Red Hat OpenShift Service on AWS 4

Introduction to ROSA

An overview of Red Hat OpenShift Service on AWS architecture
Red Hat OpenShift Service on AWS 4 Introduction to ROSA

An overview of Red Hat OpenShift Service on AWS architecture
Abstract

This document provides an overview of the platform and application architecture in Red Hat OpenShift Service on AWS (ROSA).
Table of Contents

CHAPTER 1. UNDERSTANDING ROSA ... 6
 1.1. ABOUT ROSA ... 6
 1.2. CREDENTIAL MODES ... 6
 1.2.1. ROSA with STS .. 7
 1.2.2. ROSA without STS .. 7
 1.3. BILLING AND PRICING .. 7
 1.4. GETTING STARTED ... 7
 Additional resources .. 7

CHAPTER 2. ROSA ARCHITECTURE ... 9
 2.1. ARCHITECTURE CONCEPTS ... 9
 2.1.1. OpenShift ... 9
 2.1.2. Kubernetes ... 9
 2.1.3. Containers ... 10
 2.2. ARCHITECTURE MODELS ... 10
 2.2.1. ROSA architecture on public and private networks 11
 2.2.2. AWS PrivateLink architecture .. 12
 2.2.2.1. AWS reference architectures .. 12
 2.2.3. ROSA architecture with Local Zones ... 13

CHAPTER 3. POLICIES AND SERVICE DEFINITION 15
 3.1. ABOUT AVAILABILITY FOR RED HAT OPENSHIFT SERVICE ON AWS 15
 3.1.1. Potential points of failure ... 15
 3.1.1.1. Container or pod failure ... 15
 3.1.1.2. Worker node failure ... 15
 3.1.1.3. Cluster failure .. 16
 3.1.1.4. Zone failure ... 16
 3.1.1.5. Storage failure .. 16
 3.2. OVERVIEW OF RESPONSIBILITIES FOR RED HAT OPENSHIFT SERVICE ON AWS 16
 3.2.1. Shared responsibilities for Red Hat OpenShift Service on AWS 16
 3.2.2. Tasks for shared responsibilities by area 18
 3.2.3. Incident and operations management ... 18
 3.2.3.1. Platform monitoring ... 20
 3.2.3.2. Incident management .. 20
 3.2.3.3. Notifications .. 21
 3.2.3.4. Cluster capacity ... 21
 3.2.4. Change management ... 21
 3.2.4.1. Customer-initiated changes .. 22
 3.2.4.2. Red Hat-initiated changes .. 22
 3.2.4.3. Patch management ... 23
 3.2.4.4. Release management .. 23
 3.2.5. Security and regulation compliance .. 28
 3.2.6. Disaster recovery .. 31
 3.2.7. Additional customer responsibilities for data and applications 33
 3.2.8. Additional resources .. 35
 3.3. RED HAT OPENSHIFT SERVICE ON AWS SERVICE DEFINITION 35
 3.3.1. Account management .. 36
 3.3.1.1. Billing ... 36
 3.3.1.2. Cluster self-service ... 36
 3.3.1.3. Instance types ... 36
 3.3.1.4. AWS instance types ... 37
3.3.1.5. Regions and availability zones
3.3.1.6. Local Zones
3.3.1.7. Service Level Agreement (SLA)
3.3.1.8. Limited support status
3.3.1.9. Support
3.3.2. Logging
3.3.2.1. Cluster audit logging
3.3.2.2. Application logging
3.3.3. Monitoring
3.3.3.1. Cluster metrics
3.3.3.2. Cluster status notification
3.3.4. Networking
3.3.4.1. Custom domains for applications
3.3.4.2. Domain validated certificates
3.3.4.3. Custom certificate authorities for builds
3.3.4.4. Load balancers
3.3.4.5. Cluster ingress
3.3.4.6. Cluster egress
3.3.4.7. Cloud network configuration
3.3.4.8. DNS forwarding
3.3.4.9. Network verification
3.3.5. Storage
3.3.5.1. Encrypted-at-rest OS and node storage
3.3.5.2. Encrypted-at-rest PV
3.3.5.3. Block storage (RWO)
3.3.5.4. Shared Storage (RWX)
3.3.6. Platform
3.3.6.1. Cluster backup policy
3.3.6.2. Autoscaling
3.3.6.3. Daemonsets
3.3.6.4. Multiple availability zone
3.3.6.5. Node labels
3.3.6.6. OpenShift version
3.3.6.7. Upgrades
3.3.6.8. Windows Containers
3.3.6.9. Container engine
3.3.6.10. Operating system
3.3.6.11. Red Hat Operator support
3.3.6.12. Kubernetes Operator support
3.3.7. Security
3.3.7.1. Authentication provider
3.3.7.2. Privileged containers
3.3.7.3. Customer administrator user
3.3.7.4. Cluster administration role
3.3.7.5. Project self-service
3.3.7.6. Regulatory compliance
3.3.7.7. Network security
3.3.7.8. etcd encryption
3.3.8. Additional resources
3.4. RED HAT OPENSHIFT SERVICE ON AWS UPDATE LIFE CYCLE
3.4.1. Overview
3.4.2. Definitions
3.4.3. Major versions (X.y.z)
3.4.4. Minor versions (x.Y.z) 60
3.4.5. Patch versions (x.y.Z) 61
3.4.6. Limited support status 61
3.4.7. Supported versions exception policy 62
3.4.8. Installation policy 62
3.4.9. Mandatory upgrades 62
3.4.10. Life cycle dates 62

3.5. UNDERSTANDING SECURITY FOR RED HAT OPENSIFT SERVICE ON AWS 63
3.5.1. Security and regulation compliance 63
 3.5.1.1. Data classification 63
 3.5.1.2. Data management 63
 3.5.1.3. Vulnerability management 64
 3.5.1.4. Network security 64
 3.5.1.4.1. Firewall and DDoS protection 64
 3.5.1.4.2. Private clusters and network connectivity 64
 3.5.1.4.3. Cluster network access controls 64
 3.5.1.5. Penetration testing 64
 3.5.1.6. Compliance 64

3.6. SRE AND SERVICE ACCOUNT ACCESS 65
3.6.1. Identity and access management 65
 3.6.2. SRE cluster access 65
 3.6.2.1. Privileged access controls in ROSA 67
 3.6.2.2. SRE access to AWS accounts 67
 3.6.2.3. SRE STS view of AWS accounts 68
 3.6.2.4. SRE access through PrivateLink VPC endpoint service 68
 3.6.3. Red Hat support access 68
 3.6.4. Customer access 69
 3.6.5. Access approval and review 69
 3.6.6. How service accounts assume AWS IAM roles in SRE owned projects 71

 Workflow for assuming AWS IAM roles in SRE owned projects 72

CHAPTER 4. ADMISSION PLUGINS 74
4.1. ABOUT ADMISSION PLUGINS 74
4.2. DEFAULT ADMISSION PLUGINS 74
4.3. WEBHOOK ADMISSION PLUGINS 77
4.4. TYPES OF WEBHOOK ADMISSION PLUGINS 78
 4.4.1. Mutating admission plugin 78
 4.4.2. Validating admission plugin 80
4.5. ADDITIONAL RESOURCES 81

CHAPTER 5. ABOUT IAM RESOURCES FOR ROSA CLUSTERS THAT USE STS 82
5.1. OPENSIFT CLUSTER MANAGER ROLES AND PERMISSIONS 82
 5.1.1. Understanding the OpenShift Cluster Manager role 83
 5.1.1.1. Understanding the user role 83
 Creating an ocm-role IAM role 85
 5.2. ACCOUNT–WIDE IAM ROLE AND POLICY REFERENCE 86
 5.2.1. Methods of account–wide role creation 86
 Manual ocm–role resource creation 86
 Automatic ocm–role resource creation 87
 5.2.2. Account–wide IAM role and policy AWS CLI reference 101
 Using manual mode for account role creation 102
 Using auto mode for role creation 103
5.3. CLUSTER–SPECIFIC OPERATOR IAM ROLE REFERENCE 104
CHAPTER 1. UNDERSTANDING ROSA

Learn about Red Hat OpenShift Service on AWS (ROSA), interacting with ROSA using Red Hat OpenShift Cluster Manager and command-line interface (CLI) tools, consumption experience, and integration with Amazon Web Services (AWS) services.

1.1. ABOUT ROSA

ROSA is a fully-managed, turnkey application platform that allows you to focus on delivering value to your customers by building and deploying applications. Red Hat site reliability engineering (SRE) experts manage the underlying platform so you do not have to worry about the complexity of infrastructure management. ROSA provides seamless integration with a wide range of AWS compute, database, analytics, machine learning, networking, mobile, and other services to further accelerate the building and delivering of differentiating experiences to your customers.

You subscribe to the service directly from your AWS account. After the clusters are created, you can operate your clusters with the OpenShift web console or through Red Hat OpenShift Cluster Manager. The ROSA service also uses OpenShift APIs and command-line interface (CLI) tools. These tools provide a standardized OpenShift experience to use your existing skills and tools knowledge.

You receive OpenShift updates with new feature releases and a shared, common source for alignment with OpenShift Container Platform. ROSA supports the same versions of OpenShift as Red Hat OpenShift Dedicated and OpenShift Container Platform to achieve version consistency.

For additional information on ROSA installation, see Installing Red Hat OpenShift Service on AWS (ROSA) interactive walkthrough.

1.2. CREDENTIAL MODES

TIP

AWS Security Token Service (STS) is the recommended credential mode for installing and interacting with clusters on Red Hat OpenShift Service on AWS (ROSA) because it provides enhanced security.

There are two supported credential modes for ROSA clusters. One uses the AWS Security Token Service (STS), which is recommended, and the other uses Identity Access Management (IAM) roles.
1.2.1. ROSA with STS

AWS STS is a global web service that provides short-term credentials for IAM or federated users. ROSA with STS is the recommended credential mode for ROSA clusters. You can use AWS STS with ROSA to allocate temporary, limited-privilege credentials for component-specific IAM roles. The service enables cluster components to make AWS API calls using secure cloud resource management practices.

You can use the ROSA CLI (rosa) to create the IAM role, policy, and identity provider resources that are required for ROSA clusters that use STS.

AWS STS aligns with principles of least privilege and secure practices in cloud service resource management. The ROSA CLI manages the STS credentials that are assigned for unique tasks and takes action upon AWS resources as part of OpenShift functionality. One limitation of using STS is that roles must be created for each ROSA cluster.

The STS credential mode is more secure because:

- It supports an explicit and limited set of roles and policies that you create ahead of time, and tracks every permission asked for and every role used.
- The service is limited to the set permissions.
- When the service is run, it obtains credentials that expire in one hour, so there is no need to rotate or revoke credentials. The expiration also reduces the risks of credentials leaking and being reused.

A listing of the account-wide and per-cluster roles is provided in About IAM resources for ROSA clusters that use STS.

1.2.2. ROSA without STS

This mode makes use of a pre-created IAM user with AdministratorAccess within the account that has proper permissions to create other roles and resources as needed. Using this account the service creates all the necessary resources that are needed for the cluster.

1.3. BILLING AND PRICING

ROSA is billed directly to your AWS account. ROSA pricing can be consumption based, with annual commitments or three-year commitments for greater discounting. The total cost of ROSA consists of two components:

- ROSA service fees
- AWS infrastructure fees

Visit the AWS pricing page for more details.

1.4. GETTING STARTED

To get started with deploying your cluster, ensure your AWS account has met the prerequisites, you have a Red Hat account ready, and follow the procedures outlined in Getting started with Red Hat OpenShift Service on AWS.

Additional resources

- OpenShift Cluster Manager
- About IAM resources for ROSA clusters that use STS
- Getting started with Red Hat OpenShift Service on AWS
- AWS pricing page
CHAPTER 2. ROSA ARCHITECTURE

2.1. ARCHITECTURE CONCEPTS

Learn about OpenShift and container basic concepts used in Red Hat OpenShift Service on AWS architecture.

2.1.1. OpenShift

OpenShift is a Kubernetes container platform that provides a trusted environment to run enterprise workloads. It extends the Kubernetes platform with built-in software to enhance app lifecycle development, operations, and security. With OpenShift, you can consistently deploy your workloads across hybrid cloud providers and environments.

2.1.2. Kubernetes

Red Hat OpenShift Service on AWS (ROSA) uses Red Hat OpenShift, which is an enterprise Kubernetes platform. Kubernetes is an open source platform for managing containerized workloads and services across multiple hosts, and offers management tools for deploying, automating, monitoring, and scaling containerized apps with minimal to no manual intervention. For complete information about Kubernetes, see the Kubernetes documentation.

Cluster, compute pool, and compute node

A Kubernetes cluster consists of a control plane and one or more compute nodes. Compute nodes are organized into compute pools of the type or profile of CPU, memory, operating system, attached disks, and other properties. The compute nodes correspond to the Kubernetes Node resource, and are managed by a Kubernetes control plane that centrally controls and monitors all Kubernetes resources in the cluster.

When you deploy the resources for a containerized app, the Kubernetes control plane decides which compute node to deploy those resources on, accounting for the deployment requirements and available capacity in the cluster. Kubernetes resources include services, deployments, and pods.

Namespace

Kubernetes namespaces are a way to divide your cluster resources into separate areas that you can deploy apps and restrict access to, such as if you want to share the cluster with multiple teams. For example, system resources that are configured for you are kept in separate namespaces like kube-system. If you do not designate a namespace when you create a Kubernetes resource, the resource is automatically created in the default namespace.

Pod

Every containerized app that is deployed into a cluster is deployed, run, and managed by a Kubernetes resource that is called a pod. Pods represent small deployable units in a Kubernetes cluster and are used to group the containers that must be treated as a single unit. In most cases, each container is deployed in its own pod. However, an app can require a container and other helper containers to be deployed into one pod so that those containers can be addressed by using the same private IP address.

App

An app can refer to a complete app or a component of an app. You can deploy components of an app in separate pods or separate compute nodes.

Service
A service is a Kubernetes resource that groups a set of pods and provides network connectivity to these pods without exposing the actual private IP address of each pod. You can use a service to make your app available within your cluster or to the public Internet.

Deployment

A deployment is a Kubernetes resource where you can specify information about other resources or capabilities that are required to run your app, such as services, persistent storage, or annotations. You configure a deployment in a configuration YAML file, and then apply it to the cluster. The Kubernetes main resource configures the resources and deploys containers into pods on the compute nodes with available capacity. Define update strategies for your app, including the number of pods that you want to add during a rolling update and the number of pods that can be unavailable at a time. When you perform a rolling update, the deployment checks whether the update is working and stops the rollout when failures are detected.

A deployment is just one type of workload controller that you can use to manage pods.

2.1.3. Containers

Containers provide a standard way to package your application code, configurations, and dependencies into a single unit. Containers run as isolated processes on compute hosts and share the host operating system and its hardware resources. A container can be moved between environments and run without changes. Unlike virtual machines, containers do not virtualize a device, its operating system, and the underlying hardware. Only the app code, run time, system tools, libraries, and settings are packaged inside the container. This approach makes a container more lightweight, portable, and efficient than a virtual machine.

Built on existing Linux container technology (LXC), the OCI-compliant container images define templates for how to package software into standardized units that include all of the elements that an app needs to run. Red Hat OpenShift Service on AWS (ROSA) uses CRI-O as the container runtime to deploy containers to your cluster.

To run your app in Kubernetes on ROSA, you must first containerize your app by creating a container image that you store in a container registry.

Image

A container image is the base for every container that you want to run. Container images are built from a Dockerfile, a text file that defines how to build the image and which build artifacts to include in it, such as the app, the app configuration, and its dependencies. Images are always built from other images, making them quick to configure.

Registry

An image registry is a place to store, retrieve, and share container images. Images that are stored in a registry can either be publicly available (public registry) or accessible by a small group of users (private registry). ROSA offers public images that you can use to create your first containerized app. For enterprise applications, use a private registry to protect your images from being used by unauthorized users.

2.2. ARCHITECTURE MODELS

ROSA has two installation offerings. The architecture supports the following network configuration types:

- Public network
Chapter 2. ROSA Architecture

- Private network
- AWS PrivateLink (ROSA Classic only)

2.2.1. ROSA architecture on public and private networks

You can install ROSA using either a public or private network. Configure a private cluster and private network connection during or after the cluster creation process. Red Hat manages the cluster with limited access through a public network. For more information, see ROSA service definition.

Figure 2.1. ROSA Classic deployed on public and private networks

If you are using Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP), you can create your clusters on public and private networks as well. The following images depict the architecture of both public and private networks.

Figure 2.2. ROSA with HCP deployed on a public network

Figure 2.3. ROSA with HCP deployed on a private network
Alternatively, you can install a ROSA Classic cluster using AWS PrivateLink, which is hosted on private subnets only.

2.2.2. AWS PrivateLink architecture

The Red Hat managed infrastructure that creates AWS PrivateLink clusters is hosted on private subnets. The connection between Red Hat and the customer-provided infrastructure is created through AWS PrivateLink VPC endpoints.

NOTE

AWS PrivateLink is supported on existing VPCs only.

The following diagram shows network connectivity of a PrivateLink cluster.

Figure 2.4. Multi-AZ AWS PrivateLink cluster deployed on private subnets

2.2.2.1. AWS reference architectures
AWS provides multiple reference architectures that can be useful to customers when planning how to set up a configuration that uses AWS PrivateLink. Here are three examples:

NOTE

A public subnet connects directly to the internet through an internet gateway. A private subnet connects to the internet through a network address translation (NAT) gateway.

- **VPC with a private subnet and AWS Site-to-Site VPN access.**
 This configuration enables you to extend your network into the cloud without exposing your network to the internet.

 To enable communication with your network over an Internet Protocol Security (IPsec) VPN tunnel, this configuration contains a virtual private cloud (VPC) with a single private subnet and a virtual private gateway. Communication over the internet does not use an internet gateway.

 For more information, see [VPC with a private subnet only and AWS Site-to-Site VPN access](https://aws.amazon.com/documentation) in the AWS documentation.

- **VPC with public and private subnets (NAT)**
 This configuration enables you to isolate your network so that the public subnet is reachable from the internet but the private subnet is not.

 Only the public subnet can send outbound traffic directly to the internet. The private subnet can access the internet by using a network address translation (NAT) gateway that resides in the public subnet. This allows database servers to connect to the internet for software updates using the NAT gateway, but does not allow connections to be made directly from the internet to the database servers.

 For more information, see [VPC with public and private subnets (NAT)](https://aws.amazon.com/documentation) in the AWS documentation.

- **VPC with public and private subnets and AWS Site-to-Site VPN access**
 This configuration enables you to extend your network into the cloud and to directly access the internet from your VPC.

 You can run a multi-tiered application with a scalable web front end in a public subnet, and house your data in a private subnet that is connected to your network by an IPsec AWS Site-to-Site VPN connection.

 For more information, see [VPC with public and private subnets and AWS Site-to-Site VPN access](https://aws.amazon.com/documentation) in the AWS documentation.

2.2.3. ROSA architecture with Local Zones

ROSA supports the use of AWS Local Zones, which are metropolis-centralized availability zones where customers can place latency-sensitive application workloads within a VPC. Local Zones are extensions of AWS Regions and are not enabled by default. When Local Zones are enabled and configured, the traffic is extended into the Local Zones for greater flexibility and lower latency. For more information, see [Configuring machine pools in Local Zones](https://aws.amazon.com/documentation).

The following diagram displays a ROSA cluster without traffic routed into a Local Zone.
The following diagram displays a ROSA cluster with traffic routed into a Local Zone.

Figure 2.6. ROSA cluster with traffic routed into Local Zones
CHAPTER 3. POLICIES AND SERVICE DEFINITION

3.1. ABOUT AVAILABILITY FOR RED HAT OPENShift SERVICE ON AWS

Availability and disaster avoidance are extremely important aspects of any application platform. Although Red Hat OpenShift Service on AWS (ROSA) provides many protections against failures at several levels, customer-deployed applications must be appropriately configured for high availability. To account for outages that might occur with cloud providers, additional options are available such as deploying a cluster across multiple availability zones and maintaining multiple clusters with failover mechanisms.

3.1.1. Potential points of failure

Red Hat OpenShift Service on AWS (ROSA) provides many features and options for protecting your workloads against downtime, but applications must be architected appropriately to take advantage of these features.

ROSA can help further protect you against many common Kubernetes issues by adding Red Hat site reliability engineering (SRE) support and the option to deploy a multiple availability zone cluster, but there are a number of ways in which a container or infrastructure can still fail. By understanding potential points of failure, you can understand risks and appropriately architect both your applications and your clusters to be as resilient as necessary at each specific level.

NOTE
An outage can occur at several different levels of infrastructure and cluster components.

3.1.1.1. Container or pod failure

By design, pods are meant to exist for a short time. Appropriately scaling services so that multiple instances of your application pods are running can protect against issues with any individual pod or container. The OpenShift node scheduler can also make sure these workloads are distributed across different worker nodes to further improve resiliency.

When accounting for possible pod failures, it is also important to understand how storage is attached to your applications. Single persistent volumes attached to single pods cannot leverage the full benefits of pod scaling, whereas replicated databases, database services, or shared storage can.

To avoid disruption to your applications during planned maintenance, such as upgrades, it is important to define a Pod Disruption Budget. These are part of the Kubernetes API and can be managed with oc commands such as other object types. They allow for the specification of safety constraints on pods during operations, such as draining a node for maintenance.

3.1.1.2. Worker node failure

Worker nodes are the virtual machines that contain your application pods. By default, a ROSA cluster has a minimum of two worker nodes for a single availability-zone cluster. In the event of a worker node failure, pods are relocated to functioning worker nodes, as long as there is enough capacity, until any issue with an existing node is resolved or the node is replaced. More worker nodes means more protection against single-node outages, and ensures proper cluster capacity for rescheduled pods in the event of a node failure.
NOTE

When accounting for possible node failures, it is also important to understand how storage is affected. EFS volumes are not affected by node failure. However, EBS volumes are not accessible if they are connected to a node that fails.

3.1.1.3. Cluster failure

Single-AZ ROSA clusters have at least three control plane and two infrastructure nodes in the same availability zone (AZ) in the private subnet.

Multi-AZ ROSA clusters have at least three control plane nodes and three infrastructure nodes that are preconfigured for high availability, either in a single zone or across multiple zones, depending on the type of cluster you have selected. Control plane and infrastructure nodes have the same resiliency as worker nodes, with the added benefit of being managed completely by Red Hat.

In the event of a complete control plane outage, the OpenShift APIs will not function, and existing worker node pods are unaffected. However, if there is also a pod or node outage at the same time, the control planes must recover before new pods or nodes can be added or scheduled.

All services running on infrastructure nodes are configured by Red Hat to be highly available and distributed across infrastructure nodes. In the event of a complete infrastructure outage, these services are unavailable until these nodes have been recovered.

3.1.1.4. Zone failure

A zone failure from AWS affects all virtual components, such as worker nodes, block or shared storage, and load balancers that are specific to a single availability zone. To protect against a zone failure, ROSA provides the option for clusters that are distributed across three availability zones, known as multiple availability zone clusters. Existing stateless workloads are redistributed to unaffected zones in the event of an outage, as long as there is enough capacity.

3.1.1.5. Storage failure

If you have deployed a stateful application, then storage is a critical component and must be accounted for when thinking about high availability. A single block storage PV is unable to withstand outages even at the pod level. The best ways to maintain availability of storage are to use replicated storage solutions, shared storage that is unaffected by outages, or a database service that is independent of the cluster.

3.2. OVERVIEW OF RESPONSIBILITIES FOR RED HAT OPENSSHIFT SERVICE ON AWS

This documentation outlines Red Hat, Amazon Web Services (AWS), and customer responsibilities for the Red Hat OpenShift Service on AWS (ROSA) managed service.

3.2.1. Shared responsibilities for Red Hat OpenShift Service on AWS

While Red Hat and Amazon Web Services (AWS) manage the Red Hat OpenShift Service on AWS services, the customer shares certain responsibilities. The Red Hat OpenShift Service on AWS services are accessed remotely, hosted on public cloud resources, created in customer-owned AWS accounts, and have underlying platform and data security that is owned by Red Hat.
IMPORTANT

If the `cluster-admin` role is added to a user, see the responsibilities and exclusion notes in the [Red Hat Enterprise Agreement Appendix 4 (Online Subscription Services)](http://www.redhat.com) .

<table>
<thead>
<tr>
<th>Resource</th>
<th>Incident and operations management</th>
<th>Change management</th>
<th>Access and identity authorization</th>
<th>Security and regulation compliance</th>
<th>Disaster recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer data</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
</tr>
<tr>
<td>Customer applications</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
</tr>
<tr>
<td>Developer services</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
<td>Customer</td>
</tr>
<tr>
<td>Platform monitoring</td>
<td>Red Hat</td>
<td>Red Hat</td>
<td>Red Hat</td>
<td>Red Hat</td>
<td>Red Hat</td>
</tr>
<tr>
<td>Logging</td>
<td>Red Hat</td>
<td>Red Hat and Customer</td>
<td>Red Hat and Customer</td>
<td>Red Hat and Customer</td>
<td>Red Hat</td>
</tr>
<tr>
<td>Application networking</td>
<td>Red Hat and Customer</td>
<td>Red Hat and Customer</td>
<td>Red Hat and Customer</td>
<td>Red Hat</td>
<td>Red Hat</td>
</tr>
<tr>
<td>Cluster networking</td>
<td>Red Hat</td>
<td>Red Hat and Customer</td>
<td>Red Hat and Customer</td>
<td>Red Hat</td>
<td>Red Hat</td>
</tr>
<tr>
<td>Virtual networking management</td>
<td>Red Hat and Customer</td>
<td>Red Hat and Customer</td>
<td>Red Hat and Customer</td>
<td>Red Hat</td>
<td>Red Hat and Customer</td>
</tr>
</tbody>
</table>
3.2.2. Tasks for shared responsibilities by area

Red Hat, AWS, and the customer all share responsibility for the monitoring, maintenance, and overall health of a Red Hat OpenShift Service on AWS (ROSA) cluster. This documentation illustrates the delineation of responsibilities for each of the listed resources as shown in the tables below.

3.2.3. Incident and operations management

Red Hat is responsible for overseeing the service components required for default platform networking. AWS is responsible for protecting the hardware infrastructure that runs all of the services offered in the AWS Cloud. The customer is responsible for incident and operations management of customer application data and any custom networking the customer may have configured for the cluster network or virtual network.
<table>
<thead>
<tr>
<th>Resource</th>
<th>Service responsibilities</th>
<th>Customer responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application networking</td>
<td>Red Hat</td>
<td>• Monitor health of application routes, and the endpoints behind them.</td>
</tr>
<tr>
<td></td>
<td>• Monitor native OpenShift router service, and respond to alerts.</td>
<td>• Report outages to Red Hat and AWS.</td>
</tr>
<tr>
<td>Virtual networking management</td>
<td>Red Hat</td>
<td>• Monitor health of AWS load balancer endpoints.</td>
</tr>
<tr>
<td></td>
<td>• Monitor AWS load balancers, Amazon VPC subnets, and AWS service components necessary for default platform networking. Respond to alerts.</td>
<td>• Monitor network traffic that is optionally configured through Amazon VPC-to-VPC connection, AWS VPN connection, or AWS Direct Connect for potential issues or security threats.</td>
</tr>
<tr>
<td>Virtual storage management</td>
<td>Red Hat</td>
<td>• Monitor health of application data.</td>
</tr>
<tr>
<td></td>
<td>• Monitor Amazon EBS volumes attached to cluster nodes and Amazon S3 buckets used for the ROSA service’s built-in container image registry. Respond to alerts.</td>
<td>• If customer managed AWS KMS keys are used, create and control the key lifecycle and key policies for Amazon EBS encryption.</td>
</tr>
<tr>
<td>Platform monitoring</td>
<td>Red Hat</td>
<td>• Maintain a centralized monitoring and alerting system for all ROSA cluster components, site reliability engineer (SRE) services, and underlying AWS accounts.</td>
</tr>
<tr>
<td>Incident management</td>
<td>Red Hat</td>
<td>• Raise and manage known incidents.</td>
</tr>
<tr>
<td></td>
<td>• Share root cause analysis (RCA) drafts with the customer.</td>
<td>• Raise known incidents through a support case.</td>
</tr>
<tr>
<td>Resource</td>
<td>Service responsibilities</td>
<td>Customer responsibilities</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Infrastructure and data resiliency</td>
<td>Red Hat</td>
<td>• Take regular backups of data and deploy multi-AZ clusters with workloads that follow Kubernetes best practices to ensure high availability within a region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If an entire cloud region is unavailable, install a new cluster in a different region and restore apps using backup data.</td>
</tr>
<tr>
<td>Cluster capacity</td>
<td>Red Hat</td>
<td>• Manage the capacity of all control plane and infrastructure nodes on the cluster.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Evaluate cluster capacity during upgrades and in response to cluster alerts.</td>
</tr>
<tr>
<td>AWS software (public AWS services)</td>
<td>AWS</td>
<td>• Monitor health of AWS resources in the customer account.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use IAM tools to apply the appropriate permissions to AWS resources in the customer account.</td>
</tr>
<tr>
<td>Hardware/AWS global infrastructure</td>
<td>AWS</td>
<td>• Configure, manage, and monitor customer applications and data to ensure application and data security controls are properly enforced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For information regarding AWS incident and operations management, see How AWS maintains operational resilience and continuity of service in the AWS whitepaper.</td>
</tr>
</tbody>
</table>

3.2.3.1. Platform monitoring

Platform audit logs are securely forwarded to a centralized security information and event monitoring (SIEM) system, where they may trigger configured alerts to the SRE team and are also subject to manual review. Audit logs are retained in the SIEM system for one year. Audit logs for a given cluster are not deleted at the time the cluster is deleted.

3.2.3.2. Incident management
An incident is an event that results in a degradation or outage of one or more Red Hat services. An incident can be raised by a customer or a Customer Experience and Engagement (CEE) member through a support case, directly by the centralized monitoring and alerting system, or directly by a member of the SRE team.

Depending on the impact on the service and customer, the incident is categorized in terms of severity.

When managing a new incident, Red Hat uses the following general workflow:

1. An SRE first responder is alerted to a new incident and begins an initial investigation.
2. After the initial investigation, the incident is assigned an incident lead, who coordinates the recovery efforts.
3. An incident lead manages all communication and coordination around recovery, including any relevant notifications and support case updates.
4. The incident is recovered.
5. The incident is documented and a root cause analysis (RCA) is performed within 5 business days of the incident.
6. An RCA draft document will be shared with the customer within 7 business days of the incident.

3.2.3.3. Notifications

Platform notifications are configured using email. Some customer notifications are also sent to an account’s corresponding Red Hat account team, including a Technical Account Manager, if applicable.

The following activities can trigger notifications:
- Platform incident
- Performance degradation
- Cluster capacity warnings
- Critical vulnerabilities and resolution
- Upgrade scheduling

3.2.3.4. Cluster capacity

The impact of a cluster upgrade on capacity is evaluated as part of the upgrade testing process to ensure that capacity is not negatively impacted by new additions to the cluster. During a cluster upgrade, additional worker nodes are added to make sure that total cluster capacity is maintained during the upgrade process.

Capacity evaluations by the Red Hat SRE staff also happen in response to alerts from the cluster, after usage thresholds are exceeded for a certain period of time. Such alerts can also result in a notification to the customer.

3.2.4. Change management

This section describes the policies about how cluster and configuration changes, patches, and releases are managed.
Red Hat is responsible for enabling changes to the cluster infrastructure and services that the customer will control, as well as maintaining versions for the control plane nodes, infrastructure nodes and services, and worker nodes. AWS is responsible for protecting the hardware infrastructure that runs all of the services offered in the AWS Cloud. The customer is responsible for initiating infrastructure change requests and installing and maintaining optional services and networking configurations on the cluster, as well as all changes to customer data and customer applications.

3.2.4.1. Customer-initiated changes

You can initiate changes using self-service capabilities such as cluster deployment, worker node scaling, or cluster deletion.

Change history is captured in the Cluster History section in the OpenShift Cluster Manager Overview tab, and is available for you to view. The change history includes, but is not limited to, logs from the following changes:

- Adding or removing identity providers
- Adding or removing users to or from the dedicated-admins group
- Scaling the cluster compute nodes
- Scaling the cluster load balancer
- Scaling the cluster persistent storage
- Upgrading the cluster

You can implement a maintenance exclusion by avoiding changes in OpenShift Cluster Manager for the following components:

- Deleting a cluster
- Adding, modifying, or removing identity providers
- Adding, modifying, or removing a user from an elevated group
- Installing or removing add-ons
- Modifying cluster networking configurations
- Adding, modifying, or removing machine pools
- Enabling or disabling user workload monitoring
- Initiating an upgrade

IMPORTANT

To enforce the maintenance exclusion, ensure machine pool autoscaling or automatic upgrade policies have been disabled. After the maintenance exclusion has been lifted, proceed with enabling machine pool autoscaling or automatic upgrade policies as desired.

3.2.4.2. Red Hat-initiated changes

Red Hat site reliability engineering (SRE) manages the infrastructure, code, and configuration of Red
Hat OpenShift Service on AWS using a GitOps workflow and fully automated CI/CD pipelines. This process ensures that Red Hat can safely introduce service improvements on a continuous basis without negatively impacting customers.

Every proposed change undergoes a series of automated verifications immediately upon check-in. Changes are then deployed to a staging environment where they undergo automated integration testing. Finally, changes are deployed to the production environment. Each step is fully automated.

An authorized SRE reviewer must approve advancement to each step. The reviewer cannot be the same individual who proposed the change. All changes and approvals are fully auditable as part of the GitOps workflow.

Some changes are released to production incrementally, using feature flags to control availability of new features to specified clusters or customers.

3.2.4.3. Patch management

OpenShift Container Platform software and the underlying immutable Red Hat CoreOS (RHCOS) operating system image are patched for bugs and vulnerabilities in regular z-stream upgrades. Read more about RHCOS architecture in the OpenShift Container Platform documentation.

3.2.4.4. Release management

Red Hat does not automatically upgrade your clusters. You can schedule to upgrade the clusters at regular intervals (recurring upgrade) or just once (individual upgrade) using the OpenShift Cluster Manager web console. Red Hat might forcefully upgrade a cluster to a new z-stream version only if the cluster is affected by a critical impact CVE.

NOTE

Because the required permissions can change between y-stream releases, the policies might have to be updated before an upgrade can be performed. Therefore, you cannot schedule a recurring upgrade on ROSA clusters with STS.

You can review the history of all cluster upgrade events in the OpenShift Cluster Manager web console. For more information about releases, see the Life Cycle policy.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Service responsibilities</th>
<th>Customer responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource</td>
<td>Service responsibilities</td>
<td>Customer responsibilities</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Logging</td>
<td>Red Hat</td>
<td>Red Hat</td>
</tr>
<tr>
<td></td>
<td>• Centrally aggregate and monitor platform audit logs.</td>
<td>• Install the optional default application logging Operator on the cluster.</td>
</tr>
<tr>
<td></td>
<td>• Provide and maintain a logging Operator to enable the customer to deploy a logging stack for default application logging.</td>
<td>• Install, configure, and maintain any optional application logging solutions, such as logging sidecar containers or third-party logging applications.</td>
</tr>
<tr>
<td></td>
<td>• Provide audit logs upon customer request.</td>
<td>• Tune size and frequency of application logs being produced by customer applications if they are affecting the stability of the logging stack or the cluster.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Request platform audit logs through a support case for researching specific incidents.</td>
</tr>
<tr>
<td>Application networking</td>
<td>Red Hat</td>
<td>Red Hat</td>
</tr>
<tr>
<td></td>
<td>• Set up public load balancers. Provide the ability to set up private load balancers and up to one additional load balancer when required.</td>
<td>• Configure non-default pod network permissions for project and pod networks, pod ingress, and pod egress using <code>NetworkPolicy</code> objects.</td>
</tr>
<tr>
<td></td>
<td>• Set up native OpenShift router service. Provide the ability to set the router as private and add up to one additional router shard.</td>
<td>• Use OpenShift Cluster Manager to request a private load balancer for default application routes.</td>
</tr>
<tr>
<td></td>
<td>• Install, configure, and maintain OpenShift SDN components for default internal pod traffic (for clusters created prior to version 4.11).</td>
<td>• Use OpenShift Cluster Manager to configure up to one additional public or private router shard and corresponding load balancer.</td>
</tr>
<tr>
<td></td>
<td>• Provide the ability for the customer to manage <code>NetworkPolicy</code> and <code>EgressNetworkPolicy</code> (firewall) objects.</td>
<td>• Request and configure any additional service load balancers for specific services.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configure any necessary DNS forwarding rules.</td>
</tr>
<tr>
<td>Resource</td>
<td>Service responsibilities</td>
<td>Customer responsibilities</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Cluster networking | **Red Hat** | - Provide optional non-default IP address ranges for machine CIDR, service CIDR, and pod CIDR if needed through OpenShift Cluster Manager when the cluster is provisioned.
- Request that the API service endpoint be made public or private on cluster creation or after cluster creation through OpenShift Cluster Manager. |
| | - Set up cluster management components, such as public or private service endpoints and necessary integration with Amazon VPC components.
- Set up internal networking components required for internal cluster communication between worker, infrastructure, and control plane nodes. | |
| Virtual networking management | **Red Hat** | - Set up and maintain optional Amazon VPC components, such as Amazon VPC-to-VPC connection, AWS VPN connection, or AWS Direct Connect.
- Request and configure any additional service load balancers for specific services. |
| | - Set up and configure Amazon VPC components required to provision the cluster, such as subnets, load balancers, internet gateways, and NAT gateways.
- Provide the ability for the customer to manage AWS VPN connectivity with on-premises resources, Amazon VPC-to-VPC connectivity, and AWS Direct Connect as required through OpenShift Cluster Manager.
- Enable customers to create and deploy AWS load balancers for use with service load balancers. | |
| Virtual compute management | **Red Hat** | - Monitor and manage Amazon EC2 worker nodes by creating a machine pool using the OpenShift Cluster Manager or the ROSA CLI (**rosa**).
- Manage changes to customer-deployed applications and application data. |
| | - Set up and configure the ROSA control plane and data plane to use Amazon EC2 instances for cluster compute.
- Monitor and manage the deployment of Amazon EC2 control plane and infrastructure nodes on the cluster. | |
<table>
<thead>
<tr>
<th>Resource</th>
<th>Service responsibilities</th>
<th>Customer responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster version</td>
<td>Red Hat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Enable upgrade scheduling process.</td>
<td>● Either set up automatic upgrades or schedule patch release upgrades immediately or for the future.</td>
</tr>
<tr>
<td></td>
<td>● Monitor upgrade progress and remedy any issues encountered.</td>
<td>● Acknowledge and schedule minor version upgrades.</td>
</tr>
<tr>
<td></td>
<td>● Publish change logs and release notes for patch release upgrades.</td>
<td>● Test customer applications on patch releases to ensure compatibility.</td>
</tr>
<tr>
<td>Capacity management</td>
<td>Red Hat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Monitor the use of the control plane. Control planes include control plane nodes and infrastructure nodes.</td>
<td>● Monitor worker node utilization and, if appropriate, enables the auto-scaling feature.</td>
</tr>
<tr>
<td></td>
<td>● Scale and resize control plane nodes to maintain quality of service.</td>
<td>● Determine the scaling strategy of the cluster. See the additional resources for more information on machine pools.</td>
</tr>
<tr>
<td>Virtual storage management</td>
<td>Red Hat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Set up and configure Amazon EBS to provision local node storage and persistent volume storage for the cluster.</td>
<td>● Optionally configure the Amazon EBS CSI driver or the Amazon EFS CSI driver to provision persistent volumes on the cluster.</td>
</tr>
<tr>
<td></td>
<td>● Set up and configure the built-in image registry to use Amazon S3 bucket storage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Regularly prune image registry resources in Amazon S3 to optimize Amazon S3 usage and cluster performance.</td>
<td></td>
</tr>
<tr>
<td>Resource</td>
<td>Service responsibilities</td>
<td>Customer responsibilities</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
| AWS software (public AWS services) | **Compute**: Provide the Amazon EC2 service, used for ROSA control plane, infrastructure, and worker nodes.
Storage: Provide Amazon EBS, used by ROSA to provision local node storage and persistent volume storage for the cluster.
Storage: Provide Amazon S3, used for the ROSA service’s built-in image registry.
Networking: Provide the following AWS Cloud services, used by ROSA to satisfy virtual networking infrastructure needs:
 - Amazon VPC
 - Elastic Load Balancing
 - AWS IAM |
 - Sign requests using an access key ID and secret access key associated with an IAM principal or STS temporary security credentials.
 - Specify VPC subnets for the cluster to use during cluster creation.
 - Optionally configure a customer-managed VPC for use with ROSA clusters (required for PrivateLink and HCP clusters). |
| Hardware/AWS global infrastructure | **AWS** | **AWS** |
| |
 - For information regarding management controls for AWS data centers, see Our Controls on the AWS Cloud Security page.
 - For information regarding change management best practices, see Guidance for Change Management on AWS in the AWS Solutions Library. |
 - Implement change management best practices for customer applications and data hosted on the AWS Cloud. |
3.2.5. Security and regulation compliance

The following table outlines the responsibilities in regards to security and regulation compliance:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Service responsibilities</th>
<th>Customer responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logging</td>
<td>Red Hat</td>
<td>- Analyze application logs for security events.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Send cluster audit logs to a Red Hat SIEM to analyze for security events. Retain audit logs for a defined period of time to support forensic analysis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Send application logs to an external endpoint through logging sidecar containers or third-party logging applications if longer retention is required than is offered by the default logging stack.</td>
</tr>
<tr>
<td>Virtual networking management</td>
<td>Red Hat</td>
<td>- Monitor virtual networking components for potential issues and security threats.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Use public AWS tools for additional monitoring and protection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Monitor optional configured virtual networking components for potential issues and security threats.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Configure any necessary firewall rules or customer data center protections as required.</td>
</tr>
<tr>
<td>Resource</td>
<td>Service responsibilities</td>
<td>Customer responsibilities</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Virtual storage management</td>
<td>Red Hat</td>
<td>- Provision Amazon EBS volumes.</td>
</tr>
<tr>
<td></td>
<td>• Monitor virtual storage components for potential issues and security threats.</td>
<td>• Manage Amazon EBS volume storage to ensure enough storage is available to mount as a volume in ROSA.</td>
</tr>
<tr>
<td></td>
<td>• Use public AWS tools for additional monitoring and protection.</td>
<td>• Create the persistent volume claim and generate a persistent volume though OpenShift Cluster Manager.</td>
</tr>
<tr>
<td></td>
<td>• Configure the ROSA service to encrypt control plane, infrastructure, and worker node volume data by default using the AWS managed Key Management Service (KMS) key that Amazon EBS provides.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Configure the ROSA service to encrypt customer persistent volumes that use the default storage class with the AWS managed KMS key that Amazon EBS provides.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provide the ability for the customer to use a customer managed AWS KMS key to encrypt persistent volumes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Configure the container image registry to encrypt image registry data at rest using server-side encryption with Amazon S3 managed keys (SSE-3).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provide the ability for the customer to create a public or private Amazon S3 image registry to protect their container images from unauthorized user access.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Red Hat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Monitor virtual compute components for potential issues and security threats.</td>
<td>• Monitor optional configured virtual networking components for potential issues and security threats.</td>
</tr>
<tr>
<td></td>
<td>• Use public AWS tools for additional monitoring and protection.</td>
<td>• Configure any necessary firewall rules or customer data center protections as required.</td>
</tr>
<tr>
<td>Virtual compute management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource</td>
<td>Service responsibilities</td>
<td>Customer responsibilities</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>AWS software (public AWS services)</td>
<td>AWS

Compute: Secure Amazon EC2, used for ROSA control plane, infrastructure, and worker nodes. For more information, see Infrastructure security in Amazon EC2 in the Amazon EC2 User Guide.

Storage: Secure Amazon Elastic Block Store (EBS), used for ROSA control plane, infrastructure, and worker node volumes, as well as Kubernetes persistent volumes. For more information, see Data protection in Amazon EC2 in the Amazon EC2 User Guide.

Storage: Provide AWS KMS, which ROSA uses to encrypt control plane, infrastructure, and worker node volumes and persistent volumes. For more information, see Amazon EBS encryption in the Amazon EC2 User Guide.

Storage: Secure Amazon S3, used for the ROSA service’s built-in container image registry. For more information, see Amazon S3 security in the S3 User Guide.

Networking: Provide security capabilities and services to increase privacy and control network access on AWS global infrastructure, including network firewalls built into Amazon VPC, private or dedicated network connections, and automatic encryption of all traffic on the AWS global and regional networks between AWS secured facilities. For more information, see the AWS Shared Responsibility Model and Infrastructure security in the Introduction to AWS Security whitepaper.</td>
<td>- Ensure security best practices and the principle of least privilege are followed to protect data on the Amazon EC2 instance. For more information, see Infrastructure security in Amazon EC2 and Data protection in Amazon EC2.
- Monitor optional configured virtual networking components for potential issues and security threats.
- Configure any necessary firewall rules or customer data center protections as required.
- Create an optional customer managed KMS key and encrypt the Amazon EBS persistent volume using the KMS key.
- Monitor the customer data in virtual storage for potential issues and security threats. For more information, see the shared responsibility model.</td>
</tr>
<tr>
<td>Resource</td>
<td>Service responsibilities</td>
<td>Customer responsibilities</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Hardware/AWS global infrastructure</td>
<td>AWS</td>
<td>• Configure, manage, and monitor customer applications and data to ensure application and data security controls are properly enforced.</td>
</tr>
<tr>
<td></td>
<td>• Provide the AWS global infrastructure that ROSA uses to deliver service functionality. For more information regarding AWS security controls, see Security of the AWS Infrastructure in the AWS whitepaper.</td>
<td>• Use IAM tools to apply the appropriate permissions to AWS resources in the customer account.</td>
</tr>
<tr>
<td></td>
<td>• Provide documentation for the customer to manage compliance needs and check their security state in AWS using tools such as AWS Artifact and AWS Security Hub. For more information, see Compliance validation for ROSA in the ROSA User Guide.</td>
<td></td>
</tr>
</tbody>
</table>

Additional resources

- For more information about customer or shared responsibilities, see the ROSA Security document.

3.2.6. Disaster recovery

Disaster recovery includes data and configuration backup, replicating data and configuration to the disaster recovery environment, and failover on disaster events.

Red Hat OpenShift Service on AWS (ROSA) provides disaster recovery for failures that occur at the pod, worker node, infrastructure node, control plane node, and availability zone levels.

All disaster recovery requires that the customer use best practices for deploying highly available applications, storage, and cluster architecture, such as single-zone deployment or multi-zone deployment, to account for the level of desired availability.

One single-zone cluster will not provide disaster avoidance or recovery in the event of an availability zone or region outage. Multiple single-zone clusters with customer-maintained failover can account for outages at the zone or at the regional level.

One multi-zone cluster will not provide disaster avoidance or recovery in the event of a full region outage. Multiple multi-zone clusters with customer-maintained failover can account for outages at the regional level.
<table>
<thead>
<tr>
<th>Resource</th>
<th>Service responsibilities</th>
<th>Customer responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual networking management</td>
<td>Red Hat</td>
<td>- Configure virtual networking connections with more than one tunnel where possible for protection against outages as recommended by the public cloud provider.</td>
</tr>
<tr>
<td></td>
<td>- Restore or recreate affected virtual network components that are necessary for the platform to function.</td>
<td>- Maintain failover DNS and load balancing if using a global load balancer with multiple clusters.</td>
</tr>
<tr>
<td></td>
<td>Red Hat</td>
<td>- Configure virtual networking connections with more than one tunnel where possible for protection against outages as recommended by the public cloud provider.</td>
</tr>
<tr>
<td>Virtual Storage management</td>
<td>For ROSA clusters created with IAM user credentials, back up all Kubernetes objects on the cluster through hourly, daily, and weekly volume snapshots.</td>
<td>For ROSA clusters created with IAM user credentials, back up persistent volumes on the cluster through daily and weekly volume snapshots.</td>
</tr>
<tr>
<td></td>
<td>For ROSA clusters created with IAM user credentials, back up all Kubernetes objects on the cluster through hourly, daily, and weekly volume snapshots.</td>
<td>- Back up customer applications and application data.</td>
</tr>
<tr>
<td>Virtual compute management</td>
<td>Red Hat</td>
<td>- Replace failed Amazon EC2 worker nodes by editing the machine pool configuration through OpenShift Cluster Manager or the ROSA CLI.</td>
</tr>
<tr>
<td></td>
<td>- Monitor the cluster and replace failed Amazon EC2 control plane or infrastructure nodes.</td>
<td>- Replace failed Amazon EC2 worker nodes by editing the machine pool configuration through OpenShift Cluster Manager or the ROSA CLI.</td>
</tr>
<tr>
<td></td>
<td>- Provide the ability for the customer to manually or automatically replace failed worker nodes.</td>
<td>- Replace failed Amazon EC2 worker nodes by editing the machine pool configuration through OpenShift Cluster Manager or the ROSA CLI.</td>
</tr>
<tr>
<td>Resource</td>
<td>Service responsibilities</td>
<td>Customer responsibilities</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>AWS software (public AWS services)</td>
<td>AWS

Compute: Provide Amazon EC2 features that support data resiliency such as Amazon EBS snapshots and Amazon EC2 Auto Scaling. For more information, see Resilience in Amazon EC2 in the EC2 User Guide.

Storage: Provide the ability for the ROSA service and customers to back up the Amazon EBS volume on the cluster through Amazon EBS volume snapshots.

Storage: For information about Amazon S3 features that support data resiliency, see Resilience in Amazon S3.

Networking: For information about Amazon VPC features that support data resiliency, see Resilience in Amazon Virtual Private Cloud in the Amazon VPC User Guide.</td>
<td>- Configure ROSA multi-AZ clusters to improve fault tolerance and cluster availability.
- Provision persistent volumes using the Amazon EBS CSI driver to enable volume snapshots.
- Create CSI volume snapshots of Amazon EBS persistent volumes.</td>
</tr>
<tr>
<td>Hardware/AWS global infrastructure</td>
<td>AWS

Provide AWS global infrastructure that allows ROSA to scale control plane, infrastructure, and worker nodes across Availability Zones. This functionality enables ROSA to orchestrate automatic failover between zones without interruption.

For more information about disaster recovery best practices, see Disaster recovery options in the cloud in the AWS Well-Architected Framework.</td>
<td>- Configure ROSA multi-AZ clusters to improve fault tolerance and cluster availability.</td>
</tr>
</tbody>
</table>

Additional resources
- [About machine pools](#)

3.2.7. Additional customer responsibilities for data and applications

The customer is responsible for the applications, workloads, and data that they deploy to Red Hat OpenShift Service on AWS. However, Red Hat and AWS provide various tools to help the customer manage data and applications on the platform.
<table>
<thead>
<tr>
<th>Resource</th>
<th>Red Hat and AWS</th>
<th>Customer responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer data</td>
<td>Red Hat</td>
<td>• Maintain responsibility for all customer data stored on the platform and how customer applications consume and expose this data.</td>
</tr>
<tr>
<td></td>
<td>• Maintain platform-level standards for data encryption as defined by industry security and compliance standards.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provide OpenShift components to help manage application data, such as secrets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enable integration with data services such as Amazon RDS to store and manage data outside of the cluster and/or AWS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AWS</td>
<td>• Provide Amazon RDS to allow customers to store and manage data outside of the cluster and/or AWS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resource

<table>
<thead>
<tr>
<th>Customer applications</th>
<th>Red Hat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provision clusters with OpenShift components installed so that customers can access the OpenShift and Kubernetes APIs to deploy and manage containerized applications.</td>
<td></td>
</tr>
<tr>
<td>Create clusters with image pull secrets so that customer deployments can pull images from the Red Hat Container Catalog registry.</td>
<td></td>
</tr>
<tr>
<td>Provide access to OpenShift APIs that a customer can use to set up Operators to add community, third-party, and Red Hat services to the cluster.</td>
<td></td>
</tr>
<tr>
<td>Provide storage classes and plugins to support persistent volumes for use with customer applications.</td>
<td></td>
</tr>
<tr>
<td>Provide a container image registry so customers can securely store application container images on the cluster to deploy and manage applications.</td>
<td></td>
</tr>
</tbody>
</table>

| **AWS** |
| Provide Amazon EBS to support persistent volumes for use with customer applications.|
| Provide Amazon S3 to support Red Hat provisioning of the container image registry.|

<table>
<thead>
<tr>
<th>Customer responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain responsibility for customer and third-party applications, data, and their complete lifecycle.</td>
</tr>
<tr>
<td>If a customer adds Red Hat, community, third-party, their own, or other services to the cluster by using Operators or external images, the customer is responsible for these services and for working with the appropriate provider, including Red Hat, to troubleshoot any issues.</td>
</tr>
<tr>
<td>Use the provided tools and features to configure and deploy; keep up to date; set up resource requests and limits; size the cluster to have enough resources to run apps; set up permissions; integrate with other services; manage any image streams or templates that the customer deploys; externally serve; save, back up, and restore data; and otherwise manage their highly available and resilient workloads.</td>
</tr>
<tr>
<td>Maintain responsibility for monitoring the applications run on Red Hat OpenShift Service on AWS, including installing and operating software to gather metrics, create alerts, and protect secrets in the application.</td>
</tr>
</tbody>
</table>

3.2.8. Additional resources

- For more information about Red Hat site reliability engineering (SRE) teams access, see [Identity and access management](#).

3.3. RED HAT OPENSHIFT SERVICE ON AWS SERVICE DEFINITION

This documentation outlines the service definition for the Red Hat OpenShift Service on AWS (ROSA) managed service.
3.3.1. Account management

This section provides information about the service definition for Red Hat OpenShift Service on AWS account management.

3.3.1.1. Billing

Red Hat OpenShift Service on AWS is billed through Amazon Web Services (AWS) based on the usage of AWS components used by the service, such as load balancers, storage, EC2 instances, other components, and Red Hat subscriptions for the OpenShift service.

Any additional Red Hat software must be purchased separately.

3.3.1.2. Cluster self-service

Customers can self-service their clusters, including, but not limited to:

- Create a cluster
- Delete a cluster
- Add or remove an identity provider
- Add or remove a user from an elevated group
- Configure cluster privacy
- Add or remove machine pools and configure autoscaling
- Define upgrade policies

You can perform these self-service tasks using the Red Hat OpenShift Service on AWS (ROSA) CLI, rosa.

3.3.1.3. Instance types

Single availability zone clusters require a minimum of 3 control plane nodes, 2 infrastructure nodes, and 2 worker nodes deployed to a single availability zone.

Multiple availability zone clusters require a minimum of 3 control plane nodes, 3 infrastructure nodes, and 3 worker nodes. Additional nodes must be purchased in multiples of three to maintain proper node distribution.

All Red Hat OpenShift Service on AWS clusters support a maximum of 180 worker nodes.

Control plane and infrastructure nodes are deployed and managed by Red Hat. Shutting down the underlying infrastructure through the cloud provider console is unsupported and can lead to data loss. There are at least 3 control plane nodes that handle etcd- and API-related workloads. There are at least 2 infrastructure nodes that handle metrics, routing, the web console, and other workloads. You must not run any workloads on the control and infrastructure nodes. Any workloads you intend to run must be deployed on worker nodes. See the Red Hat Operator support section below for more information about Red Hat workloads that must be deployed on worker nodes.
Approximately one vCPU core and 1 GiB of memory are reserved on each worker node and removed from allocatable resources. This reservation of resources is necessary to run processes required by the underlying platform. These processes include system daemons such as udev, kubelet, and container runtime among others. The reserved resources also account for kernel reservations.

OpenShift Container Platform core systems such as audit log aggregation, metrics collection, DNS, image registry, SDN, and others might consume additional allocatable resources to maintain the stability and maintainability of the cluster. The additional resources consumed might vary based on usage.

For additional information, see the Kubernetes documentation.

As of the Red Hat OpenShift Service on AWS versions 4.8.35, 4.9.26, 4.10.6, the Red Hat OpenShift Service on AWS default per-pod pid limit is 4096. If you want to enable this PID limit, you must upgrade your Red Hat OpenShift Service on AWS clusters to these versions or later. Red Hat OpenShift Service on AWS clusters with prior versions use a default PID limit of 1024.

You cannot configure the per-pod PID limit on any Red Hat OpenShift Service on AWS cluster.

Additional Resources

- Red Hat Operator Support

3.3.1.4. AWS instance types

Red Hat OpenShift Service on AWS offers the following worker node instance types and sizes:

Example 3.1. General purpose

- m5.metal (96† vCPU, 384 GiB)
- m5.xlarge (4 vCPU, 16 GiB)
- m5.2xlarge (8 vCPU, 32 GiB)
- m5.4xlarge (16 vCPU, 64 GiB)
- m5.8xlarge (32 vCPU, 128 GiB)
- m5.12xlarge (48 vCPU, 192 GiB)
- m5.16xlarge (64 vCPU, 256 GiB)
- m5.24xlarge (96 vCPU, 384 GiB)
- m5a.xlarge (4 vCPU, 16 GiB)
- m5a.2xlarge (8 vCPU, 32 GiB)
- m5a.4xlarge (16 vCPU, 64 GiB)
- m5a.8xlarge (32 vCPU, 128 GiB)
- m5a.12xlarge (48 vCPU, 192 GiB)
- m5a.16xlarge (64 vCPU, 256 GiB)
- m5a.24xlarge (96 vCPU, 384 GiB)
- m5ad.xlarge (4 vCPU, 16 GiB)
- m5ad.2xlarge (8 vCPU, 32 GiB)
- m5ad.4xlarge (16 vCPU, 64 GiB)
- m5ad.8xlarge (32 vCPU, 128 GiB)
- m5ad.12xlarge (48 vCPU, 192 GiB)
- m5ad.16xlarge (64 vCPU, 256 GiB)
- m5ad.24xlarge (96 vCPU, 384 GiB)
- m5d.metal (96 vCPU, 384 GiB)
- m5d.xlarge (4 vCPU, 16 GiB)
- m5d.2xlarge (8 vCPU, 32 GiB)
- m5d.4xlarge (16 vCPU, 64 GiB)
- m5d.8xlarge (32 vCPU, 128 GiB)
- m5d.12xlarge (48 vCPU, 192 GiB)
- m5d.16xlarge (64 vCPU, 256 GiB)
- m5d.24xlarge (96 vCPU, 384 GiB)
- m5n.metal (96 vCPU, 384 GiB)
- m5n.xlarge (4 vCPU, 16 GiB)
- m5n.2xlarge (8 vCPU, 32 GiB)
- m5n.4xlarge (16 vCPU, 64 GiB)
- m5n.8xlarge (32 vCPU, 128 GiB)
- m5n.12xlarge (48 vCPU, 192 GiB)
- m5n.16xlarge (64 vCPU, 256 GiB)
- m5n.24xlarge (96 vCPU, 384 GiB)
- m5dn.metal (96 vCPU, 384 GiB)
- m5dn.xlarge (4 vCPU, 16 GiB)
- m5dn.2xlarge (8 vCPU, 32 GiB)
- m5dn.4xlarge (16 vCPU, 64 GiB)
- m5dn.8xlarge (32 vCPU, 128 GiB)
- m5dn.12xlarge (48 vCPU, 192 GiB)
- m5dn.16xlarge (64 vCPU, 256 GiB)
- m5dn.24xlarge (96 vCPU, 384 GiB)
- m5zn.metal (48 vCPU, 192 GiB)
- m5zn.xlarge (4 vCPU, 16 GiB)
- m5zn.2xlarge (8 vCPU, 32 GiB)
- m5zn.3xlarge (12 vCPU, 48 GiB)
- m5zn.6xlarge (24 vCPU, 96 GiB)
- m5zn.12xlarge (48 vCPU, 192 GiB)
- m6a.xlarge (4 vCPU, 16 GiB)
- m6a.2xlarge (8 vCPU, 32 GiB)
- m6a.4xlarge (16 vCPU, 64 GiB)
- m6a.8xlarge (32 vCPU, 128 GiB)
- m6a.12xlarge (48 vCPU, 192 GiB)
- m6a.16xlarge (64 vCPU, 256 GiB)
- m6a.24xlarge (96 vCPU, 384 GiB)
- m6a.32xlarge (128 vCPU, 512 GiB)
- m6a.48xlarge (192 vCPU, 768 GiB)
- m6i.metal (128 vCPU, 512 GiB)
- m6i.xlarge (4 vCPU, 16 GiB)
- m6i.2xlarge (8 vCPU, 32 GiB)
- m6i.4xlarge (16 vCPU, 64 GiB)
- m6i.8xlarge (32 vCPU, 128 GiB)
- m6i.12xlarge (48 vCPU, 192 GiB)
- m6i.16xlarge (64 vCPU, 256 GiB)
- m6i.24xlarge (96 vCPU, 384 GiB)
- m6i.32xlarge (128 vCPU, 512 GiB)
- m6id.xlarge (4 vCPU, 16 GiB)
- m6id.2xlarge (8 vCPU, 32 GiB)
- m6id.4xlarge (16 vCPU, 64 GiB)
- m6id.8xlarge (32 vCPU, 128 GiB)
- m6id.12xlarge (48 vCPU, 192 GiB)
- m6id.16xlarge (64 vCPU, 256 GiB)
- m6id.24xlarge (96 vCPU, 384 GiB)
- m6id.32xlarge (128 vCPU, 512 GiB)

† These instance types provide 96 logical processors on 48 physical cores. They run on single servers with two physical Intel sockets.

Example 3.2. Burstable general purpose
- t3.xlarge (4 vCPU, 16 GiB)
- t3.2xlarge (8 vCPU, 32 GiB)
- t3a.xlarge (4 vCPU, 16 GiB)
- t3a.2xlarge (8 vCPU, 32 GiB)

Example 3.3. Memory intensive
- x1.16xlarge (64 vCPU, 976 GiB)
- x1.32xlarge (128 vCPU, 1952 GiB)
- x1e.xlarge (4 vCPU, 122 GiB)
- x1e.2xlarge (8 vCPU, 244 GiB)
- x1e.4xlarge (16 vCPU, 488 GiB)
- x1e.8xlarge (32 vCPU, 976 GiB)
- x1e.16xlarge (64 vCPU, 1,952 GiB)
- x1e.32xlarge (128 vCPU, 3,904 GiB)
- x2idn.16xlarge (64 vCPU, 1024 GiB)
- x2idn.24xlarge (96 vCPU, 1536 GiB)
Example 3.4. Memory optimized

- r4.xlarge (4 vCPU, 30.5 GiB)
- r4.2xlarge (8 vCPU, 61 GiB)
- r4.4xlarge (16 vCPU, 122 GiB)
- r4.8xlarge (32 vCPU, 244 GiB)
- r4.16xlarge (64 vCPU, 488 GiB)
- r5.metal (96† vCPU, 768 GiB)
- r5.xlarge (4 vCPU, 32 GiB)
- r5.2xlarge (8 vCPU, 64 GiB)
- r5.4xlarge (16 vCPU, 128 GiB)
- r5.8xlarge (32 vCPU, 256 GiB)
- r5.12xlarge (48 vCPU, 384 GiB)
- r5.16xlarge (64 vCPU, 512 GiB)
- r5.24xlarge (96 vCPU, 768 GiB)
- r5a.xlarge (4 vCPU, 32 GiB)
- r5a.2xlarge (8 vCPU, 64 GiB)
- r5a.4xlarge (16 vCPU, 128 GiB)
- r5a.8xlarge (32 vCPU, 256 GiB)
- r5a.12xlarge (48 vCPU, 384 GiB)
- r5a.16xlarge (64 vCPU, 512 GiB)
- r5a.24xlarge (96 vCPU, 768 GiB)
- r5ad.xlarge (4 vCPU, 32 GiB)
- r5ad.2xlarge (8 vCPU, 64 GiB)
- r5ad.4xlarge (16 vCPU, 128 GiB)
- r5ad.8xlarge (32 vCPU, 256 GiB)
- r5ad.12xlarge (48 vCPU, 384 GiB)
- r5ad.16xlarge (64 vCPU, 512 GiB)
- r5ad.24xlarge (96 vCPU, 768 GiB)
- r5d.metal (96† vCPU, 768 GiB)
- r5d.xlarge (4 vCPU, 32 GiB)
- r5d.2xlarge (8 vCPU, 64 GiB)
- r5d.4xlarge (16 vCPU, 128 GiB)
- r5d.8xlarge (32 vCPU, 256 GiB)
- r5d.12xlarge (48 vCPU, 384 GiB)
- r5d.16xlarge (64 vCPU, 512 GiB)
- r5d.24xlarge (96 vCPU, 768 GiB)
- r5n.metal (96 vCPU, 768 GiB)
- r5n.xlarge (4 vCPU, 32 GiB)
- r5n.2xlarge (8 vCPU, 64 GiB)
- r5n.4xlarge (16 vCPU, 128 GiB)
- r5n.8xlarge (32 vCPU, 256 GiB)
- r5n.12xlarge (48 vCPU, 384 GiB)
- r5n.16xlarge (64 vCPU, 512 GiB)
- r5n.24xlarge (96 vCPU, 768 GiB)
- r5dn.metal (96 vCPU, 768 GiB)
- r5dn.xlarge (4 vCPU, 32 GiB)
- r5dn.2xlarge (8 vCPU, 64 GiB)
- r5dn.4xlarge (16 vCPU, 128 GiB)
- r5dn.8xlarge (32 vCPU, 256 GiB)
- r5dn.12xlarge (48 vCPU, 384 GiB)
- r5dn.16xlarge (64 vCPU, 512 GiB)
- r5dn.24xlarge (96 vCPU, 768 GiB)
- r6a.xlarge (4 vCPU, 32 GiB)
- r6a.2xlarge (8 vCPU, 64 GiB)
- r6a.4xlarge (16 vCPU, 128 GiB)
- r6a.8xlarge (32 vCPU, 256 GiB)
- r6a.12xlarge (48 vCPU, 384 GiB)
- r6a.16xlarge (64 vCPU, 512 GiB)
- r6a.24xlarge (96 vCPU, 768 GiB)
- r6a.32xlarge (128 vCPU, 1,024 GiB)
- r6a.48xlarge (192 vCPU, 1,536 GiB)
- r6i.metal (128 vCPU, 1,024 GiB)
- r6i.xlarge (4 vCPU, 32 GiB)
- r6i.2xlarge (8 vCPU, 64 GiB)
- r6i.4xlarge (16 vCPU, 128 GiB)
- r6i.8xlarge (32 vCPU, 256 GiB)
- r6i.12xlarge (48 vCPU, 384 GiB)
- r6i.16xlarge (64 vCPU, 512 GiB)
- r6i.24xlarge (96 vCPU, 768 GiB)
- r6i.32xlarge (128 vCPU, 1,024 GiB)
- r6id.xlarge (4 vCPU, 32 GiB)
• r6id.2xlarge (8 vCPU, 64 GiB)
• r6id.4xlarge (16 vCPU, 128 GiB)
• r6id.8xlarge (32 vCPU, 256 GiB)
• r6id.12xlarge (48 vCPU, 384 GiB)
• r6id.16xlarge (64 vCPU, 512 GiB)
• r6id.24xlarge (96 vCPU, 768 GiB)
• r6id.32xlarge (128 vCPU, 1,024 GiB)
• z1d.metal (48 vCPU, 384 GiB)
• z1d.xlarge (4 vCPU, 32 GiB)
• z1d.2xlarge (8 vCPU, 64 GiB)
• z1d.3xlarge (12 vCPU, 96 GiB)
• z1d.6xlarge (24 vCPU, 192 GiB)
• z1d.12xlarge (48 vCPU, 384 GiB)

† These instance types provide 96 logical processors on 48 physical cores. They run on single servers with two physical Intel sockets.

This instance type provides 48 logical processors on 24 physical cores.

Example 3.5. Accelerated computing

• p3.2xlarge (8 vCPU, 61 GiB)
• p3.8xlarge (32 vCPU, 244 GiB)
• p3.16xlarge (64 vCPU, 488 GiB)
• p3dn.24xlarge (96 vCPU, 768 GiB)
• p4d.24xlarge (96 vCPU, 1,152 GiB)
• g4dn.xlarge (4 vCPU, 16 GiB)
• g4dn.2xlarge (8 vCPU, 32 GiB)
• g4dn.4xlarge (16 vCPU, 64 GiB)
• g4dn.8xlarge (32 vCPU, 128 GiB)
• g4dn.12xlarge (48 vCPU, 192 GiB)
• g4dn.16xlarge (64 vCPU, 256 GiB)
• g4dn.metal (96 vCPU, 384 GiB)
Support for the GPU instance type software stack is provided by AWS. Ensure that your AWS service quotas can accommodate the desired GPU instance types.

Example 3.6. Compute optimized

- c5.metal (96 vCPU, 192 GiB)
- c5.xlarge (4 vCPU, 8 GiB)
- c5.2xlarge (8 vCPU, 16 GiB)
- c5.4xlarge (16 vCPU, 32 GiB)
- c5.9xlarge (36 vCPU, 72 GiB)
- c5.12xlarge (48 vCPU, 96 GiB)
- c5.18xlarge (72 vCPU, 144 GiB)
- c5.24xlarge (96 vCPU, 192 GiB)
- c5d.metal (96 vCPU, 192 GiB)
- c5d.xlarge (4 vCPU, 8 GiB)
- c5d.2xlarge (8 vCPU, 16 GiB)
- c5d.4xlarge (16 vCPU, 32 GiB)
- c5d.9xlarge (36 vCPU, 72 GiB)
- c5d.12xlarge (48 vCPU, 96 GiB)
- c5d.18xlarge (72 vCPU, 144 GiB)
- c5d.24xlarge (96 vCPU, 192 GiB)
- c5a.xlarge (4 vCPU, 8 GiB)
- c5a.2xlarge (8 vCPU, 16 GiB)
- c5a.4xlarge (16 vCPU, 32 GiB)
- c5a.8xlarge (32 vCPU, 64 GiB)
- c5a.12xlarge (48 vCPU, 96 GiB)
- c5a.16xlarge (64 vCPU, 128 GiB)
- c5a.24xlarge (96 vCPU, 192 GiB)
- c5ad.xlarge (4 vCPU, 8 GiB)
- c5ad.2xlarge (8 vCPU, 16 GiB)
- c5ad.4xlarge (16 vCPU, 32 GiB)
- c5ad.8xlarge (32 vCPU, 64 GiB)
- c5ad.12xlarge (48 vCPU, 96 GiB)
- c5ad.16xlarge (64 vCPU, 128 GiB)
- c5ad.24xlarge (96 vCPU, 192 GiB)
- c5n.metal (72 vCPU, 192 GiB)
- c5n.xlarge (4 vCPU, 10.5 GiB)
- c5n.2xlarge (8 vCPU, 21 GiB)
- c5n.4xlarge (16 vCPU, 42 GiB)
- c5n.9xlarge (36 vCPU, 96 GiB)
- c5n.18xlarge (72 vCPU, 192 GiB)
- c6a.xlarge (4 vCPU, 8 GiB)
- c6a.2xlarge (8 vCPU, 16 GiB)
- c6a.4xlarge (16 vCPU, 32 GiB)
- c6a.8xlarge (32 vCPU, 64 GiB)
- c6a.12xlarge (48 vCPU, 96 GiB)
- c6a.16xlarge (64 vCPU, 128 GiB)
- c6a.24xlarge (96 vCPU, 192 GiB)
- c6a.32xlarge (128 vCPU, 256 GiB)
- c6a.48xlarge (192 vCPU, 384 GiB)
Example 3.7. Storage optimized

- i3.metal (72† vCPU, 512 GiB)
- i3.xlarge (4 vCPU, 30.5 GiB)
- i3.2xlarge (8 vCPU, 61 GiB)
- i3.4xlarge (16 vCPU, 122 GiB)
- i3.8xlarge (32 vCPU, 244 GiB)
- i3.16xlarge (64 vCPU, 488 GiB)
- i3en.metal (96 vCPU, 768 GiB)
- i3en.xlarge (4 vCPU, 32 GiB)
- i3en.2xlarge (8 vCPU, 64 GiB)
- i3en.3xlarge (12 vCPU, 96 GiB)
- i3en.6xlarge (24 vCPU, 192 GiB)
• i3en.12xlarge (48 vCPU, 384 GiB)
• i3en.24xlarge (96 vCPU, 768 GiB)

† This instance type provides 72 logical processors on 36 physical cores.

NOTE

Virtual instance types initialize faster than "metal" instance types.

Example 3.8. High memory

• u-3tb1.56xlarge (224 vCPU, 3,072 GiB)
• u-6tb1.56xlarge (224 vCPU, 6,144 GiB)
• u-6tb1.112xlarge (448 vCPU, 6,144 GiB)
• u-6tb1.metal (448 vCPU, 6,144 GiB)
• u-9tb1.112xlarge (448 vCPU, 9,216 GiB)
• u-9tb1.metal (448 vCPU, 9,216 GiB)
• u-12tb1.112xlarge (448 vCPU, 12,288 GiB)
• u-12tb1.metal (448 vCPU, 12,288 GiB)
• u-18tb1.metal (448 vCPU, 18,432 GiB)
• u-24tb1.metal (448 vCPU, 24,576 GiB)

Additional Resources

• [AWS Instance Types](#)

3.3.1.5. Regions and availability zones

The following AWS regions are supported by Red Hat OpenShift 4 and are supported for Red Hat OpenShift Service on AWS. Note: China and GovCloud (US) regions are not supported, regardless of their support on OpenShift 4.

Example 3.9. AWS Regions

• af-south-1 (Cape Town, AWS opt-in required)
• ap-east-1 (Hong Kong, AWS opt-in required)
• ap-northeast-1 (Tokyo)
• ap-northeast-2 (Seoul)
• ap-northeast-3 (Osaka)
Multiple availability zone clusters can only be deployed in regions with at least 3 availability zones. For more information, see the Regions and Availability Zones section in the AWS documentation.

Each new Red Hat OpenShift Service on AWS cluster is installed within an installer-created or preexisting Virtual Private Cloud (VPC) in a single region, with the option to deploy into a single availability zone (Single-AZ) or across multiple availability zones (Multi-AZ). This provides cluster-level network and resource isolation, and enables cloud-provider VPC settings, such as VPN connections and VPC Peering. Persistent volumes (PVs) are backed by Amazon Elastic Block Storage (Amazon EBS), and are specific to the availability zone in which they are provisioned. Persistent volume claims (PVCs) do not bind to a volume until the associated pod resource is assigned into a specific availability zone to prevent unschedulable pods. Availability zone-specific resources are only usable by resources in the same availability zone.
3.3.1.6. Local Zones

Red Hat OpenShift Service on AWS supports the use of AWS Local Zones, which are metropolitan-centralized availability zones where customers can place latency-sensitive application workloads. Local Zones are extensions of AWS Regions that have their own internet connection. For more information about AWS Local Zones, see the AWS documentation How Local Zones work.

For steps to enable AWS Local Zones and add a Local Zone to a machine pool, see Configuring Local Zones for machine pulls.

3.3.1.7. Service Level Agreement (SLA)

Any SLAs for the service itself are defined in Appendix 4 of the Red Hat Enterprise Agreement Appendix 4 (Online Subscription Services).

3.3.1.8. Limited support status

When a cluster transitions to a Limited Support status, Red Hat no longer proactively monitors the cluster, the SLA is no longer applicable, and credits requested against the SLA are denied. It does not mean that you no longer have product support. In some cases, the cluster can return to a fully-supported status if you remediate the violating factors. However, in other cases, you might have to delete and recreate the cluster.

A cluster might move to a Limited Support status for many reasons, including the following scenarios:

If you do not upgrade a cluster to a supported version before the end-of-life date

Red Hat does not make any runtime or SLA guarantees for versions after their end-of-life date. To receive continued support, upgrade the cluster to a supported version prior to the end-of-life date. If you do not upgrade the cluster prior to the end-of-life date, the cluster transitions to a Limited Support status until it is upgraded to a supported version.

Red Hat provides commercially reasonable support to upgrade from an unsupported version to a supported version. However, if a supported upgrade path is no longer available, you might have to create a new cluster and migrate your workloads.

If you remove or replace any native Red Hat OpenShift Service on AWS components or any other component that is installed and managed by Red Hat

If cluster administrator permissions were used, Red Hat is not responsible for any of your or your authorized users’ actions, including those that affect infrastructure services, service availability, or data loss. If Red Hat detects any such actions, the cluster might transition to a Limited Support status. Red Hat notifies you of the status change and you should either revert the action or create a support case to explore remediation steps that might require you to delete and recreate the cluster.

If you have questions about a specific action that might cause a cluster to move to a Limited Support status or need further assistance, open a support ticket.
3.3.1.9. Support

Red Hat OpenShift Service on AWS includes Red Hat Premium Support, which can be accessed by using the Red Hat Customer Portal.

See Red Hat OpenShift Service on AWS SLAs for support response times.

AWS support is subject to a customer’s existing support contract with AWS.

3.3.2. Logging

Red Hat OpenShift Service on AWS provides optional integrated log forwarding to Amazon (AWS) CloudWatch.

3.3.2.1. Cluster audit logging

Cluster audit logs are available through AWS CloudWatch, if the integration is enabled. If the integration is not enabled, you can request the audit logs by opening a support case.

3.3.2.2. Application logging

Application logs sent to STDOUT are collected by Fluentd and forwarded to AWS CloudWatch through the cluster logging stack, if it is installed.

3.3.3. Monitoring

This section provides information about the service definition for Red Hat OpenShift Service on AWS monitoring.

3.3.3.1. Cluster metrics

Red Hat OpenShift Service on AWS clusters come with an integrated Prometheus stack for cluster monitoring including CPU, memory, and network-based metrics. This is accessible through the web console. These metrics also allow for horizontal pod autoscaling based on CPU or memory metrics provided by an Red Hat OpenShift Service on AWS user.

3.3.3.2. Cluster status notification

Red Hat communicates the health and status of Red Hat OpenShift Service on AWS clusters through a combination of a cluster dashboard available in OpenShift Cluster Manager, and email notifications sent to the email address of the contact that originally deployed the cluster, and any additional contacts specified by the customer.

3.3.4. Networking

This section provides information about the service definition for Red Hat OpenShift Service on AWS networking.

3.3.4.1. Custom domains for applications

To use a custom hostname for a route, you must update your DNS provider by creating a canonical name (CNAME) record. Your CNAME record should map the OpenShift canonical router hostname to your custom domain. The OpenShift canonical router hostname is shown on the Route Details page.
after a route is created. Alternatively, a wildcard CNAME record can be created once to route all subdomains for a given hostname to the cluster’s router.

NOTE

Starting with Red Hat OpenShift Service on AWS 4.14, the Custom Domain Operator is deprecated. To manage Ingress in Red Hat OpenShift Service on AWS 4.14, use the Ingress Operator. The functionality is unchanged for Red Hat OpenShift Service on AWS 4.13 and earlier versions.

3.3.4.2. Domain validated certificates

Red Hat OpenShift Service on AWS includes TLS security certificates needed for both internal and external services on the cluster. For external routes, there are two separate TLS wildcard certificates that are provided and installed on each cluster: one is for the web console and route default hostnames, and the other is for the API endpoint. Let’s Encrypt is the certificate authority used for certificates. Routes within the cluster, such as the internal API endpoint, use TLS certificates signed by the cluster’s built-in certificate authority and require the CA bundle available in every pod for trusting the TLS certificate.

3.3.4.3. Custom certificate authorities for builds

Red Hat OpenShift Service on AWS supports the use of custom certificate authorities to be trusted by builds when pulling images from an image registry.

3.3.4.4. Load balancers

Red Hat OpenShift Service on AWS uses up to five different load balancers:

- An internal control plane load balancer that is internal to the cluster and used to balance traffic for internal cluster communications.

- An external control plane load balancer that is used for accessing the OpenShift and Kubernetes APIs. This load balancer can be disabled in OpenShift Cluster Manager. If this load balancer is disabled, Red Hat reconfigures the API DNS to point to the internal control plane load balancer.

- An external control plane load balancer for Red Hat that is reserved for cluster management by Red Hat. Access is strictly controlled, and communication is only possible from whitelisted bastion hosts.

- A default external router/ingress load balancer that is the default application load balancer, denoted by `apps` in the URL. The default load balancer can be configured in OpenShift Cluster Manager to be either publicly accessible over the Internet or only privately accessible over a pre-existing private connection. All application routes on the cluster are exposed on this default router load balancer, including cluster services such as the logging UI, metrics API, and registry.

- Optional: A secondary router/ingress load balancer that is a secondary application load balancer, denoted by `apps2` in the URL. The secondary load balancer can be configured in OpenShift Cluster Manager to be either publicly accessible over the Internet or only privately accessible over a pre-existing private connection. If a **Label match** is configured for this router load balancer, then only application routes matching this label are exposed on this router load balancer; otherwise, all application routes are also exposed on this router load balancer.

- Optional: Load balancers for services. Enable non-HTTP/SNI traffic and non-standard ports for services. These load balancers can be mapped to a service running on Red Hat OpenShift
Service on AWS to enable advanced ingress features, such as non-HTTP/SNI traffic or the use of non-standard ports. Each AWS account has a quota which limits the number of Classic Load Balancers that can be used within each cluster.

3.3.4.5. Cluster ingress

Project administrators can add route annotations for many different purposes, including ingress control through IP allow-listing.

Ingress policies can also be changed by using NetworkPolicy objects, which leverage the ovs-networkpolicy plugin. This allows for full control over the ingress network policy down to the pod level, including between pods on the same cluster and even in the same namespace.

All cluster ingress traffic will go through the defined load balancers. Direct access to all nodes is blocked by cloud configuration.

3.3.4.6. Cluster egress

Pod egress traffic control through EgressNetworkPolicy objects can be used to prevent or limit outbound traffic in Red Hat OpenShift Service on AWS.

Public outbound traffic from the control plane and infrastructure nodes is required and necessary to maintain cluster image security and cluster monitoring. This requires that the 0.0.0.0/0 route belongs only to the Internet gateway; it is not possible to route this range over private connections.

OpenShift 4 clusters use NAT gateways to present a public, static IP for any public outbound traffic leaving the cluster. Each availability zone a cluster is deployed into receives a distinct NAT gateway, therefore up to 3 unique static IP addresses can exist for cluster egress traffic. Any traffic that remains inside the cluster, or that does not go out to the public Internet, will not pass through the NAT gateway and will have a source IP address belonging to the node that the traffic originated from. Node IP addresses are dynamic; therefore, a customer must not rely on whitelisting individual IP addresses when accessing private resources.

Customers can determine their public static IP addresses by running a pod on the cluster and then querying an external service. For example:

```
$ oc run ip-lookup --image=busybox -i -t --restart=Never --rm -- /bin/sh -c "/bin/nslookup -type=a myip.opendns.com resolver1.opendns.com | grep -E 'Address: [0-9.]+'"
```

3.3.4.7. Cloud network configuration

Red Hat OpenShift Service on AWS allows for the configuration of a private network connection through AWS-managed technologies:

- VPN connections
- VPC peering
- Transit Gateway
- Direct Connect
IMPORTANT

Red Hat site reliability engineers (SREs) do not monitor private network connections. Monitoring these connections is the responsibility of the customer.

3.3.4.8. DNS forwarding

For Red Hat OpenShift Service on AWS clusters that have a private cloud network configuration, a customer can specify internal DNS servers available on that private connection, that should be queried for explicitly provided domains.

3.3.4.9. Network verification

Network verification checks run automatically when you deploy a Red Hat OpenShift Service on AWS cluster into an existing Virtual Private Cloud (VPC) or create an additional machine pool with a subnet that is new to your cluster. The checks validate your network configuration and highlight errors, enabling you to resolve configuration issues prior to deployment.

You can also run the network verification checks manually to validate the configuration for an existing cluster.

Additional resources

- For more information about the network verification checks, see Network verification.

3.3.5. Storage

This section provides information about the service definition for Red Hat OpenShift Service on AWS storage.

3.3.5.1. Encrypted-at-rest OS and node storage

Control plane, infrastructure, and worker nodes use encrypted-at-rest Amazon Elastic Block Store (Amazon EBS) storage.

3.3.5.2. Encrypted-at-rest PV

EBS volumes that are used for PVs are encrypted-at-rest by default.

3.3.5.3. Block storage (RWO)

Persistent volumes (PVs) are backed by Amazon Elastic Block Store (Amazon EBS), which is Read-Write-Once.

PVs can be attached only to a single node at a time and are specific to the availability zone in which they were provisioned. However, PVs can be attached to any node in the availability zone.

Each cloud provider has its own limits for how many PVs can be attached to a single node. See AWS instance type limits for details.

3.3.5.4. Shared Storage (RWX)
The AWS CSI Driver can be used to provide RWX support for Red Hat OpenShift Service on AWS. A community Operator is provided to simplify setup. See Amazon Elastic File Storage Setup for OpenShift Dedicated and Red Hat OpenShift Service on AWS for details.

3.3.6. Platform

This section provides information about the service definition for the Red Hat OpenShift Service on AWS (ROSA) platform.

3.3.6.1. Cluster backup policy

IMPORTANT

It is critical that customers have a backup plan for their applications and application data. The table below only applies to clusters created with IAM user credentials.

Application and application data backups are not a part of the Red Hat OpenShift Service on AWS service. The following table outlines the cluster backup policy.

<table>
<thead>
<tr>
<th>Component</th>
<th>Snapshot Frequency</th>
<th>Retention</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full object store backup</td>
<td>Daily</td>
<td>7 days</td>
<td>This is a full backup of all Kubernetes objects like etcd. No persistent volumes (PVs) are backed up in this backup schedule.</td>
</tr>
<tr>
<td></td>
<td>Weekly</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>Full object store backup</td>
<td>Hourly</td>
<td>24 hour</td>
<td>This is a full backup of all Kubernetes objects like etcd. No PVs are backed up in this backup schedule.</td>
</tr>
<tr>
<td>Node root volume</td>
<td>Never</td>
<td>N/A</td>
<td>Nodes are considered to be short-term. Nothing critical should be stored on a node’s root volume.</td>
</tr>
</tbody>
</table>

3.3.6.2. Autoscaling

Node autoscaling is available on Red Hat OpenShift Service on AWS. You can configure the autoscaler option to automatically scale the number of machines in a cluster.

Additional resources

- About autoscaling nodes on a cluster

3.3.6.3. Daemonsets

Customers can create and run daemonsets on Red Hat OpenShift Service on AWS. To restrict daemonsets to only running on worker nodes, use the following `nodeSelector`:
3.3.6.4. Multiple availability zone

In a multiple availability zone cluster, control plane nodes are distributed across availability zones and at least one worker node is required in each availability zone.

3.3.6.5. Node labels

Custom node labels are created by Red Hat during node creation and cannot be changed on Red Hat OpenShift Service on AWS clusters at this time. However, custom labels are supported when creating new machine pools.

3.3.6.6. OpenShift version

Red Hat OpenShift Service on AWS is run as a service and is kept up to date with the latest OpenShift Container Platform version. Upgrade scheduling to the latest version is available.

3.3.6.7. Upgrades

Upgrades can be scheduled using the Red Hat OpenShift Service on AWS (ROSA) CLI, \texttt{rosa}, or through OpenShift Cluster Manager.

See the Red Hat OpenShift Service on AWS Life Cycle for more information on the upgrade policy and procedures.

3.3.6.8. Windows Containers

Red Hat OpenShift support for Windows Containers is not available on Red Hat OpenShift Service on AWS at this time.

3.3.6.9. Container engine

Red Hat OpenShift Service on AWS runs on OpenShift 4 and uses CRI-O as the only available container engine.

3.3.6.10. Operating system

Red Hat OpenShift Service on AWS runs on OpenShift 4 and uses Red Hat CoreOS as the operating system for all control plane and worker nodes.

3.3.6.11. Red Hat Operator support

Red Hat workloads typically refer to Red Hat-provided Operators made available through Operator Hub. Red Hat workloads are not managed by the Red Hat SRE team, and must be deployed on worker nodes. These Operators may require additional Red Hat subscriptions, and may incur additional cloud infrastructure costs. Examples of these Red Hat-provided Operators are:

- Red Hat Quay
- Red Hat Advanced Cluster Management
- Red Hat Advanced Cluster Security
- Red Hat OpenShift Service Mesh
- OpenShift Serverless
- Red Hat OpenShift Logging
- Red Hat OpenShift Pipelines

3.3.6.12. Kubernetes Operator support

All Operators listed in the Operator Hub marketplace should be available for installation. These operators are considered customer workloads, and are not monitored by Red Hat SRE.

3.3.7. Security

This section provides information about the service definition for Red Hat OpenShift Service on AWS security.

3.3.7.1. Authentication provider

Authentication for the cluster can be configured using either OpenShift Cluster Manager Hybrid Cloud Console or cluster creation process or using the Red Hat OpenShift Service on AWS (ROSA) CLI, rosa. ROSA is not an identity provider, and all access to the cluster must be managed by the customer as part of their integrated solution. The use of multiple identity providers provisioned at the same time is supported. The following identity providers are supported:

- GitHub or GitHub Enterprise
- GitLab
- Google
- LDAP
- OpenID Connect

3.3.7.2. Privileged containers

Privileged containers are available for users with the cluster-admin role. Usage of privileged containers as cluster-admin is subject to the responsibilities and exclusion notes in the Red Hat Enterprise Agreement Appendix 4 (Online Subscription Services).

3.3.7.3. Customer administrator user

In addition to normal users, Red Hat OpenShift Service on AWS provides access to an Red Hat OpenShift Service on AWS-specific group called dedicated-admin. Any users on the cluster that are members of the dedicated-admin group:

- Have administrator access to all customer-created projects on the cluster.
- Can manage resource quotas and limits on the cluster.
- Can add and manage **NetworkPolicy** objects.
- Are able to view information about specific nodes and PVs in the cluster, including scheduler information.
- Can access the reserved **dedicated-admin** project on the cluster, which allows for the creation of service accounts with elevated privileges and also gives the ability to update default limits and quotas for projects on the cluster.
- Can install Operators from OperatorHub and perform all verbs in all ".operators.coreos.com" API groups.

3.3.7.4. Cluster administration role

The administrator of Red Hat OpenShift Service on AWS has default access to the **cluster-admin** role for your organization’s cluster. While logged into an account with the **cluster-admin** role, users have increased permissions to run privileged security contexts.

3.3.7.5. Project self-service

By default, all users have the ability to create, update, and delete their projects. This can be restricted if a member of the **dedicated-admin** group removes the **self-provisioner** role from authenticated users:

```bash
$ oc adm policy remove-cluster-role-from-group self-provisioner system:authenticated:oauth
```

Restrictions can be reverted by applying:

```bash
$ oc adm policy add-cluster-role-to-group self-provisioner system:authenticated:oauth
```

3.3.7.6. Regulatory compliance

See Understanding process and security for ROSA for the latest compliance information.

3.3.7.7. Network security

With Red Hat OpenShift Service on AWS, AWS provides a standard DDoS protection on all load balancers, called AWS Shield. This provides 95% protection against most commonly used level 3 and 4 attacks on all the public facing load balancers used for Red Hat OpenShift Service on AWS. A 10-second timeout is added for HTTP requests coming to the **haproxy** router to receive a response or the connection is closed to provide additional protection.

3.3.7.8. etcd encryption

In Red Hat OpenShift Service on AWS, the control plane storage is encrypted at rest by default and this includes encryption of the etcd volumes. This storage-level encryption is provided through the storage layer of the cloud provider.

You can also enable etcd encryption, which encrypts the key values in etcd, but not the keys. If you enable etcd encryption, the following Kubernetes API server and OpenShift API server resources are encrypted:

- Secrets
- Config maps
• Routes
• OAuth access tokens
• OAuth authorize tokens

The etcd encryption feature is not enabled by default and it can be enabled only at cluster installation time. Even with etcd encryption enabled, the etcd key values are accessible to anyone with access to the control plane nodes or `cluster-admin` privileges.

IMPORTANT

By enabling etcd encryption for the key values in etcd, you will incur a performance overhead of approximately 20%. The overhead is a result of introducing this second layer of encryption, in addition to the default control plane storage encryption that encrypts the etcd volumes. Red Hat recommends that you enable etcd encryption only if you specifically require it for your use case.

3.3.8. Additional resources

- See [Understanding process and security for ROSA](#) for the latest compliance information.
- See [ROSA life cycle](#)

3.4. RED HAT OPENSSHIFT SERVICE ON AWS UPDATE LIFE CYCLE

3.4.1. Overview

Red Hat provides a published product life cycle for Red Hat OpenShift Service on AWS in order for customers and partners to effectively plan, deploy, and support their applications running on the platform. Red Hat publishes this life cycle in order to provide as much transparency as possible and might make exceptions from these policies as conflicts arise.

Red Hat OpenShift Service on AWS is a managed instance of Red Hat OpenShift and maintains an independent release schedule. More details about the managed offering can be found in the Red Hat OpenShift Service on AWS service definition. The availability of Security Advisories and Bug Fix Advisories for a specific version are dependent upon the Red Hat OpenShift Container Platform life cycle policy and subject to the Red Hat OpenShift Service on AWS maintenance schedule.

Additional resources

- [Red Hat OpenShift Service on AWS service definition](#)

3.4.2. Definitions

Table 3.1. Version reference

<table>
<thead>
<tr>
<th>Version format</th>
<th>Major</th>
<th>Minor</th>
<th>Patch</th>
<th>Major.minor.patch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>4</td>
<td>5</td>
<td>21</td>
<td>4.5.21</td>
</tr>
</tbody>
</table>
Major releases or X-releases
Referred to only as major releases or X-releases (X.y.z).

Examples
- "Major release 5" → 5.y.z
- "Major release 4" → 4.y.z
- "Major release 3" → 3.y.z

Minor releases or Y-releases
Referred to only as minor releases or Y-releases (x.Y.z).

Examples
- "Minor release 4" → 4.4.z
- "Minor release 5" → 4.5.z
- "Minor release 6" → 4.6.z

Patch releases or Z-releases
Referred to only as patch releases or Z-releases (x.y.Z).

Examples
- "Patch release 14 of minor release 5" → 4.5.14
- "Patch release 25 of minor release 5" → 4.5.25
- "Patch release 26 of minor release 6" → 4.6.26

3.4.3. Major versions (X.y.z)
Major versions of Red Hat OpenShift Service on AWS, for example version 4, are supported for one year following the release of a subsequent major version or the retirement of the product.

Example
- If version 5 were made available on Red Hat OpenShift Service on AWS on January 1, version 4 would be allowed to continue running on managed clusters for 12 months, until December 31. After this time, clusters would need to be upgraded or migrated to version 5.

3.4.4. Minor versions (x.Y.z)
Starting with the 4.8 OpenShift Container Platform minor version, Red Hat supports all minor versions for at least a 16 month period following general availability of the given minor version. Patch versions are not affected by the support period.
Customers are notified 60, 30, and 15 days prior to the end of the support period. Clusters must be upgraded to a supported minor version prior to the end of the support period, or the cluster will enter a "Limited Support" status.

Example

2. On July 19, August 16, and September 2, 2024, the customer is notified that their cluster will enter "Limited Support" status on September 17, 2024 if the cluster has not already been upgraded to a supported minor version.

3. The cluster must be upgraded to 4.14 or later by September 17, 2024.

4. If the upgrade has not been performed, the cluster will be flagged as being in a "Limited Support" status.

Additional resources

- Red Hat OpenShift Service on AWS limited support status

3.4.5. Patch versions (x.y.Z)

During the period in which a minor version is supported, Red Hat supports all OpenShift Container Platform patch versions unless otherwise specified.

For reasons of platform security and stability, a patch release may be deprecated, which would prevent installations of that release and trigger mandatory upgrades off that release.

Example

1. 4.7.6 is found to contain a critical CVE.

2. Any releases impacted by the CVE will be removed from the supported patch release list. In addition, any clusters running 4.7.6 will be scheduled for automatic upgrades within 48 hours.

3.4.6. Limited support status

When a cluster transitions to a Limited Support status, Red Hat no longer proactively monitors the cluster, the SLA is no longer applicable, and credits requested against the SLA are denied. It does not mean that you no longer have product support. In some cases, the cluster can return to a fully-supported status if you remediate the violating factors. However, in other cases, you might have to delete and recreate the cluster.

A cluster might transition to a Limited Support status for many reasons, including the following scenarios:

If you do not upgrade a cluster to a supported version before the end-of-life date

Red Hat does not make any runtime or SLA guarantees for versions after their end-of-life date. To receive continued support, upgrade the cluster to a supported version prior to the end-of-life date. If you do not upgrade the cluster prior to the end-of-life date, the cluster transitions to a Limited Support status until it is upgraded to a supported version.
Red Hat provides commercially reasonable support to upgrade from an unsupported version to a supported version. However, if a supported upgrade path is no longer available, you might have to create a new cluster and migrate your workloads.

If you remove or replace any native Red Hat OpenShift Service on AWS components or any other component that is installed and managed by Red Hat

If cluster administrator permissions were used, Red Hat is not responsible for any of your or your authorized users’ actions, including those that affect infrastructure services, service availability, or data loss. If Red Hat detects any such actions, the cluster might transition to a Limited Support status. Red Hat notifies you of the status change and you should either revert the action or create a support case to explore remediation steps that might require you to delete and recreate the cluster.

If you have questions about a specific action that might cause a cluster to transition to a Limited Support status or need further assistance, open a support ticket.

3.4.7. Supported versions exception policy

Red Hat reserves the right to add or remove new or existing versions, or delay upcoming minor release versions, that have been identified to have one or more critical production impacting bugs or security issues without advance notice.

3.4.8. Installation policy

While Red Hat recommends installation of the latest support release, Red Hat OpenShift Service on AWS supports installation of any supported release as covered by the preceding policy.

3.4.9. Mandatory upgrades

In the event that a Critical or Important CVE, or other bug identified by Red Hat, significantly impacts the security or stability of the cluster, the customer must upgrade to the next supported patch release within two business days.

In extreme circumstances and based on Red Hat’s assessment of the CVE criticality to the environment, Red Hat will notify customers that they have two business days to schedule or manually update their cluster to the latest, secure patch release. In the case that an update is not performed after two business days, Red Hat will automatically update the cluster to the latest, secure patch release to mitigate potential security breach(es) or instability. Red Hat may, at its own discretion, temporarily delay an automated update if requested by a customer through a support case.

3.4.10. Life cycle dates

<table>
<thead>
<tr>
<th>Version</th>
<th>General availability</th>
<th>End of life</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>Oct 31, 2023</td>
<td>Feb 28, 2025</td>
</tr>
<tr>
<td>4.13</td>
<td>May 17, 2023</td>
<td>Sep 17, 2024</td>
</tr>
<tr>
<td>4.12</td>
<td>Jan 17, 2023</td>
<td>May 17, 2024</td>
</tr>
<tr>
<td>4.11</td>
<td>Aug 10, 2022</td>
<td>Dec 10, 2023</td>
</tr>
</tbody>
</table>
3.5. UNDERSTANDING SECURITY FOR RED HAT OPENSSHIFT SERVICE ON AWS

This document details the Red Hat, Amazon Web Services (AWS), and customer security responsibilities for the managed Red Hat OpenShift Service on AWS (ROSA).

Acronyms and terms

- **AWS** - Amazon Web Services
- **CEE** - Customer Experience and Engagement (Red Hat Support)
- **CI/CD** - Continuous Integration / Continuous Delivery
- **CVE** - Common Vulnerabilities and Exposures
- **PVs** - Persistent Volumes
- **ROSA** - Red Hat OpenShift Service on AWS
- **SRE** - Red Hat Site Reliability Engineering
- **VPC** - Virtual Private Cloud

3.5.1. Security and regulation compliance

Security and regulation compliance includes tasks such as the implementation of security controls and compliance certification.

3.5.1.1. Data classification

Red Hat defines and follows a data classification standard to determine the sensitivity of data and highlight inherent risk to the confidentiality and integrity of that data while it is collected, used, transmitted, stored, and processed. Customer-owned data is classified at the highest level of sensitivity and handling requirements.

3.5.1.2. Data management

Red Hat OpenShift Service on AWS (ROSA) uses AWS Key Management Service (KMS) to help securely manage keys for encrypted data. These keys are used for control plane, infrastructure, and worker data volumes that are encrypted by default. Persistent volumes (PVs) for customer applications also use AWS KMS for key management.
When a customer deletes their ROSA cluster, all cluster data is permanently deleted, including control plane data volumes and customer application data volumes, such as persistent volumes (PV).

3.5.1.3. Vulnerability management

Red Hat performs periodic vulnerability scanning of ROSA using industry standard tools. Identified vulnerabilities are tracked to their remediation according to timelines based on severity. Vulnerability scanning and remediation activities are documented for verification by third-party assessors in the course of compliance certification audits.

3.5.1.4. Network security

3.5.1.4.1. Firewall and DDoS protection

Each ROSA cluster is protected by a secure network configuration using firewall rules for AWS Security Groups. ROSA customers are also protected against DDoS attacks with AWS Shield Standard.

3.5.1.4.2. Private clusters and network connectivity

Customers can optionally configure their ROSA cluster endpoints, such as web console, API, and application router, to be made private so that the cluster control plane and applications are not accessible from the Internet. Red Hat SRE still requires Internet-accessible endpoints that are protected with IP allow-lists.

AWS customers can configure a private network connection to their ROSA cluster through technologies such as AWS VPC peering, AWS VPN, or AWS Direct Connect.

3.5.1.4.3. Cluster network access controls

Fine-grained network access control rules can be configured by customers, on a per-project basis, using NetworkPolicy objects and the OpenShift SDN.

3.5.1.5. Penetration testing

Red Hat performs periodic penetration tests against ROSA. Tests are performed by an independent internal team by using industry standard tools and best practices.

Any issues that may be discovered are prioritized based on severity. Any issues found belonging to open source projects are shared with the community for resolution.

3.5.1.6. Compliance

Red Hat OpenShift Service on AWS follows common industry best practices for security and controls. The certifications are outlined in the following table.

Table 3.2. Security and control certifications for Red Hat OpenShift Service on AWS

<table>
<thead>
<tr>
<th>Compliance</th>
<th>Red Hat OpenShift Service on AWS (ROSA)</th>
<th>Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIPAA Qualified</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Compliance

<table>
<thead>
<tr>
<th>Compliance</th>
<th>Red Hat OpenShift Service on AWS (ROSA)</th>
<th>Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 27001</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ISO 27017</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ISO 27018</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PCI DSS</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SOC 2 Type 2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SOC 3</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Additional resources

- See [Red Hat Subprocessor List](#) for information on SRE residency.
- For more information about customer or shared responsibilities, see the [ROSA Responsibilities](#) document.
- For more information about ROSA and its components, see the [ROSA Service Definition](#).

3.6. SRE AND SERVICE ACCOUNT ACCESS

Red Hat site reliability engineering (SRE) access to Red Hat OpenShift Service on AWS (ROSA) clusters is outlined through identity and access management.

3.6.1. Identity and access management

Most access by Red Hat SRE teams is done by using cluster Operators through automated configuration management.

Subprocessors

For a list of the available subprocessors, see the [Red Hat Subprocessor List](#) on the Red Hat Customer Portal.

3.6.2. SRE cluster access

SRE access to Red Hat OpenShift Service on AWS (ROSA) clusters is controlled through several layers of required authentication, all of which are managed by strict company policy. All authentication attempts to access a cluster and changes made within a cluster are recorded within audit logs, along with the specific account identity of the SRE responsible for those actions. These audit logs help ensure that all changes made by SREs to a customer’s cluster adhere to the strict policies and procedures that make up Red Hat’s managed services guidelines.

The information presented below is an overview of the process an SRE must perform to access a customer’s cluster.
SRE requests a refreshed ID token from the Red Hat SSO (Cloud Services). This request is authenticated. The token is valid for fifteen minutes. After the token expires, you can refresh the token again and receive a new token. The ability to refresh to a new token is indefinite; however, the ability to refresh to a new token is revoked after 30 days of inactivity.

SRE connects to the Red Hat VPN. The authentication to the VPN is completed by the Red Hat Corporate Identity and Access Management system (RH IAM). With RH IAM, SREs are multifactor and can be managed internally per organization by groups and existing onboarding and offboarding processes. After an SRE is authenticated and connected, the SRE can access the cloud services fleet management plane. Changes to the cloud services fleet management plane require many layers of approval and are maintained by strict company policy.

After authorization is complete, the SRE logs into the fleet management plane and receives a service account token that the fleet management plane created. The token is valid for 15 minutes. After the token is no longer valid, it is deleted.

With access granted to the fleet management plane, SRE uses various methods to access clusters, depending on network configuration.

- Accessing a private or public cluster: Request is sent through a specific Network Load Balancer (NLB) by using an encrypted HTTP connection on port 6443.
- Accessing a PrivateLink cluster: Request is sent to the Red Hat Transit Gateway, which then connects to a Red Hat VPC per region. The VPC that receives the request will be dependent on the target private cluster’s region. Within the VPC, there is a private subnet that contains the PrivateLink endpoint to the customer’s PrivateLink cluster.

SREs access ROSA clusters through the web console or command line interface (CLI) tools. Authentication requires multi-factor authentication (MFA) with industry-standard requirements for password complexity and account lockouts. SREs must authenticate as individuals to ensure auditability. All authentication attempts are logged to a Security Information and Event Management (SIEM) system.

SREs access private clusters using an encrypted HTTP connection. Connections are permitted only from a secured Red Hat network using either an IP allowlist or a private cloud provider link.
3.6.2.1. Privileged access controls in ROSA

SRE adheres to the principle of least privilege when accessing ROSA and AWS components. There are four basic categories of manual SRE access:

- SRE admin access through the Red Hat Portal with normal two-factor authentication and no privileged elevation.
- SRE admin access through the Red Hat corporate SSO with normal two-factor authentication and no privileged elevation.
- OpenShift elevation, which is a manual elevation using Red Hat SSO. Access is limited to 2 hours, is fully audited, and requires management approval.
- AWS access or elevation, which is a manual elevation for AWS console or CLI access. Access is limited to 60 minutes and is fully audited.

Each of these access types have different levels of access to components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Typical SRE admin access (Red Hat Portal)</th>
<th>Typical SRE admin access (Red Hat SSO)</th>
<th>OpenShift elevation</th>
<th>Cloud provider access or elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Cluster Manager</td>
<td>R/W</td>
<td>No access</td>
<td>No access</td>
<td>No access</td>
</tr>
<tr>
<td>OpenShift console</td>
<td>No access</td>
<td>R/W</td>
<td>R/W</td>
<td>No access</td>
</tr>
<tr>
<td>Node operating system</td>
<td>No access</td>
<td>A specific list of elevated OS and network permissions.</td>
<td>A specific list of elevated OS and network permissions.</td>
<td>No access</td>
</tr>
<tr>
<td>AWS Console</td>
<td>No access</td>
<td>No access, but this is the account used to request cloud provider access.</td>
<td>No access</td>
<td>All cloud provider permissions using the SRE identity.</td>
</tr>
</tbody>
</table>

3.6.2.2. SRE access to AWS accounts

Red Hat personnel do not access AWS accounts in the course of routine Red Hat OpenShift Service on AWS operations. For emergency troubleshooting purposes, the SREs have well-defined and auditable procedures to access cloud infrastructure accounts.

SREs generate a short-lived AWS access token for a reserved role using the AWS Security Token Service (STS). Access to the STS token is audit-logged and traceable back to individual users. Both STS and non-STS clusters use the AWS STS service for SRE access. For non-STS clusters, the BYOCAcCinAccess role has the AdministratorAccess IAM policy attached, and this role is used for administration. For STS clusters, the ManagedOpenShift-Support-Role has the ManagedOpenShift-Support-Access policy attached, and this role is used for administration.
3.6.2.3. SRE STS view of AWS accounts

When SREs are on a VPN through two-factor authentication, they and Red Hat Support can assume the ManagedOpenShift-Support-Role in your AWS account. The ManagedOpenShift-Support-Role has all the permissions necessary for SREs to directly troubleshoot and manage AWS resources. Upon assumption of the ManagedOpenShift-Support-Role, SREs use a AWS Security Token Service (STS) to generate a unique, time-expiring URL to the customer’s AWS web UI for their account. SREs can then perform multiple troubleshooting actions, which include:

- Viewing CloudTrail logs
- Shutting down a faulty EC2 Instance

All activities performed by SREs arrive from Red Hat IP addresses and are logged to CloudTrail to allow you to audit and review all activity. This role is only used in cases where access to AWS services is required to assist you. The majority of permissions are read-only. However, a select few permissions have more access, including the ability to reboot an instance or spin up a new instance. SRE access is limited to the policy permissions attached to the ManagedOpenShift-Support-Role.

For a full list of permissions, see sts_support_permission_policy.json in the About IAM resources for ROSA clusters that use STS user guide.

3.6.2.4. SRE access through PrivateLink VPC endpoint service

PrivateLink VPC endpoint service is created as part of the ROSA cluster creation.

When you have a PrivateLink ROSA cluster, its Kubernetes API Server is exposed through a load balancer that can only be accessed from within the VPC by default. Red Hat site reliability engineering (SRE) can connect to this load balancer through a VPC Endpoint Service that has an associated VPC Endpoint in a Red Hat-owned AWS account. This endpoint service contains the name of the cluster, which is also in the ARN.

Under the Allow principals tab, a Red Hat-owned AWS account is listed. This specific user ensures that other entities cannot create VPC Endpoint connections to the PrivateLink cluster’s Kubernetes API Server.

When Red Hat SREs access the API, this fleet management plane can connect to the internal API through the VPC endpoint service.

3.6.3. Red Hat support access

Members of the Red Hat Customer Experience and Engagement (CEE) team typically have read-only access to parts of the cluster. Specifically, CEE has limited access to the core and product namespaces and does not have access to the customer namespaces.

<table>
<thead>
<tr>
<th>Role</th>
<th>Core namespace</th>
<th>Layered product namespace</th>
<th>Customer namespace</th>
<th>AWS account*</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift SRE</td>
<td>Read: All</td>
<td>Read: All</td>
<td>Read: None[2]</td>
<td>Read: All</td>
</tr>
<tr>
<td></td>
<td>Write: Very</td>
<td>Write: None</td>
<td>Write: None</td>
<td>Write: All[3]</td>
</tr>
<tr>
<td></td>
<td>limited [1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>Core namespace</td>
<td>Layered product namespace</td>
<td>Customer namespace</td>
<td>AWS account*</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>CEE</td>
<td>Read: All</td>
<td>Read: All</td>
<td>Read: None[^2]</td>
<td>Read: None</td>
</tr>
<tr>
<td></td>
<td>Write: None</td>
<td>Write: None</td>
<td>Write: None</td>
<td>Write: None</td>
</tr>
<tr>
<td>Custom administrator</td>
<td>Read: None</td>
<td>Read: None</td>
<td>Read: All</td>
<td>Read: All</td>
</tr>
<tr>
<td></td>
<td>Write: None</td>
<td>Write: None</td>
<td>Write: All</td>
<td>Write: All</td>
</tr>
<tr>
<td>Custom user</td>
<td>Read: None</td>
<td>Read: None</td>
<td>Read: Limited[^4]</td>
<td>Read: None</td>
</tr>
<tr>
<td></td>
<td>Write: None</td>
<td>Write: None</td>
<td>Write: Limited[^4]</td>
<td>Write: None</td>
</tr>
<tr>
<td>Everybody else</td>
<td>Read: None</td>
<td>Read: None</td>
<td>Read: None</td>
<td>Read: None</td>
</tr>
<tr>
<td></td>
<td>Write: None</td>
<td>Write: None</td>
<td>Write: None</td>
<td>Write: None</td>
</tr>
</tbody>
</table>

1. Limited to addressing common use cases such as failing deployments, upgrading a cluster, and replacing bad worker nodes.

2. Red Hat associates have no access to customer data by default.

3. SRE access to the AWS account is an emergency procedure for exceptional troubleshooting during a documented incident.

4. Limited to what is granted through RBAC by the Customer Administrator and namespaces created by the user.

3.6.4. Customer access

Customer access is limited to namespaces created by the customer and permissions that are granted using RBAC by the Customer Administrator role. Access to the underlying infrastructure or product namespaces is generally not permitted without `cluster-admin` access. For more information about customer access and authentication, see the "Understanding Authentication" section of the documentation.

3.6.5. Access approval and review

New SRE user access requires management approval. Separated or transferred SRE accounts are removed as authorized users through an automated process. Additionally, the SRE performs periodic access review, including management sign-off of authorized user lists.

The access and identity authorization table includes responsibilities for managing authorized access to clusters, applications, and infrastructure resources. This includes tasks such as providing access control mechanisms, authentication, authorization, and managing access to resources.
<table>
<thead>
<tr>
<th>Resource</th>
<th>Service responsibilities</th>
<th>Customer responsibilities</th>
</tr>
</thead>
</table>
| Logging | **Red Hat** | ● Configure OpenShift RBAC to control access to projects and by extension a project’s application logs.
● For third-party or custom application logging solutions, the customer is responsible for access management. |
| | *Adhere to an industry standards-based tiered internal access process for platform audit logs.* | |
| | ● Provide native OpenShift RBAC capabilities. | |
| Application networking | **Red Hat** | ● Configure OpenShift dedicated-admin and RBAC to control access to route configuration as required.
● Manage organization administrators for Red Hat to grant access to OpenShift Cluster Manager. The cluster manager is used to configure router options and provide service load balancer quota. |
| | *Provide native OpenShift RBAC and dedicated-admin capabilities.* | |
| Cluster networking | **Red Hat** | ● Manage Red Hat organization membership of Red Hat accounts.
● Manage organization administrators for Red Hat to grant access to OpenShift Cluster Manager.
● Configure OpenShift dedicated-admin and RBAC to control access to route configuration as required. |
<p>| | Provide customer access controls through OpenShift Cluster Manager. | |
| | ● Provide native OpenShift RBAC and dedicated-admin capabilities. | |
| Virtual networking management | Red Hat | ● Manage optional user access to AWS components through OpenShift Cluster Manager. |
| | Provide customer access controls through OpenShift Cluster Manager. | |</p>
<table>
<thead>
<tr>
<th>Resource</th>
<th>Service responsibilities</th>
<th>Customer responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual storage management</td>
<td>Red Hat</td>
<td>• Manage optional user access to AWS components through OpenShift Cluster Manager.</td>
</tr>
<tr>
<td></td>
<td>• Provide customer access controls through Red Hat OpenShift Cluster Manager.</td>
<td>• Create AWS IAM roles and attached policies necessary to enable ROSA service access.</td>
</tr>
<tr>
<td>Virtual compute management</td>
<td>Red Hat</td>
<td>• Manage optional user access to AWS components through OpenShift Cluster Manager.</td>
</tr>
<tr>
<td></td>
<td>• Provide customer access controls through Red Hat OpenShift Cluster Manager.</td>
<td>• Create AWS IAM roles and attached policies necessary to enable ROSA service access.</td>
</tr>
<tr>
<td>AWS software (public AWS services)</td>
<td>AWS</td>
<td>• Create AWS IAM roles and attached policies necessary to enable ROSA service access.</td>
</tr>
<tr>
<td></td>
<td>Compute: Provide the Amazon EC2 service, used for ROSA control plane, infrastructure, and worker nodes.</td>
<td>• Use IAM tools to apply the appropriate permissions to AWS resources in the customer account.</td>
</tr>
<tr>
<td></td>
<td>Storage: Provide Amazon EBS, used to allow ROSA to provision local node storage and persistent volume storage for the cluster.</td>
<td>• To enable ROSA across your AWS organization, the customer is responsible for managing AWS Organizations administrators.</td>
</tr>
<tr>
<td></td>
<td>Storage: Provide Amazon S3, used for the service’s built-in image registry.</td>
<td>• To enable ROSA across your AWS organization, the customer is responsible for distributing the ROSA entitlement grant using AWS License Manager.</td>
</tr>
<tr>
<td></td>
<td>Networking: Provide AWS Identity and Access Management (IAM), used by customers to control access to ROSA resources running on customer accounts.</td>
<td></td>
</tr>
<tr>
<td>Hardware and AWS global infrastructure</td>
<td>AWS</td>
<td>• Customer is not responsible for AWS global infrastructure.</td>
</tr>
<tr>
<td></td>
<td>• For information about physical access controls for AWS data centers, see Our Controls on the AWS Cloud Security page.</td>
<td></td>
</tr>
</tbody>
</table>

3.6.6. How service accounts assume AWS IAM roles in SRE owned projects

When you install a Red Hat OpenShift Service on AWS cluster that uses the AWS Security Token...
Service (STS), cluster-specific Operator AWS Identity and Access Management (IAM) roles are created. These IAM roles permit the Red Hat OpenShift Service on AWS cluster Operators to run core OpenShift functionality.

Cluster Operators use service accounts to assume IAM roles. When a service account assumes an IAM role, temporary STS credentials are provided for the service account to use in the cluster Operator’s pod. If the assumed role has the necessary AWS privileges, the service account can run AWS SDK operations in the pod.

Workflow for assuming AWS IAM roles in SRE owned projects
The workflow has the following stages:

1. Within each project that a cluster Operator runs, the Operator’s deployment spec has a volume mount for the projected service account token, and a secret containing AWS credential configuration for the pod. The token is audience-bound and time-bound. Every hour, Red Hat OpenShift Service on AWS generates a new token, and the AWS SDK reads the mounted secret containing the AWS credential configuration. This configuration has a path to the mounted token and the AWS IAM Role ARN. The secret’s credential configuration includes the following:
 - An $AWS_Arn_Role variable that has the ARN for the IAM role that has the permissions required to run AWS SDK operations.
 - An $AWS_Web_Identity_Token_File variable that has the full path in the pod to the OpenID Connect (OIDC) token for the service account. The full path is /var/run/secrets/openshift/serviceaccount/token.

2. When a cluster Operator needs to assume an AWS IAM role to access an AWS service (such as EC2), the AWS SDK client code running on the Operator invokes the AssumeRoleWithWebIdentity API call.

3. The OIDC token is passed from the pod to the OIDC provider. The provider authenticates the service account identity if the following requirements are met:
 - The identity signature is valid and signed by the private key.
 - The sts.amazonaws.com audience is listed in the OIDC token and matches the audience configured in the OIDC provider.

 NOTE
 In Red Hat OpenShift Service on AWS with STS clusters, the OIDC provider is created during install and set as the service account issuer by default. The sts.amazonaws.com audience is set by default in the OIDC provider.

 - The OIDC token has not expired.
 - The issuer value in the token has the URL for the OIDC provider.

4. If the project and service account are in the scope of the trust policy for the IAM role that is being assumed, then authorization succeeds.

5. After successful authentication and authorization, temporary AWS STS credentials in the form of an AWS access token, secret key, and session token are passed to the pod for use by the service account. By using the credentials, the service account is temporarily granted the AWS permissions enabled in the IAM role.

6. When the cluster Operator runs, the Operator that is using the AWS SDK in the pod consumes
the secret that has the path to the projected service account and AWS IAM Role ARN to authenticate against the OIDC provider. The OIDC provider returns temporary STS credentials for authentication against the AWS API.

Additional resources

- For more information about the AWS IAM roles used by the cluster Operators, see Cluster-specific Operator IAM role reference.

- For more information about the policies and permissions that the cluster Operators require, see Methods of account-wide role creation.
CHAPTER 4. ADMISSION PLUGINS

Admission plugins are used to help regulate how Red Hat OpenShift Service on AWS functions.

4.1. ABOUT ADMISSION PLUGINS

Admission plugins intercept requests to the master API to validate resource requests. After a request is authenticated and authorized, the admission plugins ensure that any associated policies are followed. For example, they are commonly used to enforce security policy, resource limitations or configuration requirements.

Admission plugins run in sequence as an admission chain. If any admission plugin in the sequence rejects a request, the whole chain is aborted and an error is returned.

Red Hat OpenShift Service on AWS has a default set of admission plugins enabled for each resource type. These are required for proper functioning of the cluster. Admission plugins ignore resources that they are not responsible for.

In addition to the defaults, the admission chain can be extended dynamically through webhook admission plugins that call out to custom webhook servers. There are two types of webhook admission plugins: a mutating admission plugin and a validating admission plugin. The mutating admission plugin runs first and can both modify resources and validate requests. The validating admission plugin validates requests and runs after the mutating admission plugin so that modifications triggered by the mutating admission plugin can also be validated.

Calling webhook servers through a mutating admission plugin can produce side effects on resources related to the target object. In such situations, you must take steps to validate that the end result is as expected.

WARNING

Dynamic admission should be used cautiously because it impacts cluster control plane operations. When calling webhook servers through webhook admission plugins in Red Hat OpenShift Service on AWS 4, ensure that you have read the documentation fully and tested for side effects of mutations. Include steps to restore resources back to their original state prior to mutation, in the event that a request does not pass through the entire admission chain.

4.2. DEFAULT ADMISSION PLUGINS

Default validating and admission plugins are enabled in Red Hat OpenShift Service on AWS 4. These default plugins contribute to fundamental control plane functionality, such as ingress policy, cluster resource limit override and quota policy.
IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved for running core cluster components.

The following default projects are considered highly privileged: `default`, `kube-public`, `kube-system`, `openshift`, `openshift-infra`, `openshift-node`, and other system-created projects that have the `openshift.io/run-level` label set to 0 or 1. Functionality that relies on admission plugins, such as pod security admission, security context constraints, cluster resource quotas, and image reference resolution, does not work in highly privileged projects.

The following lists contain the default admission plugins:

Example 4.1. Validating admission plugins

- LimitRanger
- ServiceAccount
- PodNodeSelector
- Priority
- PodTolerationRestriction
- OwnerReferencesPermissionEnforcement
- PersistentVolumeClaimResize
- RuntimeClass
- CertificateApproval
- CertificateSigning
- CertificateSubjectRestriction
- autoscaling.openshift.io/ManagementCPUsOverride
- authorization.openshift.io/RestrictSubjectBindings
- scheduling.openshift.io/OriginPodNodeEnvironment
- network.openshift.io/ExternalIPRanger
- network.openshift.io/RestrictedEndpointsAdmission
- image.openshift.io/ImagePolicy
- security.openshift.io/SecurityContextConstraint
- security.openshift.io/SCCExecRestrictions
- route.openshift.io/IngressAdmission
- config.openshift.io/ValidateAPIServer
- config.openshift.io/ValidateAuthentication
- config.openshift.io/ValidateFeatureGate
- config.openshift.io/ValidateConsole
- operator.openshift.io/ValidateDNS
- config.openshift.io/ValidateImage
- config.openshift.io/ValidateOAuth
- config.openshift.io/ValidateProject
- config.openshift.io/DenyDeleteClusterConfiguration
- config.openshift.io/ValidateScheduler
- quota.openshift.io/ValidateClusterResourceQuota
- security.openshift.io/ValidateSecurityContextConstraints
- authorization.openshift.io/ValidateRoleBindingRestriction
- config.openshift.io/ValidateNetwork
- operator.openshift.io/ValidateKubeControllerManager
- ValidatingAdmissionWebhook
- ResourceQuota
- quota.openshift.io/ClusterResourceQuota

Example 4.2. Mutating admission plugins

- NamespaceLifecycle
- LimitRanger
- ServiceAccount
- NodeRestriction
- TaintNodesByCondition
- PodNodeSelector
- Priority
- DefaultTolerationSeconds
- PodTolerationRestriction
- DefaultStorageClass
- StorageObjectInUseProtection
In addition to Red Hat OpenShift Service on AWS default admission plugins, dynamic admission can be implemented through webhook admission plugins that call webhook servers, to extend the functionality of the admission chain. Webhook servers are called over HTTP at defined endpoints.

There are two types of webhook admission plugins in Red Hat OpenShift Service on AWS:

- During the admission process, the **mutating admission plugin** can perform tasks, such as injecting affinity labels.

- At the end of the admission process, the **validating admission plugin** can be used to make sure an object is configured properly, for example ensuring affinity labels are as expected. If the validation passes, Red Hat OpenShift Service on AWS schedules the object as configured.

When an API request comes in, mutating or validating admission plugins use the list of external webhooks in the configuration and call them in parallel:

- If all of the webhooks approve the request, the admission chain continues.

- If any of the webhooks deny the request, the admission request is denied and the reason for doing so is based on the first denial.

- If more than one webhook denies the admission request, only the first denial reason is returned to the user.

- If an error is encountered when calling a webhook, the request is either denied or the webhook is ignored depending on the error policy set. If the error policy is set to **Ignore**, the request is unconditionally accepted in the event of a failure. If the policy is set to **Fail**, failed requests are denied. Using **Ignore** can result in unpredictable behavior for all clients.

The following diagram illustrates the sequential admission chain process within which multiple webhook servers are called.
An example webhook admission plugin use case is where all pods must have a common set of labels. In this example, the mutating admission plugin can inject labels and the validating admission plugin can check that labels are as expected. Red Hat OpenShift Service on AWS would subsequently schedule pods that include required labels and reject those that do not.

Some common webhook admission plugin use cases include:

- Namespace reservation.
- Limiting custom network resources managed by the SR-IOV network device plugin.
- Pod priority class validation.

NOTE

The maximum default webhook timeout value in Red Hat OpenShift Service on AWS is 13 seconds, and it cannot be changed.

4.4. TYPES OF WEBHOOK ADMISSION PLUGINS

Cluster administrators can call out to webhook servers through the mutating admission plugin or the validating admission plugin in the API server admission chain.

4.4.1. Mutating admission plugin

The mutating admission plugin is invoked during the mutation phase of the admission process, which allows modification of resource content before it is persisted. One example webhook that can be called through the mutating admission plugin is the Pod Node Selector feature, which uses an annotation on a namespace to find a label selector and add it to the pod specification.

Sample mutating admission plugin configuration

```yaml
apiVersion: admissionregistration.k8s.io/v1beta1
kind: MutatingWebhookConfiguration
metadata:
  name: <webhook_name>
webhooks:
```

Figure 4.1. API admission chain with mutating and validating admission plugins

![Diagram of API admission chain with mutating and validating admission plugins]
Specifies a mutating admission plugin configuration.

1. The name for the MutatingWebhookConfiguration object. Replace `<webhook_name>` with the appropriate value.
2. The name of the webhook to call. Replace `<webhook_name>` with the appropriate value.
3. Information about how to connect to, trust, and send data to the webhook server.
4. The namespace where the front-end service is created.
5. The name of the front-end service.
6. The webhook URL used for admission requests. Replace `<webhook_url>` with the appropriate value.
7. A PEM-encoded CA certificate that signs the server certificate that is used by the webhook server. Replace `<ca_signing_certificate>` with the appropriate certificate in base64 format.
8. Rules that define when the API server should use this webhook admission plugin.
9. One or more operations that trigger the API server to call this webhook admission plugin. Possible values are `create`, `update`, `delete` or `connect`. Replace `<operation>` and `<resource>` with the appropriate values.
10. Specifies how the policy should proceed if the webhook server is unavailable. Replace `<policy>` with either `Ignore` (to unconditionally accept the request in the event of a failure) or `Fail` (to deny the failed request). Using `Ignore` can result in unpredictable behavior for all clients.

IMPORTANT

In Red Hat OpenShift Service on AWS 4, objects created by users or control loops through a mutating admission plugin might return unexpected results, especially if values set in an initial request are overwritten, which is not recommended.
4.4.2. Validating admission plugin

A validating admission plugin is invoked during the validation phase of the admission process. This phase allows the enforcement of invariants on particular API resources to ensure that the resource does not change again. The Pod Node Selector is also an example of a webhook which is called by the validating admission plugin, to ensure that all nodeSelector fields are constrained by the node selector restrictions on the namespace.

Sample validating admission plugin configuration

```yaml
apiVersion: admissionregistration.k8s.io/v1beta1
kind: ValidatingWebhookConfiguration
metadata:
  name: <webhook_name>
webhooks:
  - name: <webhook_name>
    clientConfig:
      service:
        namespace: default
        name: kubernetes
        path: <webhook_url>
        caBundle: <ca_signing_certificate>
    rules:
      - operations: *
        apiGroups: 
        - ""
        apiVersions: 
        - "*"
        resources: 
        - <resource>
        failurePolicy: <policy>
sideEffects: Unknown
```

1. Specifies a validating admission plugin configuration.
2. The name for the ValidatingWebhookConfiguration object. Replace <webhook_name> with the appropriate value.
3. The name of the webhook to call. Replace <webhook_name> with the appropriate value.
4. Information about how to connect to, trust, and send data to the webhook server.
5. The namespace where the front-end service is created.
6. The name of the front-end service.
7. The webhook URL used for admission requests. Replace <webhook_url> with the appropriate value.
8. A PEM-encoded CA certificate that signs the server certificate that is used by the webhook server. Replace <ca_signing_certificate> with the appropriate certificate in base64 format.
9. Rules that define when the API server should use this webhook admission plugin.
One or more operations that trigger the API server to call this webhook admission plugin. Possible values are `create`, `update`, `delete` or `connect`. Replace `<operation>` and `<resource>` with the

Specifies how the policy should proceed if the webhook server is unavailable. Replace `<policy>` with either `Ignore` (to unconditionally accept the request in the event of a failure) or `Fail` (to deny the failed request). Using `Ignore` can result in unpredictable behavior for all clients.

4.5. ADDITIONAL RESOURCES

- Controlling pod placement using node taints
- Pod priority names
CHAPTER 5. ABOUT IAM RESOURCES FOR ROSA CLUSTERS THAT USE STS

To deploy a Red Hat OpenShift Service on AWS (ROSA) cluster that uses the AWS Security Token Service (STS), you must create the following AWS Identity Access Management (IAM) resources:

- Specific account-wide IAM roles and policies that provide the STS permissions required for ROSA support, installation, control plane, and compute functionality. This includes account-wide Operator policies.
- Cluster-specific Operator IAM roles that permit the ROSA cluster Operators to carry out core OpenShift functionality.
- An OpenID Connect (OIDC) provider that the cluster Operators use to authenticate.
- If you deploy ROSA by using OpenShift Cluster Manager, you must create the additional resources:
 - An OpenShift Cluster Manager IAM role to complete the installation on your cluster.
 - A user role without any permissions to verify your AWS account identity.

This document provides reference information about the IAM resources that you must deploy when you create a ROSA cluster that uses STS. It also includes the `aws` CLI commands that are generated when you use `manual` mode with the `rosa create` command.

Additional resources

- For steps to quickly create a ROSA cluster with STS, including the AWS IAM resources, see Creating a ROSA cluster with STS using the default options.
- For steps to create a ROSA cluster with STS using customizations, including the AWS IAM resources, see Creating a ROSA cluster with STS using customizations.

5.1. OPENSHIFT CLUSTER MANAGER ROLES AND PERMISSIONS

If you create ROSA clusters by using OpenShift Cluster Manager Hybrid Cloud Console, you must have the following AWS IAM roles linked to your AWS account to create and manage the clusters. For more information about linking your IAM roles to your AWS account, see Associating your AWS account.

TIP

If you only use the ROSA CLI (`rosa`), then you do not need to create these IAM roles.

These AWS IAM roles are as follows:

- The ROSA user role is an AWS role used by Red Hat to verify the customer's AWS identity. This role has no additional permissions, and the role has a trust relationship with the Red Hat installer account.
- An `ocm-role` resource grants the required permissions for installation of ROSA clusters in OpenShift Cluster Manager. You can apply basic or administrative permissions to the `ocm-role` resource. If you create an administrative `ocm-role` resource, OpenShift Cluster Manager can
create the needed AWS Operator roles and OpenID Connect (OIDC) provider. This IAM role also creates a trust relationship with the Red Hat installer account as well.

NOTE
The `ocm-role` IAM resource refers to the combination of the IAM role and the necessary policies created with it.

You must create this user role as well as an administrative `ocm-role` resource, if you want to use the auto mode in OpenShift Cluster Manager to create your Operator role policies and OIDC provider.

5.1.1. Understanding the OpenShift Cluster Manager role

Creating ROSA clusters in OpenShift Cluster Manager Hybrid Cloud Console require an `ocm-role` IAM role. The basic `ocm-role` IAM role permissions let you to perform cluster maintenance within OpenShift Cluster Manager. To automatically create the operator roles and OpenID Connect (OIDC) provider, you must add the `--admin` option to the `rosa create` command. This command creates an `ocm-role` resource with additional permissions needed for administrative tasks.

NOTE
This elevated IAM role allows OpenShift Cluster Manager to automatically create the cluster-specific Operator roles and OIDC provider during cluster creation. For more information about this automatic role and policy creation, see the "Methods of account-wide role creation" link in Additional resources.

5.1.1.1. Understanding the user role

In addition to an `ocm-role` IAM role, you must create a user role so that Red Hat OpenShift Service on AWS can verify your AWS identity. This role has no permissions, and it is only used to create a trust relationship between the installer account and your `ocm-role` resources.

The following tables show the associated basic and administrative permissions for the `ocm-role` resource.

Table 5.1. Associated permissions for the basic `ocm-role` resource

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>iam:GetOpenIDConnectProvider</code></td>
<td>This permission allows the basic role to retrieve information about the specified OpenID Connect (OIDC) provider.</td>
</tr>
<tr>
<td><code>iam:GetRole</code></td>
<td>This permission allows the basic role to retrieve any information for a specified role. Some of the data returned include the role’s path, GUID, ARN, and the role’s trust policy that grants permission to assume the role.</td>
</tr>
<tr>
<td><code>iam:ListRoles</code></td>
<td>This permission allows the basic role to list the roles within a path prefix.</td>
</tr>
<tr>
<td><code>iam:ListRoleTags</code></td>
<td>This permission allows the basic role to list the tags on a specified role.</td>
</tr>
</tbody>
</table>
Table 5.2. Additional permissions for the adminocm-role resource

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iam:AttachRolePolicy</td>
<td>This permission allows the admin role to attach a specified policy to the desired IAM role.</td>
</tr>
<tr>
<td>iam:CreateOpenIDConnectProvider</td>
<td>This permission creates a resource that describes an identity provider, which supports OpenID Connect (OIDC). When you create an OIDC provider with this permission, this provider establishes a trust relationship between the provider and AWS.</td>
</tr>
<tr>
<td>iam:CreateRole</td>
<td>This permission allows the admin role to create a role for your AWS account.</td>
</tr>
<tr>
<td>iam:ListPolicies</td>
<td>This permission allows the admin role to list any policies associated with your AWS account.</td>
</tr>
<tr>
<td>iam:ListPolicyTags</td>
<td>This permission allows the admin role to list any tags on a designated policy.</td>
</tr>
<tr>
<td>iam:PutRolePermissionsBoundary</td>
<td>This permission allows the admin role to change the permissions boundary for a user based on a specified policy.</td>
</tr>
<tr>
<td>iam:TagRole</td>
<td>This permission allows the admin role to add tags to an IAM role.</td>
</tr>
</tbody>
</table>
Methods of account-wide role creation

Creating an ocm-role IAM role
You create your ocm-role IAM roles by using the command-line interface (CLI).

Prerequisites

- You have an AWS account.
- You have Red Hat Organization Administrator privileges in the OpenShift Cluster Manager organization.
- You have the permissions required to install AWS account-wide roles.
- You have installed and configured the latest Red Hat OpenShift Service on AWS (ROSA) CLI, rosa, on your installation host.

Procedure

- To create an ocm-role IAM role with basic privileges, run the following command:

 $ rosa create ocm-role

- To create an ocm-role IAM role with admin privileges, run the following command:

 $ rosa create ocm-role --admin

 This command allows you to create the role by specifying specific attributes. The following example output shows the "auto mode" selected, which lets the ROSA CLI (rosa) create your Operator roles and policies. See "Methods of account-wide role creation" in the Additional resources for more information.

Example output

I: Creating ocm role 1
? Role prefix: ManagedOpenShift 1
? Enable admin capabilities for the OCM role (optional): No 2
? Permissions boundary ARN (optional): 3
? Role Path (optional): 4
? Role creation mode: auto 5
I: Creating role using 'arn:aws:iam::<ARN>:user/<UserName>' 6
? Create the 'ManagedOpenShift-OCM-Role-182' role? Yes 6
I: Created role 'ManagedOpenShift-OCM-Role-182' with ARN 'arn:aws:iam::<ARN>:role/ManagedOpenShift-OCM-Role-182' 7
I: Linking OCM role 8
? OCM Role ARN: arn:aws:iam::<ARN>:role/ManagedOpenShift-OCM-Role-182 7
? Link the 'arn:aws:iam::<ARN>:role/ManagedOpenShift-OCM-Role-182' role with organization account 'AWS ARN'? Yes 8
I: Successfully linked role arn 'arn:aws:iam::<ARN>:role/ManagedOpenShift-OCM-Role-182' with organization account 'AWS ARN' 8

1 A prefix value for all of the created AWS resources. In this example, ManagedOpenShift prepends all of the AWS resources.
Choose if you want this role to have the additional admin permissions.

NOTE
You do not see this prompt if you used the \texttt{--admin} option.

The Amazon Resource Name (ARN) of the policy to set permission boundaries.

Specify an IAM path for the user name.

Choose the method to create your AWS roles. Using \texttt{auto}, the ROSA CLI generates and links the roles and policies. In the \texttt{auto} mode, you receive some different prompts to create the AWS roles.

The \texttt{auto} method asks if you want to create a specific \texttt{ocm-role} using your prefix.

Confirm that you want to associate your IAM role with your OpenShift Cluster Manager.

Links the created role with your AWS organization.

AWS IAM roles link to your AWS account to create and manage the clusters. For more information about linking your IAM roles to your AWS account, see \textit{Associating your AWS account}.

Additional resources

- AWS Identity and Access Management Data Types
- Amazon Elastic Computer Cloud Data Types
- AWS Token Security Service Data Types
- Methods of account-wide role creation

5.2. ACCOUNT-WIDE IAM ROLE AND POLICY REFERENCE

This section provides details about the account-wide IAM roles and policies that are required for ROSA deployments that use STS, including the Operator policies. It also includes the JSON files that define the policies.

The account-wide roles and policies are specific to an OpenShift minor release version, for example OpenShift 4.8, and are backward compatible. You can minimize the required STS resources by reusing the account-wide roles and policies for multiple clusters of the same minor version, regardless of their patch version.

5.2.1. Methods of account-wide role creation

You can create account-wide roles by using the Red Hat OpenShift Service on AWS (ROSA) CLI, \texttt{rosa}, or the OpenShift Cluster Manager Hybrid Cloud Console guided installation. You can create the roles manually or by using an automatic process that uses pre-defined names for these roles and polices.

You can create account-wide roles by using the ROSA CLI (\texttt{rosa}). You can create the roles manually or by using an automatic process that uses pre-defined names for these roles and polices.

\textbf{Manual ocm-role resource creation}
You can use the manual creation method if you have the necessary CLI access to create these roles on
your system. You can run this option in your desired CLI tool or from OpenShift Cluster Manager. After you start the manual creation process, the CLI presents a series of commands for you to run that create the roles and link them to the needed policies.

Automatic ocm-role resource creation

If you created an `ocm-role` resource with administrative permissions, you can use the automatic creation method from OpenShift Cluster Manager. The ROSA CLI does not require that you have this admin `ocm-role` IAM resource to automatically create these roles and polices. Selecting this method creates the roles and policies that uses the default names.

If you use the ROSA guided installation on OpenShift Cluster Manager, you must have created an `ocm-role` resource with administrative permissions in the first step of the guided cluster installation. Without this role, you cannot use the automatic Operator role and policy creation option, but you can still create the cluster and its roles and policies with the manual process.

NOTE

The account number present in the `sts_installer_trust_policy.json` and `sts_support_trust_policy.json` samples represents the Red Hat account that is allowed to assume the required roles.

Table 5.3. ROSA installer role, policy, and policy files

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManagedOpenShift-Installer-Role</td>
<td>An IAM role used by the ROSA installer.</td>
</tr>
<tr>
<td>ManagedOpenShift-Installer-Role-Policy</td>
<td>An IAM policy that provides the ROSA installer with the permissions required to complete cluster installation tasks.</td>
</tr>
</tbody>
</table>

Example 5.1. sts_installer_trust_policy.json

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "AWS": [
          "arn:aws:iam::710019948333:role/RH-Managed-OpenShift-Installer"
        ]
      },
      "Action": [
        "sts:AssumeRole"
      ]
    }
  ]
}
```

Example 5.2. sts_installer_permission_policy.json

```json
"Version": "2012-10-17",
"Statement": [
  {
    "Effect": "Allow",
    "Action": [
      "autoscaling:DescribeAutoScalingGroups",
      "ec2:AllocateAddress",
      "ec2: AssociateAddress",
      "ec2: AssociateDhcpOptions",
      "ec2: AssociateRouteTable",
      "ec2: AttachInternetGateway",
      "ec2: AttachNetworkInterface",
      "ec2: AuthorizeSecurityGroupEgress",
      "ec2: AuthorizeSecurityGroupIngress",
      "ec2: CopyImage",
      "ec2: CreateDhcpOptions",
      "ec2: CreateInternetGateway",
      "ec2: CreateNatGateway",
      "ec2: CreateNetworkInterface",
      "ec2: CreateRoute",
      "ec2: CreateRouteTable",
      "ec2: CreateSecurityGroup",
      "ec2: CreateSubnet",
      "ec2: CreateTags",
      "ec2: CreateVolume",
      "ec2: CreateVpc",
      "ec2: CreateVpcEndpoint",
      "ec2: DeleteDhcpOptions",
      "ec2: DeleteInternetGateway",
      "ec2: DeleteNatGateway",
      "ec2: DeleteNetworkInterface",
      "ec2: DeleteRoute",
      "ec2: DeleteRouteTable",
      "ec2: DeleteSecurityGroup",
      "ec2: DeleteSnapshot",
      "ec2: DeleteSubnet",
      "ec2: DeleteTags",
      "ec2: DeleteVolume",
      "ec2: DeleteVpc",
      "ec2: DeleteVpcEndpoints",
      "ec2: DeregisterImage",
      "ec2: DescribeAccountAttributes",
      "ec2: DescribeAddresses",
      "ec2: DescribeAvailabilityZones",
      "ec2: DescribeDhcpOptions",
      "ec2: DescribeImages",
      "ec2: DescribeInstanceAttribute",
      "ec2: DescribeInstanceCreditSpecifications",
      "ec2: DescribeInstances",
      "ec2: DescribeInstanceStatus",
      "ec2: DescribeInstanceTypeOfferings",
      "ec2: DescribeInstanceTypes",
      "ec2: DescribeInternetGateways",
      "ec2: DescribeKeyPairs",
      "ec2: DescribeNatGateways",

]
"ec2:DescribeNetworkAcls",
"ec2:DescribeNetworkInterfaces",
"ec2:DescribePrefixLists",
"ec2:DescribeRegions",
"ec2:DescribeReservedInstancesOfferings",
"ec2:DescribeRouteTables",
"ec2:DescribeSecurityGroups",
"ec2:DescribeSecurityGroupRules",
"ec2:DescribeSubnets",
"ec2:DescribeTags",
"ec2:DescribeVolumes",
"ec2:DescribeVpcAttribute",
"ec2:DescribeVpcClassicLink",
"ec2:DescribeVpcClassicLinkDnsSupport",
"ec2:DescribeVpcEndpoints",
"ec2:DescribeVpcs",
"ec2:DetachInternetGateway",
"ec2:DisassociateRouteTable",
"ec2:GetConsoleOutput",
"ec2:GetEbsDefaultKmsKeyId",
"ec2:ModifyInstanceAttribute",
"ec2:ModifyNetworkInterfaceAttribute",
"ec2:ModifySubnetAttribute",
"ec2:ModifyVpcAttribute",
"ec2:ModifyVpcAttribute",
"ec2:ReleaseAddress",
"ec2:ReplaceRouteTableAssociation",
"ec2:RevokeSecurityGroupEgress",
"ec2:RevokeSecurityGroupIngress",
"ec2:RunInstances",
"ec2:StartInstances",
"ec2:StopInstances",
"ec2:TerminateInstances",
"elasticloadbalancing:AddTags",
"elasticloadbalancing:ApplySecurityGroupsToLoadBalancer",
"elasticloadbalancing:AttachLoadBalancerToSubnets",
"elasticloadbalancing:ConfigureHealthCheck",
"elasticloadbalancing:CreateListener",
"elasticloadbalancing:CreateLoadBalancer",
"elasticloadbalancing:CreateLoadBalancerListeners",
"elasticloadbalancing:CreateTargetGroup",
"elasticloadbalancing:DeleteLoadBalancer",
"elasticloadbalancing:DeleteTargetGroup",
"elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
"elasticloadbalancing:DeregisterTargets",
"elasticloadbalancing:DescribeAccountLimits",
"elasticloadbalancing:DescribeInstanceHealth",
"elasticloadbalancing:DescribeListeners",
"elasticloadbalancing:DescribeLoadBalancerAttributes",
"elasticloadbalancing:DescribeLoadBalancers",
"elasticloadbalancing:DescribeTags",
"elasticloadbalancing:DescribeTargetGroupAttributes",
"elasticloadbalancing:DescribeTargetGroups",
"elasticloadbalancing:DescribeTargetHealth",
"elasticloadbalancing:ModifyLoadBalancerAttributes",
"elasticloadbalancing:ModifyTargetGroup",
"elasticloadbalancing:ModifyTargetGroupAttributes",
"elasticloadbalancing:RegisterInstancesWithLoadBalancer",
"elasticloadbalancing:RegisterTargets",
"elasticloadbalancing:SetLoadBalancerPoliciesOfListener",
"iam:AddRoleToInstanceProfile",
"iam:CreateInstanceProfile",
"iam:DeleteInstanceProfile",
"iam:GetInstanceProfile",
"iam:TagInstanceProfile",
"iam:GetRole",
"iam:GetRolePolicy",
"iam:GetUser",
"iam:ListAttachedRolePolicies",
"iam:ListInstanceProfiles",
"iam:ListInstanceProfilesForRole",
"iam:ListRolePolicies",
"iam:ListRoles",
"iam:ListUserPolicies",
"iam:ListUsers",
"iam:PassRole",
"iam:RemoveRoleFromInstanceProfile",
"iam:SimulatePrincipalPolicy",
"iam:TagRole",
"iam:UntagRole",
"route53:ChangeResourceRecordSets",
"route53:ChangeTagsForResource",
"route53:CreateHostedZone",
"route53:DeleteHostedZone",
"route53:GetAccountLimit",
"route53:GetChange",
"route53:GetHostedZone",
"route53:ListHostedZones",
"route53:ListHostedZonesByName",
"route53:ListResourceRecordSets",
"route53:ListTagsForResource",
"route53:UpdateHostedZoneComment",
"s3:CreateBucket",
"s3:DeleteBucket",
"s3:DeleteObject",
"s3:DeleteObjectVersion",
"s3:GetAccelerateConfiguration",
"s3:GetBucketAcl",
"s3:GetBucketCORS",
"s3:GetBucketLocation",
"s3:GetBucketLogging",
"s3:GetBucketObjectLockConfiguration",
"s3:GetBucketPolicy",
"s3:GetBucketReplication",
"s3:GetBucketRequestPayment",
"s3:GetBucketTagging",
"s3:GetBucketVersioning",
"s3:GetBucketWebsite",
"s3:GetEncryptionConfiguration",
"s3:GetLifecycleConfiguration",
"s3:GetObject",
"s3:GetObjectAcl",
"s3:GetObjectTagging",
Table 5.4. ROSA control plane role, policy, and policy files

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManagedOpenShift-ControlPlane-Role</td>
<td>An IAM role used by the ROSA control plane.</td>
</tr>
<tr>
<td>Resource</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ManagedOpenShift-ControlPlane-Role-Policy</td>
<td>An IAM policy that provides the ROSA control plane with the permissions required to manage its components.</td>
</tr>
</tbody>
</table>

Example 5.3. `sts_instance_controlplane_trust_policy.json`

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": ["ec2.amazonaws.com"]
 },
 "Action": ["sts:AssumeRole"]
 }
]
}
```

Example 5.4. `sts_instance_controlplane_permission_policy.json`

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateSecurityGroup",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:DeleteSecurityGroup",
 "ec2:DeleteVolume",
 "ec2:Describe*",
 "ec2:DetachVolume",
 "ec2:ModifyInstanceAttribute",
 "ec2:ModifyVolume",
 "ec2:RevokeSecurityGroupIngress",
 "elasticloadbalancing:AddTags",
 "elasticloadbalancing:AttachLoadBalancerToSubnets",
 "elasticloadbalancing:ApplySecurityGroupsToLoadBalancer",
 "elasticloadbalancing:CreateListener",
 "elasticloadbalancing:CreateLoadBalancer",
 "elasticloadbalancing:CreateLoadBalancerPolicy",
```
Table 5.5. ROSA compute node role, policy, and policy files

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManagedOpenShift-Worker-Role</td>
<td>An IAM role used by the ROSA compute instances.</td>
</tr>
<tr>
<td>ManagedOpenShift-Worker-Role-Policy</td>
<td>An IAM policy that provides the ROSA compute instances with the permissions required to manage their components.</td>
</tr>
</tbody>
</table>

Example 5.5. sts_instance_worker_trust_policy.json

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": ["ec2.amazonaws.com"
],
 "Action": ["sts:AssumeRole"
]
]
}
```
Example 5.6. `sts_instance_worker_permission_policy.json`

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInstances",
 "ec2:DescribeRegions"
],
 "Resource": "*"
 }
]
}
```

Example 5.7. `sts_support_trust_policy.json`

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
]
 },
 "Action": [
 "sts:AssumeRole"
]
 }
]
}
```

Table 5.6. ROSA support role, policy, and policy files

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManagedOpenShift-Support-Role</td>
<td>An IAM role used by the Red Hat Site Reliability Engineering (SRE) support team.</td>
</tr>
<tr>
<td>ManagedOpenShift-Support-Role-Policy</td>
<td>An IAM policy that provides the Red Hat SRE support team with the permissions required to support ROSA clusters.</td>
</tr>
</tbody>
</table>
Example 5.8. sts_support_permission_policy.json

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudtrail:DescribeTrails",
 "cloudtrail:LookupEvents",
 "cloudwatch:GetMetricData",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics",
 "ec2-instance-connect:SendSerialConsoleSSH PublicKey",
 "ec2:CopySnapshot",
 "ec2:CreateNetworkInsightsPath",
 "ec2:CreateSnapshot",
 "ec2:CreateSnapshots",
 "ec2:CreateTags",
 "ec2:DeleteNetworkInsightsAnalysis",
 "ec2:DeleteNetworkInsightsPath",
 "ec2:DeleteTags",
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeAddresses",
 "ec2:DescribeAddressesAttribute",
 "ec2:DescribeAggregateIdFormat",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeByoipCidrs",
 "ec2:DescribeCapacityReservations",
 "ec2:DescribeCarrierGateways",
 "ec2:DescribeClassicLinkInstances",
 "ec2:DescribeClientVpnAuthorizations",
 "ec2:DescribeClientVpnConnections",
 "ec2:DescribeClientVpnEndpoints",
 "ec2:DescribeClientVpnRoutes",
 "ec2:DescribeClientVpnTargetNetworks",
 "ec2:DescribeCoipPools",
 "ec2:DescribeCustomerGateways",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeEgressOnlyInternetGateways",
 "ec2:DescribeIamInstanceProfileAssociations",
 "ec2:DescribeIdentityIdFormat",
 "ec2:DescribeIdFormat",
 "ec2:DescribeImageAttribute",
 "ec2:DescribeImages",
 "ec2:DescribeInstanceAttribute",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:DescribeInstanceTypeOfferings",
 "ec2:DescribeInstanceTypes",
 "ec2:DescribeInternetGateways",
 "ec2:DescribeIpv6Pools",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeLaunchTemplates",
 "ec2:DescribeLocalGatewayRouteTables",
 "ec2:DescribeLocalGatewayRouteTableVirtualInterfaceGroupAssociations",
]
 }
]
}
```
"ec2:DescribeLocalGatewayRouteTableVpcAssociations",
"ec2:DescribeLocalGateways",
"ec2:DescribeLocalGatewayVirtualInterfaceGroups",
"ec2:DescribeLocalGatewayVirtualInterfaces",
"ec2:DescribeManagedPrefixLists",
"ec2:DescribeNatGateways",
"ec2:DescribeNetworkAcls",
"ec2:DescribeNetworkInsightsAnalyses",
"ec2:DescribeNetworkInsightsPaths",
"ec2:DescribeNetworkInterfaces",
"ec2:DescribePlacementGroups",
"ec2:DescribePrefixLists",
"ec2:DescribePrincipalIdFormat",
"ec2:DescribePublicIpv4Pools",
"ec2:DescribeRegions",
"ec2:DescribeReservedInstances",
"ec2:DescribeRouteTables",
"ec2:DescribeScheduledInstances",
"ec2:DescribeSecurityGroupReferences",
"ec2:DescribeSecurityGroupRules",
"ec2:DescribeSecurityGroups",
"ec2:DescribeSnapshotAttribute",
"ec2:DescribeSnapshots",
"ec2:DescribeSpotFleetInstances",
"ec2:DescribeStaleSecurityGroups",
"ec2:DescribeSubnets",
"ec2:DescribeTags",
"ec2:DescribeTransitGatewayAttachments",
"ec2:DescribeTransitGatewayConnectPeers",
"ec2:DescribeTransitGatewayConnects",
"ec2:DescribeTransitGatewayMulticastDomains",
"ec2:DescribeTransitGatewayPeeringAttachments",
"ec2:DescribeTransitGatewayRouteTables",
"ec2:DescribeTransitGateways",
"ec2:DescribeTransitGatewayVpcAttachments",
"ec2:DescribeVolumeAttribute",
"ec2:DescribeVolumeStatus",
"ec2:DescribeVolumes",
"ec2:DescribeVolumesModifications",
"ec2:DescribeVpcAttribute",
"ec2:DescribeVpcClassicLink",
"ec2:DescribeVpcClassicLinkDnsSupport",
"ec2:DescribeVpcEndpointConnectionNotifications",
"ec2:DescribeVpcEndpointConnections",
"ec2:DescribeVpcEndpointServiceConfigurations",
"ec2:DescribeVpcEndpointServicePermissions",
"ec2:DescribeVpcEndpointServices",
"ec2:DescribeVpcEndpoints",
"ec2:DescribeVpcPeeringConnections",
"ec2:DescribeVpcs",
"ec2:DescribeVpnConnections",
"ec2:DescribeVpnGateways",
"ec2:GetAssociatedIpv6PoolCidrs",
"ec2:GetConsoleOutput",
"ec2:GetManagedPrefixListEntries",
"ec2:GetSerialConsoleAccessStatus",
"ec2:GetTransitGatewayAttachmentPropagations",
"ec2:GetTransitGatewayMulticastDomainAssociations",
"ec2:GetTransitGatewayPrefixListReferences",
"ec2:GetTransitGatewayRouteTableAssociations",
"ec2:GetTransitGatewayRouteTablePropagations",
"ec2:ModifyInstanceAttribute",
"ec2:RebootInstances",
"ec2:RunInstances",
"ec2:SearchLocalGatewayRoutes",
"ec2:SearchTransitGatewayMulticastGroups",
"ec2:SearchTransitGatewayRoutes",
"ec2:StartInstances",
"ec2:StartNetworkInsightsAnalysis",
"ec2:StopInstances",
"ec2:TerminateInstances",
"elasticloadbalancing:ConfigureHealthCheck",
"elasticloadbalancing:DescribeAccountLimits",
"elasticloadbalancing:DescribeInstanceHealth",
"elasticloadbalancing:DescribeListenerCertificates",
"elasticloadbalancing:DescribeListeners",
"elasticloadbalancing:DescribeLoadBalancerAttributes",
"elasticloadbalancing:DescribeLoadBalancerPolicies",
"elasticloadbalancing:DescribeLoadBalancerPolicyTypes",
"elasticloadbalancing:DescribeLoadBalancers",
"elasticloadbalancing:DescribeRules",
"elasticloadbalancing:DescribeSSLPolicies",
"elasticloadbalancing:DescribeTags",
"elasticloadbalancing:DescribeTargetGroupAttributes",
"elasticloadbalancing:DescribeTargetGroups",
"elasticloadbalancing:DescribeTargetHealth",
"iam:GetRole",
"iam:ListRoles",
"kms:CreateGrant",
"route53:GetHostedZone",
"route53:GetHostedZoneCount",
"route53:ListHostedZones",
"route53:ListHostedZonesByName",
"route53:ListResourceRecordSets",
"s3:GetBucketTagging",
"s3:GetObjectAcl",
"s3:GetObjectTagging",
"s3:ListAllMyBuckets"
"sts:DecodeAuthorizationMessage",
"tiros:CreateQuery",
"tiros:GetQueryAnswer",
"tiros:GetQueryExplanation"
},
"Resource": "*
},
{
"Effect": "Allow",
"Action": "s3:ListBucket",
"Resource": [ 
  "arn:aws:s3:::managed-velero*",
  "arn:aws:s3:::*image-registry*"
]
Table 5.7. ROSA Ingress Operator IAM policy and policy file

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManagedOpenShift-openshift-ingress-operator-cloud-credentials</td>
<td>An IAM policy that provides the ROSA Ingress Operator with the permissions required to manage external access to a cluster.</td>
</tr>
</tbody>
</table>

Example 5.9. openshift_ingress_operator_cloud_credentials_policy.json

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:DescribeLoadBalancers",
 "route53:ListHostedZones",
 "route53:ChangeResourceRecordSets",
 "tag:GetResources"
],
 "Resource": "*"
 }
]
}
```

Table 5.8. ROSA back-end storage IAM policy and policy file

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManagedOpenShift-openshift-cluster-csi-drivers-ebs-cloud-credentials</td>
<td>An IAM policy required by ROSA to manage back-end storage through the Container Storage Interface (CSI).</td>
</tr>
</tbody>
</table>

Example 5.10. openshift_cluster_csi_drivers_ebs_cloud_credentials_policy.json

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:CreateSnapshot",
 ...
],
 "Resource": "*"
 }
]
}
```
Table 5.9. ROSA Machine Config Operator policy and policy file

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManagedOpenShift-openshift-machine-api-aws-cloud-credentials</td>
<td>An IAM policy that provides the ROSA Machine Config Operator with the permissions required to perform core cluster functionality.</td>
</tr>
</tbody>
</table>

Example 5.11. openshift_machine_api_aws_cloud_credentials_policy.json

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:DeleteSnapshot",
 "ec2:DeleteTags",
 "ec2:DeleteVolume",
 "ec2:DescribeInstances",
 "ec2:DescribeSnapshots",
 "ec2:DescribeTags",
 "ec2:DescribeVolumes",
 "ec2:DescribeVolumesModifications",
 "ec2:DetachVolume",
 "ec2:ModifyVolume"
],
 "Resource": "*"
 }
]
}
```
Table 5.10. ROSA Cloud Credential Operator policy and policy file

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManagedOpenShift-openshift-cloud-credential-operator-cloud-credentials</td>
<td>An IAM policy that provides the ROSA Cloud Credential Operator with the permissions required to manage cloud provider credentials.</td>
</tr>
</tbody>
</table>

Example 5.12. openshift_cloud_credential_operator_cloud_credential_operator_iam_ro_creds_policy.json

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:Encrypt",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlainText",
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:RevokeGrant",
 "kms:CreateGrant",
 "kms:ListGrants"
],
 "Resource": "*",
 "Condition": {
 "Bool": {
 "kms:GrantIsForAWSResource": true
 }
 }
 }
]
}
```
### Table 5.11. ROSA Image Registry Operator policy and policy file

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManagedOpenShift-openshift-image-registry-installer-cloud-credentials</td>
<td>An IAM policy that provides the ROSA Image Registry Operator with the permissions required to manage the OpenShift image registry storage in AWS S3 for a cluster.</td>
</tr>
</tbody>
</table>

#### Example 5.13. openshift_image_registry_installer_cloud_credentials_policy.json

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:DeleteBucket",
 "s3:PutBucketTagging",
 "s3:GetBucketTagging",
 "s3:PutBucketPublicAccessBlock",
 "s3:GetBucketPublicAccessBlock",
 "s3:PutEncryptionConfiguration",
 "s3:GetEncryptionConfiguration",
 "s3:PutLifecycleConfiguration",
 "s3:GetLifecycleConfiguration",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:ListBucketMultipartUploads",
 "s3:AbortMultipartUpload",
 "s3:ListMultipartUploadParts"
],
 "Resource": "*"
 }
]
}
```

### Additional resources

- For a definition of OpenShift major, minor, and patch versions, see the Red Hat OpenShift Service on AWS update life cycle.

### 5.2.2. Account-wide IAM role and policy AWS CLI reference
This section lists the **aws** CLI commands that the **rosa** command generates in the terminal. You can run the command in either manual or automatic mode.

**Using manual mode for account role creation**
The manual role creation mode generates the **aws** commands for you to review and run. The following command starts that process:

```
$ rosa create account-roles --mode manual
```

**NOTE**
The provided command examples include the **ManagedOpenShift** prefix. The **ManagedOpenShift** prefix is the default value, if you do not specify a custom prefix by using the **--prefix** option.

**Command output**

```bash
aws iam create-role \
--role-name ManagedOpenShift-Installer-Role \
--assume-role-policy-document file://sts_installer_trust_policy.json \
--tags Key=rosa_openshift_version,Value=4.8 Key=rosa_role_prefix,Value=ManagedOpenShift
Key=rosa_role_type,Value=installer

aws iam put-role-policy \
--role-name ManagedOpenShift-Installer-Role \
--policy-name ManagedOpenShift-Installer-Role-Policy \
--policy-document file://sts_installer_permission_policy.json

aws iam create-role \
--role-name ManagedOpenShift-ControlPlane-Role \
--assume-role-policy-document file://sts_instance_controlplane_trust_policy.json \
--tags Key=rosa_openshift_version,Value=4.8 Key=rosa_role_prefix,Value=ManagedOpenShift
Key=rosa_role_type,Value=instance_controlplane

aws iam put-role-policy \
--role-name ManagedOpenShift-ControlPlane-Role \
--policy-name ManagedOpenShift-ControlPlane-Role-Policy \
--policy-document file://sts_instance_controlplane_permission_policy.json

aws iam create-role \
--role-name ManagedOpenShift-Worker-Role \
--assume-role-policy-document file://sts_instance_worker_trust_policy.json \
--tags Key=rosa_openshift_version,Value=4.8 Key=rosa_role_prefix,Value=ManagedOpenShift
Key=rosa_role_type,Value=instance_worker

aws iam put-role-policy \
--role-name ManagedOpenShift-Worker-Role \
--policy-name ManagedOpenShift-Worker-Role-Policy \
--policy-document file://sts_instance_worker_permission_policy.json

aws iam create-role \
--role-name ManagedOpenShift-Support-Role \
--assume-role-policy-document file://sts_support_trust_policy.json \
--tags Key=rosa_openshift_version,Value=4.8 Key=rosa_role_prefix,Value=ManagedOpenShift
```
Using auto mode for role creation
When you add the --mode auto argument, the Red Hat OpenShift Service on AWS (ROSA) CLI, `rosa`, creates your roles and policies. The following command starts that process:

```bash
$ rosa create account-roles --mode auto
```

### NOTE

The provided command examples include the `ManagedOpenShift` prefix. The `ManagedOpenShift` prefix is the default value, if you do not specify a custom prefix by using the `--prefix` option.
5.3. CLUSTER-SPECIFIC OPERATOR IAM ROLE REFERENCE

This section provides details about the Operator IAM roles that are required for Red Hat OpenShift Service on AWS (ROSA) deployments that use STS. The cluster Operators use the Operator roles to obtain the temporary permissions required to carry out cluster operations, such as managing back-end storage, cloud provider credentials, and external access to a cluster.

When you create the Operator roles, the account-wide Operator policies for the matching cluster version are attached to the roles. The Operator policies are tagged with the Operator and version they are compatible with. The correct policy for an Operator role is determined by using the tags.

**NOTE**

If more than one matching policy is available in your account for an Operator role, an interactive list of options is provided when you create the Operator.

Table 5.12. ROSA cluster-specific Operator roles
<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;cluster_name&gt;-&lt;hash&gt;-openshift-cluster-csi-drivers-ebs-cloud-credentials</code></td>
<td>An IAM role required by ROSA to manage back-end storage through the Container Storage Interface (CSI).</td>
</tr>
<tr>
<td><code>&lt;cluster_name&gt;-&lt;hash&gt;-openshift-machine-api-aws-cloud-credentials</code></td>
<td>An IAM role required by the ROSA Machine Config Operator to perform core cluster functionality.</td>
</tr>
<tr>
<td><code>&lt;cluster_name&gt;-&lt;hash&gt;-openshift-cloud-credential-operator-cloud-credentials</code></td>
<td>An IAM role required by the ROSA Cloud Credential Operator to manage cloud provider credentials.</td>
</tr>
<tr>
<td><code>&lt;cluster_name&gt;-&lt;hash&gt;-openshift-cloud-network-config-controller-credentials</code></td>
<td>An IAM role required by the cloud network config controller to manage cloud network configuration for a cluster.</td>
</tr>
<tr>
<td><code>&lt;cluster_name&gt;-&lt;hash&gt;-openshift-image-registry-installer-cloud-credentials</code></td>
<td>An IAM role required by the ROSA Image Registry Operator to manage the OpenShift image registry storage in AWS S3 for a cluster.</td>
</tr>
<tr>
<td><code>&lt;cluster_name&gt;-&lt;hash&gt;-openshift-ingress-operator-cloud-credentials</code></td>
<td>An IAM role required by the ROSA Ingress Operator to manage external access to a cluster.</td>
</tr>
<tr>
<td><code>&lt;cluster_name&gt;-&lt;hash&gt;-openshift-cloud-network-config-controller-cloud-credentials</code></td>
<td>An IAM role required by the cloud network config controller to manage cloud network credentials for a cluster.</td>
</tr>
</tbody>
</table>

### 5.3.1. Operator IAM role AWS CLI reference

This section lists the `aws` CLI commands that are shown in the terminal when you run the following `rosa` command using `manual` mode:

```bash
$ rosa create operator-roles --mode manual --cluster <cluster_name>
```

**NOTE**

When using `manual` mode, the `aws` commands are printed to the terminal for your review. After reviewing the `aws` commands, you must run them manually. Alternatively, you can specify `--mode auto` with the `rosa create` command to run the `aws` commands immediately.

**Command output**

```bash
aws iam create-role
 --role-name <cluster_name>-<hash>-openshift-cluster-csi-drivers-ebs-cloud-credential
```
--assume-role-policy-document file://operator_cluster_csi_drivers_ebs_cloud_credentials_policy.json
	\--tags Key=rosa_cluster_id,Value=<id> Key=rosa_openshift_version,Value=4.8
Key=rosa_role_prefix,Value= Key=operator_namespace,Value=openshift-cluster-csi-drivers
Key=operator_name,Value=ebs-cloud-credentials

aws iam attach-role-policy
\--role-name <cluster_name>-<hash>-openshift-cluster-csi-drivers-ebs-cloud-credent
\--policy-arn arn:aws:iam::<aws_account_id>:policy/ManagedOpenShift-openshift-cluster-csi-drivers-
\--assume-role-policy-document file://operator_cluster_csi_drivers_ebs_cloud_credentials_policy.json
\--tags Key=rosa_cluster_id,Value=<id> Key=rosa_openshift_version,Value=4.8
Key=rosa_role_prefix,Value= Key=operator_namespace,Value=openshift-cluster-csi-drivers
Key=operator_name,Value=ebs-cloud-credentials

aws iam create-role
\--role-name <cluster_name>-<hash>-openshift-machine-api-aws-cloud-credentials
\--assume-role-policy-document file://operator_machine_api_aws_cloud_credentials_policy.json
\--tags Key=rosa_cluster_id,Value=<id> Key=rosa_openshift_version,Value=4.8
Key=rosa_role_prefix,Value= Key=operator_namespace,Value=openshift-machine-api
Key=operator_name,Value=aws-cloud-credentials

aws iam attach-role-policy
\--role-name <cluster_name>-<hash>-openshift-machine-api-aws-cloud-credentials
\--policy-arn arn:aws:iam::<aws_account_id>:policy/ManagedOpenShift-openshift-machine-api-aws-
\--assume-role-policy-document file://operator_machine_api_aws_cloud_credentials_policy.json
\--tags Key=rosa_cluster_id,Value=<id> Key=rosa_openshift_version,Value=4.8
Key=rosa_role_prefix,Value= Key=operator_namespace,Value=openshift-machine-api
Key=operator_name,Value=aws-cloud-credentials

aws iam create-role
\--role-name <cluster_name>-<hash>-openshift-cloud-credential-operator-cloud-crede
\--assume-role-policy-document
file://operator_cloud_credential_operator_cloud_credential_operator_iam_ro_creds_policy.json
\--tags Key=rosa_cluster_id,Value=<id> Key=rosa_openshift_version,Value=4.8
Key=rosa_role_prefix,Value= Key=operator_namespace,Value=openshift-cloud-credential-operator
Key=operator_name,Value=cloud-credential-operator-iam-ro-creds

aws iam attach-role-policy
\--role-name <cluster_name>-<hash>-openshift-cloud-credential-operator-cloud-crede
\--policy-arn arn:aws:iam::<aws_account_id>:policy/ManagedOpenShift-openshift-cloud-credential-
\--assume-role-policy-document file://operator_cloud_credential_operator_cloud_credential_operator_iam_ro_creds_policy.json
\--tags Key=rosa_cluster_id,Value=<id> Key=rosa_openshift_version,Value=4.8
Key=rosa_role_prefix,Value= Key=operator_namespace,Value=openshift-cloud-credential-operator
Key=operator_name,Value=cloud-credential-operator-iam-ro-creds

aws iam create-role
\--role-name <cluster_name>-<hash>-openshift-image-registry-installer-cloud-creden
\--assume-role-policy-document file://operator_image_registry_installer_cloud_credentials_policy.json
\--tags Key=rosa_cluster_id,Value=<id> Key=rosa_openshift_version,Value=4.8
Key=rosa_role_prefix,Value= Key=operator_namespace,Value=openshift-image-registry
Key=operator_name,Value=installer-cloud-credentials

aws iam attach-role-policy
\--role-name <cluster_name>-<hash>-openshift-image-registry-installer-cloud-creden
\--policy-arn arn:aws:iam::<aws_account_id>:policy/ManagedOpenShift-openshift-image-registry-
\--assume-role-policy-document file://operator_image_registry_installer_cloud_credentials_policy.json
\--tags Key=rosa_cluster_id,Value=<id> Key=rosa_openshift_version,Value=4.8
Key=rosa_role_prefix,Value= Key=operator_namespace,Value=openshift-image-registry
Key=operator_name,Value=installer-cloud-credentials

aws iam create-role
\--role-name <cluster_name>-<hash>-openshift-image-registry-installer-cloud-creden
\--policy-arn arn:aws:iam::<aws_account_id>:policy/ManagedOpenShift-openshift-image-registry-
\--assume-role-policy-document file://operator_image_registry_installer_cloud_credentials_policy.json
\--tags Key=rosa_cluster_id,Value=<id> Key=rosa_openshift_version,Value=4.8
Key=rosa_role_prefix,Value= Key=operator_namespace,Value=openshift-image-registry
Key=operator_name,Value=installer-cloud-credentials

aws iam attach-role-policy
\--role-name <cluster_name>-<hash>-openshift-ingress-operator-cloud-credentials
\--policy-arn arn:aws:iam::<aws_account_id>:policy/ManagedOpenShift-openshift-ingress-operator-
\--assume-role-policy-document file://operator_ingress_operator_cloud_credentials_policy.json
\--tags Key=rosa_cluster_id,Value=<id> Key=rosa_openshift_version,Value=4.8
Key=rosa_role_prefix,Value= Key=operator_namespace,Value=openshift-ingress-operator
Key=operator_name,Value=cloud-credentials
aws iam attach-role-policy \\  
--role-name <cluster_name>-<hash>-openshift-ingress-operator-cloud-credentials \\  

5.3.2. About custom Operator IAM role prefixes

Each Red Hat OpenShift Service on AWS (ROSA) cluster that uses the AWS Security Token Service (STS) requires cluster-specific Operator IAM roles.

By default, the Operator role names are prefixed with the cluster name and a random 4-digit hash. For example, the Cloud Credential Operator IAM role for a cluster named mycluster has the default name mycluster-<hash>-openshift-cloud-credential-operator-cloud-credentials, where <hash> is a random 4-digit string.

This default naming convention enables you to easily identify the Operator IAM roles for a cluster in your AWS account.

When you create the Operator roles for a cluster, you can optionally specify a custom prefix to use instead of <cluster_name>-<hash>. By using a custom prefix, you can prepend logical identifiers to your Operator role names to meet the requirements of your environment. For example, you might prefix the cluster name and the environment type, such as mycluster-dev. In that example, the Cloud Credential Operator role name with the custom prefix is mycluster-dev-openshift-cloud-credential-operator-cloud-credentials.

NOTE

The role names are truncated to 64 characters.

Additional resources

- For steps to create the cluster-specific Operator IAM roles using a custom prefix, see Creating a cluster with customizations using the CLI or Creating a cluster with customizations by using OpenShift Cluster Manager.

5.4. OPEN ID CONNECT (OIDC) REQUIREMENTS FOR OPERATOR AUTHENTICATION

For ROSA installations that use STS, you must create a cluster-specific OIDC provider that is used by the cluster Operators to authenticate or create your own OIDC configuration for your own OIDC provider.

5.4.1. Creating an OIDC provider using the CLI

You can create an OIDC provider that is hosted in your AWS account with the Red Hat OpenShift Service on AWS (ROSA) CLI, rosa.
Prerequisites

- You have installed the latest version of the ROSA CLI.

Procedure

- To create an OIDC provider, by using an unregistered or a registered OIDC configuration.

  - Unregistered OIDC configurations require you to create the OIDC provider through the cluster. Run the following to create the OIDC provider:

    ```bash
 $ rosa create oidc-provider --mode manual --cluster <cluster_name>

 NOTE

 When using manual mode, the aws command is printed to the terminal for your review. After reviewing the aws command, you must run it manually. Alternatively, you can specify --mode auto with the rosa create command to run the aws command immediately.

 Command output

 aws iam create-open-id-connect-provider
 --client-id-list openshift sts.<aws_region>.amazonaws.com
 --thumbprint-list <thumbprint>

 The thumbprint is generated automatically when you run the rosa create oidc-provider command. For more information about using thumbprints with AWS Identity and Access Management (IAM) OpenID Connect (OIDC) identity providers, see the AWS documentation.

 - Registered OIDC configurations use an OIDC configuration ID. Run the following command with your OIDC configuration ID:

    ```bash
    $ rosa create oidc-provider --oidc-config-id <oidc_config_id> --mode auto -y
    
    Command output
    
    I: Creating OIDC provider using 'arn:aws:iam::4540112244:user/userName'
    I: Created OIDC provider with ARN 'arn:aws:iam::4540112244:oidc-provider/dvwgdztzaeq9o.cloudfront.net/241rh9qf5ggu99d7leokhvkp8icnalpf'

5.4.2. Creating an OpenID Connect Configuration

When using a cluster hosted by Red Hat, you can create a managed or unmanaged OpenID Connect (OIDC) configuration by using the Red Hat OpenShift Service on AWS (ROSA) CLI, `rosa`. A managed OIDC configuration is stored within Red Hat’s AWS account, while a generated unmanaged OIDC configuration is stored within your AWS account. The OIDC configuration is registered to be used with OpenShift Cluster Manager. When creating an unmanaged OIDC configuration, the CLI provides the private key for you.
Creating an OpenID Connect configuration
When using a Red Hat OpenShift Service on AWS cluster, you can create the OpenID Connect (OIDC) configuration prior to creating your cluster. This configuration is registered to be used with OpenShift Cluster Manager.

Prerequisites
- You have installed and configured the latest Red Hat OpenShift Service on AWS (ROSA) CLI, `rosa`, on your installation host.

Procedure
- To create your OIDC configuration alongside the AWS resources, run the following command:

  ```
 $ rosa create oidc-config --mode=auto --yes
  ```

  This command returns the following information.

  **Sample output**

  ? Would you like to create a Managed (Red Hat hosted) OIDC Configuration Yes
  I: Setting up managed OIDC configuration
  I: To create Operator Roles for this OIDC Configuration, run the following command and remember to replace <user-defined> with a prefix of your choice:
  rosa create operator-roles --prefix <user-defined> --oidc-config-id 13cdr6b
  If you are going to create a Hosted Control Plane cluster please include '--hosted-cp'
  I: Creating OIDC provider using 'arn:aws:iam::4540112244:user/userName'
  ? Create the OIDC provider? Yes
  I: Created OIDC provider with ARN 'arn:aws:iam::4540112244:oidc-provider/dvbwgdztaeq9o.cloudfront.net/13cdr6b'

  When creating your cluster, you must supply the OIDC config ID. The CLI output provides this value for `--mode auto`, otherwise you must determine these values based on `aws` CLI output for `--mode manual`.

- Optional: you can save the OIDC configuration ID as a variable to use later. Run the following command to save the variable:

  ```
 $ export OIDC_ID=30f5dqmk
 $$ echo $OIDC_ID
 30f5dqmk
  ```

Verification
1. You can list the possible OIDC configurations available for your clusters that are associated with your user organization. Run the following command:

  ```
 $ rosa list oidc-configs
  ```
Sample output

<table>
<thead>
<tr>
<th>ID</th>
<th>MANAGED</th>
<th>ISSUER URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2330dbs0n8m3chkkr25gkcd8pnj3lk2</td>
<td>true</td>
<td><a href="https://dvbwgdzaeq9o.cloudfront.net/2330dbs0n8m3chkkr25gkcd8pnj3lk2">https://dvbwgdzaeq9o.cloudfront.net/2330dbs0n8m3chkkr25gkcd8pnj3lk2</a></td>
</tr>
<tr>
<td>233hvnrjoqu14jltk6ihbj2fj11f8un</td>
<td>false</td>
<td><a href="https://oidc-r7u1.s3-us-east-1.amazonaws.com">https://oidc-r7u1.s3-us-east-1.amazonaws.com</a></td>
</tr>
<tr>
<td>aws:secretsmanager:us-east-1:242819244:secret:rosa-private-key-oidc-r7u1-tM3MDN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter options for creating your own OpenID Connect configuration

The following options may be added to the `rosa create oidc-config` command. All of these parameters are optional. Running the `rosa create oidc-config` command without parameters creates an unmanaged OIDC configuration.

### NOTE

You are required to register the unmanaged OIDC configuration by posting a request to `/oidc_configs` through OpenShift Cluster Manager. You receive an ID in the response. Use this ID to create a cluster.

#### raw-files

Allows you to provide raw files for the private RSA key. This key is named `rosa-private-key-oidc-<random_label_of_length_4>.key`. You also receive a discovery document, named `discovery-document-oidc-<random_label_of_length_4>.json`, and a JSON Web Key Set, named `jwks-oidc-<random_label_of_length_4>.json`.

You use these files to set up the endpoint. This endpoint responds to `.well-known/openid-configuration` with the discovery document and on `keys.json` with the JSON Web Key Set. The private key is stored in Amazon Web Services (AWS) Secrets Manager Service (SMS) as plaintext.

**Example**

```bash
$ rosa create oidc-config --raw-files
```

#### mode

Allows you to specify the mode to create your OIDC configuration. With the `manual` option, you receive AWS commands that set up the OIDC configuration in an S3 bucket. This option stores the private key in the Secrets Manager. With the `manual` option, the OIDC Endpoint URL is the URL for the S3 bucket. You must retrieve the Secrets Manager ARN to register the OIDC configuration with OpenShift Cluster Manager.

You receive the same OIDC configuration and AWS resources as the `manual` mode when using the `auto` option. A significant difference between the two options is that when using the `auto` option, ROSA calls AWS, so you do not need to take any further actions. The OIDC Endpoint URL is the URL for the S3 bucket. The CLI retrieves the Secrets Manager ARN, registers the OIDC configuration with OpenShift Cluster Manager, and reports the second `rosa` command that the user can run to continue with the creation of the STS cluster.

**Example**

```bash
$ rosa create oidc-config --mode=<auto|manual>
```
**managed**

Creates an OIDC configuration that is hosted under Red Hat’s AWS account. This command creates a private key that responds directly with an OIDC Config ID for you to use when creating the STS cluster.

**Example**

```bash
$ rosa create oidc-config --managed
```

**Sample output**

```
W: For a managed OIDC Config only auto mode is supported. However, you may choose the provider creation mode
? OIDC Provider creation mode: auto
I: Setting up managed OIDC configuration
I: Please run the following command to create a cluster with this oidc config
rosa create cluster --sts --oidc-config-id 233jnu62i9aphpucsj9kueqkr1vcgra
I: Creating OIDC provider using 'arn:aws:iam::242819244:user/userName'
? Create the OIDC provider? Yes
I: Created OIDC provider with ARN 'arn:aws:iam::242819244:oidc-provider/dvbwgdztaeq9o.cloudfront.net/233jnu62i9aphpucsj9kueqkr1vcgra'
```

**5.5. MINIMUM SET OF EFFECTIVE PERMISSIONS FOR SERVICE CONTROL POLICIES (SCP)**

Service control policies (SCP) are a type of organization policy that manages permissions within your organization. SCPs ensure that accounts within your organization stay within your defined access control guidelines. These policies are maintained in AWS Organizations and control the services that are available within the attached AWS accounts. SCP management is the responsibility of the customer.

*NOTE*

When using AWS Security Token Service (STS), you must ensure that the service control policy does not block the following resources:

- `ec2:[]`
- `iam:[]`
- `tag:*`

Verify that your service control policy (SCP) does not restrict any of these required permissions.

<table>
<thead>
<tr>
<th>Service</th>
<th>Actions</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazon EC2</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>Amazon EC2 Auto Scaling</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>Amazon S3</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>Service</td>
<td>Actions</td>
<td>Effect</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Identity And Access Management</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>Elastic Load Balancing</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>Elastic Load Balancing V2</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>Amazon CloudWatch</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>Amazon CloudWatch Events</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>Amazon CloudWatch Logs</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>AWS Support</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>AWS Key Management Service</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>AWS Security Token Service</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>AWS Marketplace</td>
<td>Subscribe</td>
<td>Allow</td>
</tr>
<tr>
<td></td>
<td>Unsubscribe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>View Subscriptions</td>
<td></td>
</tr>
<tr>
<td>AWS Resource Tagging</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>AWS Route53 DNS</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>AWS Service Quotas</td>
<td>ListServices</td>
<td>Allow</td>
</tr>
<tr>
<td></td>
<td>GetRequestedServiceQuotaChange</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GetServiceQuota</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RequestServiceQuotaIncrease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ListServiceQuotas</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>Actions</td>
<td>Effect</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Optional</td>
<td>AWS Billing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ViewAccount</td>
<td>Allow</td>
</tr>
<tr>
<td></td>
<td>ViewBilling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ViewUsage</td>
<td></td>
</tr>
<tr>
<td>AWS Cost and Usage Report</td>
<td>All</td>
<td>Allow</td>
</tr>
<tr>
<td>AWS Cost Explorer Services</td>
<td>All</td>
<td>Allow</td>
</tr>
</tbody>
</table>

Additional resources

- Service control policies
- SCP effects on permissions
CHAPTER 6. OPENID CONNECT OVERVIEW

OpenID Connect (OIDC) uses Security Token Service (STS) to allow clients to provide a web identity token to gain access to multiple services. When a client signs into a service using STS, the token is validated against the OIDC identity provider.

The OIDC protocol uses a configuration URL that contains the necessary information to authenticate a client’s identity. The protocol responds to the provider with the credentials needed for the provider to validate the client and sign them in.

Red Hat OpenShift Service on AWS clusters use STS and OIDC to grant the in-cluster operators access to necessary AWS resources.

6.1. UNDERSTANDING THE OIDC VERIFICATION OPTIONS

There are three options for OIDC verification:

- **Unregistered, managed OIDC configuration**
  An unregistered, managed OIDC configuration is created for you during the cluster installation process. The configuration is hosted under Red Hat’s AWS account. This option does not give you the ID that links to the OIDC configuration, so you can only use this type of OIDC configuration on a single cluster.

- **Registered, managed OIDC configuration**
  You create a registered, managed OIDC configuration before you start creating your clusters. This configuration is hosted under Red Hat’s AWS account like the unregistered managed OIDC configuration. When you use this option for your OIDC configuration, you receive an ID that links to the OIDC configuration. Red Hat uses this ID to identify the issuer URL and private key. You can then use this URL and private key to create an identity provider and Operator roles. These resources are created under your AWS account by using Identity and Access Management (IAM) AWS services. You can also use the OIDC configuration ID during the cluster creation process.

- **Registered, unmanaged OIDC configuration**
  You can create a registered, unmanaged OIDC configuration before you start creating your clusters. This configuration is hosted under your AWS account. When you use this option, you are responsible for managing the private key. You can register the configuration with Red Hat OpenShift Cluster Manager by storing the private key in an AWS secrets file by using the AWS Secrets Manager (SM) service and the issuer URL which hosts the configuration. You can use the Red Hat OpenShift Service on AWS (ROSA) CLI, `rosa`, to create a registered, unmanaged OIDC configuration with the `rosa create oidc-config --managed=false` command. This command creates and hosts the configuration under your account and creates the necessary files and private secret key. This command also registers the configuration with OpenShift Cluster Manager.

The registered options can be used to create the required IAM resources before you start creating a cluster. This option results in faster install times since there is a waiting period during cluster creation where the installation pauses until you create an OIDC provider and Operator roles.

For ROSA Classic, you may use any of the OIDC configuration options. If you are using ROSA with HCP, you must create registered OIDC configuration, either as managed or unmanaged. You can share the registered OIDC configurations with other clusters. This ability to share the configuration also allows you to share the provider and Operator roles.
NOTE

Reusing the OIDC configurations, OIDC provider, and Operator roles between clusters is not recommended for production clusters since the authentication verification is used throughout all of these clusters. Red Hat advises to only reuse resources on non-production test environments.

6.2. CREATING AN OPENID CONNECT CONFIGURATION

When using a cluster hosted by Red Hat, you can create a managed or unmanaged OpenID Connect (OIDC) configuration by using the Red Hat OpenShift Service on AWS (ROSA) CLI, rosa. A managed OIDC configuration is stored within Red Hat’s AWS account, while a generated unmanaged OIDC configuration is stored within your AWS account. The OIDC configuration is registered to be used with OpenShift Cluster Manager. When creating an unmanaged OIDC configuration, the CLI provides the private key for you.

Creating an OpenID Connect configuration
When using a Red Hat OpenShift Service on AWS cluster, you can create the OpenID Connect (OIDC) configuration prior to creating your cluster. This configuration is registered to be used with OpenShift Cluster Manager.

Prerequisites
- You have installed and configured the latest Red Hat OpenShift Service on AWS (ROSA) CLI, rosa, on your installation host.

Procedure
- To create your OIDC configuration alongside the AWS resources, run the following command:

```
$ rosa create oidc-config --mode=auto --yes
```

This command returns the following information.

Sample output

? Would you like to create a Managed (Red Hat hosted) OIDC Configuration
Yes
I: Setting up managed OIDC configuration
I: To create Operator Roles for this OIDC Configuration, run the following command and remember to replace <user-defined> with a prefix of your choice:
rosa create operator-roles --prefix <user-defined> --oidc-config-id 13cdr6b
If you are going to create a Hosted Control Plane cluster please include '--hosted-cp'
I: Creating OIDC provider using 'arn:aws:iam::4540112244:user/username'
? Create the OIDC provider? Yes
I: Created OIDC provider with ARN 'arn:aws:iam::4540112244:oidc-provider/dbwgdztaeq90.cloudfront.net/13cdr6b'

When creating your cluster, you must supply the OIDC config ID. The CLI output provides this value for --mode auto, otherwise you must determine these values based on aws CLI output for --mode manual.

- Optional: you can save the OIDC configuration ID as a variable to use later. Run the following command to save the variable:
$ export OIDC_ID=30f5dqmk

1. View the value of the variable by running with the following command:

   $ echo $OIDC_ID

Sample output

   $ 30f5dqmk

Verification

1. You can list the possible OIDC configurations available for your clusters that are associated with your user organization. Run the following command:

   $ rosa list oidc-config

Sample output

<table>
<thead>
<tr>
<th>ID</th>
<th>MANAGED</th>
<th>ISSUER URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECRET ARN</td>
<td>true</td>
<td>ISSUER URL</td>
</tr>
<tr>
<td>2330dbs0n8m3chkkkr25gkkcd8pnj3lk2</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td><a href="https://dvbwgdztaeq9o.cloudfront.net/2330dbs0n8m3chkkkr25gkkcd8pnj3lk2">https://dvbwgdztaeq9o.cloudfront.net/2330dbs0n8m3chkkkr25gkkcd8pnj3lk2</a></td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>233hvnrjoqu14jltk6ihbf2tj11f8un false</td>
<td><a href="https://oidc-r7u1.s3.us-east-1.amazonaws.com">https://oidc-r7u1.s3.us-east-1.amazonaws.com</a></td>
<td>true</td>
</tr>
<tr>
<td>aws:secretsmanager:us-east-1:242819244:secret:rosa-private-key-oidc-r7u1-tM3MDN</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Parameter options for creating your own OpenID Connect configuration

The following options may be added to the `rosa create oidc-config` command. All of these parameters are optional. Running the `rosa create oidc-config` command without parameters creates an unmanaged OIDC configuration.

NOTE

You are required to register the unmanaged OIDC configuration by posting a request to `/oidc_configs` through OpenShift Cluster Manager. You receive an ID in the response. Use this ID to create a cluster.

`raw-files`

Allows you to provide raw files for the private RSA key. This key is named `rosa-private-key-oidc-<random_label_of_length_4>.key`. You also receive a discovery document, named `discovery-document-oidc-<random_label_of_length_4>.json`, and a JSON Web Key Set, named `jwks-oidc-<random_label_of_length_4>.json`.

You use these files to set up the endpoint. This endpoint responds to `/well-known/openid-configuration` with the discovery document and on `keys.json` with the JSON Web Key Set. The private key is stored in Amazon Web Services (AWS) Secrets Manager Service (SMS) as plaintext.

Example

   $ rosa create oidc-config --raw-files

mode
Allows you to specify the mode to create your OIDC configuration. With the `manual` option, you receive AWS commands that set up the OIDC configuration in an S3 bucket. This option stores the private key in the Secrets Manager. With the `manual` option, the OIDC Endpoint URL is the URL for the S3 bucket. You must retrieve the Secrets Manager ARN to register the OIDC configuration with OpenShift Cluster Manager.

You receive the same OIDC configuration and AWS resources as the `manual` mode when using the `auto` option. A significant difference between the two options is that when using the `auto` option, ROSA calls AWS, so you do not need to take any further actions. The OIDC Endpoint URL is the URL for the S3 bucket. The CLI retrieves the Secrets Manager ARN, registers the OIDC configuration with OpenShift Cluster Manager, and reports the second `rosa` command that the user can run to continue with the creation of the STS cluster.

**Example**

```bash
$ rosa create oidc-config --mode=<auto|manual>
```

### managed

Creates an OIDC configuration that is hosted under Red Hat’s AWS account. This command creates a private key that responds directly with an OIDC Config ID for you to use when creating the STS cluster.

**Example**

```bash
$ rosa create oidc-config --managed
```

### Sample output

```
W: For a managed OIDC Config only auto mode is supported. However, you may choose the provider creation mode
? OIDC Provider creation mode: auto
I: Setting up managed OIDC configuration
I: Please run the following command to create a cluster with this oidc config
rosa create cluster --sts --oidc-config-id 233jnu62i9aphpucsj9kueqikr1vqgra
I: Creating OIDC provider using 'arn:aws:iam::242819244:user/userName'
? Create the OIDC provider? Yes
I: Created OIDC provider with ARN 'arn:aws:iam::242819244:oidc-provider/dvbwgzt4q90.cloudfront.net/233jnu62i9aphpucsj9kueqikr1vqgra'
```

### 6.3. CREATING AN OIDC PROVIDER USING THE CLI

You can create an OIDC provider that is hosted in your AWS account with the Red Hat OpenShift Service on AWS (ROSA) CLI, `rosa`.

**Prerequisites**

- You have installed the latest version of the ROSA CLI.

**Procedure**

- To create an OIDC provider, by using an unregistered or a registered OIDC configuration.
  - Unregistered OIDC configurations require you to create the OIDC provider through the cluster. Run the following to create the OIDC provider:
NOTE

When using manual mode, the aws command is printed to the terminal for your review. After reviewing the aws command, you must run it manually. Alternatively, you can specify --mode auto with the rosa create command to run the aws command immediately.

Command output

aws iam create-open-id-connect-provider \
--url https://rh-oidc.s3.<aws_region>.amazonaws.com/<cluster_id> \
--client-id-list openshift.sts.<aws_region>.amazonaws.com \
--thumbprint-list <thumbprint> 1

1 The thumbprint is generated automatically when you run the rosa create oidc-provider command. For more information about using thumbprints with AWS Identity and Access Management (IAM) OpenID Connect (OIDC) identity providers, see the AWS documentation.

- Registered OIDC configurations use an OIDC configuration ID. Run the following command with your OIDC configuration ID:

  $ rosa create oidc-provider --oidc-config-id <oidc_config_id> --mode auto -y

Command output

I: Creating OIDC provider using 'arn:aws:iam::4540112244:user/userName'
I: Created OIDC provider with ARN 'arn:aws:iam::4540112244:oidc-provider/dvbwdgztfaq0.cloudfront.net/241rh9qil5gpl99d7leokhvp8icnlaf'

6.4. ADDITIONAL RESOURCES

- See Creating an OpenID Connect Configuration for the ROSA Classic instructions.
- See Creating an OpenID Connect Configuration for the ROSA with HCP instructions.