such as [osd], [mon], and [client].
If you specify a section, the key:value data goes into the specified section. If you
do not specify a section, the data goes into the [global] section by default. For
information about Ceph Storage configuration, customization, and supported
parameters, see Red Hat Ceph Storage Configuration Guide .

4. Replace KEY and VALUE with the Ceph cluster settings that you want to apply. For example, in
the global section, max_open_files is the KEY and 131072 is the corresponding VALUE:

parameter_defaults:
 CephConfigOverrides:
 global:

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

26

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html-single/configuration_guide/index

 max_open_files: 131072
 osd:
 osd_scrub_during_recovery: false

This configuration results in the following settings defined in the configuration file of your Ceph
cluster:

[global]
max_open_files = 131072
[osd]
osd_scrub_during_recovery = false

5.1. SETTING CEPH-ANSIBLE GROUP VARIABLES

The ceph-ansible tool is a playbook used to install and manage Ceph Storage clusters.

The ceph-ansible tool has a group_vars directory that defines configuration options and the default
settings for those options. Use the group_vars directory to set Ceph Storage parameters.

For information about the group_vars directory, see Installing a Red Hat Ceph Storage cluster in the
Installation Guide.

To change the variable defaults in director, use the CephAnsibleExtraConfig parameter to pass the
new values in heat environment files. For example, to set the ceph-ansible group variable journal_size
to 40960, create an environment file with the following journal_size definition:

parameter_defaults:
 CephAnsibleExtraConfig:
 journal_size: 40960

IMPORTANT

Change ceph-ansible group variables with the override parameters; do not edit group
variables directly in the /usr/share/ceph-ansible directory on the undercloud.

5.2. CEPH CONTAINERS FOR RED HAT OPENSTACK PLATFORM WITH
CEPH STORAGE

A Ceph container is required to configure OpenStack Platform to use Ceph, even with an external Ceph
cluster. To be compatible with Red Hat Enterprise Linux 8, OpenStack Platform 15 requires Red Hat
Ceph Storage 4. The Ceph Storage 4 container is hosted at registry.redhat.io, a registry which requires
authentication.

You can use the heat environment parameter ContainerImageRegistryCredentials to authenticate at
registry.redhat.io, as described in Container image preparation parameters.

5.3. MAPPING THE CEPH STORAGE NODE DISK LAYOUT

When you deploy containerized Ceph Storage, you must map the disk layout and specify dedicated
block devices for the Ceph OSD service. You can perform this mapping in the environment file that you
created earlier to define your custom Ceph parameters: /home/stack/templates/ceph-config.yaml.

Use the CephAnsibleDisksConfig resource in parameter_defaults to map your disk layout. This

CHAPTER 5. CUSTOMIZING THE CEPH STORAGE CLUSTER

27

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html-single/installation_guide/index#installing-a-red-hat-ceph-storage-cluster_install
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/transitioning_to_containerized_services/#container-image-preparation-parameters

Use the CephAnsibleDisksConfig resource in parameter_defaults to map your disk layout. This
resource uses the following variables:

Variable Required? Default value (if unset) Description

osd_scenario Yes lvm

NOTE: The default value
is lvm.

The lvm value allows
ceph-ansible to use
ceph-volume to
configure OSDs and
BlueStore WAL devices.

devices Yes NONE. Variable must be
set.

A list of block devices
that you want to use for
OSDs on the node.

dedicated_devices Yes (only if
osd_scenario is non-
collocated)

devices A list of block devices
that maps each entry in
the devices parameter
to a dedicated
journaling block device.
You can use this variable
only when
osd_scenario=non-
collocated.

dmcrypt No false Sets whether data
stored on OSDs is
encrypted (true) or
unencrypted (false).

osd_objectstore No bluestore

NOTE: The default value
is bluestore.

Sets the storage back
end used by Ceph.

5.3.1. Using BlueStore

To specify the block devices that you want to use as Ceph OSDs, use a variation of the following
snippet:

parameter_defaults:
 CephAnsibleDisksConfig:
 devices:
 - /dev/sdb
 - /dev/sdc
 - /dev/sdd
 - /dev/nvme0n1
 osd_scenario: lvm
 osd_objectstore: bluestore

Because /dev/nvme0n1 is in a higher performing device class, the example parameter defaults produce
three OSDs that run on /dev/sdb, /dev/sdc, and /dev/sdd. The three OSDs use /dev/nvme0n1 as a
BlueStore WAL device. The ceph-volume tool does this by using the batch subcommand. The same

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

28

http://docs.ceph.com/docs/master/ceph-volume/lvm/batch

setup is duplicated for each Ceph storage node and assumes uniform hardware. If the BlueStore WAL
data resides on the same disks as the OSDs, then change the parameter defaults:

parameter_defaults:
 CephAnsibleDisksConfig:
 devices:
 - /dev/sdb
 - /dev/sdc
 - /dev/sdd
 osd_scenario: lvm
 osd_objectstore: bluestore

5.3.2. Referring to devices with persistent names

In some nodes, disk paths, such as /dev/sdb and /dev/sdc, may not point to the same block device
during reboots. If this is the case with your CephStorage nodes, specify each disk with the /dev/disk/by-
path/ symlink to ensure that the block device mapping is consistent throughout deployments:

parameter_defaults:
 CephAnsibleDisksConfig:
 devices:

 - /dev/disk/by-path/pci-0000:03:00.0-scsi-0:0:10:0
 - /dev/disk/by-path/pci-0000:03:00.0-scsi-0:0:11:0

 dedicated_devices
 - /dev/nvme0n1
 - /dev/nvme0n1

Because you must set the list of OSD devices prior to overcloud deployment, it may not be possible to
identify and set the PCI path of disk devices. In this case, gather the /dev/disk/by-path/symlink data for
block devices during introspection.

In the following example, run the first command to download the introspection data from the
undercloud Object Storage service (swift) for the server b08-h03-r620-hci and saves the data in a file
called b08-h03-r620-hci.json. Run the second command to grep for “by-path”. The output of this
command contains the unique /dev/disk/by-path values that you can use to identify disks.

(undercloud) [stack@b08-h02-r620 ironic]$ openstack baremetal introspection data save b08-h03-
r620-hci | jq . > b08-h03-r620-hci.json
(undercloud) [stack@b08-h02-r620 ironic]$ grep by-path b08-h03-r620-hci.json
 "by_path": "/dev/disk/by-path/pci-0000:02:00.0-scsi-0:2:0:0",
 "by_path": "/dev/disk/by-path/pci-0000:02:00.0-scsi-0:2:1:0",
 "by_path": "/dev/disk/by-path/pci-0000:02:00.0-scsi-0:2:3:0",
 "by_path": "/dev/disk/by-path/pci-0000:02:00.0-scsi-0:2:4:0",
 "by_path": "/dev/disk/by-path/pci-0000:02:00.0-scsi-0:2:5:0",
 "by_path": "/dev/disk/by-path/pci-0000:02:00.0-scsi-0:2:6:0",
 "by_path": "/dev/disk/by-path/pci-0000:02:00.0-scsi-0:2:7:0",
 "by_path": "/dev/disk/by-path/pci-0000:02:00.0-scsi-0:2:0:0",

For more information about naming conventions for storage devices, see Overview of persistent naming
attributes in the Managing storage devices guide.

CHAPTER 5. CUSTOMIZING THE CEPH STORAGE CLUSTER

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_storage_devices/index#assembly_overview-of-persistent-naming-attributes_managing-storage-devices

For details about each journaling scenario and disk mapping for containerized Ceph Storage, see the
OSD Scenarios section of the project documentation for ceph-ansible.

5.4. ASSIGNING CUSTOM ATTRIBUTES TO DIFFERENT CEPH POOLS

By default, Ceph pools created through the director have the same placement group (pg_num and
pgp_num) and sizes. You can use either method in Chapter 5, Customizing the Ceph Storage cluster to
override these settings globally; that is, doing so will apply the same values for all pools.

You can also apply different attributes to each Ceph pool. To do so, use the CephPools parameter, as
in:

parameter_defaults:
 CephPools:
 - name: POOL
 pg_num: 128
 application: rbd

Replace POOL with the name of the pool you want to configure along with the pg_num setting to
indicate number of placement groups. This overrides the default pg_num for the specified pool.

If you use the CephPools parameter, you must also specify the application type. The application type
for Compute, Block Storage, and Image Storage should be rbd, as shown in the examples, but
depending on what the pool will be used for, you may need to specify a different application type. For
example, the application type for the gnocchi metrics pool is openstack_gnocchi. See Enable
Application in the Storage Strategies Guide for more information.

If you do not use the CephPools parameter, director sets the appropriate application type
automatically, but only for the default pool list.

You can also create new custom pools through the CephPools parameter. For example, to add a pool
called custompool:

parameter_defaults:
 CephPools:
 - name: custompool
 pg_num: 128
 application: rbd

This creates a new custom pool in addition to the default pools.

TIP

For typical pool configurations of common Ceph use cases, see the Ceph Placement Groups (PGs) per
Pool Calculator. This calculator is normally used to generate the commands for manually configuring
your Ceph pools. In this deployment, the director will configure the pools based on your specifications.

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

30

http://docs.ceph.com/ceph-ansible/master/osds/scenarios.html
http://docs.ceph.com/ceph-ansible/master/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html-single/storage_strategies_guide/index#enable_application
https://access.redhat.com/labs/cephpgc/

WARNING

Red Hat Ceph Storage 3 (Luminous) introduces a hard limit on the maximum
number of PGs an OSD can have, which is 200 by default. Do not override this
parameter beyond 200. If there is a problem because the Ceph PG number exceeds
the maximum, adjust the pg_num per pool to address the problem, not the
mon_max_pg_per_osd.

5.5. MAPPING THE DISK LAYOUT TO NON-HOMOGENEOUS CEPH
STORAGE NODES

By default, all nodes of a role which will host Ceph OSDs (indicated by the
OS::TripleO::Services::CephOSD service in roles_data.yaml), for example CephStorage or
ComputeHCI nodes, will use the global devices and dedicated_devices lists set in Section 5.3,
“Mapping the Ceph Storage node disk layout”. This assumes that all of these servers have
homogeneous hardware. If a subset of these servers do not have homogeneous hardware, then director
needs to be aware that each of these servers has different devices and dedicated_devices lists. This is
known as a node-specific disk configuration.

To pass director a node-specific disk configuration, a Heat environment file, such as node-spec-
overrides.yaml, must be passed to the openstack overcloud deploy command and the file’s content
must identify each server by a machine unique UUID and a list of local variables which override the global
variables.

The machine unique UUID may be extracted for each individual server or from the Ironic database.

To locate the UUID for an individual server, log in to the server and run:

dmidecode -s system-uuid

To extract the UUID from the Ironic database, run the following command on the undercloud:

openstack baremetal introspection data save NODE-ID | jq .extra.system.product.uuid

WARNING

If the undercloud.conf does not have inspection_extras = true prior to undercloud
installation or upgrade and introspection, then the machine unique UUID will not be
in the Ironic database.

IMPORTANT

The machine unique UUID is not the Ironic UUID.





CHAPTER 5. CUSTOMIZING THE CEPH STORAGE CLUSTER

31

A valid node-spec-overrides.yaml file may look like the following:

parameter_defaults:
 NodeDataLookup: {"32E87B4C-C4A7-418E-865B-191684A6883B": {"devices": ["/dev/sdc"]}}

All lines after the first two lines must be valid JSON. An easy way to verify that the JSON is valid is to
use the jq command. For example:

1. Remove the first two lines (parameter_defaults: and NodeDataLookup:) from the file
temporarily.

2. Run cat node-spec-overrides.yaml | jq .

As the node-spec-overrides.yaml file grows, jq may also be used to ensure that the embedded JSON
is valid. For example, because the devices and dedicated_devices list should be the same length, use
the following to verify that they are the same length before starting the deployment.

(undercloud) [stack@b08-h02-r620 tht]$ cat node-spec-c05-h17-h21-h25-6048r.yaml | jq '.[] | .devices
| length'
33
30
33
(undercloud) [stack@b08-h02-r620 tht]$ cat node-spec-c05-h17-h21-h25-6048r.yaml | jq '.[] |
.dedicated_devices | length'
33
30
33
(undercloud) [stack@b08-h02-r620 tht]$

In the above example, the node-spec-c05-h17-h21-h25-6048r.yaml has three servers in rack c05 in
which slots h17, h21, and h25 are missing disks. A more complicated example is included at the end of this
section.

After the JSON has been validated add back the two lines which makes it a valid environment YAML file
(parameter_defaults: and NodeDataLookup:) and include it with a -e in the deployment.

In the example below, the updated Heat Environment File uses NodeDataLookup for Ceph deployment.
All of the servers had a devices list with 35 disks except one of them had a disk missing. This
environment file overrides the default devices list for only that single node and gives it the list of 34
disks it should use instead of the global list.

parameter_defaults:
 # c05-h01-6048r is missing scsi-0:2:35:0 (00000000-0000-0000-0000-0CC47A6EFD0C)
 NodeDataLookup: {
 "00000000-0000-0000-0000-0CC47A6EFD0C": {
 "devices": [
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:1:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:32:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:2:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:3:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:4:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:5:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:6:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:33:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:7:0",

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

32

 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:8:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:34:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:9:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:10:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:11:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:12:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:13:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:14:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:15:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:16:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:17:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:18:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:19:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:20:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:21:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:22:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:23:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:24:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:25:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:26:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:27:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:28:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:29:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:30:0",
 "/dev/disk/by-path/pci-0000:03:00.0-scsi-0:2:31:0"
],
 "dedicated_devices": [
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:81:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",

CHAPTER 5. CUSTOMIZING THE CEPH STORAGE CLUSTER

33

 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1",
 "/dev/disk/by-path/pci-0000:84:00.0-nvme-1"
]
 }
 }

5.6. INCREASING THE RESTART DELAY FOR LARGE CEPH CLUSTERS

During deployment, Ceph services such as OSDs and Monitors, are restarted and the deployment does
not continue until the service is running again. Ansible waits 15 seconds (the delay) and checks 5 times
for the service to start (the retries). If the service does not restart, the deployment stops so the operator
can intervene.

Depending on the size of the Ceph cluster, you may need to increase the retry or delay values. The
exact names of these parameters and their defaults are as follows:

 health_mon_check_retries: 5
 health_mon_check_delay: 15
 health_osd_check_retries: 5
 health_osd_check_delay: 15

Procedure

1. Update the CephAnsibleExtraConfig parameter to change the default delay and retry values:

parameter_defaults:
 CephAnsibleExtraConfig:
 health_osd_check_delay: 40
 health_osd_check_retries: 30
 health_mon_check_delay: 20
 health_mon_check_retries: 10

This example makes the cluster check 30 times and wait 40 seconds between each check for
the Ceph OSDs, and check 20 times and wait 10 seconds between each check for the Ceph
MONs.

2. To incorporate the changes, pass the updated yaml file with -e using openstack overcloud
deploy.

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

34

CHAPTER 6. DEPLOYING SECOND-TIER CEPH STORAGE ON
OPENSTACK

Using OpenStack director, you can deploy different Red Hat Ceph Storage performance tiers by adding
new Ceph nodes dedicated to a specific tier in a Ceph cluster.

For example, you can add new object storage daemon (OSD) nodes with SSD drives to an existing Ceph
cluster to create a Block Storage (cinder) backend exclusively for storing data on these nodes. A user
creating a new Block Storage volume can then choose the desired performance tier: either HDDs or the
new SSDs.

This type of deployment requires Red Hat OpenStack Platform director to pass a customized CRUSH
map to ceph-ansible. The CRUSH map allows you to split OSD nodes based on disk performance, but
you can also use this feature for mapping physical infrastructure layout.

The following sections demonstrate how to deploy four nodes where two of the nodes use SSDs and
the other two use HDDs. The example is kept simple to communicate a repeatable pattern. However, a
production deployment should use more nodes and more OSDs to be supported as per the Red Hat
Ceph Storage hardware selection guide.

6.1. CREATE A CRUSH MAP

The CRUSH map allows you to put OSD nodes into a CRUSH root. By default, a “default” root is created
and all OSD nodes are included in it.

Inside a given root, you define the physical topology, rack, rooms, and so forth, and then place the OSD
nodes in the desired hierarchy (or bucket). By default, no physical topology is defined; a flat design is
assumed as if all nodes are in the same rack.

See Crush Administration in the Storage Strategies Guide for details about creating a custom CRUSH
map.

6.2. MAPPING THE OSDS

CHAPTER 6. DEPLOYING SECOND-TIER CEPH STORAGE ON OPENSTACK

35

https://www.redhat.com/en/resources/red-hat-ceph-storage-hardware-selection-guide
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html/storage_strategies_guide/crush_administration

Complete the following step to map the OSDs.

Procedure

1. Declare the OSDs/journal mapping:

parameter_defaults:
 CephAnsibleDisksConfig:
 devices:
 - /dev/sda
 - /dev/sdb
 dedicated_devices:
 - /dev/sdc
 - /dev/sdc
 osd_scenario: non-collocated
 journal_size: 8192

6.3. SETTING THE REPLICATION FACTOR

Complete the following step to set the replication factor.

NOTE

This is normally supported only for full SSD deployment. See Red Hat Ceph Storage:
Supported configurations.

Procedure

1. Set the default replication factor to two. This example splits four nodes into two different roots.

parameter_defaults:
 CephPoolDefaultSize: 2

NOTE

If you upgrade a deployment that uses gnocchi as the backend, you might encounter
deployment timeout. To prevent this timeout, use the following CephPool definition to
customize the gnocchi pool:

parameter_defaults
 CephPools: {"name": metrics, "pg_num": 128, "pgp_num": 128, "size": 1}

6.4. DEFINING THE CRUSH HIERARCHY

Director provides the data for the CRUSH hierarchy, but ceph-ansible actually passes that data by
getting the CRUSH mapping through the Ansible inventory file. Unless you keep the default root, you
must specify the location of the root for each node.

For example if node lab-ceph01 (provisioning IP 172.16.0.26) is placed in rack1 inside the fast_root, the
Ansible inventory should resemble the following:

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

36

https://access.redhat.com/articles/1548993

172.16.0.26:
osd_crush_location: {host: lab-ceph01, rack: rack1, root: fast_root}

When you use director to deploy Ceph, you don’t actually write the Ansible inventory; it is generated for
you. Therefore, you must use NodeDataLookup to append the data.

NodeDataLookup works by specifying the system product UUID stored on the motherboard of the
systems. The Bare Metal service (ironic) also stores this information after the introspection phase.

To create a CRUSH map that supports second-tier storage, complete the following steps:

Procedure

1. Run the following commands to retrieve the UUIDs of the four nodes:

for ((x=1; x<=4; x++)); \
{ echo "Node overcloud-ceph0${x}"; \
openstack baremetal introspection data save overcloud-ceph0${x} | jq
.extra.system.product.uuid; }
Node overcloud-ceph01
"32C2BC31-F6BB-49AA-971A-377EFDFDB111"
Node overcloud-ceph02
"76B4C69C-6915-4D30-AFFD-D16DB74F64ED"
Node overcloud-ceph03
"FECF7B20-5984-469F-872C-732E3FEF99BF"
Node overcloud-ceph04
"5FFEFA5F-69E4-4A88-B9EA-62811C61C8B3"

NOTE

In the example, overcloud-ceph0[1-4] are the Ironic nodes names; they will be
deployed as lab-ceph0[1–4] (via HostnameMap.yaml).

2. Specify the node placement as follows:

Root Rack Node

standard_root rack1_std overcloud-ceph01 (lab-
ceph01)

rack2_std overcloud-ceph02 (lab-
ceph02)

fast_root rack1_fast overcloud-ceph03 (lab-
ceph03)

rack2_fast overcloud-ceph04 (lab-
ceph04)

NOTE

CHAPTER 6. DEPLOYING SECOND-TIER CEPH STORAGE ON OPENSTACK

37

NOTE

You cannot have two buckets with the same name. Even if lab-ceph01 and lab-
ceph03 are in the same physical rack, you cannot have two buckets called rack1.
Therefore, we named them rack1_std and rack1_fast.

NOTE

This example demonstrates how to create a specific route called “standard_root”
to illustrate multiple custom roots. However, you could have kept the HDDs OSD
nodes in the default root.

3. Use the following NodeDataLookup syntax:

NodeDataLookup: {"SYSTEM_UUID": {"osd_crush_location": {"root": "$MY_ROOT", "rack":
"$MY_RACK", "host": "$OVERCLOUD_NODE_HOSTNAME"}}}

NOTE

You must specify the system UUID and then the CRUSH hierarchy from top to
bottom. Also, the host parameter must point to the node’s overcloud host name,
not the Bare Metal service (ironic) node name. To match the example
configuration, enter the following:

parameter_defaults:
 NodeDataLookup: {"32C2BC31-F6BB-49AA-971A-377EFDFDB111":
{"osd_crush_location": {"root": "standard_root", "rack": "rack1_std", "host": "lab-ceph01"}},
 "76B4C69C-6915-4D30-AFFD-D16DB74F64ED": {"osd_crush_location": {"root":
"standard_root", "rack": "rack2_std", "host": "lab-ceph02"}},
 "FECF7B20-5984-469F-872C-732E3FEF99BF": {"osd_crush_location": {"root":
"fast_root", "rack": "rack1_fast", "host": "lab-ceph03"}},
 "5FFEFA5F-69E4-4A88-B9EA-62811C61C8B3": {"osd_crush_location": {"root":
"fast_root", "rack": "rack2_fast", "host": "lab-ceph04"}}}

4. Enable CRUSH map management at the ceph-ansible level:

parameter_defaults:
 CephAnsibleExtraConfig:
 create_crush_tree: true

5. Use scheduler hints to ensure the Bare Metal service node UUIDs correctly map to the
hostnames:

parameter_defaults:
 CephStorageCount: 4
 OvercloudCephStorageFlavor: ceph-storage
 CephStorageSchedulerHints:
 'capabilities:node': 'ceph-%index%'

6. Tag the Bare Metal service nodes with the corresponding hint:

openstack baremetal node set --property capabilities='profile:ceph-storage,node:ceph-
0,boot_option:local' overcloud-ceph01

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

38

openstack baremetal node set --property capabilities=profile:ceph-storage,'node:ceph-
1,boot_option:local' overcloud-ceph02

openstack baremetal node set --property capabilities='profile:ceph-storage,node:ceph-
2,boot_option:local' overcloud-ceph03

openstack baremetal node set --property capabilities='profile:ceph-storage,node:ceph-
3,boot_option:local' overcloud-ceph04

NOTE

For more information about predictive placement, see Assigning Specific Node
IDs in the Advanced Overcloud Customization guide.

6.5. DEFINING CRUSH MAP RULES

Rules define how the data is written on a cluster. After the CRUSH map node placement is complete,
define the CRUSH rules.

Procedure

1. Use the following syntax to define the CRUSH rules:

parameter_defaults:
 CephAnsibleExtraConfig:
 crush_rules:
 - name: $RULE_NAME
 root: $ROOT_NAME
 type: $REPLICAT_DOMAIN
 default: true/false

NOTE

Setting the default parameter to true means that this rule will be used when you
create a new pool without specifying any rule. There may only be one default rule.

In the following example, rule standard points to the OSD nodes hosted on the standard_root
with one replicate per rack. Rule fast points to the OSD nodes hosted on the standard_root
with one replicate per rack:

parameter_defaults:
 CephAnsibleExtraConfig:
 crush_rule_config: true
 crush_rules:
 - name: standard
 root: standard_root
 type: rack
 default: true
 - name: fast
 root: fast_root
 type: rack
 default: false

CHAPTER 6. DEPLOYING SECOND-TIER CEPH STORAGE ON OPENSTACK

39

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/advanced_overcloud_customization/sect-controlling_node_placement#sect-Assign_Specific_Node_IDs

NOTE

You must set crush_rule_config to true.

6.6. CONFIGURING OSP POOLS

Ceph pools are configured with a CRUSH rules that define how to store data. This example features all
built-in OSP pools using the standard_root (the standard rule) and a new pool using fast_root (the fast
rule).

Procedure

1. Use the following syntax to define or change a pool property:

- name: $POOL_NAME
 pg_num: $PG_COUNT
 rule_name: $RULE_NAME
 application: rbd

2. List all OSP pools and set the appropriate rule (standard, in this case), and create a new pool
called tier2 that uses the fast rule. This pool will be used by Block Storage (cinder).

parameter_defaults:
 CephPools:
 - name: tier2
 pg_num: 64
 rule_name: fast
 application: rbd

 - name: volumes
 pg_num: 64
 rule_name: standard
 application: rbd

 - name: vms
 pg_num: 64
 rule_name: standard
 application: rbd

 - name: backups
 pg_num: 64
 rule_name: standard
 application: rbd

 - name: images
 pg_num: 64
 rule_name: standard
 application: rbd

 - name: metrics
 pg_num: 64
 rule_name: standard
 application: openstack_gnocchi

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

40

6.7. CONFIGURING BLOCK STORAGE TO USE THE NEW POOL

Add the Ceph pool to the cinder.conf file to enable Block Storage (cinder) to consume it:

Procedure

1. Update cinder.conf as follows:

parameter_defaults:
 CinderRbdExtraPools:
 - tier2

6.8. VERIFYING CUSTOMIZED CRUSH MAP

After the openstack overcloud deploy command creates or updates the overcloud, complete the
following step to verify that the customized CRUSH map was correctly applied.

NOTE

Be careful if you move a host from one route to another.

Procedure

1. Connect to a Ceph monitor node and run the following command:

ceph osd tree
ID WEIGHT TYPE NAME UP/DOWN REWEIGHT PRIMARY-AFFINITY
-7 0.39996 root standard_root
-6 0.19998 rack rack1_std
-5 0.19998 host lab-ceph02
 1 0.09999 osd.1 up 1.00000 1.00000
 4 0.09999 osd.4 up 1.00000 1.00000
-9 0.19998 rack rack2_std
-8 0.19998 host lab-ceph03
 0 0.09999 osd.0 up 1.00000 1.00000
 3 0.09999 osd.3 up 1.00000 1.00000
-4 0.19998 root fast_root
-3 0.19998 rack rack1_fast
-2 0.19998 host lab-ceph01
 2 0.09999 osd.2 up 1.00000 1.00000
 5 0.09999 osd.5 up 1.00000 1.00000

CHAPTER 6. DEPLOYING SECOND-TIER CEPH STORAGE ON OPENSTACK

41

CHAPTER 7. CREATING THE OVERCLOUD
Once your custom environment files are ready, you can specify which flavors and nodes each role should
use and then execute the deployment. The following subsections explain both steps in greater detail.

7.1. ASSIGNING NODES AND FLAVORS TO ROLES

Planning an overcloud deployment involves specifying how many nodes and which flavors to assign to
each role. Like all Heat template parameters, these role specifications are declared in the
parameter_defaults section of your environment file (in this case, ~/templates/storage-config.yaml).

For this purpose, use the following parameters:

Table 7.1. Roles and Flavors for Overcloud Nodes

Heat Template Parameter Description

ControllerCount The number of Controller nodes to scale out

OvercloudControlFlavor The flavor to use for Controller nodes (control)

ComputeCount The number of Compute nodes to scale out

OvercloudComputeFlavor The flavor to use for Compute nodes (compute)

CephStorageCount The number of Ceph storage (OSD) nodes to scale
out

OvercloudCephStorageFlavor The flavor to use for Ceph Storage (OSD) nodes
(ceph-storage)

CephMonCount The number of dedicated Ceph MON nodes to scale
out

OvercloudCephMonFlavor The flavor to use for dedicated Ceph MON nodes
(ceph-mon)

CephMdsCount The number of dedicated Ceph MDS nodes to scale
out

OvercloudCephMdsFlavor The flavor to use for dedicated Ceph MDS nodes
(ceph-mds)

IMPORTANT

The CephMonCount, CephMdsCount, OvercloudCephMonFlavor, and
OvercloudCephMdsFlavor parameters (along with the ceph-mon and ceph-mds
flavors) will only be valid if you created a custom CephMON and CephMds role, as
described in Chapter 3, Deploying Ceph services on dedicated nodes .

For example, to configure the overcloud to deploy three nodes for each role (Controller, Compute,

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

42

For example, to configure the overcloud to deploy three nodes for each role (Controller, Compute,
Ceph-Storage, and CephMon), add the following to your parameter_defaults:

parameter_defaults:
 ControllerCount: 3
 OvercloudControlFlavor: control
 ComputeCount: 3
 OvercloudComputeFlavor: compute
 CephStorageCount: 3
 OvercloudCephStorageFlavor: ceph-storage
 CephMonCount: 3
 OvercloudCephMonFlavor: ceph-mon
 CephMdsCount: 3
 OvercloudCephMdsFlavor: ceph-mds

NOTE

See Creating the Overcloud with the CLI Tools from the Director Installation and Usage
guide for a more complete list of Heat template parameters.

7.2. INITIATING OVERCLOUD DEPLOYMENT

NOTE

During undercloud installation, set generate_service_certificate=false in the
undercloud.conf file. Otherwise, you must inject a trust anchor when you deploy the
overcloud, as described in Enabling SSL/TLS on Overcloud Public Endpoints in the
Advanced Overcloud Customization guide.

The creation of the overcloud requires additional arguments for the openstack overcloud deploy
command. For example:

$ openstack overcloud deploy --templates -r /home/stack/templates/roles_data_custom.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-ansible.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-rgw.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-mds.yaml
 -e /usr/share/openstack-tripleo-heat-templates/environments/cinder-backup.yaml \
 -e /home/stack/templates/storage-config.yaml \
 -e /home/stack/templates/ceph-config.yaml \
 --ntp-server pool.ntp.org

The above command uses the following options:

--templates - Creates the Overcloud from the default Heat template collection (namely,
/usr/share/openstack-tripleo-heat-templates/).

-r /home/stack/templates/roles_data_custom.yaml - Specifies the customized roles definition
file from Chapter 3, Deploying Ceph services on dedicated nodes , which adds custom roles for
either Ceph MON or Ceph MDS services. These roles allow either service to be installed on
dedicated nodes.

-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-

CHAPTER 7. CREATING THE OVERCLOUD

43

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/#sect-Creating_the_Overcloud_CLI
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/advanced_overcloud_customization/sect-enabling_ssltls_on_the_overcloud#sect-Enabling_SSLTLS_on_the_Overcloud

-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
ansible.yaml - Sets the director to create a Ceph cluster. In particular, this environment file will
deploy a Ceph cluster with containerized Ceph Storage nodes.

-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-rgw.yaml
- Enables the Ceph Object Gateway, as described in Section 4.2, “Enabling the Ceph Object
Gateway”.

-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
mds.yaml - Enables the Ceph Metadata Server, as described in Section 4.1, “Enabling the Ceph
Metadata Server”.

-e /usr/share/openstack-tripleo-heat-templates/environments/cinder-backup.yaml -
Enables the Block Storage Backup service (cinder-backup), as described in Section 4.3,
“Configuring the Backup Service to use Ceph”.

-e /home/stack/templates/storage-config.yaml - Adds the environment file containing your
custom Ceph Storage configuration.

-e /home/stack/templates/ceph-config.yaml - Adds the environment file containing your
custom Ceph cluster settings, as described in Chapter 5, Customizing the Ceph Storage cluster .

--ntp-server pool.ntp.org - Sets our NTP server.

TIP

You can also use an answers file to invoke all your templates and environment files. For example, you can
use the following command to deploy an identical overcloud:

$ openstack overcloud deploy -r /home/stack/templates/roles_data_custom.yaml \
 --answers-file /home/stack/templates/answers.yaml --ntp-server pool.ntp.org

In this case, the answers file /home/stack/templates/answers.yaml contains:

templates: /usr/share/openstack-tripleo-heat-templates/
environments:
 - /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-ansible.yaml
 - /usr/share/openstack-tripleo-heat-templates/environments/ceph-rgw.yaml
 - /usr/share/openstack-tripleo-heat-templates/environments/ceph-mds.yaml
 - /usr/share/openstack-tripleo-heat-templates/environments/cinder-backup.yaml
 - /home/stack/templates/storage-config.yaml
 - /home/stack/templates/ceph-config.yaml

See Including Environment Files in Overcloud Creation for more details.

For a full list of options, run:

$ openstack help overcloud deploy

For more information, see Creating the Overcloud with the CLI Tools in the Director Installation and
Usage guide.

The Overcloud creation process begins and the director provisions your nodes. This process takes some
time to complete. To view the status of the Overcloud creation, open a separate terminal as the stack
user and run:

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

44

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/#sect-Including_Environment_Files_in_Overcloud_Creation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/#sect-Creating_the_Overcloud_CLI
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage

$ source ~/stackrc
$ openstack stack list --nested

CHAPTER 7. CREATING THE OVERCLOUD

45

CHAPTER 8. POST-DEPLOYMENT
The following subsections describe several post-deployment operations for managing the Ceph cluster.

8.1. ACCESSING THE OVERCLOUD

The director generates a script to configure and help authenticate interactions with your overcloud from
the undercloud. The director saves this file (overcloudrc) in your stack user’s home directory. Run the
following command to use this file:

$ source ~/overcloudrc

This loads the necessary environment variables to interact with your overcloud from the undercloud CLI.
To return to interacting with the undercloud, run the following command:

$ source ~/stackrc

8.2. MONITORING CEPH STORAGE NODES

After you create the overcloud, check the status of the Ceph Storage Cluster to ensure that it works
correctly.

Procedure

1. Log in to a Controller node as the heat-admin user:

$ nova list
$ ssh heat-admin@192.168.0.25

2. Check the health of the cluster:

$ sudo podman exec ceph-mon-$HOSTNAME ceph health

If the cluster has no issues, the command reports back HEALTH_OK. This means the cluster is
safe to use.

3. Log in to an overcloud node that runs the Ceph monitor service and check the status of all
OSDs in the cluster:

$ sudo podman exec ceph-mon-$HOSTNAME ceph osd tree

4. Check the status of the Ceph Monitor quorum:

$ sudo podman exec ceph-mon-$HOSTNAME ceph quorum_status

This shows the monitors participating in the quorum and which one is the leader.

5. Verify that all Ceph OSDs are running:

$ sudo podman exec ceph-mon-$HOSTNAME ceph osd stat

For more information on monitoring Ceph Storage clusters, see Monitoring in the Red Hat Ceph Storage

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

46

For more information on monitoring Ceph Storage clusters, see Monitoring in the Red Hat Ceph Storage
Administration Guide.

CHAPTER 8. POST-DEPLOYMENT

47

https://access.redhat.com/documentation/en/red-hat-ceph-storage/1.3/administration-guide/chapter-3-monitoring

CHAPTER 9. REBOOTING THE ENVIRONMENT
A situation might occur where you need to reboot the environment. For example, when you might need
to modify the physical servers, or you might need to recover from a power outage. In this situation, it is
important to make sure your Ceph Storage nodes boot correctly.

Make sure to boot the nodes in the following order:

Boot all Ceph Monitor nodes first - This ensures the Ceph Monitor service is active in your high
availability cluster. By default, the Ceph Monitor service is installed on the Controller node. If the
Ceph Monitor is separate from the Controller in a custom role, make sure this custom Ceph
Monitor role is active.

Boot all Ceph Storage nodes - This ensures the Ceph OSD cluster can connect to the active
Ceph Monitor cluster on the Controller nodes.

9.1. REBOOTING A CEPH STORAGE (OSD) CLUSTER

Complete the following steps to reboot a cluster of Ceph Storage (OSD) nodes.

Procedure

1. Log into a Ceph MON or Controller node and disable Ceph Storage cluster rebalancing
temporarily:

$ sudo podman exec -it ceph-mon-controller-0 ceph osd set noout
$ sudo podman exec -it ceph-mon-controller-0 ceph osd set norebalance

2. Select the first Ceph Storage node that you want to reboot and log in to the node.

3. Reboot the node:

$ sudo reboot

4. Wait until the node boots.

5. Log into the node and check the cluster status:

$ sudo podman exec -it ceph-mon-controller-0 ceph status

Check that the pgmap reports all pgs as normal (active+clean).

6. Log out of the node, reboot the next node, and check its status. Repeat this process until you
have rebooted all Ceph storage nodes.

7. When complete, log into a Ceph MON or Controller node and re-enable cluster rebalancing:

$ sudo podman exec -it ceph-mon-controller-0 ceph osd unset noout
$ sudo podman exec -it ceph-mon-controller-0 ceph osd unset norebalance

8. Perform a final status check to verify that the cluster reports HEALTH_OK:

$ sudo podman exec -it ceph-mon-controller-0 ceph status

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

48

If a situation occurs where all overcloud nodes boot at the same time, the Ceph OSD services might not
start correctly on the Ceph Storage nodes. In this situation, reboot the Ceph Storage OSDs so they can
connect to the Ceph Monitor service.

Verify a HEALTH_OK status of the Ceph Storage node cluster with the following command:

$ sudo ceph status

CHAPTER 9. REBOOTING THE ENVIRONMENT

49

CHAPTER 10. SCALING THE CEPH STORAGE CLUSTER

10.1. SCALING UP THE CEPH STORAGE CLUSTER

You can scale up the number of Ceph Storage nodes in your overcloud by re-running the deployment
with the number of Ceph Storage nodes you need.

Before doing so, ensure that you have enough nodes for the updated deployment. These nodes must
be registered with the director and tagged accordingly.

Registering New Ceph Storage Nodes

To register new Ceph storage nodes with the director, follow these steps:

1. Log in to the undercloud as the stack user and initialize your director configuration:

$ source ~/stackrc

2. Define the hardware and power management details for the new nodes in a new node definition
template; for example, instackenv-scale.json.

3. Import this file to the OpenStack director:

$ openstack overcloud node import ~/instackenv-scale.json

Importing the node definition template registers each node defined there to the director.

4. Assign the kernel and ramdisk images to all nodes:

$ openstack overcloud node configure

NOTE

For more information about registering new nodes, see Section 2.2, “Registering nodes”.

Manually Tagging New Nodes

After you register each node, you must inspect the hardware and tag the node into a specific profile. Use
profile tags to match your nodes to flavors, and then assign flavors to deployment roles.

To inspect and tag new nodes, complete the following steps:

1. Trigger hardware introspection to retrieve the hardware attributes of each node:

$ openstack overcloud node introspect --all-manageable --provide

The --all-manageable option introspects only the nodes that are in a managed state. In this
example, all nodes are in a managed state.

The --provide option resets all nodes to an active state after introspection.

IMPORTANT

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

50

IMPORTANT

Ensure that this process completes successfully. This process usually takes 15
minutes for bare metal nodes.

2. Retrieve a list of your nodes to identify their UUIDs:

$ openstack baremetal node list

3. Add a profile option to the properties/capabilities parameter for each node to manually tag a
node to a specific profile. The addition of the profile option tags the nodes into each respective
profile.

NOTE

As an alternative to manual tagging, use the Automated Health Check (AHC)
Tools to automatically tag larger numbers of nodes based on benchmarking data.

For example, the following commands tag three additional nodes with the ceph-storage profile:

$ ironic node-update 551d81f5-4df2-4e0f-93da-6c5de0b868f7 add
properties/capabilities='profile:ceph-storage,boot_option:local'
$ ironic node-update 5e735154-bd6b-42dd-9cc2-b6195c4196d7 add
properties/capabilities='profile:ceph-storage,boot_option:local'
$ ironic node-update 1a2b090c-299d-4c20-a25d-57dd21a7085b add
properties/capabilities='profile:ceph-storage,boot_option:local'

TIP

If the nodes you just tagged and registered use multiple disks, you can set the director to use a specific
root disk on each node. See Section 2.4, “Defining the root disk for multi-disk clusters” for instructions
on how to do so.

Re-deploying the Overcloud with Additional Ceph Storage Nodes

After registering and tagging the new nodes, you can now scale up the number of Ceph Storage nodes
by re-deploying the overcloud. When you do, set the CephStorageCount parameter in the
parameter_defaults of your environment file (in this case, ~/templates/storage-config.yaml). In
Section 7.1, “Assigning nodes and flavors to roles” , the overcloud is configured to deploy with 3 Ceph
Storage nodes. To scale it up to 6 nodes instead, use:

parameter_defaults:
 ControllerCount: 3
 OvercloudControlFlavor: control
 ComputeCount: 3
 OvercloudComputeFlavor: compute
 CephStorageCount: 6
 OvercloudCephStorageFlavor: ceph-storage
 CephMonCount: 3
 OvercloudCephMonFlavor: ceph-mon

Upon re-deployment with this setting, the overcloud should now have 6 Ceph Storage nodes instead of
3.

CHAPTER 10. SCALING THE CEPH STORAGE CLUSTER

51

10.2. SCALING DOWN AND REPLACING CEPH STORAGE NODES

In some cases, you may need to scale down your Ceph cluster, or even replace a Ceph Storage node (for
example, if a Ceph Storage node is faulty). In either situation, you need to disable and rebalance any
Ceph Storage node you are removing from the Overcloud to ensure no data loss. This procedure
explains the process for replacing a Ceph Storage node.

NOTE

This procedure uses steps from the Red Hat Ceph Storage Administration Guide to
manually remove Ceph Storage nodes. For more in-depth information about manual
removal of Ceph Storage nodes, see Starting, stopping, and restarting Ceph daemons
that run in containers and Removing a Ceph OSD using the command-line interface .

1. Log in to a Controller node as the heat-admin user. The director’s stack user has an SSH key to
access the heat-admin user.

2. List the OSD tree and find the OSDs for your node. For example, the node you want to remove
might contain the following OSDs:

-2 0.09998 host overcloud-cephstorage-0
0 0.04999 osd.0 up 1.00000 1.00000
1 0.04999 osd.1 up 1.00000 1.00000

3. Disable the OSDs on the Ceph Storage node. In this case, the OSD IDs are 0 and 1.

[heat-admin@overcloud-controller-0 ~]$ sudo podman exec ceph-mon-$HOSTNAME ceph
osd out 0
[heat-admin@overcloud-controller-0 ~]$ sudo podman exec ceph-mon-$HOSTNAME ceph
osd out 1

4. The Ceph Storage cluster begins rebalancing. Wait for this process to complete. Follow the
status using the following command:

[heat-admin@overcloud-controller-0 ~]$ sudo podman exec ceph-mon-$HOSTNAME ceph -
w

5. After the Ceph cluster completes rebalancing, log in to the Ceph Storage node you are
removing (in this case, overcloud-cephstorage-0) as the heat-admin user and stop the node.

[heat-admin@overcloud-cephstorage-0 ~]$ sudo podman exec ceph-mon-$HOSTNAME
systemctl disable ceph-osd@0
[heat-admin@overcloud-cephstorage-0 ~]$ sudo podman exec ceph-mon-$HOSTNAME
systemctl disable ceph-osd@1

6. Stop the OSDs.

[heat-admin@overcloud-cephstorage-0 ~]$ sudo systemctl stop ceph-osd@0
[heat-admin@overcloud-cephstorage-0 ~]$ sudo systemctl stop ceph-osd@1

7. While logged in to the Controller node, remove the OSDs from the CRUSH map so that they no
longer receive data.

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

52

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html-single/administration_guide/index#starting-stopping-and-restarting-ceph-daemons-that-run-in-containers_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html-single/operations_guide/index#removing-a-ceph-monitor-using-the-command-line-interface-ops

[heat-admin@overcloud-controller-0 ~]$ sudo podman exec ceph-mon-$HOSTNAME ceph
osd crush remove osd.0
[heat-admin@overcloud-controller-0 ~]$ sudo podman exec ceph-mon-$HOSTNAME ceph
osd crush remove osd.1

8. Remove the OSD authentication key.

[heat-admin@overcloud-controller-0 ~]$ sudo podman exec ceph-mon-$HOSTNAME ceph
auth del osd.0
[heat-admin@overcloud-controller-0 ~]$ sudo podman exec ceph-mon-$HOSTNAME ceph
auth del osd.1

9. Remove the OSD from the cluster.

[heat-admin@overcloud-controller-0 ~]$ sudo podman exec ceph-mon-$HOSTNAME ceph
osd rm 0
[heat-admin@overcloud-controller-0 ~]$ sudo podman exec ceph-mon-$HOSTNAME ceph
osd rm 1

10. Leave the node and return to the undercloud as the stack user.

[heat-admin@overcloud-controller-0 ~]$ exit
[stack@director ~]$

11. Disable the Ceph Storage node so the director does not reprovision it.

[stack@director ~]$ openstack baremetal node list
[stack@director ~]$ openstack baremetal node maintenance set UUID

12. Removing a Ceph Storage node requires an update to the overcloud stack in the director using
the local template files. First identify the UUID of the Overcloud stack:

$ openstack stack list

13. Identify the UUIDs of the Ceph Storage node you want to delete:

$ openstack server list

14. Run the following command to delete the node from the stack and update the plan accordingly:

$ openstack overcloud node delete --stack overcloud NODE_UUID

IMPORTANT

If you passed any extra environment files when you created the overcloud, pass
them again here using the -e option to avoid making undesired changes to the
overcloud. For more information, see Modifying the Overcloud Environment in
the Director Installation and Usage guide.

15. Wait until the stack completes its update. Monitor the stack update using the heat stack-list --
show-nested command.

CHAPTER 10. SCALING THE CEPH STORAGE CLUSTER

53

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage#sect-Modifying_the_Overcloud_Environment
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage

16. Add new nodes to the director’s node pool and deploy them as Ceph Storage nodes. Use the
CephStorageCount parameter in the parameter_defaults of your environment file (in this
case, ~/templates/storage-config.yaml) to define the total number of Ceph Storage nodes in
the Overcloud. For example:

parameter_defaults:
 ControllerCount: 3
 OvercloudControlFlavor: control
 ComputeCount: 3
 OvercloudComputeFlavor: compute
 CephStorageCount: 3
 OvercloudCephStorageFlavor: ceph-storage
 CephMonCount: 3
 OvercloudCephMonFlavor: ceph-mon

NOTE

See Section 7.1, “Assigning nodes and flavors to roles” for details on how to
define the number of nodes per role.

17. After you update your environment file, re-deploy the overcloud as normal:

$ openstack overcloud deploy --templates -e ENVIRONMENT_FILES

The director provisions the new node and updates the entire stack with the new node’s details.

18. Log in to a Controller node as the heat-admin user and check the status of the Ceph Storage
node. For example:

[heat-admin@overcloud-controller-0 ~]$ sudo ceph status

19. Confirm that the value in the osdmap section matches the number of desired nodes in your
cluster. The Ceph Storage node you removed has now been replaced with a new node.

10.3. ADDING AN OSD TO A CEPH STORAGE NODE

This procedure demonstrates how to add an OSD to a node. For more information about Ceph OSDs,
see Ceph OSDs in the Red Hat Ceph Storage Operations Guide .

Procedure

1. Notice the following heat template deploys Ceph Storage with three OSD devices:

parameter_defaults:
 CephAnsibleDisksConfig:
 devices:
 - /dev/sdb
 - /dev/sdc
 - /dev/sdd
 osd_scenario: lvm
 osd_objectstore: bluestore

2. To add an OSD, update the node disk layout as described in Section 5.3, “Mapping the Ceph

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

54

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html/operations_guide/managing-the-storage-cluster-size#ceph-osds-ops

2. To add an OSD, update the node disk layout as described in Section 5.3, “Mapping the Ceph
Storage node disk layout”. In this example, add /dev/sde to the template:

parameter_defaults:
 CephAnsibleDisksConfig:
 devices:
 - /dev/sdb
 - /dev/sdc
 - /dev/sdd
 - /dev/sde
 osd_scenario: lvm
 osd_objectstore: bluestore

3. Run openstack overcloud deploy to update the overcloud.

NOTE

This example assumes that all hosts with OSDs have a new device called /dev/sde. If you
do not want all nodes to have the new device, update the heat template as shown and see
Section 5.5, “Mapping the disk layout to non-homogeneous Ceph Storage nodes” for
information about how to define hosts with a differing devices list.

10.4. REMOVING AN OSD FROM A CEPH STORAGE NODE

This procedure demonstrates how to remove an OSD from a node. It assumes the following about the
environment:

A server (ceph-storage0) has an OSD (ceph-osd@4) running on /dev/sde.

The Ceph monitor service (ceph-mon) is running on controller0.

There are enough available OSDs to ensure the storage cluster is not at its near-full ratio.

For more information about Ceph OSDs, see Ceph OSDs in the Red Hat Ceph Storage Operations
Guide.

Procedure

1. SSH into ceph-storage0 and log in as root.

2. Disable and stop the OSD service:

[root@ceph-storage0 ~]# systemctl disable ceph-osd@4
[root@ceph-stoarge0 ~]# systemctl stop ceph-osd@4

3. Disconnect from ceph-storage0.

4. SSH into controller0 and log in as root.

5. Identify the name of the Ceph monitor container:

[root@controller0 ~]# podman ps | grep ceph-mon
ceph-mon-controller0
[root@controller0 ~]#

CHAPTER 10. SCALING THE CEPH STORAGE CLUSTER

55

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html/operations_guide/managing-the-storage-cluster-size#ceph-osds-ops

6. Enable the Ceph monitor container to mark the undesired OSD as out:

[root@controller0 ~]# podman exec ceph-mon-controller0 ceph osd out 4

NOTE

This command causes Ceph to rebalance the storage cluster and copy data to
other OSDs in the cluster. The cluster temporarily leaves the active+clean state
until rebalancing is complete.

7. Run the following command and wait for the storage cluster state to become active+clean:

[root@controller0 ~]# podman exec ceph-mon-controller0 ceph -w

8. Remove the OSD from the CRUSH map so that it no longer receives data:

[root@controller0 ~]# podman exec ceph-mon-controller0 ceph osd crush remove osd.4

9. Remove the OSD authentication key:

[root@controller0 ~]# podman exec ceph-mon-controller0 ceph auth del osd.4

10. Remove the OSD:

[root@controller0 ~]# podman exec ceph-mon-controller0 ceph osd rm 4

11. Disconnect from controller0.

12. SSH into the undercloud as the stack user and locate the heat environment file in which you
defined the CephAnsibleDisksConfig parameter.

13. Notice the heat template contains four OSDs:

parameter_defaults:
 CephAnsibleDisksConfig:
 devices:
 - /dev/sdb
 - /dev/sdc
 - /dev/sdd
 - /dev/sde
 osd_scenario: lvm
 osd_objectstore: bluestore

14. Modify the template to remove /dev/sde.

parameter_defaults:
 CephAnsibleDisksConfig:
 devices:
 - /dev/sdb
 - /dev/sdc
 - /dev/sdd
 osd_scenario: lvm
 osd_objectstore: bluestore

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

56

15. Run openstack overcloud deploy to update the overcloud.

NOTE

This example assumes that you removed the /dev/sde device from all hosts with
OSDs. If you do not remove the same device from all nodes, update the heat
template as shown and see Section 5.5, “Mapping the disk layout to non-
homogeneous Ceph Storage nodes” for information about how to define hosts
with a differing devices list.

10.5. HANDLING DISK FAILURE

If a disk fails, see Handling a Disk Failure in the Red Hat Ceph Storage Operations Guide.

CHAPTER 10. SCALING THE CEPH STORAGE CLUSTER

57

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html-single/operations_guide/index#handling-a-disk-failure

1

2

3

4

APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING A
CEPH STORAGE CLUSTER

The following custom environment file uses many of the options described throughout Chapter 2,
Preparing overcloud nodes . This sample does not include any commented-out options. For an overview
on environment files, see Environment Files (from the Advanced Overcloud Customization guide).

/home/stack/templates/storage-config.yaml

parameter_defaults: 1
 CinderBackupBackend: ceph 2
 CephAnsibleDisksConfig: 3
 osd_scenario: lvm
 osd_objectstore: bluestore
 dmcrypt: true
 devices:
 - /dev/disk/by-path/pci-0000:03:00.0-scsi-0:0:10:0
 - /dev/disk/by-path/pci-0000:03:00.0-scsi-0:0:11:0
 - /dev/nvme0n1
 ControllerCount: 3 4
 OvercloudControlFlavor: control
 ComputeCount: 3
 OvercloudComputeFlavor: compute
 CephStorageCount: 3
 OvercloudCephStorageFlavor: ceph-storage
 CephMonCount: 3
 OvercloudCephMonFlavor: ceph-mon
 CephMdsCount: 3
 OvercloudCephMdsFlavor: ceph-mds
 NeutronNetworkType: vxlan 5

The parameter_defaults section modifies the default values for parameters in all templates. Most
of the entries listed here are described in Chapter 4, Customizing the Storage service .

If you are deploying the Ceph Object Gateway, you can use Ceph Object Storage (ceph-rgw) as a
backup target. To configure this, set CinderBackupBackend to swift. See Section 4.2, “Enabling
the Ceph Object Gateway” for details.

The CephAnsibleDisksConfig section defines a custom disk layout for deployments using
BlueStore.

For each role, the *Count parameters assign a number of nodes while the Overcloud*Flavor
parameters assign a flavor. For example, ControllerCount: 3 assigns 3 nodes to the Controller role,
and OvercloudControlFlavor: control sets each of those roles to use the control flavor. See
Section 7.1, “Assigning nodes and flavors to roles” for details.

NOTE

The CephMonCount, CephMdsCount, OvercloudCephMonFlavor, and
OvercloudCephMdsFlavor parameters (along with the ceph-mon and ceph-mds
flavors) will only be valid if you created a custom CephMON and CephMds role, as
described in Chapter 3, Deploying Ceph services on dedicated nodes .

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

58

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/advanced_overcloud_customization#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/advanced_overcloud_customization

5 NeutronNetworkType: sets the network type that the neutron service should use (in this case,
vxlan).

APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING A CEPH STORAGE CLUSTER

59

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE:
MULTIPLE BONDED INTERFACES

The following template is a customized version of /usr/share/openstack-tripleo-heat-
templates/network/config/bond-with-vlans/ceph-storage.yaml. It features multiple bonded interfaces
to isolate back-end and front-end storage network traffic, along with redundancy for both connections
(as described in]). It also uses custom bonding options (namely, 'mode=4 lacp_rate=1', as described in
xref:multibonded-nics-ovs-opts[).

/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vlans/ceph-
storage.yaml (custom)

heat_template_version: 2015-04-30

description: >
 Software Config to drive os-net-config with 2 bonded nics on a bridge
 with VLANs attached for the ceph storage role.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal API network
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 BondInterfaceOvsOptions:
 default: 'mode=4 lacp_rate=1'
 description: The bonding_options string for the bond interface. Set
 things like lacp=active and/or bond_mode=balance-slb
 using this option.
 type: string
 constraints:
 - allowed_pattern: "^((?!balance.tcp).)*$"

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

60

 description: |
 The balance-tcp bond mode is known to cause packet loss and
 should not be used in BondInterfaceOvsOptions.
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES

61

 config:
 os_net_config:
 network_config:
 -
 type: interface
 name: nic1
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}
 -
 default: true
 next_hop: {get_param: ControlPlaneDefaultRoute}
 -
 type: ovs_bridge
 name: br-bond
 members:
 -
 type: linux_bond
 name: bond1
 bonding_options: {get_param: BondInterfaceOvsOptions}
 members:
 -
 type: interface
 name: nic2
 primary: true
 -
 type: interface
 name: nic3
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: StorageNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
 -
 type: ovs_bridge
 name: br-bond2
 members:
 -
 type: linux_bond
 name: bond2
 bonding_options: {get_param: BondInterfaceOvsOptions}
 members:
 -
 type: interface

Red Hat OpenStack Platform 16.0 Deploying an overcloud with containerized Red Hat Ceph

62

 name: nic4
 primary: true
 -
 type: interface
 name: nic5
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}
outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value: {get_resource: OsNetConfigImpl}

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES

63

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. INTRODUCTION TO CEPH STORAGE
	1.2. REQUIREMENTS
	1.2.1. Ceph Storage node requirements

	1.3. ADDITIONAL RESOURCES

	CHAPTER 2. PREPARING OVERCLOUD NODES
	2.1. CLEANING CEPH STORAGE NODE DISKS
	2.2. REGISTERING NODES
	2.3. MANUALLY TAGGING NODES INTO PROFILES
	2.4. DEFINING THE ROOT DISK FOR MULTI-DISK CLUSTERS
	2.5. USING THE OVERCLOUD-MINIMAL IMAGE TO AVOID USING A RED HAT SUBSCRIPTION ENTITLEMENT

	CHAPTER 3. DEPLOYING CEPH SERVICES ON DEDICATED NODES
	3.1. CREATING A CUSTOM ROLES FILE
	3.2. CREATING A CUSTOM ROLE AND FLAVOR FOR THE CEPH MON SERVICE
	3.3. CREATING A CUSTOM ROLE AND FLAVOR FOR THE CEPH MDS SERVICE

	CHAPTER 4. CUSTOMIZING THE STORAGE SERVICE
	4.1. ENABLING THE CEPH METADATA SERVER
	4.2. ENABLING THE CEPH OBJECT GATEWAY
	4.3. CONFIGURING THE BACKUP SERVICE TO USE CEPH
	4.4. CONFIGURING MULTIPLE BONDED INTERFACES FOR CEPH NODES
	4.4.1. Configuring bonding module directives

	CHAPTER 5. CUSTOMIZING THE CEPH STORAGE CLUSTER
	5.1. SETTING CEPH-ANSIBLE GROUP VARIABLES
	5.2. CEPH CONTAINERS FOR RED HAT OPENSTACK PLATFORM WITH CEPH STORAGE
	5.3. MAPPING THE CEPH STORAGE NODE DISK LAYOUT
	5.3.1. Using BlueStore
	5.3.2. Referring to devices with persistent names

	5.4. ASSIGNING CUSTOM ATTRIBUTES TO DIFFERENT CEPH POOLS
	5.5. MAPPING THE DISK LAYOUT TO NON-HOMOGENEOUS CEPH STORAGE NODES
	5.6. INCREASING THE RESTART DELAY FOR LARGE CEPH CLUSTERS

	CHAPTER 6. DEPLOYING SECOND-TIER CEPH STORAGE ON OPENSTACK
	6.1. CREATE A CRUSH MAP
	6.2. MAPPING THE OSDS
	6.3. SETTING THE REPLICATION FACTOR
	6.4. DEFINING THE CRUSH HIERARCHY
	6.5. DEFINING CRUSH MAP RULES
	6.6. CONFIGURING OSP POOLS
	6.7. CONFIGURING BLOCK STORAGE TO USE THE NEW POOL
	6.8. VERIFYING CUSTOMIZED CRUSH MAP

	CHAPTER 7. CREATING THE OVERCLOUD
	7.1. ASSIGNING NODES AND FLAVORS TO ROLES
	7.2. INITIATING OVERCLOUD DEPLOYMENT

	CHAPTER 8. POST-DEPLOYMENT
	8.1. ACCESSING THE OVERCLOUD
	8.2. MONITORING CEPH STORAGE NODES

	CHAPTER 9. REBOOTING THE ENVIRONMENT
	9.1. REBOOTING A CEPH STORAGE (OSD) CLUSTER

	CHAPTER 10. SCALING THE CEPH STORAGE CLUSTER
	10.1. SCALING UP THE CEPH STORAGE CLUSTER
	10.2. SCALING DOWN AND REPLACING CEPH STORAGE NODES
	10.3. ADDING AN OSD TO A CEPH STORAGE NODE
	10.4. REMOVING AN OSD FROM A CEPH STORAGE NODE
	10.5. HANDLING DISK FAILURE

	APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING A CEPH STORAGE CLUSTER
	APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES

