Red Hat OpenShift Service on AWS 4

Troubleshooting

Understanding support for Red Hat OpenShift Service on AWS
Understanding support for Red Hat OpenShift Service on AWS
Abstract

This document provides information about getting support for Red Hat OpenShift Service on AWS (ROSA).
Table of Contents

CHAPTER 1. TROUBLESHOOTING EXPIRED TOKENS .. 3
1.1. TROUBLESHOOTING EXPIRED OFFLINE ACCESS TOKENS 3

CHAPTER 2. TROUBLESHOOTING INSTALLATIONS .. 4
2.1. INSTALLATION TROUBLESHOOTING ... 4
2.1.1. Inspect install or uninstall logs .. 4
2.1.2. Verify your Amazon Web Services (AWS) account permissions 4
2.1.3. Verify your AWS account and quota .. 4
2.1.4. AWS notification emails .. 4

CHAPTER 3. TROUBLESHOOTING CLUSTER DEPLOYMENTS 6
3.1. TROUBLESHOOTING CLUSTER DEPLOYMENTS .. 6
3.1.1. General deployment failure ... 6
3.1.2. Deployment failure with an osdCcsAdmin error ... 6
3.1.3. Elastic load balancer (ELB) AccessDenied error .. 6
CHAPTER 1. TROUBLESHOOTING EXPIRED TOKENS

1.1. TROUBLESHOOTING EXPIRED OFFLINE ACCESS TOKENS

If you use the rosa CLI and your api.openshift.com offline access token expires, an error message appears. This happens when sso.redhat.com invalidates the token.

Example output

Can't get tokens
Can't get access tokens

Procedure

- Generate a new offline access token at the following URL. A new offline access token is generated every time you visit the URL.

 - Red Hat OpenShift Service on AWS (ROSA):
 https://console.redhat.com/openshift/token/rosa
CHAPTER 2. TROUBLESHOOTING INSTALLATIONS

2.1. INSTALLATION TROUBLESHOOTING

2.1.1. Inspect install or uninstall logs

To display install logs:

- Run the following command, replacing `<cluster_name>` with the name of your cluster:

 $ rosa logs install --cluster=<cluster_name>

- To watch the logs, include the `--watch` flag:

 $ rosa logs install --cluster=<cluster_name> --watch

To display uninstall logs:

- Run the following command, replacing `<cluster_name>` with the name of your cluster:

 $ rosa logs uninstall --cluster=<cluster_name>

- To watch the logs, include the `--watch` flag:

 $ rosa logs uninstall --cluster=<cluster_name> --watch

2.1.2. Verify your Amazon Web Services (AWS) account permissions

Run the following command to verify your AWS account has the correct permissions:

 $ rosa verify permissions

If you receive any errors, double check to ensure than an SCP is not applied to your AWS account. If you are required to use an SCP, see Red Hat Requirements for Customer Cloud Subscriptions for details on the minimum required SCP.

2.1.3. Verify your AWS account and quota

Run the following command to verify you have the available quota on your AWS account:

 $ rosa verify quota

AWS quotas change based on region. Be sure you are verifying your quota for the correct AWS region. If you need to increase your quota, navigate to your AWS console, and request a quota increase for the service that failed.

2.1.4. AWS notification emails

When creating a cluster, the Red Hat OpenShift Service on AWS service creates small instances in all supported regions. This check ensures the AWS account being used can deploy to each supported region.
For AWS accounts that are not using all supported regions, AWS may send one or more emails confirming that "Your Request For Accessing AWS Resources Has Been Validated". Typically the sender of this email is aws-verification@amazon.com.

This is expected behavior as the Red Hat OpenShift Service on AWS service is validating your AWS account configuration.
CHAPTER 3. TROUBLESHOOTING CLUSTER DEPLOYMENTS

3.1. TROUBLESHOOTING CLUSTER DEPLOYMENTS

This document describes how to troubleshoot cluster deployment errors.

3.1.1. General deployment failure

If a cluster deployment fails, the cluster is put into an "error" state.

Run the following command to get more information:

```
$ rosa describe cluster -c <my_cluster_name> --debug
```

3.1.2. Deployment failure with an osdCcsAdmin error

If a cluster creation action fails, you can receive the following error message.

Example output

Failed to create cluster: Unable to create cluster spec: Failed to get access keys for user 'osdCcsAdmin': NoSuchEntity: The user with name osdCcsAdmin cannot be found.

To fix this issue:

1. Delete the stack:

 `$ rosa init --delete-stack`

2. Reinitialize your account:

 `$ rosa init`

3.1.3. Elastic load balancer (ELB) AccessDenied error

If you have not created a load balancer in your AWS account, it is possible that the service role for the elastic load balancer (ELB) might not exist yet. You may receive the following error:

```
Error: Error creating network Load Balancer: AccessDenied: User:
arn:aws:sts::xxxxxxxxxxxx:assumed-role/ManagedOpenShift-Installer-Role/xxxxxxxxxxxxxxxxxxxx is
not authorized to perform: iam:CreateServiceLinkedRole on resource:
ar
arn:aws:iam::xxxxxxxxxxxx:role/aws-service-role/elasticloadbalancing.amazonaws.com/AWSServiceRoleForElasticLoadBalancing
```

To resolve this issue, ensure that the role exists on your AWS account. If not, create this role with the following command:

```
aws iam get-role --role-name "AWSServiceRoleForElasticLoadBalancing" || aws iam create-service-linked-role --aws-service-name "elasticloadbalancing.amazonaws.com"
```
NOTE

This command only needs to be executed once per account.