
Red Hat OpenStack Platform 16.0

Bare Metal Provisioning

Install, Configure, and Use the Bare Metal Service (Ironic)

Last Updated: 2020-04-06

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

Install, Configure, and Use the Bare Metal Service (Ironic)

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides procedures for installing, configuring, and using the Bare Metal service in the
overcloud of a Red Hat OpenStack Platform environment.

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. ABOUT THE BARE METAL SERVICE

CHAPTER 2. PLANNING FOR BARE METAL PROVISIONING
2.1. INSTALLATION ASSUMPTIONS
2.2. HARDWARE REQUIREMENTS
2.3. NETWORKING REQUIREMENTS

2.3.1. The Default Bare Metal Network
2.3.2. The Custom Composable Network

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL SERVICE
3.1. CREATING THE IRONIC TEMPLATE
3.2. CONFIGURING THE UNDERCLOUD FOR BARE METAL PROVISIONING OVER IPV6
3.3. NETWORK CONFIGURATION

3.3.1. Configuring a custom IPv4 provisioning network
3.3.2. Configuring a custom IPv6 provisioning network

3.4. EXAMPLE TEMPLATES
3.5. ENABLING IRONIC INTROSPECTION IN THE OVERCLOUD
3.6. DEPLOYING THE OVERCLOUD
3.7. TESTING THE BARE METAL SERVICE

CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE AFTER DEPLOYMENT
4.1. CONFIGURING OPENSTACK NETWORKING

4.1.1. Configuring OpenStack Networking to Communicate with the Bare Metal Service on a flat Bare Metal
Network
4.1.2. Configuring OpenStack Networking to Communicate with the Bare Metal Service on a Custom
Composable Bare Metal Network

4.2. CONFIGURING NODE CLEANING
4.2.1. Manual Node Cleaning

4.3. CREATING THE BARE METAL FLAVOR
4.4. CREATING THE BARE METAL IMAGES

4.4.1. Preparing the Deploy Images
4.4.2. Preparing the User Image
4.4.3. Disk image environment variables
4.4.4. Installing the User Image

4.5. CONFIGURING DEPLOY INTERFACES
4.5.1. Understanding the deploy process

Prerequisites
Workflow

4.5.2. Configuring the direct deploy interface on the overcloud
Procedure

4.6. ADDING PHYSICAL MACHINES AS BARE METAL NODES
4.6.1. Enrolling a Bare Metal Node With an Inventory File
4.6.2. Enrolling a Bare Metal Node Manually

4.7. CONFIGURING REDFISH VIRTUAL MEDIA BOOT
4.7.1. Deploying a bare metal server with Redfish virtual media boot

4.8. USING HOST AGGREGATES TO SEPARATE PHYSICAL AND VIRTUAL MACHINE PROVISIONING

CHAPTER 5. ADMINISTERING BARE METAL NODES
5.1. LAUNCHING AN INSTANCE USING THE COMMAND LINE INTERFACE
5.2. LAUNCH AN INSTANCE USING THE DASHBOARD
5.3. CONFIGURE PORT GROUPS IN THE BARE METAL PROVISIONING SERVICE

4

5

7
7
7
7
8
9

10
10
10
12
12
13
16
16
17
17

19
19

19

20
21
21
22
22
23
23
23
25
26
26
26
26
27
27
28
29
30
33
34
35

37
37
37
38

Table of Contents

1

. .

. .

. .

5.3.1. Configure the Switches
5.3.2. Configure Port Groups in the Bare Metal Provisioning Service

5.4. DETERMINING THE HOST TO IP ADDRESS MAPPING
5.5. ATTACHING AND DETACHING A VIRTUAL NETWORK INTERFACE
5.6. CONFIGURING NOTIFICATIONS FOR THE BARE METAL SERVICE
5.7. CONFIGURING AUTOMATIC POWER FAULT RECOVERY
5.8. INTROSPECTING OVERCLOUD NODES

CHAPTER 6. ML2 NETWORKING-ANSIBLE
6.1. MODULAR LAYER 2 (ML2) NETWORKING-ANSIBLE
6.2. NETWORKING REQUIREMENTS FOR NETWORKING-ANSIBLE
6.3. OPENSTACK BARE METAL (IRONIC) REQUIREMENTS FOR NETWORKING-ANSIBLE
6.4. ENABLING NETWORKING-ANSIBLE ML2 FUNCTIONALITY
6.5. CONFIGURING NETWORKS FOR NETWORKING-ANSIBLE

6.5.1. Configuring networks for networking-ansible in access mode
6.5.2. Configuring ports for bare metal guests in access mode
6.5.3. Configuring networks for networking-ansible in trunk mode
6.5.4. Configuring ports for bare metal guests in trunk mode

6.6. TESTING NETWORKING-ANSIBLE ML2 FUNCTIONS

CHAPTER 7. TROUBLESHOOTING THE BARE METAL SERVICE
7.1. PXE BOOT ERRORS
7.2. LOGIN ERRORS AFTER THE BARE METAL NODE BOOTS
7.3. THE BARE METAL SERVICE IS NOT GETTING THE RIGHT HOSTNAME
7.4. INVALID OPENSTACK IDENTITY SERVICE CREDENTIALS WHEN EXECUTING BARE METAL SERVICE
COMMANDS
7.5. HARDWARE ENROLLMENT
7.6. NO VALID HOST ERRORS

APPENDIX A. BARE METAL DRIVERS
A.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)
A.2. REDFISH
A.3. DELL REMOTE ACCESS CONTROLLER (DRAC)
A.4. INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
A.5. INTEGRATED LIGHTS-OUT (ILO)
A.6. CONVERTING TO NEXT GENERATION POWER MANAGEMENT DRIVERS

38
39
39
41

43
44
45

46
46
46
47
47
49
50
50
51
52
52

54
54
55
56

56
56
56

58
58
58
58
59
59
60

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

2

Table of Contents

3

PREFACE
This document provides instructions for installing and configuring the Bare Metal service (ironic) in the
overcloud, and using the service to provision and manage physical machines for end users.

The Bare Metal service components are also used by the Red Hat OpenStack Platform director, as part
of the undercloud, to provision and manage the bare metal nodes that make up the OpenStack
environment (the overcloud). For more information about how the director uses the Bare Metal service,
see the Director Installation and Usage guide.

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

4

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/

CHAPTER 1. ABOUT THE BARE METAL SERVICE
The OpenStack Bare Metal service (ironic) provides the components required to provision and manage
physical machines for end users. The Bare Metal service in the overcloud interacts with the following
OpenStack services:

OpenStack Compute (nova) provides scheduling, tenant quotas, IP assignment, and a user-
facing API for virtual machine instance management, while the Bare Metal service provides the
administrative API for hardware management.

OpenStack Identity (keystone) provides request authentication and assists the Bare Metal
service in locating other OpenStack services.

OpenStack Image service (glance) manages images and image metadata.

OpenStack Networking (neutron) provides DHCP and network configuration.

OpenStack Object Storage (swift) is used by certain drivers to expose temporary URLs to
images.

The Bare Metal service uses iPXE to provision physical machines. The following diagram outlines how
the OpenStack services interact during the provisioning process when a user launches a new machine
with the default drivers.

CHAPTER 1. ABOUT THE BARE METAL SERVICE

5

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

6

CHAPTER 2. PLANNING FOR BARE METAL PROVISIONING
This chapter outlines the requirements for configuring the Bare Metal service, including installation
assumptions, hardware requirements, and networking requirements.

2.1. INSTALLATION ASSUMPTIONS

This guide assumes that you have installed the director on the undercloud node, and are ready to install
the Bare Metal service along with the rest of the overcloud. For more information on installing the
director, see Installing the Undercloud.

NOTE

The Bare Metal service in the overcloud is designed for a trusted tenant environment, as
the bare metal nodes have direct access to the control plane network of your OpenStack
installation. If you implement a custom composable network for Ironic services in the
overcloud, users do not need to access the control plane.

2.2. HARDWARE REQUIREMENTS

Overcloud Requirements

The hardware requirements for an overcloud with the Bare Metal service are the same as for the
standard overcloud. For more information, see Overcloud Requirements in the Director Installation and
Usage guide.

Bare Metal Machine Requirements

The hardware requirements for bare metal machines that will be provisioned vary depending on the
operating system you are installing.

For Red Hat Enterprise Linux 8, see the Red Hat Enterprise Linux 8 Performing a standard
RHEL installation .

For Red Hat Enterprise Linux 7, see the Red Hat Enterprise Linux 7 Installation Guide .

For Red Hat Enterprise Linux 6, see the Red Hat Enterprise Linux 6 Installation Guide .

All bare metal machines that you want to provision require the following:

A NIC to connect to the bare metal network.

A power management interface (for example, IPMI) connected to a network reachable from the
ironic-conductor service. By default, ironic-conductor runs on all of the controller nodes,
unless you are using composable roles and running ironic-conductor elsewhere.

PXE boot on the bare metal network. Disable PXE boot on all other NICs in the deployment.

2.3. NETWORKING REQUIREMENTS

The bare metal network:

This is a private network that the Bare Metal service uses for the following operations:

The provisioning and management of bare metal machines on the overcloud.

CHAPTER 2. PLANNING FOR BARE METAL PROVISIONING

7

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/#chap-Installing_the_Undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/#sect-Overcloud_Requirements
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Installation_Guide/index.html

Cleaning bare metal nodes before and between deployments.

Tenant access to the bare metal nodes.

The bare metal network provides DHCP and PXE boot functions to discover bare metal systems. This
network must use a native VLAN on a trunked interface so that the Bare Metal service can serve PXE
boot and DHCP requests.

You can configure the bare metal network in two ways:

Use a flat bare metal network for Ironic Conductor services. This network must route to the
Ironic services on the control plane. If you define an isolated bare metal network, the bare metal
notes cannot PXE boot.

Use a custom composable network to implement Ironic services in the overcloud.

NOTE

The Bare Metal service in the overcloud is designed for a trusted tenant environment, as
the bare metal nodes have direct access to the control plane network of your OpenStack
installation. If you implement a custom composable network for Ironic services in the
overcloud, users do not need to access the control plane.

Network tagging:

The control plane network (the director’s provisioning network) is always untagged.

The bare metal network must be untagged for provisioning, and must also have access to the
Ironic API.

Other networks may be tagged.

Overcloud controllers:

The controller nodes with the Bare Metal service must have access to the bare metal network.

Bare metal nodes:

The NIC which the bare metal node is configured to PXE-boot from must have access to the bare metal
network.

2.3.1. The Default Bare Metal Network

In this architecture, the bare metal network is separated from the control plane network. The bare metal
network is a flat network that also acts as the tenant network.

The bare metal network is created by the OpenStack operator. This network requires a route to
the director provisioning network.

Ironic users have access to the public OpenStack APIs, and to the bare metal network. Since the
bare metal network is routed to the director’s provisioning network, users also have indirect
access to the control plane.

Ironic uses the bare metal network for node cleaning.

Default bare metal network architecture diagram

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

8

2.3.2. The Custom Composable Network

In this architecture, the bare metal network is a custom composable network that does not have access
to the control plane. Creating this network might be preferable if you want to limit access to the control
plane.

The custom composable bare metal network is created by the OpenStack operator.

Ironic users have access to the public OpenStack APIs, and to the custom composable bare
metal network.

Ironic uses the custom composable bare metal network for node cleaning. :leveloffset: +1

CHAPTER 2. PLANNING FOR BARE METAL PROVISIONING

9

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE
METAL SERVICE

For full details about overcloud deployment with the director, see Director Installation and Usage. This
chapter covers only the deployment steps specific to ironic.

3.1. CREATING THE IRONIC TEMPLATE

Use an environment file to deploy the overcloud with the Bare Metal service enabled. A template is
located on the director node at /usr/share/openstack-tripleo-heat-
templates/environments/services/ironic-overcloud.yaml.

Filling in the template

Additional configuration can be specified either in the provided template or in an additional yaml file, for
example ~/templates/ironic.yaml.

For a hybrid deployment with both bare metal and virtual instances, you must add
AggregateInstanceExtraSpecsFilter to the list of NovaSchedulerDefaultFilters. If you have
not set NovaSchedulerDefaultFilters anywhere, you can do so in ironic.yaml. For an example,
see Section 3.4, “Example Templates”.

NOTE

If you are using SR-IOV, NovaSchedulerDefaultFilters is already set in tripleo-
heat-templates/environments/neutron-sriov.yaml. Append
AggregateInstanceExtraSpecsFilter to this list.

The type of cleaning that occurs before and between deployments is set by
IronicCleaningDiskErase. By default, this is set to ‘full’ by deployment/ironic/ironic-
conductor-container-puppet.yaml. Setting this to ‘metadata’ can substantially speed up the
process, as it cleans only the partition table, however, since the deployment will be less secure in
a multi-tenant environment, you should do this only in a trusted tenant environment.

You can add drivers with the IronicEnabledDrivers parameter. By default, ipmi, idrac and ilo
are enabled.

For a full list of configuration parameters, see Bare Metal in the Overcloud Parameters guide.

3.2. CONFIGURING THE UNDERCLOUD FOR BARE METAL
PROVISIONING OVER IPV6

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

If you have IPv6 nodes and infrastructure, you can configure the undercloud and the provisioning
network to use IPv6 instead of IPv4 so that director can provision and deploy Red Hat OpenStack
Platform onto IPv6 nodes. However, there are some considerations:

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

10

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/#sect-Creating_the_Overcloud_CLI
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/overcloud_parameters/index#bare-metal-ironic-parameters
https://access.redhat.com/support/offerings/production/scope_moredetail

Stateful DHCPv6 is available only with a limited set of UEFI firmware. For more information, see
Bugzilla #1575026.

Dual stack IPv4/6 is not available.

Tempest validations might not perform correctly.

IPv4 to IPv6 migration is not available during upgrades.

Modify the undercloud.conf file to enable IPv6 provisioning in Red Hat OpenStack Platform.

Prerequisites

An IPv6 address on the undercloud. For more information, see Configuring an IPv6 address on
the undercloud in the IPv6 Networking for the Overcloud guide.

Procedure

1. Copy the sample undercloud.conf file, or modify your existing undercloud.conf file.

2. Set the following parameter values in the undercloud.conf file:

a. Set ipv6_address_mode to dhcpv6-stateless or dhcpv6-stateful if your NIC supports
stateful DHCPv6 with Red Hat OpenStack Platform. For more information about stateful
DHCPv6 availability, see Bugzilla #1575026.

b. Set enable_routed_networks to true if you do not want the undercloud to create a router
on the provisioning network. In this case, the data center router must provide router
advertisements. Otherwise, set this value to false.

c. Set local_ip to the IPv6 address of the undercloud.

d. Use IPv6 addressing for the undercloud interface parameters undercloud_public_host
and undercloud_admin_host.

e. In the [ctlplane-subnet] section, use IPv6 addressing in the following parameters:

cidr

dhcp_start

dhcp_end

gateway

inspection_iprange

f. In the [ctlplane-subnet] section, set an IPv6 nameserver for the subnet in the
dns_nameservers parameter.

ipv6_address_mode = dhcpv6-stateless
enable_routed_networks: false
local_ip = <ipv6-address>
undercloud_admin_host = <ipv6-address>
undercloud_public_host = <ipv6-address>

[ctlplane-subnet]

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL SERVICE

11

https://bugzilla.redhat.com/show_bug.cgi?id=1575026
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/ipv6_networking_for_the_overcloud/index#sect-pre-Configuring_an_IPv6_on_the_Undercloud
https://bugzilla.redhat.com/show_bug.cgi?id=1575026

cidr = <ipv6-address>::<ipv6-mask>
dhcp_start = <ipv6-address>
dhcp_end = <ipv6-address>
dns_nameservers = <ipv6-dns>
gateway = <ipv6-address>
inspection_iprange = <ipv6-address>,<ipv6-address>

3.3. NETWORK CONFIGURATION

If you use the default flat bare metal network, you must create a bridge br-baremetal for ironic to use.
You can specify this in an additional template:

~/templates/network-environment.yaml

parameter_defaults:
 NeutronBridgeMappings: datacentre:br-ex,baremetal:br-baremetal
 NeutronFlatNetworks: datacentre,baremetal

You can configure this bridge either in the provisioning network (control plane) of the controllers, so
that you can reuse this network as the bare metal network, or add a dedicated network. The
configuration requirements are the same, however the bare metal network cannot be VLAN-tagged, as
it is used for provisioning.

~/templates/nic-configs/controller.yaml

network_config:
 -
 type: ovs_bridge
 name: br-baremetal
 use_dhcp: false
 members:
 -
 type: interface
 name: eth1

NOTE

The Bare Metal service in the overcloud is designed for a trusted tenant environment, as
the bare metal nodes have direct access to the control plane network of your OpenStack
installation.

3.3.1. Configuring a custom IPv4 provisioning network

The default flat provisioning network can introduce security concerns in a customer environment as a
tenant can interfere with the undercloud network. To prevent this risk, you can configure a custom
composable bare metal provisioning network for ironic services that does not have access to the control
plane:

1. Configure the shell to access Identity as the administrative user:

$ source ~/stackrc

2. Copy the network_data.yaml file:

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

12

(undercloud) [stack@host01 ~]$ cp /usr/share/openstack-tripleo-heat-
templates/network_data.yaml .

3. Edit the new network_data.yaml file and add a new network for IPv4 overcloud provisioning:

custom network for overcloud provisioning
- name: OcProvisioning
name_lower: oc_provisioning
vip: true
vlan: 205
ip_subnet: '172.23.3.0/24'
allocation_pools: [{'start': '172.23.3.10', 'end': '172.23.3.200'}]

4. Update the network_environments.yaml and nic-configs/controller.yaml files to use the new
network.

a. In the network_environments.yaml file, remap Ironic networks:

ServiceNetMap:
 IronicApiNetwork: oc_provisioning
 IronicNetwork: oc_provisioning

b. In the nic-configs/controller.yaml file, add an interface and necessary parameters:

$network_config:
 - type: vlan
 vlan_id:
 get_param: OcProvisioningNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: OcProvisioningIpSubnet

5. Copy the roles_data.yaml file:

(undercloud) [stack@host01 ~]$ cp /usr/share/openstack-tripleo-heat-
templates/roles_data.yaml .

6. Edit the new roles_data.yaml and add the new network for the controller:

 networks:
 ...
 OcProvisioning:
 subnet: oc_provisioning_subnet

7. Include the new network_data.yaml and roles_data.yaml files in the deploy command:

-n /home/stack/network_data.yaml \
-r /home/stack/roles_data.yaml \

3.3.2. Configuring a custom IPv6 provisioning network

IMPORTANT

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL SERVICE

13

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

Create a custom IPv6 provisioning network to provision and deploy the overcloud over IPv6.

Procedure

1. Configure the shell to access Identity as the administrative user:

$ source ~/stackrc

2. Copy the network_data.yaml file:

$ cp /usr/share/openstack-tripleo-heat-templates/network_data.yaml .

3. Edit the new network_data.yaml file and add a new network for overcloud provisioning:

custom network for IPv6 overcloud provisioning
- name: OcProvisioningIPv6
vip: true
name_lower: oc_provisioning_ipv6
vlan: 10
ipv6: true
ipv6_subnet: '$IPV6_SUBNET_ADDRESS/$IPV6_MASK'
ipv6_allocation_pools: [{'start': '$IPV6_START_ADDRESS', 'end': '$IPV6_END_ADDRESS'}]
gateway_ipv6: '$IPV6_GW_ADDRESS'

Replace $IPV6_ADDRESS with the IPv6 address of your IPv6 subnet.

Replace $IPV6_MASK with the IPv6 network mask for your IPv6 subnet.

Replace $IPV6_START_ADDRESS and $IPV6_END_ADDRESS with the IPv6 range that
you want to use for address allocation.

Replace $IPV6_GW_ADDRESS with the IPv6 address of your gateway.

4. Create a new file network-environment.yaml and define IPv6 settings for the provisioning
network:

$ touch /home/stack/network-environment.yaml`

a. Remap the ironic networks to use the new IPv6 provisioning network:

ServiceNetMap:
 IronicApiNetwork: oc_provisioning_ipv6
 IronicNetwork: oc_provisioning_ipv6

b. Set the IronicIpVersion parameter to 6:

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

14

https://access.redhat.com/support/offerings/production/scope_moredetail

parameter_defaults:
 IronicIpVersion: 6

c. Set the RabbitIPv6, MysqlIPv6, and RedisIPv6 parameters to True:

parameter_defaults:
 RabbitIPv6: True
 MysqlIPv6: True
 RedisIPv6: True

d. Set the ControlPlaneSubnetCidr parameter to the subnet IPv6 mask length for the
provisioning network:

parameter_defaults:
 ControlPlaneSubetCidr: '64'

e. Set the ControlPlaneDefaultRoute parameter to the IPv6 address of the gateway router
for the provisioning network:

parameter_defaults:
 ControlPlaneDefaultRoute: <ipv6-address>

5. Add an interface and necessary parameters to the nic-configs/controller.yaml file:

$network_config:
 - type: vlan
 vlan_id:
 get_param: OcProvisioningIPv6NetworkVlanID
 addresses:
 - ip_netmask:
 get_param: OcProvisioningIPv6IpSubnet

6. Copy the roles_data.yaml file:

(undercloud) [stack@host01 ~]$ cp /usr/share/openstack-tripleo-heat-
templates/roles_data.yaml .

7. Edit the new roles_data.yaml and add the new network for the controller:

 networks:
 ...
 - OcProvisioningIPv6

When you deploy the overcloud, include the new network_data.yaml and roles_data.yaml files in the
deployment command with the -n and -r options, and the network-environment.yaml file with the -e
option:

$ sudo openstack overcloud deploy --templates \
...
-n /home/stack/network_data.yaml \
-r /home/stack/roles_data.yaml \
-e /home/stack/network-environment.yaml
...

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL SERVICE

15

For more information about IPv6 network configuration, see Configuring the network in the IPv6
Networking for the Overcloud guide.

3.4. EXAMPLE TEMPLATES

The following is an example template file. This file might not meet the requirements of your
environment. Before using this example, ensure that it does not interfere with any existing configuration
in your environment.

~/templates/ironic.yaml

In this example:

The AggregateInstanceExtraSpecsFilter allows both virtual and bare metal instances, for a
hybrid deployment.

Disk cleaning that is done before and between deployments erases only the partition table
(metadata).

3.5. ENABLING IRONIC INTROSPECTION IN THE OVERCLOUD

To enable Bare Metal introspection, include both the following files in the deploy command:

For deployments using OVN

ironic-overcloud.yaml

ironic-inspector.yaml

For deployments using OVS

ironic.yaml

ironic-inspector.yaml

You can find these files in the /usr/share/openstack-tripleo-heat-templates/environments/services
directory. Use the following example to include configuration details for the ironic inspector that
correspond to your environment:

parameter_defaults:

 NovaSchedulerDefaultFilters:
 - RetryFilter
 - AggregateInstanceExtraSpecsFilter
 - AvailabilityZoneFilter
 - RamFilter
 - DiskFilter
 - ComputeFilter
 - ComputeCapabilitiesFilter
 - ImagePropertiesFilter

 IronicCleaningDiskErase: metadata

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

16

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/ipv6_networking_for_the_overcloud/index#configuring_the_network

parameter_defaults:
 IronicInspectorSubnets:
 - ip_range: 192.168.101.201,192.168.101.250
 IPAImageURLs: '["http://192.168.24.1:8088/agent.kernel",
"http://192.168.24.1:8088/agent.ramdisk"]'
 IronicInspectorInterface: 'br-baremetal'

IronicInspectorSubnets

This parameter can contain multiple ranges and works with both spine and leaf.

IPAImageURLs

This parameter contains details about the IPA kernel and ramdisk. In most cases, you can use the same
images that you use on the undercloud. If you omit this parameter, place alternatives on each controller.

IronicInspectorInterface

Use this parameter to specify the bare metal network interface.

NOTE

If you use a composable Ironic or IronicConductor role, you must include the
IronicInspector service in the Ironic role in your roles file.

ServicesDefault:
 OS::TripleO::Services::IronicInspector

3.6. DEPLOYING THE OVERCLOUD

To enable the Bare Metal service, include your ironic environment files with the -e option when
deploying or redeploying the overcloud, along with the rest of your overcloud configuration.

For example:

$ openstack overcloud deploy \
 --templates \
 -e ~/templates/node-info.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e ~/templates/network-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/ironic-overcloud.yaml \
 -e ~/templates/ironic.yaml \

For more information about deploying the overcloud, see Deployment command options and Including
Environment Files in Overcloud Creation in the Director Installation and Usage guide.

For more information about deploying the overcloud over IPv6, see Setting up your environment and
Creating the overcloud in the IPv6 Networking for the Overcloud guide.

3.7. TESTING THE BARE METAL SERVICE

You can use the OpenStack Integration Test Suite to validate your Red Hat OpenStack deployment.
For more information, see the OpenStack Integration Test Suite Guide .

Additional Ways to Verify the Bare Metal Service:

CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL SERVICE

17

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/index#deployment-command-options
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/#sect-Including_Environment_Files_in_Overcloud_Creation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/ipv6_networking_for_the_overcloud/index#setting_up_your_environment
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/ipv6_networking_for_the_overcloud/index#creating_the_overcloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/openstack_integration_test_suite_guide/

Additional Ways to Verify the Bare Metal Service:

1. Configure the shell to access Identity as the administrative user:

$ source ~/overcloudrc

2. Check that the nova-compute service is running on the controller nodes:

$ openstack compute service list -c Binary -c Host -c Status

3. If you have changed the default ironic drivers, ensure that the required drivers are enabled:

$ openstack baremetal driver list

4. Ensure that the ironic endpoints are listed:

$ openstack catalog list

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

18

CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE
AFTER DEPLOYMENT

This section describes the steps necessary to configure your overcloud after deployment.

4.1. CONFIGURING OPENSTACK NETWORKING

Configure OpenStack Networking to communicate with the Bare Metal service for DHCP, PXE boot,
and other requirements. You can configure the bare metal network in two ways:

Use a flat bare metal network for Ironic Conductor services. This network must route to the
Ironic services on the control plane network.

Use a custom composable network to implement Ironic services in the overcloud.

Follow the procedures in this section to configure OpenStack Networking for a single flat network for
provisioning onto bare metal, or to configure a new composable network that does not rely on an unused
isolated network or a flat network. The configuration uses the ML2 plug-in and the Open vSwitch agent.

Perform all steps in the following procedure on the server that hosts the OpenStack Networking service,
while logged in as the root user.

4.1.1. Configuring OpenStack Networking to Communicate with the Bare Metal
Service on a flat Bare Metal Network

1. Configure the shell to access Identity as the administrative user:

$ source ~/overcloudrc

2. Create the flat network over which to provision bare metal instances:

$ openstack network create \
 --provider-network-type flat \
 --provider-physical-network baremetal \
 --share NETWORK_NAME

Replace NETWORK_NAME with a name for this network. The name of the physical network over
which the virtual network is implemented (in this case baremetal) was set earlier in the
~/templates/network-environment.yaml file, with the parameter NeutronBridgeMappings.

3. Create the subnet on the flat network:

$ openstack subnet create \
 --network NETWORK_NAME \
 --subnet-range NETWORK_CIDR \
 --ip-version 4 \
 --gateway GATEWAY_IP \
 --allocation-pool start=START_IP,end=END_IP \
 --dhcp SUBNET_NAME

Replace the following values:

Replace SUBNET_NAME with a name for the subnet.

Replace NETWORK_NAME with the name of the provisioning network that you created in

CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE AFTER DEPLOYMENT

19

Replace NETWORK_NAME with the name of the provisioning network that you created in
the previous step.

Replace NETWORK_CIDR with the Classless Inter-Domain Routing (CIDR) representation
of the block of IP addresses that the subnet represents. The block of IP addresses specified
by the range starting with START_IP and ending with END_IP must fall within the block of IP
addresses specified by NETWORK_CIDR.

Replace GATEWAY_IP with the IP address or host name of the router interface that acts as
the gateway for the new subnet. This address must be within the block of IP addresses
specified by NETWORK_CIDR, but outside of the block of IP addresses specified by the
range starting with START_IP and ending with END_IP.

Replace START_IP with the IP address that denotes the start of the range of IP addresses
within the new subnet from which floating IP addresses will be allocated.

Replace END_IP with the IP address that denotes the end of the range of IP addresses
within the new subnet from which floating IP addresses will be allocated.

4. Create a router for the network and subnet to ensure that the OpenStack Networking Service
serves metadata requests:

$ openstack router create ROUTER_NAME

Replace ROUTER_NAME with a name for the router.

5. Attach the network to the new router:

$ openstack router add network ROUTER_NAME NETWORK

Replace ROUTER_NAME with the name of your router, and replace NETWORK with the ID or
name of the network that you created previously.

6. Attach the subnet to the new router:

$ openstack router add subnet ROUTER_NAME BAREMETAL_SUBNET

Replace ROUTER_NAME with the name of your router and BAREMETAL_SUBNET with the ID or
name of the subnet that you created previously. This allows the metadata requests from cloud-
init to be served and the node configured.

4.1.2. Configuring OpenStack Networking to Communicate with the Bare Metal
Service on a Custom Composable Bare Metal Network

1. Create a vlan network with a VlanID that matches the OcProvisioning network that you create
during deployment. Name the new network provisioning to match the default name of the
cleaning network.

(overcloud) [stack@host01 ~]$ openstack network create \
 --share \
 --provider-network-type vlan \
 --provider-physical-network datacentre \
 --provider-segment 205 provisioning

If the name of the overcloud network is not provisioning, log in to the controller and run the

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

20

If the name of the overcloud network is not provisioning, log in to the controller and run the
following commands to rename and restart the network:

heat-admin@overcloud-controller-0 ~]$ sudo vi /var/lib/config-data/puppet-
generated/ironic/etc/ironic/ironic.conf

heat-admin@overcloud-controller-0 ~]$ sudo podman restart ironic_conductor

4.2. CONFIGURING NODE CLEANING

By default, the Bare Metal service is set to use a network named provisioning for node cleaning.
However, network names are not unique in OpenStack Networking, so it is possible for a tenant to
create a network with the same name, causing a conflict with the Bare Metal service. Therefore, it is
recommended to use the network UUID instead.

1. Configure cleaning by providing the provider network UUID on the controller running the Bare
Metal Service:
~/templates/ironic.yaml

parameter_defaults:
 IronicCleaningNetwork: UUID

Replace UUID with the UUID of the bare metal network that you create in the previous steps.

You can find the UUID with the openstack network show command:

openstack network show NETWORK_NAME -f value -c id

NOTE

You must perform this configuration after the initial overcloud deployment,
because the UUID for the network is not available beforehand.

2. Apply the changes by redeploying the overcloud with the openstack overcloud deploy
command as described in Section 3.6, “Deploying the Overcloud”.

3. Uncomment the following line and replace <None> with the UUID of the bare metal network:

cleaning_network = <None>

4. Restart the Bare Metal service:

systemctl restart openstack-ironic-conductor.service

Redeploying the overcloud with openstack overcloud deploy reverts any manual changes, so ensure
that you have added the cleaning configuration to ~/templates/ironic.yaml (described in the previous
step) before you next use the openstack overcloud deploy command.

4.2.1. Manual Node Cleaning

To initiate node cleaning manually, the node must be in the manageable state.

CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE AFTER DEPLOYMENT

21

Node cleaning has two modes:

Metadata only clean - Removes partitions from all disks on a given node. This is a faster clean cycle, but
less secure since it erases only partition tables. Use this mode only on trusted tenant environments.

Full clean - Removes all data from all disks, using either ATA secure erase or by shredding. This can take
several hours to complete.

To initiate a metadata clean:

$ openstack baremetal node clean _UUID_ \
 --clean-steps '[{"interface": "deploy", "step": "erase_devices_metadata"}]'

To initiate a full clean:

$ openstack baremetal node clean _UUID_ \
 --clean-steps '[{"interface": "deploy", "step": "erase_devices"}]'

Replace UUID with the UUID of the node that you want to clean.

After a successful cleaning, the node state returns to manageable. If the state is clean failed, inspect
the last_error field for the cause of failure.

4.3. CREATING THE BARE METAL FLAVOR

You must create a flavor to use as a part of the deployment. The specifications (memory, CPU, and
disk) of this flavor must be equal to or less than the hardware specifications of your bare metal node.

1. Configure the shell to access Identity as the administrative user:

$ source ~/overcloudrc

2. List existing flavors:

$ openstack flavor list

3. Create a new flavor for the Bare Metal service:

$ openstack flavor create \
 --id auto --ram RAM \
 --vcpus VCPU --disk DISK \
 --property baremetal=true \
 --public baremetal

Replace RAM with the amount of memory, VCPU with the number of vCPUs and DISK with the
disk storage value. The property baremetal is used to distinguish bare metal from virtual
instances.

4. Verify that the new flavor is created with the correct values:

$ openstack flavor list

4.4. CREATING THE BARE METAL IMAGES

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

22

The deployment requires two sets of images:

The deploy image is used by the Bare Metal service to boot the bare metal node and copy a
user image onto the bare metal node. The deploy image consists of the kernel image and the
ramdisk image.

The user image is the image deployed onto the bare metal node. The user image also has a
kernel image and ramdisk image, but additionally, the user image contains a main image. The
main image is either a root partition, or a whole-disk image.

A whole-disk image is an image that contains the partition table and boot loader. The Bare
Metal service does not control the subsequent reboot of a node deployed with a whole-disk
image as the node supports localboot.

A root partition image contains only the root partition of the operating system. If you use a
root partition, after the deploy image is loaded into the Image service, you can set the
deploy image as the node boot image in the node properties. A subsequent reboot of the
node uses netboot to pull down the user image.

The examples in this section use a root partition image to provision bare metal nodes.

4.4.1. Preparing the Deploy Images

You do not have to create the deploy image as it was already used when the overcloud was deployed by
the undercloud. The deploy image consists of two images - the kernel image and the ramdisk image:

/tftpboot/agent.kernel
/tftpboot/agent.ramdisk

These images are often in the home directory, unless you have deleted them, or unpacked them
elsewhere. If they are not in the home directory, and you still have the rhosp-director-images-ipa
package installed, these images are in the /usr/share/rhosp-director-images/ironic-python-agent*.tar
file.

Extract the images and upload them to the Image service:

$ openstack image create \
 --container-format aki \
 --disk-format aki \
 --public \
 --file ./tftpboot/agent.kernel bm-deploy-kernel
$ openstack image create \
 --container-format ari \
 --disk-format ari \
 --public \
 --file ./tftpboot/agent.ramdisk bm-deploy-ramdisk

4.4.2. Preparing the User Image

The final image that you need is the user image that will be deployed on the bare metal node. User
images also have a kernel and ramdisk, along with a main image. To download and install these packages,
you must first configure whole disk image environment variables to suit your requirements.

4.4.3. Disk image environment variables

CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE AFTER DEPLOYMENT

23

As a part of the disk image building process, the director requires a base image and registration details
to obtain packages for the new overcloud image. Define these attributes with the following Linux
environment variables.

NOTE

The image building process temporarily registers the image with a Red Hat subscription
and unregisters the system when the image building process completes.

To build a disk image, set Linux environment variables that suit your environment and requirements:

DIB_LOCAL_IMAGE

Sets the local image that you want to use as the basis for your whole disk image.

REG_ACTIVATION_KEY

Use an activation key instead of login details as part of the registration process.

REG_AUTO_ATTACH

Defines whether to attach the most compatible subscription automatically.

REG_BASE_URL

The base URL of the content delivery server that contains packages for the image. The default
Customer Portal Subscription Management process uses https://cdn.redhat.com. If you use a Red
Hat Satellite 6 server, set this parameter to the base URL of your Satellite server.

REG_ENVIRONMENT

Registers to an environment within an organization.

REG_METHOD

Sets the method of registration. Use portal to register a system to the Red Hat Customer Portal. Use
satellite to register a system with Red Hat Satellite 6.

REG_ORG

The organization where you want to register the images.

REG_POOL_ID

The pool ID of the product subscription information.

REG_PASSWORD

Sets the password for the user account that registers the image.

REG_REPOS

A comma-separated string of repository names. Each repository in this string is enabled through
subscription-manager.

REG_SAT_URL

The base URL of the Satellite server to register overcloud nodes. Use the Satellite HTTP URL and
not the HTTPS URL for this parameter. For example, use http://satellite.example.com and not
https://satellite.example.com.

REG_SERVER_URL

Sets the host name of the subscription service to use. The default host name is for the Red Hat
Customer Portal at subscription.rhn.redhat.com. If you use a Red Hat Satellite 6 server, set this
parameter to the host name of your Satellite server.

REG_USER

Sets the user name for the account that registers the image.

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

24

http://satellite.example.com
https://satellite.example.com

4.4.4. Installing the User Image

1. Download the Red Hat Enterprise Linux KVM guest image from the Customer Portal (requires
login).

2. Define DIB_LOCAL_IMAGE as the downloaded image:

$ export DIB_LOCAL_IMAGE=rhel-8.0-x86_64-kvm.qcow2

3. Set your registration information. If you use Red Hat Customer Portal, you must configure the
following information:

$ export REG_USER='USER_NAME'
$ export REG_PASSWORD='PASSWORD'
$ export REG_AUTO_ATTACH=true
$ export REG_METHOD=portal
$ export https_proxy='IP_address:port' (if applicable)
$ export http_proxy='IP_address:port' (if applicable)

If you use Red Hat Satellite, you must configure the following information:

$ export REG_USER='USER_NAME'
$ export REG_PASSWORD='PASSWORD'
$ export REG_SAT_URL='<SATELLITE URL>'
$ export REG_ORG='<SATELLITE ORG>'
$ export REG_ENV='<SATELLITE ENV>'
$ export REG_METHOD=<METHOD>

If you have any offline repositories, you can define DIB_YUM_REPO_CONF as local repository
configuration:

$ export DIB_YUM_REPO_CONF=<path-to-local-repository-config-file>

4. Create the user images using the diskimage-builder tool:

$ disk-image-create rhel8 baremetal -o rhel-image

This command extracts the kernel as rhel-image.vmlinuz and initial ramdisk as rhel-
image.initrd.

5. Upload the images to the Image service:

$ KERNEL_ID=$(openstack image create \
 --file rhel-image.vmlinuz --public \
 --container-format aki --disk-format aki \
 -f value -c id rhel-image.vmlinuz)
$ RAMDISK_ID=$(openstack image create \
 --file rhel-image.initrd --public \
 --container-format ari --disk-format ari \
 -f value -c id rhel-image.initrd)
$ openstack image create \
 --file rhel-image.qcow2 --public \
 --container-format bare \
 --disk-format qcow2 \

CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE AFTER DEPLOYMENT

25

https://access.redhat.com/downloads/content/479

 --property kernel_id=$KERNEL_ID \
 --property ramdisk_id=$RAMDISK_ID \
 rhel-image

4.5. CONFIGURING DEPLOY INTERFACES

When provisioning bare metal nodes, the Ironic service on the overcloud writes a base operating system
image to the disk on the bare metal node. By default, the deploy interface mounts the image on an iSCSI
mount and then copies the image to disk on each node. Alternatively, you can use direct deploy, which
writes disk images from a HTTP location directly to disk on bare metal nodes.

4.5.1. Understanding the deploy process

Deploy interfaces have a critical role in the provisioning process. Deploy interfaces orchestrate the
deployment and define the mechanism for transferring the image to the target disk.

Prerequisites

Dependent packages configured on the bare metal service nodes that run ironic-conductor.

OpenStack Compute (nova) must be configured to use the bare metal service endpoint.

Flavors must be created for the available hardware, and nova must boot the new node from the
correct flavor.

Images must be available in Glance:

bm-deploy-kernel

bm-deploy-ramdisk

user-image

user-image-vmlinuz

user-image-initrd

Hardware to enroll with the Ironic API service.

Workflow
Use the following example workflow to understand the standard deploy process. Depending on the
ironic driver interfaces that you use, some of the steps might differ:

1. The Nova scheduler receives a boot instance request from the Nova API.

2. The Nova scheduler identifies the relevant hypervisor and identifies the target physical node.

3. The Nova compute manager claims the resources of the selected hypervisor.

4. The Nova compute manager creates unbound tenant virtual interfaces (VIFs) in the Networking
service according to the network interfaces that the nova boot request specifies.

5. Nova compute invokes driver.spawn from the Nova compute virt layer to create a spawn task
that contains all of the necessary information. During the spawn process, the virt driver
completes the following steps.

a. Updates the target ironic node with information about the deploy image, instance UUID,

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

26

a. Updates the target ironic node with information about the deploy image, instance UUID,
requested capabilities, and flavor propertires.

b. Calls the ironic API to validate the power and deploy interfaces of the target node.

c. Attaches the VIFs to the node. Each neutron port can be attached to any ironic port or
group. Port groups have higher priority than ports.

d. Generates config drive.

6. The Nova ironic virt driver issues a deploy request with the Ironic API to the Ironic conductor
that services the bare metal node.

7. Virtual interfaces are plugged in and the Neutron API updates DHCP to configure PXE/TFTP
options.

8. The ironic node boot interface prepares (i)PXE configuration and caches the deploy kernel and
ramdisk.

9. The ironic node management interface issues commands to enable network boot of the node.

10. The ironic node deploy interface caches the instance image, kernel, and ramdisk, if necessary.

11. The ironic node power interface instructs the node to power on.

12. The node boots the deploy ramdisk.

13. With iSCSI deployment, the conductor copies the image over iSCSI to the physical node. With
direct deployment, the deploy ramdisk downloads the image from a temporary URL. This URL
must be a Swift API compatible object store or a HTTP URL.

14. The node boot interface switches PXE configuration to refer to instance images and instructs
the ramdisk agent to soft power off the node. If the soft power off fails, the bare metal node is
powered off with IPMI/BMC.

15. The deploy interface instructs the network interface to remove any provisioning ports, binds the
tenant ports to the node, and powers the node on.

The provisioning state of the new bare metal node is now active.

4.5.2. Configuring the direct deploy interface on the overcloud

The iSCSI deploy interface is the default deploy interface. However, you can enable the direct deploy
interface to download an image from a HTTP location to the target disk.

NOTE

Your overcloud node memory tmpfs must have at least 6GB of RAM.

Procedure

1. Create or modify a custom environment file /home/stack/templates/direct_deploy.yaml and
specify the IronicEnabledDeployInterfaces and the IronicDefaultDeployInterface
parameters.

CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE AFTER DEPLOYMENT

27

parameter_defaults:
 IronicEnabledDeployInterfaces: direct
 IronicDefaultDeployInterface: direct

If you register your nodes with iscsi, retain the iscsi value in the
IronicEnabledDeployInterfaces parameter:

parameter_defaults:
 IronicEnabledDeployInterfaces: direct,iscsi
 IronicDefaultDeployInterface: direct

2. By default, the Bare Metal Service (ironic) agent on each node obtains the image stored in the
Object Storage Service (swift) through a HTTP link. Alternatively, Ironic can stream this image
directly to the node through the ironic-conductor HTTP server. To change the service
providing the image, set the IronicImageDownloadSource to http in the
/home/stack/templates/direct_deploy.yaml file:

parameter_defaults:
 IronicEnabledDeployInterfaces: direct
 IronicDefaultDeployInterface: direct
 IronicImageDownloadSource: http

3. Include the custom environment with your overcloud deployment:

$ openstack overcloud deploy \
 --templates \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/ironic.yaml \
 -e /home/stack/templates/direct_deploy.yaml \
 ...

Wait until deployment completes.

NOTE

If you did not specify IronicDefaultDeployInterface or to use a different deploy
interface, specify the deploy interface when you create or update a node:

+

$ openstack baremetal node create --driver ipmi --deploy-interface direct
$ openstack baremetal node set <NODE> --deploy-interface direct

4.6. ADDING PHYSICAL MACHINES AS BARE METAL NODES

There are two methods to enroll a bare metal node:

1. Prepare an inventory file with the node details, import the file into the Bare Metal service, and
make the nodes available.

2. Register a physical machine as a bare metal node, then manually add its hardware details and
create ports for each of its Ethernet MAC addresses. These steps can be performed on any
node which has your overcloudrc file.

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

28

Both methods are detailed in this section.

After enrolling the physical machines, Compute is not immediately notified of new resources, because
Compute’s resource tracker synchronizes periodically. Changes will be visible after the next periodic
task is run. This value, scheduler_driver_task_period, can be updated in /etc/nova/nova.conf. The
default period is 60 seconds.

4.6.1. Enrolling a Bare Metal Node With an Inventory File

1. Create a file overcloud-nodes.yaml, including the node details. You can enroll multiple nodes
with one file.

nodes:
 - name: node0
 driver: ipmi
 driver_info:
 ipmi_address: <IPMI_IP>
 ipmi_username: <USER>
 ipmi_password: <PASSWORD>
 properties:
 cpus: <CPU_COUNT>
 cpu_arch: <CPU_ARCHITECTURE>
 memory_mb: <MEMORY>
 local_gb: <ROOT_DISK>
 root_device:
 serial: <SERIAL>
 ports:
 - address: <PXE_NIC_MAC>

Replace the following values:

<IPMI_IP> with the address of the Bare Metal controller.

<USER> with your username.

<PASSWORD> with your password.

<CPU_COUNT> with the number of CPUs.

<CPU_ARCHITECTURE> with the type of architecture of the CPUs.

<MEMORY> with the amount of memory in MiB.

<ROOT_DISK> with the size of the root disk in GiB.

<MAC_ADDRESS> with the MAC address of the NIC used to PXE boot.
You must include root_device only if the machine has multiple disks. Replace <SERIAL>
with the serial number of the disk that you want to use for deployment.

2. Configure the shell to use Identity as the administrative user:

$ source ~/overcloudrc

3. Import the inventory file into ironic:

$ openstack baremetal create overcloud-nodes.yaml

CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE AFTER DEPLOYMENT

29

4. The nodes are now in the enroll state.

5. Specify the deploy kernel and deploy ramdisk on each node:

$ openstack baremetal node set NODE_UUID \
 --driver-info deploy_kernel=KERNEL_UUID \
 --driver-info deploy_ramdisk=INITRAMFS_UUID

Replace the following values:

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name.

Replace KERNEL_UUID with the unique identifier for the kernel deploy image that was
uploaded to the Image service. Find this value with the following command:

$ openstack image show bm-deploy-kernel -f value -c id

Replace INITRAMFS_UUID with the unique identifier for the ramdisk image that was
uploaded to the Image service. Find this value with the following command:

$ openstack image show bm-deploy-ramdisk -f value -c id

6. Set the node’s provisioning state to available:

$ openstack baremetal node manage _NODE_UUID_
$ openstack baremetal node provide _NODE_UUID_

The bare metal service cleans the node if you enabled node cleaning,

7. Check that the nodes were successfully enrolled:

$ openstack baremetal node list

There may be a delay between enrolling a node and its state being shown.

4.6.2. Enrolling a Bare Metal Node Manually

1. Configure the shell to use Identity as the administrative user:

$ source ~/overcloudrc

2. Add a new node:

$ openstack baremetal node create --driver ipmi --name NAME

To create a node, you must specify the driver name. This example uses ipmi. To use a different
driver, you must enable the driver by setting the IronicEnabledDrivers parameter. For more
information on supported drivers, see Appendix A, Bare Metal Drivers .

IMPORTANT

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

30

IMPORTANT

Note the unique identifier for the node.

3. Update the node driver information to allow the Bare Metal service to manage the node:

$ openstack baremetal node set NODE_UUID \
 --driver_info PROPERTY=VALUE \
 --driver_info PROPERTY=VALUE

Replace the following values:

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name.

Replace PROPERTY with a required property returned by the ironic driver-properties
command.

Replace VALUE with a valid value for that property.

4. Specify the deploy kernel and deploy ramdisk for the node driver:

$ openstack baremetal node set NODE_UUID \
 --driver-info deploy_kernel=KERNEL_UUID \
 --driver-info deploy_ramdisk=INITRAMFS_UUID

Replace the following values:

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name.

Replace KERNEL_UUID with the unique identifier for the .kernel image that was uploaded
to the Image service.

Replace INITRAMFS_UUID with the unique identifier for the .initramfs image that was
uploaded to the Image service.

5. Update the node’s properties to match the hardware specifications on the node:

$ openstack baremetal node set NODE_UUID \
 --property cpus=CPU \
 --property memory_mb=RAM_MB \
 --property local_gb=DISK_GB \
 --property cpu_arch=ARCH

Replace the following values:

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name.

Replace CPU with the number of CPUs.

Replace RAM_MB with the RAM (in MB).

Replace DISK_GB with the disk size (in GB).

CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE AFTER DEPLOYMENT

31

Replace ARCH with the architecture type.

6. OPTIONAL: Configure the node to reboot after initial deployment from a local boot loader
installed on the node’s disk, instead of using PXE from ironic-conductor. You must also set the
local boot capability on the flavor used to provision the node. To enable local boot, the image
used to deploy the node must contain grub2. Configure local boot:

$ openstack baremetal node set NODE_UUID \
 --property capabilities="boot_option:local"

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name.

7. Inform the Bare Metal service of the node’s network card by creating a port with the MAC
address of the NIC on the provisioning network:

$ openstack baremetal port create --node NODE_UUID MAC_ADDRESS

Replace NODE_UUID with the unique identifier for the node. Replace MAC_ADDRESS with the
MAC address of the NIC used to PXE boot.

8. If you have multiple disks, set the root device hints. This informs the deploy ramdisk which disk it
should use for deployment.

$ openstack baremetal node set NODE_UUID \
 --property root_device={"PROPERTY": "VALUE"}

Replace with the following values:

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name.

Replace PROPERTY and VALUE with details about the disk that you want to use for
deployment, for example root_device='{"size": 128}'
The following properties are supported:

model (String): Device identifier.

vendor (String): Device vendor.

serial (String): Disk serial number.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

wwn (String): Unique storage identifier.

wwn_with_extension (String): Unique storage identifier with the vendor extension
appended.

wwn_vendor_extension (String): Unique vendor storage identifier.

rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

name (String): The name of the device, for example: /dev/sdb1 Use this property only

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

32

name (String): The name of the device, for example: /dev/sdb1 Use this property only
for devices with persistent names.

NOTE

If you specify more than one property, the device must match all of those
properties.

9. Validate the configuration of the node:

$ openstack baremetal node validate NODE_UUID
+------------+--------+---+
| Interface | Result | Reason |
+------------+--------+---+
boot	False	Cannot validate image information for node
		a02178db-1550-4244-a2b7-d7035c743a9b
		because one or more parameters are missing
		from its instance_info. Missing are:
		['ramdisk', 'kernel', 'image_source']
console	None	not supported
deploy	False	Cannot validate image information for node
		a02178db-1550-4244-a2b7-d7035c743a9b
		because one or more parameters are missing
		from its instance_info. Missing are:
		['ramdisk', 'kernel', 'image_source']
inspect	None	not supported
management	True	
network	True	
power	True	
raid	True	
storage	True	
+------------+--------+---+

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name. The output of the openstack baremetal node validate command should report
either True or None for each interface. Interfaces marked None are those that you have not
configured, or those that are not supported for your driver.

NOTE

Interfaces may fail validation due to missing 'ramdisk', 'kernel', and 'image_source'
parameters. This result is fine, because the Compute service populates those
missing parameters at the beginning of the deployment process.

4.7. CONFIGURING REDFISH VIRTUAL MEDIA BOOT

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE AFTER DEPLOYMENT

33

https://access.redhat.com/support/offerings/production/scope_moredetail

You can use Redfish virtual media boot to supply a boot image to the Baseboard Management
Controller (BMC) of a node so that the BMC can insert the image into one of the virtual drives. The
node can then boot from the virtual drive into the operating system that exists in the image.

Redfish hardware types support booting deploy, rescue, and user images over virtual media. The Bare
Metal service (ironic) uses kernel and ramdisk images associated with a node to build bootable ISO
images for UEFI or BIOS boot modes at the moment of node deployment. The major advantage of
virtual media boot is that you can eliminate the TFTP image transfer phase of PXE and use HTTP GET,
or other methods, instead.

4.7.1. Deploying a bare metal server with Redfish virtual media boot

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

To boot a node with the redfish hardware type over virtual media, set the boot interface to redfish-
virtual-media and, for UEFI nodes, define the EFI System Partition (ESP) image. Then configure an
enrolled node to use Redfish virtual media boot.

Prerequisites

Redfish driver enabled in the enabled_hardware_types parameter in the undercloud.conf file.

A bare metal node registered and enrolled.

IPA and instance images in the Image Service (glance).

For UEFI nodes, you must also have an EFI system partition image (ESP) available in the Image
Service (glance).

A bare metal flavor.

A network for cleaning and provisioning.

Sushy library installed:

$ sudo yum install sushy

Procedure

1. Set the Bare Metal service (ironic) boot interface to redfish-virtual-media:

$ openstack baremetal node set --boot-interface redfish-virtual-media $NODE_NAME

Replace $NODE_NAME with the name of the node.

2. For UEFI nodes, set the boot mode to uefi:

$ openstack baremetal node set --property capabilities="boot_mode:uefi" $NODE_NAME

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

34

https://access.redhat.com/support/offerings/production/scope_moredetail

Replace $NODE_NAME with the name of the node.

NOTE

For BIOS nodes, do not complete this step.

3. For UEFI nodes, define the EFI System Partition (ESP) image:

$ openstack baremetal node set --driver-info bootloader=$ESP $NODE_NAME

Replace $ESP with the glance image UUID or URL for the ESP image, and replace
$NODE_NAME with the name of the node.

NOTE

For BIOS nodes, do not complete this step.

4. Create a port on the bare metal node and associate the port with the MAC address of the NIC
on the bare metal node:

$ openstack baremetal port create --pxe-enabled True --node $UUID $MAC_ADDRESS

Replace $UUID with the UUID of the bare metal node, and replace $MAC_ADDRESS with the
MAC address of the NIC on the bare metal node.

5. Create the new bare metal server:

$ openstack server create \
 --flavor baremetal \
 --image $IMAGE \
 --network $NETWORK \
 test_instance

Replace $IMAGE and $NETWORK with the names of the image and network that you want to
use.

4.8. USING HOST AGGREGATES TO SEPARATE PHYSICAL AND
VIRTUAL MACHINE PROVISIONING

OpenStack Compute uses host aggregates to partition availability zones, and group together nodes
with specific shared properties. When an instance is provisioned, Compute’s scheduler compares
properties on the flavor with the properties assigned to host aggregates, and ensures that the instance
is provisioned in the correct aggregate and on the correct host: either on a physical machine or as a
virtual machine.

Complete the steps in this section to perform the following operations:

Add the property baremetal to your flavors, setting it to either true or false.

Create separate host aggregates for bare metal hosts and compute nodes with a matching
baremetal property. Nodes grouped into an aggregate inherit this property.

Creating a Host Aggregate

CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE AFTER DEPLOYMENT

35

1. Set the baremetal property to true on the baremetal flavor.

$ openstack flavor set baremetal --property baremetal=true

2. Set the baremetal property to false on the flavors used for virtual instances.

$ openstack flavor set FLAVOR_NAME --property baremetal=false

3. Create a host aggregate called baremetal-hosts:

$ openstack aggregate create --property baremetal=true baremetal-hosts

4. Add each controller node to the baremetal-hosts aggregate:

$ openstack aggregate add host baremetal-hosts HOSTNAME

NOTE

If you have created a composable role with the NovaIronic service, add all the
nodes with this service to the baremetal-hosts aggregate. By default, only the
controller nodes have the NovaIronic service.

5. Create a host aggregate called virtual-hosts:

$ openstack aggregate create --property baremetal=false virtual-hosts

6. Add each compute node to the virtual-hosts aggregate:

$ openstack aggregate add host virtual-hosts HOSTNAME

7. If you did not add the following Compute filter scheduler when deploying the overcloud, add it
now to the existing list under scheduler_default_filters in /etc/nova/nova.conf:

AggregateInstanceExtraSpecsFilter

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

36

CHAPTER 5. ADMINISTERING BARE METAL NODES
This chapter describes how to provision a physical machine on an enrolled bare metal node. Instances
can be launched either from the command line or from the OpenStack dashboard.

5.1. LAUNCHING AN INSTANCE USING THE COMMAND LINE
INTERFACE

Use the openstack command line interface to deploy a bare metal instance.

Deploying an Instance on the Command Line

1. Configure the shell to access Identity as the administrative user:

$ source ~/overcloudrc

2. Deploy the instance:

$ openstack server create \
 --nic net-id=NETWORK_UUID \
 --flavor baremetal \
 --image IMAGE_UUID \
 INSTANCE_NAME

Replace the following values:

Replace NETWORK_UUID with the unique identifier for the network that was created for
use with the Bare Metal service.

Replace IMAGE_UUID with the unique identifier for the disk image that was uploaded to the
Image service.

Replace INSTANCE_NAME with a name for the bare metal instance.

To assign the instance to a security group, include --security-group SECURITY_GROUP,
replacing SECURITY_GROUP with the name of the security group. Repeat this option to add the
instance to multiple groups. For more information on security group management, see the
Users and Identity Management Guide .

3. Check the status of the instance:

$ openstack server list --name INSTANCE_NAME

5.2. LAUNCH AN INSTANCE USING THE DASHBOARD

Use the dashboard graphical user interface to deploy a bare metal instance.

Deploying an Instance in the Dashboard

1. Log in to the dashboard at http[s]://DASHBOARD_IP/dashboard.

2. Click Project > Compute > Instances

CHAPTER 5. ADMINISTERING BARE METAL NODES

37

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/users_and_identity_management_guide/#project-security

3. Click Launch Instance.

In the Details tab, specify the Instance Name and select 1 for Count.

In the Source tab, select an Image from Select Boot Source, then click the + (plus) symbol
to select an operating system disk image. The chosen image moves to Allocated.

In the Flavor tab, select baremetal.

In the Networks tab, use the + (plus) and - (minus) buttons to move required networks from
Available to Allocated. Ensure that the shared network created for the Bare Metal service
is selected here.

If you want to assign the instance to a security group, in the Security Groups tab, use the
arrow to move the group to Allocated.

4. Click Launch Instance.

5.3. CONFIGURE PORT GROUPS IN THE BARE METAL PROVISIONING
SERVICE

NOTE

Port group functionality for bare metal nodes is available in this release as a Technology
Preview, and therefore is not fully supported by Red Hat. It should be used only for
testing, and should not be deployed in a production environment. For more information
about Technology Preview features, see Scope of Coverage Details.

Port groups (bonds) provide a method to aggregate multiple network interfaces into a single ‘bonded’
interface. Port group configuration always takes precedence over an individual port configuration.

If a port group has a physical network, then all the ports in that port group should have the same physical
network. The Bare Metal Provisioning service supports configuration of port groups in the instances
using configdrive.

NOTE

Bare Metal Provisioning service API version 1.26 supports port group configuration.

5.3.1. Configure the Switches

To configure port groups in a Bare Metal Provisioning deployment, you must configure the port groups
on the switches manually. You must ensure that the mode and properties on the switch correspond to
the mode and properties on the bare metal side as the naming can vary on the switch.

NOTE

You cannot use port groups for provisioning and cleaning if you need to boot a
deployment using iPXE.

Port group fallback allows all the ports in a port group to fallback to individual switch ports when a
connection fails. Based on whether a switch supports port group fallback or not, you can use the ``--
support-standalone-ports`` and ``--unsupport-standalone-ports`` options.

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

38

https://access.redhat.com/support/offerings/production/scope_moredetail

5.3.2. Configure Port Groups in the Bare Metal Provisioning Service

1. Create a port group by specifying the node to which it belongs, its name, address, mode,
properties and whether it supports fallback to standalone ports.

openstack baremetal port group create --node NODE_UUID --name NAME --address
MAC_ADDRESS --mode MODE --property miimon=100 --property
xmit_hash_policy="layer2+3" --support-standalone-ports

You can also update a port group using the openstack baremetal port group set command.

If you do not specify an address, the deployed instance port group address is the same as the
OpenStack Networking port. The port group will not be configured if the neutron port is not
attached.

During interface attachment, port groups have a higher priority than the ports, so they are used
first. Currently, it is not possible to specify whether a port group or a port is desired in an
interface attachment request. Port groups that do not have any ports will be ignored.

NOTE

Port groups must be configured manually in standalone mode either in the image
or by generating the configdrive and adding it to the node’s instance_info.
Ensure that you have cloud-init version 0.7.7 or later for the port group
configuration to work.

2. Associate a port with a port group:

During port creation:

openstack baremetal port create --node NODE_UUID --address MAC_ADDRESS --
port-group test

During port update:

openstack baremetal port set PORT_UUID --port-group PORT_GROUP_UUID

3. Boot an instance by providing an image that has cloud-init or supports bonding.
To check if the port group has been configured properly, run the following command:

cat /proc/net/bonding/bondX

Here, X is a number autogenerated by cloud-init for each configured port group, starting with a
0 and incremented by one for each configured port group.

5.4. DETERMINING THE HOST TO IP ADDRESS MAPPING

Use the following commands to determine which IP addresses are assigned to which host and also to
which bare metal node.

This feature allows you to know the host to IP mapping from the undercloud without needing to access
the hosts directly.

CHAPTER 5. ADMINISTERING BARE METAL NODES

39

(undercloud) [stack@host01 ~]$ openstack stack output show overcloud HostsEntry --max-width 80

+--------------+---+
| Field | Value |
+--------------+---+
description	The content that should be appended to your /etc/hosts if you
	want to get
	hostname-based access to the deployed nodes (useful for
	testing without
	setting up a DNS).
output_key	HostsEntry
output_value	172.17.0.10 overcloud-controller-0.localdomain overcloud-
	controller-0
	10.8.145.18 overcloud-controller-0.external.localdomain
	overcloud-controller-0.external
	172.17.0.10 overcloud-controller-0.internalapi.localdomain
	overcloud-controller-0.internalapi
	172.18.0.15 overcloud-controller-0.storage.localdomain
	overcloud-controller-0.storage
	172.21.2.12 overcloud-controller-0.storagemgmt.localdomain
	overcloud-controller-0.storagemgmt
	172.16.0.15 overcloud-controller-0.tenant.localdomain
	overcloud-controller-0.tenant
	10.8.146.13 overcloud-controller-0.management.localdomain
	overcloud-controller-0.management
	10.8.146.13 overcloud-controller-0.ctlplane.localdomain
	overcloud-controller-0.ctlplane
	172.17.0.21 overcloud-compute-0.localdomain overcloud-
	compute-0
	10.8.146.12 overcloud-compute-0.external.localdomain
	overcloud-compute-0.external
	172.17.0.21 overcloud-compute-0.internalapi.localdomain
	overcloud-compute-0.internalapi
	172.18.0.20 overcloud-compute-0.storage.localdomain
	overcloud-compute-0.storage
	10.8.146.12 overcloud-compute-0.storagemgmt.localdomain
	overcloud-compute-0.storagemgmt
	172.16.0.16 overcloud-compute-0.tenant.localdomain overcloud-
	compute-0.tenant
	10.8.146.12 overcloud-compute-0.management.localdomain
	overcloud-compute-0.management
	10.8.146.12 overcloud-compute-0.ctlplane.localdomain
	overcloud-compute-0.ctlplane
	10.8.145.16 overcloud.localdomain
	10.8.146.7 overcloud.ctlplane.localdomain
	172.17.0.19 overcloud.internalapi.localdomain
	172.18.0.19 overcloud.storage.localdomain
	172.21.2.16 overcloud.storagemgmt.localdomain
+--------------+---+

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

40

To filter a particular host, run the following command:

(undercloud) [stack@host01 ~]$ openstack stack output show overcloud HostsEntry -c output_value
-f value | grep overcloud-controller-0

172.17.0.12 overcloud-controller-0.localdomain overcloud-controller-0
10.8.145.18 overcloud-controller-0.external.localdomain overcloud-controller-0.external
172.17.0.12 overcloud-controller-0.internalapi.localdomain overcloud-controller-0.internalapi
172.18.0.12 overcloud-controller-0.storage.localdomain overcloud-controller-0.storage
172.21.2.13 overcloud-controller-0.storagemgmt.localdomain overcloud-controller-0.storagemgmt
172.16.0.19 overcloud-controller-0.tenant.localdomain overcloud-controller-0.tenant
10.8.146.13 overcloud-controller-0.management.localdomain overcloud-controller-0.management
10.8.146.13 overcloud-controller-0.ctlplane.localdomain overcloud-controller-0.ctlplane

To map the hosts to bare metal nodes, run the following command:

(undercloud) [stack@host01 ~]$ openstack baremetal node list --fields uuid name instance_info -f
json
[
 {
 "UUID": "c0d2568e-1825-4d34-96ec-f08bbf0ba7ae",
 "Instance Info": {
 "root_gb": "40",
 "display_name": "overcloud-compute-0",
 "image_source": "24a33990-e65a-4235-9620-9243bcff67a2",
 "capabilities": "{\"boot_option\": \"local\"}",
 "memory_mb": "4096",
 "vcpus": "1",
 "local_gb": "557",
 "configdrive": "******",
 "swap_mb": "0",
 "nova_host_id": "host01.lab.local"
 },
 "Name": "host2"
 },
 {
 "UUID": "8c3faec8-bc05-401c-8956-99c40cdea97d",
 "Instance Info": {
 "root_gb": "40",
 "display_name": "overcloud-controller-0",
 "image_source": "24a33990-e65a-4235-9620-9243bcff67a2",
 "capabilities": "{\"boot_option\": \"local\"}",
 "memory_mb": "4096",
 "vcpus": "1",
 "local_gb": "557",
 "configdrive": "******",
 "swap_mb": "0",
 "nova_host_id": "host01.lab.local"
 },
 "Name": "host3"
 }
]

5.5. ATTACHING AND DETACHING A VIRTUAL NETWORK INTERFACE

CHAPTER 5. ADMINISTERING BARE METAL NODES

41

The Bare Metal Provisioning service has an API to manage the mapping between virtual network
interfaces, for example, the ones used in the OpenStack Networking service and the physical interfaces
(NICs). These interfaces are configurable for each Bare Metal Provisioning node, allowing you to set the
virtual network interface (VIF) to physical network interface (PIF) mapping logic using the openstack
baremetal node vif* commands.

The following example procedure describes the steps to attach and detach VIFs.

1. List the VIF IDs currently connected to the bare metal node:

$ openstack baremetal node vif list baremetal-0
+--------------------------------------+
| ID |
+--------------------------------------+
| 4475bc5a-6f6e-466d-bcb6-6c2dce0fba16 |
+--------------------------------------+

2. After the VIF is attached, the Bare Metal service updates the virtual port in the OpenStack
Networking service with the actual MAC address of the physical port.
This can be checked using the following command:

$ openstack port show 4475bc5a-6f6e-466d-bcb6-6c2dce0fba16 -c mac_address -c fixed_ips
+-------------+---+
| Field | Value |
+-------------+---+
| fixed_ips | ip_address='192.168.24.9', subnet_id='1d11c677-5946-4733-87c3-
23a9e06077aa' |
| mac_address | 00:2d:28:2f:8d:95 |
+-------------+---+

3. Create a new port on the network where you have created the baremetal-0 node:

$ openstack port create --network baremetal --fixed-ip ip-address=192.168.24.24 baremetal-
0-extra

4. Remove a port from the instance:

$ openstack server remove port overcloud-baremetal-0 4475bc5a-6f6e-466d-bcb6-
6c2dce0fba16

5. Check that the IP address no longer exists on the list:

$ openstack server list

6. Check if there are VIFs attached to the node:

$ openstack baremetal node vif list baremetal-0
$ openstack port list

7. Add the newly created port:

$ openstack server add port overcloud-baremetal-0 baremetal-0-extra

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

42

8. Verify that the new IP address shows the new port:

$ openstack server list
+--------------------------------------+-------------------------+--------+------------------------+----------
------+---------+
| ID | Name | Status | Networks | Image |
Flavor |
+--------------------------------------+-------------------------+--------+------------------------+----------
------+---------+
| 53095a64-1646-4dd1-bbf3-b51cbcc38789 | overcloud-controller-2 | ACTIVE |
ctlplane=192.168.24.7 | overcloud-full | control |
| 3a1bc89c-5d0d-44c7-a569-f2a3b4c73d65 | overcloud-controller-0 | ACTIVE |
ctlplane=192.168.24.8 | overcloud-full | control |
| 6b01531a-f55d-40e9-b3a2-6d02be0b915b | overcloud-controller-1 | ACTIVE |
ctlplane=192.168.24.16 | overcloud-full | control |
| c61cc52b-cc48-4903-a971-073c60f53091 | overcloud-novacompute-0overcloud-baremetal-
0 | ACTIVE | ctlplane=192.168.24.24 | overcloud-full | compute |
+--------------------------------------+-------------------------+--------+------------------------+----------
------+---------+

9. Check if the VIF ID is the UUID of the new port:

$ openstack baremetal node vif list baremetal-0
+--------------------------------------+
| ID |
+--------------------------------------+
| 6181c089-7e33-4f1c-b8fe-2523ff431ffc |
+--------------------------------------+

10. Check if the OpenStack Networking port MAC address is updated and matches one of the Bare
Metal service ports:

$ openstack port show 6181c089-7e33-4f1c-b8fe-2523ff431ffc -c mac_address -c fixed_ips
+-------------+--+
| Field | Value |
+-------------+--+
| fixed_ips | ip_address='192.168.24.24', subnet_id='1d11c677-5946-4733-87c3-
23a9e06077aa' |
| mac_address | 00:2d:28:2f:8d:95 |
+-------------+--+

11. Reboot the bare metal node so that it recognizes the new IP address:

$ openstack server reboot overcloud-baremetal-0

After detaching or attaching interfaces, the bare metal OS removes, adds, or modifies the
network interfaces that have changed. When you replace a port, a DHCP request obtains the
new IP address, but this may take some time since the old DHCP lease is still valid. The simplest
way to initiate these changes immediately is to reboot the bare metal host.

5.6. CONFIGURING NOTIFICATIONS FOR THE BARE METAL SERVICE

You can configure the bare metal service to display notifications for different events that occur within

CHAPTER 5. ADMINISTERING BARE METAL NODES

43

You can configure the bare metal service to display notifications for different events that occur within
the service. These notifications can be used by external services for billing purposes, monitoring a data
store, and so on. This section describes how to enable these notifications.

To enable notifications for the baremetal service, you must set the following options in your ironic.conf
configuration file.

The notification_level option in the [DEFAULT] section determines the minimum priority level
for which notifications are sent. The values for this option can be set to debug, info, warning,
error, or critical. If the option is set to warning, all notifications with priority level warning,
error, or critical are sent, but not notifications with priority level debug or info. If this option is
not set, no notifications are sent. The priority level of each available notification is documented
below.

The transport_url option in the [oslo_messaging_notifications] section determines the
message bus used when sending notifications. If this is not set, the default transport used for
RPC is used.

All notifications are emitted on the ironic_versioned_notifications topic in the message bus. Generally,
each type of message that traverses the message bus is associated with a topic that describes the
contents of the message.

NOTE

The notifications can be lost and there is no guarantee that a notification will make it
across the message bus to the end user.

5.7. CONFIGURING AUTOMATIC POWER FAULT RECOVERY

Ironic has a string field fault that records power, cleaning, and rescue abort failures for nodes.

Table 5.1. Ironic node faults

Fault Description

power failure The node is in maintenance mode due to power sync
failures that exceed the maximum number of retries.

clean failure The node is in maintenance mode due to the failure
of a cleaning operation.

rescue abort failure The node is in maintenance mode due to the failure
of a cleaning operation during rescue abort.

none There is no fault present.

Conductor checks the value of this field periodically. If the conductor detects a power failure state and
can successfully restore power to the node, the node is removed from maintenance mode and restored
to operation.

NOTE

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

44

NOTE

If the operator places a node in maintenance mode manually, the conductor does not
automatically remove the node from maintenance mode.

The default interval is 300 seconds, however, you can configure this interval with director using
hieradata:

ironic::conductor::power_failure_recovery_interval

To disable automatic power fault recovery, set the value to 0.

5.8. INTROSPECTING OVERCLOUD NODES

You can perform introspection of Overcloud nodes to monitor the specification of the nodes.

1. Source the rc file:

$ source ~/overcloudrc

2. Run the introspection command:

$ openstack baremetal introspection start [--wait] <NODENAME>

Replace <NODENAME> with the name of the node that you want to inspect.

3. Check the introspection status:

$ openstack baremetal introspection status <NODENAME>

Replace <NODENAME> with the name of the node.

CHAPTER 5. ADMINISTERING BARE METAL NODES

45

CHAPTER 6. ML2 NETWORKING-ANSIBLE
This section contains information on the networking-ansible ML2 driver in OpenStack Networking
(neutron), integration with OpenStack Bare Metal (ironic), and instructions on enabling and configuring
this driver on an overcloud.

6.1. MODULAR LAYER 2 (ML2) NETWORKING-ANSIBLE

OpenStack Networking (neutron) contains networking-ansible, which is an ML2 driver that uses Ansible
Engine Networking to manage network switches. This driver also integrates with OpenStack Bare Metal
(ironic) to configure VLANs on switch ports for the bare metal guests. This means any bare metal guest
using a VLAN neutron network causes this driver to configure the physical switch using Ansible Engine
Networking.

The current networking-ansible driver includes the following functionality:

Define a VLAN on the switch when creating a network in OpenStack

Assign a VLAN to an access port on the switch when creating or updating a port in OpenStack

Remove a VLAN from an access port on the switch when deleting a port in OpenStack

6.2. NETWORKING REQUIREMENTS FOR NETWORKING-ANSIBLE

The following list outlines the networking requirements to enable networking-ansible functionality.

A network switch with Ansible Network Automation support:

Juniper Networks (junos)

Arista Extensible Operating System (eos)

IMPORTANT

Arista Extensible Operating System (eos) support is available in this release as a
Technology Preview , and therefore is not fully supported by Red Hat. It should only be
used for testing, and should not be deployed in a production environment. For more
information about Technology Preview features, see Scope of Coverage Details.

The network switch also requires an SSH user so that Ansible Network Automation can interact
with the device. This user requires certain permissions on the switch:

Access mode

Assign a VLAN to a port

Create VLANs

For security purposes, do not provide the SSH user with administrator access to the switch.

Prepare the VLANs you intend the switch to use. Preparation involves creating each VLAN on
the switch then deleting each VLAN.

The network switch ports reserved for bare metal guests initially require configuration to

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

46

https://access.redhat.com/support/offerings/production/scope_moredetail

The network switch ports reserved for bare metal guests initially require configuration to
connect to the dedicated network for introspection. Beyond this, these ports require no
additional configuration.

6.3. OPENSTACK BARE METAL (IRONIC) REQUIREMENTS FOR
NETWORKING-ANSIBLE

The networking-ansible driver integrates with the Openstack Bare Metal (ironic) service. To ensure
successful integration, deploy the ironic service to your overcloud with the following recommendations:

The overcloud requires a provisioning network. Use one of the following options:

A bridged network for Ironic services.

A custom composable network for Ironic services.

For more examples of configuring the provisioning network, see Chapter 3, Deploying an
Overcloud with the Bare Metal Service.

The overcloud requires a tenant network for the bare metal systems to use after the
provisioning process. The examples in this guide use the default baremetal network mapped to
a bridge named br-baremetal. This network also requires a range of VLAN IDs. The following
Heat parameters set these values to suit examples in this guide:

parameter_defaults:
 NeutronNetworkVLANRanges: baremetal:1200:1299
 NeutronFlatNetworks: datacentre,baremetal
 NeutronBridgeMappings: datacentre:br-ex,baremetal:br-baremetal

The overcloud uses the introspection service to automatically identify certain hardware details
and map them for other services to use. It is recommended that you enable the ironic
introspection service to help map your interface-to-port details for networking-ansible to use.
You can also accomplish this task manually.

For more information on deploying OpenStack Bare Metal (ironic), see Chapter 3, Deploying an
Overcloud with the Bare Metal Service.

6.4. ENABLING NETWORKING-ANSIBLE ML2 FUNCTIONALITY

This procedure contains information on how to enable the networking-ansible ML2 driver in your
overcloud. This involves adding two environment files to your deployment:

/usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-ansible.yaml

This file enables the networking-ansible driver and sets the network type to vlan. This file already
exists in the core heat template collection.

/home/stack/templates/ml2-ansible-hosts.yaml

A file that contains details about your switches. You create this file manually.

Procedure

1. Create the /home/stack/templates/ml2-ansible-hosts.yaml and add the following initial
content:

CHAPTER 6. ML2 NETWORKING-ANSIBLE

47

parameter_defaults:
 ML2HostConfigs:

2. The ML2HostConfigs parameter requires a dict value with details about your switches. Each
initial key in the dict is a name for the switch. This value defines a specific ansible:
[switchname] section in your OpenStack Networking (neutron) ML2 configuration. Each switch
name key requires its own dict containing the actual switch details. For example, to configure
three switches, add three switch keys:

parameter_defaults:
 ML2HostConfigs:
 switch1:
 [SWITCH DETAILS]
 switch2:
 [SWITCH DETAILS]
 switch3:
 [SWITCH DETAILS]

3. Each switch requires certain key value pairs in the dict:

ansible_network_os

(Required) The operating system of the switch. Options include junos and eos.

IMPORTANT

Arista Extensible Operating System (eos) support is available in this release as
a Technology Preview , and therefore is not fully supported by Red Hat. It
should only be used for testing, and should not be deployed in a production
environment. For more information about Technology Preview features, see
Scope of Coverage Details.

ansible_host

(Required) The IP or hostname of the switch.

ansible_user

(Required) The user that Ansible uses to access the switch.

ansible_ssh_pass

(Required) The SSH password that Ansible uses to access the switch.

mac

Chassis MAC ID of the network device. Used to map the link layer discovery protocol (LLDP)
MAC address value to the switch name defined in the ML2HostConfigs configuration. This is
a required value when using introspection to perform automatic port configuration.

manage_vlans

A Boolean variable to define whether OpenStack Networking (neutron) controls the creation
and deletion of VLANs on the physical device. This functionality causes the switch to create
and delete VLANs with IDs respective to their Neutron networks. If you have predefined
these VLANs on the switch and do not require Neutron to create or delete VLANs on the
switch, set this parameter to false. The default value is true.

4. The following example shows how to map these values to their respective keys in a full
ML2HostConfigs parameter:

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

48

https://access.redhat.com/support/offerings/production/scope_moredetail

parameter_defaults:
 ML2HostConfigs:
 switch1:
 ansible_network_os: juno
 ansible_host: 10.0.0.1
 ansible_user: ansible
 ansible_ssh_pass: "p@55w0rd!"
 mac: 01:23:45:67:89:AB
 manage_vlans: false

5. Save the /home/stack/templates/ml2-ansible-hosts.yaml file.

6. When running the overcloud deployment command, include the /usr/share/openstack-tripleo-
heat-templates/environments/neutron-ml2-ansible.yaml and /home/stack/templates/ml2-
ansible-hosts.yaml files with the -e option. The following example demonstrates how to
include these files:

$ openstack overcloud deploy --templates \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-ansible.yaml \
 -e /home/stack/templates/ml2-ansible-hosts.yaml \
 ...

The director enables the driver as a part of the OpenStack Networking (neutron) API on the
neutron_api container.

6.5. CONFIGURING NETWORKS FOR NETWORKING-ANSIBLE

After deploying the overcloud with bare metal provisioning and the networking-ansible driver enabled,
you must create provisioning and tenant networks for your bare metal nodes. You must also configure
ports for your bare metal nodes either in access mode or trunk mode, depending on your requirements.

Access mode

In access mode, switch ports carry the traffic of only one VLAN and operate on a single broadcast
domain. All traffic that arrives to access ports belongs to the VLAN that is assigned to the port.

Trunk mode

In trunk mode, switch ports can belong to more than one VLAN. You can use switch ports in trunk
mode to carry the traffic of a group of VLANs, or if you want to exchange traffic between multiple
switches with more than one VLAN.

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not
fully supported by Red Hat. It should only be used for testing, and should not be
deployed in a production environment. For more information about Technology
Preview features, see Scope of Coverage Details.

The Bare Metal service (ironic) uses networking-ansible to assign the switchport of the bare metal
guest to the ironic provisioning network so that the provisioning process can complete successfully.
After provisioning is complete, ironic assigns the switchport of the bare metal guest to the VLAN that
the Networking service (neutron) assigns to the tenant networks of the bare metal guest.

CHAPTER 6. ML2 NETWORKING-ANSIBLE

49

https://access.redhat.com/support/offerings/production/scope_moredetail

6.5.1. Configuring networks for networking-ansible in access mode

After deploying the overcloud with bare metal provisioning and the networking-ansible driver enabled,
create the following networks for your bare metal nodes:

Provisioning network

Bare metal systems use this network for their initial creation.

Tenant network

Bare metal systems switch to this network after provisioning and use this network for internal
communication.

Procedure

1. Create the provisioning network and subnet. This depends on the type of provisioning network
you are using. See Chapter 4, Configuring for the Bare Metal Service After Deployment for
information on configuring the provisioning network.

2. Create a tenant network and subnet:

$ openstack network create --provider-network-type vlan --provider-physical-network
baremetal tenant-net
$ openstack subnet create --network tenant-net --subnet-range 192.168.3.0/24 --allocation-
pool start=192.168.3.10,end=192.168.3.20 tenant-subnet

Ensure that you set the --provider-network-type option to vlan to ensure networking-ansible
functionality.

6.5.2. Configuring ports for bare metal guests in access mode

Bare metal guests require port information to connect to the switch. There are two methods to
accomplish this:

Automatic: Introspection of nodes. The automatic method requires setting the mac value for
the respective switch as a part of the ML2HostConfigs parameter.

Manual: Set the OpenStack Networking (neutron) port configuration. Use this method if your
overcloud does not include bare metal introspection functionality.

Procedure

Automatic:

a. Run the introspection command:

$ openstack baremetal introspection start [--wait] <NODENAME>

The bare metal nodes obtain the switch’s MAC address during introspection. The
networking-ansible ML2 driver uses this MAC address to map to the same MAC address
defined with the mac parameter for the respective switch in the ML2HostConfigs
parameter.

b. Wait until the introspection completes.

Manual:

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

50

1. Create a port for the bare metal node. Use the following example command as a basis to
create the port:

$ openstack baremetal port create [NODE NIC MAC] --node [NODE UUID] \
 --local-link-connection port_id=[SWICH PORT ID] \
 --local-link-connection switch_info=[SWITCH NAME] \
 --local-link-connection switch_id=[SWITCH MAC]

Replace the following values in brackets with your own environment details:

[NODE NIC MAC]

The MAC address of the NIC connected to the switch.

--node [NODE UUID]

The UUID of the node that uses the new port.

--local-link-connection port_id=[SWITCH PORT ID]

The port ID on the switch connecting to the bare metal node.

--local-link-connection switch_info=[SWITCH NAME]

The name of the switch connecting to the bare metal node. The switch name must match
the respective switch name you defined in the ML2HostConfigs parameter.

--local-link-connection switch_id=[SWITCH MAC]

The MAC address of the switch. This must match the respective mac value from the
switch configuration from the ML2HostConfigs parameter. This is an alternative option
to using switch_info.

6.5.3. Configuring networks for networking-ansible in trunk mode

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

After deploying the overcloud with bare metal provisioning and the networking-ansible driver enabled,
create the following networks for your bare metal nodes:

Provisioning network

Bare metal systems use this network for their initial creation.

Tenant network

Bare metal systems switch to this network after provisioning and use this network for internal
communication.

Procedure

1. Create the provisioning network and subnet. This depends on the type of provisioning network
you are using. See Chapter 4, Configuring for the Bare Metal Service After Deployment for
information on configuring the provisioning network.

2. Create a primary tenant VLAN network, a secondary tenant network, and subnets for each
network that use the physical network that the guest is attached to:

CHAPTER 6. ML2 NETWORKING-ANSIBLE

51

https://access.redhat.com/support/offerings/production/scope_moredetail

$ openstack network create --provider-network-type vlan --provider-physical-network
baremetal primary-tenant-net
$ openstack network create --provider-network-type vlan --provider-physical-network
baremetal secondary-tenant-net
$ openstack subnet create --network primary-tenant-net --subnet-range 192.168.3.0/24 --
allocation-pool start=192.168.3.10,end=192.168.3.20 primary-tenant-subnet
$ openstack subnet create --network secondary-tenant-net --subnet-range 192.168.7.0/24 --
allocation-pool start=192.168.7.10,end=192.168.7.20 secondary-tenant-subnet

Ensure that you set the --provider-network-type option to vlan to ensure networking-ansible
functionality.

6.5.4. Configuring ports for bare metal guests in trunk mode

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

Bare metal guests require port information to connect to the switch so that you can use the Bare Metal
service (ironic) to deploy on multiple networks with a single switch port. The switch port is configured in
trunk mode using the VLANs that the Networking service (neutron) assigns from the supplied networks.

Complete the following steps to configure trunk ports for bare metal guests.

Procedure

1. Create a port and a trunk, assigning the port to the trunk as the parent port:

$ port create --network primary-tenant-net primary-port
$ network trunk create --parent-port primary-port my-trunk

2. Create a port for the secondary network and add the new port as a subport to the trunk:

$ port create --network secondary-tenant-net secondary-port
$ network trunk set --subport port=secondary-port,segmentation-type=vlan,segmentation-
id=1234 my-trunk

6.6. TESTING NETWORKING-ANSIBLE ML2 FUNCTIONS

After the networking-ansible configuration for the bare metal node is complete, test the functionality
to ensure it works. This involves creating a bare metal workload.

Prerequisites

An overcloud with OpenStack Baremetal (ironic) services.

An enabled networking-ansible ML2 driver.

The ML2HostConfigs parameter contains switch access details.

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

52

https://access.redhat.com/support/offerings/production/scope_moredetail

A registered bare metal node.

Configuration of the respective bare metal port used for the node connection on the switch.
This port can be either an access port or a trunk port.

A VLAN-based provisioning network defined in OpenStack Networking (neutron) for initial
provisioning.

A VLAN-based tenant network defined in OpenStack Networking (neutron) for internal
communication.

Disk images and key pairs available in the overcloud.

Procedure

1. Create the bare metal system:

To create a bare metal system that uses an access port, run the following command:

openstack server create --flavor baremetal --image overcloud-full --key default --network
tenant-net test1

To create a bare metal system that uses a trunk port, run the following command:

openstack server create --flavor baremetal --image overcloud-full --port {primary-port-
uuid} --key default test1

The overcloud initially creates the bare metal system on the provisioning network. When the creation
completes, the networking-ansible driver changes the port configuration on the switch so that the bare
metal system uses the tenant network.

CHAPTER 6. ML2 NETWORKING-ANSIBLE

53

CHAPTER 7. TROUBLESHOOTING THE BARE METAL SERVICE
The following sections contain information and steps that may be useful for diagnosing issues in a setup
with the Bare Metal service enabled.

7.1. PXE BOOT ERRORS

Permission Denied Errors

If you get a permission denied error on the console of your Bare Metal service node, ensure that you
have applied the appropriate SELinux context to the /httpboot and /tftpboot directories as follows:

semanage fcontext -a -t httpd_sys_content_t "/httpboot(/.*)?"
restorecon -r -v /httpboot
semanage fcontext -a -t tftpdir_t "/tftpboot(/.*)?"
restorecon -r -v /tftpboot

Boot Process Freezes at /pxelinux.cfg/XX-XX-XX-XX-XX-XX

On the console of your node, if it looks like you are getting an IP address and then the process stops as
shown below:

This indicates that you might be using the wrong PXE boot template in your ironic.conf file.

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

54

$ grep ^pxe_config_template ironic.conf
pxe_config_template=$pybasedir/drivers/modules/ipxe_config.template

The default template is pxe_config.template, so it is easy to omit the i and inadvertently turn this into
ipxe_config.template.

7.2. LOGIN ERRORS AFTER THE BARE METAL NODE BOOTS

When you try to log in at the login prompt on the console of the node with the root password that you
set in the configurations steps, but are not able to, it indicates you are not booted in to the deployed
image. You are probably stuck in the deploy-kernel/deploy-ramdisk image and the system has yet to
get the correct image.

To fix this issue, verify the PXE Boot Configuration file in the /httpboot/pxelinux.cfg/MAC_ADDRESS
on the Compute or Bare Metal service node and ensure that all the IP addresses listed in this file
correspond to IP addresses on the Bare Metal network.

NOTE

The only network the Bare Metal service node knows about is the Bare Metal network. If
one of the endpoints is not on the network, the endpoint cannot reach the Bare Metal
service node as a part of the boot process.

For example, the kernel line in your file is as follows:

kernel http://192.168.200.2:8088/5a6cdbe3-2c90-4a90-b3c6-85b449b30512/deploy_kernel selinux=0
disk=cciss/c0d0,sda,hda,vda iscsi_target_iqn=iqn.2008-10.org.openstack:5a6cdbe3-2c90-4a90-b3c6-
85b449b30512 deployment_id=5a6cdbe3-2c90-4a90-b3c6-85b449b30512
deployment_key=VWDYDVVEFCQJNOSTO9R67HKUXUGP77CK
ironic_api_url=http://192.168.200.2:6385 troubleshoot=0 text nofb nomodeset vga=normal
boot_option=netboot ip=${ip}:${next-server}:${gateway}:${netmask} BOOTIF=${mac} ipa-api-
url=http://192.168.200.2:6385 ipa-driver-name=ipmi boot_mode=bios initrd=deploy_ramdisk
coreos.configdrive=0 || goto deploy

Value in the
above
example
kernel line

Corresponding information

http://192.168.2
00.2:8088

Parameter http_url in /etc/ironic/ironic.conf file. This IP address must be on the Bare
Metal network.

5a6cdbe3-
2c90-4a90-
b3c6-
85b449b30512

UUID of the baremetal node in ironic node-list.

deploy_kernel This is the deploy kernel image in the Image service that is copied down as
/httpboot/<NODE_UUID>/deploy_kernel.

CHAPTER 7. TROUBLESHOOTING THE BARE METAL SERVICE

55

http://192.168.2
00.2:6385

Parameter api_url in /etc/ironic/ironic.conf file. This IP address must be on the Bare
Metal network.

ipmi The IPMI Driver in use by the Bare Metal service for this node.

deploy_ramdisk This is the deploy ramdisk image in the Image service that is copied down as
/httpboot/<NODE_UUID>/deploy_ramdisk.

Value in the
above
example
kernel line

Corresponding information

If a value does not correspond between the /httpboot/pxelinux.cfg/MAC_ADDRESS and the
ironic.conf file:

1. Update the value in the ironic.conf file

2. Restart the Bare Metal service

3. Re-deploy the Bare Metal instance

7.3. THE BARE METAL SERVICE IS NOT GETTING THE RIGHT
HOSTNAME

If the Bare Metal service is not getting the right hostname, it means that cloud-init is failing. To fix this,
connect the Bare Metal subnet to a router in the OpenStack Networking service. The requests to the
meta-data agent should now be routed correctly.

7.4. INVALID OPENSTACK IDENTITY SERVICE CREDENTIALS WHEN
EXECUTING BARE METAL SERVICE COMMANDS

If you are having trouble authenticating to the Identity service, check the identity_uri parameter in the
ironic.conf file and ensure that you remove the /v2.0 from the keystone AdminURL. For example, set
the identity_uri to http://IP:PORT.

7.5. HARDWARE ENROLLMENT

Issues with enrolled hardware can be caused by incorrect node registration details. Ensure that property
names and values have been entered correctly. Incorrect or mistyped property names will be
successfully added to the node’s details, but will be ignored.

Update a node’s details. This example updates the amount of memory the node is registered to use to 2
GB:

$ openstack baremetal node set --property memory_mb=2048 NODE_UUID

7.6. NO VALID HOST ERRORS

If the Compute scheduler cannot find a suitable Bare Metal node on which to boot an instance, a

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

56

NoValidHost error can be seen in /var/log/nova/nova-conductor.log or immediately upon launch
failure in the dashboard. This is usually caused by a mismatch between the resources Compute expects
and the resources the Bare Metal node provides.

1. Check the hypervisor resources that are available:

$ openstack hypervisor stats show

The resources reported here should match the resources that the Bare Metal nodes provide.

2. Check that Compute recognizes the Bare Metal nodes as hypervisors:

$ openstack hypervisor list

The nodes, identified by UUID, should appear in the list.

3. Check the details for a Bare Metal node:

$ openstack baremetal node list
$ openstack baremetal node show NODE_UUID

Verify that the node’s details match those reported by Compute.

4. Check that the selected flavor does not exceed the available resources of the Bare Metal
nodes:

$ openstack flavor show FLAVOR_NAME

5. Check the output of openstack baremetal node list to ensure that Bare Metal nodes are not in
maintenance mode. Remove maintenance mode if necessary:

$ openstack baremetal node maintenance unset NODE_UUID

6. Check the output of openstack baremetal node list to ensure that Bare Metal nodes are in an
available state. Move the node to available if necessary:

$ openstack baremetal node provide NODE_UUID

CHAPTER 7. TROUBLESHOOTING THE BARE METAL SERVICE

57

APPENDIX A. BARE METAL DRIVERS
A bare metal node can be configured to use one of the drivers enabled in the Bare Metal service. Each
driver is made up of a provisioning method and a power management type. Some drivers require
additional configuration. Each driver described in this section uses PXE for provisioning; drivers are
listed by their power management type.

You can add drivers with the IronicEnabledHardwareTypes parameter in your ironic.yaml file. By
default, ipmi, redfish, idrac and ilo are enabled.

For the full list of supported plug-ins and drivers, see Component, Plug-In, and Driver Support in Red
Hat OpenStack Platform.

A.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)

IPMI is an interface that provides out-of-band remote management features, including power
management and server monitoring. To use this power management type, all Bare Metal service nodes
require an IPMI that is connected to the shared Bare Metal network. Enable the ipmi driver, and set the
following information in the node’s driver_info:

ipmi_address - The IP address of the IPMI NIC.

ipmi_username - The IPMI user name.

ipmi_password - The IPMI password.

A.2. REDFISH

A standard RESTful API for IT infrastructure developed by the Distributed Management Task Force
(DMTF)

redfish_username - The Redfish username.

redfish_password - The Redfish password.

redfish_address - The IP address of the Redfish controller.

redfish_system_id - The canonical path to the system resource. This path should include the
root service, version, and the path/unqiue ID for the system. For example:
/redfish/v1/Systems/CX34R87.

redfish_verify_ca - Either a Boolean value, a path to a CA_BUNDLE file, or a directory with
certificates of trusted CAs. If set to True the driver verifies the host certificates. If False the
driver ignores verifying the SSL certificate. If set to a path, the driver uses the specified
certificate or one of the certificates in the directory. Defaults to True.

A.3. DELL REMOTE ACCESS CONTROLLER (DRAC)

DRAC is an interface that provides out-of-band remote management features, including power
management and server monitoring. To use this power management type, all Bare Metal service nodes
require a DRAC that is connected to the shared Bare Metal network. Enable the idrac driver, and set the
following information in the node’s driver_info:

drac_address - The IP address of the DRAC NIC.

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

58

https://access.redhat.com/articles/1535373#Ironic

drac_username - The DRAC user name.

drac_password - The DRAC password.

A.4. INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)

iRMC from Fujitsu is an interface that provides out-of-band remote management features including
power management and server monitoring. To use this power management type on a Bare Metal service
node, the node requires an iRMC interface that is connected to the shared Bare Metal network. Enable
the irmc driver, and set the following information in the node’s driver_info:

irmc_address - The IP address of the iRMC interface NIC.

irmc_username - The iRMC user name.

irmc_password - The iRMC password.

To use IPMI to set the boot mode or SCCI to get sensor data, you must complete the following
additional steps:

1. Enable the sensor method in ironic.conf:

$ openstack-config --set /etc/ironic/ironic.conf \
 irmc sensor_method METHOD

Replace METHOD with scci or ipmitool.

2. If you enabled SCCI, install the python-scciclient package:

dnf install python-scciclient

3. Restart the Bare Metal conductor service:

systemctl restart openstack-ironic-conductor.service

NOTE

To use the iRMC driver, iRMC S4 or higher is required.

A.5. INTEGRATED LIGHTS-OUT (ILO)

iLO from Hewlett-Packard is an interface that provides out-of-band remote management features
including power management and server monitoring. To use this power management type, all Bare
Metal nodes require an iLO interface that is connected to the shared Bare Metal network. Enable the ilo
driver, and set the following information in the node’s driver_info:

ilo_address - The IP address of the iLO interface NIC.

ilo_username - The iLO user name.

ilo_password - The iLO password.

You must also install the python-proliantutils package and restart the Bare Metal conductor service:

APPENDIX A. BARE METAL DRIVERS

59

dnf install python-proliantutils
systemctl restart openstack-ironic-conductor.service

A.6. CONVERTING TO NEXT GENERATION POWER MANAGEMENT
DRIVERS

Red Hat OpenStack Platform now uses next generation drivers, also known as hardware types , that
replace older drivers.

The following table shows an analogous comparison between older drivers and their next generation
hardware type equivalent:

Old Driver New Hardware Type

pxe_ipmitool ipmi

pxe_drac idrac

pxe_ilo ilo

pxe_ucs cisco-ucs-managed

pxe_irmc irmc

fake_pxe fake-hardware

In OpenStack Platform 15, these older drivers have been removed and are no longer accessible. You
must change to hardware types before upgrading to OpenStack Platform 15.

Procedure

1. Check the current list of hardware types enabled:

$ source ~/overcloud
$ openstack baremetal driver list --type dynamic

2. If you use a hardware type driver that is not enabled, enable the driver using the
IronicEnabledHardwareTypes parameter in an environment file:

parameter_defaults:
 IronicEnabledHardwareTypes: ipmi,redfish,idrac

3. Save the file and run your overcloud deployment command:

$ openstack overcloud deploy -e [ENVIRONMENT_FILE] -r [ROLES_DATA] -n
[NETWORK_DATA]

Ensure that you include all environment and data files relevant to your overcloud.

4. Run the following commands, substituting the OLDDRIVER and NEWDRIVER variables for

Red Hat OpenStack Platform 16.0 Bare Metal Provisioning

60

4. Run the following commands, substituting the OLDDRIVER and NEWDRIVER variables for
your power management type:

$ source ~/overcloud
$ OLDDRIVER="pxe_ipmitool"
$ NEWDRIVER="ipmi"
$ for NODE in $(openstack baremetal node list --driver $OLDDRIVER -c UUID -f value) ; do
openstack baremetal node set $NODE --driver $NEWDRIVER; done

APPENDIX A. BARE METAL DRIVERS

61

	Table of Contents
	PREFACE
	CHAPTER 1. ABOUT THE BARE METAL SERVICE
	CHAPTER 2. PLANNING FOR BARE METAL PROVISIONING
	2.1. INSTALLATION ASSUMPTIONS
	2.2. HARDWARE REQUIREMENTS
	2.3. NETWORKING REQUIREMENTS
	2.3.1. The Default Bare Metal Network
	2.3.2. The Custom Composable Network

	CHAPTER 3. DEPLOYING AN OVERCLOUD WITH THE BARE METAL SERVICE
	3.1. CREATING THE IRONIC TEMPLATE
	3.2. CONFIGURING THE UNDERCLOUD FOR BARE METAL PROVISIONING OVER IPV6
	3.3. NETWORK CONFIGURATION
	3.3.1. Configuring a custom IPv4 provisioning network
	3.3.2. Configuring a custom IPv6 provisioning network

	3.4. EXAMPLE TEMPLATES
	3.5. ENABLING IRONIC INTROSPECTION IN THE OVERCLOUD
	3.6. DEPLOYING THE OVERCLOUD
	3.7. TESTING THE BARE METAL SERVICE

	CHAPTER 4. CONFIGURING FOR THE BARE METAL SERVICE AFTER DEPLOYMENT
	4.1. CONFIGURING OPENSTACK NETWORKING
	4.1.1. Configuring OpenStack Networking to Communicate with the Bare Metal Service on a flat Bare Metal Network
	4.1.2. Configuring OpenStack Networking to Communicate with the Bare Metal Service on a Custom Composable Bare Metal Network

	4.2. CONFIGURING NODE CLEANING
	4.2.1. Manual Node Cleaning

	4.3. CREATING THE BARE METAL FLAVOR
	4.4. CREATING THE BARE METAL IMAGES
	4.4.1. Preparing the Deploy Images
	4.4.2. Preparing the User Image
	4.4.3. Disk image environment variables
	4.4.4. Installing the User Image

	4.5. CONFIGURING DEPLOY INTERFACES
	4.5.1. Understanding the deploy process
	Prerequisites
	Workflow

	4.5.2. Configuring the direct deploy interface on the overcloud
	Procedure

	4.6. ADDING PHYSICAL MACHINES AS BARE METAL NODES
	4.6.1. Enrolling a Bare Metal Node With an Inventory File
	4.6.2. Enrolling a Bare Metal Node Manually

	4.7. CONFIGURING REDFISH VIRTUAL MEDIA BOOT
	4.7.1. Deploying a bare metal server with Redfish virtual media boot

	4.8. USING HOST AGGREGATES TO SEPARATE PHYSICAL AND VIRTUAL MACHINE PROVISIONING

	CHAPTER 5. ADMINISTERING BARE METAL NODES
	5.1. LAUNCHING AN INSTANCE USING THE COMMAND LINE INTERFACE
	5.2. LAUNCH AN INSTANCE USING THE DASHBOARD
	5.3. CONFIGURE PORT GROUPS IN THE BARE METAL PROVISIONING SERVICE
	5.3.1. Configure the Switches
	5.3.2. Configure Port Groups in the Bare Metal Provisioning Service

	5.4. DETERMINING THE HOST TO IP ADDRESS MAPPING
	5.5. ATTACHING AND DETACHING A VIRTUAL NETWORK INTERFACE
	5.6. CONFIGURING NOTIFICATIONS FOR THE BARE METAL SERVICE
	5.7. CONFIGURING AUTOMATIC POWER FAULT RECOVERY
	5.8. INTROSPECTING OVERCLOUD NODES

	CHAPTER 6. ML2 NETWORKING-ANSIBLE
	6.1. MODULAR LAYER 2 (ML2) NETWORKING-ANSIBLE
	6.2. NETWORKING REQUIREMENTS FOR NETWORKING-ANSIBLE
	6.3. OPENSTACK BARE METAL (IRONIC) REQUIREMENTS FOR NETWORKING-ANSIBLE
	6.4. ENABLING NETWORKING-ANSIBLE ML2 FUNCTIONALITY
	6.5. CONFIGURING NETWORKS FOR NETWORKING-ANSIBLE
	6.5.1. Configuring networks for networking-ansible in access mode
	6.5.2. Configuring ports for bare metal guests in access mode
	6.5.3. Configuring networks for networking-ansible in trunk mode
	6.5.4. Configuring ports for bare metal guests in trunk mode

	6.6. TESTING NETWORKING-ANSIBLE ML2 FUNCTIONS

	CHAPTER 7. TROUBLESHOOTING THE BARE METAL SERVICE
	7.1. PXE BOOT ERRORS
	7.2. LOGIN ERRORS AFTER THE BARE METAL NODE BOOTS
	7.3. THE BARE METAL SERVICE IS NOT GETTING THE RIGHT HOSTNAME
	7.4. INVALID OPENSTACK IDENTITY SERVICE CREDENTIALS WHEN EXECUTING BARE METAL SERVICE COMMANDS
	7.5. HARDWARE ENROLLMENT
	7.6. NO VALID HOST ERRORS

	APPENDIX A. BARE METAL DRIVERS
	A.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)
	A.2. REDFISH
	A.3. DELL REMOTE ACCESS CONTROLLER (DRAC)
	A.4. INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
	A.5. INTEGRATED LIGHTS-OUT (ILO)
	A.6. CONVERTING TO NEXT GENERATION POWER MANAGEMENT DRIVERS

