& RedHat

Red Hat OpenStack Platform 15

Manage Secrets with OpenStack Key Manager

How to integrate OpenStack Key Manager (Barbican) with your OpenStack
deployment.

Last Updated: 2021-01-21






Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key
Manager

How to integrate OpenStack Key Manager (Barbican) with your OpenStack deployment.

OpenStack Team
rhos-docs@redhat.com



Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

How to integrate OpenStack Key Manager (Barbican) with your OpenStack deployment.



Table of Contents

Table of Contents

CHAPTER 1. OVERVIEW ittt ettt ettt ettt ettt e et e aneeeaneenneeeanaenaneennneennns 4
CHAPTER 2. CHOOSING ABACKEND .. tttttittttittteitetaeeeaeeaneeeaneenaneeanneeaneeeaneennneenns 5
2.1. MIGRATING BETWEEN BACKENDS 5
CHAPTER 3. INSTALLING BARBICAN . tttttttittt et etat ettt eaeeeaneeeaneeanneeaneeraneennneenns 7
3.1. ADD USERS TO THE CREATOR ROLE ON OVERCLOUD 8
3.1.1. Test barbican functionality 9

3.2. UNDERSTANDING POLICIES 10
3.2.1. Viewing the default policy 10
CHAPTER 4. MANAGING SECRETS IN BARBICAN ...ttt i ti et eieeraneennneeaneenns 12
4. LISTING SECRETS 12
4.2. ADDING NEW SECRETS 12
4.3. UPDATING SECRETS 12
4.4, DELETING SECRETS 12
45. GENERATE ASYMMETRIC KEY 13
4.6. BACKUP AND RESTORE KEYS 14
4.6.1. Backup and restore the simple crypto back end 14
4.6.1.1. Backup and restore the KEK 14
4.6.1.2. Backup and restore the back end database 14
4.6.1.2.1. Create the test secret 14

4.6.1.2.2. Backup the barbican database 15
4.6.1.2.3. Delete the test secrets 16
4.6.1.2.4. Restore the databases 16
4.6.1.2.5. Verify the restore process 17
CHAPTER 5. BARBICAN HARDWARE SECURITY MODULE (HSM) INTEGRATION . .........ccoiiivein... 18
5.1. CHOOSING A BACKEND 19
5.2. ENCRYPTED BLOB 20
5.3. HARDWARE SECURITY MODULE (HSM) SUPPORT 20
5.4. MIGRATING BETWEEN BACKENDS 20
5.5.INTEGRATE WITH AN HSM APPLIANCE 21
5.6. INTEGRATE BARBICAN WITH AN ATOS HSM 21
5.7. REQUIREMENTS 21
5.8. CONFIGURE THE CONTROLLER 21
5.8.1. Test your HSM connection 23

5.9. INTEGRATE BARBICAN WITH AN NCIPHER NSHIELD CONNECT XC 24
5.10. CONFIGURE THE CONTROLLER 24
5.10.1. Test your HSM connection 25

51. REVIEW TLS ACTIVITY BETWEEN BARBICAN AND THE HSM 26
5.12. KEY STORAGE CONSIDERATIONS 26
5.13. ROTATING THE KEYS 27
5.14. PLANNING BACKUP FOR BARBICAN AND THE HSM 27
CHAPTER 6. ENCRYPTING CINDER VOLUMES ... iiiittiiitttiitttitteitteeneeeaneennneennnenaneenn, 28
6.1. MIGRATE EXISTING VOLUME KEYS TO BARBICAN 30
6.1.1. Overview of the migration steps 31
6.1.2. Behavioral differences 31
6.1.3. Reviewing the migration process 31
6.1.4. Troubleshooting the migration process 32
6.1.4.1. Role assignment 32



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

6.1.5. Clean up the fixed keys

CHAPTER 7. ENCRYPT AT-REST SWIFT OBJECTS ..............

7.1. ENABLE AT-REST ENCRYPTION FOR SWIFT

CHAPTER 8. VALIDATE GLANCEIMAGES ................oo.t

8.1. ENABLE GLANCE IMAGE VALIDATION
8.2. VALIDATE AN IMAGE

CHAPTER 9. VALIDATE IMAGES USED FOR VOLUME CREATION
9.1. VALIDATE THE IMAGE SIGNATURE ON A NEW VOLUME

32

34

35
35
35

38
38



Table of Contents




Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

CHAPTER 1. OVERVIEW

OpenStack Key Manager (barbican) is the secrets manager for Red Hat OpenStack Platform. You can
use the barbican APl and command line to centrally manage the certificates, keys, and passwords used
by OpenStack services. Barbican currently supports the following use cases described in this guide:

® Symmetric encryption keys - used for Block Storage (cinder) volume encryption, ephemeral
disk encryption, and Object Storage (swift) encryption, among others.

o Asymmetric keys and certificates- used for glance image signing and verification, among
others.

In this release, barbican offers integration with the Block Storage (cinder) and Compute (nova)
components.



CHAPTER 2. CHOOSING A BACKEND

CHAPTER 2. CHOOSING A BACKEND

Secrets (such as certificates, APl keys, and passwords) can either be stored as an encrypted blob in the
barbican database, or directly in a secure storage system.

To store the secrets as an encrypted blob in the barbican database, the following options are available.

e Simple crypto plugin - The simple crypto plugin is enabled by default and uses a single
symmetric key to encrypt the blob of secrets. This key is stored in plain text in the
barbican.conf file.

NOTE

The simple crypto plugin is currently the only plugin supported by Red Hat.

e

o PKCS#11 crypto plugin - The PKCS#11 crypto plugin encrypts secrets with project-specific key
encryption keys (KEK), which are stored in the barbican database. These project-specific KEKs
are encrypted by a master KEK, which is stored in a hardware security module (HSM). All
encryption and decryption operations take place in the HSM, rather than in-process memory.
The PKCS#11 plugin communicates with the HSM through the PKCS#11 protocol. Because the
encryption is done in secure hardware, and a different KEK is used per project, this option is
more secure than the simple crypto plugin.

Alternatively, you can store the secrets directly in a secure storage system:

® KMIP plugin - The Key Management Interoperability Protocol (KMIP) plugin works with devices
that have KIMP enabled, such as an HSM. Secrets are stored directly on the device instead of
the barbican database. The plugin can authenticate to the device either with a username and
password or a client certificate stored in the barbican.conf file.

® Red Hat Certificate System (dogtag)- Red Hat Certificate System is a Common Criteria and
FIPS certified security framework for managing various aspects of Public Key Infrastructure
(PKI). The key recovery authority (KRA) subsystem stores secrets as encrypted blobs in its
database. The master encryption keys are stored in either a software-based Network Security
Services (NSS) database or an HSM. For more information about Red Hat Certificate System,
see Product Documentation for Red Hat Certificate System .

NOTE

Regarding high availability (HA) options: The barbican service runs within Apache and is
configured by director to use HAProxy for high availability. HA options for the back end
layer will depend on the back end being used. For example, for simple crypto, all the
barbican instances have the same encryption key in the config file, resulting in a simple
HA configuration.

2.1. MIGRATING BETWEEN BACKENDS

Barbican allows you to define a different backend for a project. If no mapping exists for a project, then
secrets are stored in the global default backend. This means that multiple backends can be configured,
but there must be at least one global backend defined. The heat templates supplied for the different
backends contain the parameters that set each backend as the default.


https://access.redhat.com/documentation/en-us/red_hat_certificate_system/

Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

If you do store secrets in a certain backend and then decide to migrate to a new backend, you can keep
the old backend available while enabling the new backend as the global default (or as a project-specific
backend). As a result, the old secrets remain available through the old backend.



CHAPTER 3. INSTALLING BARBICAN

CHAPTER 3. INSTALLING BARBICAN

Barbican is not enabled by default in Red Hat OpenStack Platform. This procedure describes how you
can deploy barbican in an existing OpenStack deployment. Barbican runs as a containerized service, so
this procedure also describes how to prepare and upload the new container images:

NOTE

This procedure configures barbican to use the simple_crypto backend. Additional
backends are available, such as PKCS11 and DogTag, however they are not supported in
this release.

1. On the undercloud node, create an environment file for barbican. This will instruct director to
install barbican (when its included in openstack overcloud deploy [...])

$ cat /home/stack/configure-barbican.yaml
parameter_defaults:
BarbicanSimpleCryptoGlobalDefault: true

e BarbicanSimpleCryptoGlobalDefault - Sets this plugin as the global default plugin.

e Further options are also configurable:

o BarbicanPassword - Sets a password for the barbican service account.

o BarbicanWorkers - Sets the number of workers for barbican::wsgi::apache. Uses '%
{::processorcount}' by default.

o BarbicanDebug - Enables debugging.

o BarbicanPolicies - Defines policies to configure for barbican. Uses a hash value, for
example: { barbican-context_is_admin: { key: context_is_admin, value:
'role:admin' } }. This entry is then added to /etc/barbican/policy.json. Policies are
described in detail in a later section.

o BarbicanSimpleCryptoKek - The Key Encryption Key (KEK) is generated by director,
if none is specified.

2. This step prepares new container images for barbican. You will need to include the configure-
barbican.yaml and all the relevant template files. Change the following example to suit your
deployment:

$ openstack overcloud container image prepare \

--namespace example.lab.local:5000/rhosp15-rhel8 \

--tag latest \

--push-destination 192.168.100.1:8787 \

--output-images-file ~/container-images-with-barbican.yaml \

-e /home/stack/virt/config_lvm.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
-e /home/stack/virt/network/network-environment.yaml \

-e /home/stack/virt/hostnames.yml \

-e /home/stack/virt/nodes_data.yaml \

-e /home/stack/virt/extra_templates.yaml \

-e /home/stack/virt/docker-images.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/services/barbican.yaml \



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

-e /usr/share/openstack-tripleo-heat-templates/environments/barbican-backend-simple-
crypto.yaml\
-e /home/stack/configure-barbican.yaml

3. Upload the new container images to the undercloud registry:

$ openstack overcloud container image upload --debug --config-file container-images-with-
barbican.yaml|

4. Prepare the new environment file:

$ openstack overcloud container image prepare \

--tag latest \

--namespace 192.168.100.1:8787/rhosp15-rhel8 \

--output-env-file ~/container-parameters-with-barbican.yaml \

-e /home/stack/virt/config_lvm.yaml\

-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \

-e /home/stack/virt/network/network-environment.yaml \

-e /home/stack/virt/hostnames.yml \

-e /home/stack/virt/nodes_data.yaml\

-e /home/stack/virt/extra_templates.yaml \

-e /home/stack/virt/docker-images.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/services/barbican.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/barbican-backend-simple-
crypto.yaml\

-e /home/stack/configure-barbican.yaml

5. To apply these changes to your deployment: update the overcloud and specify all the heat
template files that you used in your previous openstack overcloud deploy [...]. For example:

$ openstack overcloud deploy \

--timeout 100 \

--templates /usr/share/openstack-tripleo-heat-templates \

--stack overcloud \

--libvirt-type kvm \

--ntp-server clock.redhat.com \

-e /home/stack/virt/config_lvm.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \

-e /home/stack/virt/network/network-environment.yaml \

-e /home/stack/virt/hostnames.yml \

-e /home/stack/virt/nodes_data.yaml \

-e /home/stack/virt/extra_templates.yaml \

-e /home/stack/container-parameters-with-barbican.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/services/barbican.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/barbican-backend-simple-
crypto.yaml\

-e /home/stack/configure-barbican.yaml \

--log-file overcloud_deployment_38.log

3.1. ADD USERS TO THE CREATOR ROLE ON OVERCLOUD

Users must be members of the creator role in order to create and edit barbican secrets. For example,
they require this role to create encrypted volumes that store their secret in barbican.



CHAPTER 3. INSTALLING BARBICAN

1. Create a new role called creator:

$ openstack role create creator

+ + +

| Field | Value |

+ + +

| domain_id | None |

|id | 4€9¢c560c6f104608948450fbf316f9d7 |
| name | creator |

+ + +

2. Retrieve the id of the creator role:

openstack role show creator

+ + +

| Field | Value |

+ + +

| domain_id | None |

|id | 4€9¢c560c6f104608948450fbf316f9d7 |
| name | creator |

+ + +

3. Assign a user to the creator role and specify the relevant project. In this example, a user named
user1in the project_a project is added to the creator role:

I openstack role add --user user1 --project project_a 4e9c560c6f104608948450fbf316f9d7

3.1.1. Test barbican functionality
This section describes how to test that barbican is working correctly.

1. Create a test secret. For example:

$ openstack secret store --name testSecret --payload 'TestPayload'

+ + +

| Field | Value |

+ + +

| Secret href | https://192.168.123.163/key-manager/v1/secrets/4cc5ffe0-eea2-449d-9e64-
b664d574be53 |

| Name | testSecret |

| Created | None |

| Status | None |

| Content types | None |

| Algorithm | aes |

| Bit length | 256 |

| Secret type | opaque |

| Mode | cbc |

| Expiration | None |

+ + +

2. Retrieve the payload for the secret you just created:

openstack secret get https://192.168.123.163/key-manager/v1/secrets/4cc5ffe0-eea2-449d-
9e64-b664d574be53 --payload



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

+- + +
| Field | Value |
+- + +
| Payload | TestPayload |
+- + +

3.2. UNDERSTANDING POLICIES

Barbican uses policies to determine which users are allowed to perform actions against the secrets, such

as adding or deleting keys. To implement these controls, keystone project roles (such as creator you

created earlier) are mapped to barbican internal permissions. As a result, users assigned to those project
roles receive the corresponding barbican permissions.

3.2.1. Viewing the default policy

The default policy is defined in code and typically does not require any amendments. You can view the
default policy by generating it from the barbican source code:

10

1. Perform the following steps on a non-production system, because additional components may
be downloaded and installed. This example switches to the queens branch, so you must adapt
this if using a different version.

git clone https://github.com/openstack/barbican
cd /home/stack/barbican

git checkout origin/stable/queens

tox -e genpolicy

This generates a policy file within a subdirectory that contains the default settings:
etc/barbican/policy.yaml.sample. Note that this path refers to a subdirectory within the
repository, not your system'’s /etc directory. The contents of this file are explained in the
following step.

. The policy.yaml.sample file you generated describes the policies used by barbican. The policy

is implemented by four different roles that define how a user interacts with secrets and secret
metadata. A user receives these permissions by being assigned to a particular role:

admin - Can delete, create/edit, and read secrets.
creator - Can create/edit, and read secrets. Can not delete secrets.
observer - Can only read data.

audit - Can only read metadata. Can not read secrets.

For example, the following entries list the admin, observer, and creator keystone roles for
each project. On the right, notice that they are assigned the role:admin, role:observer, and
role:creator permissions:

#
#"admin": "role:admin"

#
#"observer": "role:observer"

#
#"creator": "role:creator"



CHAPTER 3. INSTALLING BARBICAN

These roles can also be grouped together by barbican. For example, rules that specify
admin_or_creator can apply to members of either rule:admin or rule:creator.

3. Further down in the file, there are secret:put and secret:delete actions. To their right, notice
which roles have permissions to execute these actions. In the following example, secret:delete
means that only admin and creator role members can delete secret entries. In addition, the rule
states that users in the admin or creator role for that project can delete a secret in that project.
The project match is defined by the secret_project_match rule, which is also defined in the

policy.

I secret:delete": "rule:admin_or_creator and rule:secret_project._match"

1



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

CHAPTER 4. MANAGING SECRETS IN BARBICAN

4.1. LISTING SECRETS

Secrets are identified by their URI, indicated as a href value. This example shows the secret you created
in the previous step:

$ openstack secret list

+ +--mm-- +

+ + + + + + + +

| Secret href | Name | Created | Status |
Content types | Algorithm | Bit length | Secret type | Mode | Expiration |

+ +--mm-- +

+ + + + + + + +

| https://192.168.123.169:9311/v1/secrets/24845e6d-64a5-4071-ba99-0fdd1046172e | None | 2018-
01-22T02:23:15+00:00 | ACTIVE | {u'default’: u'application/octet-stream'} | aes | 256 |
symmetric | None | None |

+ +--mm-- +

+ + + + + + + +

4.2. ADDING NEW SECRETS

Create a test secret. For example:

$ openstack secret store --name testSecret --payload 'TestPayload'

+ + +

| Field | Value |

+ + +

| Secret href | https://192.168.123.163:9311/v1/secrets/ecc7b2a4-f0b0-47ba-b451-0f7d42bc1746 |
| Name | testSecret |

| Created | None |

| Status | None |

| Content types | None |

| Algorithm | aes |

| Bit length | 256 |

| Secret type | opaque |

| Mode | cbc |

| Expiration | None |

+ + +

4.3. UPDATING SECRETS

You cannot change the payload of a secret (other than deleting the secret), but if you initially created a
secret without specifying a payload, you can later add a payload to it by using the update function. For
example:

$ openstack secret update https://192.168.123.163:9311/v1/secrets/ca34a264-fd09-44a1-8856-
c6e7116¢3b16 'TestPayload-updated'
$

4.4. DELETING SECRETS

12



CHAPTER 4. MANAGING SECRETS IN BARBICAN

You can delete a secret by specifying its URI. For example:

$ openstack secret delete https://192.168.123.163:9311/v1/secrets/ecc7b2a4-f0b0-47ba-b451-
0f7d42bc1746

$

4.5. GENERATE ASYMMETRIC KEY
Symmetric keys are suitable for certain tasks, such as nova disk encryption and swift object encryption.

1. Generate a new 256-bit key using order create and store it in barbican. For example:

$ openstack secret order create --name swift_key --algorithm aes --mode ctr --bit-length 256
--payload-content-type=application/octet-stream key

+ + +

| Field | Value |

+ + +

| Order href | https://192.168.123.173:9311/v1/orders/043383fe-d504-42cf-a9b1-
bc328d0b4832 |

| Type | Key |

| Container href | N/A |

| Secret href | None |

| Created | None |

| Status | None |

| Error code | None |

| Error message | None |

+ + +

e --mode - Generated keys can be configured to use a particular mode, such as c¢tr or cbe.
For more information, see NIST SP 800-38A.

2. View the details of the order to identify the location of the generated key, shown here as the
Secret href value:

$ openstack secret order get https://192.168.123.173:9311/v1/orders/043383fe-d504-42cf-
a9b1-bc328d0b4832

+ + +

| Field | Value |

+ + +

| Order href | https://192.168.123.173:9311/v1/orders/043383fe-d504-42cf-a9b1-
bc328d0b4832 |

| Type | Key |

| Container href | N/A |
| Secret href | https://192.168.123.173:9311/v1/secrets/efcfec49-b9a3-4425-a9b6-

5ba69cb18719 |
| Created | 2018-01-24T04:24:33+00:00 |
|Status | ACTIVE |

| Error code | None |
| Error message | None |
+ + +

3. Retrieve the details of the secret:

I $ openstack secret get https://192.168.123.173:9311/v1/secrets/efcfec49-b9a3-4425-a9b6-

13



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

5ba69cb18719

+- + +

| Field | Value |

+- + +

| Secret href | https://192.168.123.173:9311/v1/secrets/efcfec49-b9a3-4425-a9b6-
5ba69cb18719 |

| Name | swift_key |

| Created | 2018-01-24T04:24:33+00:00 |

| Status | ACTIVE |

| Content types | {u'default’: u'application/octet-stream'’} |
| Algorithm | aes |

| Bit length | 256 |

| Secret type | symmetric |

| Mode | ctr |

| Expiration | None |

+- + +

4.6. BACKUP AND RESTORE KEYS

The process for backup and restore of encryption keys will vary depending on the type of back end:

4.6.1. Backup and restore the simple crypto back end

Two separate components need to be backed up for simple crypto back end: the KEK and the database.
It is recommended that you regularly test your backup and restore process.

4.6.1.1. Backup and restore the KEK

For the simple crypto back end, you need to backup the barbican.conf file that contains the master
KEK is written. This file must be backed up to a security hardened location. The actual data is stored in
the Barbican database in an encrypted state, described in the next section.

® Torestore the key from a backup, you need to copy the restored barbican.conf over the
existing barbican.conf.

4.6.1.2. Backup and restore the back end database

This procedure describes how to backup and restore a barbican database for the simple crypto back
end. To demonstrate this, you will generate a key and upload the secrets to barbican. You will then
backup the barbican database, and delete the secrets you created. You will then restore the database
and confirm that the secrets you created earlier have been recovered.

NOTE

Be sure you are also backing up the KEK, as this is also an important requirement. This is
described in the previous section.

4.6.1.2.1. Create the test secret

1. On the overcloud, generate a new 256-bit key using order create and store it in barbican. For
example:

(overcloud) [stack@undercloud-0 ~]$ openstack secret order create --name swift_key --
algorithm aes --mode ctr --bit-length 256 --payload-content-type=application/octet-stream key

14



CHAPTER 4. MANAGING SECRETS IN BARBICAN

+ + +

| Field | Value |

+ + +

| Order href | http://10.0.0.104:9311/v1/orders/2a11584d-851c-4bc2-83b7-35d04d3bae86 |
| Type | Key |

| Container href | N/A |

| Secret href | None |

| Created | None |

| Status | None |

| Error code | None |

| Error message | None |

+ + +

2. Create a test secret:

(overcloud) [stack@undercloud-0 ~]$ openstack secret store --name testSecret --payload

"TestPayload'

+ + +

| Field | Value |

+ + +

| Secret href | http://10.0.0.104:9311/v1/secrets/93f62cfd-e008-401f-be74-bf057¢c88b04a |
| Name | testSecret |

| Created | None |

| Status | None |

| Content types | None |

| Algorithm | aes |

| Bit length | 256 |

| Secret type | opaque |

| Mode | cbc |

| Expiration | None |

+ + +

3. Confirm that the secrets were created:

(overcloud) [stack@undercloud-0 ~]$ openstack secret list

+ + +

-+ + + + + + +

------ +

| Secret href | Name | Created | Status |
Content types | Algorithm | Bit length | Secret type | Mode | Expiration |

+ + +

-+ + + + + + +

------ +

| http://10.0.0.104:9311/v1/secrets/93f62cfd-e008-401f-be74-bf057c88b04a | testSecret |
2018-06-19T18:25:25+00:00 | ACTIVE | {u'default’: u'text/plain'} | aes | 256 |

opaque | cbc | None |

| http://10.0.0.104:9311/v1/secrets/f664b5cf-5221-47e5-9887-608972a5fefb | swift_key |
2018-06-19T18:24:40+00:00 | ACTIVE | {u'default’: u'application/octet-stream'} | aes |
256 | symmetric | ctr | None |

4.6.1.2.2. Backup the barbican database

15



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

Run these steps while logged in to the controller-0 node.

NOTE

Only the user barbican has access to the barbican database. So the barbican user
password is required to backup or restore the database.

1. Retrieve barbican user password. For example:

[heat-admin@controller-0 ~]$ sudo grep -r "barbican::db::mysql::password"
/etc/puppet/hieradata

/etc/puppet/hieradata/service_configs.json: "barbican::db::mysql::password":
"seDJRsMNRrBdFryCmNUEFPPev",

2. Backup the barbican database:

[heat-admin@controller-0 ~]$ mysqgldump -u barbican -p"seDJRsMNRrBdFryCmNUEFPPev"
barbican > barbican_db_backup.sql

3. Database backup is stored in /home/heat-admin

[heat-admin@controller-0 ~]$ I
total 36
-rw-rw-r--. 1 heat-admin heat-admin 36715 Jun 19 18:31 barbican_db_backup.sql

4.6.1.2.3. Delete the test secrets

1. On the overcloud, delete the secrets you created previously, and verify they no longer exist. For
example:

(overcloud) [stack@undercloud-0 ~]$ openstack secret delete
http://10.0.0.104:9311/v1/secrets/93f62cfd-e008-401f-be74-bf057c88b04a
(overcloud) [stack@undercloud-0 ~]$ openstack secret delete
http://10.0.0.104:9311/v1/secrets/f664b5cf-5221-47e5-9887-608972a5fefb
(overcloud) [stack@undercloud-0 ~]$ openstack secret list

(overcloud) [stack@undercloud-0 ~]$

4.6.1.2.4. Restore the databases

Run these steps while logged in to the controller-0 node.

1. Make sure you have the barbican database on the controller which grants access to the
barbican user for database restoration:

[heat-admin@controller-0 ~]$ mysql -u barbican -p"seDJRsMNRrBdFryCmNUEFPPev"
Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 3799

Server version: 10.1.20-MariaDB MariaDB Server

Copyright (c) 2000, 2016, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or "\h' for help. Type "\c' to clear the current input statement.

16



CHAPTER 4. MANAGING SECRETS IN BARBICAN

MariaDB [(none)]> SHOW DATABASES;

e +
| Database |
e +
| barbican |
| information_schema |
e +

2 rows in set (0.00 sec)
MariaDB [(none)]> exit

Bye
[heat-admin@controller-0 ~]$

2. Restore the backup file to the barbican database:
[heat-admin@controller-0 ~]$ sudo mysq|l -u barbican -p"seDJRsMNRrBdFryCmNUEFPPev"

barbican < barbican_db_backup.sql
[heat-admin@controller-0 ~]$

4.6.1.2.5. Verify the restore process

1. On the overcloud, verify that the test secrets were restored successfully:

(overcloud) [stack@undercloud-0 ~]$ openstack secret list

+ + +
-+ + + + + + +

------ +

| Secret href | Name | Created | Status |
Content types | Algorithm | Bit length | Secret type | Mode | Expiration |

+ + +

-+ + + + + + +

------ +

| http://10.0.0.104:9311/v1/secrets/93f62cfd-e008-401f-be74-bf057c88b04a | testSecret |
2018-06-19T18:25:25+00:00 | ACTIVE | {u'default’: u'text/plain'} | aes | 256 |

opaque | cbc | None |

| http://10.0.0.104:9311/v1/secrets/f664b5cf-5221-47e5-9887-608972a5fefb | swift_key |
2018-06-19T18:24:40+00:00 | ACTIVE | {u'default’: u'application/octet-stream'} | aes |
256 | symmetric | ctr | None |

(overcloud) [stack@undercloud-0 ~]$

17



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

18

CHAPTER 5. BARBICAN HARDWARE SECURITY MODULE
(HSM) INTEGRATION

OpenStack Key Manager (Barbican) is the secrets manager for Red Hat OpenStack Platform. You can
use the Barbican APl and command line to centrally manage the certificates, keys, and passwords used
by OpenStack services. Barbican currently supports the following use cases described in this guide:

® Symmetric encryption keys - used for Block Storage (cinder) volume encryption, ephemeral
disk encryption, Object Storage (Sswift) encryption, among others.

o Asymmetric keys and certificates- glance image signing and verification, octavia TLS load
balancing, among others.

In this release, Barbican offers integration with the Block Storage (cinder), Networking (neutron), and
Compute (nova) components.



CHAPTER 5. BARBICAN HARDWARE SECURITY MODULE (HSM) INTEGRATION

Admin/ Tenant Nova (QEMU) Cinder Barbican Barbican Hardware Ceph
Deployer Database Security Cluster
Module
Create Cinder volume encryption type LUKS .
L
Create MKEK through CLI Store MKEK in HSM
> B
Generate a key
K1as needed
Give me a volume V of for encryption Get
encryption type LUKS type LUKS MKEK(pKEK)
b b >
No MKEK(pKEK)
Generate MKEK(pKEK) Generate pKEK
P wrap with MKEK
Store
MKEK(pKEK)
Generate K1 Generate K1,
> decrypt
MKEK(pKEK),
wrap K1 with
pKEK
Return pKEK(K1), MKEK(pKEK)
4
Store pKEK(KT1),
MKEK(pKEK)
as metadata
—p
Return
refernce to
secret K1 (Kref) Return Kref
4 4
- -
Store Kref
in volume
metadata
Attach Get volume
volume to VM metadata
b »
» >
Read Kref from
metadata
Get secret
Get secret Kref o database entry
»
Entry contains
pKEK(K1),
MKEK(pKEK)
Get K1 Unwrap
P pKek from
MKEK(pKEK),
unwrap K1
from pKEK(KT)
Return K1
4
-
K1supplied to
QEMU attached
volume etc.
Data is encrypted (QEMU <—> LUKS process) cn
the compute node with K1 before entering the Ceph cluster %
Lal
Hardware
Admin/ Barbican Security Ceph
Deployer Tenant Nova (QEMU) Cinder Barbican Database Module Cluster

5.1. CHOOSING A BACKEND

19



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

Secrets (such as certificates, APl keys, and passwords) can either be stored as an encrypted blob in the
Barbican database, directly in a secure storage system, including a Hardware Security Module (HSM)
appliance.

5.2. ENCRYPTED BLOB

The simple crypto plugin is enabled by default and uses a single symmetric key to encrypt the blob of
secrets. This key is stored in plain text in the barbican.conf file.

5.3. HARDWARE SECURITY MODULE (HSM) SUPPORT

You can use the PKCS#11 crypto plugin to store the secrets in a Hardware Security Module (HSM), which
are physical rack-mounted appliances produced by third party vendors. These secrets are encrypted
using the pKEK, which in turn is also stored in the Barbican database. The pKEK is encrypted and an
HMAC operation is applied using the MKEK and HMAC keys, which are also stored in the HSM.

This guide explains how to integrate Barbican with certain HSM appliances from Atos and nCipher.
You can use the following approaches to interact with an HSM:

o PKCS#11 crypto plugin - The PKCS#11 crypto plugin encrypts secrets with project-specific key
encryption keys (KEK), which are stored in the Barbican database. These project-specific KEKs
are encrypted by a master KEK. The encrypted blob containing the PKEK also undergoes HMAC
processing by an HMAC key, which is also stored in the HSM. All encryption and decryption
operations take place in the HSM, rather than in-process memory. The PKCS#11 plugin
communicates with the HSM through the PKCS#11 protocol. Because the encryption is
performed in secure hardware, and a different KEK is used per project, this option is more
secure than the simple crypto plugin.

® KMIP plugin - Note that this approach is not supported by Red Hat. The Key Management
Interoperability Protocol (KMIP) plugin works with devices that have KMIP enabled, such as an
HSM. Secrets are stored directly on the device instead of the Barbican database. The plugin can
authenticate to the device either with a username and password or a client certificate stored in
the barbican.conf file.

® Red Hat Certificate System (dogtag)- Red Hat Certificate System is a Common Criteria and
FIPS certified security framework for managing various aspects of Public Key Infrastructure
(PKI). The key recovery authority (KRA) subsystem stores secrets as encrypted blobs in its
database. The master encryption keys are stored in either a software-based Network Security
Services (NSS) database or an HSM. For more information about Red Hat Certificate System,
see Product Documentation for Red Hat Certificate System .

NOTE

Regarding high availability (HA) options: The Barbican service runs within Apache and is
configured by director to use HAProxy for high availability. Your HA options for the
backend layer will depend on the which backend is used: For example, with simple crypto,
all the Barbican instances have the same encryption key in the configuration file, resulting
in a simple HA configuration.

5.4. MIGRATING BETWEEN BACKENDS

Barbican allows you to define a different backend for a project. If no mapping exists for a project, then
secrets are stored in the global default backend. This means that multiple backends can be configured,
but there must be only one global backend defined. The heat templates supplied for the different

20


https://access.redhat.com/documentation/en-us/red_hat_certificate_system/

CHAPTER 5. BARBICAN HARDWARE SECURITY MODULE (HSM) INTEGRATION

backends contain the parameters that set each backend as the default.

If you do store secrets in a certain backend and then decide to migrate to a new backend, you can keep
the old backend available while enabling the new backend as the global default (or as a project-specific
backend). As a result, the old secrets remain available through the old backend.

5.5.INTEGRATE WITH AN HSM APPLIANCE

This chapter explains how to integrate your Red Hat OpenStack Platform deployment with certain HSM
appliances. It also describes general operational procedures that you will need to consider.

5.6. INTEGRATE BARBICAN WITH AN ATOS HSM

This section explains how to integrate the PKCS#11 backend with your Trustway Proteccio NetHSM
appliance.

5.7. REQUIREMENTS
® A working Barbican deployment in your Red Hat OpenStack Platform environment.

® Plan your HSM integration so that you have the following settings ready for the director
deployment. These values will be entered into barbican-backend-pkcs11-atos.yaml
(described in the following section).

o BarbicanPkcs11CryptoLogin - the passphrase used by the PKCS#11 library (PIN).

o Prior to installation, you must follow the ATOS procedures to generate a client certificate
for the controllers. Host the client certificate, the server certificate, and the Atos client ISO
file on an HTTP or FTP server that is accessible by the overcloud nodes. Some of this
material is secret (such as client keys) and must be protected; if you use passwords to do
this, you must provide the location as http://user:pass@location, or
ftp://user:pass@location, among other possibilities. During the installation process,
director invokes ansible scripts to retrieve these files. The file paths used in the following
values must be accessible during the installation process.

®  atos_client_iso_location
®  atos_client_cert_location
® atos_client_key location
®  atos_server_cert_location
m  atos_client_working_dir
® atos_client_iso_name

® atos_hsm_ip_address

5.8. CONFIGURE THE CONTROLLER

This procedure uses an Ansible role to download and install the Atos client software on the controller,
and then modifies the Atos configuration file to include to the predefined HSM IP and credentials.

21



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

22

1. Create an environment file in OVERCLOUD_TEMPLATES named barbican-backend-pkcs11-
atos.yaml, and enter the configuration details of your HSM. For example:

tripleo_heat_templates:
- /usr/share/openstack-tripleo-heat-templates/environments/services/barbican.yaml
- /usr/share/openstack-tripleo-heat-templates/environments/barbican-backend-pkcs11-
atos.yaml
custom_templates:
parameter_defaults:
SwiftEncryptionEnabled: true
ComputeExtraConfig:
nova::glance::verify_glance_signatures: true
nova::compute::verify_glance_signatures: true
BarbicanPkcs11CryptoLogin: 'sample string'
BarbicanPkcs11CryptoSlotid: 1
BarbicanPkcs11CryptoGlobalDefault: true
BarbicanPkcs11CryptoLibraryPath: '/usr/lib64/libnethsm.so'
BarbicanPkcs11CryptoEncryptionMechanism: 'CKM_AES_CBC'
BarbicanPkcs11CryptoHMACKeyType: 'CKK_GENERIC_SECRET'
BarbicanPkcs11CryptoHMACKeygenMechanism:
'CKM_GENERIC_SECRET_KEY_GEN'
BarbicanPkcs11CryptoMKEKLabel: 'barbican_mkek_5a’
BarbicanPkcs11CryptoMKEKLength: 32
BarbicanPkcs11CryptoHMACLabel: 'barbican_hmac_5a’
BarbicanPkcs11CryptoATOSEnabled: true
BarbicanPkcs11CryptoEnabled: true
ATOSVars:
atos_client_working_dir: /tmp/atos_client_install
atos_client_iso_location: https://your server/Proteccio1.09.03.iso
atos_client_iso_name: Proteccio1.09.03.iso
atos_client_cert_location: https://your server/proteccio_client.crt
atos_client_key_location: https://your server/proteccio_client.key
atos_server_cert_location: https://your server/192_168_11_13.crt
atos_hsm_ip_address: 192.168.11.12
resource_registry:
OS::TripleO::Services::BarbicanBackendPkcs11Crypto: /home/stack/tripleo-heat-
templates/puppet/services/barbican backend-pkcs11-crypto.yaml

e BarbicanPkcs11CryptoGlobalDefault and BarbicanPkcs11CryptoEnabled - These
options configure PKCS#11 as the global default backend.

e BarbicanPkcs11CryptoMKEKLabel - Defines the name of the mKEK generated in the
HSM. Director creates this key in the HSM using this name. This name must be unique for
every fresh installation, otherwise conflicts can occur if the same label name is used.

e BarbicanPkcs11CryptoHMACLabel - Defines the name of the HMAC key generated in
the HSM. Director creates this key in the HSM using this name.



CHAPTER 5. BARBICAN HARDWARE SECURITY MODULE (HSM) INTEGRATION

NOTE

By default, the HSM allows a maximum of 32 concurrent connections. If this
number is exceeded, you can expect to receive a memory error from the
PKCS#11 client. You can calculate the number of connections as follows:

o Each controller has one barbican-api and one barbican-worker process.

o Each Barbican API process is executed with N Apache workers - (where
N defaults to the number of CPUs).

o Each worker has one connection to the HSM.

BarbicanWorkers - Each barbican-worker process has one connection to the
database; this setting lets you define the number of Apache workers per API
process. By default, it matches the CPU count. This setting configures
barbican::wsgi::apache::workers. The number of Barbican workers is
controlled by the parameter queue/asynchronous_workers in
barbican.conf, which defaults to 1. Currently there is no tripleO parameter
to manage this value.

For example, if you have three controllers, each with 32 cores, then each
controller’s Barbican APl uses 32 Apache workers (because
BarbicanWorkers will default to 32). Consequently, one controller
consumes all 32 HSM connections available. To avoid this contention, limit
the number of Barbican Apache workers configured for each node. In this
example, setting BarbicanWorkers to 10 will allow all three controllers to
make ten concurrent connections each to the HSM.

2. Execute the script by adding the path to your existing openstack overcloud deploy command,
and re-running it.

5.8.1. Test your HSM connection

1. Create a test secret. For example:

$ openstack secret store --name testSecret --payload 'TestPayload'

+ + +

| Field | Value |

+ + +

| Secret href | https://192.168.123.163/key-manager/v1/secrets/4cchffe0-eea2-449d-9e64-
b664d574be53 |

| Name | testSecret |

| Created | None |

| Status | None |

| Content types | None |

| Algorithm | aes |

| Bit length | 256 |

| Secret type | opaque |

| Mode | cbc |

| Expiration | None |

+ + +

2. Retrieve the payload for the secret you just created:

23



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

openstack secret get https://192.168.123.163/key-manager/v1/secrets/4cchffe0-eea2-449d-
9e64-b664d574be53 --payload

+- + +
| Field | Value |
+- + +
| Payload | TestPayload |
+- + +

5.9.INTEGRATE BARBICAN WITH AN NCIPHER NSHIELD CONNECT

XC

This section explains how to integrate the PKCS#11 backend with your nCipher nShield Connect XC
crypto backend.

® A working Barbican deployment in your Red Hat OpenStack Platform environment.

® Plan your HSM integration so that you have the following settings ready for the Ansible
deployment. These values will be entered into barbican-backend-pkcs11-thales.yaml
(described in the following section).

o thales_client_working_dir and thales_client_tarball_location - The nCipher nShield

Connect XC client software must be mounted in a location that it is accessible during the
install. These values will vary depending on the file location and file names.

thales_client_working_dir - When the client software is unzipped, the location of the
software may change the value.

thales_km_data_location and thales_km_data_tarball_name - These describe the
security world data, and must also be mounted in an accessible location. This material is
secret and must be protected; if you use passwords to do this, you must provide the
location as http://user:pass@location, or ftp://user:pass@location, among other
possibilities. During the installation process, director invokes ansible scripts to retrieve these
files. The file paths used in the following values must be accessible during the installation
process.

thales_rfs_key - The RFS server must be accessible to a user that has permission to login
and execute commands that update the configuration. This allows you to add the controllers
as HSM clients. The ansible scripts will ssh to the rfs server using the provided private key.
The public key will need to be uploaded to the rfs server as an authorized key first.

5.10. CONFIGURE THE CONTROLLER

This procedure uses an Ansible role to download and install the nCipher client software on the controller,
and then modifies the nCipher configuration file to include to the predefined HSM IP and credentials.

24

1.

Create an environment file in OVERCLOUD_TEMPLATES named barbican-backend-pkcs11-
thales.yaml, and enter the configuration details of your nCipher nShield Connect XC. For
example:

tripleo_heat_templates:

- /usr/share/openstack-tripleo-heat-templates/environments/services/barbican.yaml

- /usr/share/openstack-tripleo-heat-templates/environments/barbican-backend-pkcs11-
thales.yaml



CHAPTER 5. BARBICAN HARDWARE SECURITY MODULE (HSM) INTEGRATION

custom_templates:
parameter_defaults:
SwiftEncryptionEnabled: true
ComputeExtraConfig:
nova::glance::verify_glance_signatures: true
nova::compute::verify_glance_signatures: true
BarbicanPkcs11CryptoLogin: 'sample string'
BarbicanPkcs11CryptoSlotld: '492971158'
BarbicanPkcs11CryptoGlobalDefault: true
BarbicanPkcs11CryptoLibraryPath: /opt/nfast/toolkits/pkcs11/libcknfast.so’
BarbicanPkcs11CryptoEncryptionMechanism: 'CKM_AES_CBC'
BarbicanPkcs11CryptoHMACKeyType: 'CKK_SHA256_HMAC'
BarbicanPkcs11CryptoHMACKeygenMechanism:
'CKM_NC_SHA256_ HMAC_KEY_GEN'
BarbicanPkcs11CryptoMKEKLabel: 'barbican_mkek_10'
BarbicanPkcs11CryptoMKEKLength: '32'
BarbicanPkcs11CryptoHMACLabel: 'barbican_hmac_10'
BarbicanPkcs11CryptoThalesEnabled: true
BarbicanPkcs11CryptoEnabled: true
ThalesVars:
thales_client_working_dir: /tmp/thales_client_install
thales_client_tarball_location: https://your server/CipherTools-linux64-dev-12.40.2.t1gz
thales_client_tarball_name: CipherTools-linux64-dev-12.40.2.tgz
thales_client_path: linux/libc6_11/amd64/nfast
thales_client_uid: 42481
thales_client_gid: 42481
thales_km_data_location: https://your server/kmdata_post_card_creation.tar.gz
thales_km_data_tarball_name: kmdata_post_card_creation.tar.gz
thales_hsm_ip_address: 192.168.10.10
thales_rfs_server_ip_address: 192.168.10.11
thales_hsm_config_location: hsm-C90E-02E0-D947
thales_rfs_user: root
thales_rfs_key: |

resource_registry:
OS::TripleO::Services::BarbicanBackendPkcs11Crypto: /home/stack/tripleo-heat-
templates/puppet/services/barbican-backend-pkcs11-crypto.yaml

e BarbicanPkcs11CryptoGlobalDefault and BarbicanPkcs11CryptoEnabled - These
options configure PKCS#11 as the global default backend.

e BarbicanPkcs11CryptoMKEKLabel - Defines the name of the mKEK generated in the
HSM. Director creates this key in the HSM using this name.

e BarbicanPkcs11CryptoHMACLabel - Defines the name of the HMAC key generated in
the HSM. Director creates this key in the HSM using this name.

1. Execute the script by adding the path to your existing openstack overcloud deploy
command, and re-running it.

5.10.1. Test your HSM connection

1. Create a test secret. For example:

25



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

$ openstack secret store --name testSecret --payload 'TestPayload'

+- + +

| Field | Value |

+- + +

| Secret href | https://192.168.123.163/key-manager/v1/secrets/4cc5ffe0-eea2-449d-9e64-
b664d574be53 |

| Name | testSecret |

| Created | None |

| Status | None |

| Content types | None |

| Algorithm | aes |

| Bit length | 256 |

| Secret type | opaque |

| Mode | cbc |

| Expiration | None |

+- + +

2. Retrieve the payload for the secret you just created:

openstack secret get https://192.168.123.163/key-manager/v1/secrets/4cchffe0-eea2-449d-
9e64-b664d574be53 --payload

+- + +
| Field | Value |
+- + +
| Payload | TestPayload |
+- + +

S5.11. REVIEW TLS ACTIVITY BETWEEN BARBICAN AND THE HSM

Barbican communicates with the HSM through the vendor-provided PKCS#11 library. For example, for
an ATOS Proteccio HSM, you can configure the HSM client to communicate with the HSM using TLS by
configuring the proteccio.rc file.

For the Atos HSM, the files containing the CA, server certificate, and key are located on the controller,
and are owned by the barbican user. Note that the barbican user does not exist on the controller, and is
the barbican user as defined in the Barbican container. As a result, this is indicated in the file as a
numerical identifier. The files should be readable for the barbican user (0400); these files are then bind
mounted by the Barbican container.

For the nCipher nShield Connect XC, to view additional logs on the pkcs#11 transactions between the
HSM and the client software, add the following entries to /opt/nfast/cknfastrc:

CKNFAST_DEBUG=9
CKNFAST_DEBUGFILE=/tmp/hsm_log.txt

5.12. KEY STORAGE CONSIDERATIONS
The Barbican MKEK and HMAC keys are generated using Barbican utilities that communicate with the
HSM using the vendor's PKCS#11 library. Therefore the MKEK and HMAC keys are generated in the HSM

and never leave the HSM.

In a director-based deployment, these utilities are executed within containers on the first controller; the
undercloud is never involved in this process.

26



CHAPTER 5. BARBICAN HARDWARE SECURITY MODULE (HSM) INTEGRATION

5.13. ROTATING THE KEYS

You can rotate the MKEK and HMAC keys using a director update.

NOTE

The MKEK and HMAC have the same key type. This is a limitation in Barbican, and is
currently expected to be addressed at a later time.

1. To rotate the keys, add the following parameter to your deployment environment files:
I BarbicanPkcs11CryptoRewrapKeys: true
2. Change the labels on the MKEK and HMAC keys For example, if your labels are similar to these:

BarbicanPkcs11CryptoMKEKLabel: 'barbican_mkek_10'
BarbicanPkcs11CryptoHMACLabel: 'barbican_hmac_10'

You can change the labels by incrementing the values:

BarbicanPkcs11CryptoMKEKLabel: 'barbican_mkek_11'
BarbicanPkcs11CryptoHMACLabel: 'barbican_hmac_11'
NOTE

Do not change the HMAC key type.

3. Re-deploy using director to apply the update. Director checks whether the keys that are labelled
for the MKEK and HMAC exist, and then creates them. In addition, with the
BarbicanPkcs11CryptoRewrapKeys parameter set to True, director calls barbican-manage
hsm pkek_rewrap to rewrap all existing pKEKSs.

5.14. PLANNING BACKUP FOR BARBICAN AND THE HSM

The section describes the components you will need to consider when planning your Barbican and HSM
backup strategy.

® Barbican secrets - These are stored in the database, and must be backed up regularly.

e MKEK and HMAC keys - These are stored in the HSM. Check with your HSM vendor for
recommended practices.

® HSM client certificates and keys - These are located on the controller, and must be included in
your controller’s file backup procedure. Note that these files are sensitive credentials.

® Barbican configuration files

27



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

CHAPTER 6. ENCRYPTING CINDER VOLUMES

You can use barbican to manage your Block Storage (cinder) encryption keys. This configuration uses
LUKS to encrypt the disks attached to your instances, including boot disks. Key management is
transparent to the user; when you create a new volume using luks as the encryption type, cinder
generates a symmetric key secret for the volume and stores it in barbican. When booting the instance
(or attaching an encrypted volume), nova retrieves the key from barbican and stores the secret locally
as a Libvirt secret on the Compute node.

NOTE

IMPORTANT

Nova formats encrypted volumes during their first use if they are unencrypted. The
resulting block device is then presented to the Compute node.

If you intend to update any configuration files, be aware that certain OpenStack services
now run within containers; this applies to keystone, nova, and cinder, among others. As a
result, there are administration practices to consider:

Do not update any configuration file you might find on the physical node’s host
operating system, for example, /etc/cinder/cinder.conf. The containerized
service does not reference this file.

Do not update the configuration file running within the container. Changes are
lost once you restart the container.

Instead, if you must change containerized services, update the configuration file
in /var/lib/config-data/puppet-generated/, which is used to generate the
container.

For example:

keystone: /var/lib/config-data/puppet-
generated/keystone/etc/keystone/keystone.conf

cinder: /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf

nova: /var/lib/config-data/puppet-generated/nova/etc/nova/nova.conf
Changes are applied after you restart the container.

1. On nodes running the cinder-volume and nova-compute services, confirm that nova and
cinder are both configured to use barbican for key management:

$ crudini --get /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf
key_manager backend
castellan.key_manager.barbican_key_manager.BarbicanKeyManager

$ crudini --get /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf
key_manager backend
castellan.key_manager.barbican_key_manager.BarbicanKeyManager

2. Create a volume template that uses encryption. When you create new volumes they can be
modeled off the settings you define here:

28



CHAPTER 6. ENCRYPTING CINDER VOLUMES

$ openstack volume type create --encryption-provider
nova.volume.encryptors.luks.LuksEncryptor --encryption-cipher aes-xts-plain64 --encryption-
key-size 256 --encryption-control-location front-end LuksEncryptor-Template-256

+ +
+
| Field | Value
|
+ +
+

| description | None

|

| encryption | cipher='aes-xts-plain64', control_location="front-end', encryption_id="9df604d0-
8584-4ce8-b450-e13e6316c4d3', key_size='256',
provider='nova.volume.encryptors.luks.LuksEncryptor' |

|id | 78898a82-8f4c-44b2-a460-40a5da9e4d59

|

| is_public | True

|

| name | LuksEncryptor-Template-256

+ +

3. Create a new volume and specify that it uses the LuksEncryptor-Template-256 settings:

NOTE
Ensure that the user creating the encrypted volume has the creator barbican role

on the project. For more information, see the Grant user access to the creator
role section.

$ openstack volume create --size 1 --type LuksEncryptor-Template-256 'Encrypted-Test-

Volume'

+ + +

| Field | Value |

+ + +

| attachments [ ] |

| availability_zone | nova |

| bootable | false |

| consistencygroup_id | None |

| created_at | 2018-01-22T00:19:06.000000 |
| description | None |

| encrypted | True |

|id | a361fd0b-882a-46cc-a669-c633630b5¢93 |
| migration_status | None |

| multiattach | False |

| name | Encrypted-Test-Volume |
| properties | |

| replication_status | None |

| size | 1 |

| snapshot_id | None |

| source_volid | None |

| status | creating |

| type | LuksEncryptor-Template-256 |

29



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

| updated_at | None |
| user_id | 0e73cb3111614365a144e7f8f1a972af |
+ + +

The resulting secret is automatically uploaded to the barbican backend.

4. Use barbican to confirm that the disk encryption key is present. In this example, the timestamp
matches the LUKS volume creation time:

$ openstack secret list

+ +--mm-- et
+ + + + + +

Fommmmmmmees +

| Secret href | Name | Created | Status

| Content types | Algorithm | Bit length | Secret type | Mode | Expiration |

+ +--mm-- et
+ + + + + +

Fommmmmmmees +

| https://192.168.123.169:9311/v1/secrets/24845e6d-64a5-4071-ba99-0fdd1046172e | None |
2018-01-22T02:23:15+00:00 | ACTIVE | {u'default’: u'application/octet-stream'} | aes |
256 | symmetric | None | None |

+ +--mm-- et

+ + + + + +

5. Attach the new volume to an existing instance. For example:
I $ openstack server add volume testinstance Encrypted-Test-Volume

The volume is then presented to the guest operating system and can be mounted using the
built-in tools.

6.1. MIGRATE EXISTING VOLUME KEYS TO BARBICAN

Previously, deployments might have used ConfKeyManager to manage disk encryption keys. This
meant that a fixed key was generated and then stored in the nova and cinder configuration files. The key
IDs can be migrated to barbican using the following procedure. This utility works by scanning the
databases for encryption_key_id entries within scope for migration to barbican. Each entry gets a new
barbican key ID and the existing ConfKeyManager secret is retained.

NOTE

Previously, you could reassign ownership for volumes encrypted using ConfKeyManager.
This is not possible for volumes that have their keys managed by barbican.

NOTE

Activating barbican will not break your existing keymgr volumes.

After it is enabled, the migration process runs automatically, but it requires some configuration,
described in the next section. The actual migration runs in the cinder-volume and cinder-backup
process, and you can track the progress in the cinder log files.

30

e cinder-volume - migrates keys stored in cinder’s Volumes and Snapshots tables.



CHAPTER 6. ENCRYPTING CINDER VOLUMES

cinder-backup - migrates keys in the Backups table.

6.1.1. Overview of the migration steps

1.

2.

Deploy the barbican service.

Add the creator role to the cinder service. For example:

#openstack role create creator
#openstack role add --user cinder creator --project service

Restart the cinder-volume and cinder-backup services.
cinder-volume and cinder-backup automatically begin the migration process.

Monitor the logs for the message indicating migration has finished and check that no more
volumes are using the ConfKeyManager all-zeros encryption key ID.

Remove the fixed_key option from cinder.conf and nova.conf. You must determine which
nodes have this setting configured.

Remove the creator role from the cinder service.

6.1.2. Behavioral differences

Barbican-managed encrypted volumes behave differently than volumes that use ConfKeyManager:

You cannot transfer ownership of encrypted volumes, because it is not currently possible to
transfer ownership of the barbican secret.

Barbican is more restrictive about who is allowed to read and delete secrets, which can affect
some cinder volume operations. For example, a user cannot attach, detach, or delete a different
user’s volumes.

6.1.3. Reviewing the migration process

This section describes how you can view the status of the migration tasks. After you start the process,
one of these entries appears in the logs. This indicates whether the migration started correctly, or it
identifies the issue it encountered:

Not migrating encryption keys because the ConfKeyManager is still in use.
Not migrating encryption keys because the ConfKeyManager's fixed_key is not in use.

Not migrating encryption keys because migration to the 'XXX' key_manager backend is
not supported. - This message is unlikely to appear; it is a safety check to handle the code ever
encountering another Key Manager backend other than barbican. This is because the code only
supports one migration scenario: From ConfKeyManager to barbican.

Not migrating encryption keys because there are no volumes associated with this host. -
This may occur when cinder-volume is running on multiple hosts, and a particular host has no
volumes associated with it. This arises because every host is responsible for handling its own

volumes.

Starting migration of ConfKeyManager keys.

31



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

e Migrating volume <UUID> encryption key to Barbican - During migration, all of the host's
volumes are examined, and if a volume is still using the ConfKeyManager's key ID (identified by
the fact that it's all zeros (00000000-0000-0000-0000-000000000000)), then this message

appears.

o For cinder-backup, this message uses slightly different capitalization: Migrating Volume
[...] or Migrating Backup [...]

® After each host examines all of its volumes, the host displays a summary status message:

"No volumes are using the ConfKeyManager's encryption_key_id."
"No backups are known to be using the ConfKeyManager's encryption_key_id."

You may also see the following entries:

There are still %d volume(s) using the ConfKeyManager's all-zeros encryption key
ID.There are still %d backup(s) using the ConfKeyManager’s all-zeros encryption key ID.
Note that both of these messages can appear in the cinder-volume and cinder-backup logs.
Whereas each service only handles the migration of its own entries, the service is aware of the
the other’s status. As a result, cinder-volume knows if cinder-backup still has backups to
migrate, and cinder-backup knows if the cinder-volume service has volumes to migrate.
Although each host migrates only its own volumes, the summary message is based on a global
assessment of whether any volume still requires migration This allows you to confirm that
migration for all volumes is complete. Once you receive confirmation, remove the fixed_key

setting from cinder.conf and nova.conf. See the Clean up the fixed keys section below for
more information.

6.1.4. Troubleshooting the migration process

6.1.4.1. Role assignment

The barbican secret can only be created when the requestor has the creator role. This means that the
cinder service itself requires the creator role, otherwise a log sequence similar to this will occur:

1. Starting migration of ConfKeyManager keys.
2. Migrating volume <UUID> encryption key to Barbican

3. Error migrating encryption key: Forbidden: Secret creation attempt not allowed - please
review your user/project privileges

4. There are still %d volume(s) using the ConfKeyManager's all-zeros encryption key ID.

The key message is the third one: Secret creation attempt not allowed. To fix the problem, update the
cinder account's privileges:

1. Run openstack role add --project service --user cinder creator
2. Restart the cinder-volume and cinder-backup services.

As a result, the next attempt at migration should succeed.

6.1.5. Clean up the fixed keys

32



CHAPTER 6. ENCRYPTING CINDER VOLUMES

IMPORTANT

The encryption_key_id was only recently added to the Backup table, as part of the
Queens release. As a result, pre-existing backups of encrypted volumes are likely to exist.
The all-zeros encryption_key_id is stored on the backup itself, but it won't appear in the
Backup database. As such, it is impossible for the migration process to know for certain
whether a backup of an encrypted volume exists that still relies on the all-zeros
ConfKeyMgr key ID.

After migrating your key IDs into barbican, the fixed key remains in the configuration files. This may
present a security concern to some users, because the fixed_key value is not encrypted in the .conf
files. To address this, you can manually remove the fixed_key values from your nova and cinder
configurations. However, first complete testing and review the output of the log file before you
proceed, because disks that are still dependent on this value will not be accessible.

1. Review the existing fixed_key values. The values must match for both services.

crudini --get /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf keymgr
fixed_key

crudini --get /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf keymgr
fixed_key

2. IMPORTANT: Make a backup of the existing fixed_key values. This allows you to restore the
value if something goes wrong, or if you need to restore a backup that uses the old encryption
key.

3. Delete the fixed_key values:

crudini --del /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf keymgr
fixed_key

crudini --del /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf keymgr
fixed_key

33



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

CHAPTER 7. ENCRYPT AT-REST SWIFT OBJECTS

By default, objects uploaded to Object Storage are stored unencrypted. Because of this, it is possible to
access objects directly from the file system. This can present a security risk if disks are not properly
erased before they are discarded. When you have barbican enabled, the Object Storage service (swift)
can transparently encrypt and decrypt your stored (at-rest) objects. At-rest encryption is distinct from
in-transit encryption in that it refers to the objects being encrypted while being stored on disk.

Swift performs these encryption tasks transparently, with the objects being automatically encrypted
when uploaded to swift, then automatically decrypted when served to a user. This encryption and
decryption is done using the same (symmetric) key, which is stored in barbican.

NOTE

You cannot disable encryption after you have enabled encryption and added data to the
swift cluster, because the data is now stored in an encrypted state. Consequently, the
data will not be readable if encryption is disabled, until you re-enable encryption with the
same key.

7.1. ENABLE AT-REST ENCRYPTION FOR SWIFT
1. You can enable the swift encryption capabilities by including SwiftEncryptionEnabled: True in
your environment file, then re-running openstack overcloud deploy using

/home/stack/overcloud_deploy.sh. Note that you still need to enable barbican, as described in
the Install Barbican chapter.

2. Confirm that swift is configured to use at-rest encryption:

$ crudini --get /var/lib/config-data/puppet-generated/swift/etc/swift/proxy-server.conf pipeline-
main pipeline

pipeline = catch_errors healthcheck proxy-logging cache ratelimit bulk tempurl formpost
authtoken keystone staticweb copy container_quotas account_quotas slo dlo
versioned_writes kms_keymaster encryption proxy-logging proxy-server

The result should include an entry for encryption.

34



CHAPTER 8. VALIDATE GLANCE IMAGES

CHAPTER 8. VALIDATE GLANCE IMAGES

After enabling Barbican, you can configure the Image Service (glance) to verify that an uploaded image
has not been tampered with. In this implementation, the image is first signed with a key that is stored in
barbican. The image is then uploaded to glance, along with the accompanying signing information. As a
result, the image’s signature is verified before each use, with the instance build process failing if the
signature does not match.

Barbican's integration with glance means that you can use the openssl command with your private key
to sign glance images before uploading them.

8.1. ENABLE GLANCE IMAGE VALIDATION

In your environment file, enable image verification with the VerifyGlanceSignatures: True setting. You
must re-run the openstack overcloud deploy command for this setting to take effect.

To verify that glance image validation is enabled, run the following command on an overcloud Compute
node:

$ sudo crudini --get /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf glance
verify_glance_signatures

NOTE

If you use Ceph as the back end for the Image and Compute services, a CoW clone is
created. Therefore, Image signing verification cannot be performed.

8.2. VALIDATE AN IMAGE
To configure a glance image for validation, complete the following steps:

1. Confirm that glance is configured to use barbican:

$ sudo crudini --get /var/lib/config-data/puppet-generated/glance_api/etc/glance/glance-
api.conf key_manager backend
castellan.key_manager.barbican_key_manager.BarbicanKeyManager

2. Generate a private key and convert it to the required format:

openssl genrsa -out private_key.pem 1024

openssl rsa -pubout -in private_key.pem -out public_key.pem

openssl req -new -key private_key.pem -out cert_request.csr

openssl x509 -req -days 14 -in cert_request.csr -signkey private_key.pem -out
x509_signing_cert.crt

3. Add the key to the barbican secret store:

$ source ~/overcloudrc

$ openstack secret store --name signing-cert --algorithm RSA --secret-type certificate --
payload-content-type "application/octet-stream" --payload-content-encoding base64 --
payload "$(base64 x509_signing_cert.crt)" -c 'Secret href' -f value
https://192.168.123.170:9311/v1/secrets/5df14c2b-f221-4a02-948e-48a61edd3f5b

35



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

36

NOTE

Record the resulting UUID for use in a later step. In this example, the certificate's
UUID is 5df14c2b-f221-4a02-948e-48a61edd3f5b.

. Use private_key.pem to sign the image and generate the .signature file. For example:

$ openssl dgst -sha256 -sign private_key.pem -sigopt rsa_padding_mode:pss -out cirros-
0.4.0.signature cirros-0.4.0-x86_64-disk.img

. Convert the resulting .signature file into base64 format:

I $ base64 -w 0 cirros-0.4.0.signature > cirros-0.4.0.signature.b64

. Load the base64 value into a variable to use it in the subsequent command:

I $ cirros_signature_b64=$(cat cirros-0.4.0.signature.b64)

. Upload the signed image to glance. For img_signature_certificate_uuid, you must specify the

UUID of the signing key you previously uploaded to barbican:

openstack image create \

--container-format bare --disk-format gcow2 \

--property img_signature="$cirros_signature_b64" \

--property img_signature_certificate_uuid="5df14c2b-f221-4a02-948e-48a61edd3f5b"\
--property img_signature_hash_method="SHA-256" \

--property img_signature_key_type="RSA-PSS" cirros_0_4 0_signed \

--file cirros-0.4.0-x86_64-disk.img

+ +

-+

| Property | Value |

+ +

-+

| checksum | None |

| container_format | bare |

| created_at | 2018-01-23T05:37:31Z |

| disk_format | gcow?2 |

|id | d3396fa0-2ea2-4832-8a77-d36fa3f2ab27 |

| img_signature |
IcI7nGgoKxnCyOcsJ4abbEZEpzXByFPIgiPeiT+O0tjz0yvWOOKNN3fIOAA6tNn9EXrp7fb2xBDE4Ua
O3v |

| |
IFquV/s3mU4LcCiGdBAI3pGsMImZZIQFVNcUPOaayS1kQYKY7kxYmU9ig/AZYyPw37KQI52s
mC/zo054 |

| | zZ+JpnfwisM= |

| img_signature_certificate_uuid | ba3641c2-6a3d-445a-8543-851a68110eab

|
| img_signature_hash_method | SHA-256 |

| img_signature_key_type | RSA-PSS |
| min_disk |0 |

| min_ram |0 |

| name | cirros_0_4 0_signed |

| owner | 9f812310df904e6eal1ei1bacb84c9f1a



CHAPTER 8. VALIDATE GLANCE IMAGES

| protected | False |
| size | None |

| status | queued |
| tags l |

| updated_at | 2018-01-23T05:37:31Z

| virtual_size | None |
| visibility | shared |
+ +

-+

8. You can view glance’s image validation activities in the Compute log:
/var/log/containers/nova/nova-compute.log. For example, you can expect the following entry
when the instance is booted:

2018-05-24 12:48:35.256 1 INFO nova.image.glance [req-7c271904-4975-4771-9d26-
cbeabcOade31 b464b2fd2a2140e9a88bbdacf67bdd8c a3db2f2beaee454182c95b646fa7331f
- default default] Image signature verification succeeded for image d3396fa0-2ea2-4832-
8a77-d36fa3f2ab27

37



Red Hat OpenStack Platform 15 Manage Secrets with OpenStack Key Manager

CHAPTER 9. VALIDATE IMAGES USED FOR VOLUME
CREATION

The Block Storage Service (cinder) automatically validates the signature of any downloaded, signed
image during volume from image creation. The signature is validated before the image is written to the
volume.

To improve performance, you can use the Block Storage Image-Volume cache to store validated

images for creating new volumes. For more information, see Configure and Enable the Image-Volume
Cache of the Storage Guide.

NOTE

Cinder image signature validation does not work with Red Hat Ceph Storage or RBD
volumes.

9.1. VALIDATE THE IMAGE SIGNATURE ON A NEW VOLUME
This procedure demonstrates how you can use validate a volume signature created from a signed image.
1. Login to a controller node.

2. View cinder’s image validation activities in the Volume log, /var/log/containers/cinder/cinder-
volume.log.
For example, you can expect the following entry when the instance is booted:

2018-05-24 12:48:35.256 1 INFO cinder.image.image_utils [req-7¢c271904-4975-4771-9d26-
cbeabcOade31 b464b2fd2a2140e9a88bbdacf67bdd8c a3db2f2beaece454182c95b646fa7331f
- default default] Image signature verification succeeded for image d3396fa0-2ea2-4832-
8a77-d36fa3f2ab27

Alternatively, you can use the openstack volume list and cinder volume show commands.
1. Use the openstack volume list command to locate the volume ID.

2. Run the cinder volume show command on a compute node:

I cinder volume show <VOLUME_ID>

3. Locate the volume_image_metadata section with the line signature verified : True.

$ cinder show d0db26bb-449d-4111-a59a-6fbb080bb483

+- + +
| Property | Value |

+- + +
| attached_servers [ ] |

| attachment_ids [] |

| availability_zone | nova |

| bootable | true |

| consistencygroup_id | None |
| created_at | 2018-10-12T719:04:41.000000 |
| description | None |

| encrypted | True |

38


https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/storage_guide/ch-cinder#section-cinder-image-cache

CHAPTER 9. VALIDATE IMAGES USED FOR VOLUME CREATION

|id | d0db26bb-449d-4111-a59a-6fbb080bb483 |
| metadata | |

| migration_status | None |

| multiattach | False |

| name | None |

| os-vol-host-attr:host | centstack.localdomain@nfs#nfs |

| os-vol-mig-status-attr:migstat | None |
| os-vol-mig-status-attr:name_id | None |
| os-vol-tenant-attr:tenant_id | 1a081dd2505547f5a8bb1a230f2295f4

| replication_status | None |

| size | 1 |

| snapshot_id | None |

| source_volid | None |

| status | available |

| updated_at | 2018-10-12T19:05:13.000000 |

| user_id | ad9fe430b3a6416f908c79e4de3bfa98 |

| volume_image_metadata | checksum : f8ab98ff5e73ebab884d80c9dc9c7290 |

| | container_format : bare |

| | disk_format : gcow2 |

| | image_id : 154d4d4b-12bf-41dc-b7c4-35e5a6a3482a |
| | image_name : cirros-0.3.5-x86_64-disk |

| | min_disk : 0 |

| | min_ram : 0 |

| | signature_verified : False |

| | size : 13267968 |

| volume_type | nfs |

+ + +

39



	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. CHOOSING A BACKEND
	2.1. MIGRATING BETWEEN BACKENDS

	CHAPTER 3. INSTALLING BARBICAN
	3.1. ADD USERS TO THE CREATOR ROLE ON OVERCLOUD
	3.1.1. Test barbican functionality

	3.2. UNDERSTANDING POLICIES
	3.2.1. Viewing the default policy


	CHAPTER 4. MANAGING SECRETS IN BARBICAN
	4.1. LISTING SECRETS
	4.2. ADDING NEW SECRETS
	4.3. UPDATING SECRETS
	4.4. DELETING SECRETS
	4.5. GENERATE A SYMMETRIC KEY
	4.6. BACKUP AND RESTORE KEYS
	4.6.1. Backup and restore the simple crypto back end
	4.6.1.1. Backup and restore the KEK
	4.6.1.2. Backup and restore the back end database



	CHAPTER 5. BARBICAN HARDWARE SECURITY MODULE (HSM) INTEGRATION
	5.1. CHOOSING A BACKEND
	5.2. ENCRYPTED BLOB
	5.3. HARDWARE SECURITY MODULE (HSM) SUPPORT
	5.4. MIGRATING BETWEEN BACKENDS
	5.5. INTEGRATE WITH AN HSM APPLIANCE
	5.6. INTEGRATE BARBICAN WITH AN ATOS HSM
	5.7. REQUIREMENTS
	5.8. CONFIGURE THE CONTROLLER
	5.8.1. Test your HSM connection

	5.9. INTEGRATE BARBICAN WITH AN NCIPHER NSHIELD CONNECT XC
	5.10. CONFIGURE THE CONTROLLER
	5.10.1. Test your HSM connection

	5.11. REVIEW TLS ACTIVITY BETWEEN BARBICAN AND THE HSM
	5.12. KEY STORAGE CONSIDERATIONS
	5.13. ROTATING THE KEYS
	5.14. PLANNING BACKUP FOR BARBICAN AND THE HSM

	CHAPTER 6. ENCRYPTING CINDER VOLUMES
	6.1. MIGRATE EXISTING VOLUME KEYS TO BARBICAN
	6.1.1. Overview of the migration steps
	6.1.2. Behavioral differences
	6.1.3. Reviewing the migration process
	6.1.4. Troubleshooting the migration process
	6.1.4.1. Role assignment

	6.1.5. Clean up the fixed keys


	CHAPTER 7. ENCRYPT AT-REST SWIFT OBJECTS
	7.1. ENABLE AT-REST ENCRYPTION FOR SWIFT

	CHAPTER 8. VALIDATE GLANCE IMAGES
	8.1. ENABLE GLANCE IMAGE VALIDATION
	8.2. VALIDATE AN IMAGE

	CHAPTER 9. VALIDATE IMAGES USED FOR VOLUME CREATION
	9.1. VALIDATE THE IMAGE SIGNATURE ON A NEW VOLUME


