& RedHat

Red Hat OpenStack Platform 15

Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an
OpenStack cloud

Last Updated: 2021-01-21

Red Hat OpenStack Platform 15 Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an OpenStack

cloud

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide contains information on how to install Red Hat OpenStack Platform 15 in an enterprise
environment using the Red Hat OpenStack Platform director. This includes installing the director,
planning your environment, and creating an OpenStack environment with the director.

Table of Contents

Table of Contents

CHAPTER LLINTRODUCTION . i i i i et ettt ei i 7
11. UNDERCLOUD 7
1.2. OVERCLOUD 8
1.3. HIGH AVAILABILITY 10
1.4. CONTAINERIZATION 10

1.5. CEPH STORAGE il

PART |. DIRECTOR INSTALLATION AND CONFIGURATION ... ittt ii i eeieeaneenannes 13
CHAPTER 2. PLANNING YOURUNDERCLOUDtttiitttiittteitettiteeieeaneeeaneenaneennneenneenns 14
2.1. CONTAINERIZED UNDERCLOUD 14
2.2. PREPARING YOUR UNDERCLOUD NETWORKING 14
2.3. DETERMINING ENVIRONMENT SCALE 15
2.4. UNDERCLOUD DISK SIZING 15
2.5. VIRTUALIZATION SUPPORT 16
2.6. CHARACTER ENCODING CONFIGURATION 17
2.7. CONSIDERATIONS WHEN RUNNING THE UNDERCLOUD WITH A PROXY 17
2.8. UNDERCLOUD REPOSITORIES 19
CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION ...ttt et ieieeaneennneennnenns 21
3.1. PREPARING THE UNDERCLOUD 21
3.2. INSTALLING CEPH-ANSIBLE 23
3.3. PREPARING CONTAINER IMAGES 23
3.4. CONTAINER IMAGE PREPARATION PARAMETERS 24
3.5. LAYERING IMAGE PREPARATION ENTRIES 26
3.6. EXCLUDING CEPH STORAGE CONTAINER IMAGES 27
3.7. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES 27
3.8. MODIFYING IMAGES DURING PREPARATION 29
3.9. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES 29
3.10. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES 30
3.11. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE 30
3.12. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES 31
CHAPTER 4. INSTALLING DIRECTOR . tttiitttit ettt teit ettt eeateeaneeeaneennneeaneeeaneennneenn 34
4.1. CONFIGURING THE DIRECTOR 34
4.2. DIRECTOR CONFIGURATION PARAMETERS 34
4.3. CONFIGURING THE UNDERCLOUD WITH ENVIRONMENT FILES 39
4.4, COMMON HEAT PARAMETERS FOR UNDERCLOUD CONFIGURATION 40
4.5. CONFIGURING HIERADATA ON THE UNDERCLOUD 40
4.6.INSTALLING THE DIRECTOR 41
4.7. OBTAINING IMAGES FOR OVERCLOUD NODES 42
4.7.1. Single CPU architecture overclouds 42
4.7.2. Multiple CPU architecture overclouds 43
4.7.3. Minimal overcloud image 45
4.8.SETTING A NAMESERVER FOR THE CONTROL PLANE 46
4.9. UPDATING THE UNDERCLOUD CONFIGURATION 46
4.10. UNDERCLOUD CONTAINER REGISTRY 47
411 NEXT STEPS 48
PART Il. BASIC OVERCLOUD DEPLOYMENT Lottt teteeee et eaieeeaneennneeaneeeaneennns 49
CHAPTER 5. PLANNING YOUR OVERCLOUD ... iitittiitttiitttiteeneeaneeeaneennneeaneeraneennneenn 50

5.1. NODE ROLES 50

Red Hat OpenStack Platform 15 Director Installation and Usage

5.2. OVERCLOUD NETWORKS 51
5.3. OVERCLOUD STORAGE 52
5.4. OVERCLOUD SECURITY 53
5.5. OVERCLOUD HIGH AVAILABILITY 53
5.6. CONTROLLER NODE REQUIREMENTS 54
5.7. COMPUTE NODE REQUIREMENTS 55
5.8. CEPH STORAGE NODE REQUIREMENTS 55
5.9. OBJECT STORAGE NODE REQUIREMENTS 56
5.10. OVERCLOUD REPOSITORIES 57
CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITHCLITOOLSo 60
6.1. REGISTERING NODES FOR THE OVERCLOUD 60
6.2. INSPECTING THE HARDWARE OF NODES 62
6.3. TAGGING NODES INTO PROFILES 63
6.4. SETTING UEFI BOOT MODE 64
6.5. DEFINING THE ROOT DISK FOR MULTI-DISK CLUSTERS 64
6.6. USING THE OVERCLOUD-MINIMAL IMAGE TO AVOID USING A RED HAT SUBSCRIPTION ENTITLEMENT
66

6.7. CREATING ARCHITECTURE SPECIFIC ROLES 67
6.8. ENVIRONMENT FILES 67
6.9. CREATING AN ENVIRONMENT FILE THAT DEFINES NODE COUNTS AND FLAVORS 68
6.10. CREATING AN ENVIRONMENT FILE FOR UNDERCLOUD CA TRUST 69
6.11. DEPLOYMENT COMMAND 70
6.12. DEPLOYMENT COMMAND OPTIONS 70
6.13. INCLUDING ENVIRONMENT FILES IN AN OVERCLOUD DEPLOYMENT 75
6.14. VALIDATING THE OVERCLOUD CONFIGURATION BEFORE DEPLOYMENT OPERATIONS 77
6.15. OVERCLOUD DEPLOYMENT OQUTPUT 77
6.16. ACCESSING THE OVERCLOUD 78
6.17. NEXT STEPS 78
CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED NODES 79
7.1. PRE-PROVISIONED NODE REQUIREMENTS 79
7.2. CREATING A USER ON PRE-PROVISIONED NODES 80
7.3. REGISTERING THE OPERATING SYSTEM FOR PRE-PROVISIONED NODES 80
7.4. CONFIGURING SSL/TLS ACCESS TO DIRECTOR 82
7.5. CONFIGURING NETWORKING FOR THE CONTROL PLANE 82
7.6. USING A SEPARATE NETWORK FOR PRE-PROVISIONED NODES 84
7.7.MAPPING PRE-PROVISIONED NODE HOSTNAMES 85
7.8. CONFIGURING CEPH STORAGE FOR PRE-PROVISIONED NODES 86
7.9. CREATING THE OVERCLOUD WITH PRE-PROVISIONED NODES 86
7.10. OVERCLOUD DEPLOYMENT OUTPUT 87
7.1. ACCESSING THE OVERCLOUD 88
7.12. SCALING PRE-PROVISIONED NODES 88
7.13. REMOVING A PRE-PROVISIONED OVERCLOUD 90
7.14.NEXT STEPS 90
CHAPTER 8. DEPLOYING MULTIPLEOVERCLOUDS i 91
8.1. DEPLOYING ADDITIONAL OVERCLOUDS 91
8.2. MANAGING MULTIPLE OVERCLOUDS 93
PART lll. POST DEPLOYMENT OPERATIONS .. . i 95
CHAPTER 9. PERFORMING OVERCLOUD POST-INSTALLATIONTASKSot 96
9.1. CHECKING OVERCLOUD DEPLOYMENT STATUS 96

Table of Contents

9.2. CREATING BASIC OVERCLOUD FLAVORS 96
9.3. CREATING A DEFAULT TENANT NETWORK 97
9.4. CREATING A DEFAULT FLOATING IP NETWORK 97
9.5. CREATING A DEFAULT PROVIDER NETWORK 98
9.6. CREATING ADDITIONAL BRIDGE MAPPINGS 100
9.7.VALIDATING THE OVERCLOUD 100
9.8. PROTECTING THE OVERCLOUD FROM REMOVAL 101
CHAPTER 10. PERFORMING BASIC OVERCLOUD ADMINISTRATIONTASKSottt 102
10.1. MANAGING CONTAINERIZED SERVICES 102
10.2. MODIFYING THE OVERCLOUD ENVIRONMENT 105
10.3. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD 106
10.4. RUNNING THE DYNAMIC INVENTORY SCRIPT 107
10.5. REMOVING THE OVERCLOUD 108
CHAPTER 11. CONFIGURING THE OVERCLOUD WITHANSIBLEo 109
11.1. ANSIBLE-BASED OVERCLOUD CONFIGURATION (CONFIG-DOWNLOAD) 109
11.2. CONFIG-DOWNLOAD WORKING DIRECTORY 109
11.3. ENABLING ACCESS TO CONFIG-DOWNLOAD WORKING DIRECTORIES 10
11.4. CHECKING CONFIG-DOWNLOAD LOG 110
11.5. RUNNING CONFIG-DOWNLOAD MANUALLY 110
11.6. PERFORMING GIT OPERATIONS ON THE WORKING DIRECTORY 12
11.7. CREATING CONFIG-DOWNLOAD FILES MANUALLY 13
11.8. CONFIG-DOWNLOAD TOP LEVEL FILES 14
11.9. CONFIG-DOWNLOAD TAGS 14
11.10. CONFIG-DOWNLOAD DEPLOYMENT STEPS 15
T NEXT STEPS 116
CHAPTER12. SCALING OVERCLOUD NODES it n7z
12.1. ADDING NODES TO THE OVERCLOUD n7
12.2. INCREASING NODE COUNTS FOR ROLES 18
12.3. REMOVING COMPUTE NODES 19
12.4. REPLACING CEPH STORAGE NODES 121
12.5. REPLACING OBJECT STORAGE NODES 121
12.6. BLACKLISTING NODES 123
CHAPTER13. REPLACING CONTROLLERNODES i i 125
13.1. PREPARING FOR CONTROLLER REPLACEMENT 125
13.2. REMOVING A CEPH MONITOR DAEMON 126
13.3. PREPARING THE CLUSTER FOR CONTROLLER REPLACEMENT 128
13.4. REPLACING A CONTROLLER NODE 129
13.5. TRIGGERING THE CONTROLER NODE REPLACEMENT 130
13.6. CLEANING UP AFTER CONTROLLER NODE REPLACEMENT 131
CHAPTER14. REBOOTING NODES ... i i i e i et 133
14.1. REBOOTING THE UNDERCLOUD NODE 133
14.2. REBOOTING CONTROLLER AND COMPOSABLE NODES 133
14.3. REBOOTING STANDALONE CEPH MON NODES 134
14.4. REBOOTING A CEPH STORAGE (OSD) CLUSTER 134
14.5. REBOOTING COMPUTE NODES 135
PART IV. ADDITIONAL DIRECTOR OPERATIONS AND CONFIGURATIONttt 138
CHAPTER 15. CONFIGURING CUSTOM SSL/TLS CERTIFICATES 139
15.1. INITIALIZING THE SIGNING HOST 139

Red Hat OpenStack Platform 15 Director Installation and Usage

15.2. CREATING A CERTIFICATE AUTHORITY 139
15.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS 139
15.4. CREATING AN SSL/TLS KEY 140
15.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST 140
15.6. CREATING THE SSL/TLS CERTIFICATE 141
15.7. ADDING THE CERTIFICATE TO THE UNDERCLOUD 142
CHAPTER 16. ADDITIONAL INTROSPECTION OPERATIONS ... ittt ieii i eeneennnens 144
16.1. PERFORMING INDIVIDUAL NODE INTROSPECTION 144
16.2. PERFORMING NODE INTROSPECTION AFTER INITIAL INTROSPECTION 144
16.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE INFORMATION 144
CHAPTER 17. AUTOMATICALLY DISCOVERBARE METAL NODESiiittiiiiiiiiiieeneennnnns 150
17.1. REQUIREMENTS 150
17.2. ENABLE AUTO-DISCOVERY 150
17.3. TEST AUTO-DISCOVERY 151
17.4. USE RULES TO DISCOVER DIFFERENT VENDOR HARDWARE 151
CHAPTER 18. CONFIGURING AUTOMATIC PROFILETAGGINGiuiiiiiiiiiiiiiiieieianeennnnnns 153
18.1. POLICY FILE SYNTAX 153
18.2. POLICY FILE EXAMPLE 155
18.3. IMPORTING POLICY FILES 156
CHAPTER 19. CREATING WHOLE DISK IMAGES ...ttt ettt ei e aieeneeannens 158
19.1. SECURITY HARDENING MEASURES 158
19.2. WHOLE DISK IMAGE WORKFLOW 158
19.3. DOWNLOADING THE BASE CLOUD IMAGE 159
19.4. DISK IMAGE ENVIRONMENT VARIABLES 159
19.5. CUSTOMIZING THE DISK LAYOUT 160
19.6. MODIFYING THE PARTITIONING SCHEMA 161
19.7. MODIFYING THE IMAGE SIZE 163
19.8. BUILDING THE WHOLE DISK IMAGE 164
19.9. UPLOADING THE WHOLE DISK IMAGE 164
CHAPTER 20. CONFIGURING DIRECT DEPLOY ...ttt et teiteeaeennneeanneeaneeenneennnens 165
20.1. CONFIGURING THE DIRECT DEPLOQOY INTERFACE ON THE UNDERCLOUD 165
Procedure 165
CHAPTER 21. CREATING VIRTUALIZED CONTROL PLANES ... ittt ieii i eeneennnans 166
21.1. VIRTUALIZED CONTROL PLANE ARCHITECTURE 166
21.2. BENEFITS AND LIMITATIONS OF VIRTUALIZING YOUR RHOSP OVERCLOUD CONTROL PLANE 166
21.3. PROVISIONING VIRTUALIZED CONTROLLERS USING THE RED HAT VIRTUALIZATION DRIVER 167
PART V. TROUBLESHOOTING AND TIPS ...ttt ittt ettt ett e eaeeanteeaneennneenneenanns 170
CHAPTER 22. TROUBLESHOOTING DIRECTORERRORS ... ittt iiiiieieraneennnens 171
22.1. TROUBLESHOOTING NODE REGISTRATION 171
22.2. TROUBLESHOOTING HARDWARE INTROSPECTION 171
22.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS 173
22.4. TROUBLESHOOTING OVERCLOUD CREATION AND DEPLOYMENT 174
22.5. TROUBLESHOOTING NODE PROVISIONING 175
22.6. TROUBLESHOOTING IP ADDRESS CONFLICTS DURING PROVISIONING 176
22.7. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS 177
22.8. TROUBLESHOOTING OVERCLOUD CONFIGURATION 178
22.9. TROUBLESHOOTING CONTAINER CONFIGURATION 178

Table of Contents

22.10. TROUBLESHOOTING COMPUTE NODE FAILURES 181
22.11. CREATING AN SOSREPORT 181
2212. LOG LOCATIONS 182
CHAPTER 23. TIPS FOR UNDERCLOUD AND OVERCLOUD SERVICES ...ttt 183
23.1. REVIEW THE DATABASE FLUSH INTERVALS 183
23.2. TUNING DEPLOYMENT PERFORMANCE 186
23.3. RUNNING SWIFT-RING-BUILDER IN A CONTAINER 186
23.4. CHANGING THE SSL/TLS CIPHER RULES FOR HAPROXY 186
PART VI APPENDICES ... i i i e e e et et e, 188
APPENDIX A.POWER MANAGEMENT DRIVERSo i 189
AL INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI) 189
A.2. REDFISH 189
A.3.DELL REMOTE ACCESS CONTROLLER (DRAC) 189
A4, INTEGRATED LIGHTS-OUT (ILO) 190
A.5. CISCO UNIFIED COMPUTING SYSTEM (UCS) 190
A.6. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC) 191
A.7.RED HAT VIRTUALIZATION 192
A.8. MANUAL-MANAGEMENT DRIVER 192
APPENDIX B. RED HAT OPENSTACK PLATFORM FORPOWER 194
B.1. CEPH STORAGE 194
B.2. COMPOSABLE SERVICES 194

Red Hat OpenStack Platform 15 Director Installation and Usage

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

The Red Hat OpenStack Platform director is a toolset for installing and managing a complete
OpenStack environment. Director is based primarily on the OpenStack project TripleO, which is an
abbreviation of "OpenStack-On-OpenStack”. This project consists of OpenStack components that you
can use to install a fully operational OpenStack environment. This includes OpenStack components that
provision and control bare metal systems to use as OpenStack nodes. This provides a simple method for
installing a complete Red Hat OpenStack Platform environment that is both lean and robust.

The Red Hat OpenStack Platform director uses two main concepts: an undercloud and an overcloud.

The undercloud installs and configures the overcloud. The next few sections outline the concept of
each.

OVERCLOUD (pepioyed Cloud)

CONTROLLER COMPUTE STORAGE
NODES NODES NODES

Deploy, configure
& manage nodes

et .

UNDERCLOUD (pirecton

1.1. UNDERCLOUD

The undercloud is the main management node that contains the OpenStack Platform director toolset. It
is a single-system OpenStack installation that includes components for provisioning and managing the
OpenStack nodes that form your OpenStack environment (the overcloud). The components that form
the undercloud have multiple functions:

Environment Planning

The undercloud includes planning functions for users to create and assign certain node roles. The
undercloud includes a default set of nodes: Compute, Controller, and various storage roles. You can
also design custom roles. Additionally, you can select which OpenStack Platform services to include
on each node role, which provides a method to model new node types or isolate certain components
on their own host.

Bare Metal System Control

The undercloud uses the out-of-band management interface, usually Intelligent Platform
Management Interface (IPMI), of each node for power management control and a PXE-based
service to discover hardware attributes and install OpenStack on each node. You can use this feature
to provision bare metal systems as OpenStack nodes. See Appendix A, Power Management Drivers
for a full list of power management drivers.

Orchestration

The undercloud contains a set of YAML templates that represent a set of plans for your environment.
The undercloud imports these plans and follows their instructions to create the resulting OpenStack

Red Hat OpenStack Platform 15 Director Installation and Usage

environment. The plans also include hooks that you can use to incorporate your own customizations
as certain points in the environment creation process.

Undercloud Components

The undercloud uses OpenStack components as its base tool set. Each component operates within a
separate container on the undercloud:

® OpenStack Identity (keystone) - Provides authentication and authorization for the director’s
components.

® OpenStack Bare Metal (ironic) and OpenStack Compute (nova) - Manages bare metal
nodes.

® OpenStack Networking (neutron) and Open vSwitch - Controls networking for bare metal
nodes.

® OpenStack Image Service (glance) - Stores images that director writes to bare metal
machines.

® OpenStack Orchestration (heat) and Puppet - Provides orchestration of nodes and
configuration of nodes after the director writes the overcloud image to disk.

® OpenStack Telemetry (ceilometer) - Performs monitoring and data collection. This also
includes:

o OpenStack Telemetry Metrics (gnocchi) - Provides a time series database for metrics.

o OpenStack Telemetry Alarming (aodh) - Provides an alarming component for
monitoring.

o OpenStack Telemetry Event Storage (panko) - Provides event storage for monitoring.

® OpenStack Workflow Service (mistral) - Provides a set of workflows for certain director-
specific actions, such as importing and deploying plans.

® OpenStack Messaging Service (zaqar) - Provides a messaging service for the OpenStack
Workflow Service.

® OpenStack Object Storage (swift) - Provides object storage for various OpenStack
Platform components, including:

o Image storage for OpenStack Image Service
o Introspection data for OpenStack Bare Metal

o Deployment plans for OpenStack Workflow Service

1.2. OVERCLOUD

The overcloud is the resulting Red Hat OpenStack Platform environment that the undercloud creates.
The overcloud consists of multiple nodes with different roles that you define based on the OpenStack
Platform environment that you want to create. The undercloud includes a default set of overcloud node
roles:

Controller

CHAPTER 1. INTRODUCTION

Controller nodes provide administration, networking, and high availability for the OpenStack
environment. A recommended OpenStack environment contains three Controller nodes together in
a high availability cluster.
A default Controller node role supports the following components. Not all of these services are
enabled by default. Some of these components require custom or pre-packaged environment files to

enable:

Compute

OpenStack Dashboard (horizon)
OpenStack Identity (keystone)
OpenStack Compute (nova) API
OpenStack Networking (neutron)
OpenStack Image Service (glance)
OpenStack Block Storage (cinder)
OpenStack Object Storage (swift)
OpenStack Orchestration (heat)
OpenStack Telemetry Metrics (gnocchi)
OpenStack Telemetry Alarming (aodh)
OpenStack Telemetry Event Storage (panko)
OpenStack Clustering (sahara)
OpenStack Shared File Systems (manila)
OpenStack Bare Metal (ironic)

MariaDB

Open vSwitch

Pacemaker and Galera for high availability services.

Compute nodes provide computing resources for the OpenStack environment. You can add more
Compute nodes to scale out your environment over time. A default Compute node contains the
following components:

Storage

OpenStack Compute (nova)
KVM/QEMU
OpenStack Telemetry (ceilometer) agent

Open vSwitch

Red Hat OpenStack Platform 15 Director Installation and Usage

Storage nodes that provide storage for the OpenStack environment. The following list contains
information about the various types of storage node in Red Hat OpenStack Platform:

® Ceph Storage nodes - Used to form storage clusters. Each node contains a Ceph Object
Storage Daemon (OSD). Additionally, the director installs Ceph Monitor onto the Controller
nodes in situations where you deploy Ceph Storage nodes as part of your environment.

® Block storage (cinder) - Used as external block storage for highly available Controller nodes.
This node contains the following components:

o OpenStack Block Storage (cinder) volume
o OpenStack Telemetry agents
o Open vSwitch.
® Object storage (swift) - These nodes provide a external storage layer for OpenStack Swift.

The Controller nodes access object storage nodes through the Swift proxy. Object storage
node contains the following components:

o OpenStack Object Storage (swift) storage
o OpenStack Telemetry agents

o Open vSwitch.

1.3. HIGH AVAILABILITY

The Red Hat OpenStack Platform director uses a Controller node cluster to provide highly available
services to your OpenStack Platform environment. For each service, the director installs the same
components on all Controller node and manages the Controller nodes together as a single service. This
type of cluster configuration provides a fallback in the event of operational failures on a single Controller
node. This provides OpenStack users with a certain degree of continuous operation.

The OpenStack Platform director uses some key pieces of software to manage components on the
Controller node:

® Pacemaker - Pacemaker is a cluster resource manager. Pacemaker manages and monitors the
availability of OpenStack components across all nodes in the cluster.

® HAProxy - Provides load balancing and proxy services to the cluster.
® Galera - Replicates the Red Hat OpenStack Platform database across the cluster.

® Memcached - Provides database caching.

NOTE

® From version 13 and later, you can use the director to deploy High Availability for
Compute Instances (Instance HA). With Instance HA you can automate
evacuating instances from a Compute node when the Compute node fails.

1.4. CONTAINERIZATION

10

CHAPTER 1. INTRODUCTION

Each OpenStack Platform service on the undercloud and overcloud runs inside an individual Linux
container on their respective node. This containerization provides a method to isolate services, maintain
the environment, and upgrade OpenStack Platform.

Red Hat OpenStack Platform 15 supports installation on the Red Hat Enterprise Linux 8 operating
system. Red Hat Enterprise Linux 8 no longer includes Docker and provides a new set of tools to replace
the Docker ecosystem. This means OpenStack Platform 15 replaces Docker with these new tools for
OpenStack Platform deployment and upgrades.

Podman

Pod Manager (Podman) is a container management tool. It implements almost all Docker CLI
commands, not including commands related to Docker Swarm. Podman manages pods, containers,
and container images. One of the major differences between Podman and Docker is Podman can
manage resources without a daemon running in the background.

For more information on Podman, see the Podman website.

Buildah

Buildah specializes in building Open Containers Initiative (OCI) images, which you use in conjunction
with Podman. Buildah commands replicate what you find in a Dockerfile. Buildah also provides a
lower-level coreutils interface to build container images, which helps you build containers without
requiring a Dockerfile. Buildah also uses other scripting languages to build container images without
requiring a daemon.

For more information on Buildah, see the Buildah website.

Skopeo

Skopeo provides operators with a method to inspect remote container images, which helps director
collect data when pulling images. Additional features include copying container images from one
registry to another and deleting images from registries.

Red Hat supports several methods of obtaining container images for your overcloud:
® Pulling container images directly from the Red Hat Container Catalog
® Hosting container images on the undercloud
® Hosting container images on a Satellite 6 server

This guide containers information about configuring your container image registry details and perform
basic container operations.

1.5. CEPH STORAGE

It is common for large organizations using OpenStack to serve thousands of clients or more. Each
OpenStack client is likely to have their own unique needs when consuming block storage resources.
Deploying glance (images), cinder (volumes) and/or nova (Compute) on a single node can become
impossible to manage in large deployments with thousands of clients. Scaling OpenStack externally
resolves this challenge.

However, there is also a practical requirement to virtualize the storage layer with a solution like Red Hat
Ceph Storage so that you can scale the Red Hat OpenStack Platform storage layer from tens of
terabytes to petabytes (or even exabytes) of storage. Red Hat Ceph Storage provides this storage
virtualization layer with high availability and high performance while running on commodity hardware.
While virtualization might seem like it comes with a performance penalty, Ceph stripes block device

1

https://podman.io/
https://buildah.io/

Red Hat OpenStack Platform 15 Director Installation and Usage

images as objects across the cluster, meaning that large Ceph Block Device images have better
performance than a standalone disk. Ceph Block devices also support caching, copy-on-write cloning,
and copy-on-read cloning for enhanced performance.

See Red Hat Ceph Storage for additional information about Red Hat Ceph Storage.

NOTE

For multi-architecture clouds, Red Hat supports only pre-installed or external Ceph
implementation. See Integrating an Overcloud with an Existing Red Hat Ceph Cluster and
Appendix B, Red Hat OpenStack Platform for POWER for more details.

12

https://access.redhat.com/products/red-hat-ceph-storage
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/integrating_an_overcloud_with_an_existing_red_hat_ceph_cluster/

PART I. DIRECTOR INSTALLATION AND CONFIGURATION

PART |. DIRECTOR INSTALLATION AND CONFIGURATION

13

Red Hat OpenStack Platform 15 Director Installation and Usage

CHAPTER 2. PLANNING YOUR UNDERCLOUD

2.1. CONTAINERIZED UNDERCLOUD

The undercloud is the node that controls the configuration, installation, and management of your final
OpenStack Platform environment, which is called the overcloud. The undercloud itself uses OpenStack
Platform components in the form of containers to create a toolset called OpenStack Platform director.
This means the undercloud pulls a set of container images from a registry source, generates
configuration for the containers, and runs each OpenStack Platform service as a container. As a result,
the undercloud provides a containerized set of services you can use as a toolset for creating and
managing your overcloud.

Since both the undercloud and overcloud uses containers, both use the same architecture to pull,
configure, and run containers. This architecture is based on the OpenStack Orchestration service (heat)
for provisioning nodes and uses Ansible for configuring services and containers. It is useful to have some
familiarity with Heat and Ansible to help you troubleshoot issues you might encounter.

2.2. PREPARING YOUR UNDERCLOUD NETWORKING
The undercloud requires access to two main networks:

® The Provisioning or Control Plane network which is the network the director uses to provision
your nodes and access them over SSH when executing Ansible configuration. This network also
enables SSH access from the undercloud to overcloud nodes. The undercloud contains DHCP
services for introspection and provisioning other nodes on this network, which means no other
DHCP services should exist on this network. The director configures the interface for this
network.

® The External network that enables access to OpenStack Platform repositories, container
image sources, and other servers such as DNS servers or NTP servers. Use this network for
standard access the undercloud from your workstation. You must manually configure an
interface on the undercloud to access the external network.

The undercloud requires a minimum of 2 x 1 Gbps Network Interface Cards: one for the Provisioning or
Control Plane network and one for the External network However, it is recommended to use a 10
Gbps interface for Provisioning network traffic, especially if provisioning a large number of nodes in your
overcloud environment.

Note the following:

® Do not use the same Provisioning or Control Plane NIC as the one that you use to access the
director machine from your workstation. The director installation creates a bridge by using the
Provisioning NIC, which drops any remote connections. Use the External NIC for remote
connections to the director system.

® The Provisioning network requires an IP range that fits your environment size. Use the following
guidelines to determine the total number of IP addresses to include in this range:

o Include at least one temporary IP address for each node connected to the Provisioning
network during introspection.

o Include at least one permanent IP address for each node connected to the Provisioning
network during deployment.

14

CHAPTER 2. PLANNING YOUR UNDERCLOUD

o Include an extra IP address for the virtual IP of the overcloud high availability cluster on the
Provisioning network.

o Include additional IP addresses within this range for scaling the environment.

2.3. DETERMINING ENVIRONMENT SCALE

Prior to installing the undercloud, it is recommended to determine the scale of your environment. Include
the following factors when planningyour environment:

® How many nodes in your overcloud?The undercloud manages each node within an overcloud.
Provisioning overcloud nodes consumes resources on the undercloud. You must provide your
undercloud with enough resources to adequately provision and control overcloud nodes.

e How many simultaneous operations do you want the undercloud performMost OpenStack
services on the undercloud use a set of workers. Each worker performs an operation specific to
that service. Multiple workers provide simultaneous operations. The default number of workers

on the undercloud is determined by halving the undercloud’s total CPU thread count ('], For
example, if your undercloud has a CPU with 16 threads, then the director services spawn 8
workers by default. The director also uses a set of minimum and maximum caps by default:

Service Minimum Maximum
OpenStack Orchestration (heat) 4 24
All other service 2 12

The undercloud has the minimum CPU and memory requirements:

® An 8-thread 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions. This
provides 4 workers for each undercloud service.

® A minimum of 24 GB of RAM.

o The ceph-ansible playbook consumes 1 GB resident set size (RSS) per 10 hosts deployed
by the undercloud. If the deployed overcloud will use an existing Ceph cluster, or if it will
deploy a new Ceph cluster, then provision undercloud RAM accordingly.

To use a larger number of workers, increase your undercloud’s vCPUs and memory using the following
recommendations:

® Minimum: Use 1.5 GB of memory per thread. For example, a machine with 48 threads should
have 72 GB of RAM. This provides the minimum coverage for 24 Heat workers and 12 workers
for other services.

® Recommended: Use 3 GB of memory per thread. For example, a machine with 48 threads
should have 144 GB of RAM. This provides the recommended coverage for 24 Heat workers and
12 workers for other services.

2.4. UNDERCLOUD DISK SIZING

The recommended minimum undercloud disk size is 100 GB of available disk space on the root disk:

15

Red Hat OpenStack Platform 15 Director Installation and Usage

® 20 GB for container images

® 10 GB to accommodate QCOW?2 image conversion and caching during the node provisioning
process

e 70 GB+ for general usage, logging, metrics, and growth

2.5. VIRTUALIZATION SUPPORT

Red Hat only supports a virtualized undercloud on the following platforms:

Platform Notes

Kernel-based Virtual Machine (KVM) Hosted by Red Hat Enterprise Linux 8, as listed on
certified hypervisors.

Red Hat Virtualization Hosted by Red Hat Virtualization 4.x, as listed on
certified hypervisors.

Microsoft Hyper-V Hosted by versions of Hyper-V as listed on the Red
Hat Customer Portal Certification Catalogue.

VMware ESX and ESXi Hosted by versions of ESX and ESXi as listed on the
Red Hat Customer Portal Certification Catalogue

IMPORTANT

Red Hat OpenStack Platform director requires that Red Hat Enterprise Linux 8.2 is
installed as the host operating system. This means your virtualization platform must also
support the underlying Red Hat Enterprise Linux version.

Virtual Machine Requirements

Resource requirements for a virtual undercloud are similar to those of a bare metal undercloud. You
should consider the various tuning options when provisioning such as network model, guest CPU
capabilities, storage backend, storage format, and caching mode.

Network Considerations

Note the following network considerations for your virtualized undercloud:

Power Management

The undercloud VM requires access to the overcloud nodes' power management devices. This is the
IP address set for the pm_addr parameter when registering nodes.

Provisioning network

The NIC used for the provisioning (ctlplane) network requires the ability to broadcast and serve
DHCP requests to the NICs of the overcloud'’s bare metal nodes. As a recommendation, create a
bridge that connects the VM's NIC to the same network as the bare metal NICs.

16

https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat OpenStack Platform
https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat OpenStack Platform

CHAPTER 2. PLANNING YOUR UNDERCLOUD

NOTE

A common problem occurs when the hypervisor technology blocks the undercloud from
transmitting traffic from an unknown address. - If using Red Hat Enterprise Virtualization,
disable anti-mac-spoofing to prevent this. - If using VMware ESX or ESXi, allow forged
transmits to prevent this. You must power off and on the director VM after you apply
these settings. Rebooting the VM is not sufficient.

2.6. CHARACTER ENCODING CONFIGURATION
Red Hat OpenStack Platform has special character encoding requirements as part of the locale settings:

® Use UTF-8 encoding on all nodes. Ensure the LANG environment variable is set to en_US.UTF-
8 on all nodes.

® Avoid using non-ASCII characters if you use Red Hat Ansible Tower to automate the creation of
Red Hat OpenStack Platform resources.

2.7. CONSIDERATIONS WHEN RUNNING THE UNDERCLOUD WITH A
PROXY

If your environment uses a proxy, review these considerations to best understand the different
configuration methods of integrating parts of Red Hat OpenStack Platform with a proxy and the
limitations of each method.

System-wide proxy configuration

Use this method to configure proxy communication for all network traffic on the undercloud. To
configure the proxy settings, edit the /etc/environment file and set the following environment variables:

http_proxy

The proxy that you want to use for standard HTTP requests.
https_proxy

The proxy that you want to use for HTTPs requests.
no_proxy

A comma-separated list of domains that you want to exclude from proxy communications.
The system-wide proxy method has the following limitations:

® The no_proxy variable primarily uses domain names (www.example.com), domain suffixes
(example.com), and domains with a wildcard (*.example.com). Most Red Hat OpenStack
Platform services interpret IP addresses in no_proxy but certain services, such as container
health checks, do not interpret IP addresses in the no_proxy environment variable due to
limitations with cURL and wget. To use a system-wide proxy with the undercloud, disable
container health checks with the container_healthcheck_disabled parameter in the
undercloud.conf file during installation.

dnf proxy configuration

Use this method to configure dnf to run all traffic through a proxy. To configure the proxy settings, edit
the /etc/dnf/dnf.conf file and set the following parameters:

proxy
The URL of the proxy server.

17

Red Hat OpenStack Platform 15 Director Installation and Usage

proxy_username
The username that you want to use to connect to the proxy server.
proxy_password
The password that you want to use to connect to the proxy server.
proxy_auth_method

The authentication method used by the proxy server.
For more information about these options, run man dnf.conf.
The dnf proxy method has the following limitations:
® This method provides proxy support only for dnf.

® The dnf proxy method does not include an option to exclude certain hosts from proxy
communication.

Red Hat Subscription Manager proxy

Use this method to configure Red Hat Subscription Manager to run all traffic through a proxy. To
configure the proxy settings, edit the /etc/rhsm/rhsm.conf file and set the following parameters:

proxy_hostname

Host for the proxy.
proxy_scheme

The scheme for the proxy when writing out the proxy to repo definitions.
proxy_port

The port for the proxy.
proxy_username

The username that you want to use to connect to the proxy server.
proxy_password

The password to use for connecting to the proxy server.
no_proxy

A comma-separated list of hostname suffixes for specific hosts that you want to exclude from proxy
communication.

For more information about these options, run man rhsm.conf.
The Red Hat Subscription Manager proxy method has the following limitations:
® This method provides proxy support only for Red Hat Subscription Manager.

® The values for the Red Hat Subscription Manager proxy configuration override any values set
for the system-wide environment variables.

Transparent proxy

If your network uses a transparent proxy to manage application layer traffic, you do not need to
configure the undercloud itself to interact with the proxy because proxy management occurs
automatically. A transparent proxy can help overcome limitations associated with client-based proxy
configuration in Red Hat OpenStack Platform.

18

CHAPTER 2. PLANNING YOUR UNDERCLOUD

2.8. UNDERCLOUD REPOSITORIES

Enable the following repositories for the installation and configuration of the undercloud.

Core repositories

The following table lists core repositories for installing the undercloud.

Repository

Description of Requirement

Red Hat Enterprise Linux 8 for
x86_64 - BaseOS (RPMs)

Red Hat Enterprise Linux 8 for
x86_64 - AppStream (RPMs)

Red Hat Enterprise Linux 8 for
x86_64 - High Availability (RPMs)

Red Hat Ansible Engine 2.8 for
RHEL 8 x86_64 (RPMs)

Red Hat Satellite Tools for RHEL
8 Server RPMs x86_64

Red Hat OpenStack Platform 15
for RHEL 8 (RPMs)

Red Hat Fast Datapath for RHEL
8 (RPMS)

rhel-8-for-x86_64-baseos-
rpms

rhel-8-for-x86_64-appstream-
rpms

rhel-8-for-x86_64-

highavailability-rpms

ansible-2.8-for-rhel-8-
x86_64-rpms

satellite-tools-6.5-for-rhel-8-
x86_64-rpms

openstack-15-for-rhel-8-
x86_64-rpms

fast-datapath-for-rhel-8-
x86_64-rpms

Base operating system repository
for x86_64 systems.

Contains Red Hat OpenStack
Platform dependencies.

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Ansible Engine for Red Hat
Enterprise Linux. Used to provide
the latest version of Ansible.

Tools for managing hosts with Red
Hat Satellite 6.

Core Red Hat OpenStack
Platform repository, which
contains packages for Red Hat
OpenStack Platform director.

Provides Open vSwitch (OVS)
packages for OpenStack
Platform.

IBM POWER repositories

The following table lists repositories for Openstack Platform on POWER PC architecture. Use these
repositories in place of equivalents in the Core repositories.

Description of Requirement

Repository

Red Hat Enterprise Linux for IBM
Power, little endian - BaseOS
(RPMs)

rhel-8-for-ppc64le-baseos-
rpms

Base operating system repository
for ppc64le systems.

rhel-8-for-ppc64le-
appstream-rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 8 for
IBM Power, little endian -
AppStream (RPMs)

19

Red Hat OpenStack Platform 15 Director Installation and Usage

Repository

Description of Requirement

Red Hat Enterprise Linux 8 for
IBM Power, little endian - High
Availability (RPMs)

Red Hat Ansible Engine 2.8 for
RHEL 8 IBM Power, little endian
(RPMs)

Red Hat OpenStack Platform 15
for RHEL 8 (RPMs)

rhel-8-for-ppc64le-
highavailability-rpms

ansible-2.8-for-rhel-8-
ppc64le-rpms

openstack-15-for-rhel-8-
ppc64le-rpms

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Ansible Engine for Red Hat
Enterprise Linux. Used to provide
the latest version of Ansible.

Core Red Hat OpenStack
Platform repository for ppc64le
systems.

[1]In this instance, thread count refers to the number of CPU cores multiplied by the hyper-threading value

20

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

3.1. PREPARING THE UNDERCLOUD
The director installation requires the following:
® A non-root user to execute commands.
® Directories to organize images and templates
® Aresolvable hostname
® A Red Hat subscription
® The command line tools for image preparation and director installation

This procedure shows how to create these items.

Procedure

1. Log into your undercloud as the root user.

2. Create the stack user:
I [root@director ~]# useradd stack
3. Set a password for the user:
I [root@director ~]# passwd stack
4. Disable password requirements when using sudo:

[root@director ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack
[root@director ~]# chmod 0440 /etc/sudoers.d/stack

5. Switch to the new stack user:

[root@director ~]# su - stack
[stack@director ~]$

6. Create directories for system images and Heat templates.

[stack@director ~]$ mkdir ~/images
[stack@director ~]$ mkdir ~/templates

The director uses system images and Heat templates to create the overcloud environment. Red
Hat recommends creating these directories to help you organize your local file system.

7. Check the base and full hostname of the undercloud:

[stack@director ~]$ hostname
[stack@director ~]$ hostname -f

21

Red Hat OpenStack Platform 15 Director Installation and Usage

22

If either of the previous commands do not report the correct fully-qualified hostname or report
an error, use hostnamectl to set a hostname:

[stack@director ~]$ sudo hostnamectl set-hostname manager.example.com
[stack@director ~]$ sudo hostnamectl set-hostname --transient manager.example.com

8. Edit the /etc/hosts to include an entry for the system’s hostname. The IP address in /etc/hosts
must match the address that you plan to use for your undercloud public API. For example, if the
system is named manager.example.com and uses 10.0.0.1 for its IP address, then /etc/hosts
requires an entry like:

I 10.0.0.1 manager.example.com manager

9. Register your system either with the Red Hat Content Delivery Network or with a Red Hat
Satellite. For example, run the following command to register the system to the Content
Delivery Network. Enter your Customer Portal user name and password when prompted:

I [stack@director ~]$ sudo subscription-manager register
10. Find the entitlement pool ID for Red Hat OpenStack Platform director. For example:

[stack@director ~]$ sudo subscription-manager list --available --all --matches="Red Hat

OpenStack”
Subscription Name: Name of SKU
Provides: Red Hat Single Sign-On
Red Hat Enterprise Linux Workstation
Red Hat CloudForms
Red Hat OpenStack
Red Hat Software Collections (for RHEL Workstation)
Red Hat Virtualization
SKU: SKU-Number
Contract: Contract-Number
Pool ID: Valid-Pool-Number-123456
Provides Management: Yes
Available: 1
Suggested: 1
Service Level: Support-level

Service Type: Service-Type
Subscription Type: Sub-type
Ends: End-date
System Type: Physical

1. Locate the Pool ID value and attach the Red Hat OpenStack Platform 15 entitlement:

I [stack@director ~]$ sudo subscription-manager attach --pool=Valid-Pool-Number-123456

12. Disable all default repositories, and then enable the required Red Hat Enterprise Linux
repositories:

[stack@director ~]$ sudo subscription-manager repos --disable=*

[stack@director ~]$ sudo subscription-manager repos --enable=rhel-8-for-x86_64-baseos-
rpms --enable=rhel-8-for-x86_64-appstream-rpms --enable=rhel-8-for-x86_64-
highavailability-rpms --enable=ansible-2.8-for-rhel-8-x86_64-rpms --enable=openstack-15-
for-rhel-8-x86_64-rpms --enable=fast-datapath-for-rhel-8-x86_64-rpms

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

These repositories contain packages the director installation requires.

13. Set the RHEL version to RHEL 8.2:
I [stack@director ~]$ sudo subscription-manager release --set=8.2

14. Perform an update on your system to ensure you have the latest base system packages:

[stack@director ~]$ sudo dnf update -y
[stack@director ~]$ sudo reboot

15. Install the command line tools for director installation and configuration:

I [stack@director ~]$ sudo dnf install -y python3-tripleoclient

3.2. INSTALLING CEPH-ANSIBLE
The ceph-ansible package is required when you use Ceph Storage with Red Hat OpenStack Platform.
If you use Red Hat Ceph Storage, or if your deployment uses an external Ceph Storage cluster, install

the ceph-ansible package. For more information about integrating with an existing Ceph Storage
cluster, see Integrating an Overcloud with an Existing Red Hat Ceph Cluster .

Procedure

1. Enable the Ceph Tools repository:

[stack@director ~]$ sudo subscription-manager repos --enable=rhceph-4-tools-for-rhel-8-
x86_64-rpms
2. Install the ceph-ansible package:

I [stack@director ~]$ sudo dnf install -y ceph-ansible

3.3. PREPARING CONTAINER IMAGES
The undercloud configuration requires initial registry configuration to determine where to obtain images

and how to store them. Complete the following steps to generate and customize an environment file for
preparing your container images.

Procedure
1. Login to your undercloud host as the stack user.

2. Generate the default container image preparation file:

$ openstack tripleo container image prepare default \
--local-push-destination \
--output-env-file containers-prepare-parameter.yaml

This command includes the following additional options:

23

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/integrating_an_overcloud_with_an_existing_red_hat_ceph_cluster/index

Red Hat OpenStack Platform 15 Director Installation and Usage

e -Jocal-push-destination sets the registry on the undercloud as the location for container
images. This means the director pulls the necessary images from the Red Hat Container
Catalog and pushes them to the registry on the undercloud. The director uses this registry
as the container image source. To pull directly from the Red Hat Container Catalog, omit
this option.

e --output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images. In this case, the name of the file is
containers-prepare-parameter.yamil.

NOTE

You can also use the same containers-prepare-parameter.yaml file to
define a container image source for both the undercloud and the overcloud.

ol

3. Edit the containers-prepare-parameter.yaml and make the modifications to suit your
requirements.

3.4. CONTAINER IMAGE PREPARATION PARAMETERS

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the
ContainerlmagePrepare Heat parameter. This parameter defines a list of strategies for preparing a set
of images:

parameter_defaults:
ContainerlmagePrepare:
- (strategy one)
- (strategy two)
- (strategy three)

Each strategy accepts a set of sub-parameters that define which images to use and what to do with
them. The following table contains information about the sub-parameters you can use with each
ContainerlmagePrepare strategy:

Parameter Description

excludes List of image name substrings to exclude from a
strategy.
includes List of image name substrings to include in a

strategy. At least one image name must match an
existing image. All excludes are ignored ifincludes
is specified.

modify_append_tag String to append to the tag for the destination image.
For example, if you pull an image with the tag 14.0-
89 and set the modify_append_tag to -hotfix, the
director tags the final image as 14.0-89-hotfix.

24

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

Parameter Description

modify_only_with_labels A dictionary of image labels that filter the images to
modify. If an image matches the labels defined, the
director includes the image in the modification
process.

modify_role String of ansible role names to run during upload but
before pushing the image to the destination registry.

modify_vars Dictionary of variables to pass to modify_role.

push_destination The namespace of the registry to push images during
the upload process. When you specify a namespace
for this parameter, all image parameters use this
namespace too. If set to true, the
push_destination is set to the undercloud registry
namespace. It is not recommended to set this
parameters to false in production environments. If
this is set to false or not provided and the remote
registry requires authentication, set the
ContainerlmageRegistryLogin parameter to
true and provide the credentials with the
ContainerlmageRegistryCredentials
parameter.

pull_source The source registry from where to pull the original
container images.

set A dictionary of key: value definitions that define
where to obtain the initial images.

tag_from_label Defines the label pattern to tag the resulting images.
Usually sets to {version}-{release}.

The set parameter accepts a set of key: value definitions. The following table contains information
about the keys:

Key Description

ceph_image The name of the Ceph Storage container image.

ceph_namespace The namespace of the Ceph Storage container
image.

ceph_tag The tag of the Ceph Storage container image.

name_prefix A prefix for each OpenStack service image.

25

Red Hat OpenStack Platform 15 Director Installation and Usage

Key Description

name_suffix A suffix for each OpenStack service image.
namespace The namespace for each OpenStack service image.
neutron_driver The driver to use to determine which OpenStack

Networking (neutron) container to use. Use a null
value to set to the standard heutron-server
container. Set to ovn to use OVN-based containers.

tag The tag that the director uses to identify the images
to pull from the source registry. You usually keep this
key set to latest.

The ContainerlmageRegistryCredentials parameter maps a container registry to a username and
password to authenticate to that registry.

If a container registry requires a username and password, you can use
ContainerimageRegistryCredentials to include their values with the following syntax:

ContainerlmagePrepare:
- push_destination: 192.168.24.1:8787
set:
namespace: registry.redhat.io/...

ContainerlImageRegistryCredentials:
registry.redhat.io:
my_username: my_password

In the example, replace my_username and my_password with your authentication credentials. Instead
of using your individual user credentials, Red Hat recommends creating a registry service account and
using those credentials to access registry.redhat.io content. For more information, see "Red Hat
Container Registry Authentication”.

The ContainerlmageRegistryLogin parameter is used to control the registry login on the systems
being deployed. This must be set to true if push_destination is set to false or not used.

ContainerlmagePrepare:
- seft:
namespace: registry.redhat.io/...

ContainerlmageRegistryCredentials:
registry.redhat.io:

my_username: my_password
ContainerlmageRegistryLogin: true

3.5.LAYERING IMAGE PREPARATION ENTRIES

26

https://access.redhat.com/RegistryAuthentication

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

The value of the ContainerimagePrepare parameter is a YAML list. This means you can specify multiple
entries. The following example demonstrates two entries where the director uses the latest version of all
images except for the nova-api image, which uses the version tagged with 15.0-44:

ContainerlmagePrepare:
- tag_from_label: "{version}-{release}"
push_destination: true
excludes:
- nova-api
set:
namespace: registry.redhat.io/rhosp15-rhel8
name_prefix: openstack-
name_suffix: "
tag: latest
- push_destination: true
includes:
- nova-api
set:
namespace: registry.redhat.io/rhosp15-rhel8
tag: 15.0-44

The includes and excludes entries control image filtering for each entry. The images that match the
includes strategy take precedence over excludes matches. The image name must include the
includes or excludes value to be considered a match.

3.6. EXCLUDING CEPH STORAGE CONTAINER IMAGES

The default overcloud role configuration uses the default Controller, Compute, and Ceph Storage roles.
However, if you use the default role configuration to deploy an overcloud without Ceph Storage nodes,
director still pulls the Ceph Storage container images from the Red Hat Container Registry because the
images are included as a part of the default configuration.

If your overcloud does not require Ceph Storage containers, you can configure director to not pull the
Ceph Storage containers images from the Red Hat Container Registry.

Procedure

1. Edit the containers-prepare-parameter.yaml file to exclude the Ceph Storage containers:

parameter_defaults:
ContainerlmagePrepare:
- push_destination: true
excludes:
- ceph
- prometheus
set:

The excludes parameter uses regular expressions to exclude any container images that contain
the ceph or prometheus strings.

2. Save the containers-prepare-parameter.yaml file.

3.7. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES

27

Red Hat OpenStack Platform 15 Director Installation and Usage

Some container image registries might require authentication to access images. In this situation, use the
ContainerlmageRegistryCredentials parameter in your containers-prepare-parameter.yaml
environment file.

parameter_defaults:
ContainerlmagePrepare:
- (strategy one)
- (strategy two)
- (strategy three)
ContainerlImageRegistryCredentials:
registry.example.com:
username: "p@55wO0rd!"

IMPORTANT

Private registries require push_destination set to true for their respective strategy in
the ContainerlmagePrepare.

The ContainerlmageRegistryCredentials parameter uses a set of keys based upon the private registry
URL. Each private registry URL uses its own key and value pair to define the username (key) and
password (value). This provides a method to specify credentials for multiple private registries.

parameter_defaults:

ContainerlmageRegistryCredentials:
registry.redhat.io:
myuser: 'p@55w0rd!
registry.internalsite.com:
myuser2: '0th3rp@55wO0rd!
'192.0.2.1:8787"
myuser3: '@n0th3rp@55w0rd!'

IMPORTANT

The default ContainerlmagePrepare parameter pulls container images from
registry.redhat.io, which requires authentication.

The ContainerlmageRegistryLogin parameter is used to control if the system needs to login to the
remote registry to fetch the containers.

parameter_defaults:

ContainerlmageRegistryLogin: true

IMPORTANT

You must set this to true if push_destination is not configured for a given strategy. If
push_destination is configured in a ContainerimagePrepare strategy and the
ContainerlimageRegistryCredentials parameter is configured, the system logs in to
fetch the containers and pushes them to the remote system.

28

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

3.8. MODIFYING IMAGES DURING PREPARATION

It is possible to modify images during image preparation, then immediately deploy with modified images.
Scenarios for modifying images include:

® As part of a continuous integration pipeline where images are modified with the changes being
tested before deployment.

® As part of a development workflow where local changes need to be deployed for testing and
development.

® When changes need to be deployed but are not available through an image build pipeline. For
example, adding proprietry add-ons or emergency fixes.

To modify an image during preparation, invoke an Ansible role on each image that you want to modify.
The role takes a source image, makes the requested changes, and tags the result. The prepare
command can push the image to the destination registry and set the Heat parameters to refer to the
modified image.

The Ansible role tripleo-modify-image conforms with the required role interface, and provides the
behaviour necessary for the modify use-cases. Modification is controlled using modify-specific keys in
the ContainerlmagePrepare parameter:

¢ modify_role specifies the Ansible role to invoke for each image to modify.

e modify_append_tag appends a string to the end of the source image tag. This makes it obvious
that the resulting image has been modified. Use this parameter to skip modification if the
push_destination registry already contains the modified image. It is recommended to change
modify_append_tag whenever you modify the image.

e modify_vars is a dictionary of Ansible variables to pass to the role.

To select a use-case that the tripleo-modify-image role handles, set the tasks_from variable to the
required file in that role.

While developing and testing the ContainerimagePrepare entries that modify images, it is
recommended to run the image prepare command without any additional options to confirm the image
is modified as expected:

sudo openstack tripleo container image prepare \
-e ~/containers-prepare-parameter.yami

3.9. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES

The following example ContainerlmagePrepare entry updates in all packages on the images using the
undercloud host’s dnf repository configuration:

ContainerlmagePrepare:
- push_destination: true

modify_role: tripleo-modify-image
modify_append_tag: "-updated"
modify_vars:

tasks_from: yum_update.yml

29

Red Hat OpenStack Platform 15 Director Installation and Usage

compare_host_packages: true
yum_repos_dir_path: /etc/yum.repos.d

3.10. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES

You can install a directory of RPM files in your container images. This is useful for installing hotfixes,
local package builds, or any package not available through a package repository. For example, the
following ContainerimagePrepare entry installs some hotfix packages only on the nova-compute
image:

ContainerlmagePrepare:
- push_destination: true

includes:
- nova-compute
modify_role: tripleo-modify-image
modify_append_tag: "-hotfix"
modify_vars:
tasks_from: rpm_install.yml
rpoms_path: /home/stack/nova-hotfix-pkgs

3.11. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE

For maximum flexibility, you can specify a directory containing a Dockerfile to make the required
changes. When you invoke the tripleo-modify-image role, the role generates a Dockerfile.modified file
that changes the FROM directive and adds extra LABEL directives. The following example runs the
custom Dockerfile on the nova-compute image:

ContainerlmagePrepare:
- push_destination: true

includes:
- nova-compute
modify_role: tripleo-modify-image
modify_append_tag: "-hotfix"
modify_vars:
tasks_from: modify_image.yml
modify_dir_path: /home/stack/nova-custom

An example /home/stack/nova-custom/Dockerfile follows. After running any USER root directives, you
must switch back to the original image default user:

FROM registry.redhat.io/rhosp15-rhel8/openstack-nova-compute:latest
USER "root"

COPY customize.sh /tmp/
RUN /tmp/customize.sh

USER "nova"

30

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

3.12. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

Red Hat Satellite 6 offers registry synchronization capabilities. This provides a method to pull multiple
images into a Satellite server and manage them as part of an application life cycle. The Satellite also acts
as a registry for other container-enabled systems to use. For more details information on managing
container images, see "Managing Container Images" in the Red Hat Satellite 6 Content Management
Guide.

The examples in this procedure use the hammer command line tool for Red Hat Satellite 6 and an
example organization called ACME. Substitute this organization for your own Satellite 6 organization.

NOTE

This procedure requires authentication credentials to access container images from
registry.redhat.io. Instead of using your individual user credentials, Red Hat
recommends creating a registry service account and using those credentials to access
registry.redhat.io content. For more information, see "Red Hat Container Registry
Authentication”.

Procedure

1. Create a list of all container images:

$ sudo podman search --limit 1000 "registry.redhat.io/rhosp15-rhel8" | awk '{ print $2 }' | grep
-v beta | sed "s/registry.redhat.ioV//g" | tail -n+2 > satellite_images

2. Copy the satellite_images_names file to a system that contains the Satellite 6 hammer tool.
Alternatively, use the instructions in the Hammer CLI Guide to install the hammer tool to the
undercloud.

3. Run the following hammer command to create a new product (OSP15 Containers) in your
Satellite organization:

$ hammer product create \
--organization "ACME" \
--name "OSP15 Containers"

This custom product will contain our images.

4. Add the base container image to the product:

$ hammer repository create \
--organization "ACME" \
--product "OSP15 Containers" \
--content-type docker \
--url https://registry.redhat.io \
--docker-upstream-name rhosp15-rhel8/openstack-base \
--upstream-username USERNAME \
--upstream-password PASSWORD \
--name base

5. Add the overcloud container images from the satellite_images file.

I $ while read IMAGE; do \

31

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html/content_management_guide/managing_container_images
https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html-single/hammer_cli_guide/

Red Hat OpenStack Platform 15 Director Installation and Usage

32

IMAGENAME=$(echo $IMAGE | cut -d"/" -f2 | sed "s/openstack-//g" | sed "s/:.*//g") ; \
hammer repository create \

--organization "ACME" \

--product "OSP15 Containers" \

--content-type docker \

--url https://registry.redhat.io \

--docker-upstream-name $IMAGE \

--upstream-username USERNAME \

--upstream-password PASSWORD \

--name $IMAGENAME ; done < satellite_images_names

6. Add the Ceph Storage 4 container image:

$ hammer repository create \
--organization "ACME" \
--product "OSP15 Containers" \
--content-type docker \
--url https://registry.redhat.io \
--docker-upstream-name rhceph-beta/rhceph-4-rhel8 \
--upstream-username USERNAME \
--upstream-password PASSWORD \
--name rhceph-4-rhel8

7. Synchronize the container images:

$ hammer product synchronize \
--organization "ACME" \
--name "OSP15 Containers"

Wait for the Satellite server to complete synchronization.

NOTE

Depending on your configuration, hammer might ask for your Satellite server
username and password. You can configure hammer to automatically login using
a configuration file. For more information, see the "Authentication” section in the
Hammer CLI Guide.

. If your Satellite 6 server uses content views, create a new content view version to incorporate

the images and promote it along environments in your application life cycle. This largely
depends on how you structure your application lifecycle. For example, if you have an
environment called production in your lifecycle and you want the container images available in
that environment, create a content view that includes the container images and promote that
content view to the production environment. For more information, see "Managing Container
Images with Content Views".

. Check the available tags for the base image:

$ hammer docker tag list --repository "base" \
--organization "ACME" \
--environment "production” \
--content-view "myosp15" \
--product "OSP15 Containers"

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html-single/hammer_cli_guide/#sect-CLI_Guide-Authentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/content_management_guide/managing_container_images#managing_container_images_with_content_views

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

This command displays tags for the OpenStack Platform container images within a content view
for an particular environment.

10. Return to the undercloud and generate a default environment file for preparing images using
your Satellite server as a source. Run the following example command to generate the
environment file:

(undercloud) $ openstack tripleo container image prepare default \
--output-env-file containers-prepare-parameter.yaml

e --output-env-file is an environment file name. The contents of this file will include the
parameters for preparing your container images for the undercloud. In this case, the name
of the file is containers-prepare-parameter.yamil.

1. Edit the containers-prepare-parameter.yaml file and modify the following parameters:

® namespace - The URL and port of the registry on the Satellite server. The default registry
port on Red Hat Satellite is 5000.

® name_prefix - The prefix is based on a Satellite 6 convention. This differs depending on
whether you use content views:

o If you use content views, the structure is [org]-[environment]-[content view]-
[product]-. For example: acme-production-myosp15-osp15_containers-.

o If you do not use content views, the structure is [org]-[product]-. For example: acme-
osp15_containers-.

e ceph_namespace, ceph_image, ceph_tag - If using Ceph Storage, include the additional
parameters to define the Ceph Storage container image location. Note that ceph_image
now includes a Satellite-specific prefix. This prefix is the same value as the name_prefix
option.

The following example environment file contains Satellite-specific parameters:

parameter_defaults:
ContainerlmagePrepare:
- push_destination: true
set:

ceph_image: acme-production-myosp15-osp15_containers-rhceph-4
ceph_namespace: satellite.example.com:5000
ceph_tag: latest
name_prefix: acme-production-myosp15-osp15_containers-
name_suffix: "
namespace: satellite.example.com:5000
neutron_driver: null
tag: latest

tag_from_label: {version}-{release}'

Use this environment file when creating both your undercloud and overcloud.

33

Red Hat OpenStack Platform 15 Director Installation and Usage

CHAPTER 4. INSTALLING DIRECTOR

4.1. CONFIGURING THE DIRECTOR

The director installation process requires certain settings in the undercloud.conf configuration file,
which the director reads from the stack user's home directory. This procedure demonstrates how to use
the default template as a foundation for your configuration.

Procedure

1. Copy the default template to the stack user’s home directory:

[stack@director ~]$ cp \
/usr/share/python-tripleoclient/undercloud.conf.sample \
~/undercloud.conf

2. Edit the undercloud.conf file. This file contains settings to configure your undercloud. If you
omit or comment out a parameter, the undercloud installation uses the default value.

4.2. DIRECTOR CONFIGURATION PARAMETERS

The following list contains information about parameters for configuring the undercloud.conf file. Keep
all parameters within their relevant sections to avoid errors.

Defaults

The following parameters are defined in the [DEFAULT] section of the undercloud.conf file:

additional_architectures

A list of additional (kernel) architectures that an overcloud supports. Currently the overcloud
supports ppc64le architecture.

s

NOTE

When enabling support for ppc64le, you must also set ipxe_enabled to False

certificate_generation_ca

The certmonger nickname of the CA that signs the requested certificate. Use this option only if you
have set the generate_service_certificate parameter. If you select the local CA, certmonger
extracts the local CA certificate to /etc/pki/ca-trust/source/anchors/cm-local-ca.pem and adds the
certificate to the trust chain.

clean_nodes
Defines whether to wipe the hard drive between deployments and after introspection.
cleanup

Cleanup temporary files. Set this to False to leave the temporary files used during deployment in
place after the command is run. This is useful for debugging the generated files or if errors occur.

container_cli

The CLI tool for container management. Leave this parameter set to podman since Red Hat
Enterprise Linux 8 only supports podman.

container_healthcheck_disabled

34

CHAPTER 4. INSTALLING DIRECTOR

Disables containerized service health checks. It is recommended to keep health checks enabled and
leave this option set to false.

container_images_file

Heat environment file with container image information. This can either be:

® Parameters for all required container images

® Or the ContainerlmagePrepare parameter to drive the required image preparation. Usually
the file containing this parameter is named containers-prepare-parameter.yaml.

container_insecure_registries

A list of insecure registries for podman to use. Use this parameter if you want to pull images from
another source, such as a private container registry. In most cases, podman has the certificates to
pull container images from either the Red Hat Container Catalog or from your Satellite server if the
undercloud is registered to Satellite.

container_registry_mirror

An optional registry-mirror configured that podman uses.
custom_env_files

Additional environment file to add to the undercloud installation.
deployment_user

The user installing the undercloud. Leave this parameter unset to use the current default user
(stack).

discovery_default_driver

Sets the default driver for automatically enrolled nodes. Requires enable_node_discovery enabled
and you must include the driver in the enabled_hardware_types list.

enable_ironic; enable_ironic_inspector; enable_mistral; enable_tempest; enable_validations;
enable_zaqar

Defines the core services to enable for director. Leave these parameters set to true.
enable_node_discovery

Automatically enroll any unknown node that PXE-boots the introspection ramdisk. New nodes use
the fake_pxe driver as a default but you can set discovery_default_driver to override. You can also
use introspection rules to specify driver information for newly enrolled nodes.

enable_novajoin

Defines whether to install the novajoin metadata service in the Undercloud.
enable_routed_networks

Defines whether to enable support for routed control plane networks.
enable_swift_encryption

Defines whether to enable Swift encryption at-rest.
enable_telemetry

Defines whether to install OpenStack Telemetry services (gnocchi, aodh, panko) in the undercloud.
Set enable_telemetry parameter to true if you want to install and configure telemetry services
automatically. The default value is false, which disables telemetry on the undercloud. This parameter
is required if using other products that consume metrics data, such as Red Hat CloudForms.

enabled_hardware_types
A list of hardware types to enable for the undercloud.

generate_service_certificate

35

Red Hat OpenStack Platform 15 Director Installation and Usage

Defines whether to generate an SSL/TLS certificate during the undercloud installation, which is used
for the undercloud_service_certificate parameter. The undercloud installation saves the resulting
certificate /etc/pki/tls/certs/undercloud-[undercloud_public_vip].pem. The CA defined in the
certificate_generation_ca parameter signs this certificate.

heat_container_image

URL for the heat container image to use. Leave unset.
heat_native

Use native heat templates. Leave as true.
hieradata_override

Path to hieradata override file that configures Puppet hieradata on the director, providing custom
configuration to services beyond the undercloud.conf parameters. If set, the undercloud installation
copies this file to the /etc/puppet/hieradata directory and sets it as the first file in the hierarchy. See
Configuring hieradata on the undercloud for details on using this feature.

inspection_extras

Defines whether to enable extra hardware collection during the inspection process. This parameter
requires python-hardware or python-hardware-detect package on the introspection image.

inspection_interface

The bridge the director uses for node introspection. This is a custom bridge that the director
configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default
br-ctlplane.

inspection_runbench

Runs a set of benchmarks during node introspection. Set this parameter to true to enable the
benchmarks. This option is necessary if you intend to perform benchmark analysis when inspecting
the hardware of registered nodes.

ipa_otp

Defines the one time password to register the Undercloud node to an IPA server. This is required
when enable_novajoin is enabled.

ipxe_enabled

Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set to false
to set to standard PXE.

local_interface

The chosen interface for the director’s Provisioning NIC. This is also the device the director uses for
DHCP and PXE boot services. Change this value to your chosen device. To see which device is
connected, use the ip addr command. For example, this is the result of an ip addr command:

2: eth0: <cBROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP glen
1000
link/ether 52:54:00:75:24:09 brd ff:ff:ffffff ff
inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic ethO
valid_Ift 3462sec preferred_lft 3462sec
inet6 fe80::5054:ff:fe75:2409/64 scope link
valid_lft forever preferred_|Ift forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc noop state DOWN
link/ether 42:0b:c2:a5:¢1:26 brd ff:ff:ff:ff:ff:ff

In this example, the External NIC uses eth0 and the Provisioning NIC uses eth1, which is currently not
configured. In this case, set the local_interface to eth1. The configuration script attaches this
interface to a custom bridge defined with the inspection_interface parameter.

36

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/director_installation_and_usage/index#configuring-hieradata-on-the-undercloud

CHAPTER 4. INSTALLING DIRECTOR

local_ip

The IP address defined for the director’s Provisioning NIC. This is also the IP address that the
director uses for DHCP and PXE boot services. Leave this value as the default 192.168.24.1/24
unless you use a different subnet for the Provisioning network, for example, if it conflicts with an
existing IP address or subnet in your environment.

local_mtu
MTU to use for the local_interface. Do not exceed 1500 for the undercloud.
local_subnet

The local subnet to use for PXE boot and DHCP interfaces. The local_ip address should reside in
this subnet. The default is ctlplane-subnet.

net_config_override

Path to network configuration override template. If you set this parameter, the undercloud uses a
JSON format template to configure the networking with os-net-config. The undercloud ignores the
network parameters set in undercloud.conf. See /usr/share/python-
tripleoclient/undercloud.conf.sample for an example.

networks_file

Networks file to override for heat.
output_dir

Directory to output state, processed heat templates, and Ansible deployment files.
overcloud_domain_name

The DNS domain name to use when deploying the overcloud.

X NOTE

N

When configuring the overcloud, the CloudDomain parameter must be set to a
matching value. Set this parameter in an environment file when you configure your
4 overcloud.

roles_file

The roles file to override for undercloud installation. It is highly recommended to leave unset so that
the director installation uses the default roles file.

scheduler_max_attempts

Maximum number of times the scheduler attempts to deploy an instance. This value must be greater
or equal to the number of bare metal nodes that you expect to deploy at once to work around
potential race condition when scheduling.

service_principal

The Kerberos principal for the service using the certificate. Use this parameter only if your CA
requires a Kerberos principal, such as in FreelPA.

subnets

List of routed network subnets for provisioning and introspection. See Subnets for more information.
The default value includes only the ctlplane-subnet subnet.

templates
Heat templates file to override.

undercloud_admin_host

37

Red Hat OpenStack Platform 15 Director Installation and Usage

The IP address or hostname defined for director Admin APl endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.

undercloud_debug
Sets the log level of undercloud services to DEBUG. Set this value to true to enable.
undercloud_enable_selinux

Enable or disable SELinux during the deployment. It is highly recommended to leave this value set to
true unless you are debugging an issue.

undercloud_hostname

Defines the fully qualified host name for the undercloud. If set, the undercloud installation configures
all system host name settings. If left unset, the undercloud uses the current host name, but the user
must configure all system host name settings appropriately.

undercloud_log_file

The path to a log file to store the undercloud install/upgrade logs. By default, the log file is install-
undercloud.log within the home directory. For example, /home/stack/install-undercloud.log.

undercloud_nameservers

A list of DNS nameservers to use for the undercloud hostname resolution.
undercloud_ntp_servers

A list of network time protocol servers to help synchronize the undercloud date and time.
undercloud_public_host

The IP address or hostname defined for director Public APl endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.

undercloud_service_certificate

The location and filename of the certificate for OpenStack SSL/TLS communication. Ideally, you
obtain this certificate from a trusted certificate authority. Otherwise, generate your own self-signed
certificate.

undercloud_timezone

Host timezone for the undercloud. If you specify no timezone, director uses the existing timezone
configuration.

undercloud_update_packages

Defines whether to update packages during the undercloud installation.

Subnets

Each provisioning subnet is a named section in the undercloud.conf file. For example, to create a
subnet called ctlplane-subnet, use the following sample in your undercloud.conf file:

[ctiplane-subnet]

cidr = 192.168.24.0/24

dhcp_start = 192.168.24.5

dhcp_end = 192.168.24.24

inspection_iprange = 192.168.24.100,192.168.24.120
gateway = 192.168.24.1

masquerade = true

You can specify as many provisioning networks as necessary to suit your environment.

gateway

38

CHAPTER 4. INSTALLING DIRECTOR

The gateway for the overcloud instances. This is the undercloud host, which forwards traffic to the
External network. Leave this as the default 192.168.24.1 unless you use a different IP address for the
director or want to use an external gateway directly.

NOTE

The director configuration also enables IP forwarding automatically using the relevant
sysctl kernel parameter.

cidr

The network that the director uses to manage overcloud instances. This is the Provisioning network,
which the undercloud neutron service manages. Leave this as the default 192.168.24.0/24 unless you
use a different subnet for the Provisioning network.

masquerade

Defines whether to masquerade the network defined in the cidr for external access. This provides
the Provisioning network with a degree of network address translation (NAT) so that the
Provisioning network has external access through the director.

dhcp_start; dhcp_end

The start and end of the DHCP allocation range for overcloud nodes. Ensure this range contains
enough IP addresses to allocate your nodes.

dhcp_exclude
IP addresses to exclude in the DHCP allocation range.
host_routes

Host routes for the Neutron-managed subnet for the Overcloud instances on this network. This also
configures the host routes for the local_subnet on the undercloud.

inspection_iprange

A range of IP address that the director's introspection service uses during the PXE boot and
provisioning process. Use comma-separated values to define the start and end of this range. For
example, 192.168.24.100,192.168.24.120. Make sure this range contains enough IP addresses for
your nodes and does not conflict with the range for dhep_start and dhcp_end.

Modify the values of these parameters to suit your configuration. When complete, save the file.

4.3. CONFIGURING THE UNDERCLOUD WITH ENVIRONMENT FILES
You configure the main parameters for the undercloud through the undercloud.conf file. You can also

configure Heat parameters specific to the undercloud installation. You accomplish this with an
environment file containing your Heat parameters.

Procedure

1. Create an environment file at /Thome/stack/templates/custom-undercloud-params.yami.

2. Edit this file and include your Heat parameters. The following example shows how to enable
debugging for certain OpenStack Platform services:

parameter_defaults:
Debug: True

Save this file when you have finished.

39

Red Hat OpenStack Platform 15 Director Installation and Usage

3. Edit your undercloud.conf file and scroll to the custom_env_files parameter. Edit the
parameter to point to your environment file:

I custom_env_files = /home/stack/templates/custom-undercloud-params.yaml

NOTE

You can specify multiple environment files using a comma-separated list.

The director installation includes this environment file during the next undercloud installation or
upgrade operation.

4.4. COMMON HEAT PARAMETERS FOR UNDERCLOUD
CONFIGURATION

The following table shows some common Heat parameters you might set in a custom environment file
for your undercloud.

Parameter Description

AdminPassword Sets the undercloud admin user password.
AdminEmail Sets the undercloud admin user email address.
Debug Enables debug mode.

Set these parameters in your custom environment file under the parameter_defaults section:

parameter_defaults:
Debug: True
AdminPassword: "myp@sswOrd!"
AdminEmail: "admin@example.com”

4.5. CONFIGURING HIERADATA ON THE UNDERCLOUD

You can provide custom configuration for services beyond the available undercloud.conf parameters
by configuring Puppet hieradata on the director. Perform the following procedure to use this feature.

Procedure

1. Create a hieradata override file, for example, /home/stack/hieradata.yaml.

2. Add the customized hieradata to the file. For example, add the following to modify the
Compute (nova) service parameter force_raw_images from the default value of "True" to
"False":

I nova::compute::force_raw_images: False

If there is no Puppet implementation for the parameter you want to set, then use the following
method to configure the parameter:

40

CHAPTER 4. INSTALLING DIRECTOR

nova::config::nova_config:
DEFAULT/<parameter_name>:
value: <parameter_value>

For example:

nova::config::nova_config:
DEFAULT/network_allocate_retries:
value: 20
ironic/serial_console_state timeout:
value: 15

3. Set the hieradata_override parameter to the path of the hieradata file in your
undercloud.conf:

I hieradata_override = /home/stack/hieradata.yaml

4.6.INSTALLING THE DIRECTOR

Complete the following procedure to install the director and perform some basic post-installation tasks.
Procedure
1. Run the following command to install the director on the undercloud:
I [stack@director ~]$ openstack undercloud install

This launches the director’s configuration script. The director installs additional packages and
configures its services according to the configuration in the undercloud.conf. This script takes
several minutes to complete.

The script generates two files when complete:

e undercloud-passwords.conf - A list of all passwords for the director’s services.

e stackrc - A set of initialization variables to help you access the director’'s command line
tools.

2. The script also starts all OpenStack Platform service containers automatically. Check the
enabled containers using the following command:

I [stack@director ~]$ sudo podman ps
3. Toinitialize the stack user to use the command line tools, run the following command:
I [stack@director ~]$ source ~/stackrc

The prompt now indicates OpenStack commands authenticate and execute against the
undercloud;

I (undercloud) [stack@director ~]$

The director installation is complete. You can now use the director’'s command line tools.

41

Red Hat OpenStack Platform 15 Director Installation and Usage

4.7. OBTAINING IMAGES FOR OVERCLOUD NODES

The director requires several disk images for provisioning overcloud nodes. This includes:
® Anintrospection kernel and ramdisk - Used for bare metal system introspection over PXE boot.
e A deployment kernel and ramdisk - Used for system provisioning and deployment.

® An overcloud kernel, ramdisk, and full image - A base overcloud system that is written to the
node’s hard disk.

The following procedure shows how to obtain and install these images.

4.7.1. Single CPU architecture overclouds

These images and procedures are necessary for deployment of the overcloud with the default CPU
architecture, x86-64.

Procedure

1. Source the stackrc file to enable the director's command line tools:

I [stack@director ~]$ source ~/stackrc

2. Install the rhosp-director-images and rhosp-director-images-ipa packages:

(undercloud) [stack@director ~]$ sudo dnf install rhosp-director-images rhosp-director-
images-ipa

3. Extract the images archives to the images directory in the stack user’'s home
(/home/stack/images):

(undercloud) [stack@director ~]$ cd ~/images

(undercloud) [stack@director images]$ for i in /usr/share/rhosp-director-images/overcloud-
full-latest-15.0.tar /usr/share/rhosp-director-images/ironic-python-agent-latest-15.0.tar; do tar
-xvf $i; done

4. Import these images into the director:

(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
/home/stack/images/

This script uploads the following images into the director:
e agent.kernel
e agent.ramdisk
e overcloud-full
e overcloud-full-initrd
e overcloud-full-vmlinuz

The script also installs the introspection images on the director PXE server.

42

CHAPTER 4. INSTALLING DIRECTOR

5. Verify that the images uploaded successfully:

(undercloud) [stack@director images]$ openstack image list

+- + +
| ID | Name |
+- + +

| ef793cd0-e65¢c-456a-a675-63cd57610bd5 | overcloud-full |

| 9a51a6¢b-4670-40de-b64b-b70f4dd44152 | overcloud-full-initrd |
| 4f7e33f4-d617-47c1-b36f-cbe90f132e5d | overcloud-full-vmlinuz |
+- + +

This list does not show the introspection PXE images. The director copies these files to
/var/lib/ironic/httpboot.

(undercloud) [stack@director images]$ Is -1 /var/lib/ironic/httpboot
total 417296

-rwxr-xr-x. 1 root root 6639920 Jan 29 14:48 agent.kernel
-rw-r--r--. 1 root root 420656424 Jan 29 14:48 agent.ramdisk
-rw-r--r--. 1 42422 42422 758 Jan 29 14:29 boot.ipxe
-rw-r--r--. 1 42422 42422 488 Jan 29 14:16 inspector.ipxe

4.7.2. Multiple CPU architecture overclouds

These are the images and procedures needed for deployment of the overcloud to enable support of
additional CPU architectures.

The procedure that follows uses the ppc64le image in its examples.
Procedure
1. Source the stackrc file to enable the director's command line tools:

I [stack@director ~]$ source ~/stackrc

2. Install the rhosp-director-images-all package:

I (undercloud) [stack@director ~]$ sudo dnf install rhosp-director-images-all

3. Extract the archives to an architecture specific directory under the images directory on the
stack user’'s home (/home/stack/images):

(undercloud) [stack@director ~]$ cd ~/images

(undercloud) [stack@director images]$ for arch in x86_64 ppc64le ; do mkdir $arch ; done
(undercloud) [stack@director images]$ for arch in x86_64 ppc64le ; do for i in
/usr/share/rhosp-director-images/overcloud-full-latest-15.0-${arch}.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-15.0-${arch}.tar ; do tar -C $arch -xf $i ; done ;
done

4. Import these images into the director:

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
~/images/ppcb4le --architecture ppcb4le --whole-disk --http-boot /tftpboot/ppct4le

43

Red Hat OpenStack Platform 15 Director Installation and Usage

44

(undercloud) [stack@director images]$ openstack overcloud image upload --image-path

~/images/x86_64/ --http-boot /tftpboot

This uploads the following images into the director:

bm-deploy-kernel
bm-deploy-ramdisk
overcloud-full
overcloud-full-initrd
overcloud-full-vmlinuz
ppc64le-bm-deploy-kernel
ppc64le-bm-deploy-ramdisk

ppc64le-overcloud-full
The script also installs the introspection images on the director PXE server.

5. Verify that the images uploaded successfully:

(undercloud) [stack@director images]$ openstack image list

+- + +- +

| ID | Name | Status |

+- + +- +

| 6d1005ba-ec82-473b-8e33-88aadb5b6792 | bm-deploy-kernel | active |
| fb723b33-9f11-45f5-b25b-c008bf509290 | bm-deploy-ramdisk | active |

| 6a6096ba-8f79-4343-b77¢c-4349f7b94960 | overcloud-full | active |

| de2a1bde-9351-40d2-bbd7-7ce9d6eb50d8 | overcloud-full-initrd | active |

| 67073533-dd2a-4a95-8e8b-0f108f031092 | overcloud-full-vmlinuz | active |

69a9ffe5-06dc-4d81-a122-e5d56ed46¢98	ppcb4le-bm-deploy-kernel	active
464dd809-f130-4055-9a39-cf6b63c1944e	ppc64le-bm-deploy-ramdisk	active
fOfedcd0-3f28-4b44-9¢88-619419007a03	ppcb4le-overcloud-full	active

+- + +- +

This list does not show the introspection PXE images. The director copies these files to
/tftpboot.

(undercloud) [stack@director images]$ Is -l /tftpboot /tftpboot/ppce4le/
/tftpboot:

total 422624

-rwxr-xr-x. 1 root root 6385968 Aug 8 19:35 agent.kernel
-rw-r--r--. 1 root root 425530268 Aug 8 19:35 agent.ramdisk
-rwxr--r--. 1 ironic ironic 20832 Aug 8 02:08 chain.c32
-rwxr--r--. 1 ironic ironic 715584 Aug 8 02:06 ipxe.efi
-rw-r--r--. 1 root root 22 Aug 8 02:06 map-file
drwxr-xr-X. 2 ironic ironic 62 Aug 8 19:34 ppcb4le
-rwxr--r--. 1 ironic ironic 26826 Aug 8 02:08 pxelinux.0
drwxr-xr-X. 2 ironic ironic 21 Aug 8 02:06 pxelinux.cfg
-rwxr--r--. 1 ironic ironic 69631 Aug 8 02:06 undionly.kpxe

/tftpboot/ppc64le/:
total 457204

CHAPTER 4. INSTALLING DIRECTOR

-rwxr-xr-x. 1 root root 19858896 Aug 8 19:34 agent.kernel
-rw-r--r--. 1 root root 448311235 Aug 8 19:34 agent.ramdisk
-rw-r--r--. 1 ironic-inspector ironic-inspector 336 Aug 8 02:06 default

4.7.3. Minimal overcloud image

You can use the overcloud-minimal image to provision a bare OS where you do not want to run any
other Red Hat OpenStack Platform services or consume one of your subscription entitlements.

Procedure
1. Source the stackre file to enable the director command line tools:
I [stack@director ~]$ source ~/stackrc
2. Install the overcloud-minimal package:
I (undercloud) [stack@director ~]$ sudo dnf install rhosp-director-images-minimal

3. Extract the images archives to the images directory in the home directory of the stack user
(/home/stack/images):

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ tar xf /usr/share/rhosp-director-images/overcloud-
minimal-latest-15.0.tar

4. Import the images into director:

(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
/home/stack/images/ --0s-image-name overcloud-minimal.qcow2

This script uploads the following images into director:
e overcloud-minimal

e overcloud-minimal-initrd

e overcloud-minimal-vmlinuz

5. Verify that the images uploaded successfully:

(undercloud) [stack@director images]$ openstack image list

+- + +
| ID | Name |
+- + +

| ef793cd0-e65¢c-456a-a675-63cd57610bd5 | overcloud-full |

| 9a51a6¢cb-4670-40de-b64b-b70f4dd44152 | overcloud-full-initrd |

| 4§7e33f4-d617-47¢c1-b36f-cbe90f132e5d | overcloud-full-vmlinuz |

| 32¢f6771-b5df-4498-8f02-c3bd8bb93fdd | overcloud-minimal |

| 600035af-dbbb-4985-8b24-a4e9da149ae5 | overcloud-minimal-initrd |

| d45b0071-8006-472b-bbcc-458899e0d801 | overcloud-minimal-vmlinuz |
+- + +

45

Red Hat OpenStack Platform 15 Director Installation and Usage

NOTE

The default overcloud-full.qcow2 image is a flat partition image. However, you can also
import and use whole disk images. See Chapter 19, Creating whole disk images for more
information.

4.8. SETTING A NAMESERVER FOR THE CONTROL PLANE

If you intend for the overcloud to resolve external hostnames, such as cdn.redhat.com, it is
recommended to set a nameserver on the overcloud nodes. For a standard overcloud without network
isolation, the nameserver is defined using the undercloud’s control plane subnet. Complete the following
procedure to define nameservers for the environment.

Procedure

1. Source the stackrc file to enable the director's command line tools:

I [stack@director ~]$ source ~/stackrc
2. Set the nameservers for the ctlplane-subnet subnet:

(undercloud) [stack@director images]$ openstack subnet set --dns-nameserver
[nameserveri-ip] --dns-nameserver [nameserver2-ip] ctlplane-subnet

Use the --dns-nameserver option for each nameserver.

3. View the subnet to verify the nameserver:

(undercloud) [stack@director images]$ openstack subnet show ctlplane-subnet

+- + +
| Field | Value |
+- + +

| dns_nameservers | 8.8.8.8

+- + +

IMPORTANT

If you aim to isolate service traffic onto separate networks, the overcloud nodes use the
DnsServers parameter in your network environment files.

4.9. UPDATING THE UNDERCLOUD CONFIGURATION

In the future, you might have to change the undercloud configuration to suit new requirements. To make
changes to your undercloud configuration after installation, edit the relevant configuration files and re-
run the openstack undercloud install command.

Procedure

1. Modify the undercloud configuration files. For example, edit the undercloud.conf file and add
the idrac hardware type to the list of enabled hardware types:

46

CHAPTER 4. INSTALLING DIRECTOR

I enabled_hardware_types = ipmi,redfish,idrac

2. Run the openstack undercloud install command to refresh your undercloud with the new
changes:

I [stack@director ~]$ openstack undercloud install

Wait until the command runs to completion.

3. Initialize the stack user to use the command line tools,:
I [stack@director ~]$ source ~/stackrc

The prompt now indicates OpenStack commands authenticate and execute against the
undercloud:

I (undercloud) [stack@director ~]$

4. Verify the director has applied the new configuration. For this example, check the list of enabled
hardware types:

(undercloud) [stack@director ~]$ openstack baremetal driver list

+- -+ +

| Supported driver(s) | Active host(s) |
+- -+ +

| idrac | unused |

| ipmi | unused |

| redfish | unused |

+- -+ +

The undercloud re-configuration is complete.

4.10. UNDERCLOUD CONTAINER REGISTRY

Red Hat Enterprise Linux 8 no longer includes the docker-distribution package, which installed a
Docker Registry v2. To maintain the compatibility and the same level of feature, the director installation
creates an Apache web server with a vhost called image-serve to provide a registry. This registry also
uses port 8787/TCP with SSL disabled. The Apache-based registry is not containerized, which means
you run the following command to restart the registry:

You can find the container registry logs in the following locations:

® /var/log/httpd/image_serve_access.log

e /var/log/httpd/image_serve_error.log.

I $ sudo systemctl restart httpd

The image content is served from /var/lib/image-serve. This location uses a specific directory layout
and apache configuration to implement the pull function of the registry REST API.

47

Red Hat OpenStack Platform 15 Director Installation and Usage

NOTE

The Apache-based registry is a read-only container registry and does not support
podman push nor buildah push commands. This means the registry does not allow you
to push non-director and non-OpenStack Platform containers. However, you can modify
OpenStack Platform images with the director’s container preparation workflow, which
uses the ContainerlmagePrepare parameter.

4.11. NEXT STEPS

This completes the director configuration and installation. The next chapter explores basic overcloud
configuration, including registering nodes, inspecting them, and then tagging them into various node
roles.

48

PART Il. BASIC OVERCLOUD DEPLOYMENT

PART Il. BASIC OVERCLOUD DEPLOYMENT

49

Red Hat OpenStack Platform 15 Director Installation and Usage

CHAPTER 5. PLANNING YOUR OVERCLOUD

The following section contains some guidelines for planning various aspects of your Red Hat OpenStack
Platform environment. This includes defining node roles, planning your network topology, and storage.

5.1. NODE ROLES

The director includes multiple default node types for building your overcloud. These node types are:

Controller

Provides key services for controlling your environment. This includes the dashboard (horizon),
authentication (keystone), image storage (glance), networking (neutron), orchestration (heat), and
high availability services. A Red Hat OpenStack Platform environment requires three Controller
nodes for a highly available production-level environment.

b NOTE
Environments with one node can only be used for testing purposes, not for
b production. Environments with two nodes or more than three nodes are not
P supported.
Compute

A physical server that acts as a hypervisor and contains the processing capabilities required for
running virtual machines in the environment. A basic Red Hat OpenStack Platform environment
requires at least one Compute node.

Ceph Storage

A host that provides Red Hat Ceph Storage. Additional Ceph Storage hosts scale into a cluster. This
deployment role is optional.

Swift Storage

A host that provides external object storage the OpenStack Object Storage (swift) service. This
deployment role is optional.

The following table contains some examples some examples of different overclouds and defines the
node types for each scenario.

Table 5.1. Node Deployment Roles for Scenarios

Controller Compute Ceph Storage Swift Storage Total

Small 3 1 - - 4
overcloud

Medium 3 3 - - 6
overcloud

Medium 3 3 - 3 9
overcloud with

additional

Object storage

50

CHAPTER 5. PLANNING YOUR OVERCLOUD

Medium 3 3 3 - 9
overcloud with

Ceph Storage

cluster

In addition, consider whether to split individual services into custom roles. For more information about
the composable roles architecture, see "Composable Services and Custom Roles" in the Advanced
Overcloud Customization guide.

5.2. OVERCLOUD NETWORKS

Itis important to plan your environment’s networking topology and subnets so that you can properly
map roles and services to communicate with each other correctly. Red Hat OpenStack Platform uses the
Openstack Networking (neutron) service, which operates autonomously and manages software-based
networks, static and floating IP addresses, and DHCP.

By default, the director configures nodes to use the Provisioning / Control Planefor connectivity.
However, it is possible to isolate network traffic into a series of composable networks, which you can
customize and assign services.

In a typical Red Hat OpenStack Platform installation, the number of network types often exceeds the
number of physical network links. In order to connect all the networks to the proper hosts, the overcloud
uses VLAN tagging to deliver more than one network per interface. Most of the networks are isolated
subnets but some networks require a Layer 3 gateway to provide routing for Internet access or
infrastructure network connectivity. If using VLANSs to isolate your network traffic types, use a switch
that supports 802.1Q standards to provide tagged VLANSs.

NOTE

It is recommended that you deploy a project network (tunneled with GRE or VXLAN)
even if you intend to use a neutron VLAN mode (with tunneling disabled) at deployment
time. This requires minor customization at deployment time and leaves the option
available to use tunnel networks as utility networks or virtualization networks in the future.
You still create Tenant networks using VLANS, but you can also create VXLAN tunnels for
special-use networks without consuming tenant VLANS. It is possible to add VXLAN
capability to a deployment with a Tenant VLAN, but it is not possible to add a Tenant
VLAN to an existing overcloud without causing disruption.

The director also includes a set of templates to configure NICs with isolated composable networks. The
following configurations are the default configurations:

® Single NIC configuration - One NIC for the Provisioning network on the native VLAN and
tagged VLANSs that use subnets for the different overcloud network types.

® Bonded NIC configuration - One NIC for the Provisioning network on the native VLAN and the
two NICs in a bond for tagged VLANSs for the different overcloud network types.

e Multiple NIC configuration - Each NIC uses a subnet for a different overcloud network type.
You can also create your own templates to map a specific NIC configuration.

The following details are also important when considering your network configuration:

51

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/advanced_overcloud_customization/#Roles

Red Hat OpenStack Platform 15 Director Installation and Usage

During the overcloud creation, you refer to NICs using a single name across all overcloud
machines. Ideally, you should use the same NIC on each overcloud node for each respective
network to avoid confusion. For example, use the primary NIC for the Provisioning network and
the secondary NIC for the OpenStack services.

Set all overcloud systems to PXE boot off the Provisioning NIC, and disable PXE boot on the
External NIC and any other NICs on the system. Also ensure that the Provisioning NIC has PXE
boot at the top of the boot order, ahead of hard disks and CD/DVD drives.

All overcloud bare metal systems require a supported power management interface, such as an
Intelligent Platform Management Interface (IPMI). This allows the director to control the power
management of each node.

Make a note of the following details for each overcloud system: the MAC address of the
Provisioning NIC, the IP address of the IPMI NIC, IPMI username, and IPMI password. This
information will be useful later when setting up the overcloud nodes.

If an instance needs to be accessible from the external internet, you can allocate a floating IP
address from a public network and associate it with an instance. The instance still retains its
private IP but network traffic uses NAT to traverse through to the floating IP address. Note that
a floating IP address can only be assigned to a single instance rather than multiple private IP
addresses. However, the floating IP address is reserved only for use by a single tenant, allowing
the tenant to associate or disassociate with a particular instance as required. This configuration
exposes your infrastructure to the external internet. As a result, you might need to check that
you are following suitable security practices.

To mitigate the risk of network loops in Open vSwitch, only a single interface or a single bond
may be a member of a given bridge. If you require multiple bonds or interfaces, you can
configure multiple bridges.

Red Hat recommends using DNS hostname resolution so that your overcloud nodes can
connect to external services, such as the Red Hat Content Delivery Network and network time
servers.

NOTE
You can virtualize the overcloud control plane if you are using Red Hat Virtualization
(RHV). See Creating virtualized control planes for details.

5.3. OVERCLOUD STORAGE

NOTE

Using LVM on a guest instance that uses a back end cinder-volume of any driver or back-
end type results in issues with performance, volume visibility and availability, and data
corruption. Use an LVM filter to mitigate these issues. For more information, see section
2.1Back Ends in the Storage Guide and KCS article 3213311, "Using LVM on a cinder
volume exposes the data to the compute host."

The director includes different storage options for the overcloud environment:

Ceph Storage Nodes

52

The director creates a set of scalable storage nodes using Red Hat Ceph Storage. The overcloud
uses these nodes for the following storage types:

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/storage_guide/#ch-backends
https://access.redhat.com/solutions/3213311

CHAPTER 5. PLANNING YOUR OVERCLOUD

® Images - Glance manages images for VMs. Images are immutable. OpenStack treats images
as binary blobs and downloads them accordingly. You can use glance to store imagesin a
Ceph Block Device.

® Volumes - Cinder volumes are block devices. OpenStack uses volumes to boot VMs, or to
attach volumes to running VMs. OpenStack manages volumes using cinder services. You can
use cinder to boot a VM using a copy-on-write clone of an image.

® File Systems - Manila shares are backed by file systems. OpenStack users manage shares
using manila services. You can use manila to manage shares backed by a CephFS file system
with data on the Ceph Storage Nodes.

® Guest Disks - Guest disks are guest operating system disks. By default, when you boot a
virtual machine with nova, the virtual machine disk appears as a file on the filesystem of the
hypervisor (usually under /var/lib/nova/instances/<uuids/). Every virtual machine inside
Ceph can be booted without using Cinder. As a result, you can perform maintenance
operations easily with the live-migration process. Additionally, if your hypervisor dies it is also
convenient to trigger nova evacuate and run the virtual machine elsewhere.

IMPORTANT

For information about supported image formats, see the Image Service
chapter in the Instances and Images Guide .

See Red Hat Ceph Storage Architecture Guide for additional information.

Swift Storage Nodes

The director creates an external object storage node. This is useful in situations where you need to
scale or replace controller nodes in your overcloud environment but need to retain object storage
outside of a high availability cluster.

5.4. OVERCLOUD SECURITY

Your OpenStack Platform implementation is only as secure as its environment. Follow good security
principles in your networking environment to ensure that network access is properly controlled:

® Use network segmentation to mitigate network movement and isolate sensitive data. A flat
network is much less secure.

® Restrict services access and ports to a minimum.
® Enforce proper firewall rules and password usage.
® Ensure that SELinux is enabled.
For details about securing your system, see the following Red Hat guides:
® Security Hardening for Red Hat Enterprise Linux 8

® Using SELinux for Red Hat Enterprise Linux 8

5.5. OVERCLOUD HIGH AVAILABILITY

To deploy a highly-available overcloud, the director configures multiple Controller, Compute and

53

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/instances_and_images_guide/ch-image-service
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/architecture_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_selinux/

Red Hat OpenStack Platform 15 Director Installation and Usage

Storage nodes to work together as a single cluster. In case of node failure, an automated fencing and
re-spawning process is triggered based on the type of node that failed. For information about overcloud
high availability architecture and services, see High Availability Deployment and Usage.

You can also configure high availability for Compute instances with the director (Instance HA). This high
availability mechanism automates evacuation and re-spawning of instances on Compute nodes in case
of node failure. The requirements for Instance HA are the same as the general overcloud requirements,
but you must perform a few additional steps to prepare your environment for the deployment. For
information about how Instance HA works and installation instructions, see the High Availability for
Compute Instances guide.

5.6. CONTROLLER NODE REQUIREMENTS

Controller nodes host the core services in a Red Hat OpenStack Platform environment, such as the
Horizon dashboard, the back-end database server, Keystone authentication, and High Availability
services.

Processor
64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.
Memory

The minimum amount of memory is 32 GB. However, the amount of recommended memory depends
on the number of vCPUs (which is based on CPU cores multiplied by hyper-threading value). Use the
following calculations to determine your RAM requirements:

e Controller RAM minimum calculation:

o Use 1.5 GB of memory per vCPU. For example, a machine with 48 vCPUs should have 72
GB of RAM.

® Controller RAM recommended calculation:

o Use 3 GB of memory per vCPU. For example, a machine with 48 vCPUs should have 144
GB of RAM

For more information about measuring memory requirements, see "Red Hat OpenStack Platform
Hardware Requirements for Highly Available Controllers” on the Red Hat Customer Portal.

Disk Storage and Layout

A minimum amount of 40 GB storage is required, if the Object Storage service (swift) is not running
on the controller nodes. However, the Telemetry (gnocchi) and Object Storage services are both
installed on the Controller, with both configured to use the root disk. These defaults are suitable for
deploying small overclouds built on commodity hardware. These environments are typical of proof-
of-concept and test environments. These defaults also allow the deployment of overclouds with
minimal planning but offer little in terms of workload capacity and performance.

In an enterprise environment, however, this could cause a significant bottleneck, as Telemetry
accesses storage constantly. This results in heavy disk I/O usage, which severely impacts the
performance of all other Controller services. In this type of environment, you must plan your
overcloud and configure it accordingly.

Red Hat provides several configuration recommendations for both Telemetry and Object Storage.
See Deployment Recommendations for Specific Red Hat OpenStack Platform Services for details.

Network Interface Cards

54

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/high_availability_deployment_and_usage/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/high_availability_for_compute_instances/
https://access.redhat.com/articles/2431181
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/deployment_recommendations_for_specific_red_hat_openStack_platform_services

CHAPTER 5. PLANNING YOUR OVERCLOUD

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server's motherboard.

Virtualization Support

Red Hat only supports virtualized controller nodes on Red Hat Virtualization platforms. See
Virtualized control planes for details.

5.7. COMPUTE NODE REQUIREMENTS

Compute nodes are responsible for running virtual machine instances after they are launched. Compute
nodes must support hardware virtualization. Compute nodes must also have enough memory and disk
space to support the requirements of the virtual machine instances they host.

Processor

® 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions, and the
AMD-V or Intel VT hardware virtualization extensions enabled. It is recommended this
processor has a minimum of 4 cores.

® |[BM POWER 8 processor.

Memory

A minimum of 6 GB of RAM. Add additional RAM to this requirement based on the amount of
memory that you intend to make available to virtual machine instances.

Disk Space
A minimum of 40 GB of available disk space.
Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic.

Power Management

Each Compute node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server's motherboard.

5.8. CEPH STORAGE NODE REQUIREMENTS

Ceph Storage nodes are responsible for providing object storage in a Red Hat OpenStack Platform
environment.

Placement Groups

Ceph uses Placement Groups to facilitate dynamic and efficient object tracking at scale. In the case
of OSD failure or cluster rebalancing, Ceph can move or replicate a placement group and its
contents, which means a Ceph cluster can re-balance and recover efficiently. The default Placement
Group count that director creates is not always optimal so it is important to calculate the correct
Placement Group count according to your requirements. You can use the Placement Group
calculator to calculate the correct count: Placement Groups (PGs) per Pool Calculator

Processor
64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

55

https://access.redhat.com/labs/cephpgc/

Red Hat OpenStack Platform 15 Director Installation and Usage

Memory

Red Hat typically recommends a baseline of 16 GB of RAM per OSD host, with an additional 2 GB of
RAM per OSD daemon.

Disk Layout
Sizing is dependent on your storage requirements. Red Hat recommends that your Ceph Storage

node configuration includes three or more disks in a layout similar to the following example:

® /dev/sda - The root disk. The director copies the main overcloud image to the disk. Ensure
that the disk has a minimum of 40 GB of available disk space.

e /dev/sdb - The journal disk. This disk divides into partitions for Ceph OSD journals. For
example, /dev/sdb1, /dev/sdb2, and /dev/sdb3. The journal disk is usually a solid state drive
(SSD) to aid with system performance.

e /dev/sdc and onward - The OSD disks. Use as many disks as necessary for your storage
requirements.

NOTE

Red Hat OpenStack Platform director uses ceph-ansible, which does not
support installing the OSD on the root disk of Ceph Storage nodes. This
means you need at least two disks for a supported Ceph Storage node.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although Red Hat recommends that you use at
least two NICs in a production environment. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic. Red Hat recommends that you use a 10 Gbps
interface for storage node, especially if you want to create an OpenStack Platform environment that
serves a high volume of traffic.

Power Management

Each Controller node requires a supported power management interface, such as Intelligent Platform
Management Interface (IPMI) functionality on the motherboard of the server.

See the Deploying an Overcloud with Containerized Red Hat Ceph guide for more information about
installing an overcloud with a Ceph Storage cluster.

5.9. OBJECT STORAGE NODE REQUIREMENTS

Object Storage nodes provides an object storage layer for the overcloud. The Object Storage proxy is
installed on Controller nodes. The storage layer requires bare metal nodes with multiple number of disks
per node.

Processor
64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.
Memory

Memory requirements depend on the amount of storage space. Ideally, use at minimum 1 GB of
memory per 1 TB of hard disk space. For optimal performance, it is recommended to use 2 GB per 1
TB of hard disk space, especially for workloads with files smaller than 100GB.

Disk Space

Storage requirements depends on the capacity needed for the workload. It is recommended to use
SSD drives to store the account and container data. The capacity ratio of account and container

56

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/

CHAPTER 5. PLANNING YOUR OVERCLOUD

data to objects is approximately 1 per cent. For example, for every 100TB of hard drive capacity,
provide 1TB of SSD capacity for account and container data.

However, this depends on the type of stored data. If storing mostly small objects, provide more SSD
space. For large objects (videos, backups), use less SSD space.

Disk Layout
The recommended node configuration requires a disk layout similar to the following example:

® /dev/sda - The root disk. The director copies the main overcloud image to the disk.
e /dev/sdb - Used for account data.
e /dev/sdc - Used for container data.

e /dev/sdd and onward - The object server disks. Use as many disks as necessary for your
storage requirements.

Network Interface Cards

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server's motherboard.

5.10. OVERCLOUD REPOSITORIES

You must enable the following repositories to install and configure the overcloud.

Core repositories

The following table lists core repositories for installing the overcloud.

Repository Description of Requirement

Red Hat Enterprise Linux 8 for rhel-8-for-x86_64-baseos- Base operating system repository
x86_64 - BaseOS (RPMs) rpms for x86_64 systems.

Red Hat Enterprise Linux 8 for rhel-8-for-x86_64-appstream- Contains Red Hat OpenStack
x86_64 - AppStream (RPMs) rpms Platform dependencies.

Red Hat Enterprise Linux 8 for rhel-8-for-x86_64- High availability tools for Red Hat
x86_64 - High Availability (RPMs) highavailability-rpms Enterprise Linux. Used for

Controller node high availability.

Red Hat Ansible Engine 2.8 for ansible-2.8-for-rhel-8- Ansible Engine for Red Hat
RHEL 8 x86_64 (RPMs) x86_64-rpms Enterprise Linux. Used to provide
the latest version of Ansible.

Advanced Virtualization for RHEL advanced-virt-for-rhel-8- Provides virtualization packages
8 x86_64 (RPMs) x86_64-rpms for OpenStack Platform.

57

Red Hat OpenStack Platform 15 Director Installation and Usage

Repository Description of Requirement

Red Hat Satellite Tools for RHEL satellite-tools-6.5-for-rhel-8- Tools for managing hosts with Red

8 Server RPMs x86_64 x86_64-rpms Hat Satellite 6.

Red Hat OpenStack Platform 15 openstack-15-for-rhel-8- Core Red Hat OpenStack

for RHEL 8 (RPMs) x86_64-rpms Platform repository.

Red Hat Fast Datapath for RHEL fast-datapath-for-rhel-8- Provides Open vSwitch (OVS)

8 (RPMS) x86_64-rpms packages for OpenStack
Platform.

Real Time repositories

The following table lists repositories for Real Time Compute (RTC) functionality.

Repository Description of Requirement

Red Hat Enterprise Linux 8 for rhel-8-for-x86_64-rt-rpms Repository for Real Time KVM

x86_64 - Real Time (RPMs) (RT-KVM). Contains packages to
enable the real time kernel. This
repository should be enabled for
all Compute nodes targeted for
RT-KVM. NOTE: You need a
separate subscription to a Red
Hat OpenStack Platform for
Real Time SKU before you can
access this repository.

Red Hat Enterprise Linux 8 for rhel-8-for-x86_64-nfv-rpms Repository for Real Time KVM
x86_64 - Real Time for NFV (RT-KVM) for NFV. Contains
(RPMs) packages to enable the real time

kernel. This repository should be
enabled for all NFVV Compute
nodes targeted for RT-KVM.
NOTE: You need a separate
subscription to a Red Hat
OpenStack Platform for Real
Time SKU before you can access
this repository.

IBM POWER repositories

The following table lists repositories for Openstack Platform on POWER PC architecture. Use these
repositories in place of equivalents in the Core repositories.

58

CHAPTER 5. PLANNING YOUR OVERCLOUD

Repository

Description of Requirement

Red Hat Enterprise Linux for IBM
Power, little endian - BaseOS
(RPMs)

Red Hat Enterprise Linux 8 for
IBM Power, little endian -
AppStream (RPMs)

Red Hat Enterprise Linux 8 for
IBM Power, little endian - High
Availability (RPMs)

Red Hat Ansible Engine 2.8 for
RHEL 8 IBM Power, little endian
(RPMs)

Red Hat OpenStack Platform 15
for RHEL 8 (RPMs)

rhel-8-for-ppc64le-baseos-
rpms

rhel-8-for-ppc64le-
appstream-rpms

rhel-8-for-ppc64le-
highavailability-rpms

ansible-2.8-for-rhel-8-
ppc64le-rpms

openstack-15-for-rhel-8-
ppc64le-rpms

Base operating system repository
for ppc64le systems.

Contains Red Hat OpenStack
Platform dependencies.

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Ansible Engine for Red Hat
Enterprise Linux. Used to provide
the latest version of Ansible.

Core Red Hat OpenStack
Platform repository for ppc64le
systems.

59

Red Hat OpenStack Platform 15 Director Installation and Usage

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI
TOOLS

This chapter contains basic configuration procedures to deploy an OpenStack Platform environment
using the CLI tools. An overcloud with a basic configuration contains no custom features. However, you
can add advanced configuration options to this basic overcloud and customize it to your specifications
using the instructions in the Advanced Overcloud Customization guide.

6.1. REGISTERING NODES FOR THE OVERCLOUD

The director requires a node definition template, which you create manually. This template uses a JSON
or YAML format, and contains the hardware and power management details for your nodes.

Procedure

1. Create a template that lists your nodes. Use the following JSON and YAML template examples
to understand how to structure your node definition template:

Example JSON template

{

"nodes"[
{
"mac"[
"bb:bb:bb:bb:bb:bb"
1,
"name":"node01",
"cpu":"4",
"memory":"6144",
"disk":"40",
"arch":"x86_64",
"pm_type":"ipmi",
"pm_user":"admin",
"pm_password":"p@55w0rd!",
"pm_addr":"192.168.24.205"

"mac"[

"cc:cc:ce:ce:cc.cc”
1,
"name":"node02",
"cpu":"4",
"memory":"6144",
"disk":"40",
"arch":"x86_64",
"pm_type":"ipmi",
"pm_user":"admin",
"pm_password":"p@55w0rd!",
"pm_addr":"192.168.24.206"

Example YAML template

60

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/advanced_overcloud_customization/

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

nodes:
- mac:
- "bb:bb:bb:bb:bb:bb"
name: "node01"
cpu: 4
memory: 6144
disk: 40
arch: "x86_64"
pm_type: "ipmi"
pm_user: "admin"
pm_password: "p@55w0rd!"
pm_addr: "192.168.24.205"
- mac:
- CC:CCICCICC:CC:CC
name: "node02"
cpu: 4
memory: 6144
disk: 40
arch: "x86_64"
pm_type: "ipmi"
pm_user: "admin"
pm_password: "p@55w0rd!"
pm_addr: "192.168.24.206"

This template contains the following attributes:

name
The logical name for the node.

pm_type
The power management driver to use. This example uses the IPMI driver (ipmi).

» NOTE

IPMl is the preferred supported power management driver. For more

» supported power management types and their options, see Appendix A,
Power Management Drivers. If these power management drivers do not work
as expected, use IPMI for your power management.

pm_user; pm_password

The IPMI username and password.
pm_addr

The IP address of the IPMI device.
pm_port (Optional)

The port to access the specific IPMI device.
mac

(Optional) A list of MAC addresses for the network interfaces on the node. Use only the
MAC address for the Provisioning NIC of each system.

cpu
(Optional) The number of CPUs on the node.

memory

61

Red Hat OpenStack Platform 15 Director Installation and Usage

(Optional) The amount of memory in MB.
disk

(Optional) The size of the hard disk in GB.
arch

(Optional) The system architecture.

IMPORTANT

When building a multi-architecture cloud, the arch key is mandatory to
distinguish nodes using x86_64 and ppc64le architectures.

2. After creating the template, run the following commands to verify the formatting and syntax:

$ source ~/stackrc
(undercloud) $ openstack overcloud node import --validate-only ~/nodes.json

3. Save the file to the stack user's home directory (/home/stack/nodes.json), then run the
following command to import the template to the director:

I (undercloud) $ openstack overcloud node import ~/nodes.json

This command registers each node from the template into the director.

4. Wait for the node registration and configuration to completes. Once complete, confirm the
director has successfully registered the nodes:

I (undercloud) $ openstack baremetal node list

6.2. INSPECTING THE HARDWARE OF NODES

The director can run an introspection process on each node. This process boots an introspection agent
over PXE on each node. The introspection agent collects hardware data from the node and sends it
back to the director. The director then stores this introspection data in the OpenStack Object Storage

(swift) service running on the director. The director uses hardware information for various purposes
such as profile tagging, benchmarking, and manual root disk assignment.

Procedure
1. Run the following command to inspect the hardware attributes of each node:
I (undercloud) $ openstack overcloud node introspect --all-manageable --provide

® The --all-manageable option introspects only nodes in a managed state. In this example, all
nodes are in a managed state.

® The --provide option resets all nodes to an available state after introspection.

2. Monitor the progress of the introspection using the following command in a separate terminal
window:

I (undercloud) $ sudo tail -f /var/log/containers/ironic-inspector/ironic-inspector.log

62

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

IMPORTANT

Ensure this process runs to completion. This process usually takes 15 minutes for
bare metal nodes.

3. After the introspection completes, all nodes change to an available state.

6.3. TAGGING NODES INTO PROFILES

After registering and inspecting the hardware of each node, tag the nodes into specific profiles. These
profile tags match your nodes to flavors, which assigns the flavors to deployment roles. The following
example shows the relationships across roles, flavors, profiles, and nodes for Controller nodes:

Type Description

Role The Controller role defines how the director
configures controller nodes.

Flavor The control flavor defines the hardware profile for
nodes to use as controllers. You assign this flavor to
the Controller role so the director can decide which
nodes to use.

Profile The control profile is a tag you apply to thecontrol
flavor. This defines the nodes that belong to the
flavor.

Node You also apply the control profile tag to individual

nodes, which groups them to the control flavor and,
as a result, the director configures them using the
Controller role.

Default profile flavors compute, control, swift-storage, ceph-storage, and block-storage are created
during undercloud installation and are usable without modification in most environments.

Procedure

1. To tag a node into a specific profile, add a profile option to the properties/capabilities
parameter for each node. For example, to tag your nodes to use Controller and Compute
profiles respectively, use the following commands:

(undercloud) $ openstack baremetal node set --property
capabilities="profile:compute,boot_option:local' 58c3d07e-24f2-48a7-bbb6-6843f0e8ee13
(undercloud) $ openstack baremetal node set --property
capabilities="profile:control,boot_option:local' 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0

The addition of the profile:compute and profile:control options tag the two nodes into each
respective profiles.

63

Red Hat OpenStack Platform 15 Director Installation and Usage

These commands also set the boot_option:local parameter, which defines how each node
boots.

2. After completing node tagging, check the assigned profiles or possible profiles:

I (undercloud) $ openstack overcloud profiles list

6.4.SETTING UEFI BOOT MODE

The default boot mode is the legacy BIOS mode. Newer systems might require UEFI boot mode instead
of the legacy BIOS mode. Complete the following steps to change the boot mode to UEFI mode.

Procedure

1. Set the following parameters in your undercloud.conf file:

ipxe_enabled = True
inspection_enable_uefi = True

2. Save the undercloud.conf file and run the undercloud installation:
I $ openstack undercloud install

Wait until the installation script completes.

3. Set the boot mode to uefi for each registered node. For example, to add or replace the existing
boot_mode parameters in the capabilities property, run the following command:

$ NODE=<NODE NAME OR ID> ; openstack baremetal node set --property

capabilities="boot_mode:uefi,$(openstack baremetal node show $NODE -f json -c properties
| jg -r .properties.capabilities | sed "s/boot_mode:[*,]*,//g")" $NODE

NOTE

Check that you have retained the profile and boot_option capabilities:

$ openstack baremetal node show r530-12 -f json -c properties | jq -r
| .properties.capabilities

4. Set the boot mode to uefi for each flavor:

I $ openstack flavor set --property capabilities:boot_mode='uefi' control

6.5. DEFINING THE ROOT DISK FOR MULTI-DISK CLUSTERS

Director must identify the root disk during provisioning in the case of nodes with multiple disks. For
example, most Ceph Storage nodes use multiple disks. By default, the director writes the overcloud
image to the root disk during the provisioning process

There are several properties that you can define to help the director identify the root disk:

® model (String): Device identifier.

64

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

e vendor (String): Device vendor.

® serial (String): Disk serial number.

e hctl (String): Host:Channel:Target:Lun for SCSI.

® size (Integer): Size of the device in GB.

e wwhn (String): Unique storage identifier.

e wwn_with_extension (String): Unique storage identifier with the vendor extension appended.
e wwn_vendor_extension (String): Unique vendor storage identifier.

e rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

® name (String): The name of the device, for example: /dev/sdbl.

IMPORTANT

Use the name property only for devices with persistent names. Do not use name to set
the root disk for any other devices because this value can change when the node boots.

Complete the following steps to specify the root device using its serial number.

Procedure

1. Check the disk information from the hardware introspection of each node. Run the following
command to display the disk information of a node:

(undercloud) $ openstack baremetal introspection data save 1a4e30da-b6dc-499d-ba87-
0bd8a3819bcO | jq ".inventory.disks"

For example, the data for one node might show three disks:

"size": 299439751168,

"rotational": true,

"vendor": "DELL",

"name": "/dev/sda",

"wwn_vendor_extension": "0x1ea4dcc412a9632b",
"wwn_with_extension": "0x61866da04f3807001ead4dcc412a9632b",
"model": "PERC H330 Mini",

"wwn": "0x61866da04f380700",

"serial": "61866da04f3807001ea4dcc412a9632b"

"size": 299439751168,

"rotational": true,

"vendor": "DELL",

"name": "/dev/sdb",

"wwn_vendor_extension": "Ox1ea4e13c12e36ad6”,
"wwn_with_extension": "0x61866da04f380d001ea4e13c12e36ad6",
"model": "PERC H330 Mini",

65

Red Hat OpenStack Platform 15 Director Installation and Usage

"wwn": "0x61866da04{380d00",
"serial": "61866da04f380d001ea4e13c12e36ad6"

}

{
"size": 299439751168,

"rotational": true,

"vendor": "DELL",

"name": "/dev/sdc",

"wwn_vendor_extension": "Ox1ead4e31e121cfb45",
"wwn_with_extension": "0x61866da04f37fc001eade31e121cfb45",
"model": "PERC H330 Mini",

"wwn": "0x61866da04f37fc00",

"serial": "61866da04f37fc001ead4e31e121cfb45"

2. Run the openstack baremetal node set --property root_device= command to set the root
disk for a node. Include the most appropriate hardware attribute value to define the root disk.

(undercloud) $ openstack baremetal node set --property
root_device='{"serial’:"<serial_number>"} <node-uuid>

For example, to set the root device to disk 2, which has the serial number
61866da04f380d001eade13c12e36ad6 run the following command:

(undercloud) $ openstack baremetal node set --property root_device='{"serial":
"61866da04f380d001ea4e13c12e36ad6"}' 1a4e30da-b6dc-499d-ba87-0bd8a3819bcO

NOTE

Ensure that you configure the BIOS of each node to include booting from the root disk
that you choose. Configure the boot order to boot from the network first, then to boot
from the root disk.

The director identifies the specific disk to use as the root disk. When you run the openstack overcloud
deploy command, the director provisions and writes the overcloud image to the root disk.

6.6. USING THE OVERCLOUD-MINIMAL IMAGE TO AVOID USING A
RED HAT SUBSCRIPTION ENTITLEMENT

By default, director writes the QCOW?2 overcloud-full image to the root disk during the provisioning
process. The overcloud-full image uses a valid Red Hat subscription. However, you can also use the
overcloud-minimal image, for example, to provision a bare OS where you do not want to run any other
OpenStack services and consume your subscription entitlements.

A common use case for this occurs when you want to provision nodes with only Ceph daemons. For this
and similar use cases, you can use the overcloud-minimal image option to avoid reaching the limit of

your paid Red Hat subscriptions. For information about how to obtain the overcloud-minimal image,
see Obtaining images for overcloud nodes.

Procedure

66

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/director_installation_and_usage/index#sect-Obtaining_Images_for_Overcloud_Nodes

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

1. To configure director to use the overcloud-minimal image, create an environment file that
contains the following image definition:

parameter_defaults:
<roleName>Image: overcloud-minimal

2. Replace <roleName> with the name of the role and append Image to the name of the role. The
following example shows an overcloud-minimal image for Ceph storage nodes:

parameter_defaults:
CephStoragelmage: overcloud-minimal

3. Pass the environment file to the openstack overcloud deploy command.

NOTE

The overcloud-minimal image supports only standard Linux bridges and not OVS
because OVS is an OpenStack service that requires an OpenStack subscription
entitlement.

6.7. CREATING ARCHITECTURE SPECIFIC ROLES

When building a multi-architecture cloud, you must add any architecture specific roles to the
roles_data.yaml file. The following example includes the ComputePPC64LE role along with the default
roles:

openstack overcloud roles generate \
--roles-path /usr/share/openstack-tripleo-heat-templates/roles -o ~/templates/roles_data.yaml \
Controller Compute ComputePPC64LE BlockStorage ObjectStorage CephStorage

The Creating a Custom Role File section has information on roles.

6.8. ENVIRONMENT FILES

The undercloud includes a set of Heat templates that form the plan for your overcloud creation. You can
customize aspects of the overcloud using environment files, which are YAML-formatted files that
override parameters and resources in the core Heat template collection. You can include as many
environment files as necessary. However, the order of the environment files is important as the
parameters and resources defined in subsequent environment files take precedence. Use the following
list as an example of the environment file order:

® The number of nodes and the flavors for each role. It is vital to include this information for
overcloud creation.

® The location of the container images for containerized OpenStack services.
® Any network isolation files, starting with the initialization file (environments/network-
isolation.yaml) from the heat template collection, then your custom NIC configuration file, and

finally any additional network configurations. See the following chapters in the Advanced
Overcloud Customization guide for more information:

o "Basic network isolation"

o "Custom composable networks"

67

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/advanced_overcloud_customization/#sect-Creating_a_Custom_Roles_File
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/advanced_overcloud_customization/basic-network-isolation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/advanced_overcloud_customization/custom-composable-networks

Red Hat OpenStack Platform 15 Director Installation and Usage

o "Custom network interface templates"

® Any external load balancing environment files if you are using an external load balancer. See
External Load Balancing for the Overcloud for more information.

® Any storage environment files such as Ceph Storage, NFS, iSCSI, etc.
® Any environment files for Red Hat CDN or Satellite registration.
® Any other custom environment files.

It is recommended to keep your custom environment files organized in a separate directory, such as the
templates directory.

You can customize advanced features for your overcloud using the Advanced Overcloud Customization
guide.

IMPORTANT

A basic overcloud uses local LVM storage for block storage, which is not a supported
configuration. It is recommended to use an external storage solution, such as Red Hat
Ceph Storage, for block storage.

NOTE

The environment file extension must be .yaml or .template, or it will not be treated as a
custom template resource.

The next few sections contain information about creating some environment files necessary for your
overcloud.

6.9. CREATING AN ENVIRONMENT FILE THAT DEFINES NODE
COUNTS AND FLAVORS

By default, the director deploys an overcloud with 1 Controller node and 1 Compute node using the
baremetal flavor. However, this is only suitable for a proof-of-concept deployment. You can override
the default configuration by specifying different node counts and flavors. For a small scale production
environment, you might want to consider at least 3 Controller nodes and 3 Compute nodes, and assign
specific flavors to ensure the nodes have the appropriate resource specifications. Complete the
following steps to create an environment file named node-info.yaml that stores the node counts and
flavor assignments.

Procedure
1. Create a node-info.yaml file in the /home/stack/templates/ directory:

I (undercloud) $ touch /home/stack/templates/node-info.yaml

2. Edit the file to include the node counts and flavors your need. This example contains 3
Controller nodes and 3 Compute nodes:

parameter_defaults:
OvercloudControllerFlavor: control
OvercloudComputeFlavor: compute

68

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/advanced_overcloud_customization/custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/external_load_balancing_for_the_overcloud/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/advanced_overcloud_customization/

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

ControllerCount: 3
ComputeCount: 3

6.10. CREATING AN ENVIRONMENT FILE FOR UNDERCLOUD CA
TRUST

If your undercloud uses TLS and the Certificate Authority (CA) is not publicly trusted, you can use the
CA for SSL endpoint encryption that the undercloud operates. To ensure the undercloud endpoints
accessible to the rest of your deployment, configure your overcloud nodes to trust the undercloud CA.

NOTE

For this approach to work, your overcloud nodes must have a network route to the
undercloud'’s public endpoint. It is likely that deployments that rely on spine-leaf
networking will need to apply this configuration.

There are two types of custom certificates you can use in the undercloud:

e User-provided certificates - This definition applies when you have provided your own
certificate. This could be from your own CA, or it might be self-signed. This is passed using the
undercloud_service_certificate option. In this case, you must either trust the self-signed
certificate, or the CA (depending on your deployment).

® Auto-generated certificates - This definition applies when you use certmonger to generate
the certificate using its own local CA. This is enabled using the generate_service_certificate
option in the undercloud.conf file. In this case, the director generates a CA certificate at
/etc/pki/ca-trust/source/anchors/cm-local-ca.pem and the director configures the
undercloud’s HAProxy instance to use a server certificate. Add the CA certificate to the inject-
trust-anchor-hiera.yaml file to present the certificate to OpenStack Platform.

This example uses a self-signed certificate located in /home/stack/ca.crt.pem. If you use auto-
generated certificates, use /etc/pki/ca-trust/source/anchors/cm-local-ca.pem instead.

Procedure
1. Open the certificate file and copy only the certificate portion. Do not include the key:
I $ vi /nome/stack/ca.crt.pem
The certificate portion you need will look similar to this shortened example:
MIIDITCCANn2gAwWIBAgIJAONPix2hHEhrMAOGCSqGSIb3DQEBCWUAMGEXCzAJBgNV
BAYTAIVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBwwHUmMFsZWIinaDEQMA4GA1UECg

wH
UmVKIEhhdDELMAKGA1UECwWwCUUUxFDASBgNVBAMMCZzE5Mi4xNjguMC4yMB4XDTE3

2. Create anew YAML file called /home/stack/inject-trust-anchor-hiera.yaml with the following
contents, and include the certificate you copied from the PEM file:

parameter_defaults:
CAMap:

69

Red Hat OpenStack Platform 15 Director Installation and Usage

undercloud-ca:
content: |

MIIDITCCAN2gAwWIBAgIJAONPix2hHEhrMAOGCSgGSIb3DQEBCWUAMGExXCzAJBgNV

BAYTAIVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBwwHUMFsZWInaDEQMA4GA1UECqg
wH

UmVKIEhhdDELMAKGA1UECwWwCUUUxFDASBgNVBAMMCZzE5Mi4xNjguMC4yMB4XDTES3

NOTE

The certificate string must follow the PEM format.

NOTE

The CAMap parameter might contain other certificates relevant to SSL/TLS
configuration.

The CA certificate is copied to each overcloud node during the overcloud deployment. As a result, each
node trusts the encryption presented by the undercloud’s SSL endpoints. For more information about
environment files, see Section 6.13, “Including environment files in an overcloud deployment” .

6.11. DEPLOYMENT COMMAND

The final stage in creating your OpenStack environment is to run the openstack overcloud deploy
command to create the overcloud. Before running this command, you should familiarize yourself with
key options and how to include custom environment files.

' WARNING
A Do not run openstack overcloud deploy as a background process. The overcloud

creation might hang mid-deployment if run as a background process.

6.12. DEPLOYMENT COMMAND OPTIONS
The following table lists the additional parameters for the openstack overcloud deploy command.

Table 6.1. Deployment command options

Parameter Description

--templates [TEMPLATES] The directory containing the Heat templates to
deploy. If blank, the command uses the default
template location at /usr/share/openstack-
tripleo-heat-templates/

70

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

Parameter Description

--stack STACK

-t [TIMEOUT], --timeout [TIMEOUT]

--libvirt-type [LIBVIRT_TYPE]

--ntp-server [NTP_SERVER]

--no-proxy [NO_PROXY]

--overcloud-ssh-user
OVERCLOUD_SSH_USER

--overcloud-ssh-key OVERCLOUD_SSH_KEY

--overcloud-ssh-network

OVERCLOUD_SSH_NETWORK

-e [EXTRA HEAT TEMPLATE], --extra-
template [EXTRA HEAT TEMPLATE]

--environment-directory

-r ROLES_FILE

The name of the stack to create or update

Deployment timeout in minutes

Virtualization type to use for hypervisors

Network Time Protocol (NTP) server to use to
synchronize time. You can also specify multiple NTP
servers in a comma-separated list, for example: ==
ntp-server
0.centos.pool.org,1.centos.pool.org. For a high
availability cluster deployment, it is essential that
your controllers are consistently referring to the
same time source. Note that a typical environment
might already have a designated NTP time source
with established practices.

Defines custom values for the environment variable
no_proxy, which excludes certain hostnames from
proxy communication.

Defines the SSH user to access the overcloud nodes.
Normally SSH access occurs through the heat-
admin user.

Defines the key path for SSH access to overcloud
nodes.

Defines the network name to use for SSH access to
overcloud nodes.

Extra environment files to pass to the overcloud
deployment. You can specify this option more than
once. Note that the order of environment files
passed to the openstack overcloud deploy
command is important. For example, parameters
from each sequential environment file override the
same parameters from earlier environment files.

The directory containing environment files to include
in deployment. The deploy command processes
these environment files in numerical, then
alphabetical order.

Defines the roles file and overrides the default
roles_data.yaml in the --templates directory. The
file location can be an absolute path or the path
relative to --templates.

71

Red Hat OpenStack Platform 15 Director Installation and Usage

Parameter Description

-n NETWORKS_FILE Defines the networks file and overrides the default
network_data.yaml in the --templates directory. The
file location can be an absolute path or the path
relative to --templates.

-p PLAN_ENVIRONMENT_FILE Defines the plan Environment file and overrides the
default plan-environment.yaml in the --
templates directory. The file location can be an
absolute path or the path relative to --templates.

--no-cleanup Do not delete temporary files after deployment and
just log their location.

--update-plan-only Update the plan. Do not perform the actual
deployment.
--validation-errors-nonfatal The overcloud creation process performs a set of

pre-deployment checks. This option exits if any non-
fatal errors occur from the pre-deployment checks. It
is advisable to use this option as any errors can cause
your deployment to fail.

--validation-warnings-fatal The overcloud creation process performs a set of
pre-deployment checks. This option exits if any non-
critical warnings occur from the pre-deployment
checks. openstack-tripleo-validations

--dry-run Performs validation check on the overcloud but does
not actually create the overcloud.

--run-validations Run external validations from the openstack-
tripleo-validations package.

--skip-postconfig Skip the overcloud post-deployment configuration.
--force-postconfig Force the overcloud post-deployment configuration.
--skip-deploy-identifier Skip generation of a unique identifier for the

Deployldentifier parameter. The software
configuration deployment steps only trigger if there
is an actual change to the configuration. Use this
option with caution and only if you are confident you
do not need to run the software configuration, such
as scaling out certain roles.

--answers-file ANSWERS_FILE Path to a YAML file with arguments and parameters.

72

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

Parameter Description

--disable-password-generation

--deployed-server

--no-config-download, --stack-only

--config-download-only

--output-dir OUTPUT_DIR

--override-ansible-cfg
OVERRIDE_ANSIBLE_CFG

--config-download-timeout
CONFIG_DOWNLOAD_TIMEOUT

--rhel-reg

--reg-method

--reg-org [REG_ORG]

--reg-force

Disable password generation for the overcloud
services.

Use pre-provisioned overcloud nodes. Used in
conjunction with --disable-validations.

Disable the config-download workflow and only
create the stack and associated OpenStack
resources. This command applies no software
configuration to the overcloud.

Disable the overcloud stack creation and only run the
config-download workflow to apply the software
configuration.

Directory to use for saved config-download
output. The directory must be writeable by the
mistral user. When not specified, the director uses
the default, which is /var/lib/mistral/overcloud.

Path to Ansible configuration file. The configuration
in the file overrides any configuration that config-
download generates by default.

Timeout in minutes to use for config-download
steps. If unset, director sets the default to however
much time is left over from the --timeout parameter
after the stack deployment operation.

Register overcloud nodes to the Customer Portal or
Satellite 6.

Registration method to use for the overcloud nodes.
satellite for Red Hat Satellite 6 or Red Hat Satellite
5, portal for Customer Portal.

Organization to use for registration.

Register the system even if it is already registered.

73

Red Hat OpenStack Platform 15 Director Installation and Usage

Parameter Description

--reg-sat-url [REG_SAT_URL] The base URL of the Satellite server to register
overcloud nodes. Use the Satellite's HTTP URL and
not the HTTPS URL for this parameter. For example,
use http://satellite.example.com and not
https://satellite.example.com. The overcloud
creation process uses this URL to determine whether
the server is a Red Hat Satellite 5 or Red Hat
Satellite 6 server. If the server is a Red Hat Satellite
6 server, the overcloud obtains the katello-ca-
consumer-latest.noarch.rpmifile, registers with
subscription-manager, and installs katello-
agent. If the server is a Red Hat Satellite 5 server,
the overcloud obtains the RHN-ORG-TRUSTED-
SSL-CERT file and registers withrhnreg_ks.

--reg-activation-key Activation key to use for registration.
[REG_ACTIVATION_KEY]

Run the following command to view a full list of options:

I (undercloud) $ openstack help overcloud deploy

Some command line parameters are outdated or deprecated in favor of using Heat template
parameters, which you include in the parameter_defaults section on an environment file. The following
table maps deprecated parameters to their Heat Template equivalents.

Table 6.2. Mapping Deprecated CLI Parameters to Heat Template Parameters

Parameter Description Heat Template Parameter
--control-scale The number of Controller nodes ControllerCount
to scale out
--compute-scale The number of Compute nodesto ComputeCount
scale out
--ceph-storage-scale The number of Ceph Storage CephStorageCount

nodes to scale out

--block-storage-scale The number of Cinder nodes to BlockStorageCount
scale out

--swift-storage-scale The number of Swift nodes to ObjectStorageCount
scale out

--control-flavor The flavor to use for Controller OvercloudControllerFlavor
nodes

74

http://satellite.example.com
https://satellite.example.com

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

Parameter Description Heat Template Parameter

--compute-flavor The flavor to use for Compute OvercloudComputeFlavor
nodes

--ceph-storage-flavor The flavor to use for Ceph OvercloudCephStorageFlavo
Storage nodes r

--block-storage-flavor The flavor to use for Cinder nodes ~ OvercloudBlockStorageFlav

or

--swift-storage-flavor The flavor to use for Swift storage ~ OvercloudSwiftStorageFlavo
nodes r

--validation-errors-fatal The overcloud creation process No parameter mapping

performs a set of pre-deployment
checks. This option exits if any
fatal errors occur from the pre-
deployment checks. It is advisable
to use this option as any errors
can cause your deployment to fail.

--disable-validations Disable the pre-deployment No parameter mapping
validations entirely. These
validations were built-in pre-
deployment validations, which
have been replaced with external
validations from the openstack-
tripleo-validations package.

--config-download Run deployment using the No parameter mapping
config-download mechanism.
This is now the default and this
CLI options may be removed in
the future.

These parameters are scheduled for removal in a future version of Red Hat OpenStack Platform.

6.13. INCLUDING ENVIRONMENT FILES IN AN OVERCLOUD
DEPLOYMENT

Use the -e option to include an environment file to customize your overcloud. You can include as many
environment files as necessary. However, the order of the environment files is important as the
parameters and resources defined in subsequent environment files take precedence. Use the following
list as an example of the environment file order:

® The number of nodes and the flavors for each role. It is vital to include this information for
overcloud creation.

® The location of the container images for containerized OpenStack services.

75

Red Hat OpenStack Platform 15 Director Installation and Usage

® Any network isolation files, starting with the initialization file (environments/network-
isolation.yaml) from the heat template collection, then your custom NIC configuration file, and
finally any additional network configurations. See the following chapters in the Advanced
Overcloud Customization guide for more information:

o "Basic network isolation”
o "Custom composable networks"
o "Custom network interface templates”

® Any external load balancing environment files if you are using an external load balancer. See
External Load Balancing for the Overcloud for more information.

® Any storage environment files such as Ceph Storage, NFS, iSCSI, etc.
® Any environment files for Red Hat CDN or Satellite registration.
® Any other custom environment files.

Any environment files added to the overcloud using the -e option become part of your overcloud's stack
definition.

The following command is an example of how to start the overcloud creation using environment files
defined earlier in this scenario:

(undercloud) $ openstack overcloud deploy --templates \
-e /home/stack/templates/node-info.yaml \
-e /home/stack/containers-prepare-parameter.yaml \
-e /home/stack/inject-trust-anchor-hiera.yaml \
-r /home/stack/templates/roles_data.yaml

This command contains the following additional options:

--templates

Creates the overcloud using the Heat template collection in /usr/share/openstack-tripleo-heat-
templates as a foundation

-e /home/stack/templates/node-info.yaml
Adds an environment file to define how many nodes and which flavors to use for each role.
-e /home/stack/containers-prepare-parameter.yaml

Adds the container image preparation environment file. You generated this file during the
undercloud installation and can use the same file for your overcloud creation.

-e /home/stack/inject-trust-anchor-hiera.yaml
Adds an environment file to install a custom certificate in the undercloud.
-r /home/stack/templates/roles_data.yaml

(optional) The generated roles data if using custom roles or enabling a multi architecture cloud. See
Section 6.7, “Creating architecture specific roles” for more information.

The director requires these environment files for re-deployment and post-deployment functions.
Failure to include these files can result in damage to your overcloud.

To modify the overcloud configuration at a later stage, perform the following actions:

1. Modify parameters in the custom environment files and Heat templates

76

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/advanced_overcloud_customization/basic-network-isolation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/advanced_overcloud_customization/custom-composable-networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/advanced_overcloud_customization/custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/external_load_balancing_for_the_overcloud/index

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

2. Run the openstack overcloud deploy command again with the same environment files

Do not edit the overcloud configuration directly as such manual configuration gets overridden by the
director’s configuration when updating the overcloud stack with the director.

6.14. VALIDATING THE OVERCLOUD CONFIGURATION BEFORE
DEPLOYMENT OPERATIONS

Before executing an overcloud deployment operation, validate your Heat templates and environment
files for any errors.

Procedure

1. The core Heat templates for the overcloud are in a Jinja2 format. To validate your templates,
render a version without Jinja2 formatting using the following commands:

$ cd /usr/share/openstack-tripleo-heat-templates
$./tools/process-templates.py -o ~/overcloud-validation

2. Use the following command to validate the template syntax:

(undercloud) $ openstack orchestration template validate --show-nested \
--template ~/overcloud-validation/overcloud.yaml \
-e ~/overcloud-validation/overcloud-resource-registry-puppet.yaml \
-e [ENVIRONMENT FILE]\
-e [ENVIRONMENT FILE]

The validation requires the overcloud-resource-registry-puppet.yaml environment file to
include overcloud-specific resources. Add any additional environment files to this command
with -e option. Also include the --show-nested option to resolve parameters from nested
templates.

3. The validation command identifies any syntax errors in the template.