
Red Hat OpenStack Platform 13

Instances and Images Guide

Managing Instances and Images

Last Updated: 2022-02-16

Red Hat OpenStack Platform 13 Instances and Images Guide

Managing Instances and Images

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Instances and Images guide provides procedures for the management of instances, images of a
Red Hat OpenStack Platform environment.

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. IMAGE SERVICE
1.1. UNDERSTANDING AND OPTIMIZING THE IMAGE SERVICE

1.1.1. Supported Image service (glance) back ends
1.1.2. Image signing and verification
1.1.3. Image conversion
1.1.4. Image introspection
1.1.5. Interoperable image import

1.2. MANAGING IMAGES
1.2.1. Creating an image

1.2.1.1. Using a KVM guest image with Red Hat OpenStack Platform
1.2.1.2. Creating custom Red Hat Enterprise Linux or Windows images

1.2.1.2.1. Creating a Red Hat Enterprise Linux 7 image
1.2.1.2.2. Creating a Red Hat Enterprise Linux 6 image
1.2.1.2.3. Creating a Windows image

1.2.2. Uploading an image
1.2.3. Updating an image
1.2.4. Importing an image

1.2.4.1. Importing from a remote URI
1.2.4.2. Importing from a local volume

1.2.5. Deleting an image
1.2.6. Enabling image conversion
1.2.7. Converting an image to RAW format

1.2.7.1. Configuring the Image service to accept only RAW and ISO
1.2.8. Storing an image in RAW format

CHAPTER 2. CONFIGURING THE COMPUTE (NOVA) SERVICE
2.1. CONFIGURING MEMORY FOR OVERALLOCATION
2.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES
2.3. CALCULATING SWAP SIZE

CHAPTER 3. CONFIGURING OPENSTACK COMPUTE STORAGE
3.1. ARCHITECTURE OVERVIEW
3.2. CONFIGURATION
3.3. ENABLING SERVICE TOKENS BETWEEN THE COMPUTE SERVICE AND THE BLOCK STORAGE SERVICE

CHAPTER 4. VIRTUAL MACHINE INSTANCES
4.1. MANAGING INSTANCES

4.1.1. Adding components
4.1.2. Launching an instance

4.1.2.1. Launching instance options
4.1.3. Updating an instance
4.1.4. Resizing an instance
4.1.5. Connecting to an instance

4.1.5.1. Accessing an instance console by using the dashboard
4.1.5.2. Accessing an instance console by using the CLI

4.1.6. Viewing instance usage
4.1.7. Deleting an instance
4.1.8. Managing multiple instances simultaneously

4.2. MANAGING INSTANCE SECURITY

6

7
7
7
8
9
9

10
10
10
10
11

12
14
17
19

20
21
21
21
22
22
22
23
23

25
26
26
27

28
28
29

31

34
34
34
34
35
37
38
39
39
40
40
40
41
41

Table of Contents

1

. .

4.2.1. Managing key pairs
4.2.1.1. Creating a key pair
4.2.1.2. Importing a key pair
4.2.1.3. Deleting a key pair

4.2.2. Creating a security group
4.2.3. Creating, assigning, and releasing floating IP addresses

4.2.3.1. Allocating a floating IP to the project
4.2.3.2. Assigning a floating IP
4.2.3.3. Releasing a floating IP

4.2.4. Logging in to an instance
4.2.5. Injecting an admin password into an instance

4.3. MANAGING FLAVORS
4.3.1. Updating configuration permissions
4.3.2. Creating a flavor
4.3.3. Updating general attributes
4.3.4. Updating flavor metadata

4.3.4.1. Viewing metadata
4.3.4.2. Adding metadata

4.4. MANAGING HOST AGGREGATES
4.4.1. Enabling host aggregate scheduling
4.4.2. Viewing availability zones or host aggregates
4.4.3. Adding a host aggregate
4.4.4. Updating a host aggregate
4.4.5. Deleting a host aggregate

4.5. SCHEDULING HOSTS
4.5.1. Configuring scheduling filters
4.5.2. Configuring scheduling weights
4.5.3. Reserving NUMA nodes with PCI devices

4.6. MANAGING INSTANCE SNAPSHOTS
4.6.1. Creating an instance snapshot
4.6.2. Managing a snapshot
4.6.3. Rebuilding an instance to a state in a snapshot
4.6.4. Consistent snapshots

4.7. USING RESCUE MODE FOR INSTANCES
4.7.1. Preparing an image for a rescue mode instance

4.7.1.1. Rescuing an image that uses ext4 file system
4.7.2. Adding the rescue image to the OpenStack Image service
4.7.3. Launching an instance in rescue mode
4.7.4. Unrescuing an instance

4.8. CREATING A CUSTOMIZED INSTANCE
4.8.1. Customizing an instance by using user data
4.8.2. Customizing an instance by using metadata
4.8.3. Customizing an instance by using a config drive

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES
5.1. MIGRATION TYPES
5.2. MIGRATION CONSTRAINTS
5.3. PREPARING TO MIGRATE
5.4. ADDITIONAL PREPARATION FOR DPDK INSTANCES
5.5. COLD MIGRATING AN INSTANCE
5.6. LIVE MIGRATING AN INSTANCE
5.7. CHECKING MIGRATION STATUS
5.8. COMPLETING THE MIGRATION

41
41
41

42
42
42
42
42
43
43
44
45
46
46
47
47
47
47
52
53
53
53
54
54
55
56
59
65
65
66
67
67
67
68
68
68
69
69
70
70
71
72
72

74
74
76
78
78
80
81

82
83

Red Hat OpenStack Platform 13 Instances and Images Guide

2

. .

. .

. .

. .

. .

. .

. .

5.9. EVACUATING AN INSTANCE
5.9.1. Evacuating one instance
5.9.2. Evacuating all instances on a host
5.9.3. Configuring shared storage

5.10. TROUBLESHOOTING MIGRATION
5.10.1. Errors during migration
5.10.2. Never-ending live migration
5.10.3. Instance performance degrades after migration

CHAPTER 6. CONFIGURING PCI PASSTHROUGH
6.1. DESIGNATING COMPUTE NODES FOR PCI PASSTHROUGH
6.2. CONFIGURING A PCI PASSTHROUGH COMPUTE NODE
6.3. PCI PASSTHROUGH DEVICE TYPE FIELD
6.4. GUIDELINES FOR CONFIGURING NOVAPCIPASSTHROUGH

CHAPTER 7. DATABASE CLEANING
7.1. CONFIGURING DATABASE MANAGEMENT
7.2. CONFIGURATION OPTIONS FOR OPENSTACK COMPUTE (NOVA) AUTOMATED DATABASE
MANAGEMENT

CHAPTER 8. CONFIGURING COMPUTE NODES FOR PERFORMANCE
8.1. CONFIGURING CPU PINNING WITH NUMA

8.1.1. Compute node configuration
8.1.2. Configuring emulator threads to run on dedicated physical CPU
8.1.3. Scheduler configuration
8.1.4. Aggregate and flavor configuration

8.2. CONFIGURING HUGE PAGES ON THE COMPUTE NODE
8.2.1. Allocating huge pages to instances

CHAPTER 9. ADDING METADATA TO INSTANCES
9.1. TYPES OF INSTANCE METADATA
9.2. ADDING A CONFIG DRIVE TO ALL INSTANCES
9.3. ADDING STATIC METADATA TO INSTANCES
9.4. ADDING DYNAMIC METADATA TO INSTANCES

CHAPTER 10. CONFIGURING REAL-TIME COMPUTE
10.1. PREPARING YOUR COMPUTE NODES FOR REAL-TIME
10.2. DEPLOYING THE REAL-TIME COMPUTE ROLE
10.3. SAMPLE DEPLOYMENT AND TESTING SCENARIO
10.4. LAUNCHING AND TUNING REAL-TIME INSTANCES

CHAPTER 11. CONFIGURING VIRTUAL GPUS FOR INSTANCES
11.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS
11.2. CONFIGURING VGPU ON THE COMPUTE NODES

11.2.1. Building a custom GPU overcloud image
11.2.2. Designating Compute nodes for vGPU
11.2.3. Configuring the Compute node for vGPU and deploying the overcloud

11.3. CREATING THE VGPU IMAGE AND FLAVOR
11.3.1. Creating a custom GPU instance image
11.3.2. Creating a vGPU flavor for instances
11.3.3. Launching a vGPU instance

11.4. ENABLING PCI PASSTHROUGH FOR A GPU DEVICE

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

84
84
85
85
87
87
87
88

90
90
92
95
95

96
96

96

100
100
101
102
103
104
105
107

108
108
108
110
110

112
112
115
117
119

121
121
121
122
124
126
128
128
128
129
130

133

Table of Contents

3

. .APPENDIX B. ENABLING THE LAUNCH INSTANCE WIZARD 144

Red Hat OpenStack Platform 13 Instances and Images Guide

4

Table of Contents

5

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat OpenStack Platform 13 Instances and Images Guide

6

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. IMAGE SERVICE
You can manage images and storage in Red Hat OpenStack Platform (RHOSP).

A virtual machine image is a file that contains a virtual disk with a bootable operating system installed.
Virtual machine images are supported in different formats. The following formats are available in
RHOSP:

RAW - Unstructured disk image format.

QCOW2 - Disk format supported by QEMU emulator. This format includes QCOW2v3
(sometimes referred to as QCOW3), which requires QEMU 1.1 or higher.

ISO - Sector-by-sector copy of the data on a disk, stored in a binary file.

AKI - Indicates an Amazon Kernel Image.

AMI - Indicates an Amazon Machine Image.

ARI - Indicates an Amazon RAMDisk Image.

VDI - Disk format supported by VirtualBox virtual machine monitor and the QEMU emulator.

VHD - Common disk format used by virtual machine monitors from VMware, VirtualBox, and
others.

VMDK - Disk format supported by many common virtual machine monitors.

PLOOP - A disk format supported and used by Virtuozzo to run OS containers.

OVA - Indicates that what is stored in the Image service (glance) is an OVA tar archive file.

DOCKER - Indicates that what is stored in the Image service (glance) is a Docker tar archive of
the container file system.

Because ISO files contain bootable file systems with an installed operating system, you can use ISO files
in the same way that you use other virtual machine image files.

To download the official Red Hat Enterprise Linux cloud images, your account must have a valid Red Hat
Enterprise Linux subscription:

Red Hat Enterprise Linux 8 KVM Guest Image

Red Hat Enterprise Linux 7 KVM Guest Image

Red Hat Enterprise Linux 6 KVM Guest Image

If you are not logged in to the Customer Portal, a prompt opens where you must enter your Red Hat
account credentials.

1.1. UNDERSTANDING AND OPTIMIZING THE IMAGE SERVICE

You can use the following Red Hat OpenStack Platform (RHOSP) Image service (glance) features to
manage and optimize images and storage in your RHOSP deployment.

1.1.1. Supported Image service (glance) back ends

CHAPTER 1. IMAGE SERVICE

7

https://access.redhat.com/downloads/content/479/ver=/rhel---8
https://access.redhat.com/downloads/content/69/ver=/rhel---7
https://access.redhat.com/downloads/content/69/ver=/rhel---6/6.10/x86_64/product-software

The following Image service (glance) back end scenarios are supported:

RBD is the default back end when you use Ceph. For more information, see Configuring Ceph
Storage in the Advanced Overcloud Customization guide.

Object Storage (swift). For more information, see Using an External Object Storage Cluster in
the Advanced Overcloud Customization guide.

Block Storage (cinder). For more information, see Configuring cinder back end for the Image
service in the Advanced Overcloud Customization guide.

Note

The Image service uses the Block Storage type and back end as the default.

NFS. For more information, see Configuring NFS Storage in the Advanced Overcloud
Customization guide.

IMPORTANT

Although NFS is a supported Image service deployment option, more robust
options are available.

NFS is not native to the Image service. When you mount an NFS share on the
Image service, the Image service does not manage the operation. The Image
service writes data to the file system but is unaware that the back end is an NFS
share.

In this type of deployment, the Image service cannot retry a request if the share
fails. This means that when a failure occurs on the back end, the store might
enter read-only mode, or it might continue to write data to the local file system,
in which case you risk data loss. To recover from this situation, you must ensure
that the share is mounted and in sync, and then restart the Image service. For
these reasons, Red Hat does not recommend NFS as an Image service back end.

However, if you do choose to use NFS as an Image service back end, some of the
following best practices can help to mitigate risks:

Use a production-grade NFS back end.

Ensure that a Layer 2 connection is established between Controller nodes
and the NFS back end.

Include monitoring and alerts for the mounted share.

Set underlying FS permissions.

Ensure that the user and the group that the glance-api process runs on
do not have write permissions on the mount point at the local file system.
This means that the process can detect possible mount failure and put
the store into read-only mode during a write attempt.

The write permissions must be present in the shared file system that you
use as a store.

1.1.2. Image signing and verification

Red Hat OpenStack Platform 13 Instances and Images Guide

8

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/storage_configuration#sect-Configuring_Ceph_Storage
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/storage_configuration#sect-Standalone_Swift_Cluster
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/storage_configuration#sect-cinder-backend-glance
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Configuring_NFS_Storage

Image signing and verification protects image integrity and authenticity by enabling deployers to sign
images and save the signatures and public key certificates as image properties.

By taking advantage of this feature, you can:

Sign an image using your private key and upload the image, the signature, and a reference to
your public key certificate (the verification metadata). The Image service then verifies that the
signature is valid.

Create an image in the Compute service, have the Compute service sign the image, and upload
the image and its verification metadata. The Image service again verifies that the signature is
valid.

Request a signed image in the Compute service. The Image service provides the image and its
verification metadata, allowing the Compute service to validate the image before booting it.

For information on image signing and verification, refer to the Validate Glance Images chapter of the
Manage Secrets with OpenStack Key Manager Guide .

1.1.3. Image conversion

Image conversion converts images by calling the task API while importing an image.

As part of the import workflow, a plugin provides the image conversion. This plugin can be activated or
deactivated based on the deployer configuration. Therefore, the deployer needs to specify the
preferred format of images for the deployment.

Internally, the Image service receives the bits of the image in a particular format. These bits are stored in
a temporary location. The plugin is then triggered to convert the image to the target format and move it
to a final destination. When the task is finished, the temporary location is deleted. As a result, the format
uploaded initially is not retained by the Image service.

For more information about image conversion, see Enabling image conversion.

NOTE

You can trigger the conversion only when you import an image. Conversion does not run
when you upload an image. For example:

$ glance image-create-via-import \
 --disk-format qcow2 \
 --container-format bare \
 --name <name> \
 --visibility public \
 --import-method web-download \
 --uri <http://server/image.qcow2>

1.1.4. Image introspection

Every image format comes with a set of metadata embedded inside the image itself. For example, a
stream optimized vmdk would contain the following parameters:

$ head -20 so-disk.vmdk

Disk DescriptorFile

CHAPTER 1. IMAGE SERVICE

9

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/manage_secrets_with_openstack_key_manager/validate_glance_images

version=1
CID=d5a0bce5
parentCID=ffffffff
createType="streamOptimized"

Extent description
RDONLY 209714 SPARSE "generated-stream.vmdk"

The Disk Data Base
#DDB

ddb.adapterType = "buslogic"
ddb.geometry.cylinders = "102"
ddb.geometry.heads = "64"
ddb.geometry.sectors = "32"
ddb.virtualHWVersion = "4"

By introspecting this vmdk, you can know that the disk_type is streamOptimized, and the
adapter_type is buslogic. These metadata parameters are useful for the consumer of the image. In
Compute, the workflow to instantiate a streamOptimized disk is different from the one to instantiate a
flat disk. This new feature allows metadata extraction. You can achieve image introspection by calling
the task API while you import the image. An administrator can override metadata settings.

1.1.5. Interoperable image import

The OpenStack Image service (glance) provides two methods to import images by using the
interoperable image import workflow:

web-download (default) for importing images from a URI

glance-direct for importing from a local file system

1.2. MANAGING IMAGES

The OpenStack Image service (glance) provides discovery, registration, and delivery services for disk
and server images. It provides the ability to copy or snapshot a server image, and immediately store it.
You can use stored images as a template to get new servers up and running quickly and more
consistently than installing a server operating system and individually configuring services.

1.2.1. Creating an image

Manually create Red Hat OpenStack Platform (RHOSP) compatible images in the QCOW2 format by
using Red Hat Enterprise Linux 7 ISO files, Red Hat Enterprise Linux 6 ISO files, or Windows ISO files.

1.2.1.1. Using a KVM guest image with Red Hat OpenStack Platform

You can use a ready RHEL KVM guest QCOW2 image:

Red Hat Enterprise Linux 8 KVM Guest Image

Red Hat Enterprise Linux 7 KVM Guest Image

Red Hat Enterprise Linux 6 KVM Guest Image

These images are configured with cloud-init and must take advantage of ec2-compatible metadata

Red Hat OpenStack Platform 13 Instances and Images Guide

10

https://access.redhat.com/downloads/content/479/ver=/rhel---8
https://access.redhat.com/downloads/content/69/ver=/rhel---7
https://access.redhat.com/downloads/content/69/ver=/rhel---6/6.10/x86_64/product-software

These images are configured with cloud-init and must take advantage of ec2-compatible metadata
services for provisioning SSH keys to function properly.

Ready Windows KVM guest QCOW2 images are not available.

NOTE

For the KVM guest images:

The root account in the image is disabled, but sudo access is granted to a special
user named cloud-user.

There is no root password set for this image.

The root password is locked in /etc/shadow by placing !! in the second field.

For a RHOSP instance, it is recommended that you generate an ssh keypair from the RHOSP dashboard
or command line and use that key combination to perform an SSH public authentication to the instance
as root.

When the instance is launched, this public key is injected to it. You can then use the private key you
downloaded while you created the keypair to authenticate.

If you do not want to use keypairs, you can use the admin password that you can set in the procedure to
inject an admin password, see Injecting an admin password into an instance .

If you want to create custom Red Hat Enterprise Linux or Windows images, see:

Create a Red Hat Enterprise Linux 7 Image

Create a Red Hat Enterprise Linux 6 Image

Create a Windows Image

1.2.1.2. Creating custom Red Hat Enterprise Linux or Windows images

Prerequisites

Linux host machine to create an image. This can be any machine on which you can install and run
the Linux packages.

libvirt, virt-manager (run command yum groupinstall -y @virtualization). This installs all
packages necessary to create a guest operating system.

Libguestfs tools (run command yum install -y libguestfs-tools-c). This installs a set of tools to
access and modify virtual machine images.

A Red Hat Enterprise Linux 7 or 6 ISO file (see RHEL 7.2 Binary DVD or RHEL 6.8 Binary DVD)
or a Windows ISO file. If you do not have a Windows ISO file, visit the Microsoft TechNet
Evaluation Center and download an evaluation image.

A text editor if you want to change the kickstart files (RHEL only).

IMPORTANT

CHAPTER 1. IMAGE SERVICE

11

https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.2/x86_64/product-software/
https://access.redhat.com/downloads/content/69/ver=/rhel---6/6.8/x86_64/product-software/
http://www.microsoft.com/en-us/evalcenter/

IMPORTANT

If you install the libguestfs-tools package on the undercloud, disable iscsid.socket to
avoid port conflicts with the tripleo_iscsid service on the undercloud:

$ sudo systemctl disable --now iscsid.socket

NOTE

In the following procedures, you must run all commands with the [root@host]# prompt
on your host machine.

1.2.1.2.1. Creating a Red Hat Enterprise Linux 7 image

Manually create a Red Hat OpenStack Platform (RHOSP) compatible image in the QCOW2 format by
using a Red Hat Enterprise Linux 7 ISO file.

Procedure

1. Start the installation using virt-install:

[root@host]# qemu-img create -f qcow2 rhel7.qcow2 8G
[root@host]# virt-install --virt-type kvm --name rhel7 --ram 2048 \
--cdrom /tmp/rhel-server-7.2-x86_64-dvd.iso \
--disk rhel7.qcow2,format=qcow2 \
--network=bridge:virbr0 --graphics vnc,listen=0.0.0.0 \
--noautoconsole --os-type=linux --os-variant=rhel7

This launches an instance and starts the installation process.

NOTE

If the instance does not launch automatically, run the virt-viewer command to
view the console:

[root@host]# virt-viewer rhel7

2. Configure the virtual machine as follows:

a. At the initial Installer boot menu, choose the Install Red Hat Enterprise Linux 7.X option.

b. Choose the appropriate Language and Keyboard options.

c. When prompted about which type of devices your installation uses, choose Auto-detected
installation media.

d. When prompted about which type of installation destination, choose Local Standard Disks.
For other storage options, choose Automatically configure partitioning.

e. For software selection, choose Minimal Install.

f. For network and host name, choose eth0 for network and choose a hostname for your
device. The default host name is localhost.localdomain.

g. Choose the root password. The installation process completes and the Complete! screen

Red Hat OpenStack Platform 13 Instances and Images Guide

12

g. Choose the root password. The installation process completes and the Complete! screen
appears.

3. After the installation is complete, reboot the instance and log in as the root user.

4. Update the /etc/sysconfig/network-scripts/ifcfg-eth0 file so that it contains only the following
values:

TYPE=Ethernet
DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

5. Reboot the machine.

6. Register the machine with the Content Delivery Network.

sudo subscription-manager register
sudo subscription-manager attach --pool=Valid-Pool-Number-123456
sudo subscription-manager repos --enable=rhel-7-server-rpms

7. Update the system:

yum -y update

8. Install the cloud-init packages:

yum install -y cloud-utils-growpart cloud-init

9. Edit the /etc/cloud/cloud.cfg configuration file and under cloud_init_modules add:

- resolv-conf

The resolv-conf option automatically configures the resolv.conf when an instance boots for
the first time. This file contains information related to the instance such as nameservers,
domain and other options.

10. Add the following line to /etc/sysconfig/network to avoid problems accessing the EC2
metadata service:

NOZEROCONF=yes

11. To ensure the console messages appear in the Log tab on the dashboard and the nova
console-log output, add the following boot option to the /etc/default/grub file:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty0 console=ttyS0,115200n8"

Run the grub2-mkconfig command:

grub2-mkconfig -o /boot/grub2/grub.cfg

The output is as follows:

CHAPTER 1. IMAGE SERVICE

13

Generating grub configuration file ...
Found linux image: /boot/vmlinuz-3.10.0-229.7.2.el7.x86_64
Found initrd image: /boot/initramfs-3.10.0-229.7.2.el7.x86_64.img
Found linux image: /boot/vmlinuz-3.10.0-121.el7.x86_64
Found initrd image: /boot/initramfs-3.10.0-121.el7.x86_64.img
Found linux image: /boot/vmlinuz-0-rescue-b82a3044fb384a3f9aeacf883474428b
Found initrd image: /boot/initramfs-0-rescue-b82a3044fb384a3f9aeacf883474428b.img
done

12. Un-register the virtual machine so that the resulting image does not contain the same
subscription details for every instance cloned based on it:

subscription-manager repos --disable=*
subscription-manager unregister
yum clean all

13. Power off the instance:

poweroff

14. Use the virt-sysprep command to reset and clean the image so that it can be used to create
instances without issues:

[root@host]# virt-sysprep -d rhel7

15. Reduce image size by using the virt-sparsify command. This command converts any free space
within the disk image back to free space within the host:

[root@host]# virt-sparsify --compress /tmp/rhel7.qcow2 rhel7-cloud.qcow2

This creates a new rhel7-cloud.qcow2 file in the location from where the command is run.

The rhel7-cloud.qcow2 image file is ready to be uploaded to the Image service. For more information
about using the dashboard to upload this image to your RHOSP deployment, see Upload an Image.

1.2.1.2.2. Creating a Red Hat Enterprise Linux 6 image

Manually create a Red Hat OpenStack Platform (RHOSP) compatible image in the QCOW2 format by
using a Red Hat Enterprise Linux 6 ISO file.

Procedure

1. Use virt-install to start the installation:

[root@host]# qemu-img create -f qcow2 rhel6.qcow2 4G
[root@host]# virt-install --connect=qemu:///system --network=bridge:virbr0 \
--name=rhel6 --os-type linux --os-variant rhel6 \
--disk path=rhel6.qcow2,format=qcow2,size=10,cache=none \
--ram 4096 --vcpus=2 --check-cpu --accelerate \
--hvm --cdrom=rhel-server-6.8-x86_64-dvd.iso

This launches an instance and starts the installation process.

NOTE

Red Hat OpenStack Platform 13 Instances and Images Guide

14

NOTE

If the instance does not launch automatically, run the virt-viewer command to
view the console:

[root@host]# virt-viewer rhel6

2. Configure the virtual machines as follows:

a. At the initial Installer boot menu, choose the Install or upgrade an existing system option.
Follow the installation prompts. Accept the defaults.
The installer checks for the disc and lets you decide whether you want to test your
installation media before installation. Select OK to run the test or Skip to proceed without
testing.

b. Choose the appropriate Language and Keyboard options.

c. When prompted about which type of devices your installation uses, choose Basic Storage
Devices.

d. Choose a hostname for your device. The default host name is localhost.localdomain.

e. Set timezone and root password.

f. Based on the space on the disk, choose the type of installation.

g. Choose the Basic Server install, which installs an SSH server.

h. The installation process completes and Congratulations, your Red Hat Enterprise Linux
installation is complete screen appears.

3. Reboot the instance and log in as the root user.

4. Update the /etc/sysconfig/network-scripts/ifcfg-eth0 file so it only contains the following
values:

TYPE=Ethernet
DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

5. Reboot the machine.

6. Register the machine with the Content Delivery Network:

sudo subscription-manager register
sudo subscription-manager attach --pool=Valid-Pool-Number-123456
sudo subscription-manager repos --enable=rhel-6-server-rpms

7. Update the system:

yum -y update

8. Install the cloud-init packages:

CHAPTER 1. IMAGE SERVICE

15

yum install -y cloud-utils-growpart cloud-init

9. Edit the /etc/cloud/cloud.cfg configuration file and under cloud_init_modules add:

- resolv-conf

The resolv-conf option automatically configures the resolv.conf configuration file when an
instance boots for the first time. This file contains information related to the instance such as
nameservers, domain, and other options.

10. To prevent network issues, create the /etc/udev/rules.d/75-persistent-net-generator.rules file
as follows:

echo "#" > /etc/udev/rules.d/75-persistent-net-generator.rules

This prevents /etc/udev/rules.d/70-persistent-net.rules file from being created. If
/etc/udev/rules.d/70-persistent-net.rules is created, networking might not function correctly
when booting from snapshots (the network interface is created as eth1 rather than eth0 and IP
address is not assigned).

11. Add the following line to /etc/sysconfig/network to avoid problems accessing the EC2
metadata service:

NOZEROCONF=yes

12. To ensure the console messages appear in the Log tab on the dashboard and the nova
console-log output, add the following boot option to the /etc/grub.conf:

console=tty0 console=ttyS0,115200n8

13. Un-register the virtual machine so that the resulting image does not contain the same
subscription details for every instance cloned based on it:

subscription-manager repos --disable=*
subscription-manager unregister
yum clean all

14. Power off the instance:

poweroff

15. Use the virt-sysprep command to reset and clean the image so that it can be used to create
instances without issues:

[root@host]# virt-sysprep -d rhel6

16. Reduce image size by using the virt-sparsify command. This command converts any free space
within the disk image back to free space within the host:

[root@host]# virt-sparsify --compress rhel6.qcow2 rhel6-cloud.qcow2

This creates a new rhel6-cloud.qcow2 file in the location from where the command is run.

Red Hat OpenStack Platform 13 Instances and Images Guide

16

NOTE

You must manually resize the partitions of instances based on the image in
accordance with the disk space in the flavor that is applied to the instance.

The rhel6-cloud.qcow2 image file is ready to upload to the Image service. For more information about
using the dashboard to upload this image to your RHOSP deployment, see Upload an Image

1.2.1.2.3. Creating a Windows image

Manually create a Red Hat OpenStack Platform (RHOSP) compatible image in the QCOW2 format by
using a Windows ISO file.

Procedure

1. Use virt-install to start the installation:

[root@host]# virt-install --name=<name> \
--disk size=<size> \
--cdrom=<path>` \
--os-type=windows \
--network=bridge:virbr0 \
--graphics spice \
--ram=<RAM>

Replace the values of the virt-install parameters as follows:

<name> — the name of the Windows guest.

<size> — disk size in GB.

<path> — the path to the Windows installation ISO file.

<RAM> — the requested amount of RAM in MB.

NOTE

The --os-type=windows parameter ensures that the clock is configured
correctly for the Windows guest, and enables its Hyper-V enlightenment
features.

virt-install saves the guest image as /var/lib/libvirt/images/<name>.qcow2 by default. If
you want to keep the guest image elsewhere, change the parameter of the --disk option as
follows:

--disk path=<filename>,size=<size>

Replace <filename> with the name of the file that stores the guest image, and optionally its
path, for example, path=win8.qcow2,size=8 creates an 8 GB file named win8.qcow2 in the
current working directory.

TIP

CHAPTER 1. IMAGE SERVICE

17

TIP

If the guest does not launch automatically, run the virt-viewer command to view the
console:

[root@host]# virt-viewer <name>

2. Installation of Windows systems is beyond the scope of this document. For instructions about
how to install Windows, see the relevant Microsoft documentation.

3. To allow the newly installed Windows system to use the virtualized hardware, you might need to
install virtio drivers in it. To so do, first install the virtio-win package on the host system. This
package contains the virtio ISO image, which you must attach as a CD-ROM drive to the
Windows guest. See Chapter 8. KVM Para-virtualized (virtio) Drivers in the Virtualization
Deployment and Administration Guide for detailed instructions on how to install the virtio-win
package, add the virtio ISO image to the guest, and install the virtio drivers.

4. To complete the configuration, download and execute Cloudbase-Init on the Windows system.
At the end of the installation of Cloudbase-Init, select the Run Sysprep and Shutdown check
boxes. The Sysprep tool makes the guest unique by generating an OS ID, which certain
Microsoft services use.

IMPORTANT

Red Hat does not provide technical support for Cloudbase-Init. If you encounter
an issue, contact Cloudbase Solutions .

When the Windows system shuts down, the <name>_.qcow2 image file is ready to upload to the Image
service. For more information about using the dashboard or the command line to upload this image to
your RHOSP deployment, see Uploading an Image.

NOTE

Red Hat OpenStack Platform 13 Instances and Images Guide

18

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Virtualization_Deployment_and_Administration_Guide/index.html#sect-KVM_Para_virtualized_virtio_Drivers-Installing_the_KVM_Windows_virtio_drivers
http://www.cloudbase.it/cloudbase-init/
https://cloudbase.it/about/#contact

NOTE

libosinfo data

The Compute service has deprecated support for using libosinfo data to set default
device models. Instead, use the following image metadata properties to configure the
optimal virtual hardware for an instance:

os_distro

os_version

hw_cdrom_bus

hw_disk_bus

hw_scsi_model

hw_vif_model

hw_video_model

hypervisor_type

For more information about these metadata properties, see Appendix A, Image
configuration parameters.

1.2.2. Uploading an image

Procedure

1. In the dashboard, select Project > Compute > Images.

2. Click Create Image.

3. Complete the values, and click Create Image when finished.

Table 1.1. Image options

Field Notes

Name Name for the image. The name must be unique within the project.

Description Brief description to identify the image.

Image Source Image source: Image Location or Image File. Based on your selection, the
next field is displayed.

Image Location or Image File
Select Image Location option to specify the image location URL.

Select Image File option to upload an image from the local disk.

Format Image format (for example, qcow2).

CHAPTER 1. IMAGE SERVICE

19

Architecture Image architecture. For example, use i686 for a 32-bit architecture or
x86_64 for a 64-bit architecture.

Minimum Disk (GB) Minimum disk size required to boot the image. If this field is not specified, the
default value is 0 (no minimum).

Minimum RAM (MB) Minimum memory size required to boot the image. If this field is not
specified, the default value is 0 (no minimum).

Public If selected, makes the image public to all users with access to the project.

Protected If selected, ensures only users with specific permissions can delete this
image.

Field Notes

When the image has been successfully uploaded, its status is changed to active, which indicates that the
image is available for use. The Image service can handle even large images that take a long time to
upload, longer than the lifetime of the Identity service token which was used to initiate the upload. This
is due to the fact that the Image service first creates a trust with the Identity service so that a new token
can be obtained and used when the upload is complete and the status of the image is to be updated.

NOTE

You can also use the glance image-create command with the --property option to
upload an image. More values are available on the command line. For a complete list of
available metadata properties, see Image Configuration Parameters.

1.2.3. Updating an image

Procedure

1. In the dashboard, select Project > Compute > Images.

2. Click Edit Image from the list.

NOTE

The Edit Image option is available only when you log in as an admin user. When
you log in as a demo user, you have the option to Launch an instance or Create
Volume.

3. Update the fields and click Update Image when finished. You can update the following values -
name, description, kernel ID, ramdisk ID, architecture, format, minimum disk, minimum RAM,
public, protected.

4. Click the menu and select Update Metadata option.

5. Specify metadata by adding items from the left column to the right one. In the left column, there
are metadata definitions from the Image Service Metadata Catalog. Select Other to add
metadata with the key of your choice and click Save when finished.

Red Hat OpenStack Platform 13 Instances and Images Guide

20

NOTE

You can also use the glance image-update command with the --property option to
update an image. More values are available on the command line. For a complete list of
available metadata properties, see Image Configuration Parameters.

1.2.4. Importing an image

You can import images into the Image service (glance) by using web-download to import an image
from a URI and glance-direct to import an image from a local file system. The web-download option is
enabled by default.

Import methods are configured by the cloud administrator. Run the glance import-info command to list
available import options.

1.2.4.1. Importing from a remote URI

You can use the web-download method to copy an image from a remote URI by using a two-stage
process. First, an image record is created and then the image is retrieved from a URI. This method
provides a more secure way to import images than the deprecated copy-from method used in Image
API v1.

Procedure

1. Create an image and specify the URI of the image to import.

$ glance image-create --uri <URI>

2. You can monitor the availability of the image:

$ openstack image show <image_id> command.

Replace the ID with the one provided during image creation.

1.2.4.2. Importing from a local volume

The glance-direct method creates an image record, which generates an image ID. After the image is
uploaded to the service from a local volume, it is stored in a staging area and is made active after it
passes any configured checks. The glance-direct method requires a shared staging area when used in a
highly available (HA) configuration.

NOTE

Image uploads that use the glance-direct method fail in an HA environment if a common
staging area is not present. In an HA active-active environment, API calls are distributed
to the Image service controllers. The download API call can be sent to a different
controller than the API call to upload the image. For more information about configuring
the staging area, see Storage Configuration in the Advanced Overcloud Customization
Guide.

The glance-direct method uses the following calls to import an image:

glance image-create

CHAPTER 1. IMAGE SERVICE

21

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/storage_configuration

glance image-stage

glance image-import

Procedure

1. You can use the glance image-create-via-import command to perform all three of these calls
in one command:

$ glance image-create-via-import --container-format <format> --disk-format <disk_format> --
name <name> --file <path_to_image>

After the image moves from the staging area to the back end location, the image is listed.
However, it might take some time for the image to become active.

2. You can monitor the availability of the image:

$ openstack image show <image_id> command.

Replace the ID with the one provided during image creation.

1.2.5. Deleting an image

Procedure

1. In the dashboard, select Project > Compute > Images.

2. Select the image you want to delete and click Delete Images.

1.2.6. Enabling image conversion

With the GlanceImageImportPlugins parameter enabled, you can upload a QCOW2 image, and the
Image service converts it to RAW.

Procedure

To enable image conversion, create an environment file that contains the following parameter
value and include the new environment file with any other environment files that are relevant to
your deployment by using the -e option in the openstack overcloud deploy command:

parameter_defaults:
 GlanceImageImportPlugins:'image_conversion'

1.2.7. Converting an image to RAW format

Red Hat Ceph can store, but does not support using, QCOW2 images to host virtual machine (VM) disks.

When you upload a QCOW2 image and create a VM from it, the compute node downloads the image,
converts the image to RAW, and uploads it back into Ceph, which can then use it. This process affects
the time it takes to create VMs, especially during parallel VM creation.

For example, when you create multiple VMs simultaneously, uploading the converted image to the Ceph

Red Hat OpenStack Platform 13 Instances and Images Guide

22

For example, when you create multiple VMs simultaneously, uploading the converted image to the Ceph
cluster might impact already running workloads. The upload process can starve those workloads of IOPS
and impede storage responsiveness.

To boot VMs in Ceph more efficiently (ephemeral back end or boot from volume), the Image service
image format must be RAW.

Procedure

1. Converting an image to RAW might yield an image that is larger in size than the original QCOW2
image file. Run the following command before the conversion to determine the final RAW image
size:

qemu-img info <image>.qcow2

2. Convert an image from QCOW2 to RAW format:

qemu-img convert -p -f qcow2 -O raw <original_qcow2_image>.qcow2
<new_raw_image>.raw

1.2.7.1. Configuring the Image service to accept only RAW and ISO

You can configure the Image service to accept only RAW and ISO image formats.

Procedure

1. Add an additional environment file that contains the following content in the openstack
overcloud deploy command with your other environment files:

parameter_defaults:
 ExtraConfig:
 glance::config::api_config:
 image_format/disk_formats:
 value: "raw,iso"

1.2.8. Storing an image in RAW format

Procedure

With the GlanceImageImportPlugins parameter enabled, run the following command to
upload a QCOW2 image and automatically convert it to RAW format.

$ glance image-create-via-import \
 --disk-format qcow2 \
 --container-format bare \
 --name <name> \
 --visibility public \
 --import-method web-download \
 --uri <http://server/image.qcow2>

Replace <name> with the name of the image; this is the name that appears in openstack
image list.

For --uri, replace <http://server/image.qcow2> with the location and file name of the QCOW2

CHAPTER 1. IMAGE SERVICE

23

For --uri, replace <http://server/image.qcow2> with the location and file name of the QCOW2
image.

NOTE

This example command creates the image record and imports it by using the web-
download method. The glance-api downloads the image from the --uri location during
the import process. If web-download is not available, glanceclient cannot automatically
download the image data. Run the glance import-info command to list the available
image import methods.

Red Hat OpenStack Platform 13 Instances and Images Guide

24

CHAPTER 2. CONFIGURING THE COMPUTE (NOVA) SERVICE
Use environment files to customize the Compute (nova) service. Puppet generates and stores this
configuration in the /var/lib/config-data/puppet-generated/<nova_container>/etc/nova/nova.conf
file. Use the following configuration methods to customize the Compute service configuration:

Heat parameters - as detailed in the Compute (nova) Parameters section in the Overcloud
Parameters guide. For example:

parameter_defaults:
 NovaSchedulerDefaultFilters:
AggregateInstanceExtraSpecsFilter,RetryFilter,ComputeFilter,ComputeCapabilitiesFilter,Image
PropertiesFilter
 NovaNfsEnabled: true
 NovaNfsShare: '192.0.2.254:/export/nova'
 NovaNfsOptions: 'context=system_u:object_r:nfs_t:s0'
 NovaNfsVersion: '4.2'

Puppet parameters - as defined in /etc/puppet/modules/nova/manifests/*:

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::force_raw_images: True

NOTE

Only use this method if an equivalent heat parameter does not exist.

Manual hieradata overrides - for customizing parameters when no heat or Puppet parameter
exists. For example, the following sets the disk_allocation_ratio in the [DEFAULT] section on
the Compute role:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 DEFAULT/disk_allocation_ratio:
 value: '2.0'

WARNING

If a heat parameter exists, it must be used instead of the Puppet parameter; if a
Puppet parameter exists, but not a heat parameter, then the Puppet parameter
must be used instead of the manual override method. The manual override method
must only be used if there is no equivalent heat or Puppet parameter.

TIP

CHAPTER 2. CONFIGURING THE COMPUTE (NOVA) SERVICE

25

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/overcloud_parameters/compute-nova-parameters

TIP

Follow the guidance in Identifying Parameters to Modify to determine if a heat or Puppet parameter is
available for customizing a particular configuration.

See Parameters in the Advanced Overcloud Customization guide for further details on configuring
overcloud services.

2.1. CONFIGURING MEMORY FOR OVERALLOCATION

When you use memory overcommit (NovaRAMAllocationRatio >= 1.0), you need to deploy your
overcloud with enough swap space to support the allocation ratio.

NOTE

If your NovaRAMAllocationRatio parameter is set to < 1, follow the RHEL
recommendations for swap size. For more information, see Recommended system swap
space in the RHEL Managing Storage Devices guide.

Prerequisites

You have calculated the swap size your node requires. For more information, see Section 2.3,
“Calculating swap size”.

Procedure

1. Copy the /usr/share/openstack-tripleo-heat-templates/environments/enable-swap.yaml file
to your environment file directory:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/enable-swap.yaml
/home/stack/templates/enable-swap.yaml

2. Configure the swap size by adding the following parameters to your enable-swap.yaml file:

parameter_defaults:
 swap_size_megabytes: <swap size in MB>
 swap_path: <full path to location of swap, default: /swap>

3. To apply this configuration, add the enable_swap.yaml environment file to the stack with your
other environment files and deploy the overcloud:

(undercloud) $ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/enable-swap.yaml \

2.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES

To determine the total amount of RAM to reserve for host processes, you need to allocate enough
memory for each of the following:

The resources that run on the node, for instance, OSD consumes 3 GB of memory.

The emulator overhead required to visualize instances on a host.

Red Hat OpenStack Platform 13 Instances and Images Guide

26

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/sect-configuring_base_parameters#identifying_parameters_to_modify
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/sect-configuring_base_parameters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-swap_managing-storage-devices#recommended-system-swap-space_getting-started-with-swap

The hypervisor for each instance.

After you calculate the additional demands on memory, use the following formula to help you determine
the amount of memory to reserve for host processes on each node:

NovaReservedHostMemory = total_RAM - ((vm_no * (avg_instance_size + overhead)) + (resource1 *
resource_ram) + (resource _n_ * resource_ram))

Replace vm_no with the number of instances.

Replace avg_instance_size with the average amount of memory each instance can use.

Replace overhead with the hypervisor overhead required for each instance.

Replace resource1 with the number of a resource type on the node.

Replace resource_ram with the amount of RAM each resource of this type requires.

2.3. CALCULATING SWAP SIZE

The allocated swap size must be large enough to handle any memory overcommit. You can use the
following formulas to calculate the swap size your node requires:

overcommit_ratio = NovaRAMAllocationRatio - 1

Minimum swap size (MB) = (total_RAM * overcommit_ratio) + RHEL_min_swap

Recommended (maximum) swap size (MB) = total_RAM * (overcommit_ratio +
percentage_of_RAM_to_use_for_swap)

The percentage_of_RAM_to_use_for_swap variable creates a buffer to account for QEMU overhead
and any other resources consumed by the operating system or host services.

For instance, to use 25% of the available RAM for swap, with 64GB total RAM, and
NovaRAMAllocationRatio set to 1:

Recommended (maximum) swap size = 64000 MB * (0 + 0.25) = 16000 MB

For information on how to calculate the NovaReservedHostMemory value, see Section 2.2,
“Calculating reserved host memory on Compute nodes”.

For information on how to determine the RHEL_min_swap value, see Recommended system swap
space in the RHEL Managing Storage Devices guide.

CHAPTER 2. CONFIGURING THE COMPUTE (NOVA) SERVICE

27

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-swap_managing-storage-devices#recommended-system-swap-space_getting-started-with-swap

CHAPTER 3. CONFIGURING OPENSTACK COMPUTE
STORAGE

This chapter describes the architecture for the back-end storage of images in OpenStack Compute
(nova), and provides basic configuration options.

3.1. ARCHITECTURE OVERVIEW

In Red Hat OpenStack Platform, the OpenStack Compute service uses the KVM hypervisor to execute
compute workloads. The libvirt driver handles all interactions with KVM, and enables the creation of
virtual machines.

Two types of libvirt storage must be considered for Compute:

Base image, which is a cached and formatted copy of the Image service image.

Instance disk, which is created using the libvirt base and is the back end for the virtual machine
instance. Instance disk data can be stored either in Compute’s ephemeral storage (using the
libvirt base) or in persistent storage (for example, using Block Storage).

The steps that Compute takes to create a virtual machine instance are:

1. Cache the Image service’s backing image as the libvirt base.

2. Convert the base image to the raw format (if configured).

3. Resize the base image to match the VM’s flavor specifications.

4. Use the base image to create the libvirt instance disk.

In the diagram above, the #1 instance disk uses ephemeral storage; the #2 disk uses a block-storage
volume.

Ephemeral storage is an empty, unformatted, additional disk available to an instance. This storage value
is defined by the instance flavor. The value provided by the user must be less than or equal to the
ephemeral value defined for the flavor. The default value is 0, meaning no ephemeral storage is created.

The ephemeral disk appears in the same way as a plugged-in hard drive or thumb drive. It is available as
a block device which you can check using the lsblk command. You can format it, mount it, and use it
however you normally would a block device. There is no way to preserve or reference that disk beyond

Red Hat OpenStack Platform 13 Instances and Images Guide

28

the instance it is attached to.

Block storage volume is persistant storage available to an instance regardless of the state of the running
instance.

3.2. CONFIGURATION

You can configure performance tuning and security for your virtual disks by customizing the Compute
(nova) configuration files. Compute is configured in custom environment files and Heat templates using
the parameters detailed in the Compute (nova) Parameters section in the Overcloud Parameters guide.
This configuration is generated and stored in the /var/lib/config-data/puppet-
generated/<nova_container>/etc/nova/nova.conf file, as detailed in the following table.

Table 3.1. Compute Image Parameters

Section Parameter Description Default

[DEFAULT] force_raw_im
ages

Whether to convert a non-raw cached base
image to be raw (boolean). If a non-raw image
is converted to raw, Compute:

Disallows backing files (which might be
a security issue).

Removes existing compression (to
avoid CPU bottlenecks).

Converting the base to raw uses more space for
any image that could have been used directly by
the hypervisor (for example, a qcow2 image). If
you have a system with slower I/O or less
available space, you might want to specify false,
trading the higher CPU requirements of
compression for that of minimized input
bandwidth.

Raw base images are always used with
libvirt_images_type=lvm.

true

[DEFAULT] use_cow_ima
ges

Whether to use CoW (Copy on Write) images for
libvirt instance disks (boolean):

false - The raw format is used. Without
CoW, more space is used for common
parts of the disk image

true - The cqow2 format is used. With
CoW, depending on the backing store
and host caching, there may be better
concurrency achieved by having each
VM operate on its own copy.

true

CHAPTER 3. CONFIGURING OPENSTACK COMPUTE STORAGE

29

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/overcloud_parameters/compute-nova-parameters

[DEFAULT] preallocate_i
mages

Preallocation mode for libvirt instance disks.
Value can be:

none - No storage is provisioned at
instance start.

space - Storage is fully allocated at
instance start (using fallocate), which
can help with both space guarantees
and I/O performance.

Even when not using CoW instance disks, the
copy each VM gets is sparse and so the VM may
fail unexpectedly at run time with ENOSPC. By
running fallocate(1) on the instance disk
images, Compute immediately and efficiently
allocates the space for them in the file system (if
supported). Run time performance should also
be improved because the file system does not
have to dynamically allocate blocks at run time
(reducing CPU overhead and more importantly
file fragmentation).

none

[DEFAULT] resize_fs_usin
g_block_devi
ce

Whether to enable direct resizing of the base
image by accessing the image over a block
device (boolean). This is only necessary for
images with older versions of cloud-init (that
cannot resize themselves).

Because this parameter enables the direct
mounting of images which might otherwise be
disabled for security reasons, it is not enabled by
default.

false

[DEFAULT] default_ephe
meral_format

The default format that is used for a new
ephemeral volume. Value can be: ext2, ext3, or
ext4. The ext4 format provides much faster
initialization times than ext3 for new, large disks.
You can also override per instance using the
guest_format configuration option.

ext4

[DEFAULT] image_cache_
manager_inte
rval

Number of seconds to wait between runs of the
image cache manager, which impacts base
caching on libvirt compute nodes. This period is
used in the auto removal of unused cached
images (see remove_unused_base_images
and
remove_unused_original_minimum_age_
seconds).

2400

Section Parameter Description Default

Red Hat OpenStack Platform 13 Instances and Images Guide

30

[DEFAULT] remove_unus
ed_base_ima
ges

Whether to enable the automatic removal of
unused base images (checked every
image_cache_manager_interval seconds).
Images are defined as unused if they have not
been accessed in
remove_unused_original_minimum_age_
seconds seconds.

true

[DEFAULT] remove_unus
ed_original_m
inimum_age_
seconds

How old an unused base image must be before
being removed from the libvirt cache (see
remove_unused_base_images).

86400

[libvirt] images_type Image type to use for libvirt instance disks
(deprecates use_cow_images). Value can be:
raw, qcow2, lvm, rbd, or default. If default is
specified, the value used for the
use_cow_images parameter is used.

default

Section Parameter Description Default

3.3. ENABLING SERVICE TOKENS BETWEEN THE COMPUTE SERVICE
AND THE BLOCK STORAGE SERVICE

As an administrator, if you want to prevent user request token timeouts when attaching or detaching
volumes, you must enable service tokens on all overcloud nodes that run the Compute (nova) service or
the Block Storage (cinder) service.

Procedure

1. Create an environment file to configure the service tokens, such as service_tokens.yaml.

2. Add the following configuration parameters to the service token environment file:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 service_user/send_service_user_token:
 value: true
 service_user/username:
 value: nova
 service_user/auth_strategy:
 value: keystone
 service_user/auth_type:
 value: password
 service_user/password:
 value: "%{hiera('nova::placement::password')}"
 service_user/auth_url:
 value: "%{hiera('nova::placement::auth_url')}"
 service_user/user_domain_name:
 value: "Default"
 service_user/project_name:

CHAPTER 3. CONFIGURING OPENSTACK COMPUTE STORAGE

31

 value: "%{hiera('nova::placement::project_name')}"
 service_user/project_default_name:
 value: "Default"

 ControllerExtraConfig:
 nova::config::nova_config:
 keystone_authtoken/service_token_roles_required:
 value: true
 keystone_authtoken/service_token_roles:
 value: admin
 service_user/send_service_user_token:
 value: true
 service_user/username:
 value: nova
 service_user/auth_strategy:
 value: keystone
 service_user/auth_type:
 value: password
 service_user/password:
 value: "%{hiera('nova::keystone::authtoken::password')}"
 service_user/auth_url:
 value: "%{hiera('nova::keystone::authtoken::auth_url')}"
 service_user/user_domain_name:
 value: "%{hiera('nova::keystone::authtoken::user_domain_name')}"
 service_user/project_name:
 value: "%{hiera('nova::keystone::authtoken::project_name')}"
 service_user/project_domain_name:
 value: "%{hiera('nova::keystone::authtoken::project_domain_name')}"

 cinder::config::cinder_config:
 keystone_authtoken/service_token_roles_required:
 value: true
 keystone_authtoken/service_token_roles:
 value: admin
 service_user/send_service_user_token:
 value: true
 service_user/username:
 value: cinder
 service_user/auth_strategy:
 value: keystone
 service_user/auth_type:
 value: password
 service_user/password:
 value: "%{hiera('cinder::keystone::authtoken::password')}"
 service_user/auth_url:
 value: "%{hiera('cinder::keystone::authtoken::auth_url')}"
 service_user/user_domain_name:
 value: "%{hiera('cinder::keystone::authtoken::user_domain_name')}"
 service_user/project_name:
 value: "%{hiera('cinder::keystone::authtoken::project_name')}"
 service_user/project_domain_name:
 value: "%{hiera('cinder::keystone::authtoken::project_domain_name')}"

 BlockStorageExtraConfig:
 cinder::config::cinder_config:
 keystone_authtoken/service_token_roles_required:

Red Hat OpenStack Platform 13 Instances and Images Guide

32

 value: true
 keystone_authtoken/service_token_roles:
 value: admin
 service_user/send_service_user_token:
 value: true
 service_user/username:
 value: cinder
 service_user/auth_strategy:
 value: keystone
 service_user/auth_type:
 value: password
 service_user/password:
 value: "%{hiera('cinder::keystone::authtoken::password')}"
 service_user/auth_url:
 value: "%{hiera('cinder::keystone::authtoken::auth_url')}"
 service_user/user_domain_name:
 value: "%{hiera('cinder::keystone::authtoken::user_domain_name')}"
 service_user/project_name:
 value: "%{hiera('cinder::keystone::authtoken::project_name')}"
 service_user/project_domain_name:
 value: "%{hiera('cinder::keystone::authtoken::project_domain_name')}"

3. Add the service token environment file to the stack with your other environment files and
deploy the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/service_tokens.yaml \

CHAPTER 3. CONFIGURING OPENSTACK COMPUTE STORAGE

33

CHAPTER 4. VIRTUAL MACHINE INSTANCES
OpenStack Compute (nova) is the central component that provides virtual machines on demand.
Compute interacts with the Identity service (keystone) for authentication, the Image service (glance)
for images to launch instances, and the dashboard service for the user and administrative interface.

With Red Hat OpenStack Platform (RHOSP) you can easily manage virtual machine instances in the
cloud. The Compute service creates, schedules, and manages instances, and exposes this functionality
to other OpenStack components. This chapter discusses these procedures along with procedures to
add components like key pairs, security groups, host aggregates and flavors. The term instance in
OpenStack means a virtual machine instance.

4.1. MANAGING INSTANCES

Before you can create an instance, you need to ensure certain other OpenStack components (for
example, a network, key pair and an image or a volume as the boot source) are available for the instance.

This section discusses the procedures to add these components, create and manage an instance.
Managing an instance refers to updating, and logging in to an instance, viewing how the instances are
being used, resizing or deleting them.

4.1.1. Adding components

Use the following sections to create a network, key pair and upload an image or volume source. Use
these components when you create an instance that is not available by default. You must also create a
new security group to allow SSH access to the user.

1. In the dashboard, select Project.

2. Select Network > Networks, and ensure there is a private network to which you can attach the
new instance (to create a network, see Creating a Network section in the Networking Guide).

3. Select Compute > Access & Security > Key Pairs, and ensure there is a key pair (to create a key
pair, see Section 4.2.1.1, “Creating a key pair”).

4. Ensure that you have either an image or a volume that can you can use as a boot source:

To view boot-source images, select the Images tab (to create an image, see Section 1.2.1,
“Creating an image”).

To view boot-source volumes, select the Volumes tab (to create a volume, see Create a
Volume in the Storage Guide).

5. Select Compute > Access & Security > Security Groups, and ensure you have created a
security group rule (to create a security group, see Project Security Management in the Users
and Identity Management Guide).

4.1.2. Launching an instance

Launch one or more instances from the dashboard.

NOTE

Red Hat OpenStack Platform 13 Instances and Images Guide

34

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/#create_a_network_osp
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/storage_guide/#section-create-volume
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/users_and_identity_management_guide/#project-security

NOTE

Instances are launched by default using the Launch Instance form. However, you can also
enable a Launch Instance wizard that simplifies the steps required. For more information,
see Appendix B, Enabling the launch instance wizard .

1. In the dashboard, select Project > Compute > Instances.

2. Click Launch Instance.

3. Complete the fields (* indicates a required field), and click Launch.

One or more instances are created and launched based on the options provided.

CAUTION

It is not possible to launch an instance with a Block Storage (cinder) volume if the root disk size is larger
than the HDD of the Compute node. Use one of the following workarounds to allow an instance to be
launched with a Block Storage volume:

Use a flavor with the root disk and ephemeral disk set to 0.

Remove DiskFilter from the NovaSchedulerDefaultFilters configuration.

4.1.2.1. Launching instance options

The following table outlines the options available when you use the Launch Instance form to launch a
new instance. The same options are also available in the Launch instance wizard.

Table 4.1. Launch Instance Form options

Tab Field Notes

Project and User Project Select the project from the list.

 User Select the user from the list.

Details Availability Zone Zones are logical groupings of cloud resources in which you
can place your instance. If you are unsure, use the default
zone (for more information, see Section 4.4, “Managing host
aggregates”).

 Instance Name A name to identify your instance.

 Flavor The flavor determines what resources to give the instance,
for example, memory. For default flavor allocations and
information about creating new flavors, see Section 4.3,
“Managing flavors”.

 Instance Count The number of instances to create with these parameters. 1
is preselected.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

35

 Instance Boot
Source

Depending on the item selected, new fields are displayed to
select the source:

Image sources must be compatible with
OpenStack (see Section 1.2, “Managing images”).

If a volume or volume source is selected, the
source must be formatted by using an image (see
Basic Volume Usage and Configuration in the
Storage Guide).

Access and Security Key Pair The specified key pair is injected into the instance and is
used to remotely access the instance using SSH (if neither a
direct login information or a static key pair is provided).
Usually one key pair per project is created.

 Security Groups Security groups contain firewall rules which filter the type
and direction of the instance network traffic. For more
information about configuring groups, see Project Security
Management in the Users and Identity Management Guide).

Networking Selected Networks You must select at least one network. Instances are
typically assigned to a private network, and then later given
a floating IP address to enable external access.

Post-Creation Customization Script
Source

You can provide either a set of commands or a script file,
which runs after the instance is booted (for example, to set
the instance host name or a user password). If Direct Input
is selected, write your commands in the Script Data field;
otherwise, specify your script file.

NOTE

Any script that starts with #cloud-config
is interpreted as using the cloud-config
syntax, For information about the syntax,
see
http://cloudinit.readthedocs.org/en/latest/
topics/examples.html).

Advanced Options Disk Partition By default, the instance is built as a single partition and
dynamically resized as needed. However, you can choose to
manually configure the partitions yourself.

Tab Field Notes

Red Hat OpenStack Platform 13 Instances and Images Guide

36

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/storage_guide/#section-volumes_basic
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/users_and_identity_management_guide/#project-security
http://cloudinit.readthedocs.org/en/latest/topics/examples.html

 Configuration Drive If selected, OpenStack writes metadata to a read-only
configuration drive that is attached to the instance when it
boots (instead of to Compute’s metadata service). After the
instance has booted, you can mount this drive to view its
contents and provide files to the instance.

Tab Field Notes

4.1.3. Updating an instance

You can update an instance by selecting Project > Compute > Instances, and selecting an action for
that instance in the Actions column. Use actions to manipulate the instance in a number of ways:

Table 4.2. Update instance options

Action Description

Create Snapshot Snapshots preserve the disk state of a running
instance. You can create a snapshot to migrate the
instance, as well as to preserve backup copies.

Associate/Disassociate Floating IP You must associate an instance with a floating IP
(external) address before it can communicate with
external networks, or be reached by external users.
Because there are a limited number of external
addresses in your external subnets, it is
recommended that you disassociate any unused
addresses.

Edit Instance Update the instance’s name and associated security
groups.

Edit Security Groups Add and remove security groups to or from this
instance using the list of available security groups (for
more information on configuring groups, see Project
Security Management in the Users and Identity
Management Guide).

Console View the instance console in the browser for easy
access to the instance.

View Log View the most recent section of the instance console
log. When opened, you can view the full log by
clicking View Full Log.

Pause/Resume Instance Immediately pause the instance (you are not asked
for confirmation); the state of the instance is stored
in memory (RAM).

CHAPTER 4. VIRTUAL MACHINE INSTANCES

37

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/users_and_identity_management_guide/#project-security

Suspend/Resume Instance Immediately suspend the instance (you are not asked
for confirmation); like hibernation, the state of the
instance is kept on disk.

Resize Instance Display the Resize Instance window (see
Section 4.1.4, “Resizing an instance”).

Soft Reboot Gracefully stop and restart the instance. A soft
reboot attempts to gracefully shut down all
processes before restarting the instance.

Hard Reboot Stop and restart the instance. A hard reboot
effectively shuts down the power of the instance
and then turns it back on.

Shut Off Instance Gracefully stop the instance.

Rebuild Instance Use new image and disk-partition options to rebuild
the image (shut down, re-image, and re-boot the
instance). If encountering operating system issues,
this option is easier to try than terminating the
instance and starting from the beginning.

Terminate Instance Permanently destroy the instance (you are asked for
confirmation).

Action Description

You can create and allocate an external IP address, see Section 4.2.3, “Creating, assigning, and releasing
floating IP addresses”

4.1.4. Resizing an instance

To resize an instance (memory or CPU count), you must select a new flavor for the instance that has the
right capacity. If you are increasing the size, remember to first ensure that the host has enough space.

1. Ensure communication between hosts by setting up each host with SSH key authentication so
that Compute can use SSH to move disks to other hosts. For example, Compute nodes can
share the same SSH key.

2. Enable resizing on the original host by setting the allow_resize_to_same_host parameter to
True for the Controller role.

NOTE

The allow_resize_to_same_host parameter does not resize the instance on the
same host. Even if the parameter equals True on all Compute nodes, the
scheduler does not force the instance to resize on the same host. This is the
expected behavior.

Red Hat OpenStack Platform 13 Instances and Images Guide

38

3. In the dashboard, select Project > Compute > Instances.

4. Click the instance’s Actions arrow, and select Resize Instance.

5. Select a new flavor in the New Flavor field.

6. If you want to manually partition the instance when it launches (results in a faster build time):

a. Select Advanced Options.

b. In the Disk Partition field, select Manual.

7. Click Resize.

4.1.5. Connecting to an instance

You can access an instance console by using the dashboard or the command-line interface. You can also
directly connect to the serial port of an instance so that you can debug even if the network connection
fails.

4.1.5.1. Accessing an instance console by using the dashboard

You can connect to the instance console from the dashboard.

Procedure

1. In the dashboard, select Compute > Instances.

2. Click the instance’s More button and select Console.

3. Log in using the image’s user name and password (for example, a CirrOS image uses

CHAPTER 4. VIRTUAL MACHINE INSTANCES

39

3. Log in using the image’s user name and password (for example, a CirrOS image uses
cirros/cubswin:)).

4.1.5.2. Accessing an instance console by using the CLI

You can connect directly to the VNC console for an instance by entering the VNC console URL in a
browser.

Procedure

1. To display the VNC console URL for an instance, enter the following command:

$ openstack console url show <vm_name>
+-------+--+
| Field | Value |
+-------+--+
type	novnc
url	http://172.25.250.50:6080/vnc_auto.html?token=
	962dfd71-f047-43d3-89a5-13cb88261eb9
+-------+---+

2. To connect directly to the VNC console, enter the displayed URL in a browser.

4.1.6. Viewing instance usage

The following usage statistics are available:

Per Project
To view instance usage per project, select Project > Compute > Overview. A usage summary is
immediately displayed for all project instances.

You can also view statistics for a specific period of time by specifying the date range and
clicking Submit.

Per Hypervisor
If logged in as an administrator, you can also view information for all projects. Click Admin >
System and select one of the tabs. For example, the Resource Usage tab offers a way to view
reports for a distinct time period. You might also click Hypervisors to view your current vCPU,
memory, or disk statistics.

NOTE

The vCPU Usage value (x of y) reflects the number of total vCPUs of all virtual
machines (x) and the total number of hypervisor cores (y).

4.1.7. Deleting an instance

1. In the dashboard, select Project > Compute > Instances, and select your instance.

2. Click Terminate Instance.

NOTE

Red Hat OpenStack Platform 13 Instances and Images Guide

40

NOTE

Deleting an instance does not delete its attached volumes; you must do this separately
(see Delete a Volume in the Storage Guide).

4.1.8. Managing multiple instances simultaneously

If you need to start multiple instances at the same time (for example, those that were down for compute
or controller maintenance) you can do so easily at Project > Compute > Instances:

1. Click the check boxes in the first column for the instances that you want to start. If you want to
select all of the instances, click the check box in the first row in the table.

2. Click More Actions above the table and select Start Instances.

Similarly, you can shut off or soft reboot multiple instances by selecting the respective actions.

4.2. MANAGING INSTANCE SECURITY

You can manage access to an instance by assigning it the correct security group (set of firewall rules)
and key pair (enables SSH user access). Further, you can assign a floating IP address to an instance to
enable external network access. The sections below outline how to create and manage key pairs,
security groups, floating IP addresses and logging in to an instance using SSH. There is also a procedure
for injecting an admin password in to an instance.

For information on managing security groups, see Project Security Management in the Users and
Identity Management Guide.

4.2.1. Managing key pairs

Key pairs provide SSH access to the instances. Each time a key pair is generated, its certificate is
downloaded to the local machine and can be distributed to users. Typically, one key pair is created for
each project (and used for multiple instances).

You can also import an existing key pair into OpenStack.

4.2.1.1. Creating a key pair

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Key Pairs tab, click Create Key Pair.

3. Specify a name in the Key Pair Name field, and click Create Key Pair.

When the key pair is created, a key pair file is automatically downloaded through the browser. Save this
file for later connections from external machines. For command-line SSH connections, you can load this
file into SSH by executing:

ssh-add ~/.ssh/os-key.pem

4.2.1.2. Importing a key pair

1. In the dashboard, select Project > Compute > Access & Security.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

41

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/storage_guide/#section-delete-volume
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/users_and_identity_management_guide/#project-security

2. On the Key Pairs tab, click Import Key Pair.

3. Specify a name in the Key Pair Name field, and copy and paste the contents of your public key
into the Public Key field.

4. Click Import Key Pair.

4.2.1.3. Deleting a key pair

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Key Pairs tab, click the key’s Delete Key Pair button.

4.2.2. Creating a security group

Security groups are sets of IP filter rules that can be assigned to project instances, and which define
networking access to the instance. Security group are project specific; project members can edit the
default rules for their security group and add new rule sets.

1. In the dashboard, select the Project tab, and click Compute > Access & Security.

2. On the Security Groups tab, click + Create Security Group.

3. Provide a name and description for the group, and click Create Security Group.

For more information on managing project security, see Project Security Management in the Users and
Identity Management Guide.

4.2.3. Creating, assigning, and releasing floating IP addresses

By default, an instance is given an internal IP address when it is first created. However, you can enable
access through the public network by creating and assigning a floating IP address (external address).
You can change an instance’s associated IP address regardless of the instance’s state.

Projects have a limited range of floating IP address that can be used (by default, the limit is 50), so you
should release these addresses for reuse when they are no longer needed. Floating IP addresses can
only be allocated from an existing floating IP pool, see Creating Floating IP Pools in the Networking
Guide.

4.2.3.1. Allocating a floating IP to the project

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Floating IPs tab, click Allocate IP to Project.

3. Select a network from which to allocate the IP address in the Pool field.

4. Click Allocate IP.

4.2.3.2. Assigning a floating IP

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Floating IPs tab, click the address' Associate button.

Red Hat OpenStack Platform 13 Instances and Images Guide

42

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/users_and_identity_management_guide/#project-security
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/#create_floating_ip_pools_osp

3. Select the address to be assigned in the IP address field.

NOTE

If no addresses are available, you can click the + button to create a new address.

4. Select the instance to be associated in the Port to be Associated field. An instance can only be
associated with one floating IP address.

5. Click Associate.

4.2.3.3. Releasing a floating IP

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Floating IPs tab, click the address' menu arrow (next to the Associate/Disassociate
button).

3. Select Release Floating IP.

4.2.4. Logging in to an instance

Prerequisites:

Ensure that the instance’s security group has an SSH rule (see Project Security Management in
the Users and Identity Management Guide).

Ensure the instance has a floating IP address (external address) assigned to it (see
Section 4.2.3, “Creating, assigning, and releasing floating IP addresses”).

Obtain the instance’s key-pair certificate. The certificate is downloaded when the key pair is
created; if you did not create the key pair yourself, ask your administrator (see Section 4.2.1,
“Managing key pairs”).

To first load the key pair file into SSH, and then use ssh without naming it:

1. Change the permissions of the generated key-pair certificate.

$ chmod 600 os-key.pem

2. Check whether ssh-agent is already running:

ps -ef | grep ssh-agent

3. If not already running, start it up with:

eval `ssh-agent`

4. On your local machine, load the key-pair certificate into SSH. For example:

$ ssh-add ~/.ssh/os-key.pem

5. You can now SSH into the file with the user supplied by the image.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

43

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/users_and_identity_management_guide/#project-security

The following example command shows how to SSH into the Red Hat Enterprise Linux guest image with
the user cloud-user:

$ ssh cloud-user@192.0.2.24

NOTE

You can also use the certificate directly. For example:

$ ssh -i /myDir/os-key.pem cloud-user@192.0.2.24

4.2.5. Injecting an admin password into an instance

You can inject an admin (root) password into an instance using the following procedure.

1. In the /etc/openstack-dashboard/local_settings file, set the change_set_password
parameter value to True.

can_set_password: True

2. Set the inject_password parameter to "True" in your Compute environment file.

inject_password=true

3. Restart the Compute service.

service nova-compute restart

When you use the nova boot command to launch a new instance, the output of the command displays
an adminPass parameter. You can use this password to log into the instance as the root user.

The Compute service overwrites the password value in the /etc/shadow file for the root user. This
procedure can also be used to activate the root account for the KVM guest images. For more
information on how to use KVM guest images, see Section 1.2.1.1, “Using a KVM guest image with Red
Hat OpenStack Platform”

You can also set a custom password from the dashboard. To enable this, run the following command
after you have set can_set_password parameter to true.

systemctl restart httpd.service

The newly added admin password fields are as follows:

Red Hat OpenStack Platform 13 Instances and Images Guide

44

These fields can be used when you launch or rebuild an instance.

4.3. MANAGING FLAVORS

Each created instance is given a flavor (resource template), which determines the instance’s size and
capacity. Flavors can also specify secondary ephemeral storage, swap disk, metadata to restrict usage,
or special project access (none of the default flavors have these additional attributes defined).

Table 4.3. Default Flavors

Name vCPUs RAM Root Disk Size

m1.tiny 1 512 MB 1 GB

m1.small 1 2048 MB 20 GB

m1.medium 2 4096 MB 40 GB

m1.large 4 8192 MB 80 GB

m1.xlarge 8 16384 MB 160 GB

The majority of end users will be able to use the default flavors. However, you can create and manage
specialized flavors. For example, you can:

CHAPTER 4. VIRTUAL MACHINE INSTANCES

45

Change default memory and capacity to suit the underlying hardware needs.

Add metadata to force a specific I/O rate for the instance or to match a host aggregate.

NOTE

Behavior set using image properties overrides behavior set using flavors (for more
information, see Section 1.2, “Managing images”).

4.3.1. Updating configuration permissions

By default, only administrators can create flavors or view the complete flavor list (select Admin > System
> Flavors). To allow all users to configure flavors, specify the following in the /etc/nova/policy.json file
(nova-api server):

"compute_extension:flavormanage": "",

4.3.2. Creating a flavor

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click Create Flavor, and specify the following fields:

Table 4.4. Flavor Options

Tab Field Description

Flavor Information Name Unique name.

 ID Unique ID. The default value,
auto, generates a UUID4
value, but you can also
manually specify an integer or
UUID4 value.

 VCPUs Number of virtual CPUs.

 RAM (MB) Memory (in megabytes).

 Root Disk (GB) Ephemeral disk size (in
gigabytes); to use the native
image size, specify 0. This disk
is not used if Instance Boot
Source=Boot from Volume.

 Epehemeral Disk (GB) Secondary ephemeral disk size
(in gigabytes) available to an
instance. This disk is destroyed
when an instance is deleted.

The default value is 0, which
implies that no ephemeral disk
is created.

Red Hat OpenStack Platform 13 Instances and Images Guide

46

 Swap Disk (MB) Swap disk size (in megabytes).

Flavor Access Selected Projects Projects which can use the
flavor. If no projects are
selected, all projects have
access (Public=Yes).

Tab Field Description

3. Click Create Flavor.

4.3.3. Updating general attributes

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click the flavor’s Edit Flavor button.

3. Update the values, and click Save.

4.3.4. Updating flavor metadata

In addition to editing general attributes, you can add metadata to a flavor (extra_specs), which can help
fine-tune instance usage. For example, you might want to set the maximum-allowed bandwidth or disk
writes.

Pre-defined keys determine hardware support or quotas. Pre-defined keys are limited by the
hypervisor you are using (for libvirt, see Table 4.5, “Libvirt Metadata”).

Both pre-defined and user-defined keys can determine instance scheduling. For example, you
might specify SpecialComp=True; any instance with this flavor can then only run in a host
aggregate with the same key-value combination in its metadata (see Section 4.4, “Managing
host aggregates”).

4.3.4.1. Viewing metadata

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click the flavor’s Metadata link (Yes or No). All current values are listed on the right-hand side
under Existing Metadata.

4.3.4.2. Adding metadata

You specify a flavor’s metadata using a key/value pair.

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click the flavor’s Metadata link (Yes or No). All current values are listed on the right-hand side
under Existing Metadata.

3. Under Available Metadata, click on the Other field, and specify the key you want to add (see
Table 4.5, “Libvirt Metadata”).

4. Click the + button; you can now view the new key under Existing Metadata.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

47

5. Fill in the key’s value in its right-hand field.

6. When finished with adding key-value pairs, click Save.

Table 4.5. Libvirt Metadata

Key Description

hw:action Action that configures support limits per instance. Valid actions are:

cpu_max_sockets - Maximum supported CPU sockets.

cpu_max_cores - Maximum supported CPU cores.

cpu_max_threads - Maximum supported CPU threads.

cpu_sockets - Preferred number of CPU sockets.

cpu_cores - Preferred number of CPU cores.

cpu_threads - Preferred number of CPU threads.

serial_port_count - Maximum serial ports per instance.

Example: hw:cpu_max_sockets=2

Red Hat OpenStack Platform 13 Instances and Images Guide

48

hw:NUMA_def Definition of NUMA topology for the instance. For flavors whose RAM and
vCPU allocations are larger than the size of NUMA nodes in the compute
hosts, defining NUMA topology enables hosts to better utilize NUMA and
improve performance of the guest OS. NUMA definitions defined through the
flavor override image definitions. Valid definitions are:

numa_nodes - Number of NUMA nodes to expose to the instance.
Specify 1 to ensure image NUMA settings are overridden.

numa_cpus.0 - Mapping of vCPUs N-M to NUMA node 0 (comma-
separated list).

numa_cpus.1 - Mapping of vCPUs N-M to NUMA node 1 (comma-
separated list).

numa_mem.0 - Mapping N MB of RAM to NUMA node 0.

numa_mem.1 - Mapping N MB of RAM to NUMA node 1.

numa_cpu.N and numa_mem.N are only valid if numa_nodes is
set. Additionally, they are only required if the instance’s NUMA nodes
have an asymetrical allocation of CPUs and RAM (important for some
NFV workloads).

NOTE

If the values of numa_cpu or numa_mem.N specify more
than that available, an exception is raised.

Example when the instance has 8 vCPUs and 4GB RAM:

hw:numa_nodes=2

hw:numa_cpus.0=0,1,2,3,4,5

hw:numa_cpus.1=6,7

hw:numa_mem.0=3072

hw:numa_mem.1=1024

The scheduler looks for a host with 2 NUMA nodes with the ability to run 6
CPUs + 3072 MB, or 3 GB, of RAM on one node, and 2 CPUS + 1024 MB, or 1
GB, of RAM on another node. If a host has a single NUMA node with capability
to run 8 CPUs and 4 GB of RAM, it will not be considered a valid match.

Key Description

CHAPTER 4. VIRTUAL MACHINE INSTANCES

49

hw:watchdog_action An instance watchdog device can be used to trigger an action if the instance
somehow fails (or hangs). Valid actions are:

disabled - The device is not attached (default value).

pause - Pause the instance.

poweroff - Forcefully shut down the instance.

reset - Forcefully reset the instance.

none - Enable the watchdog, but do nothing if the instance fails.

Example: hw:watchdog_action=poweroff

hw:pci_numa_affinity_p
olicy

You can use this parameter to specify the NUMA affinity policy for PCI
passthrough devices and SR-IOV interfaces. Set to one of the following valid
values:

required: The Compute service only creates an instance that
requests a PCI device when at least one of the NUMA nodes of the
instance has affinity with the PCI device. This option provides the
best performance.

preferred: The Compute service attempts a best effort selection of
PCI devices based on NUMA affinity. If this is not possible, then the
Compute service schedules the instance on a NUMA node that has
no affinity with the PCI device.

legacy: (Default) The Compute service creates instances that
request a PCI device when either:

The PCI device has affinity with at least one of the NUMA nodes;
or

The PCI devices do not provide information on their NUMA
affinities.

Example: hw:pci_numa_affinity_policy=required

hw_rng:action A random-number generator device can be added to an instance using its
image properties (see hw_rng_model in the "Command-Line Interface
Reference" in Red Hat OpenStack Platform documentation).

If the device has been added, valid actions are:

allowed - If True, the device is enabled; if False, disabled. By
default, the device is disabled.

rate_bytes - Maximum number of bytes the instance’s kernel can
read from the host to fill its entropy pool every rate_period (integer).

rate_period - Duration of the read period in seconds (integer).

Example: hw_rng:allowed=True.

Key Description

Red Hat OpenStack Platform 13 Instances and Images Guide

50

hw_video:ram_max_mb Maximum permitted RAM to be allowed for video devices (in MB).

Example: hw:ram_max_mb=64

quota:option Enforcing limit for the instance. Valid options are:

cpu_period - Time period for enforcing cpu_quota (in
microseconds). Within the specified cpu_period, each vCPU cannot
consume more than cpu_quota of runtime. The value must be in
range [1000, 1000000]; 0 means no value.

cpu_quota - Maximum allowed bandwidth (in
microseconds) for the vCPU in each `cpu_period. The value
must be in range [1000, 18446744073709551]. 0 means no value; a
negative value means that the vCPU is not controlled. cpu_quota
and cpu_period can be used to ensure that all vCPUs run at the
same speed.

cpu_shares - Share of CPU time for the domain. The value only has
meaning when weighted against other machine values in the same
domain. That is, an instance with a flavor with 200 will get twice as
much machine time as an instance with 100.

disk_read_bytes_sec - Maximum disk reads in bytes per second.

disk_read_iops_sec - Maximum read I/O operations per second.

disk_write_bytes_sec - Maximum disk writes in bytes per second.

disk_write_iops_sec - Maximum write I/O operations per second.

disk_total_bytes_sec - Maximum total throughput limit in bytes
per second.

disk_total_iops_sec - Maximum total I/O operations per second.

vif_inbound_average - Desired average of incoming traffic.

vif_inbound_burst - Maximum amount of traffic that can be
received at vif_inbound_peak speed.

vif_inbound_peak - Maximum rate at which incoming traffic can
be received.

vif_outbound_average - Desired average of outgoing traffic.

vif_outbound_burst - Maximum amount of traffic that can be
sent at vif_outbound_peak speed.

vif_outbound_peak - Maximum rate at which outgoing traffic can
be sent.

Example: quota:vif_inbound_average=10240

In addition, the VMware driver supports the following quota options, which
control upper and lower limits for CPUs, RAM, disks, and networks, as well as
shares, which can be used to control relative allocation of available resources
among tenants:

cpu_limit - Maximum CPU frequency available to a virtual machine

Key Description

CHAPTER 4. VIRTUAL MACHINE INSTANCES

51

cpu_limit - Maximum CPU frequency available to a virtual machine
(in MHz).

cpu_reservation - Guaranteed minimum amount of CPU
resources available to a virtual machine (in MHz).

cpu_shares_level - CPU allocation level (shares) in the case of
contention. Possible values are high, normal, low, and custom.

cpu_shares_share - The number of allocated CPU shares.
Applicable when cpu_shares_level is set to custom.

memory_limit - Maximum amount of RAM available to a virtual
machine (in MB).

memory_reservation - Guaranteed minimum amount of RAM
available to a virtual machine (in MB).

memory_shares_level - RAM allocation level (shares) in the case
of contention. Possible values are high, normal, low, and custom.

memory_shares_share - The number of allocated RAM shares.
Applicable when memory_shares_level is set to custom.

disk_io_limit - Maximum I/O utilization by a virtual machine (in I/O
operations per second).

disk_io_reservation - Guaranteed minimum amount of disk
resources available to a virtual machine (in I/O operations per
second).

disk_io_shares_level - I/O allocation level (shares) in the case of
contention. Possible values are high, normal, low, and custom.

disk_io_shares_share - The number of allocated I/O shares.
Applicable when disk_io_shares_level is set to custom.

vif_limit - Maximum network bandwidth available to a virtual
network adapter (in Mbps).

vif_reservation - Guaranteed minimum network bandwidth
available to a virtual network adapter (in Mbps).

vif_shares_level - Network bandwidth allocation level (shares) in
the case of contention. Possible values are high, normal, low, and
custom.

vif_shares_share - The number of allocated network bandwidth
shares. Applicable when vif_shares_level is set to custom.

Key Description

4.4. MANAGING HOST AGGREGATES

A single Compute deployment can be partitioned into logical groups for performance or administrative
purposes. OpenStack uses the following terms:

Host aggregates - A host aggregate creates logical units in a OpenStack deployment by
grouping together hosts. Aggregates are assigned Compute hosts and associated metadata; a
host can be in more than one host aggregate. Only administrators can see or create host
aggregates.
An aggregate’s metadata is commonly used to provide information for use with the Compute
scheduler (for example, limiting specific flavors or images to a subset of hosts). Metadata
specified in a host aggregate will limit the use of that host to any instance that has the same

Red Hat OpenStack Platform 13 Instances and Images Guide

52

metadata specified in its flavor.

Administrators can use host aggregates to handle load balancing, enforce physical isolation (or
redundancy), group servers with common attributes, or separate out classes of hardware. When
you create an aggregate, a zone name must be specified, and it is this name which is presented
to the end user.

Availability zones - An availability zone is the end-user view of a host aggregate. An end user
cannot view which hosts make up the zone, nor see the zone’s metadata; the user can only see
the zone’s name.
End users can be directed to use specific zones which have been configured with certain
capabilities or within certain areas.

4.4.1. Enabling host aggregate scheduling

By default, host-aggregate metadata is not used to filter instance usage. You must update the Compute
scheduler’s configuration to enable metadata usage:

1. Open your Compute environment file.

2. Add the following values to the NovaSchedulerDefaultFilters parameter, if they are not already
present:

AggregateInstanceExtraSpecsFilter for host aggregate metadata.

NOTE

Scoped specifications must be used for setting flavor extra_specs when
specifying both AggregateInstanceExtraSpecsFilter and
ComputeCapabilitiesFilter filters as values of the same
NovaSchedulerDefaultFilters parameter, otherwise the
ComputeCapabilitiesFilter will fail to select a suitable host. See Table 4.7,
“Scheduling Filters” for further details.

AvailabilityZoneFilter for availability zone host specification when launching an instance.

3. Save the configuration file.

4. Deploy the overcloud.

4.4.2. Viewing availability zones or host aggregates

As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently defined
aggregates are listed in the Host Aggregates section; all zones are in the Availability Zones section.

4.4.3. Adding a host aggregate

1. As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently
defined aggregates are listed in the Host Aggregates section.

2. Click Create Host Aggregate.

3. Add a name for the aggregate in the Name field, and a name by which the end user should see it
in the Availability Zone field.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

53

4. Click Manage Hosts within Aggregate.

5. Select a host for use by clicking its + icon.

6. Click Create Host Aggregate.

4.4.4. Updating a host aggregate

1. As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently
defined aggregates are listed in the Host Aggregates section.

2. To update the instance’s Name or Availability zone:

Click the aggregate’s Edit Host Aggregate button.

Update the Name or Availability Zone field, and click Save.

3. To update the instance’s Assigned hosts:

Click the aggregate’s arrow icon under Actions.

Click Manage Hosts.

Change a host’s assignment by clicking its + or - icon.

When finished, click Save.

4. To update the instance’s Metadata:

Click the aggregate’s arrow icon under Actions.

Click the Update Metadata button. All current values are listed on the right-hand side under
Existing Metadata.

Under Available Metadata, click on the Other field, and specify the key you want to add.
Use predefined keys (see Table 4.6, “Host Aggregate Metadata”) or add your own (which
will only be valid if exactly the same key is set in an instance’s flavor).

Click the + button; you can now view the new key under Existing Metadata.

NOTE

Remove a key by clicking its - icon.

Click Save.

Table 4.6. Host Aggregate Metadata

Key Description

filter_tenant_id If specified, the aggregate only hosts this tenant (project). Depends
on the AggregateMultiTenancyIsolation filter being set for the
Compute scheduler.

4.4.5. Deleting a host aggregate

Red Hat OpenStack Platform 13 Instances and Images Guide

54

1. As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently
defined aggregates are listed in the Host Aggregates section.

2. Remove all assigned hosts from the aggregate:

a. Click the aggregate’s arrow icon under Actions.

b. Click Manage Hosts.

c. Remove all hosts by clicking their - icon.

d. When finished, click Save.

3. Click the aggregate’s arrow icon under Actions.

4. Click Delete Host Aggregate in this and the next dialog screen.

4.5. SCHEDULING HOSTS

The Compute scheduling service determines on which host (or host aggregate), an instance will be
placed. As an administrator, you can influence where the scheduler will place an instance. For example,
you might want to limit scheduling to hosts in a certain group or with the right RAM.

You can configure the following components:

Filters - Determine the initial set of hosts on which an instance might be placed (see
Section 4.5.1, “Configuring scheduling filters”).

Weights - When filtering is complete, the resulting set of hosts are prioritized using the
weighting system. The highest weight has the highest priority (see Section 4.5.2, “Configuring
scheduling weights”).

Scheduler service - There are a number of configuration options in the /var/lib/config-
data/puppet-generated/<nova_container>/etc/nova/nova.conf file (on the scheduler host),
which determine how the scheduler executes its tasks, and handles weights and filters.

In the following diagram, both host 1 and 3 are eligible after filtering. Host 1 has the highest weight and
therefore has the highest priority for scheduling.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

55

4.5.1. Configuring scheduling filters

You define the filters you want the scheduler to use by adding or removing filters from the
NovaSchedulerDefaultFilters parameter in your Compute environment file.

The default configuration runs the following filters in the scheduler:

RetryFilter

AvailabilityZoneFilter

ComputeFilter

ComputeCapabilitiesFilter

ImagePropertiesFilter

ServerGroupAntiAffinityFilter

ServerGroupAffinityFilter

Some filters use information in parameters passed to the instance in:

The nova boot command.

The instance’s flavor (see Section 4.3.4, “Updating flavor metadata”)

The instance’s image (see Appendix A, Image configuration parameters).

The following table lists all the available filters.

Table 4.7. Scheduling Filters

Filter Description

Red Hat OpenStack Platform 13 Instances and Images Guide

56

AggregateImagePropert
iesIsolation

Only passes hosts in host aggregates whose metadata matches the instance’s
image metadata; only valid if a host aggregate is specified for the instance.
For more information, see Section 1.2.1, “Creating an image”.

AggregateInstanceExtra
SpecsFilter

Metadata in the host aggregate must match the host’s flavor metadata. For
more information, see Section 4.3.4, “Updating flavor metadata”.

 This filter can only be specified in the same NovaSchedulerDefaultFilters
parameter as ComputeCapabilitiesFilter when you scope your flavor
extra_specs keys by prefixing them with the correct namespace:

ComputeCapabilitiesFilter namespace = "capabilities:"

AggregateInstanceExtraSpecsFilter namespace =
"aggregate_instance_extra_specs:"

AggregateMultiTenancy
Isolation

A host with the specified filter_tenant_id can only contain instances from
that tenant (project).

NOTE

The tenant can still place instances on other hosts.

AllHostsFilter Passes all available hosts (however, does not disable other filters).

AvailabilityZoneFilter Filters using the instance’s specified availability zone.

ComputeCapabilitiesFilt
er

Ensures Compute metadata is read correctly. Anything before the : is read as a
namespace. For example, quota:cpu_period uses quota as the namespace
and cpu_period as the key.

ComputeFilter Passes only hosts that are operational and enabled.

DifferentHostFilter Enables an instance to build on a host that is different from one or more
specified hosts. Specify different hosts using the nova boot option --
different_host option.

ImagePropertiesFilter Only passes hosts that match the instance’s image properties. For more
information, see Section 1.2.1, “Creating an image”.

IsolatedHostsFilter Passes only isolated hosts running isolated images that are specified using
isolated_hosts and isolated_images (comma-separated values).

Filter Description

CHAPTER 4. VIRTUAL MACHINE INSTANCES

57

JsonFilter Recognises and uses an instance’s custom JSON filters:

Valid operators are: =, <, >, in, ⇐, >=, not, or, and

Recognised variables are: $free_ram_mb, $free_disk_mb,
$total_usable_ram_mb, $vcpus_total, $vcpus_used

 The filter is specified as a query hint in the nova boot command. For
example:

--hint query='['>=', '$free_disk_mb', 200 * 1024]'

MetricsFilter Use this filter to limit scheduling to Compute nodes that report the metrics
configured by using metrics/weight_setting.

To use this filter, add the following configuration to your Compute
environment file:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 DEFAULT/compute_monitors:
 value: 'cpu.virt_driver'

By default, the Compute scheduling service updates the metrics every 60
seconds. To ensure the metrics are up-to-date, you can increase the
frequency at which the metrics data is refreshed using the
update_resources_interval configuration option. For example, use the
following configuration to refresh the metrics data every 2 seconds:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 DEFAULT/update_resources_interval:
 value: '2'

NUMATopologyFilter Filters out hosts based on its NUMA topology. If the instance has no topology
defined, any host can be used. The filter tries to match the exact NUMA
topology of the instance to those of the host (it does not attempt to pack the
instance onto the host). The filter also looks at the standard over-subscription
limits for each NUMA node, and provides limits to the compute host
accordingly.

RetryFilter Filters out hosts that have failed a scheduling attempt; valid if
scheduler_max_attempts is greater than zero (defaults to "3").

SameHostFilter Passes one or more specified hosts; specify hosts for the instance using the --
hint same_host option for nova boot.

Filter Description

Red Hat OpenStack Platform 13 Instances and Images Guide

58

ServerGroupAffinityFilt
er

Only passes hosts for a specific server group:

Give the server group the affinity policy (nova server-group-
create --policy affinity groupName).

Build the instance with that group (nova boot option --hint
group=UUID)

ServerGroupAntiAffinity
Filter

Only passes hosts in a server group that do not already host an instance:

Give the server group the anti-affinity policy (nova server-group-
create --policy anti-affinity groupName).

Build the instance with that group (nova boot option --hint
group=UUID).

SimpleCIDRAffinityFilte
r

Only passes hosts on the specified IP subnet range specified by the instance’s
cidr and build_new_host_ip hints. Example:

--hint build_near_host_ip=192.0.2.0 --hint cidr=/24

Filter Description

4.5.2. Configuring scheduling weights

Hosts can be weighted for scheduling; the host with the largest weight (after filtering) is selected. All
weighers are given a multiplier that is applied after normalising the node’s weight. A node’s weight is
calculated as:

w1_multiplier * norm(w1) + w2_multiplier * norm(w2) + ...

You can configure weight options in the Compute node’s configuration file.

Table 4.8. Configuration options for Scheduling service weights

Configuration option Description

CHAPTER 4. VIRTUAL MACHINE INSTANCES

59

filter_scheduler/weight_classes Use this parameter to configure which of the following
attributes to use for calculating the weight of each host:

nova.scheduler.weights.ram.RAMWeigher -
Weighs the available RAM on the Compute node.

nova.scheduler.weights.cpu.CPUWeigher -
Weighs the available CPUs on the Compute node.

nova.scheduler.weights.disk.DiskWeigher -
Weighs the available disks on the Compute node.

nova.scheduler.weights.metrics.MetricsWe
igher - Weighs the metrics of the Compute node.

nova.scheduler.weights.affinity.ServerGrou
pSoftAffinityWeigher - Weighs the proximity of
the Compute node to other nodes in the given
instance group.

nova.scheduler.weights.affinity.ServerGrou
pSoftAntiAffinityWeigher - Weighs the
proximity of the Compute node to other nodes in
the given instance group.

nova.scheduler.weights.compute.BuildFail
ureWeigher - Weighs Compute nodes by the
number of recent failed boot attempts.

nova.scheduler.weights.io_ops.IoOpsWeig
her - Weighs Compute nodes by their workload.

nova.scheduler.weights.pci.PCIWeigher -
Weighs Compute nodes by their PCI availability.

nova.scheduler.weights.cross_cell.CrossC
ellWeigher - Weighs Compute nodes based on
which cell they are in, giving preference to
Compute nodes in the source cell when moving an
instance.

nova.scheduler.weights.all_weighers -
(Default) Uses all the above weighers.

Type: String

Configuration option Description

Red Hat OpenStack Platform 13 Instances and Images Guide

60

filter_scheduler/ram_weight_multiplier Use this parameter to specify the multiplier to use to weigh
hosts based on the available RAM.

Set to a positive value to prefer hosts with more available
RAM, which spreads instances across many hosts.

Set to a negative value to prefer hosts with less available
RAM, which fills up (stacks) hosts as much as possible
before scheduling to a less-used host.

The absolute value, whether positive or negative, controls
how strong the RAM weigher is relative to other weighers.

By default, the scheduler spreads instances across all hosts
evenly (ram_weight_multiplier=1.0).

Type: Floating point

filter_scheduler/disk_weight_multiplier Use this parameter to specify the multiplier to use to weigh
hosts based on the available disk space.

Set to a positive value to prefer hosts with more available
disk space, which spreads instances across many hosts.

Set to a negative value to prefer hosts with less available
disk space, which fills up (stacks) hosts as much as possible
before scheduling to a less-used host.

The absolute value, whether positive or negative, controls
how strong the disk weigher is relative to other weighers.

By default, the scheduler spreads instances across all hosts
evenly (disk_weight_multiplier=1.0).

Type: Floating point

filter_scheduler/cpu_weight_multiplier Use this parameter to specify the multiplier to use to weigh
hosts based on the available vCPUs.

Set to a positive value to prefer hosts with more available
vCPUs, which spreads instances across many hosts.

Set to a negative value to prefer hosts with less available
vCPUs, which fills up (stacks) hosts as much as possible
before scheduling to a less-used host.

The absolute value, whether positive or negative, controls
how strong the vCPU weigher is relative to other weighers.

By default, the scheduler spreads instances across all hosts
evenly (cpu_weight_multiplier=1.0).

Type: Floating point

Configuration option Description

CHAPTER 4. VIRTUAL MACHINE INSTANCES

61

filter_scheduler/io_ops_weight_multipli
er

Use this parameter to specify the multiplier to use to weigh
hosts based on the host workload.

Set to a negative value to prefer hosts with lighter
workloads, which distributes the workload across more
hosts.

Set to a positive value to prefer hosts with heavier
workloads, which schedules instances onto hosts that are
already busy.

The absolute value, whether positive or negative, controls
how strong the I/O operations weigher is relative to other
weighers.

By default, the scheduler distributes the workload across
more hosts (io_ops_weight_multiplier=-1.0).

Type: Floating point

filter_scheduler/build_failure_weight_m
ultiplier

Use this parameter to specify the multiplier to use to weigh
hosts based on recent build failures.

Set to a positive value to increase the significance of build
failures recently reported by the host. Hosts with recent
build failures are then less likely to be chosen.

Set to 0 to disable weighing compute hosts by the number
of recent failures.

Default: 1000000.0

Type: Floating point

filter_scheduler/cross_cell_move_weig
ht_multiplier

Use this parameter to specify the multiplier to use to weigh
hosts during a cross-cell move. This option determines how
much weight is placed on a host which is within the same
source cell when moving an instance. By default, the
scheduler prefers hosts within the same source cell when
migrating an instance.

Set to a positive value to prefer hosts within the same cell
the instance is currently running. Set to a negative value to
prefer hosts located in a different cell from that where the
instance is currently running.

Default: 1000000.0

Type: Floating point

Configuration option Description

Red Hat OpenStack Platform 13 Instances and Images Guide

62

filter_scheduler/pci_weight_multiplier Use this parameter to specify the multiplier to use to weigh
hosts based on the number of PCI devices on the host and
the number of PCI devices requested by an instance. If an
instance requests PCI devices, then the more PCI devices a
Compute node has the higher the weight allocated to the
Compute node.

For example, if there are three hosts available, one with a
single PCI device, one with multiple PCI devices and one
without any PCI devices, then the Compute scheduler
prioritizes these hosts based on the demands of the
instance. The first host should be preferred if the instance
requests one PCI device, the second host if the instance
requires multiple PCI devices and the third host if the
instance does not request a PCI device.

Configure this option to prevent non-PCI instances from
occupying resources on hosts with PCI devices.

Default: 1.0

Type: Positive floating point

filter_scheduler/host_subset_size Use this parameter to specify the size of the subset of
filtered hosts from which to select the host. Must be set to
at least 1. A value of 1 selects the first host returned by the
weighing functions. Any value less than 1 is ignored and 1 is
used instead.

Set to a value greater than 1 to prevent multiple scheduler
processes handling similar requests selecting the same host,
creating a potential race condition. By selecting a host
randomly from the N hosts that best fit the request, the
chance of a conflict is reduced. However, the higher you set
this value, the less optimal the chosen host may be for a
given request.

Default: 1

Type: Integer

filter_scheduler/soft_affinity_weight_m
ultiplier

Use this parameter to specify the multiplier to use to weigh
hosts for group soft-affinity.

Default: 1.0

Type: Positive floating point

Configuration option Description

CHAPTER 4. VIRTUAL MACHINE INSTANCES

63

filter_scheduler/soft_anti_affinity_weig
ht_multiplier

Use this parameter to specify the multiplier to use to weigh
hosts for group soft-anti-affinity.

Default: 1.0

Type: Positive floating point

metrics/weight_multiplier Use this parameter to specify the multiplier to use for
weighting metrics. By default, weight_multiplier=1.0,
which spreads instances across possible hosts.

Set to a number greater than 1.0 to increase the effect of
the metric on the overall weight.

Set to a number between 0.0 and 1.0 to reduce the effect
of the metric on the overall weight.

Set to 0.0 to ignore the metric value and return the value of
the ‘weight_of_unavailable’ option.

Set to a negative number to prioritize the host with lower
metrics, and stack instances in hosts.

Default: 1.0

Type: Floating point

metrics/weight_setting Use this parameter to specify the metrics to use for
weighting, and the ratio to use to calculate the weight of
each metric. Valid metric names:

cpu.frequency - CPU frequency

cpu.user.time - CPU user mode time

cpu.kernel.time - CPU kernel time

cpu.idle.time - CPU idle time

cpu.iowait.time - CPU I/O wait time

cpu.user.percent - CPU user mode percentage

cpu.kernel.percent - CPU kernel percentage

cpu.idle.percent - CPU idle percentage

cpu.iowait.percent - CPU I/O wait percentage

cpu.percent - Generic CPU utilization

Example: weight_setting=cpu.user.time=1.0

Type: Comma-separated list of metric=ratio pairs.

Configuration option Description

Red Hat OpenStack Platform 13 Instances and Images Guide

64

metrics/required Use this parameter to specify how to handle configured
metrics/weight_setting metrics that are unavailable:

True - Metrics are required. If the metric is
unavailable, an exception is raised. To avoid the
exception, use the MetricsFilter filter in
NovaSchedulerDefaultFilters.

False - The unavailable metric is treated as a
negative factor in the weighing process. Set the
returned value by using the
weight_of_unavailable configuration option.

Type: Boolean

metrics/weight_of_unavailable Use this parameter to specify the weight to use if any
metrics/weight_setting metric is unavailable, and
metrics/required=False.

Default: -10000.0

Type: Floating point

Configuration option Description

4.5.3. Reserving NUMA nodes with PCI devices

Compute uses the filter scheduler to prioritize hosts with PCI devices for instances requesting PCI. The
hosts are weighted using the PCIWeigher option, based on the number of PCI devices available on the
host and the number of PCI devices requested by an instance. If an instance requests PCI devices, then
the hosts with more PCI devices are allocated a higher weight than the others. If an instance is not
requesting PCI devices, then prioritization does not take place.

This feature is especially useful in the following cases:

As an operator, if you want to reserve nodes with PCI devices (typically expensive and with
limited resources) for guest instances that request them.

As a user launching instances, you want to ensure that PCI devices are available when required.

NOTE

For this value to be considered, one of the following values must be added to the
NovaSchedulerDefaultFilters parameter in your Compute environment file:
PciPassthroughFilter or NUMATopologyFilter.

The pci_weight_multiplier configuration option must be a positive value.

4.6. MANAGING INSTANCE SNAPSHOTS

You can use an instance snapshot to create a new image from an instance. This is very convenient for
upgrading base images or for taking a published image and customizing it for local use.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

65

The difference between an image that you upload directly to the Image service and an image that you
create by snapshot is that an image created by snapshot has additional properties in the Image service
database. These properties are in the image_properties table and include the following parameters:

Table 4.9. Snapshot options

Name Value

image_type snapshot

instance_uuid <uuid_of_instance_that_was_snapshotted>

base_image_ref <uuid_of_original_image_of_instance_that_was_snapshotted>

image_location snapshot

Use snapshots to create new instances based on that snapshot, and potentially restore an instance to
that state. You can perform this action while the instance is running.

By default, a snapshot is accessible to the users and projects that were selected while launching an
instance that the snapshot is based on.

4.6.1. Creating an instance snapshot

NOTE

If you intend to use an instance snapshot as a template to create new instances, you must
ensure that the disk state is consistent. Before you create a snapshot, set the snapshot
image metadata property os_require_quiesce=yes:

$ openstack image set --property os_require_quiesce=yes <image_id>

For this to work, the guest must have the qemu-guest-agent package installed, and the
image must be created with the metadata property parameter
hw_qemu_guest_agent=yes set.:

$ openstack image create \
--disk-format raw \
--container-format bare \
--file <file_name> \
--is-public True \
--property hw_qemu_guest_agent=yes \
--progress \
--name <name>

If you unconditionally enable the hw_qemu_guest_agent=yes parameter, then you are
adding another device to the guest. This consumes a PCI slot, and limits the number of
other devices you can allocate to the guest. It also causes Windows guests to display a
warning message about an unknown hardware device.

For these reasons, setting the hw_qemu_guest_agent=yes parameter is optional, and
you must use the parameter only for images that require the QEMU guest agent.

Red Hat OpenStack Platform 13 Instances and Images Guide

66

1. In the dashboard, select Project > Compute > Instances.

2. Select the instance from which you want to create a snapshot.

3. In the Actions column, click Create Snapshot.

4. In the Create Snapshot dialog, enter a name for the snapshot and click Create Snapshot.
The Images category now shows the instance snapshot.

To launch an instance from a snapshot, select the snapshot and click Launch.

4.6.2. Managing a snapshot

1. In the dashboard, select Project > Images.

2. All snapshots you created, appear under the Project option.

3. For every snapshot you create, you can perform the following functions, using the dropdown list:

a. Use the Create Volume option to create a volume and entering the values for volume name,
description, image source, volume type, size and availability zone. For more information, see
Create a Volume in the Storage Guide.

b. Use the Edit Image option to update the snapshot image by updating the values for name,
description, Kernel ID, Ramdisk ID, Architecture, Format, Minimum Disk (GB), Minimum RAM
(MB), public or private. For more information, see Section 1.2.3, “Updating an image” .

c. Use the Delete Image option to delete the snapshot.

4.6.3. Rebuilding an instance to a state in a snapshot

In an event that you delete an instance on which a snapshot is based, the snapshot still stores the
instance ID. You can check this information by using the nova image-list command and use the
snapshot to restore the instance.

1. In the dashboard, select Project > Compute > Images.

2. Select the snapshot from which you want to restore the instance.

3. In the Actions column, click Launch Instance.

4. In the Launch Instance dialog, enter a name and the other details for the instance and click
Launch.

For more information on launching an instance, see Section 4.1.2, “Launching an instance” .

4.6.4. Consistent snapshots

Previously, file systems had to be quiesced manually (fsfreeze) before taking a snapshot of active
instances for consistent backups.

The Compute libvirt driver automatically requests the QEMU Guest Agent to freeze the file systems
(and applications if fsfreeze-hook is installed) during an image snapshot. Support for quiescing file
systems enables scheduled, automatic snapshots at the block device level.

This feature is valid only if the QEMU Guest Agent is installed (qemu-ga) and the image metadata

CHAPTER 4. VIRTUAL MACHINE INSTANCES

67

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/storage_guide/#section-create-volume

This feature is valid only if the QEMU Guest Agent is installed (qemu-ga) and the image metadata
enables the agent (hw_qemu_guest_agent=yes).

NOTE

Do not use snapshots as a substitute for system backups.

4.7. USING RESCUE MODE FOR INSTANCES

Compute has a method to reboot a virtual machine in rescue mode. Rescue mode provides a mechanism
for access when the virtual machine image renders the instance inaccessible. A rescue virtual machine
allows a user to fix their virtual machine by accessing the instance with a new root password. This feature
is useful if the file system of an instance is corrupted. By default, rescue mode starts an instance from
the initial image attaching the current boot disk as a secondary one.

4.7.1. Preparing an image for a rescue mode instance

Due to the fact that both the boot disk and the disk for rescue mode have same UUID, sometimes the
virtual machine can be booted from the boot disk instead of the disk for rescue mode.

To avoid this issue, you should create a new image as rescue image based on the procedure in
Section 1.2.1, “Creating an image” :

NOTE

The rescue image is stored in glance and configured in the nova.conf as a default, or
you can select when you do the rescue.

4.7.1.1. Rescuing an image that uses ext4 file system

When the base image uses ext4 file system, you can create a rescue image from it by using the following
procedure:

1. Change the UUID to a random value by using the tune2fs command:

tune2fs -U random /dev/<device_node>

Replace <device_node> with the root device node, for example, sda or vda.

2. Verify the details of the file system, including the new UUID:

tune2fs -l

3. Update the /etc/fstab to use the new UUID. You might need to repeat this for any additional
partitions that you have that are mounted in the fstab by UUID.

4. Update the /boot/grub2/grub.conf file and update the UUID parameter with the new UUID of
the root disk.

5. Shut down and use this image as your rescue image. This causes the rescue image to have a new
random UUID that does not conflict with the instance that you are rescuing.

NOTE

Red Hat OpenStack Platform 13 Instances and Images Guide

68

NOTE

The XFS file system cannot change the UUID of the root device on the running virtual
machine. Reboot the virtual machine until the virtual machine is launched from the disk
for rescue mode.

4.7.2. Adding the rescue image to the OpenStack Image service

When you have completed modifying the UUID of your image, use the following commands to add the
generated rescue image to the OpenStack Image service:

1. Add the rescue image to the Image service:

openstack image create --name <image_name> --disk-format qcow2 \
 --container-format bare --is-public True --file <image_path>

Replace <image_name> with the name of the image and <image_path> with the location of
the image.

2. Use the image list command to obtain the <image_id> required to launch an instance in the
rescue mode.

openstack image list

You can also upload an image by using the OpenStack Dashboard, see Section 1.2.2, “Uploading an
image”.

4.7.3. Launching an instance in rescue mode

1. Because you need to rescue an instance with a specific image, rather than the default one, use
the --image parameter:

openstack server rescue --image <image> <instance>

Replace <image> with the name or ID of the image you want to use.

Replace <instance> with the name or ID of the instance that you want to rescue.

NOTE

For more information on rescuing an instance, see
https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/16.1/html/instances_and_images_guide/assembly-
managing-an-instance_instances#rescuing-an-instance_instances

By default, the instance has 60 seconds to shut down. You can override the
timeout value on a per image basis by using the image metadata setting
os_shutdown_timeout to specify the time that different types of operating
systems require to shut down cleanly.

2. Reboot the virtual machine.

3. Confirm the status of the virtual machine is RESCUE on the controller node by using nova list
command or by using dashboard.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

69

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/instances_and_images_guide/assembly-managing-an-instance_instances#rescuing-an-instance_instances

4. Log in to the new virtual machine dashboard by using the password for rescue mode.

You can now make the necessary changes to your instance to fix any issues.

4.7.4. Unrescuing an instance

You can unrescue the fixed instance to restart it from the boot disk.

1. Execute the following commands on the controller node.

nova unrescue <virtual_machine_id>

Here <virtual_machine_id> is ID of a virtual machine that you want to unrescue.

The status of your instance returns to ACTIVE after the unrescue operation has completed successfully.
:leveloffset: +3

4.8. CREATING A CUSTOMIZED INSTANCE

Cloud users can specify additional data to use when they launch an instance, such as a shell script that
the instance runs on boot. The cloud user can use the following methods to pass data to instances:

User data

Use to include instructions in the instance launch command for cloud-init to execute.

Instance metadata

A list of key-value pairs that you can specify when you create or update an instance.

You can access the additional data passed to the instance by using a config drive or the metadata
service.

Config drive

You can attach a config drive to an instance when it boots. The config drive is presented to the
instance as a read-only drive. The instance can mount this drive and read files from it. You can use
the config drive as a source for cloud-init information. Config drives are useful when combined with
cloud-init for server bootstrapping, and when you want to pass large files to your instances. For
example, you can configure cloud-init to automatically mount the config drive and run the setup
scripts during the initial instance boot. Config drives are created with the volume label of config-2,
and attached to the instance when it boots. The contents of any additional files passed to the config
drive are added to the user_data file in the openstack/{version}/ directory of the config drive.
cloud-init retrieves the user data from this file.

Metadata service

Uses a REST API to retrieve data specific to an instance. Instances access this service at
169.254.169.254 or at fe80::a9fe:a9fe.

cloud-init can use both a config drive and the metadata service to consume the additional data for
customizing an instance. The cloud-init package supports several data input formats. Shell scripts and
the cloud-config format are the most common input formats:

Shell scripts: The data declaration begins with #! or Content-Type: text/x-shellscript. Shell
scripts are invoked last in the boot process.

cloud-config format: The data declaration begins with #cloud-config or Content-Type:

Red Hat OpenStack Platform 13 Instances and Images Guide

70

cloud-config format: The data declaration begins with #cloud-config or Content-Type:
text/cloud-config. cloud-config files must be valid YAML to be parsed and executed by cloud-
init.

NOTE

cloud-init has a maximum user data size of 16384 bytes for data passed to an instance.
You cannot change the size limit, therefore use gzip compression when you need to
exceed the size limit.

4.8.1. Customizing an instance by using user data

You can use user data to include instructions in the instance launch command. cloud-init executes
these commands to customize the instance as the last step in the boot process.

Procedure

1. Create a file with instructions for cloud-init. For example, create a bash script that installs and
enables a web server on the instance:

$ vim /home/scripts/install_httpd
#!/bin/bash

yum -y install httpd python-psycopg2
systemctl enable httpd --now

2. Launch an instance with the --user-data option to pass the bash script:

$ openstack server create \
--image rhel8 \
--flavor default \
--nic net-id=web-server-network \
--security-group default \
--key-name web-server-keypair \
--user-data /home/scripts/install_httpd \
--wait web-server-instance

3. When the instance state is active, attach a floating IP address:

$ openstack floating ip create web-server-network
$ openstack server add floating ip web-server-instance 172.25.250.123

4. Log in to the instance with SSH:

$ ssh -i ~/.ssh/web-server-keypair cloud-user@172.25.250.123

5. Check that the customization was successfully performed. For example, to check that the web
server has been installed and enabled, enter the following command:

$ curl http://localhost | grep Test
<title>Test Page for the Apache HTTP Server on Red Hat Enterprise Linux</title>
<h1>Red Hat Enterprise Linux Test Page</h1>

CHAPTER 4. VIRTUAL MACHINE INSTANCES

71

6. Review the /var/log/cloud-init.log file for relevant messages, such as whether or not the cloud-
init executed:

$ sudo less /var/log/cloud-init.log
...output omitted...
...util.py[DEBUG]: Cloud-init v. 0.7.9 finished at Sat, 23 Jun 2018 02:26:02 +0000.
Datasource DataSourceOpenStack [net,ver=2]. Up 21.25 seconds

4.8.2. Customizing an instance by using metadata

You can use instance metadata to specify the properties of an instance in the instance launch
command.

Procedure

1. Launch an instance with the --property <key=value> option. For example, to mark the instance
as a webserver, set the following property:

$ openstack server create \
--image rhel8 \
--flavor default \
--property role=webservers \
--wait web-server-instance

2. Optional: Add an additional property to the instance after it is created, for example:

$ openstack server set \
--property region=emea \
--wait web-server-instance

4.8.3. Customizing an instance by using a config drive

You can create a config drive for an instance that is attached during the instance boot process. You can
pass content to the config drive that the config drive makes available to the instance.

Procedure

1. Enable the config drive, and specify a file that contains content that you want to make available
in the config drive. For example, the following command creates a new instance named config-
drive-instance and attaches a config drive that contains the contents of the file my-user-
data.txt:

(overcloud)$ openstack server create --flavor m1.tiny \
 --config-drive true \
 --user-data ./my-user-data.txt \
 --image cirros config-drive-instance

This command creates the config drive with the volume label of config-2, which is attached to
the instance when it boots, and adds the contents of my-user-data.txt to the user_data file in
the openstack/{version}/ directory of the config drive.

2. Log in to the instance.

Red Hat OpenStack Platform 13 Instances and Images Guide

72

3. Mount the config drive:

If the instance OS uses udev:

mkdir -p /mnt/config
mount /dev/disk/by-label/config-2 /mnt/config

If the instance OS does not use udev, you need to first identify the block device that
corresponds to the config drive:

blkid -t LABEL="config-2" -odevice
/dev/vdb
mkdir -p /mnt/config
mount /dev/vdb /mnt/config

CHAPTER 4. VIRTUAL MACHINE INSTANCES

73

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES
BETWEEN COMPUTE NODES

You sometimes need to migrate instances from one Compute node to another Compute node in the
overcloud, to perform maintenance, rebalance the workload, or replace a failed or failing node.

Compute node maintenance

If you need to temporarily take a Compute node out of service, for instance, to perform hardware
maintenance or repair, kernel upgrades and software updates, you can migrate instances running on
the Compute node to another Compute node.

Failing Compute node

If a Compute node is about to fail and you need to service it or replace it, you can migrate instances
from the failing Compute node to a healthy Compute node.

Failed Compute nodes

If a Compute node has already failed, you can evacuate the instances. You can rebuild instances from
the original image on another Compute node, using the same name, UUID, network addresses, and
any other allocated resources the instance had before the Compute node failed.

Workload rebalancing

You can migrate one or more instances to another Compute node to rebalance the workload. For
example, you can consolidate instances on a Compute node to conserve power, migrate instances to
a Compute node that is physically closer to other networked resources to reduce latency, or
distribute instances across Compute nodes to avoid hot spots and increase resiliency.

Director configures all Compute nodes to provide secure migration. All Compute nodes also require a
shared SSH key to provide the users of each host with access to other Compute nodes during the
migration process. Director creates this key using the OS::TripleO::Services::NovaCompute
composable service. This composable service is one of the main services included on all Compute roles
by default. For more information, see Composable Services and Custom Roles in the Advanced
Overcloud Customization guide.

NOTE

If you have a functioning Compute node, and you want to make a copy of an instance for
backup purposes, or to copy the instance to a different environment, follow the
procedure in Importing virtual machines into the overcloud in the Director Installation and
Usage guide.

5.1. MIGRATION TYPES

Red Hat OpenStack Platform (RHOSP) supports the following types of migration.

Cold migration

Cold migration, or non-live migration, involves shutting down a running instance before migrating it from
the source Compute node to the destination Compute node.

Red Hat OpenStack Platform 13 Instances and Images Guide

74

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/index#sect-Importing_Virtual_Machines_into_the_Overcloud

Cold migration involves some downtime for the instance. The migrated instance maintains access to the
same volumes and IP addresses.

NOTE

Cold migration requires that both the source and destination Compute nodes are
running.

Live migration

Live migration involves moving the instance from the source Compute node to the destination
Compute node without shutting it down, and while maintaining state consistency.

Live migrating an instance involves little or no perceptible downtime. In some cases, instances cannot
use live migration. For more information, see Migration Constraints.

NOTE

Live migration requires that both the source and destination Compute nodes are running.

Evacuation

If you need to migrate instances because the source Compute node has already failed, you can
evacuate the instances.

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

75

5.2. MIGRATION CONSTRAINTS

In some cases, migrating instances involves additional constraints. Migration constraints typically arise
with block migration, configuration disks, or when one or more instances access physical hardware on
the Compute node.

CPU constraints

The source and destination Compute nodes must have the same CPU architecture. For example, Red
Hat does not support migrating an instance from an x86_64 CPU to a ppc64le CPU. In some cases, the
CPU of the source and destination Compute node must match exactly, such as instances that use CPU
host passthrough. In all cases, the CPU features of the destination node must be a superset of the CPU
features on the source node. Using CPU pinning introduces additional constraints. For more
information, see Live migration constraints.

Memory constraints

The destination Compute node must have sufficient available RAM. Memory oversubscription can cause
migration to fail. Additionally, instances that use a NUMA topology must have sufficient available RAM
on the same NUMA node on the destination Compute node.

Block migration constraints

Migrating instances that use disks that are stored locally on a Compute node takes significantly longer
than migrating volume-backed instances that use shared storage, such as Red Hat Ceph Storage. This
latency arises because OpenStack Compute (nova) migrates local disks block-by-block between the
Compute nodes over the control plane network by default. By contrast, volume-backed instances that
use shared storage, such as Red Hat Ceph Storage, do not have to migrate the volumes, because each
Compute node already has access to the shared storage.

NOTE

Network congestion in the control plane network caused by migrating local disks or
instances that consume large amounts of RAM might impact the performance of other
systems that use the control plane network, such as RabbitMQ.

Read-only drive migration constraints

Migrating a drive is supported only if the drive has both read and write capabilities. For example,
OpenStack Compute (nova) cannot migrate a CD-ROM drive or a read-only config drive. However,
OpenStack Compute (nova) can migrate a drive with both read and write capabilities, including a config
drive with a drive format such as vfat.

Live migration constraints

Migration between RHEL minor versions

In general, you can live migrate an instance between RHEL minor versions when the instance
machine type version on the source Compute node is equal to or less than that of the destination
Compute node. For example, you cannot live migrate an instance with a RHEL-7.6 machine type
running on a RHEL-7.6 Compute node to a RHEL-7.5 Compute node, because the RHEL-7.5
Compute node does not know of the RHEL-7.6 machine type.
However, if you do not set a machine type explicitly, the instance receives the default machine type
and live migration can succeed across supported RHEL minor versions. For example, you can live
migrate an instance that has the default machine type, RHEL-7.6, from a RHEL-7.8 Compute node
to a RHEL-7.7 Compute node.

Red Hat OpenStack Platform 13 Instances and Images Guide

76

No new operations during migration

To achieve state consistency between the copies of the instance on the source and destination
nodes, RHOSP must prevent new operations during live migration. Otherwise, live migration might
take a long time or potentially never end if writes to memory occur faster than live migration can
replicate the state of the memory.

NUMA, CPU pinning, huge pages and DPDK

OpenStack Compute can live migrate an instance that uses NUMA, CPU pinning or DPDK when the
environment meets the following conditions:

The destination Compute node must have sufficient capacity on the same NUMA node that
the instance uses on the source Compute node. For example, if an instance uses NUMA 0 on
overcloud-compute-0, to live migrate the instance to overcloud-compute-1, you must
ensure that overcloud-compute-1 has sufficient capacity on NUMA 0 to support the
instance.

NovaEnableNUMALiveMigration is set to "True" in the Compute configuration. This
parameter is enabled by default only when the Compute host is configured for an OVS-
DPDK deployment.

The NovaSchedulerDefaultFilters parameter in the Compute configuration must include
the values AggregateInstanceExtraSpecsFilter and NUMATopologyFilter.

CPU Pinning: When a flavor uses CPU pinning, the flavor implicitly introduces a NUMA
topology to the instance and maps its CPUs and memory to specific host CPUs and memory.
The difference between a simple NUMA topology and CPU pinning is that NUMA uses a
range of CPU cores, whereas CPU pinning uses specific CPU cores. For more information,
see Configuring CPU pinning with NUMA . To live migrate instances that use CPU pinning,
the destination host must be empty and must have equivalent hardware.

Data Plane Development Kit (DPDK): When an instance uses DPDK, such as an instance
running Open vSwitch with dpdk-netdev, the instance also uses huge pages. Huge pages
impose a NUMA topology such that OpenStack Compute (nova) pins the instance to a
NUMA node. When you migrate instances that use DPDK, the destination Compute node
must have an identical hardware specification and configuration as the source Compute
node. Additionally, there must not be any instances running on the destination Compute
node to ensure that it preserves the NUMA topology of the source Compute node.

Constraints that preclude live migration

Live migration is not possible when the instance is configured for the following features:

Single-root Input/Output Virtualization (SR-IOV): You can assign SR-IOV Virtual Functions
(VFs) to instances. However, this prevents live migration. Unlike a regular network device, an
SR-IOV VF network device does not have a permanent unique MAC address. The VF network
device receives a new MAC address each time the Compute node reboots, or when the
scheduler migrates the instance to a new Compute node. Consequently, OpenStack Compute
cannot live migrate instances that use SR-IOV. You must cold migrate instances that use SR-
IOV.

PCI passthrough: QEMU/KVM hypervisors support attaching PCI devices on the Compute
node to an instance. Use PCI passthrough to give an instance exclusive access to PCI devices,
which appear and behave as if they are physically attached to the operating system of the
instance. However, because PCI passthrough involves physical addresses, OpenStack Compute
does not support live migration of instances using PCI passthrough.

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

77

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/instances_and_images_guide/ch-compute-performance#ch-cpu_pinning

5.3. PREPARING TO MIGRATE

Before you migrate one or more instances, you need to determine the Compute node names and the
IDs of the instances to migrate.

Procedure

1. Identify the source Compute node host name and the destination Compute node host name:

(undercloud)$ source ~/overcloudrc
(overcloud)$ openstack compute service list

2. List the instances on the source Compute node and locate the ID of the instance or instances
that you want to migrate:

(overcloud)$ openstack server list --host <source> --all-projects

Replace <source> with the name or ID of the source Compute node.

3. Optional: To shut down the source Compute node for maintenance, disable the source
Compute node from the undercloud to ensure that the scheduler does not attempt to assign
new instances to the source Compute node during maintenance:

(overcloud)$ source ~/stackrc
(undercloud)$ openstack compute service set <source> nova-compute --disable

Replace <source> with the name or ID of the source Compute node.

If you are not migrating NUMA, CPU-pinned or DPDK instances, you are now ready to perform the
migration. Follow the required procedure detailed in Cold migrating an instance or Live migrating an
instance.

If you are migrating NUMA, CPU-pinned or DPDK instances, you need to prepare the destination node.
Complete the procedure detailed in Section 5.4, “Additional preparation for DPDK instances” .

5.4. ADDITIONAL PREPARATION FOR DPDK INSTANCES

If you are migrating NUMA, CPU-pinned or DPDK instances, you need to prepare the destination node.

Procedure

1. If the destination Compute node for NUMA, CPU-pinned or DPDK instances is not disabled,
disable it to prevent the scheduler from assigning instances to the node:

(overcloud)$ openstack compute service set <dest> nova-compute --disable

Replace <dest> with the name or ID of the destination Compute node.

2. Ensure that the destination Compute node has no instances, except for instances that you
previously migrated from the source Compute node when you migrated multiple DPDK or
NUMA instances:

(overcloud)$ openstack server list --host <dest> --all-projects

Red Hat OpenStack Platform 13 Instances and Images Guide

78

Replace <dest> with the name or ID of the destination Compute node.

3. Ensure that the destination Compute node has sufficient resources to run the NUMA, CPU-
pinned or DPDK instance:

(overcloud)$ openstack host show <dest>
$ ssh <dest>
$ numactl --hardware
$ exit

Replace <dest> with the name or ID of the destination Compute node.

4. To discover NUMA information about the source or destination Compute nodes, run the
following commands:

$ ssh root@overcloud-compute-n
lscpu && lscpu | grep NUMA
virsh nodeinfo
virsh capabilities
exit

Use ssh to connect to overcloud-compute-n where overcloud-compute-n is the source or
destination Compute node.

5. If you do not know if an instance uses NUMA, check the flavor of the instance:

(overcloud)$ openstack server list -c Name -c Flavor --name <vm>
(overcloud)$ openstack flavor show <flavor>

Replace <vm> with the name or ID of the instance.

Replace <flavor> with the name or ID of the flavor.

If the properties field includes hw:mem_page_size with a value other than any, such
as 2MB, 2048 or 1GB, the instance has a NUMA topology.

If the properties field includes aggregate_instance_extra_specs:pinned='true', the
instance uses CPU pinning.

If the properties field includes hw:numa_nodes, the OpenStack Compute (nova)
service restricts the instance to a specific NUMA node.

6. For each instance that uses NUMA, you can retrieve information about the NUMA topology
from the underlying Compute node so that you can verify that the NUMA topology on the
destination Compute node reflects the NUMA topology of the source Compute node after
migration is complete. You can use the following commands to perform this check:

To view details about NUMA and CPU pinning, run the following command:

$ ssh root@overcloud-compute-n
virsh vcpuinfo <vm>

Replace <vm> with the name of the instance.

To view details about which NUMA node the instance is using, run the following command:

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

79

$ ssh root@overcloud-compute-n
virsh numatune <vm>

Replace <vm> with the name of the instance.

5.5. COLD MIGRATING AN INSTANCE

Cold migrating an instance involves stopping the instance and moving it to another Compute node. Cold
migration facilitates migration scenarios that live migrating cannot facilitate, such as migrating instances
that use PCI passthrough or Single-Root Input/Output Virtualization (SR-IOV). The scheduler
automatically selects the destination Compute node. For more information, see Migration Constraints.

NOTE

During cold migrations, the Compute service rebuilds the migrated instances from
scratch, and adjusts the machine type to the machine type of the destination Compute
node. Therefore, if you cold migrate an instance with a RHEL-7.5 machine type running
on a RHEL-7.5 Compute node, to a RHEL-7.6 Compute node, the migrated instance on
the destination Compute node will have a RHEL-7.6 machine type.

Procedure

1. To cold migrate an instance, run the following command to power off and move the instance:

(overcloud)$ openstack server migrate <vm> --wait

Replace <vm> with the name or ID of the instance to migrate.

Specify the --block-migration flag if migrating a locally stored volume.

2. Wait for migration to complete. See Checking migration status to check the status of the
migration.

3. Check the status of the instance:

(overcloud)$ openstack server list --all-projects

A status of "VERIFY_RESIZE" indicates you need to confirm or revert the migration:

If the migration worked as expected, confirm it:

(overcloud)$ openstack server resize --confirm <vm>`

Replace <vm> with the name or ID of the instance to migrate. A status of "ACTIVE"
indicates that the instance is ready to use.

If the migration did not work as expected, revert it:

(overcloud)$ openstack server resize --revert <vm>`

Replace <vm> with the name or ID of the instance.

4. Restart the instance:

Red Hat OpenStack Platform 13 Instances and Images Guide

80

(overcloud)$ openstack server start <vm>

Replace <vm> with the name or ID of the instance.

When you finish migrating the instances, proceed to Completing the migration.

5.6. LIVE MIGRATING AN INSTANCE

Live migration moves an instance from a source Compute node to a destination Compute node with a
minimal amount of downtime. Live migration might not be appropriate for all instances. For more
information, see Section 5.2, “Migration constraints”.

NOTE

Live migrations preserve the instance machine type on the destination Compute node.
Therefore, if you live migrate an instance with a RHEL-7.5 machine type running on a
RHEL-7.5 Compute node, to a RHEL-7.6 Compute node, the migrated instance on the
destination Compute node retains the RHEL-7.5 machine type. To change the machine
type, you must set the image metadata property hw_machine_type, or set the
NovaHWMachineType parameter on each Compute node.

Procedure

1. To live migrate an instance, specify the instance and the destination Compute node:

(overcloud)$ openstack server migrate <vm> --live <dest> --wait

Replace <vm> with the name or ID of the instance.

Replace <dest> with the name or ID of the destination Compute node.

NOTE

The openstack server migrate command covers migrating instances with
shared storage, which is the default. Specify the --block-migration flag to
migrate a locally stored volume:

(overcloud)$ openstack server migrate <vm> --live <dest> --wait --block-
migration

2. Confirm that the instance is migrating:

$ openstack server show <vm>

+----------------------+--------------------------------------+
| Field | Value |
+----------------------+--------------------------------------+
...	...
status	MIGRATING
...	...
+----------------------+--------------------------------------+

3. Wait for migration to complete. See Checking migration status to check the status of the

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

81

3. Wait for migration to complete. See Checking migration status to check the status of the
migration.

4. Check the status of the instance to confirm if the migration was successful:

(overcloud)$ openstack server list --host <dest> --all-projects

Replace <dest> with the name or ID of the destination Compute node.

5. Optional: For instances that use NUMA, CPU-pinning, or DPDK, retrieve information about the
NUMA topology from a Compute node to compare it with the NUMA topology that you
retrieved during the preparing to migrate procedure. Comparing the NUMA topologies of the
source and destination Compute nodes ensures that the source and destination Compute
nodes use the same NUMA topology.

To view details about NUMA and CPU pinning, run the following command:

$ ssh root@overcloud-compute-n
virsh vcpuinfo <vm>

Replace overcloud-compute-n with the host name of the Compute node.

Replace <vm> with the name of the instance.

To view details about which NUMA node the instance is using, run the following command:

$ ssh root@overcloud-compute-n
virsh numatune <vm>

Replace overcloud-compute-n with the host name of the Compute node.

Replace <vm> with the name or ID of the instance.

When you finish migrating the instances, proceed to Completing the migration.

5.7. CHECKING MIGRATION STATUS

Migration involves several state transitions before migration is complete. During a healthy migration, the
migration state typically transitions as follows:

1. Queued: The Compute service has accepted the request to migrate an instance, and migration
is pending.

2. Preparing: The Compute service is preparing to migrate the instance.

3. Running: The Compute service is migrating the instance.

4. Post-migrating: The Compute service has built the instance on the destination Compute node
and is releasing resources on the source Compute node.

5. Completed: The Compute service has completed migrating the instance and finished releasing
resources on the source Compute node.

Procedure

1. Retrieve the list of migration IDs for the instance:

Red Hat OpenStack Platform 13 Instances and Images Guide

82

$ nova server-migration-list <vm>

+----+-------------+----------- (...)
| Id | Source Node | Dest Node | (...)
+----+-------------+-----------+ (...)
| 2 | - | - | (...)
+----+-------------+-----------+ (...)

Replace <vm> with the name or ID of the instance.

2. Show the status of the migration:

$ nova server-migration-show <vm> <migration-id>

Replace <vm> with the name or ID of the instance.

Replace <migration-id> with the ID of the migration.
Running the nova server-migration-show command returns the following example output:

+------------------------+--------------------------------------+
| Property | Value |
+------------------------+--------------------------------------+
created_at	2017-03-08T02:53:06.000000
dest_compute	controller
dest_host	-
dest_node	-
disk_processed_bytes	0
disk_remaining_bytes	0
disk_total_bytes	0
id	2
memory_processed_bytes	65502513
memory_remaining_bytes	786427904
memory_total_bytes	1091379200
server_uuid	d1df1b5a-70c4-4fed-98b7-423362f2c47c
source_compute	compute2
source_node	-
status	running
updated_at	2017-03-08T02:53:47.000000
+------------------------+--------------------------------------+

TIP

The OpenStack Compute service measures progress of the migration by the number of
remaining memory bytes to copy. If this number does not decrease over time, the migration
might be unable to complete, and the Compute service might abort it.

Sometimes instance migration can take a long time or encounter errors. For more information, see
Section 5.10, “Troubleshooting migration”.

5.8. COMPLETING THE MIGRATION

After you migrate one or more instances, you need to re-enable the source Compute nodes from the
undercloud to ensure that the scheduler can assign new instances to the source Compute node. For

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

83

migrated instances that use DPDK, you must also re-enable the destination Compute node from the
undercloud.

Procedure

1. Re-enable the source Compute node:

(overcloud)$ source ~/stackrc
(undercloud)$ openstack compute service set <source> nova-compute --enable

Replace <source> with the host name of the source Compute node.

2. Optional: For instances that use DPDK, re-enable the destination Compute node from the
undercloud:

(undercloud)$ openstack compute service set <dest> nova-compute --enable

Replace <dest> with the host name of the destination Compute node.

5.9. EVACUATING AN INSTANCE

If you want to move an instance from a dead or shut-down Compute node to a new host in the same
environment, you can evacuate it. The evacuate process rebuilds the instance on another Compute
node. If the instance uses shared storage, the instance root disk is not rebuilt during the evacuate
process, as the disk remains accessible by the destination Compute node. If the instance does not use
shared storage, then the instance root disk is also rebuilt on the destination Compute node.

NOTE

You can only perform an evacuation when the Compute node is fenced, and the
API reports that the state of the Compute node is "down" or "forced-down". If
the Compute node is not reported as "down" or "forced-down", the evacuate
command fails.

To perform an evacuation, you must be a cloud administrator.

During evacuations, the Compute service rebuilds the evacuated instances from
scratch, and adjusts the machine type to the machine type of the destination
Compute node. Therefore, if you evacuate an instance with a RHEL-7.5 machine
type running on a RHEL-7.5 Compute node, to a RHEL-7.6 Compute node, the
migrated instance on the destination Compute node will have a RHEL-7.6
machine type.

5.9.1. Evacuating one instance

You can evacuate instances one at a time.

Procedure

1. Log onto the failed Compute node as an administrator.

2. Disable the Compute node:

Red Hat OpenStack Platform 13 Instances and Images Guide

84

(overcloud)[stack@director ~]$ openstack compute service set \
<host> <service> --disable

Replace <host> with the name of the Compute node to evacuate the instance from.

Replace <service> with the name of the service to disable, for example nova-compute.

3. To evacuate an instance, run the following command:

(overcloud)[stack@director ~]$ nova evacuate [--password <pass>] <vm> [dest]

Replace <pass> with the admin password to set for the evacuated instance. If a password is
not specified, a random password is generated and output when the evacuation is complete.

Replace <vm> with the name or ID of the instance to evacuate.

Replace [dest] with the name of the Compute node to evacuate the instance to. If you do
not specify the destination Compute node, the Compute scheduler selects one for you. You
can find possible Compute nodes by using the following command:

(overcloud)[stack@director ~]$ openstack hypervisor list

5.9.2. Evacuating all instances on a host

You can evacuate all instances on a specified Compute node.

Procedure

1. Log onto the failed Compute node as an administrator.

2. Disable the Compute node:

(overcloud)[stack@director ~]$ openstack compute service set \
<host> <service> --disable

Replace <host> with the name of the Compute node to evacuate the instances from.

Replace <service> with the name of the service to disable, for example nova-compute.

3. Evacuate all instances on a specified Compute node:

(overcloud)[stack@director ~]$ nova host-evacuate [--target_host <dest>] [--force] <host>

Replace <dest> with the name of the destination Compute node to evacuate the instances
to. If you do not specify the destination, the Compute scheduler selects one for you. You
can find possible Compute nodes by using the following command:

(overcloud)[stack@director ~]$ openstack hypervisor list

Replace <host> with the name of the Compute node to evacuate the instances from.

5.9.3. Configuring shared storage

If you are using shared storage, export the instance directory for the Compute service to the two nodes,

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

85

If you are using shared storage, export the instance directory for the Compute service to the two nodes,
and ensure that the nodes have access. The directory path is set in the state_path and instances_path
parameters in your Compute environment file. This procedure uses the default value, which is
/var/lib/nova/instances. Only users with root access can set up shared storage. The Compute service
user in the following procedure must be the same across Controller and Compute nodes.

Procedure

1. Perform the following steps on the Controller node:

a. Ensure that the /var/lib/nova/instances directory has read-write access by the Compute
service user, as shown in the following example:

drwxr-xr-x. 9 nova nova 4096 Nov 5 20:37 instances

b. Add the following lines to the /etc/exports file:

/var/lib/nova/instances node1_IP(rw,sync,fsid=0,no_root_squash)
/var/lib/nova/instances node2_IP(rw,sync,fsid=0,no_root_squash)

Replace node1_IP and node2_IP for the IP addresses of the two Compute nodes, for
example:

/var/lib/nova/instances 192.168.24.9(rw,sync,fsid=0,no_root_squash)
/var/lib/nova/instances 192.168.24.21(rw,sync,fsid=0,no_root_squash)

c. Export the /var/lib/nova/instances directory to the Compute nodes:

exportfs -avr

d. Restart the NFS server:

systemctl restart nfs-server

2. Perform the following steps on each Compute node:

a. Ensure that the /var/lib/nova/instances directory exists locally.

b. Add the following line to the /etc/fstab file:

NFS_SHARE_PATH:/var/lib/nova/instances /var/lib/nova/instances nfs4 defaults 0 0

c. Mount the controller’s instance directory to mount all the devices listed in /etc/fstab:

mount -a -v

d. Ensure that QEMU can access the directory’s images:

ls -ld /var/lib/nova/instances
drwxr-xr-x. 9 nova nova 4096 Nov 5 20:37 /var/lib/nova/instances

e. Ensure that the node can see the instances directory with:

Red Hat OpenStack Platform 13 Instances and Images Guide

86

drwxr-xr-x. 9 nova nova 4096 Nov 5 20:37 /var/lib/nova/instances

NOTE

You can also run the following to view all mounted devices:

df -k

5.10. TROUBLESHOOTING MIGRATION

The following issues can arise during instance migration:

The migration process encounters errors.

The migration process never ends.

Performance of the instance degrades after migration.

5.10.1. Errors during migration

The following issues can send the migration operation into an error state:

Running a cluster with different versions of Red Hat OpenStack Platform (RHOSP).

Specifying an instance ID that cannot be found.

The instance you are trying to migrate is in an error state.

The Compute service is shutting down.

A race condition occurs.

Live migration enters a failed state.

When live migration enters a failed state, it is typically followed by an error state. The following common
issues can cause a failed state:

A destination Compute host is not available.

A scheduler exception occurs.

The rebuild process fails due to insufficient computing resources.

A server group check fails.

The instance on the source Compute node gets deleted before migration to the destination
Compute node is complete.

5.10.2. Never-ending live migration

Live migration can fail to complete, which leaves migration in a perpetual running state. A common
reason for a live migration that never completes is that client requests to the instance running on the
source Compute node create changes that occur faster than the Compute service can replicate them to
the destination Compute node.

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

87

Use one of the following methods to address this situation:

Abort the live migration.

Force the live migration to complete.

Aborting live migration

If the instance state changes faster than the migration procedure can copy it to the destination node,
and you do not want to temporarily suspend the instance operations, you can abort the live migration.

Procedure

1. Retrieve the list of migrations for the instance:

$ nova server-migration-list <vm>

Replace <vm> with the name or ID of the instance.

2. Abort the live migration:

$ nova live-migration-abort <vm> <migration-id>

Replace <vm> with the name or ID of the instance.

Replace <migration-id> with the ID of the migration.

Forcing live migration to complete

If the instance state changes faster than the migration procedure can copy it to the destination node,
and you want to temporarily suspend the instance operations to force migration to complete, you can
force the live migration procedure to complete.

IMPORTANT

Forcing live migration to complete might lead to perceptible downtime.

Procedure

1. Retrieve the list of migrations for the instance:

$ nova server-migration-list <vm>

Replace <vm> with the name or ID of the instance.

2. Force the live migration to complete:

$ nova live-migration-force-complete <vm> <migration-id>

Replace <vm> with the name or ID of the instance.

Replace <migration-id> with the ID of the migration.

5.10.3. Instance performance degrades after migration

For instances that use a NUMA topology, the source and destination Compute nodes must have the

Red Hat OpenStack Platform 13 Instances and Images Guide

88

For instances that use a NUMA topology, the source and destination Compute nodes must have the
same NUMA topology and configuration. The NUMA topology of the destination Compute node must
have sufficient resources available. If the NUMA configuration between the source and destination
Compute nodes is not the same, it is possible that live migration succeeds while the instance
performance degrades. For example, if the source Compute node maps NIC 1 to NUMA node 0, but the
destination Compute node maps NIC 1 to NUMA node 5, after migration the instance might route
network traffic from a first CPU across the bus to a second CPU with NUMA node 5 to route traffic to
NIC 1. This can result in expected behavior, but degraded performance. Similarly, if NUMA node 0 on the
source Compute node has sufficient available CPU and RAM, but NUMA node 0 on the destination
Compute node already has instances using some of the resources, the instance might run correctly but
suffer performance degradation. For more information, see Section 5.2, “Migration constraints”.

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

89

CHAPTER 6. CONFIGURING PCI PASSTHROUGH
You can use PCI passthrough to attach a physical PCI device, such as a graphics card or a network
device, to an instance. If you use PCI passthrough for a device, the instance reserves exclusive access to
the device for performing tasks, and the device is not available to the host.

IMPORTANT

Using PCI passthrough with routed provider networks

The Compute service does not support single networks that span multiple provider
networks. When a network contains multiple physical networks, the Compute service only
uses the first physical network. Therefore, if you are using routed provider networks you
must use the same physical_network name across all the Compute nodes.

If you use routed provider networks with VLAN or flat networks, you must use the same
physical_network name for all segments. You then create multiple segments for the
network and map the segments to the appropriate subnets.

To enable your cloud users to create instances with PCI devices attached, you must complete the
following:

1. Designate Compute nodes for PCI passthrough.

2. Configure the Compute nodes for PCI passthrough that have the required PCI devices.

3. Deploy the overcloud.

4. Create a flavor for launching instances with PCI devices attached.

Prerequisites

The Compute nodes have the required PCI devices.

6.1. DESIGNATING COMPUTE NODES FOR PCI PASSTHROUGH

To designate Compute nodes for instances with physical PCI devices attached, you must:

create a new role file to configure the PCI passthrough role

configure a new overcloud flavor for PCI passthrough to use to tag the Compute nodes for PCI
passthrough

Procedure

1. Generate a new roles data file named roles_data_pci_passthrough.yaml that includes the
Controller, Compute, and ComputePCI roles:

(undercloud)$ openstack overcloud roles \
 generate -o /home/stack/templates/roles_data_pci_passthrough.yaml \
 Compute:ComputePCI Compute Controller

2. Open roles_data_pci_passthrough.yaml and edit or add the following parameters and
sections:

Red Hat OpenStack Platform 13 Instances and Images Guide

90

Section/Parameter Current value New value

Role comment Role: Compute Role: ComputePCI

Role name name: Compute name: ComputePCI

description Basic Compute Node role PCI Passthrough Compute
Node role

HostnameFormatDefault %stackname%-
novacompute-%index%

%stackname%-
novacomputepci-%index%

deprecated_nic_config_na
me

compute.yaml compute-pci-
passthrough.yaml

3. Register the PCI passthrough Compute nodes for the overcloud by adding them to your node
definition template, node.json or node.yaml. For more information, see Registering nodes for
the overcloud in the Director Installation and Usage guide.

4. Inspect the node hardware:

(undercloud)$ openstack overcloud node introspect \
 --all-manageable --provide

For more information, see Inspecting the hardware of nodes in the Director Installation and
Usage guide.

5. Create the compute-pci-passthrough bare metal flavor to use to tag nodes that you want to
designate for PCI passthrough:

(undercloud)$ openstack flavor create --id auto \
 --ram <ram_size_mb> --disk <disk_size_gb> \
 --vcpus <no_vcpus> compute-pci-passthrough

Replace <ram_size_mb> with the RAM of the bare metal node, in MB.

Replace <disk_size_gb> with the size of the disk on the bare metal node, in GB.

Replace <no_vcpus> with the number of CPUs on the bare metal node.

NOTE

These properties are not used for scheduling instances. However, the
Compute scheduler does use the disk size to determine the root partition
size.

6. Tag each bare metal node that you want to designate for PCI passthrough with a custom PCI
passthrough resource class:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.PCI-PASSTHROUGH <node>

CHAPTER 6. CONFIGURING PCI PASSTHROUGH

91

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/index#sect-Registering_Nodes_for_the_Overcloud-basic
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/index#inspecting-the-hardware-of-nodes-basic

Replace <node> with the ID of the bare metal node.

7. Associate the compute-pci-passthrough flavor with the custom PCI passthrough resource
class:

(undercloud)$ openstack flavor set \
 --property resources:CUSTOM_BAREMETAL_PCI_PASSTHROUGH=1 \
 compute-pci-passthrough

To determine the name of a custom resource class that corresponds to a resource class of a
Bare Metal service node, convert the resource class to uppercase, replace all punctuation with
an underscore, and prefix with CUSTOM_.

NOTE

A flavor can request only one instance of a bare metal resource class.

8. Set the following flavor properties to prevent the Compute scheduler from using the bare metal
flavor properties to schedule instances:

(undercloud)$ openstack flavor set \
 --property resources:VCPU=0 --property resources:MEMORY_MB=0 \
 --property resources:DISK_GB=0 compute-pci-passthrough

9. Add the following parameters to the node-info.yaml file to specify the number of PCI
passthrough Compute nodes, and the flavor to use for the PCI passthrough designated
Compute nodes:

parameter_defaults:
 OvercloudComputePCIFlavor: compute-pci-passthrough
 ComputePCICount: 3

10. To verify that the role was created, enter the following command:

(undercloud)$ openstack overcloud profiles list

6.2. CONFIGURING A PCI PASSTHROUGH COMPUTE NODE

To enable your cloud users to create instances with PCI devices attached, you must configure both the
Compute nodes that have the PCI devices and the Controller nodes.

Procedure

1. Create an environment file to configure the Controller node on the overcloud for PCI
passthrough, for example, pci_passthrough_controller.yaml.

2. Add PciPassthroughFilter to the NovaSchedulerDefaultFilters parameter in
pci_passthrough_controller.yaml:

parameter_defaults:
 NovaSchedulerDefaultFilters:
['AvailabilityZoneFilter','ComputeFilter','ComputeCapabilitiesFilter','ImagePropertiesFilter','Serve
rGroupAntiAffinityFilter','ServerGroupAffinityFilter','PciPassthroughFilter','NUMATopologyFilter']

Red Hat OpenStack Platform 13 Instances and Images Guide

92

3. To specify the PCI alias for the devices on the Controller node, add the following configuration
to pci_passthrough_controller.yaml:

parameter_defaults:
 ...
 ControllerExtraConfig:
 nova::pci::aliases:
 - name: "a1"
 product_id: "1572"
 vendor_id: "8086"
 device_type: "type-PF"

For more information about configuring the device_type field, see PCI passthrough device type
field.

NOTE

If the nova-api service is running in a role different from the Controller role,
replace ControllerExtraConfig with the user role in the format
<Role>ExtraConfig.

4. Optional: To set a default NUMA affinity policy for PCI passthrough devices, add numa_policy
to the nova::pci::aliases: configuration from step 3:

parameter_defaults:
 ...
 ControllerExtraConfig:
 nova::pci::aliases:
 - name: "a1"
 product_id: "1572"
 vendor_id: "8086"
 device_type: "type-PF"
 numa_policy: "preferred"

5. To configure the Compute node on the overcloud for PCI passthrough, create an environment
file, for example, pci_passthrough_compute.yaml.

6. To specify the available PCIs for the devices on the Compute node, use the vendor_id and
product_id options to add all matching PCI devices to the pool of PCI devices available for
passthrough to instances. For example, to add all Intel® Ethernet Controller X710 devices to the
pool of PCI devices available for passthrough to instances, add the following configuration to
pci_passthrough_compute.yaml:

parameter_defaults:
 ...
 ComputePCIParameters:
 NovaPCIPassthrough:
 - vendor_id: "8086"
 product_id: "1572"

For more information about how to configure NovaPCIPassthrough, see Guidelines for
configuring NovaPCIPassthrough.

7. You must create a copy of the PCI alias on the Compute node for instance migration and resize

CHAPTER 6. CONFIGURING PCI PASSTHROUGH

93

7. You must create a copy of the PCI alias on the Compute node for instance migration and resize
operations. To specify the PCI alias for the devices on the PCI passthrough Compute node, add
the following to pci_passthrough_compute.yaml:

parameter_defaults:
 ...
 ComputePCIExtraConfig:
 nova::pci::aliases:
 - name: "a1"
 product_id: "1572"
 vendor_id: "8086"
 device_type: "type-PF"

NOTE

The Compute node aliases must be identical to the aliases on the Controller
node. Therefore, if you added numa_affinity to nova::pci::aliases in
pci_passthrough_controller.yaml, then you must also add it to
nova::pci::aliases in pci_passthrough_compute.yaml.

8. To enable IOMMU in the server BIOS of the Compute nodes to support PCI passthrough, add
the KernelArgs parameter to pci_passthrough_compute.yaml. For example, use the
following KernalArgs settings to enable an Intel IOMMU:

parameter_defaults:
 ...
 ComputePCIParameters:
 KernelArgs: "intel_iommu=on iommu=pt"

To enable an AMD IOMMU, set KernelArgs to "amd_iommu=on iommu=pt".

9. Add your custom environment files to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/pci_passthrough_controller.yaml \
 -e /home/stack/templates/pci_passthrough_compute.yaml \

10. Create and configure the flavors that your cloud users can use to request the PCI devices. The
following example requests two devices, each with a vendor ID of 8086 and a product ID of 1572,
using the alias defined in step 7:

(overcloud)# openstack flavor set \
 --property "pci_passthrough:alias"="a1:2" device_passthrough

Verification

1. Create an instance with a PCI passthrough device:

openstack server create --flavor device_passthrough \
 --image <image> --wait test-pci

Red Hat OpenStack Platform 13 Instances and Images Guide

94

2. Log in to the instance as a cloud user. For more information, see Log in to an Instance .

3. To verify that the PCI device is accessible from the instance, enter the following command from
the instance:

$ lspci -nn | grep <device_name>

6.3. PCI PASSTHROUGH DEVICE TYPE FIELD

The Compute service categorizes PCI devices into one of three types, depending on the capabilities the
devices report. The following lists the valid values that you can set the device_type field to:

type-PF

The device supports SR-IOV and is the parent or root device. Specify this device type to
passthrough a device that supports SR-IOV in its entirety.

type-VF

The device is a child device of a device that supports SR-IOV.

type-PCI

The device does not support SR-IOV. This is the default device type if the device_type field is not
set.

NOTE

You must configure the Compute and Controller nodes with the same device_type.

6.4. GUIDELINES FOR CONFIGURING NOVAPCIPASSTHROUGH

Do not use the devname parameter when configuring PCI passthrough, as the device name of a
NIC can change. Instead, use vendor_id and product_id because they are more stable, or use
the address of the NIC.

To use the product_id parameter to pass through a Physical Function (PF), you must also
specify the address of the PF. However, you can use just the address parameter to specify
PFs, because the address is unique on each host.

To pass through all the Virtual Functions (VFs) you must specify only the product_id and
vendor_id. You must also specify the address if you are using SRIOV for NIC partitioning and
you are running OVS on a VF.

To pass through only the VFs for a PF but not the PF itself, you can use the address parameter
to specify the PCI address of the PF and product_id to specify the product ID of the VF.

CHAPTER 6. CONFIGURING PCI PASSTHROUGH

95

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/instances_and_images_guide/index#section-Check-instance

CHAPTER 7. DATABASE CLEANING
The Compute service includes an administrative tool, nova-manage, that you can use to perform
deployment, upgrade, clean-up, and maintenance-related tasks, such as applying database schemas,
performing online data migrations during an upgrade, and managing and cleaning up the database.

Director automates the following database management tasks on the overcloud by using cron:

Archives deleted instance records by moving the deleted rows from the production tables to
shadow tables.

Purges deleted rows from the shadow tables after archiving is complete.

7.1. CONFIGURING DATABASE MANAGEMENT

The cron jobs use default settings to perform database management tasks. By default, the database
archiving cron jobs run daily at 00:01, and the database purging cron jobs run daily at 05:00, both with a
jitter between 0 and 3600 seconds. You can modify these settings as required by using heat
parameters.

Procedure

1. Open your Compute environment file.

2. Add the heat parameter that controls the cron job that you want to add or modify. For example,
to purge the shadow tables immediately after they are archived, set the following parameter to
"True":

parameter_defaults:
 …
 NovaCronArchiveDeleteRowsPurge: True

For a complete list of the heat parameters to manage database cron jobs, see Configuration
options for Openstack Compute (nova) automated database management.

3. Save the updates to your Compute environment file.

4. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

7.2. CONFIGURATION OPTIONS FOR OPENSTACK COMPUTE (NOVA)
AUTOMATED DATABASE MANAGEMENT

Use the following heat parameters to enable and modify the automated cron jobs that manage the
database.

Table 7.1. OpenStack Compute (nova) cron parameters

Red Hat OpenStack Platform 13 Instances and Images Guide

96

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/instances_and_images_guide/configuration-options-db-management-osp

Parameter Description

NovaCronArchiveDeleteAllCells Set this parameter to "True" to archive deleted
instance records from all cells.

Default value: True

NovaCronArchiveDeleteRowsAge Use this parameter to archive deleted instance
records based on their age in days.

Set to 0 to archive data older than today in shadow
tables.

Default value: 90

NovaCronArchiveDeleteRowsDestination Use this parameter to configure the file for logging
deleted instance records.

Default value: /var/log/nova/nova-rowsflush.log

NovaCronArchiveDeleteRowsHour Use this parameter to configure the hour at which to
run the cron command to move deleted instance
records to another table.

Default value: 0

NovaCronArchiveDeleteRowsMaxDelay Use this parameter to configure the maximum delay,
in seconds, before moving deleted instance records
to another table.

Default value: 3600

NovaCronArchiveDeleteRowsMaxRows Use this parameter to configure the maximum
number of deleted instance records that can be
moved to another table.

Default value: 1000

NovaCronArchiveDeleteRowsMinute Use this parameter to configure the minute past the
hour at which to run the cron command to move
deleted instance records to another table.

Default value: 1

NovaCronArchiveDeleteRowsMonthday Use this parameter to configure on which day of the
month to run the cron command to move deleted
instance records to another table.

Default value: * (every day)

CHAPTER 7. DATABASE CLEANING

97

NovaCronArchiveDeleteRowsMonth Use this parameter to configure in which month to
run the cron command to move deleted instance
records to another table.

Default value: * (every month)

NovaCronArchiveDeleteRowsPurge Set this parameter to "True" to purge shadow tables
immediately after scheduled archiving.

Default value: False

NovaCronArchiveDeleteRowsUntilComplete Set this parameter to "True" to continue to move
deleted instance records to another table until all
records are moved.

Default value: True

NovaCronArchiveDeleteRowsUser Use this parameter to configure the user that owns
the crontab that archives deleted instance records
and that has access to the log file the crontab uses.

Default value: nova

NovaCronArchiveDeleteRowsWeekday Use this parameter to configure on which day of the
week to run the cron command to move deleted
instance records to another table.

Default value: * (every day)

NovaCronPurgeShadowTablesAge Use this parameter to purge shadow tables based on
their age in days.

Set to 0 to purge shadow tables older than today.

Default value: 14

NovaCronPurgeShadowTablesAllCells Set this parameter to "True" to purge shadow tables
from all cells.

Default value: True

NovaCronPurgeShadowTablesDestination Use this parameter to configure the file for logging
purged shadow tables.

Default value: /var/log/nova/nova-
rowspurge.log

Parameter Description

Red Hat OpenStack Platform 13 Instances and Images Guide

98

NovaCronPurgeShadowTablesHour Use this parameter to configure the hour at which to
run the cron command to purge shadow tables.

Default value: 5

NovaCronPurgeShadowTablesMaxDelay Use this parameter to configure the maximum delay,
in seconds, before purging shadow tables.

Default value: 3600

NovaCronPurgeShadowTablesMinute Use this parameter to configure the minute past the
hour at which to run the cron command to purge
shadow tables.

Default value: 0

NovaCronPurgeShadowTablesMonth Use this parameter to configure in which month to
run the cron command to purge the shadow tables.

Default value: * (every month)

NovaCronPurgeShadowTablesMonthday Use this parameter to configure on which day of the
month to run the cron command to purge the
shadow tables.

Default value: * (every day)

NovaCronPurgeShadowTablesUser Use this parameter to configure the user that owns
the crontab that purges the shadow tables and that
has access to the log file the crontab uses.

Default value: nova

NovaCronPurgeShadowTablesVerbose Use this parameter to enable verbose logging in the
log file for purged shadow tables.

Default value: False

NovaCronPurgeShadowTablesWeekday Use this parameter to configure on which day of the
week to run the cron command to purge the shadow
tables.

Default value: * (every day)

Parameter Description

CHAPTER 7. DATABASE CLEANING

99

CHAPTER 8. CONFIGURING COMPUTE NODES FOR
PERFORMANCE

You can configure the scheduling and placement of instances for optimal performance by creating
customized flavors to target specialized workloads, including Network Functions Virtualization (NFV),
and High Performance Computing (HPC).

Use the following features to tune your instances for optimal performance:

CPU pinning: Pin virtual CPUs to physical CPUs.

Emulator threads: Pin emulator threads associated with the instance to physical CPUs.

Huge pages: Tune instance memory allocation policies both for normal memory (4k pages) and
huge pages (2 MB or 1 GB pages).

NOTE

Configuring any of these features creates an implicit NUMA topology on the instance if
there is no NUMA topology already present.

For more information about NFV and hyper-converged infrastructure (HCI) deployments, see
Deploying an overcloud with HCI and DPDK in the Network Functions Virtualization Planning and
Configuration Guide.

8.1. CONFIGURING CPU PINNING WITH NUMA

This chapter describes how to use NUMA topology awareness to configure an OpenStack environment
on systems with a NUMA architecture. The procedures detailed in this chapter show you how to pin
virtual machines (VMs) to dedicated CPU cores, which improves scheduling and VM performance.

TIP

Background information about NUMA is available in the following article: What is NUMA and how does it
work on Linux?

The following diagram provides an example of a two-node NUMA system and the way the CPU cores
and memory pages are made available:

Red Hat OpenStack Platform 13 Instances and Images Guide

100

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/network_functions_virtualization_planning_and_configuration_guide/index#hci-dpdk_Tuning
https://access.redhat.com/solutions/700683

NOTE

Remote memory available via Interconnect is accessed only if VM1 from NUMA node 0
has a CPU core in NUMA node 1. In this case, the memory of NUMA node 1 will act as local
for the third CPU core of VM1 (for example, if VM1 is allocated with CPU 4 in the diagram
above), but at the same time, it will act as remote memory for the other CPU cores of the
same VM.

For more details on NUMA tuning with libvirt, see the Virtualization Tuning and Optimization Guide .

8.1.1. Compute node configuration

The exact configuration depends on the NUMA topology of your host system. However, you must
reserve some CPU cores across all the NUMA nodes for host processes and let the rest of the CPU
cores handle your virtual machines (VMs). The following example illustrates the layout of eight CPU
cores evenly spread across two NUMA nodes.

Table 8.1. Example of NUMA Topology

 Node 0 Node 1

Host processes Core 0 Core 1 Core 4 Core 5

Instances Core 2 Core 3 Core 6 Core 7

NOTE

CHAPTER 8. CONFIGURING COMPUTE NODES FOR PERFORMANCE

101

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/sect-Virtualization_Tuning_Optimization_Guide-NUMA-NUMA_and_libvirt.html

NOTE

Determine the number of cores to reserve for host processes by observing the
performance of the host under typical workloads.

Procedure

1. Reserve CPU cores for the VMs by setting the NovaVcpuPinSet configuration in the Compute
environment file:

NovaVcpuPinSet: 2,3,6,7

2. Set the NovaReservedHostMemory option in the same file to the amount of RAM to reserve
for host processes. For example, if you want to reserve 512 MB, use:

NovaReservedHostMemory: 512

3. To ensure that host processes do not run on the CPU cores reserved for VMs, set the
parameter IsolCpusList in the Compute environment file to the CPU cores you have reserved
for VMs. Specify the value of the IsolCpusList parameter using a list of CPU indices, or ranges
separated by a whitespace. For example:

IsolCpusList: 2 3 6 7

NOTE

The IsolCpusList parameter and isolcpus parameter are different parameters
for separate purposes:

IsolCpusList: Use this heat parameter to set isolated_cores in tuned.conf
using the cpu-partitioning profile.

isolcpus: This is a Kernel boot parameter that you set with the KernelArgs
heat parameter.

Do not use the IsolCpusList parameter and the isolcpus parameter
interchangeably.

TIP

To set IsolCpusList in non-NFV roles, you must configure KernelArgs and IsolCpusList, and
include the /usr/share/openstack-tripleo-heat-templates/environments/host-config-and-
reboot.yaml environment file in the overcloud deployment. Contact Red Hat Support if you
plan to deploy with config-download, and configure IsolCpusList for non-NFV roles.

4. To apply this configuration, deploy the overcloud:

(undercloud) $ openstack overcloud deploy --templates \
 -e /home/stack/templates/<compute_environment_file>.yaml

8.1.2. Configuring emulator threads to run on dedicated physical CPU

The Compute scheduler determines the CPU resource utilization and places instances based on the

Red Hat OpenStack Platform 13 Instances and Images Guide

102

number of virtual CPUs (vCPUs) in the flavor. There are a number of hypervisor operations that are
performed on the host, on behalf of the guest instance, for example, with QEMU, there are threads used
for the QEMU main event loop, asynchronous I/O operations and so on and these operations need to be
accounted and scheduled separately.

The libvirt driver implements a generic placement policy for KVM which allows QEMU emulator threads
to float across the same physical CPUs (pCPUs) that the vCPUs are running on. This leads to the
emulator threads using time borrowed from the vCPUs operations. When you need a guest to have
dedicated vCPU allocation, it is necessary to allocate one or more pCPUs for emulator threads. It is
therefore necessary to describe to the scheduler any other CPU usage that might be associated with a
guest and account for that during placement.

NOTE

In an NFV deployment, to avoid packet loss, you have to make sure that the vCPUs are
never preempted.

Before you enable the emulator threads placement policy on a flavor, check that the following heat
parameters are defined as follows:

NovaComputeCpuSharedSet: Set this parameter to a list of CPUs defined to run emulator
threads.

NovaSchedulerDefaultFilters: Include NUMATopologyFilter in the list of defined filters.

NOTE

You can define or change heat parameter values on an active cluster, and then redeploy
for those changes to take effect.

To isolate emulator threads, you must use a flavor configured as follows:

openstack flavor set FLAVOR-NAME \
--property hw:cpu_policy=dedicated \
--property hw:emulator_threads_policy=share

8.1.3. Scheduler configuration

Procedure

1. Open your Compute environment file.

2. Add the following values to the NovaSchedulerDefaultFilters parameter, if they are not already
present:

NUMATopologyFilter

AggregateInstanceExtraSpecsFilter

3. Save the configuration file.

4. Deploy the overcloud.

CHAPTER 8. CONFIGURING COMPUTE NODES FOR PERFORMANCE

103

8.1.4. Aggregate and flavor configuration

Configure host aggregates to deploy instances that use CPU pinning on different hosts from instances
that do not, to avoid unpinned instances using the resourcing requirements of pinned instances.

CAUTION

Do not deploy instances with NUMA topology on the same hosts as instances that do not have NUMA
topology.

Prepare your OpenStack environment for running virtual machine instances pinned to specific resources
by completing the following steps on a system with the Compute CLI.

Procedure

1. Load the admin credentials:

source ~/keystonerc_admin

2. Create an aggregate for the hosts that will receive pinning requests:

nova aggregate-create <aggregate-name-pinned>

3. Enable the pinning by editing the metadata for the aggregate:

nova aggregate-set-metadata <aggregate-pinned-UUID> pinned=true

4. Create an aggregate for other hosts:

nova aggregate-create <aggregate-name-unpinned>

5. Edit the metadata for this aggregate accordingly:

nova aggregate-set-metadata <aggregate-unpinned-UUID> pinned=false

6. Change your existing flavors' specifications to this one:

for i in $(nova flavor-list | cut -f 2 -d ' ' | grep -o '[0-9]*'); do nova flavor-key $i set
"aggregate_instance_extra_specs:pinned"="false"; done

7. Create a flavor for the hosts that will receive pinning requests:

nova flavor-create <flavor-name-pinned> <flavor-ID> <RAM> <disk-size> <vCPUs>

Where:

<flavor-ID> - Set to auto if you want nova to generate a UUID.

<RAM> - Specify the required RAM in MB.

<disk-size> - Specify the required disk size in GB.

<vCPUs> - The number of virtual CPUs that you want to reserve.
8. Set the hw:cpu_policy specification of this flavor to dedicated so as to require dedicated

Red Hat OpenStack Platform 13 Instances and Images Guide

104

8. Set the hw:cpu_policy specification of this flavor to dedicated so as to require dedicated
resources, which enables CPU pinning, and also the hw:cpu_thread_policy specification to
require, which places each vCPU on thread siblings:

nova flavor-key <flavor-name-pinned> set hw:cpu_policy=dedicated
nova flavor-key <flavor-name-pinned> set hw:cpu_thread_policy=require

NOTE

If the host does not have an SMT architecture or enough CPU cores with free
thread siblings, scheduling will fail. If such behavior is undesired, or if your hosts
simply do not have an SMT architecture, do not use the hw:cpu_thread_policy
specification, or set it to prefer instead of require. The (default) prefer policy
ensures that thread siblings are used when available.

9. Set the aggregate_instance_extra_specs:pinned specification to "true" to ensure that
instances based on this flavor have this specification in their aggregate metadata:

nova flavor-key <flavor-name-pinned> set aggregate_instance_extra_specs:pinned=true

10. Add some hosts to the new aggregates:

nova aggregate-add-host <aggregate-pinned-UUID> <host_name>
nova aggregate-add-host <aggregate-unpinned-UUID> <host_name>

11. Boot an instance using the new flavor:

nova boot --image <image-name> --flavor <flavor-name-pinned> <server-name>

12. To verify that the new server has been placed correctly, run the following command and check
for OS-EXT-SRV-ATTR:hypervisor_hostname in the output:

nova show <server-name>

8.2. CONFIGURING HUGE PAGES ON THE COMPUTE NODE

Configure the Compute node to enable instances to request huge pages.

Procedure

1. Configure the amount of huge page memory to reserve on each NUMA node for processes that
are not instances:

parameter_defaults:
 NovaReservedHugePages: ["node:0,size:2048,count:64","node:1,size:1GB,count:1"]

Where:

Attribute Description

CHAPTER 8. CONFIGURING COMPUTE NODES FOR PERFORMANCE

105

size The size of the allocated huge page. Valid values: * 2048 (for 2MB) *
1GB

count The number of huge pages used by OVS per NUMA node. For
example, for 4096 of socket memory used by Open vSwitch, set this
to 2.

2. (Optional) To allow instances to allocate 1GB huge pages, configure the CPU feature flags,
cpu_model_extra_flags, to include "pdpe1gb":

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::libvirt::libvirt_cpu_mode: 'custom'
 nova::compute::libvirt::libvirt_cpu_model: 'Haswell-noTSX'
 nova::compute::libvirt::libvirt_cpu_model_extra_flags: 'vmx, pdpe1gb'

NOTE

CPU feature flags do not need to be configured to allow instances to only
request 2 MB huge pages.

You can only allocate 1G huge pages to an instance if the host supports 1G
huge page allocation.

You only need to set cpu_model_extra_flags to pdpe1gb when cpu_mode
is set to host-model or custom.

If the host supports pdpe1gb, and host-passthrough is used as the
cpu_mode, then you do not need to set pdpe1gb as a
cpu_model_extra_flags. The pdpe1gb flag is only included in Opteron_G4
and Opteron_G5 CPU models, it is not included in any of the Intel CPU
models supported by QEMU.

To mitigate for CPU hardware issues, such as Microarchitectural Data
Sampling (MDS), you might need to configure other CPU flags. For more
information, see RHOS Mitigation for MDS ("Microarchitectural Data
Sampling") Security Flaws.

3. To avoid loss of performance after applying Meltdown protection, configure the CPU feature
flags, cpu_model_extra_flags, to include "+pcid":

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::libvirt::libvirt_cpu_mode: 'custom'
 nova::compute::libvirt::libvirt_cpu_model: 'Haswell-noTSX'
 nova::compute::libvirt::libvirt_cpu_model_extra_flags: 'vmx, pdpe1gb, +pcid'

TIP

For more information, see Reducing the performance impact of Meltdown CVE fixes for
OpenStack guests with "PCID" CPU feature flag.

Red Hat OpenStack Platform 13 Instances and Images Guide

106

https://access.redhat.com/solutions/4161561
https://access.redhat.com/solutions/3370461

4. Add NUMATopologyFilter to the NovaSchedulerDefaultFilters parameter in each Compute
environment file, if not already present.

5. Apply this huge page configuration by adding the environment file(s) to your deployment
command and deploying the overcloud:

(undercloud) $ openstack overcloud deploy --templates \
 -e [your environment files]
 -e /home/stack/templates/<compute_environment_file>.yaml

8.2.1. Allocating huge pages to instances

Create a flavor with the hw:mem_page_size extra specification key to specify that the instance should
use huge pages.

Prerequisites

The Compute node is configured for huge pages. For more information, see Configuring huge
pages on the Compute node.

Procedure

1. Create a flavor for instances that require huge pages:

$ openstack flavor create --ram <size-mb> --disk <size-gb> --vcpus <no_reserved_vcpus>
huge_pages

2. Set the flavor for huge pages:

$ openstack flavor set huge_pages --property hw:mem_page_size=1GB

Valid values for hw:mem_page_size:

large - Selects the largest page size supported on the host, which may be 2 MB or 1 GB on
x86_64 systems.

small - (Default) Selects the smallest page size supported on the host. On x86_64 systems
this is 4 kB (normal pages).

any - Selects the largest available huge page size, as determined by the libvirt driver.

<pagesize>: (string) Set an explicit page size if the workload has specific requirements. Use
an integer value for the page size in KB, or any standard suffix. For example: 4KB, 2MB,
2048, 1GB.

3. Create an instance using the new flavor:

$ openstack server create --flavor huge_pages --image <image> huge_pages_instance

Validation

The scheduler identifies a host with enough free huge pages of the required size to back the memory of
the instance. If the scheduler is unable to find a host and NUMA node with enough pages, then the
request will fail with a NoValidHost error.

CHAPTER 8. CONFIGURING COMPUTE NODES FOR PERFORMANCE

107

CHAPTER 9. ADDING METADATA TO INSTANCES
The Compute (nova) service uses metadata to pass configuration information to instances on launch.
The instance can access the metadata by using a config drive or the metadata service.

Config drive

Config drives are special drives that you can attach to an instance when it boots. The config drive is
presented to the instance as a read-only drive. The instance can mount this drive and read files from
it to get information that is normally available through the metadata service.

Metadata service

The Compute service provides the metadata service as a REST API, which can be used to retrieve
data specific to an instance. Instances access this service at 169.254.169.254 or at fe80::a9fe:a9fe.

9.1. TYPES OF INSTANCE METADATA

Cloud users, cloud administrators, and the Compute service can pass metadata to instances:

Cloud user provided data

Cloud users can specify additional data to use when they launch an instance, such as a shell script
that the instance runs on boot. The cloud user can pass data to instances by using the user data
feature, and by passing key-value pairs as required properties when creating or updating an instance.

Cloud administrator provided data

The RHOSP administrator uses the vendordata feature to pass data to instances. The Compute
service provides the vendordata modules StaticJSON and DynamicJSON to allow administrators to
pass metadata to instances:

StaticJSON: (Default) Use for metadata that is the same for all instances.

DynamicJSON: Use for metadata that is different for each instance. This module makes a
request to an external REST service to determine what metadata to add to an instance.

Vendordata configuration is located in one of the following read-only files on the instance:

/openstack/{version}/vendor_data.json

/openstack/{version}/vendor_data2.json

Compute service provided data

The Compute service uses its internal implementation of the metadata service to pass information to
the instance, such as the requested hostname for the instance, and the availability zone the instance
is in. This happens by default and requires no configuration by the cloud user or administrator.

9.2. ADDING A CONFIG DRIVE TO ALL INSTANCES

As an administrator, you can configure the Compute service to always create a config drive for
instances, and populate the config drive with metadata that is specific to your deployment. For example,
you might use a config drive for the following reasons:

To pass a networking configuration when your deployment does not use DHCP to assign IP
addresses to instances. You can pass the IP address configuration for the instance through the
config drive, which the instance can mount and access before you configure the network
settings for the instance.

Red Hat OpenStack Platform 13 Instances and Images Guide

108

To pass data to an instance that is not known to the user starting the instance, for example, a
cryptographic token to be used to register the instance with Active Directory post boot.

To create a local cached disk read to manage the load of instance requests, which reduces the
impact of instances accessing the metadata servers regularly to check in and build facts.

Any instance operating system that is capable of mounting an ISO 9660 or VFAT file system can use
the config drive.

Procedure

1. Open your Compute environment file.

2. To always attach a config drive when launching an instance, set the following parameter to True:

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::force_config_drive: 'true'

3. Optional: To change the format of the config drive from the default value of iso9660 to vfat,
add the config_drive_format parameter to your configuration:

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::force_config_drive: 'true'
 nova::compute::config_drive_format: vfat

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml \

Verification

1. Create an instance:

(overcloud)$ openstack server create --flavor m1.tiny \
 --image cirros test-config-drive-instance

2. Log in to the instance.

3. Mount the config drive:

If the instance OS uses udev:

mkdir -p /mnt/config
mount /dev/disk/by-label/config-2 /mnt/config

If the instance OS does not use udev, you need to first identify the block device that
corresponds to the config drive:

CHAPTER 9. ADDING METADATA TO INSTANCES

109

blkid -t LABEL="config-2" -odevice
/dev/vdb
mkdir -p /mnt/config
mount /dev/vdb /mnt/config

4. Inspect the files in the mounted config drive directory, mnt/config/openstack/{version}/, for
your metadata.

9.3. ADDING STATIC METADATA TO INSTANCES

You can make static metadata available to all instances in your deployment.

Procedure

1. Create the JSON file for the metadata.

2. Open your Compute environment file.

3. Add the path to the JSON file to your environment file:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 ...
 api/vendordata_jsonfile_path:
 value: <path_to_the_JSON_file>

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml \

9.4. ADDING DYNAMIC METADATA TO INSTANCES

You can configure your deployment to create instance-specific metadata, and make the metadata
available to that instance through a JSON file.

TIP

You can use dynamic metadata on the undercloud to integrate director with a Red Hat Identity
Management (IdM) server. An IdM server can be used as a certificate authority and manage the
overcloud certificates when SSL/TLS is enabled on the overcloud. For more information, see Add the
undercloud to IdM.

Procedure

1. Open your Compute environment file.

2. Add DynamicJSON to the vendordata provider module:

Red Hat OpenStack Platform 13 Instances and Images Guide

110

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#add_the_undercloud_to_idm

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 ...
 api/vendordata_providers:
 value: StaticJSON,DynamicJSON

3. Specify the REST services to contact to generate the metadata. You can specify as many target
REST services as required, for example:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 ...
 api/vendordata_providers:
 value: StaticJSON,DynamicJSON
 api/vendordata_dynamic_targets:
 value: target1@http://127.0.0.1:125
 api/vendordata_dynamic_targets:
 value: target2@http://127.0.0.1:126

The Compute service generates the JSON file, vendordata2.json, to contain the metadata
retrieved from the configured target services, and stores it in the config drive directory.

NOTE

Do not use the same name for a target service more than once.

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml \

CHAPTER 9. ADDING METADATA TO INSTANCES

111

CHAPTER 10. CONFIGURING REAL-TIME COMPUTE
In some use-cases, you might need instances on your Compute nodes to adhere to low-latency policies
and perform real-time processing. Real-time Compute nodes include a real-time capable kernel,
specific virtualization modules, and optimized deployment parameters, to facilitate real-time processing
requirements and minimize latency.

The process to enable Real-time Compute includes:

configuring the BIOS settings of the Compute nodes

building a real-time image with real-time kernel and Real-Time KVM (RT-KVM) kernel module

assigning the ComputeRealTime role to the Compute nodes

For a use-case example of Real-time Compute deployment for NFV workloads, see the Example:
Configuring OVS-DPDK with ODL and VXLAN tunnelling section in the Network Functions Virtualization
Planning and Configuration Guide.

10.1. PREPARING YOUR COMPUTE NODES FOR REAL-TIME

NOTE

Real-time Compute nodes are supported only with Red Hat Enterprise Linux version 7.5
or later.

Before you can deploy Real-time Compute in your overcloud, you must enable Red Hat Enterprise Linux
Real-Time KVM (RT-KVM), configure your BIOS to support real-time, and build the real-time image.

Prerequisites

You must use Red Hat certified servers for your RT-KVM Compute nodes. See Red Hat
Enterprise Linux for Real Time 7 certified servers for details.

You must enable the rhel-7-server-nfv-rpms repository for RT-KVM to build the real-time
image.

NOTE

You need a separate subscription to Red Hat OpenStack Platform for Real Time
before you can access this repository. For details on managing repositories and
subscriptions for your undercloud, see the Registering and updating your
undercloud section in the Director Installation and Usage guide.

To check which packages will be installed from the repository, run the following command:

$ yum repo-pkgs rhel-7-server-nfv-rpms list
Loaded plugins: product-id, search-disabled-repos, subscription-manager
Available Packages
kernel-rt.x86_64 3.10.0-693.21.1.rt56.639.el7
rhel-7-server-nfv-rpms
kernel-rt-debug.x86_64 3.10.0-693.21.1.rt56.639.el7
rhel-7-server-nfv-rpms

Red Hat OpenStack Platform 13 Instances and Images Guide

112

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/network_functions_virtualization_planning_and_configuration_guide/index#assembly_config-vxlan-dpdk-sriov-hybrid
https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat Enterprise Linux?sort=sortTitle asc&certifications=Red Hat Enterprise Linux for Real Time 7&category=Server
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/installing-the-undercloud#registering-and-updating-your-undercloud

kernel-rt-debug-devel.x86_64 3.10.0-693.21.1.rt56.639.el7
rhel-7-server-nfv-rpms
kernel-rt-debug-kvm.x86_64 3.10.0-693.21.1.rt56.639.el7
rhel-7-server-nfv-rpms
kernel-rt-devel.x86_64 3.10.0-693.21.1.rt56.639.el7
rhel-7-server-nfv-rpms
kernel-rt-doc.noarch 3.10.0-693.21.1.rt56.639.el7
rhel-7-server-nfv-rpms
kernel-rt-kvm.x86_64 3.10.0-693.21.1.rt56.639.el7
rhel-7-server-nfv-rpms
[output omitted…]

Building the real-time image

To build the overcloud image for Real-time Compute nodes:

1. Install the libguestfs-tools package on the undercloud to get the virt-customize tool:

(undercloud) [stack@undercloud-0 ~]$ sudo yum install libguestfs-tools

IMPORTANT

If you install the libguestfs-tools package on the undercloud, disable
iscsid.socket to avoid port conflicts with the tripleo_iscsid service on the
undercloud:

$ sudo systemctl disable --now iscsid.socket

2. Extract the images:

(undercloud) [stack@undercloud-0 ~]$ tar -xf /usr/share/rhosp-director-images/overcloud-
full.tar
(undercloud) [stack@undercloud-0 ~]$ tar -xf /usr/share/rhosp-director-images/ironic-python-
agent.tar

3. Copy the default image:

(undercloud) [stack@undercloud-0 ~]$ cp overcloud-full.qcow2 overcloud-realtime-
compute.qcow2

4. Register the image and configure the required subscriptions:

(undercloud) [stack@undercloud-0 ~]$ virt-customize -a overcloud-realtime-compute.qcow2
--run-command 'subscription-manager register --username=[username] --password=
[password]'
[0.0] Examining the guest ...
[10.0] Setting a random seed
[10.0] Running: subscription-manager register --username=[username] --password=
[password]
[24.0] Finishing off

Replace the username and password values with your Red Hat customer account details. For
general information about building a Real-time overcloud image, see the Modifying the Red Hat

CHAPTER 10. CONFIGURING REAL-TIME COMPUTE

113

https://access.redhat.com/articles/1556833

Enterprise Linux OpenStack Platform Overcloud Image with virt-customize knowledgebase
article.

5. Find the SKU of the Red Hat OpenStack Platform for Real Time subscription. The SKU might be
located on a system that is already registered to the Red Hat Subscription Manager with the
same account and credentials. For example:

$ sudo subscription-manager list

6. Attach the Red Hat OpenStack Platform for Real Time subscription to the image:

(undercloud) [stack@undercloud-0 ~]$ virt-customize -a overcloud-realtime-compute.qcow2
--run-command 'subscription-manager attach --pool [subscription-pool]'

7. Create a script to configure rt on the image:

(undercloud) [stack@undercloud-0 ~]$ cat rt.sh
 #!/bin/bash

 set -eux

 subscription-manager repos --enable=rhel-7-server-rpms --enable=rhel-7-server-openstack-
13-rpms --enable=rhel-7-server-nfv-rpms
 yum -v -y --setopt=protected_packages= erase kernel.$(uname -m)
 yum -v -y install kernel-rt kernel-rt-kvm tuned-profiles-nfv-host

 # END OF SCRIPT

8. Run the script to configure the real-time image:

(undercloud) [stack@undercloud-0 ~]$ virt-customize -a overcloud-realtime-compute.qcow2 -
v --run rt.sh 2>&1 | tee virt-customize.log

9. Re-label SELinux:

(undercloud) [stack@undercloud-0 ~]$ virt-customize -a overcloud-realtime-compute.qcow2 -
-selinux-relabel

10. Extract vmlinuz and initrd:

(undercloud) [stack@undercloud-0 ~]$ mkdir image
(undercloud) [stack@undercloud-0 ~]$ guestmount -a overcloud-realtime-compute.qcow2 -i -
-ro image
(undercloud) [stack@undercloud-0 ~]$ cp image/boot/vmlinuz-3.10.0-
862.rt56.804.el7.x86_64 ./overcloud-realtime-compute.vmlinuz
(undercloud) [stack@undercloud-0 ~]$ cp image/boot/initramfs-3.10.0-
862.rt56.804.el7.x86_64.img ./overcloud-realtime-compute.initrd
(undercloud) [stack@undercloud-0 ~]$ guestunmount image

NOTE

The software version in the vmlinuz and initramfs filenames vary with the kernel
version.

Red Hat OpenStack Platform 13 Instances and Images Guide

114

11. Upload the image:

(undercloud) [stack@undercloud-0 ~]$ openstack overcloud image upload --update-existing -
-os-image-name overcloud-realtime-compute.qcow2

You now have a real-time image you can use with the ComputeRealTime composable role on select
Compute nodes.

Modifying BIOS settings on Real-time Compute nodes

To reduce latency on your Real-time Compute nodes, you must modify the BIOS settings in the
Compute nodes. You should disable all options for the following components in your Compute node
BIOS settings:

Power Management

Hyper-Threading

CPU sleep states

Logical processors

See Setting BIOS parameters for descriptions of these settings and the impact of disabling them. See
your hardware manufacturer documentation for complete details on how to change BIOS settings.

10.2. DEPLOYING THE REAL-TIME COMPUTE ROLE

Red Hat OpenStack Platform Director provides the template for the ComputeRealTime role, which you
can then use to deploy Real-time Compute nodes. However, you must perform additional steps to
designate Compute nodes for real-time.

1. Based on the /usr/share/openstack-tripleo-heat-templates/environments/compute-real-
time-example.yaml file, create a compute-real-time.yaml environment file that sets the
parameters for the ComputeRealTime role.

cp /usr/share/openstack-tripleo-heat-templates/environments/compute-real-time-
example.yaml /home/stack/templates/compute-real-time.yaml

The file must include values for the following parameters:

IsolCpusList and NovaVcpuPinSet. List of isolated CPU cores and virtual CPU pins to
reserve for real-time workloads. This value depends on the CPU hardware of your Real-time
Compute nodes.

KernelArgs. Arguments to pass to the kernel of the Real-time Compute nodes. For
example, you can use default_hugepagesz=1G hugepagesz=1G hugepages=
<number_of_1G_pages_to_reserve> hugepagesz=2M hugepages=
<number_of_2M_pages> to define the memory requirements of guests that have huge
pages with multiple sizes. In this example, the default size is 1GB but you can also reserve 2M
huge pages.

2. Add the ComputeRealTime role to your roles data file and regenerate the file. For example:

$ openstack overcloud roles generate -o /home/stack/templates/rt_roles_data.yaml Controller
Compute ComputeRealTime

CHAPTER 10. CONFIGURING REAL-TIME COMPUTE

115

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/tuning_guide/setting_bios_parameters

This command generates a ComputeRealTime role with contents similar to the following
example, and also sets the ImageDefault option to overcloud-realtime-compute.

###
Role: ComputeRealTime
###

- name: ComputeRealTime
 description: |
 Compute role that is optimized for real-time behaviour. When using this role
 it is mandatory that an overcloud-realtime-compute image is available and
 the role specific parameters IsolCpusList and NovaVcpuPinSet are set
 accordingly to the hardware of the real-time compute nodes.
 CountDefault: 1
 networks:
 - InternalApi
 - Tenant
 - Storage
 HostnameFormatDefault: '%stackname%-computerealtime-%index%'
 disable_upgrade_deployment: True
 ImageDefault: overcloud-realtime-compute
 RoleParametersDefault:
 TunedProfileName: "realtime-virtual-host"
 KernelArgs: "" # these must be set in an environment file or similar
 IsolCpusList: "" # according to the hardware of real-time nodes
 NovaVcpuPinSet: "" #
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::ComputeCeilometerAgent
 - OS::TripleO::Services::ComputeNeutronCorePlugin
 - OS::TripleO::Services::ComputeNeutronL3Agent
 - OS::TripleO::Services::ComputeNeutronMetadataAgent
 - OS::TripleO::Services::ComputeNeutronOvsAgent
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::Fluentd
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::Iscsid
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::NeutronBgpVpnBagpipe
 - OS::TripleO::Services::NeutronLinuxbridgeAgent
 - OS::TripleO::Services::NeutronVppAgent
 - OS::TripleO::Services::NovaCompute
 - OS::TripleO::Services::NovaLibvirt
 - OS::TripleO::Services::NovaMigrationTarget
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::OpenDaylightOvs
 - OS::TripleO::Services::Rhsm

Red Hat OpenStack Platform 13 Instances and Images Guide

116

 - OS::TripleO::Services::RsyslogSidecar
 - OS::TripleO::Services::Securetty
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::SkydiveAgent
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Vpp
 - OS::TripleO::Services::OVNController
 - OS::TripleO::Services::OVNMetadataAgent
 - OS::TripleO::Services::Ptp

For general information about custom roles and about the roles-data.yaml, see the Roles
section.

3. Create the compute-realtime flavor to tag nodes that you want to designate for real-time
workloads. For example:

$ source ~/stackrc
$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 compute-realtime
$ openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property "capabilities:profile"="compute-realtime"
compute-realtime

4. Tag each node that you want to designate for real-time workloads with the compute-realtime
profile.

$ openstack baremetal node set --property capabilities='profile:compute-
realtime,boot_option:local' <NODE UUID>

5. Map the ComputeRealTime role to the compute-realtime flavor by creating an environment
file with the following content:

parameter_defaults:
 OvercloudComputeRealTimeFlavor: compute-realtime

6. Run the openstack overcloud deploy command with the -e option and specify all the
environment files that you created, as well as the new roles file. For example:

$ openstack overcloud deploy -r /home/stack/templates/rt~/my_roles_data.yaml -e
/home/stack/templates/compute-real-time.yaml <FLAVOR_ENV_FILE>

NOTE

If you want to run additional real-time instances on the same Compute node, you
can change the priority of the instances in the realtime_schedule_priority
paremeter in the nova.conf file.

10.3. SAMPLE DEPLOYMENT AND TESTING SCENARIO

The following example procedure uses a simple single-node deployment to test that the environment

CHAPTER 10. CONFIGURING REAL-TIME COMPUTE

117

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/#roles

The following example procedure uses a simple single-node deployment to test that the environment
variables and other supporting configuration is set up correctly. Actual performance results might vary,
depending on the number of nodes and guests that you deploy in your cloud.

1. Create the compute-real-time.yaml file with the following parameters:

parameter_defaults:
 ComputeRealTimeParameters:
 IsolCpusList: "1"
 NovaVcpuPinSet: "1"
 KernelArgs: "default_hugepagesz=1G hugepagesz=1G hugepages=16"

2. Create a new rt_roles_data.yaml file with the ComputeRealTime role.

$ openstack overcloud roles generate -o ~/rt_roles_data.yaml Controller ComputeRealTime

3. Deploy the overcloud, adding both your new real-time roles data file and your real-time
environment file to the stack along with your other environment files:

(undercloud) $ openstack overcloud deploy --templates \
 -r /home/stack/rt_roles_data.yaml
 -e [your environment files]
 -e /home/stack/templates/compute-real-time.yaml

This command deploys one Controller node and one Real-time Compute node.

4. Log into the Real-time Compute node and check the following parameters. Replace <...> with
the values of the relevant parameters from the compute-real-time.yaml.

[root@overcloud-computerealtime-0 ~]# uname -a
Linux overcloud-computerealtime-0 3.10.0-693.11.1.rt56.632.el7.x86_64 #1 SMP PREEMPT
RT Wed Dec 13 13:37:53 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
[root@overcloud-computerealtime-0 ~]# cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-3.10.0-693.11.1.rt56.632.el7.x86_64 root=UUID=45ae42d0-
58e7-44fe-b5b1-993fe97b760f ro console=tty0 crashkernel=auto console=ttyS0,115200
default_hugepagesz=1G hugepagesz=1G hugepages=16
[root@overcloud-computerealtime-0 ~]# tuned-adm active
Current active profile: realtime-virtual-host
[root@overcloud-computerealtime-0 ~]# grep ^isolated_cores /etc/tuned/realtime-virtual-host-
variables.conf
isolated_cores=<IsolCpusList>
[root@overcloud-computerealtime-0 ~]# cat /usr/lib/tuned/realtime-virtual-
host/lapic_timer_adv_ns
X (X != 0)
[root@overcloud-computerealtime-0 ~]# cat
/sys/module/kvm/parameters/lapic_timer_advance_ns
X (X != 0)
[root@overcloud-computerealtime-0 ~]# cat
/sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr_hugepages
X (X != 0)
[root@overcloud-computerealtime-0 ~]# grep ^vcpu_pin_set /var/lib/config-data/puppet-
generated/nova_libvirt/etc/nova/nova.conf
vcpu_pin_set=<NovaVcpuPinSet>

Red Hat OpenStack Platform 13 Instances and Images Guide

118

10.4. LAUNCHING AND TUNING REAL-TIME INSTANCES

After you deploy and configure Real-time Compute nodes, you can launch real-time instances on those
nodes. You can further configure these real-time instances with CPU pinning, NUMA topologies, and
huge pages.

Configuring a real-time policy for instances

A real-time policy prioritizes real-time instances and minimizes latency during peak workload times. To
set this policy, add the following parameters to the compute-realtime flavor.

$ openstack flavor set compute-realtime \
 --property hw:cpu_realtime=yes
 --property hw:cpu_realtime_mask=^0

Launching a real-time instance

1. Make sure that the compute-realtime flavor exists on the overcloud, as described in the
Deploying the Real-time Compute Role section.

2. Launch the real-time instance.

openstack server create --image <rhel> --flavor r1.small --nic net-id=<dpdk-net> test-rt

3. If you have administrator access to the Compute host, you can optionally verify that the
instance uses the assigned emulator threads.

virsh dumpxml <instance-id> | grep vcpu -A1
<vcpu placement='static'>4</vcpu>
<cputune>
 <vcpupin vcpu='0' cpuset='1'/>
 <vcpupin vcpu='1' cpuset='3'/>
 <vcpupin vcpu='2' cpuset='5'/>
 <vcpupin vcpu='3' cpuset='7'/>
 <emulatorpin cpuset='0-1'/>
 <vcpusched vcpus='2-3' scheduler='fifo'
 priority='1'/>
</cputune>

Pinning CPUs and setting emulator thread policy

To ensure that there are enough CPUs on each Real-time Compute node for real-time workloads, you
need to pin at least one virtual CPU (vCPU) for an instance to a physical CPU (pCPUs) on the host. The
emulator threads for that vCPU then remain dedicated to that pCPU.

1. Set the emulator_thread_policy parameter to isolate. For example:

openstack flavor set --property hw:emulator_threads_policy=isolate

1. Configure your flavor to use a dedicated CPU policy. To do so, set the hw:cpu_policy
parameter to dedicated on the flavor. For example:

openstack flavor set --property hw:cpu_policy=dedicated 99

NOTE

CHAPTER 10. CONFIGURING REAL-TIME COMPUTE

119

NOTE

Make sure that your resources quota has enough pCPUs for the Real-time Compute
nodes to consume.

For general information about CPU pinning, see the CPU Pinning chapter.

Optimizing your network configuration

Depending on the needs of your deployment, you might need to set parameters in the network-
environment.yaml file to tune your network for certain real-time workloads.

To review an example configuration optimized for OVS-DPDK, see the Configuring OVS-DPDK with RT-
KVM section of the Network Functions Virtualization Planning and Configuration Guide .

Configuring huge pages

It is recommended to set the default huge pages size to 1GB. Otherwise, TLB flushes might create jitter
in the vCPU execution.

To set the huge pages size for the compute-realtime flavor, run the following command:

openstack flavor set compute-realtime --property hw:mem_page_size=large

For general information about using huge pages, see the Running DPDK applications web page.

Red Hat OpenStack Platform 13 Instances and Images Guide

120

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/instances_and_images_guide/ch-compute-performance#ch-cpu_pinning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/network_functions_virtualization_planning_and_configuration_guide/index#configuring_ovs_dpdk_with_rt_kvm
https://doc.dpdk.org/guides/linux_gsg/sys_reqs.html#running-dpdk-applications

CHAPTER 11. CONFIGURING VIRTUAL GPUS FOR INSTANCES
To support GPU-based rendering on your instances, you can define and manage virtual GPU (vGPU)
resources according to your available physical GPU devices and your hypervisor type. You can use this
configuration to divide the rendering workloads between all your physical GPU devices more effectively,
and to have more control over scheduling your vGPU-enabled instances.

To enable vGPU in OpenStack Compute, create flavors that your cloud users can use to create Red Hat
Enterprise Linux (RHEL) instances with vGPU devices. Each instance can then support GPU workloads
with virtual GPU devices that correspond to the physical GPU devices.

The OpenStack Compute service tracks the number of vGPU devices that are available for each GPU
profile you define on each host. The Compute service schedules instances to these hosts based on the
flavor, attaches the devices, and monitors usage on an ongoing basis. When an instance is deleted, the
Compute service adds the vGPU devices back to the available pool.

11.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS

Supported GPU cards

For a list of supported NVIDIA GPU cards, see Virtual GPU Software Supported Products on the NVIDIA
website.

Limitations when using vGPU devices

You can enable only one vGPU type on each Compute node.

Each instance can use only one vGPU resource.

Live migration of vGPU between hosts is not supported.

Suspend operations on a vGPU-enabled instance is not supported due to a libvirt limitation.
Instead, you can snapshot or shelve the instance.

Resize and cold migration operations on an instance with a vGPU flavor does not automatically
re-allocate the vGPU resources to the instance. After you resize or migrate the instance, you
must rebuild it manually to re-allocate the vGPU resources.

By default, vGPU types on Compute hosts are not exposed to API users. To grant access, add
the hosts to a host aggregate. For more information, see Section 4.4, “Managing host
aggregates”.

If you use NVIDIA accelerator hardware, you must comply with the NVIDIA licensing
requirements. For example, NVIDIA vGPU GRID requires a licensing server. For more
information about the NVIDIA licensing requirements, see NVIDIA License Server Release Notes
on the NVIDIA website.

11.2. CONFIGURING VGPU ON THE COMPUTE NODES

To enable your cloud users to create instances that use a virtual GPU (vGPU), you must configure the
Compute nodes that have the physical GPUs:

1. Build a custom GPU-enabled overcloud image.

2. Prepare the GPU role, profile, and flavor for designating Compute nodes for vGPU.

CHAPTER 11. CONFIGURING VIRTUAL GPUS FOR INSTANCES

121

https://docs.nvidia.com/grid/latest/product-support-matrix/index.html
https://docs.nvidia.com/grid/latest/grid-license-server-release-notes/index.html

3. Configure the Compute node for vGPU.

4. Deploy the overcloud.

NOTE

To use an NVIDIA GRID vGPU, you must comply with the NVIDIA GRID licensing
requirements and you must have the URL of your self-hosted license server. For more
information, see the NVIDIA License Server Release Notes web page.

11.2.1. Building a custom GPU overcloud image

Perform the following steps on the director node to install the NVIDIA GRID host driver on an overcloud
Compute image and upload the image to the OpenStack Image service (glance).

Procedure

1. Copy the overcloud image and add the gpu suffix to the copied image.

$ cp overcloud-full.qcow2 overcloud-full-gpu.qcow2

2. Install an ISO image generator tool from YUM.

$ sudo yum install genisoimage -y

3. Download the NVIDIA GRID host driver RPM package that corresponds to your GPU device
from the NVIDIA website. To determine which driver you need, see the NVIDIA Driver
Downloads Portal.

NOTE

You must be a registered NVIDIA customer to download the drivers from the
portal.

4. Create an ISO image from the driver RPM package and save the image in the nvidia-host
directory.

$ genisoimage -o nvidia-host.iso -R -J -V NVIDIA nvidia-host/
I: -input-charset not specified, using utf-8 (detected in locale settings)
 9.06% done, estimate finish Wed Oct 31 11:24:46 2018
 18.08% done, estimate finish Wed Oct 31 11:24:46 2018
 27.14% done, estimate finish Wed Oct 31 11:24:46 2018
 36.17% done, estimate finish Wed Oct 31 11:24:46 2018
 45.22% done, estimate finish Wed Oct 31 11:24:46 2018
 54.25% done, estimate finish Wed Oct 31 11:24:46 2018
 63.31% done, estimate finish Wed Oct 31 11:24:46 2018
 72.34% done, estimate finish Wed Oct 31 11:24:46 2018
 81.39% done, estimate finish Wed Oct 31 11:24:46 2018
 90.42% done, estimate finish Wed Oct 31 11:24:46 2018
 99.48% done, estimate finish Wed Oct 31 11:24:46 2018
Total translation table size: 0
Total rockridge attributes bytes: 358
Total directory bytes: 0

Red Hat OpenStack Platform 13 Instances and Images Guide

122

https://docs.nvidia.com/grid/latest/grid-license-server-release-notes/index.html
https://www.nvidia.com/Download/index.aspx?lang=en-us

Path table size(bytes): 10
Max brk space used 0
55297 extents written (108 MB)

5. Create a driver installation script that also disables the nouveau driver and generates a new
initramfs. The following example script, install_nvidia.sh, disables the nouveau driver,
generates a new initramfs, and installs the NVIDIA GRID host driver on the overcloud image:

#/bin/bash

cat <<EOF >/etc/modprobe.d/disable-nouveau.conf
blacklist nouveau
options nouveau modeset=0
EOF
echo 'omit_drivers+=" nouveau "' > /etc/dracut.conf.d/disable-nouveau.conf
dracut -f

NVIDIA GRID package
mkdir /tmp/mount
mount LABEL=NVIDIA /tmp/mount
rpm -ivh /tmp/mount/<host_driver>.rpm

Replace <host_driver> with the host driver downloaded in step 3.

6. Customize the overcloud image by attaching the ISO image that you generated in step 4, and
running the driver installation script that you created in step 5:

$ virt-customize --attach nvidia-packages.iso -a overcloud-full-gpu.qcow2 -v --run
install_nvidia.sh
[0.0] Examining the guest ...
libguestfs: launch: program=virt-customize
libguestfs: launch: version=1.36.10rhel=8,release=6.el8_5.2,libvirt
libguestfs: launch: backend registered: unix
libguestfs: launch: backend registered: uml
libguestfs: launch: backend registered: libvirt

7. Relabel the customized image with SELinux:

$ virt-customize -a overcloud-full-gpu.qcow2 --selinux-relabel
[0.0] Examining the guest ...
[2.2] Setting a random seed
[2.2] SELinux relabelling
[27.4] Finishing off

8. Prepare the custom image files for upload to the OpenStack Image Service:

$ mkdir /var/image/x86_64/image
$ guestmount -a overcloud-full-gpu.qcow2 -i --ro image
$ cp image/boot/vmlinuz-3.10.0-862.14.4.el8.x86_64 ./overcloud-full-gpu.vmlinuz
$ cp image/boot/initramfs-3.10.0-862.14.4.el8.x86_64.img ./overcloud-full-gpu.initrd

9. From the undercloud, upload the custom image to the OpenStack Image Service:

CHAPTER 11. CONFIGURING VIRTUAL GPUS FOR INSTANCES

123

(undercloud) $ openstack overcloud image upload --update-existing --os-image-name
overcloud-full-gpu.qcow2

11.2.2. Designating Compute nodes for vGPU

To designate Compute nodes for vGPU workloads, you must create a new role file to configure the
vGPU role, and configure a new flavor to use to tag the GPU-enabled Compute nodes.

Procedure

1. To create the new ComputeGpu role file, copy the file /usr/share/openstack-tripleo-heat-
templates/roles/Compute.yaml to /usr/share/openstack-tripleo-heat-
templates/roles/ComputeGpu.yaml and edit or add the following file sections:

Table 11.1. ComputeGpu role file edits

Section/Parameter Current value New value

Role comment Role: Compute Role: ComputeGpu

Role name name: Compute name: ComputeGpu

description Basic Compute Node role GPU Compute Node role

ImageDefault n/a overcloud-full-gpu

HostnameFormatDefault -compute- -computegpu-

deprecated_nic_config_na
me

compute.yaml compute-gpu.yaml

The following example shows the ComputeGpu role details:

###
Role: ComputeGpu
###
- name: ComputeGpu
 description: |
 GPU Compute Node role
 CountDefault: 1
 ImageDefault: overcloud-full-gpu
 networks:
 - InternalApi
 - Tenant
 - Storage
 HostnameFormatDefault: '%stackname%-computegpu-%index%'
 RoleParametersDefault:
 TunedProfileName: "virtual-host"
 # Deprecated & backward-compatible values (FIXME: Make parameters consistent)
 # Set uses_deprecated_params to True if any deprecated params are used.
 uses_deprecated_params: True

Red Hat OpenStack Platform 13 Instances and Images Guide

124

 deprecated_param_image: 'NovaImage'
 deprecated_param_extraconfig: 'NovaComputeExtraConfig'
 deprecated_param_metadata: 'NovaComputeServerMetadata'
 deprecated_param_scheduler_hints: 'NovaComputeSchedulerHints'
 deprecated_param_ips: 'NovaComputeIPs'
 deprecated_server_resource_name: 'NovaCompute'
 deprecated_nic_config_name: 'compute-gpu.yaml'
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::ComputeCeilometerAgent
 - OS::TripleO::Services::ComputeNeutronCorePlugin
 - OS::TripleO::Services::ComputeNeutronL3Agent
 - OS::TripleO::Services::ComputeNeutronMetadataAgent
 - OS::TripleO::Services::ComputeNeutronOvsAgent
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::Fluentd
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::Iscsid
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::MetricsQdr
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::NeutronBgpVpnBagpipe
 - OS::TripleO::Services::NeutronLinuxbridgeAgent
 - OS::TripleO::Services::NeutronVppAgent
 - OS::TripleO::Services::NovaCompute
 - OS::TripleO::Services::NovaLibvirt
 - OS::TripleO::Services::NovaLibvirtGuests
 - OS::TripleO::Services::NovaMigrationTarget
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::OpenDaylightOvs
 - OS::TripleO::Services::Rhsm
 - OS::TripleO::Services::RsyslogSidecar
 - OS::TripleO::Services::Securetty
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::SkydiveAgent
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Tuned
 - OS::TripleO::Services::Vpp
 - OS::TripleO::Services::OVNController
 - OS::TripleO::Services::OVNMetadataAgent
 - OS::TripleO::Services::Ptp

2. Generate a new roles data file named roles_data_gpu.yaml that includes the Controller,
Compute, and ComputeGpu roles:

CHAPTER 11. CONFIGURING VIRTUAL GPUS FOR INSTANCES

125

(undercloud) [stack@director templates]$ openstack overcloud roles \
 generate -o /home/stack/templates/roles_data_gpu.yaml \
 ComputeGpu Compute Controller

3. Register the node for the overcloud. For more information, see Registering nodes for the
overcloud in the Director Installation and Usage guide.

4. Inspect the node hardware. For more information, see Inspecting the hardware of nodes in the
Director Installation and Usage guide.

5. Create the compute-vgpu-nvidia flavor to use to tag nodes that you want to designate for
vGPU workloads:

(undercloud) [stack@director templates]$ openstack flavor create --id auto --ram 6144 --disk
40 --vcpus 4 compute-vgpu-nvidia
+----------------------------+--------------------------------------+
| Field | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	40
id	9cb47954-be00-47c6-a57f-44db35be3e69
name	compute-vgpu-nvidia
os-flavor-access:is_public	True
properties	
ram	6144
rxtx_factor	1.0
swap	
vcpus	4
+----------------------------+--------------------------------------+

6. Tag each node that you want to designate for GPU workloads with the compute-vgpu-nvidia
profile.

(undercloud) [stack@director templates]$ openstack baremetal node set --property
capabilities='profile:compute-vgpu-nvidia,boot_option:local' <node>

Replace <node> with the ID of the baremetal node.

7. To verify the role is created, enter the following command:

(undercloud) [stack@director templates]$ openstack overcloud profiles list

11.2.3. Configuring the Compute node for vGPU and deploying the overcloud

You need to retrieve and assign the vGPU type that corresponds to the physical GPU device in your
environment, and prepare the environment files to configure the Compute node for vGPU.

Procedure

1. Install Red Hat Enterprise Linux and the NVIDIA GRID driver on a temporary Compute node and
launch the node. For more information about installing the NVIDIA GRID driver, see
Section 11.2.1, “Building a custom GPU overcloud image” .

2. On the Compute node, locate the vGPU type of the physical GPU device that you want to

Red Hat OpenStack Platform 13 Instances and Images Guide

126

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/index#sect-Registering_Nodes_for_the_Overcloud-basic
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/index#inspecting-the-hardware-of-nodes-basic

2. On the Compute node, locate the vGPU type of the physical GPU device that you want to
enable. For libvirt, virtual GPUs are mediated devices, or mdev type devices. To discover the
supported mdev devices, enter the following command:

[root@overcloud-computegpu-0 ~]# ls
/sys/class/mdev_bus/0000\:06\:00.0/mdev_supported_types/
nvidia-11 nvidia-12 nvidia-13 nvidia-14 nvidia-15 nvidia-16 nvidia-17 nvidia-18 nvidia-19
nvidia-20 nvidia-21 nvidia-210 nvidia-22

[root@overcloud-computegpu-0 ~]# cat
/sys/class/mdev_bus/0000\:06\:00.0/mdev_supported_types/nvidia-18/description
num_heads=4, frl_config=60, framebuffer=2048M, max_resolution=4096x2160,
max_instance=4

3. Add the compute-gpu.yaml file to the network-environment.yaml file:

resource_registry:
 OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml
 OS::TripleO::ComputeGpu::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute-gpu.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-
configs/controller.yaml
 #OS::TripleO::AllNodes::Validation: OS::Heat::None

4. Add the following parameters to the node-info.yaml file to specify the number of GPU-enabled
Compute nodes, and the flavor to use for the vGPU-designated Compute nodes:

parameter_defaults:
 OvercloudControllerFlavor: control
 OvercloudComputeFlavor: compute
 OvercloudComputeGpuFlavor: compute-vgpu-nvidia
 ControllerCount: 1
 ComputeCount: 0
 ComputeGpuCount: 3 #set to the no of GPU nodes you have

5. Create a gpu.yaml file to specify the vGPU type of your GPU device:

parameter_defaults:
 ComputeGpuExtraConfig:
 nova::compute::vgpu::enabled_vgpu_types:
 - nvidia-18

NOTE

Each physical GPU supports only one virtual GPU type. If you specify multiple
vGPU types in this property, only the first type is used.

6. Deploy the overcloud, adding your new role and environment files to the stack along with your
other environment files:

(undercloud) $ openstack overcloud deploy --templates \
 -r /home/stack/templates/roles_data_gpu.yaml
 -e /home/stack/templates/node-info.yaml

CHAPTER 11. CONFIGURING VIRTUAL GPUS FOR INSTANCES

127

 -e /home/stack/templates/network-environment.yaml
 -e [your environment files]
 -e /home/stack/templates/gpu.yaml

11.3. CREATING THE VGPU IMAGE AND FLAVOR

To enable your cloud users to create instances that use a virtual GPU (vGPU), you can define a custom
vGPU-enabled image, and you can create a vGPU flavor.

11.3.1. Creating a custom GPU instance image

After you deploy the overcloud with GPU-enabled Compute nodes, you can create a custom vGPU-
enabled instance image with the NVIDIA GRID guest driver and license file.

Procedure

1. Create an instance with the hardware and software profile that your vGPU instances require:

(overcloud) [stack@director ~]$ openstack server create --flavor <flavor> --image <image>
temp_vgpu_instance

Replace <flavor> with the name or ID of the flavor that has the hardware profile that your
vGPU instances require. For information on default flavors, see Manage flavors.

Replace <image> with the name or ID of the image that has the software profile that your
vGPU instances require. For information on downloading RHEL cloud images, see Image
service.

2. Log in to the instance as a cloud-user. For more information, see Log in to an Instance .

3. Create the gridd.conf NVIDIA GRID license file on the instance, following the NVIDIA guidance:
Licensing an NVIDIA vGPU on Linux by Using a Configuration File .

4. Install the GPU driver on the instance. For more information about installing an NVIDIA driver,
see Installing the NVIDIA vGPU Software Graphics Driver on Linux .

NOTE

Use the hw_video_model image property to define the GPU driver type. You
can choose none if you want to disable the emulated GPUs for your vGPU
instances. For more information about supported drivers, see Appendix A, Image
configuration parameters.

5. Create an image snapshot of the instance:

(overcloud) [stack@director ~]$ openstack server image create --name vgpu_image
temp_vgpu_instance

6. Optional: Delete the instance.

11.3.2. Creating a vGPU flavor for instances

After you deploy the overcloud with GPU-enabled Compute nodes, you can create a custom flavor that

Red Hat OpenStack Platform 13 Instances and Images Guide

128

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/instances_and_images_guide/ch-manage_instances#section-flavors
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/instances_and_images_guide/ch-image-service
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/instances_and_images_guide/index#section-Check-instance
https://docs.nvidia.com/grid/latest/grid-licensing-user-guide/index.html#licensing-grid-vgpu-linux-config-file
https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#installing-vgpu-drivers-linux

After you deploy the overcloud with GPU-enabled Compute nodes, you can create a custom flavor that
your cloud users can use to launch instances for GPU workloads.

Procedure

1. Create an NVIDIA GPU flavor. For example:

(overcloud) [stack@virtlab-director2 ~]$ openstack flavor create --vcpus 6 --ram 8192 --disk
100 m1.small-gpu
+----------------------------+--------------------------------------+
| Field | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	100
id	a27b14dd-c42d-4084-9b6a-225555876f68
name	m1.small-gpu
os-flavor-access:is_public	True
properties	
ram	8192
rxtx_factor	1.0
swap	
vcpus	6
+----------------------------+--------------------------------------+

2. Assign a vGPU resource to the flavor that you created. You can assign only one vGPU for each
instance.

(overcloud) [stack@virtlab-director2 ~]$ openstack flavor set m1.small-gpu --property
"resources:VGPU=1"

(overcloud) [stack@virtlab-director2 ~]$ openstack flavor show m1.small-gpu
+----------------------------+--------------------------------------+
| Field | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
access_project_ids	None
disk	100
id	a27b14dd-c42d-4084-9b6a-225555876f68
name	m1.small-gpu
os-flavor-access:is_public	True
properties	resources:VGPU='1'
ram	8192
rxtx_factor	1.0
swap	
vcpus	6
+----------------------------+--------------------------------------+

11.3.3. Launching a vGPU instance

You can create a GPU-enabled instance for GPU workloads.

Procedure

CHAPTER 11. CONFIGURING VIRTUAL GPUS FOR INSTANCES

129

1. Create an instance using a GPU flavor and image. For example:

(overcloud) [stack@virtlab-director2 ~]$ openstack server create --flavor m1.small-gpu --
image vgpu_image --security-group web --nic net-id=internal0 --key-name lambda vgpu-
instance

2. Log in to the instance as a cloud-user. For more information, see Log in to an Instance .

3. To verify that the GPU is accessible from the instance, run the following command from the
instance:

$ lspci -nn | grep <gpu_name>

11.4. ENABLING PCI PASSTHROUGH FOR A GPU DEVICE

You can use PCI passthrough to attach a physical PCI device, such as a graphics card, to an instance. If
you use PCI passthrough for a device, the instance reserves exclusive access to the device for
performing tasks, and the device is not available to the host.

Prerequisites

The pciutils package is installed on the physical servers that have the PCI cards.

The GPU driver is available to install on the GPU instances. For more information, see
Section 11.2.1, “Building a custom GPU overcloud image” .

Procedure

1. To determine the vendor ID and product ID for each passthrough device type, run the following
command on the physical server that has the PCI cards:

lspci -nn | grep -i <gpu_name>

For example, to determine the vendor and product ID for an NVIDIA GPU, run the following
command:

lspci -nn | grep -i nvidia
3b:00.0 3D controller [0302]: NVIDIA Corporation TU104GL [Tesla T4] [10de:1eb8] (rev a1)
d8:00.0 3D controller [0302]: NVIDIA Corporation TU104GL [Tesla T4] [10de:1db4] (rev a1)

2. To configure the Controller node on the overcloud for PCI passthrough, create an environment
file, for example, pci_passthru_controller.yaml.

3. Add PciPassthroughFilter to the NovaSchedulerDefaultFilters parameter in
pci_passthru_controller.yaml:

parameter_defaults:
 NovaSchedulerDefaultFilters:
['RetryFilter','AvailabilityZoneFilter','ComputeFilter','ComputeCapabilitiesFilter','ImageProperties
Filter','ServerGroupAntiAffinityFilter','ServerGroupAffinityFilter','PciPassthroughFilter','NUMATo
pologyFilter']

4. To specify the PCI alias for the devices on the Controller node, add the following to

Red Hat OpenStack Platform 13 Instances and Images Guide

130

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/instances_and_images_guide/index#section-Check-instance

4. To specify the PCI alias for the devices on the Controller node, add the following to
pci_passthru_controller.yaml:

ControllerExtraConfig:
 nova::pci::aliases:
 - name: "t4"
 product_id: "1eb8"
 vendor_id: "10de"
 - name: "v100"
 product_id: "1db4"
 vendor_id: "10de"

NOTE

If the nova-api service is running in a role other than the Controller, then replace
ControllerExtraConfig with the user role, in the format <Role>ExtraConfig.

5. To configure the Compute node on the overcloud for PCI passthrough, create an environment
file, for example, pci_passthru_compute.yaml.

6. To specify the available PCIs for the devices on the Compute node, add the following to
pci_passthru_compute.yaml:

parameter_defaults:
 NovaPCIPassthrough:
 - vendor_id: "10de"
 product_id: "1eb8"

7. To enable IOMMU in the server BIOS of the Compute nodes to support PCI passthrough, add
the KernelArgs parameter to pci_passthru_compute.yaml:

 parameter_defaults:
 ...
 ComputeParameters:
 KernelArgs: "intel_iommu=on iommu=pt"

8. Deploy the overcloud, adding your custom environment files to the stack along with your other
environment files:

(undercloud) $ openstack overcloud deploy --templates \
 -e [your environment files]
 -e /home/stack/templates/pci_passthru_controller.yaml
 -e /home/stack/templates/pci_passthru_compute.yaml

9. Configure a flavor to request the PCI devices. The following example requests two devices,
each with a vendor ID of 10de and a product ID of 13f2:

openstack flavor set m1.large --property "pci_passthrough:alias"="t4:2"

Verification

1. Create an instance with a PCI passthrough device:

CHAPTER 11. CONFIGURING VIRTUAL GPUS FOR INSTANCES

131

openstack server create --flavor m1.large --image rhelgpu --wait test-pci

2. Log in to the instance as a cloud user.

3. Install the GPU driver on the instance. For example, run the following script to install an NVIDIA
driver:

$ sh NVIDIA-Linux-x86_64-430.24-grid.run

4. To verify that the GPU is accessible from the instance, enter the following command from the
instance:

$ lspci -nn | grep <gpu_name>

5. To check the NVIDIA System Management Interface status, run the following command from
the instance:

$ nvidia-smi

Example output:

| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |
|---+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===
====|
| 0 Tesla T4 Off | 00000000:01:00.0 Off | 0 |
| N/A 43C P0 20W / 70W | 0MiB / 15109MiB | 0% Default |

| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===
==|
No running processes found

Red Hat OpenStack Platform 13 Instances and Images Guide

132

APPENDIX A. IMAGE CONFIGURATION PARAMETERS
You can use the following keys with the property option for both the glance image-update and glance
image-create commands. For example:

$ glance image-update <image_uuid> --property architecture=x86_64

NOTE

If you set an image property that conflicts with the same property on the flavor then
either the flavor property is used, or an error is raised. There are some exceptions to this
behavior for legacy compatibility.

Table A.1. Property keys

Specific to Key Description Supported values

All architecture The CPU
architecture
that must be
supported by
the hypervisor.
For example,
x86_64, arm,
or ppc64. Run
uname -m to
get the
architecture of a
machine.

alpha - DEC 64-bit RISC

armv7l - ARM Cortex-A7 MPCore

cris- Ethernet, Token Ring, AXis-Code
Reduced Instruction Set

i686 - Intel sixth-generation x86 (P6
micro architecture)

ia64 - Itanium

lm32 - Lattice Micro32

m68k - Motorola 68000

microblaze - Xilinx 32-bit FPGA (Big
Endian)

microblazeel - Xilinx 32-bit FPGA
(Little Endian)

mips - MIPS 32-bit RISC (Big Endian)

mipsel - MIPS 32-bit RISC (Little
Endian)

mips64 - MIPS 64-bit RISC (Big
Endian)

mips64el - MIPS 64-bit RISC (Little
Endian)

openrisc - OpenCores RISC

parisc - HP Precision Architecture
RISC

parisc64 - HP Precision Architecture
64-bit RISC

ppc - PowerPC 32-bit

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

133

ppc64 - PowerPC 64-bit

ppcemb - PowerPC (Embedded 32-
bit)

s390 - IBM Enterprise Systems
Architecture/390

s390x - S/390 64-bit

sh4 - SuperH SH-4 (Little Endian)

sh4eb - SuperH SH-4 (Big Endian)

sparc - Scalable Processor
Architecture, 32-bit

sparc64 - Scalable Processor
Architecture, 64-bit

unicore32 - Microprocessor Research
and Development Center RISC
Unicore32

x86_64 - 64-bit extension of IA-32

xtensa - Tensilica Xtensa configurable
microprocessor core

xtensaeb - Tensilica Xtensa
configurable microprocessor core (Big
Endian)

All hypervisor_ty
pe

The hypervisor
type.

kvm, vmware

All instance_uuid For snapshot
images, this is
the UUID of the
server used to
create this
image.

Valid server UUID

All kernel_id The ID of an
image stored in
the Image
Service that
must be used as
the kernel when
booting an AMI-
style image.

Valid image ID

Specific to Key Description Supported values

Red Hat OpenStack Platform 13 Instances and Images Guide

134

All os_distro The common
name of the
operating
system
distribution in
lowercase.

arch - Arch Linux. Do not use
archlinux or org.archlinux.

centos - Community Enterprise
Operating System. Do not use
org.centos or CentOS.

debian - Debian. Do not use Debian
or org.debian.

fedora - Fedora. Do not use Fedora,
org.fedora, or org.fedoraproject.

freebsd - FreeBSD. Do not use
org.freebsd, freeBSD, or FreeBSD.

gentoo - Gentoo Linux. Do not use
Gentoo or org.gentoo.

mandrake - Mandrakelinux
(MandrakeSoft) distribution. Do not
use mandrakelinux or
MandrakeLinux.

mandriva - Mandriva Linux. Do not
use mandrivalinux.

mes - Mandriva Enterprise Server. Do
not use mandrivaent or
mandrivaES.

msdos - Microsoft Disc Operating
System. Do not use ms-dos.

netbsd - NetBSD. Do not use
NetBSD or org.netbsd.

netware - Novell NetWare. Do not use
novell or NetWare.

openbsd - OpenBSD. Do not use
OpenBSD or org.openbsd.

opensolaris - OpenSolaris. Do not
use OpenSolaris or
org.opensolaris.

opensuse - openSUSE. Do not use
suse, SuSE, or org.opensuse.

rhel - Red Hat Enterprise Linux. Do not
use redhat, RedHat, or com.redhat.

sled - SUSE Linux Enterprise Desktop.
Do not use com.suse.

ubuntu - Ubuntu. Do not use Ubuntu,
com.ubuntu, org.ubuntu, or
canonical.

windows - Microsoft Windows. Do not

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

135

windows - Microsoft Windows. Do not
use com.microsoft.server.

All os_version The operating
system version
as specified by
the distributor.

Version number (for example, "11.10")

All ramdisk_id The ID of image
stored in the
Image Service
that should be
used as the
ramdisk when
booting an AMI-
style image.

Valid image ID

All vm_mode The virtual
machine mode.
This represents
the host/guest
ABI (application
binary interface)
used for the
virtual machine.

hvm-Fully virtualized. This is the mode used by
QEMU and KVM.

libvirt API driver hw_disk_bus Specifies the
type of disk
controller to
attach disk
devices to.

scsi, virtio, ide, or usb. Note that if using
iscsi, the hw_scsi_model needs to be set to
virtio-scsi.

libvirt API driver hw_cdrom_bu
s

Specifies the
type of disk
controller to
attach CD-ROM
devices to.

scsi, virtio, ide, or usb. If you specify iscsi,
you must set the hw_scsi_model parameter
to virtio-scsi.

libvirt API driver hw_numa_no
des

Number of
NUMA nodes to
expose to the
instance (does
not override
flavor
definition).

Integer. For a detailed example of NUMA-
topology definition, see the hw:NUMA_def key in
Add Metadata.

libvirt API driver hw_numa_cp
us.0

Mapping of
vCPUs N-M to
NUMA node 0
(does not
override flavor
definition).

Comma-separated list of integers.

Specific to Key Description Supported values

Red Hat OpenStack Platform 13 Instances and Images Guide

136

libvirt API driver hw_numa_cp
us.1

Mapping of
vCPUs N-M to
NUMA node 1
(does not
override flavor
definition).

Comma-separated list of integers.

libvirt API driver hw_numa_me
m.0

Mapping N MB
of RAM to
NUMA node 0
(does not
override flavor
definition).

Integer

libvirt API driver hw_numa_me
m.1

Mapping N MB
of RAM to
NUMA node 1
(does not
override flavor
definition).

Integer

libvirt API driver hw_qemu_gu
est_agent

Guest agent
support. If set to
yes, and if
qemu-ga is
also installed,
file systems can
be quiesced
(frozen) and
snapshots
created
automatically.

yes / no

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

137

libvirt API driver hw_rng_mode
l

Adds a random-
number
generator
device to the
image’s
instances. The
cloud
administrator
can enable and
control device
behavior by
configuring the
instance’s flavor.
By default:

The
genera
tor
device
is
disable
d.

/dev/ra
ndom
is used
as the
default
entrop
y
source.
To
specify
a
physica
l HW
RNG
device,
set
rng_d
ev_pa
th to
"/dev/
hwrng"
in your
Compu
te
environ
ment
file.

virtio, or other supported device.

Specific to Key Description Supported values

Red Hat OpenStack Platform 13 Instances and Images Guide

138

libvirt API driver hw_scsi_mod
el

Enables the use
of VirtIO SCSI
(virtio-scsi) to
provide block
device access
for compute
instances; by
default,
instances use
VirtIO Block
(virtio-blk).
VirtIO SCSI is a
para-virtualized
SCSI controller
device that
provides
improved
scalability and
performance,
and supports
advanced SCSI
hardware.

virtio-scsi

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

139

libvirt API driver hw_video_mo
del

The video
device driver to
use in virtual
machine
instances.

List of supported drivers, in order of
precedence:

virtio. (Recommended) Virtual GPU
with the Gallium GPU specification that
uses the VIRGL renderer to render
OpenGL. This GPU model is supported
in all architectures, and can leverage
hardware acceleration if the host has a
dedicated GPU. For more information,
see https://virgil3d.github.io/.

qxl. High-performance driver for Spice
or noVNC environments.

cirrus. Legacy driver, use if the QXL
driver is not available.

vga. Use this driver for IBM Power
environments.

gop. Not supported for QEMU/KVM
environments.

xen. Not supported for KVM
environments.

vmvga. Legacy driver, do not use.

none. Use this value to disable
emulated graphics or video in virtual
GPU (vGPU) instances where the
driver is configured separately. For
more information, see Chapter 11,
Configuring virtual GPUs for instances.

libvirt API driver hw_video_ra
m

Maximum RAM
for the video
image. Used
only if a
hw_video:ram
_max_mb
value has been
set in the
flavor’s
extra_specs
and that value is
higher than the
value set in
hw_video_ra
m.

Integer in MB (for example, 64)

Specific to Key Description Supported values

Red Hat OpenStack Platform 13 Instances and Images Guide

140

https://virgil3d.github.io/

libvirt API driver hw_watchdog
_action

Enables a virtual
hardware
watchdog
device that
carries out the
specified action
if the server
hangs. The
watchdog uses
the i6300esb
device
(emulating a
PCI Intel
6300ESB). If
hw_watchdog
_action is not
specified, the
watchdog is
disabled.

disabled-The device is not attached.
Allows the user to disable the watchdog
for the image, even if it has been
enabled using the image’s flavor. The
default value for this parameter is
disabled.

reset-Forcefully reset the guest.

poweroff-Forcefully power off the
guest.

pause-Pause the guest.

none-Only enable the watchdog; do
nothing if the server hangs.

libvirt API driver os_command
_line

The kernel
command line to
be used by the
libvirt driver,
instead of the
default. For
Linux
Containers
(LXC), the value
is used as
arguments for
initialization.
This key is valid
only for Amazon
kernel, ramdisk,
or machine
images (aki, ari,
or ami).

libvirt API driver
and VMware API
driver

hw_vif_model Specifies the
model of virtual
network
interface device
to use.

The valid options depend on the configured
hypervisor.

KVM and QEMU: e1000, ne2k_pci,
pcnet, rtl8139, and virtio.

VMware: e1000, e1000e, VirtualE1000,
VirtualE1000e, VirtualPCNet32,
VirtualSriovEthernetCard, and
VirtualVmxnet.

Xen: e1000, netfront, ne2k_pci, pcnet,
and rtl8139.

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

141

VMware API
driver

vmware_adap
tertype

The virtual SCSI
or IDE controller
used by the
hypervisor.

lsiLogic, busLogic, or ide

VMware API
driver

vmware_osty
pe

A VMware
GuestID which
describes the
operating
system installed
in the image.
This value is
passed to the
hypervisor when
creating a
virtual machine.
If not specified,
the key defaults
to otherGuest.

For more information, see Images with VMware
vSphere.

VMware API
driver

vmware_imag
e_version

Currently
unused.

1

XenAPI driver auto_disk_co
nfig

If true, the root
partition on the
disk is
automatically
resized before
the instance
boots. This
value is only
taken into
account by the
Compute
service when
using a Xen-
based
hypervisor with
the XenAPI
driver. The
Compute
service will only
attempt to
resize if there is
a single partition
on the image,
and only if the
partition is in
ext3 or ext4
format.

true / false

Specific to Key Description Supported values

Red Hat OpenStack Platform 13 Instances and Images Guide

142

https://docs.openstack.org/nova/train/admin/configuration/hypervisor-vmware.html#images-with-vmware-vsphere

libvirt API driver
and XenAPI
driver

os_type The operating
system installed
on the image.
The XenAPI
driver contains
logic that takes
different actions
depending on
the value of the
os_type
parameter of
the image. For
example, for
os_type=wind
ows images, it
creates a
FAT32-based
swap partition
instead of a
Linux swap
partition, and it
limits the
injected host
name to less
than 16
characters.

linux or windows

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

143

APPENDIX B. ENABLING THE LAUNCH INSTANCE WIZARD
There are two methods that you can use to launch instances from the dashboard:

The Launch Instance form

The Launch Instance wizard

The Launch Instance form is enabled by default, but you can enable the Launch Instance wizard at any
time. You can also enable both the Launch Instance form and the Launch Instance wizard at the same
time. The Launch Instance wizard simplifies the steps required to create instances.

1. Edit /etc/openstack-dashboard/local_settings file, and add the following values:

LAUNCH_INSTANCE_LEGACY_ENABLED = False
LAUNCH_INSTANCE_NG_ENABLED = True

2. Restart the httpd service:

systemctl restart httpd

The preferences for the Launch Instance form and Launch Instance wizard are updated.

If you enabled only one of these options, the Launch Instance button in the dashboard opens that
option by default. If you enabled both options, two Launch Instance buttons are displayed in the
dashboard, with the button on the left opening the Launch Instance wizard and the button on the right
opening the Launch Instance form.

Red Hat OpenStack Platform 13 Instances and Images Guide

144

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. IMAGE SERVICE
	1.1. UNDERSTANDING AND OPTIMIZING THE IMAGE SERVICE
	1.1.1. Supported Image service (glance) back ends
	1.1.2. Image signing and verification
	1.1.3. Image conversion
	1.1.4. Image introspection
	1.1.5. Interoperable image import

	1.2. MANAGING IMAGES
	1.2.1. Creating an image
	1.2.1.1. Using a KVM guest image with Red Hat OpenStack Platform
	1.2.1.2. Creating custom Red Hat Enterprise Linux or Windows images

	1.2.2. Uploading an image
	1.2.3. Updating an image
	1.2.4. Importing an image
	1.2.4.1. Importing from a remote URI
	1.2.4.2. Importing from a local volume

	1.2.5. Deleting an image
	1.2.6. Enabling image conversion
	1.2.7. Converting an image to RAW format
	1.2.7.1. Configuring the Image service to accept only RAW and ISO

	1.2.8. Storing an image in RAW format

	CHAPTER 2. CONFIGURING THE COMPUTE (NOVA) SERVICE
	2.1. CONFIGURING MEMORY FOR OVERALLOCATION
	2.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES
	2.3. CALCULATING SWAP SIZE

	CHAPTER 3. CONFIGURING OPENSTACK COMPUTE STORAGE
	3.1. ARCHITECTURE OVERVIEW
	3.2. CONFIGURATION
	3.3. ENABLING SERVICE TOKENS BETWEEN THE COMPUTE SERVICE AND THE BLOCK STORAGE SERVICE

	CHAPTER 4. VIRTUAL MACHINE INSTANCES
	4.1. MANAGING INSTANCES
	4.1.1. Adding components
	4.1.2. Launching an instance
	4.1.2.1. Launching instance options

	4.1.3. Updating an instance
	4.1.4. Resizing an instance
	4.1.5. Connecting to an instance
	4.1.5.1. Accessing an instance console by using the dashboard
	4.1.5.2. Accessing an instance console by using the CLI

	4.1.6. Viewing instance usage
	4.1.7. Deleting an instance
	4.1.8. Managing multiple instances simultaneously

	4.2. MANAGING INSTANCE SECURITY
	4.2.1. Managing key pairs
	4.2.1.1. Creating a key pair
	4.2.1.2. Importing a key pair
	4.2.1.3. Deleting a key pair

	4.2.2. Creating a security group
	4.2.3. Creating, assigning, and releasing floating IP addresses
	4.2.3.1. Allocating a floating IP to the project
	4.2.3.2. Assigning a floating IP
	4.2.3.3. Releasing a floating IP

	4.2.4. Logging in to an instance
	4.2.5. Injecting an admin password into an instance

	4.3. MANAGING FLAVORS
	4.3.1. Updating configuration permissions
	4.3.2. Creating a flavor
	4.3.3. Updating general attributes
	4.3.4. Updating flavor metadata
	4.3.4.1. Viewing metadata
	4.3.4.2. Adding metadata

	4.4. MANAGING HOST AGGREGATES
	4.4.1. Enabling host aggregate scheduling
	4.4.2. Viewing availability zones or host aggregates
	4.4.3. Adding a host aggregate
	4.4.4. Updating a host aggregate
	4.4.5. Deleting a host aggregate

	4.5. SCHEDULING HOSTS
	4.5.1. Configuring scheduling filters
	4.5.2. Configuring scheduling weights
	4.5.3. Reserving NUMA nodes with PCI devices

	4.6. MANAGING INSTANCE SNAPSHOTS
	4.6.1. Creating an instance snapshot
	4.6.2. Managing a snapshot
	4.6.3. Rebuilding an instance to a state in a snapshot
	4.6.4. Consistent snapshots

	4.7. USING RESCUE MODE FOR INSTANCES
	4.7.1. Preparing an image for a rescue mode instance
	4.7.1.1. Rescuing an image that uses ext4 file system

	4.7.2. Adding the rescue image to the OpenStack Image service
	4.7.3. Launching an instance in rescue mode
	4.7.4. Unrescuing an instance

	4.8. CREATING A CUSTOMIZED INSTANCE
	4.8.1. Customizing an instance by using user data
	4.8.2. Customizing an instance by using metadata
	4.8.3. Customizing an instance by using a config drive

	CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES
	5.1. MIGRATION TYPES
	5.2. MIGRATION CONSTRAINTS
	5.3. PREPARING TO MIGRATE
	5.4. ADDITIONAL PREPARATION FOR DPDK INSTANCES
	5.5. COLD MIGRATING AN INSTANCE
	5.6. LIVE MIGRATING AN INSTANCE
	5.7. CHECKING MIGRATION STATUS
	5.8. COMPLETING THE MIGRATION
	5.9. EVACUATING AN INSTANCE
	5.9.1. Evacuating one instance
	5.9.2. Evacuating all instances on a host
	5.9.3. Configuring shared storage

	5.10. TROUBLESHOOTING MIGRATION
	5.10.1. Errors during migration
	5.10.2. Never-ending live migration
	5.10.3. Instance performance degrades after migration

	CHAPTER 6. CONFIGURING PCI PASSTHROUGH
	6.1. DESIGNATING COMPUTE NODES FOR PCI PASSTHROUGH
	6.2. CONFIGURING A PCI PASSTHROUGH COMPUTE NODE
	6.3. PCI PASSTHROUGH DEVICE TYPE FIELD
	6.4. GUIDELINES FOR CONFIGURING NOVAPCIPASSTHROUGH

	CHAPTER 7. DATABASE CLEANING
	7.1. CONFIGURING DATABASE MANAGEMENT
	7.2. CONFIGURATION OPTIONS FOR OPENSTACK COMPUTE (NOVA) AUTOMATED DATABASE MANAGEMENT

	CHAPTER 8. CONFIGURING COMPUTE NODES FOR PERFORMANCE
	8.1. CONFIGURING CPU PINNING WITH NUMA
	8.1.1. Compute node configuration
	8.1.2. Configuring emulator threads to run on dedicated physical CPU
	8.1.3. Scheduler configuration
	8.1.4. Aggregate and flavor configuration

	8.2. CONFIGURING HUGE PAGES ON THE COMPUTE NODE
	8.2.1. Allocating huge pages to instances

	CHAPTER 9. ADDING METADATA TO INSTANCES
	9.1. TYPES OF INSTANCE METADATA
	9.2. ADDING A CONFIG DRIVE TO ALL INSTANCES
	9.3. ADDING STATIC METADATA TO INSTANCES
	9.4. ADDING DYNAMIC METADATA TO INSTANCES

	CHAPTER 10. CONFIGURING REAL-TIME COMPUTE
	10.1. PREPARING YOUR COMPUTE NODES FOR REAL-TIME
	10.2. DEPLOYING THE REAL-TIME COMPUTE ROLE
	10.3. SAMPLE DEPLOYMENT AND TESTING SCENARIO
	10.4. LAUNCHING AND TUNING REAL-TIME INSTANCES

	CHAPTER 11. CONFIGURING VIRTUAL GPUS FOR INSTANCES
	11.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS
	11.2. CONFIGURING VGPU ON THE COMPUTE NODES
	11.2.1. Building a custom GPU overcloud image
	11.2.2. Designating Compute nodes for vGPU
	11.2.3. Configuring the Compute node for vGPU and deploying the overcloud

	11.3. CREATING THE VGPU IMAGE AND FLAVOR
	11.3.1. Creating a custom GPU instance image
	11.3.2. Creating a vGPU flavor for instances
	11.3.3. Launching a vGPU instance

	11.4. ENABLING PCI PASSTHROUGH FOR A GPU DEVICE

	APPENDIX A. IMAGE CONFIGURATION PARAMETERS
	APPENDIX B. ENABLING THE LAUNCH INSTANCE WIZARD

