Red Hat OpenShift Service on AWS

CLI tools

Learning how to use the command-line tools for Red Hat OpenShift Service on AWS
Learning how to use the command-line tools for Red Hat OpenShift Service on AWS
Abstract

This document provides information about installing, configuring, and using the command-line tools in Red Hat OpenShift Service on AWS. It also contains a reference of CLI commands and examples of how to use them.
Table of Contents

CHAPTER 1. RED HAT OPENSSHIFT SERVICE ON AWS CLI TOOLS OVERVIEW

1.1. LIST OF CLI TOOLS ... 12

CHAPTER 2. OPENSOURCESL CLI (OC)

2.1. GETTING STARTED WITH THE OPENSOURCESL CLI

2.1.1. About the OpenShift CLI 13
2.1.2. Installing the OpenShift CLI

2.1.2.1. Installing the OpenShift CLI by downloading the binary 13
2.1.2.2. Installing the OpenShift CLI by using the web console

2.1.2.2.1. Installing the OpenShift CLI on Linux using the web console 15
2.1.2.2.2. Installing the OpenShift CLI on Windows using the web console 15
2.1.2.2.3. Installing the OpenShift CLI on macOS using the web console 16
2.1.2.3. Installing the OpenShift CLI by using an RPM 16
2.1.2.4. Installing the OpenShift CLI by using Homebrew 17

2.1.3. Logging in to the OpenShift CLI 17
2.1.4. Logging in to the OpenShift CLI using a web browser 18

2.1.5. Using the OpenShift CLI

2.1.5.1. Creating a project 20
2.1.5.2. Creating a new app 20
2.1.5.3. Viewing pods 20
2.1.5.4. Viewing pod logs 21
2.1.5.5. Viewing the current project 21
2.1.5.6. Viewing the status for the current project 21
2.1.5.7. Listing supported API resources 21
2.1.6. Getting help ... 22
2.1.7. Logging out of the OpenShift CLI 23

2.2. CONFIGURING THE OPENSOURCESL CLI

2.2.1. Enabling tab completion 23

2.2.1.1. Enabling tab completion for Bash 23
2.2.1.2. Enabling tab completion for Zsh 24

2.3. USAGE OF OC AND KUBECTL COMMANDS

2.3.1. The oc binary .. 24
2.3.2. The kubectl binary 25

2.4. MANAGING CLI PROFILES

2.4.1. About switches between CLI profiles 26
2.4.2. Manual configuration of CLI profiles 28
2.4.3. Load and merge rules 30

2.5. EXTENDING THE OPENSOURCESL CLI WITH PLUGINS

2.5.1. Writing CLI plugins 31
2.5.2. Installing and using CLI plugins 32

2.6. OPENSOURCESL CLI DEVELOPER COMMAND REFERENCE

2.6.1. OpenShift CLI (oc) developer commands

2.6.1.1. oc annotate 33
2.6.1.2. oc api-resources 34
2.6.1.3. oc api-versions 34
2.6.1.4. oc apply .. 34
2.6.1.5. oc apply edit-last-applied 35
2.6.1.6. oc apply set-last-applied 35
2.6.1.7. oc apply view-last-applied
2.6.1.8. oc attach
2.6.1.9. oc auth can-i
2.6.1.10. oc auth reconcile
2.6.1.11. oc auth whoami
2.6.1.12. oc autoscale
2.6.1.13. oc cancel-build
2.6.1.14. oc cluster-info
2.6.1.15. oc cluster-info dump
2.6.1.16. oc completion
2.6.1.17. oc config current-context
2.6.1.18. oc config delete-cluster
2.6.1.19. oc config delete-context
2.6.1.20. oc config delete-user
2.6.1.21. oc config get-clusters
2.6.1.22. oc config get-contexts
2.6.1.23. oc config get-users
2.6.1.24. oc config new-admin-kubeconfig
2.6.1.25. oc config new-kubelet-bootstrap-kubeconfig
2.6.1.26. oc config refresh-ca-bundle
2.6.1.27. oc config rename-context
2.6.1.28. oc config set
2.6.1.29. oc config set-cluster
2.6.1.30. oc config set-context
2.6.1.31. oc config set-credentials
2.6.1.32. oc config unset
2.6.1.33. oc config use-context
2.6.1.34. oc config view
2.6.1.35. oc cp
2.6.1.36. oc create
2.6.1.37. oc create build
2.6.1.38. oc create clusterresourcequota
2.6.1.39. oc create clusterrole
2.6.1.40. oc create clusterrolebinding
2.6.1.41. oc create configmap
2.6.1.42. oc create cronjob
2.6.1.43. oc create deployment
2.6.1.44. oc create deploymentconfig
2.6.1.45. oc create identity
2.6.1.46. oc create imagestream
2.6.1.47. oc create imagestreamtag
2.6.1.48. oc create ingress
2.6.1.49. oc create job
2.6.1.50. oc create namespace
2.6.1.51. oc create poddisruptionbudget
2.6.1.52. oc create priorityclass
2.6.1.53. oc create quota
2.6.1.54. oc create role
2.6.1.55. oc create rolebinding
2.6.1.56. oc create route edge
2.6.1.57. oc create route passthrough
2.6.1.58. oc create route reencrypt
2.6.1.59. oc create secret docker-registry
2.6.1.60	oc create secret generic	51
2.6.1.61	oc create secret tls	51
2.6.1.62	oc create service clusterip	52
2.6.1.63	oc create service externalname	52
2.6.1.64	oc create service loadbalancer	52
2.6.1.65	oc create service nodeport	52
2.6.1.66	oc create serviceaccount	52
2.6.1.67	oc create token	52
2.6.1.68	oc create user	53
2.6.1.69	oc create useridentitymapping	53
2.6.1.70	oc debug	53
2.6.1.71	oc delete	54
2.6.1.72	oc describe	55
2.6.1.73	oc diff	55
2.6.1.74	oc edit	55
2.6.1.75	oc events	56
2.6.1.76	oc exec	56
2.6.1.77	oc explain	57
2.6.1.78	oc expose	57
2.6.1.79	oc extract	58
2.6.1.80	oc get	58
2.6.1.81	oc get-token	59
2.6.1.82	oc idle	59
2.6.1.83	oc image append	59
2.6.1.84	oc image extract	60
2.6.1.85	oc image info	61
2.6.1.86	oc image mirror	61
2.6.1.87	oc import-image	62
2.6.1.88	oc kustomize	63
2.6.1.89	oc label	63
2.6.1.90	oc login	64
2.6.1.91	oc logout	65
2.6.1.92	oc logs	65
2.6.1.93	oc new-app	65
2.6.1.94	oc new-build	66
2.6.1.95	oc new-project	67
2.6.1.96	oc observe	67
2.6.1.97	oc patch	67
2.6.1.98	oc plugin list	68
2.6.1.99	oc policy add-role-to-user	68
2.6.1.100	oc policy scc-review	68
2.6.1.101	oc policy scc-subject-review	69
2.6.1.102	oc port-forward	69
2.6.1.103	oc process	70
2.6.1.104	oc project	70
2.6.1.105	oc projects	70
2.6.1.106	oc proxy	70
2.6.1.107	oc registry login	71
2.6.1.108	oc replace	71
2.6.1.109	oc rollback	72
2.6.1.110	oc rollout cancel	72
2.6.1.111	oc rollout history	72
2.6.1.112	oc rollout latest	72
2.6.1.113. oc rollout pause
2.6.1.114. oc rollout restart
2.6.1.115. oc rollout resume
2.6.1.116. oc rollout retry
2.6.1.117. oc rollout status
2.6.1.118. oc rollout undo
2.6.1.119. oc rsh
2.6.1.120. oc rsync
2.6.1.121. oc run
2.6.1.122. oc scale
2.6.1.123. oc secrets link
2.6.1.124. oc secrets unlink
2.6.1.125. oc set build-hook
2.6.1.126. oc set build-secret
2.6.1.127. oc set data
2.6.1.128. oc set deployment-hook
2.6.1.129. oc set env
2.6.1.130. oc set image
2.6.1.131. oc set image-lookup
2.6.1.132. oc set probe
2.6.1.133. oc set resources
2.6.1.134. oc set route-backends
2.6.1.135. oc set selector
2.6.1.136. oc set serviceaccount
2.6.1.137. oc set subject
2.6.1.138. oc set triggers
2.6.1.139. oc set volumes
2.6.1.140. oc start-build
2.6.1.141. oc status
2.6.1.142. oc tag
2.6.1.143. oc version
2.6.1.144. oc wait
2.6.1.145. oc whoami

2.7. OPENSHIFT CLI ADMINISTRATOR COMMAND REFERENCE

2.7.1. OpenShift CLI (oc) administrator commands
2.7.1.1. oc adm build-chain
2.7.1.2. oc adm catalog mirror
2.7.1.3. oc adm certificate approve
2.7.1.4. oc adm certificate deny
2.7.1.5. oc adm copy-to-node
2.7.1.6. oc adm cordon
2.7.1.7. oc adm create-bootstrap-project-template
2.7.1.8. oc adm create-error-template
2.7.1.9. oc adm create-login-template
2.7.1.10. oc adm create-provider-selection-template
2.7.1.11. oc adm drain
2.7.1.12. oc adm groups add-users
2.7.1.13. oc adm groups new
2.7.1.14. oc adm groups prune
2.7.1.15. oc adm groups remove-users
2.7.1.16. oc adm groups sync
2.7.1.17. oc adm inspect
2.7.1.18. oc adm migrate icsp
2.7.1.19. oc adm migrate template-instances 89
2.7.1.20. oc adm must-gather 89
2.7.1.21. oc adm new-project 90
2.7.1.22. oc adm node-logs 90
2.7.1.23. oc adm ocp-certificates monitor-certificates 90
2.7.1.24. oc adm ocp-certificates regenerate-leaf 90
2.7.1.25. oc adm ocp-certificates regenerate-machine-config-server-serving-cert 90
2.7.1.26. oc adm ocp-certificates regenerate-top-level 91
2.7.1.27. oc adm ocp-certificates remove-old-trust 91
2.7.1.28. oc adm ocp-certificates update-ignition-ca-bundle-for-machine-config-server 91
2.7.1.29. oc adm pod-network isolate-projects 91
2.7.1.30. oc adm pod-network join-projects 91
2.7.1.31. oc adm pod-network make-projects-global 91
2.7.1.32. oc adm policy add-role-to-user 92
2.7.1.33. oc adm policy add-scc-to-group 92
2.7.1.34. oc adm policy add-scc-to-user 92
2.7.1.35. oc adm policy scc-review 92
2.7.1.36. oc adm policy scc-subject-review 93
2.7.1.37. oc adm prune builds 93
2.7.1.38. oc adm prune deployments 93
2.7.1.39. oc adm prune groups 94
2.7.1.40. oc adm prune images 94
2.7.1.41. oc adm reboot-machine-config-pool 94
2.7.1.42. oc adm release extract 95
2.7.1.43. oc adm release info 95
2.7.1.44. oc adm release mirror 96
2.7.1.45. oc adm release new 96
2.7.1.46. oc adm restart-kubelet 96
2.7.1.47. oc adm taint 97
2.7.1.48. oc adm top images 97
2.7.1.49. oc adm top imagestreams 97
2.7.1.50. oc adm top node 98
2.7.1.51. oc adm top pod 98
2.7.1.52. oc adm uncordon 98
2.7.1.53. oc adm upgrade 98
2.7.1.54. oc adm verify-image-signature 99
2.7.1.55. oc adm wait-for-node-reboot 99
2.7.1.56. oc adm wait-for-stable-cluster 99
2.7.2. Additional resources 100

CHAPTER 3. IMPORTANT UPDATE ON ODO ... 101

CHAPTER 4. KNATIVE CLI FOR USE WITH OPENSIFT SERVERLESS 102
4.1. KEY FEATURES 102
4.2. INSTALLING THE KNATIVE CLI 102

CHAPTER 5. PIPELINES CLI (TKN) .. 103
5.1. INSTALLING TKN 103
5.1.1. Installing the Red Hat OpenShift Pipelines CLI on Linux 103
5.1.2. Installing the Red Hat OpenShift Pipelines CLI on Linux using an RPM 104
5.1.3. Installing the Red Hat OpenShift Pipelines CLI on Windows 105
5.1.4. Installing the Red Hat OpenShift Pipelines CLI on macOS 105
5.2. CONFIGURING THE OPENSIFT PIPELINES TKN CLI 105
5.2.1. Enabling tab completion 105
5.3. OPENSHIFT PIPELINES TKN REFERENCE

5.3.1. Basic syntax

5.3.2. Global options

5.3.3. Utility commands

- **tkn**
- **completion [shell]**
- **version**

5.3.4. Pipelines management commands

- **pipeline**
- **pipeline delete**
- **pipeline describe**
- **pipeline list**
- **pipeline logs**
- **pipeline start**

5.3.5. Pipeline run commands

- **pipelinerun**
- **pipelinerun cancel**
- **pipelinerun delete**
- **pipelinerun describe**
- **pipelinerun list**
- **pipelinerun logs**

5.3.6. Task management commands

- **task**
- **task delete**
- **task describe**
- **task list**
- **task logs**
- **task start**

5.3.7. Task run commands

- **taskrun**
- **taskrun cancel**
- **taskrun delete**
- **taskrun describe**
- **taskrun list**
- **taskrun logs**

5.3.8. Condition management commands

- **condition**
- **condition delete**
- **condition describe**
- **condition list**

5.3.9. Pipeline Resource management commands

- **resource**
- **resource create**
- **resource delete**
- **resource describe**
- **resource list**

5.3.10. ClusterTask management commands

- **clustertask**
- **clustertask delete**
- **clustertask describe**
- **clustertask list**
- **clustertask start**

5.3.11. Trigger management commands
5.3.11.1. eventlistener
5.3.11.2. eventlistener delete
5.3.11.3. eventlistener describe
5.3.11.4. eventlistener list
5.3.11.5. eventlistener logs
5.3.11.6. triggerbinding
5.3.11.7. triggerbinding delete
5.3.11.8. triggerbinding describe
5.3.11.9. triggerbinding list
5.3.11.10. triggertemplate
5.3.11.11. triggertemplate delete
5.3.11.12. triggertemplate describe
5.3.11.13. triggertemplate list
5.3.11.14. clustertriggerbinding
5.3.11.15. clustertriggerbinding delete
5.3.11.16. clustertriggerbinding describe
5.3.11.17. clustertriggerbinding list

5.3.12. Hub interaction commands
5.3.12.1. hub
5.3.12.2. hub downgrade
5.3.12.3. hub get
5.3.12.4. hub info
5.3.12.5. hub install
5.3.12.6. hub reinstall
5.3.12.7. hub search
5.3.12.8. hub upgrade

CHAPTER 6. OPM CLI .. 119
6.1. INSTALLING THE OPM CLI ... 119
 6.1.1. About the opm CLI ... 119
 6.1.2. Installing the opm CLI ... 119
6.2. OPM CLI REFERENCE .. 120
 6.2.1. generate
 6.2.1.1. dockerfile
 6.2.2. index
 6.2.2.1. add
 6.2.2.2. prune
 6.2.2.3. prune-stranded
 6.2.2.4. rm
 6.2.3. init
 6.2.4. migrate
 6.2.5. render
 6.2.6. serve
 6.2.7. validate

CHAPTER 7. OPERATOR SDK .. 128
7.1. INSTALLING THE OPERATOR SDK CLI .. 128
 7.1.1. Installing the Operator SDK CLI on Linux 128
 7.1.2. Installing the Operator SDK CLI on macOS 129
7.2. OPERATOR SDK CLI REFERENCE .. 130
 7.2.1. bundle
 7.2.1.1. validate
 7.2.2. cleanup
7.2.3. completion
7.2.4. create
 7.2.4.1. api
7.2.5. generate
 7.2.5.1. bundle
 7.2.5.2. kustomize
 7.2.5.2.1. manifests
7.2.6. init
7.2.7. run
 7.2.7.1. bundle
 7.2.7.2. bundle-upgrade
7.2.8. scorecard

CHAPTER 8. ROSA CLI

8.1. GETTING STARTED WITH THE ROSA CLI
8.1.1. About the ROSA CLI
8.1.2. Setting up the ROSA CLI
8.1.3. Configuring the ROSA CLI
 8.1.3.1. login
 8.1.3.2. logout
 8.1.3.3. verify permissions
 8.1.3.4. verify quota
 8.1.3.5. download rosa
 8.1.3.6. download oc
 8.1.3.7. verify oc
8.1.4. Initializing ROSA
 8.1.4.1. init
8.1.5. Using a Bash script
8.1.6. Updating the ROSA CLI

8.2. MANAGING OBJECTS WITH THE ROSA CLI
8.2.1. Common commands and arguments
 8.2.1.1. debug
 8.2.1.2. download
 8.2.1.3. help
 8.2.1.4. interactive
 8.2.1.5. profile
 8.2.1.6. version
8.2.2. Parent commands
 8.2.2.1. create
 8.2.2.2. edit
 8.2.2.3. delete
 8.2.2.4. list
 8.2.2.5. describe
8.2.3. Create objects
 8.2.3.1. create account-roles
 8.2.3.2. create admin
 8.2.3.3. create break glass credential
 8.2.3.4. create cluster
 8.2.3.5. create external-auth-provider
 8.2.3.6. create idp
 8.2.3.7. create ingress
 8.2.3.8. create kubletconfig
 8.2.3.9. create machinepool
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.3.10. create ocm-role</td>
<td>163</td>
</tr>
<tr>
<td>8.2.3.11. create user-role</td>
<td>164</td>
</tr>
<tr>
<td>8.2.4. Additional resources</td>
<td>165</td>
</tr>
<tr>
<td>8.2.5. Edit objects</td>
<td>165</td>
</tr>
<tr>
<td>8.2.5.1. edit cluster</td>
<td>165</td>
</tr>
<tr>
<td>8.2.5.2. edit ingress</td>
<td>166</td>
</tr>
<tr>
<td>8.2.5.3. edit kubeletconfig</td>
<td>168</td>
</tr>
<tr>
<td>8.2.5.4. edit machinepool</td>
<td>168</td>
</tr>
<tr>
<td>8.2.6. Delete objects</td>
<td>170</td>
</tr>
<tr>
<td>8.2.6.1. delete admin</td>
<td>170</td>
</tr>
<tr>
<td>8.2.6.2. delete cluster</td>
<td>171</td>
</tr>
<tr>
<td>8.2.6.3. delete external-auth-provider</td>
<td>172</td>
</tr>
<tr>
<td>8.2.6.4. delete idp</td>
<td>173</td>
</tr>
<tr>
<td>8.2.6.5. delete ingress</td>
<td>173</td>
</tr>
<tr>
<td>8.2.6.6. delete kubeletconfig</td>
<td>174</td>
</tr>
<tr>
<td>8.2.6.7. delete machinepool</td>
<td>174</td>
</tr>
<tr>
<td>8.2.7. Install and uninstall add-ons</td>
<td>175</td>
</tr>
<tr>
<td>8.2.7.1. install addon</td>
<td>175</td>
</tr>
<tr>
<td>8.2.7.2. uninstall addon</td>
<td>176</td>
</tr>
<tr>
<td>8.2.8. List and describe objects</td>
<td>177</td>
</tr>
<tr>
<td>8.2.8.1. list addon</td>
<td>177</td>
</tr>
<tr>
<td>8.2.8.2. List break glass credentials</td>
<td>177</td>
</tr>
<tr>
<td>8.2.8.3. list clusters</td>
<td>178</td>
</tr>
<tr>
<td>8.2.8.4. list external-auth-provider</td>
<td>179</td>
</tr>
<tr>
<td>8.2.8.5. list idps</td>
<td>179</td>
</tr>
<tr>
<td>8.2.8.6. list ingresses</td>
<td>180</td>
</tr>
<tr>
<td>8.2.8.7. list instance-types</td>
<td>180</td>
</tr>
<tr>
<td>8.2.8.8. list kubeletconfigs</td>
<td>181</td>
</tr>
<tr>
<td>8.2.8.9. list machinepools</td>
<td>182</td>
</tr>
<tr>
<td>8.2.8.10. list regions</td>
<td>182</td>
</tr>
<tr>
<td>8.2.8.11. list upgrades</td>
<td>183</td>
</tr>
<tr>
<td>8.2.8.12. list users</td>
<td>183</td>
</tr>
<tr>
<td>8.2.8.13. list versions</td>
<td>184</td>
</tr>
<tr>
<td>8.2.8.14. describe admin</td>
<td>185</td>
</tr>
<tr>
<td>8.2.8.15. describe addon</td>
<td>185</td>
</tr>
<tr>
<td>8.2.8.16. describe break glass credential</td>
<td>186</td>
</tr>
<tr>
<td>8.2.8.17. describe cluster</td>
<td>186</td>
</tr>
<tr>
<td>8.2.8.18. describe kubeletconfig</td>
<td>187</td>
</tr>
<tr>
<td>8.2.8.19. describe machinepool</td>
<td>187</td>
</tr>
<tr>
<td>8.2.9. Revoke objects</td>
<td>188</td>
</tr>
<tr>
<td>8.2.9.1. revoke-break-glass-credential</td>
<td>188</td>
</tr>
<tr>
<td>8.2.10. Upgrade and delete upgrade for objects</td>
<td>189</td>
</tr>
<tr>
<td>8.2.10.1. upgrade cluster</td>
<td>189</td>
</tr>
<tr>
<td>8.2.10.2. delete cluster upgrade</td>
<td>190</td>
</tr>
<tr>
<td>8.2.10.3. upgrade machinepool</td>
<td>191</td>
</tr>
<tr>
<td>8.2.10.4. delete machinepool upgrade</td>
<td>191</td>
</tr>
<tr>
<td>8.3. CHECKING ACCOUNT AND VERSION INFORMATION WITH THE ROSA CLI</td>
<td>192</td>
</tr>
<tr>
<td>8.3.1. whoami</td>
<td>192</td>
</tr>
<tr>
<td>8.3.2. version</td>
<td>192</td>
</tr>
<tr>
<td>8.4. CHECKING LOGS WITH THE ROSA CLI</td>
<td>193</td>
</tr>
<tr>
<td>8.4.1. logs install</td>
<td>193</td>
</tr>
<tr>
<td>8.4.2. logs uninstall</td>
<td>194</td>
</tr>
<tr>
<td>8.5. LEAST PRIVILEGE PERMISSIONS FOR ROSA CLI COMMANDS</td>
<td>194</td>
</tr>
</tbody>
</table>
8.5.1. Least privilege permissions for common ROSA CLI commands
 8.5.1.1. Create a managed OpenID Connect (OIDC) provider
 8.5.1.2. Create an unmanaged OpenID Connect provider
 8.5.1.3. List your account roles
 8.5.1.4. List your Operator roles
 8.5.1.5. List your OIDC providers
 8.5.1.6. Verify your quota
 8.5.1.7. Delete your managed OIDC configuration
 8.5.1.8. Delete your unmanaged OIDC configuration
8.5.2. Least privilege permissions for common ROSA with HCP CLI commands
 8.5.2.1. Create a cluster
 8.5.2.2. Create your account roles and Operator roles
 8.5.2.3. Delete your account roles
 8.5.2.4. Delete your Operator roles
8.5.3. Least privilege permissions for common ROSA Classic CLI commands
 8.5.3.1. Create a cluster
 8.5.3.2. Create account roles and Operator roles
 8.5.3.3. Delete your account roles
 8.5.3.4. Delete your Operator roles
8.5.4. ROSA CLI commands with no required permissions
8.5.5. Additional resources
CHAPTER 1. RED HAT OPENSSHIFT SERVICE ON AWS CLI
TOOLS OVERVIEW

A user performs a range of operations while working on Red Hat OpenShift Service on AWS (ROSA) such as the following:

- Managing clusters
- Building, deploying, and managing applications
- Managing deployment processes
- Developing Operators
- Creating and maintaining Operator catalogs

ROSA offers a set of command-line interface (CLI) tools that simplify these tasks by enabling users to perform various administration and development operations from the terminal. These tools expose simple commands to manage the applications, as well as interact with each component of the system.

1.1. LIST OF CLI TOOLS

The following set of CLI tools are available in ROSA:

- OpenShift CLI (oc): This is one of the more commonly used developer CLI tools. It helps both cluster administrators and developers to perform end-to-end operations across ROSA using the terminal. Unlike the web console, it allows the user to work directly with the project source code using command scripts.

- Knative CLI (kn): The Knative (kn) CLI tool provides simple and intuitive terminal commands that can be used to interact with OpenShift Serverless components, such as Knative Serving and Eventing.

- Pipelines CLI (tkn): OpenShift Pipelines is a continuous integration and continuous delivery (CI/CD) solution in Red Hat OpenShift Service on AWS, which internally uses Tekton. The tkn CLI tool provides simple and intuitive commands to interact with OpenShift Pipelines using the terminal.

- opm CLI: The opm CLI tool helps the Operator developers and cluster administrators to create and maintain the catalogs of Operators from the terminal.

- Operator SDK: The Operator SDK, a component of the Operator Framework, provides a CLI tool that Operator developers can use to build, test, and deploy an Operator from the terminal. It simplifies the process of building Kubernetes-native applications, which can require deep, application-specific operational knowledge.

- ROSA CLI (rosa): Use the rosa CLI to create, update, manage, and delete ROSA clusters and resources.
CHAPTER 2. OPENSHIFT CLI (OC)

2.1. GETTING STARTED WITH THE OPENSHIFT CLI

2.1.1. About the OpenShift CLI

With the OpenShift CLI (oc), you can create applications and manage Red Hat OpenShift Service on AWS (ROSA) projects from a terminal. The OpenShift CLI is ideal in the following situations:

- Working directly with project source code
- Scripting ROSA operations
- Managing projects while restricted by bandwidth resources and the web console is unavailable

2.1.2. Installing the OpenShift CLI

You can install the OpenShift CLI (oc) either by downloading the binary or by using an RPM.

2.1.2.1. Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with ROSA from a command-line interface. You can install oc on Linux, Windows, or macOS.

IMPORTANT

If you installed an earlier version of oc, you cannot use it to complete all of the commands in ROSA. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

2. Select the architecture from the Product Variant drop-down list.

3. Select the appropriate version from the Version drop-down list.

4. Click Download Now next to the OpenShift v4 Linux Client entry and save the file.

5. Unpack the archive:

 $ tar xvf <file>

6. Place the oc binary in a directory that is on your PATH.

 To check your PATH, execute the following command:

 $ echo $PATH
Verification

- After you install the OpenShift CLI, it is available using the `oc` command:

  ```
  $ oc <command>
  ```

Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (`oc`) binary on Windows by using the following procedure.

Procedure

2. Select the appropriate version from the Version drop-down list.

3. Click **Download Now** next to the **OpenShift v4 Windows Client** entry and save the file.

4. Unzip the archive with a ZIP program.

5. Move the `oc` binary to a directory that is **on your PATH**.
 To check your PATH, open the command prompt and execute the following command:

   ```
   C:\> path
   ```

Verification

- After you install the OpenShift CLI, it is available using the `oc` command:

  ```
  C:\> oc <command>
  ```

Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (`oc`) binary on macOS by using the following procedure.

Procedure

2. Select the appropriate version from the Version drop-down list.

3. Click **Download Now** next to the **OpenShift v4 macOS Client** entry and save the file.

 NOTE

 For macOS arm64, choose the **OpenShift v4 macOS arm64 Client** entry.

4. Unpack and unzip the archive.

5. Move the `oc` binary to a directory on your PATH.
 To check your PATH, open a terminal and execute the following command:

   ```
   $ echo $PATH
   ```
Verification

- After you install the OpenShift CLI, it is available using the `oc` command:

  ```bash
  $ oc <command>
  ```

2.1.2.2. Installing the OpenShift CLI by using the web console

You can install the OpenShift CLI (`oc`) to interact with Red Hat OpenShift Service on AWS (ROSA) from a web console. You can install `oc` on Linux, Windows, or macOS.

IMPORTANT

If you installed an earlier version of `oc`, you cannot use it to complete all of the commands in ROSA. Download and install the new version of `oc`.

2.1.2.2.1. Installing the OpenShift CLI on Linux using the web console

You can install the OpenShift CLI (`oc`) binary on Linux by using the following procedure.

Procedure

1. Download the latest version of the `oc` CLI for your operating system from the Downloads page on OpenShift Cluster Manager.

2. Extract the `oc` binary file from the downloaded archive.

   ```bash
   $ tar xvf <file>
   ```

3. Move the `oc` binary to a directory that is on your `PATH`

 To check your `PATH`, execute the following command:

   ```bash
   $ echo $PATH
   ```

After you install the OpenShift CLI, it is available using the `oc` command:

```bash
$ oc <command>
```

2.1.2.2.2. Installing the OpenShift CLI on Windows using the web console

You can install the OpenShift CLI (`oc`) binary on Windows by using the following procedure.

Procedure

1. Download the latest version of the `oc` CLI for your operating system from the Downloads page on OpenShift Cluster Manager.

2. Extract the `oc` binary file from the downloaded archive.

3. Move the `oc` binary to a directory that is on your `PATH`

 To check your `PATH`, open the command prompt and execute the following command:

   ```bash
   C:\> path
   ```
After you install the OpenShift CLI, it is available using the `oc` command:

```
C:\> oc <command>
```

2.1.2.2.3. Installing the OpenShift CLI on macOS using the web console

You can install the OpenShift CLI (`oc`) binary on macOS by using the following procedure.

Procedure

1. Download the latest version of the `oc` CLI for your operating system from the [Downloads page](https://example.com) on OpenShift Cluster Manager.

2. Extract the `oc` binary file from the downloaded archive.

3. Move the `oc` binary to a directory on your PATH.
 To check your PATH, open a terminal and execute the following command:

   ```
   $ echo $PATH
   ```

After you install the OpenShift CLI, it is available using the `oc` command:

```
$ oc <command>
```

2.1.2.3. Installing the OpenShift CLI by using an RPM

For Red Hat Enterprise Linux (RHEL), you can install the OpenShift CLI (`oc`) as an RPM if you have an active Red Hat OpenShift Service on AWS (ROSA) subscription on your Red Hat account.

NOTE

It is not supported to install the OpenShift CLI (`oc`) as an RPM for Red Hat Enterprise Linux (RHEL) 9. You must install the OpenShift CLI for RHEL 9 by downloading the binary.

Prerequisites

- Must have root or sudo privileges.

Procedure

1. Register with Red Hat Subscription Manager:

   ```
   # subscription-manager register
   ```

2. Pull the latest subscription data:

   ```
   # subscription-manager refresh
   ```

3. List the available subscriptions:
subscription-manager list --available --matches "OpenShift"

4. In the output for the previous command, find the pool ID for a ROSA subscription and attach the subscription to the registered system:

```bash
# subscription-manager attach --pool=<pool_id>
```

5. Enable the repositories required by ROSA.

```bash
# subscription-manager repos --enable="rhocp-4-for-rhel-8-x86_64-rpms"
```

6. Install the `openshift-clients` package:

```bash
# yum install openshift-clients
```

After you install the CLI, it is available using the `oc` command:

```
$ oc <command>
```

2.1.2.4. Installing the OpenShift CLI by using Homebrew

For macOS, you can install the OpenShift CLI (`oc`) by using the Homebrew package manager.

Prerequisites

- You must have Homebrew (`brew`) installed.

Procedure

- Run the following command to install the `openshift-cli` package:

```
$ brew install openshift-cli
```

2.1.3. Logging in to the OpenShift CLI

You can log in to the OpenShift CLI (`oc`) to access and manage your cluster.

Prerequisites

- You must have access to a ROSA cluster.
- The OpenShift CLI (`oc`) is installed.

NOTE

To access a cluster that is accessible only over an HTTP proxy server, you can set the `HTTP_PROXY`, `HTTPS_PROXY` and `NO_PROXY` variables. These environment variables are respected by the `oc` CLI so that all communication with the cluster goes through the HTTP proxy.

Authentication headers are sent only when using HTTPS transport.
Procedure

1. Enter the `oc login` command and pass in a user name:

 $ oc login -u user1

2. When prompted, enter the required information:

 Example output

 Server [https://localhost:8443]: https://openshift.example.com:6443

 The server uses a certificate signed by an unknown authority.
 You can bypass the certificate check, but any data you send to the server could be intercepted by others.
 Use insecure connections? (y/n): y

 Authentication required for https://openshift.example.com:6443 (openshift)
 Username: user1
 Password:
 Login successful.

 You don't have any projects. You can try to create a new project, by running

 `oc new-project <projectname>`

 Welcome! See 'oc help' to get started.

 1. Enter the ROSA server URL.
 2. Enter whether to use insecure connections.
 3. Enter the user's password.

 NOTE

 If you are logged in to the web console, you can generate an `oc login` command that includes your token and server information. You can use the command to log in to the OpenShift CLI without the interactive prompts. To generate the command, select **Copy login command** from the username drop-down menu at the top right of the web console.

 You can now create a project or issue other commands for managing your cluster.

2.1.4. Logging in to the OpenShift CLI using a web browser

You can log in to the OpenShift CLI (oc) with the help of a web browser to access and manage your cluster. This allows users to avoid inserting their access token into the command line.
Prerequisites

- You must have access to a Red Hat OpenShift Service on AWS cluster.
- You must have installed the OpenShift CLI (`oc`).
- You must have a browser installed.

Procedure

1. Enter the `oc login` command with the `--web` flag:

   ```
   $ oc login <cluster_url> --web
   ```

 Optionally, you can specify the server URL and callback port. For example, `oc login <cluster_url> --web --callback-port 8280 localhost:8443`.

2. The web browser opens automatically. If it does not, click the link in the command output. If you do not specify the Red Hat OpenShift Service on AWS server `oc` tries to open the web console of the cluster specified in the current `oc` configuration file. If no `oc` configuration exists, `oc` prompts interactively for the server URL.

 Example output

 Opening login URL in the default browser: https://openshift.example.com
 Opening in existing browser session.

3. If more than one identity provider is available, select your choice from the options provided.

4. Enter your username and password into the corresponding browser fields. After you are logged in, the browser displays the text `access token received successfully; please return to your terminal`.

 Example output

 Login successful.
 You don't have any projects. You can try to create a new project, by running `oc new-project <projectname>`.
NOTE

The web console defaults to the profile used in the previous session. To switch between Administrator and Developer profiles, log out of the Red Hat OpenShift Service on AWS web console and clear the cache.

You can now create a project or issue other commands for managing your cluster.

2.1.5. Using the OpenShift CLI

Review the following sections to learn how to complete common tasks using the CLI.

2.1.5.1. Creating a project

Use the `oc new-project` command to create a new project.

```
$ oc new-project my-project
```

Example output

```
Now using project "my-project" on server "https://openshift.example.com:6443".
```

2.1.5.2. Creating a new app

Use the `oc new-app` command to create a new application.

```
$ oc new-app https://github.com/sclorg/cakephp-ex
```

Example output

```
--> Found image 40de956 (9 days old) in imagestream "openshift/php" under tag "7.2" for "php"
...
```

Run `oc status` to view your app.

2.1.5.3. Viewing pods

Use the `oc get pods` command to view the pods for the current project.

```
$ oc get pods -o wide
```

Example output

```
NAME       READY STATUS     RESTARTS AGE   IP       NODE
```

NOTE

When you run `oc` inside a pod and do not specify a namespace, the namespace of the pod is used by default.

```
$ oc get pods -o wide
```

Example output

```
NAME       READY STATUS     RESTARTS AGE   IP       NODE
```
2.1.5.4. Viewing pod logs

Use the `oc logs` command to view logs for a particular pod.

```bash
$ oc logs cakephp-ex-1-deploy
```

Example output

```
--> Scaling cakephp-ex-1 to 1
--> Success
```

2.1.5.5. Viewing the current project

Use the `oc project` command to view the current project.

```bash
$ oc project
```

Example output

```
Using project "my-project" on server "https://openshift.example.com:6443".
```

2.1.5.6. Viewing the status for the current project

Use the `oc status` command to view information about the current project, such as services, deployments, and build configs.

```bash
$ oc status
```

Example output

```
In project my-project on server https://openshift.example.com:6443

svc/cakephp-ex - 172.30.236.80 ports 8080, 8443
dc/cakephp-ex deploys istag/cakephp-ex:latest <-
  bc/cakephp-ex source builds https://github.com/sclorg/cakephp-ex on openshift/php:7.2
  deployment #1 deployed 2 minutes ago - 1 pod

3 infos identified, use 'oc status --suggest' to see details.
```

2.1.5.7. Listing supported API resources

Use the `oc api-resources` command to view the list of supported API resources on the server.
$ oc api-resources

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>SHORTNAMES</th>
<th>APIGROUP</th>
<th>NAMESPACE</th>
<th>KIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>bindings</td>
<td></td>
<td></td>
<td>true</td>
<td>Binding</td>
</tr>
<tr>
<td>componentstatuses</td>
<td>cs</td>
<td></td>
<td>false</td>
<td>ComponentStatus</td>
</tr>
<tr>
<td>configmaps</td>
<td>cm</td>
<td></td>
<td>true</td>
<td>ConfigMap</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.6. Getting help

You can get help with CLI commands and ROSA resources in the following ways:

- Use `oc help` to get a list and description of all available CLI commands:

 Example: Get general help for the CLI

 $ oc help

 Example output

 OpenShift Client

 This client helps you develop, build, deploy, and run your applications on any OpenShift or Kubernetes compatible platform. It also includes the administrative commands for managing a cluster under the 'adm' subcommand.

 Usage:
 oc [flags]

 Basic Commands:
 - login: Log in to a server
 - new-project: Request a new project
 - new-app: Create a new application
 ...

- Use the `--help` flag to get help about a specific CLI command:

 Example: Get help for the oc create command

 $ oc create --help

 Example output

 Create a resource by filename or stdin

 JSON and YAML formats are accepted.

 Usage:
Use the `oc explain` command to view the description and fields for a particular resource:

Example: View documentation for the **Pod** resource

```
$ oc explain pods
```

Example output

```
KIND:     Pod  
VERSION: v1

DESCRIPTION:
    Pod is a collection of containers that can run on a host. This resource is
    created by clients and scheduled onto hosts.

FIELDS:
    apiVersion <string>
        APIVersion defines the versioned schema of this representation of an
        object. Servers should convert recognized schemas to the latest internal
        value, and may reject unrecognized values. More info:
        https://git.k8s.io/community/contributors/devel/api-conventions.md#resources

...  
```

2.1.7. Logging out of the OpenShift CLI

You can log out the OpenShift CLI to end your current session.

- Use the `oc logout` command.

```
$ oc logout
```

Example output

```
Logged “user1” out on “https://openshift.example.com”
```

This deletes the saved authentication token from the server and removes it from your configuration file.

2.2. CONFIGURING THE OPENSHIFT CLI

2.2.1. Enabling tab completion

You can enable tab completion for the Bash or Zsh shells.

2.2.1.1. Enabling tab completion for Bash

```
oc create -f FILENAME [flags]
...
```

- Use the `oc explain` command to view the description and fields for a particular resource:

Example: View documentation for the **Pod** resource

```
$ oc explain pods
```

Example output

```
KIND:     Pod  
VERSION: v1

DESCRIPTION:
    Pod is a collection of containers that can run on a host. This resource is
    created by clients and scheduled onto hosts.

FIELDS:
    apiVersion <string>
        APIVersion defines the versioned schema of this representation of an
        object. Servers should convert recognized schemas to the latest internal
        value, and may reject unrecognized values. More info:
        https://git.k8s.io/community/contributors/devel/api-conventions.md#resources

...  
```
After you install the OpenShift CLI (oc), you can enable tab completion to automatically complete oc commands or suggest options when you press Tab. The following procedure enables tab completion for the Bash shell.

Prerequisites

- You must have the OpenShift CLI (oc) installed.
- You must have the package bash-completion installed.

Procedure

1. Save the Bash completion code to a file:

   ```bash
   $ oc completion bash > oc_bash_completion
   ```

2. Copy the file to /etc/bash_completion.d/:

   ```bash
   $ sudo cp oc_bash_completion /etc/bash_completion.d/
   ```

 You can also save the file to a local directory and source it from your .bashrc file instead.

Tab completion is enabled when you open a new terminal.

2.2.1.2. Enabling tab completion for Zsh

After you install the OpenShift CLI (oc), you can enable tab completion to automatically complete oc commands or suggest options when you press Tab. The following procedure enables tab completion for the Zsh shell.

Prerequisites

- You must have the OpenShift CLI (oc) installed.

Procedure

- To add tab completion for oc to your .zshrc file, run the following command:

  ```bash
  $ cat >>~/.zshrc<<EOF
  autoload -Uz compinit
  compinit
  if [ $commands[oc] ]; then
    source <(oc completion zsh)
    compdef _oc oc
  fi
  EOF
  ```

Tab completion is enabled when you open a new terminal.

2.3. USAGE OF OC AND KUBECTL COMMANDS

The Kubernetes command-line interface (CLI), kubectl, can be used to run commands against a Kubernetes cluster. Because Red Hat OpenShift Service on AWS (ROSA) is a certified Kubernetes distribution, you can use the supported kubectl binaries that ship with ROSA, or you can gain extended
functionality by using the `oc` binary.

2.3.1. The oc binary

The `oc` binary offers the same capabilities as the `kubectl` binary, but it extends to natively support additional ROSA features, including:

- **Full support for ROSA resources**
 Resources such as `DeploymentConfig`, `BuildConfig`, `Route`, `ImageStream`, and `ImageStreamTag` objects are specific to ROSA distributions, and build upon standard Kubernetes primitives.

- **Authentication**

- **Additional commands**
 The additional command `oc new-app`, for example, makes it easier to get new applications started using existing source code or pre-built images. Similarly, the additional command `oc new-project` makes it easier to start a project that you can switch to as your default.

IMPORTANT

If you installed an earlier version of the `oc` binary, you cannot use it to complete all of the commands in ROSA. If you want the latest features, you must download and install the latest version of the `oc` binary corresponding to your ROSA server version.

Non-security API changes will involve, at minimum, two minor releases (4.1 to 4.2 to 4.3, for example) to allow older `oc` binaries to update. Using new capabilities might require newer `oc` binaries. A 4.3 server might have additional capabilities that a 4.2 `oc` binary cannot use and a 4.3 `oc` binary might have additional capabilities that are unsupported by a 4.2 server.

<table>
<thead>
<tr>
<th>X.Y (Server)</th>
<th>X.Y+N footnot:versonpolicy (Server)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.Y (oc Client)</td>
<td>X.Y+N footnot:versonpolicy (oc Client)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Fully compatible.
2. `oc` client might not be able to access server features.
3. `oc` client might provide options and features that might not be compatible with the accessed server.

2.3.2. The kubectl binary
The `kubectl` binary is provided as a means to support existing workflows and scripts for new ROSA users coming from a standard Kubernetes environment, or for those who prefer to use the `kubectl` CLI. Existing users of `kubectl` can continue to use the binary to interact with Kubernetes primitives, with no changes required to the ROSA cluster.

You can install the supported `kubectl` binary by following the steps to Install the OpenShift CLI. The `kubectl` binary is included in the archive if you download the binary, or is installed when you install the CLI by using an RPM.

For more information, see the `kubectl` documentation.

2.4. MANAGING CLI PROFILES

A CLI configuration file allows you to configure different profiles, or contexts, for use with the CLI tools overview. A context consists of the Red Hat OpenShift Service on AWS (ROSA) server information associated with a nickname.

2.4.1. About switches between CLI profiles

Contexts allow you to easily switch between multiple users across multiple ROSA servers, or clusters, when using CLI operations. Nicknames make managing CLI configurations easier by providing short-hand references to contexts, user credentials, and cluster details. After a user logs in with the `oc` CLI for the first time, ROSA creates a `~/.kube/config` file if one does not already exist. As more authentication and connection details are provided to the CLI, either automatically during an `oc login` operation or by manually configuring CLI profiles, the updated information is stored in the configuration file:

CLI config file

```yaml
apiVersion: v1
clusters: 1
- cluster:
  insecure-skip-tls-verify: true
  server: https://openshift1.example.com:8443
  name: openshift1.example.com:8443
- cluster:
  insecure-skip-tls-verify: true
  server: https://openshift2.example.com:8443
  name: openshift2.example.com:8443
contexts: 2
- context:
  cluster: openshift1.example.com:8443
  namespace: alice-project
  user: alice/openshift1.example.com:8443
  name: alice-project/openshift1.example.com:8443/alice
- context:
  cluster: openshift1.example.com:8443
  namespace: joe-project
  user: alice/openshift1.example.com:8443
  name: joe-project/openshift1/alice
current-context: joe-project/openshift1.example.com:8443/alice
kind: Config
preferences: {}
users: 4
```
The clusters section defines connection details for ROSA clusters, including the address for their master server. In this example, one cluster is nicknamed openshift1.example.com:8443 and another is nicknamed openshift2.example.com:8443.

This contexts section defines two contexts: one nicknamed alice-project/openshift1.example.com:8443/alice, using the alice-project project, openshift1.example.com:8443 cluster, and alice user, and another nicknamed joe-project/openshift1.example.com:8443/alice, using the joe-project project, openshift1.example.com:8443 cluster and alice user.

The current-context parameter shows that the joe-project/openshift1.example.com:8443/alice context is currently in use, allowing the alice user to work in the joe-project project on the openshift1.example.com:8443 cluster.

The users section defines user credentials. In this example, the user nickname alice/openshift1.example.com:8443 uses an access token.

The CLI can support multiple configuration files which are loaded at runtime and merged together along with any override options specified from the command line. After you are logged in, you can use the oc status or oc project command to verify your current working environment:

Verify the current working environment

$ oc status

Example output

oc status
In project Joe’s Project (joe-project)

service database (172.30.43.12:5434 -> 3306)
 database deploys docker.io/openshift/mysql-55-centos7:latest
 #1 deployed 25 minutes ago - 1 pod

service frontend (172.30.159.137:5432 -> 8080)
 frontend deploys origin-ruby-sample:latest <-
 builds https://github.com/openshift/ruby-hello-world with joe-project/ruby-20-centos7:latest
 #1 deployed 22 minutes ago - 2 pods

To see more information about a service or deployment, use ‘oc describe service <name>’ or ‘oc describe dc <name>’.
You can use ‘oc get all’ to see lists of each of the types described in this example.

List the current project

$ oc project

Example output
You can run the `oc login` command again and supply the required information during the interactive process, to log in using any other combination of user credentials and cluster details. A context is constructed based on the supplied information if one does not already exist. If you are already logged in and want to switch to another project the current user already has access to, use the `oc project` command and enter the name of the project:

```bash
$ oc project alice-project
```

Example output

```
Now using project "alice-project" on server "https://openshift1.example.com:8443".
```

At any time, you can use the `oc config view` command to view your current CLI configuration, as seen in the output. Additional CLI configuration commands are also available for more advanced usage.

NOTE

If you have access to administrator credentials but are no longer logged in as the default system user `system:admin`, you can log back in as this user at any time as long as the credentials are still present in your CLI config file. The following command logs in and switches to the default project:

```bash
$ oc login -u system:admin -n default
```

2.4.2. Manual configuration of CLI profiles

NOTE

This section covers more advanced usage of CLI configurations. In most situations, you can use the `oc login` and `oc project` commands to log in and switch between contexts and projects.

If you want to manually configure your CLI config files, you can use the `oc config` command instead of directly modifying the files. The `oc config` command includes a number of helpful sub-commands for this purpose:

Table 2.2. CLI configuration subcommands

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>set-cluster</code></td>
<td>Sets a cluster entry in the CLI config file. If the referenced cluster nickname already exists, the specified information is merged in.</td>
</tr>
</tbody>
</table>

```bash
```

Using project "joe-project" from context named "joe-project/openshift1.example.com:8443/alice" on server "https://openshift1.example.com:8443".

Red Hat OpenShift Service on AWS 4 CLI tools
<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>set-context</td>
<td>Sets a context entry in the CLI config file. If the referenced context nickname already exists, the specified information is merged in.</td>
</tr>
<tr>
<td></td>
<td>$ oc config set-context <context_nickname> [--cluster=<cluster_nickname>] [-u <user_nickname>] [--namespace=<namespace>]</td>
</tr>
<tr>
<td>use-context</td>
<td>Sets the current context using the specified context nickname.</td>
</tr>
<tr>
<td></td>
<td>$ oc config use-context <context_nickname></td>
</tr>
<tr>
<td>set</td>
<td>Sets an individual value in the CLI config file.</td>
</tr>
<tr>
<td></td>
<td>$ oc config set <property_name> <property_value></td>
</tr>
<tr>
<td></td>
<td>The <code><property_name></code> is a dot-delimited name where each token represents either an attribute name or a map key. The <code><property_value></code> is the new value being set.</td>
</tr>
<tr>
<td>unset</td>
<td>Unsets individual values in the CLI config file.</td>
</tr>
<tr>
<td></td>
<td>$ oc config unset <property_name></td>
</tr>
<tr>
<td></td>
<td>The <code><property_name></code> is a dot-delimited name where each token represents either an attribute name or a map key.</td>
</tr>
<tr>
<td>view</td>
<td>Displays the merged CLI configuration currently in use.</td>
</tr>
<tr>
<td></td>
<td>$ oc config view</td>
</tr>
<tr>
<td></td>
<td>Displays the result of the specified CLI config file.</td>
</tr>
<tr>
<td></td>
<td>$ oc config view --config=<specific_filename></td>
</tr>
</tbody>
</table>

Example usage

- Log in as a user that uses an access token. This token is used by the `alice` user:

  ```
  $ oc login https://openshift1.example.com --
  token=ns7yVhuRNPDM9cgzlhxQ7bM5s7N2ZVrkZepSR4LC0
  ```

- View the cluster entry automatically created:

  ```
  $ oc config view
  ```

Example output

apiVersion: v1
Update the current context to have users log in to the desired namespace:

```
$ oc config set-context `oc config current-context` --namespace=<project_name>
```

Examine the current context, to confirm that the changes are implemented:

```
$ oc whoami -c
```

All subsequent CLI operations uses the new context, unless otherwise specified by overriding CLI options or until the context is switched.

2.4.3. Load and merge rules

You can follow these rules, when issuing CLI operations for the loading and merging order for the CLI configuration:

- CLI config files are retrieved from your workstation, using the following hierarchy and merge rules:
 - If the `--config` option is set, then only that file is loaded. The flag is set once and no merging takes place.
 - If the `$KUBECONFIG` environment variable is set, then it is used. The variable can be a list of paths, and if so the paths are merged together. When a value is modified, it is modified in the file that defines the stanza. When a value is created, it is created in the first file that exists. If no files in the chain exist, then it creates the last file in the list.
 - Otherwise, the `~/.kube/config` file is used and no merging takes place.

- The context to use is determined based on the first match in the following flow:
 - The value of the `--context` option.
 - The `current-context` value from the CLI config file.
 - An empty value is allowed at this stage.
The user and cluster to use is determined. At this point, you may or may not have a context; they are built based on the first match in the following flow, which is run once for the user and once for the cluster:

- The value of the `--user` for user name and `--cluster` option for cluster name.
- If the `--context` option is present, then use the context’s value.
- An empty value is allowed at this stage.

The actual cluster information to use is determined. At this point, you may or may not have cluster information. Each piece of the cluster information is built based on the first match in the following flow:

- The values of any of the following command line options:
 - `--server`,
 - `--api-version`
 - `--certificate-authority`
 - `--insecure-skip-tls-verify`
- If cluster information and a value for the attribute is present, then use it.
- If you do not have a server location, then there is an error.

The actual user information to use is determined. Users are built using the same rules as clusters, except that you can only have one authentication technique per user; conflicting techniques cause the operation to fail. Command line options take precedence over config file values. Valid command line options are:

- `--auth-path`
- `--client-certificate`
- `--client-key`
- `--token`

For any information that is still missing, default values are used and prompts are given for additional information.

2.5. EXTENDING THE OPENSSHIFT CLI WITH PLUGINS

You can write and install plugins to build on the default `oc` commands, allowing you to perform new and more complex tasks with the OpenShift CLI.

2.5.1. Writing CLI plugins

You can write a plugin for the OpenShift CLI in any programming language or script that allows you to write command-line commands. Note that you can not use a plugin to overwrite an existing `oc` command.

Procedure
This procedure creates a simple Bash plugin that prints a message to the terminal when the `oc foo` command is issued.

1. Create a file called `oc-foo`. When naming your plugin file, keep the following in mind:
 - The file must begin with `oc-` or `kubectl-` to be recognized as a plugin.
 - The file name determines the command that invokes the plugin. For example, a plugin with the file name `oc-foo-bar` can be invoked by a command of `oc foo bar`. You can also use underscores if you want the command to contain dashes. For example, a plugin with the file name `oc-foo_bar` can be invoked by a command of `oc foo-bar`.

2. Add the following contents to the file.

   ```bash
   #!/bin/bash
   # optional argument handling
   if [[ "$1" == "version" ]]
   then
     echo "1.0.0"
     exit 0
   fi

   # optional argument handling
   if [[ "$1" == "config" ]]
   then
     echo $KUBECONFIG
     exit 0
   fi

   echo "I am a plugin named kubectl-foo"
   ```

 After you install this plugin for the OpenShift CLI, it can be invoked using the `oc foo` command.

Additional resources
- Review the [Sample plugin repository](#) for an example of a plugin written in Go.
- Review the [CLI runtime repository](#) for a set of utilities to assist in writing plugins in Go.

2.5.2. Installing and using CLI plugins

After you write a custom plugin for the OpenShift CLI, you must install the plugin before use.

Prerequisites
- You must have the `oc` CLI tool installed.
- You must have a CLI plugin file that begins with `oc-` or `kubectl-`.

Procedure

1. If necessary, update the plugin file to be executable.
2. Place the file anywhere in your PATH, such as /usr/local/bin/.

```bash
$ chmod +x <plugin_file>
```

3. Run oc plugin list to make sure that the plugin is listed.

```bash
$ oc plugin list
```

Example output

The following compatible plugins are available:

```
/usr/local/bin/<plugin_file>
```

If your plugin is not listed here, verify that the file begins with oc- or kubectl-, is executable, and is on your PATH.

4. Invoke the new command or option introduced by the plugin.

For example, if you built and installed the kubectl-ns plugin from the Sample plugin repository, you can use the following command to view the current namespace.

```bash
$ oc ns
```

Note that the command to invoke the plugin depends on the plugin file name. For example, a plugin with the file name of oc-foo-bar is invoked by the oc foo bar command.

2.6. OPENSSHIFT CLI DEVELOPER COMMAND REFERENCE

This reference provides descriptions and example commands for OpenShift CLI (oc) developer commands.

Run oc help to list all commands or run oc <command> --help to get additional details for a specific command.

2.6.1. OpenShift CLI (oc) developer commands

2.6.1.1. oc annotate

Update the annotations on a resource

Example usage

```bash
# Update pod 'foo' with the annotation 'description' and the value 'my frontend'
oc annotate pods foo description='my frontend'

# Update a pod identified by type and name in "pod.json"
oc annotate -f pod.json description='my frontend'

# Update pod 'foo' with the annotation 'description' and the value 'my frontend running nginx'
oc annotate pods foo description='my frontend running nginx'
```
2.6.1.2. oc api-resources

Print the supported API resources on the server

Example usage

```bash
# Print the supported API resources
oc api-resources

# Print the supported API resources with more information
oc api-resources -o wide

# Print the supported API resources sorted by a column
oc api-resources --sort-by=name

# Print the supported namespaced resources
oc api-resources --namespaced=true

# Print the supported non-namespaced resources
oc api-resources --namespaced=false

# Print the supported API resources with a specific APIGroup
oc api-resources --api-group=rbac.authorization.k8s.io
```

2.6.1.3. oc api-versions

Print the supported API versions on the server, in the form of "group/version"

Example usage

```bash
# Print the supported API versions
oc api-versions
```

2.6.1.4. oc apply

Apply a configuration to a resource by file name or stdin

Example usage

```bash
# Apply the configuration in pod.json to a pod
```
2.6.1.5. `oc apply edit-last-applied`

Edit latest last-applied-configuration annotations of a resource/object

Example usage

```
# Edit the last-applied-configuration annotations by type/name in YAML
oc apply edit-last-applied deployment/nginx

# Edit the last-applied-configuration annotations by file in JSON
oc apply edit-last-applied -f deploy.yaml -o json
```

2.6.1.6. `oc apply set-last-applied`

Set the last-applied-configuration annotation on a live object to match the contents of a file

Example usage

```
# Set the last-applied-configuration of a resource to match the contents of a file
oc apply set-last-applied -f deploy.yaml

# Execute set-last-applied against each configuration file in a directory
oc apply set-last-applied -f path/

# Set the last-applied-configuration of a resource to match the contents of a file; will create the annotation if it does not already exist
oc apply set-last-applied -f deploy.yaml --create-annotation=true
```

2.6.1.7. `oc apply view-last-applied`

View the latest last-applied-configuration annotations of a resource/object

Example usage

```
# Apply resources from a directory containing kustomization.yaml - e.g. dir/kustomization.yaml
oc apply -k dir/

# Apply the JSON passed into stdin to a pod
cat pod.json | oc apply -f -

# Apply the configuration from all files that end with `.json`
oc apply -f `*.json`

# Note: --prune is still in Alpha
# Apply the configuration in manifest.yaml that matches label app=nginx and delete all other resources that are not in the file and match label app=nginx
oc apply --prune -f manifest.yaml -l app=nginx

# Apply the configuration in manifest.yaml and delete all the other config maps that are not in the file
oc apply --prune -f manifest.yaml --all --prune-allowlist=core/v1/ConfigMap
```
2.6.1.8. oc attach

Attach to a running container

Example usage

```bash
# View the last-applied-configuration annotations by type/name in YAML
oc apply view-last-applied deployment/nginx

# View the last-applied-configuration annotations by file in JSON
oc apply view-last-applied -f deploy.yaml -o json
```

```
# Get output from running pod mypod; use the 'oc.kubernetes.io/default-container' annotation
# for selecting the container to be attached or the first container in the pod will be chosen
oc attach mypod

# Get output from ruby-container from pod mypod
oc attach mypod -c ruby-container

# Switch to raw terminal mode; sends stdin to 'bash' in ruby-container from pod mypod
# and sends stdout/stderr from 'bash' back to the client
oc attach mypod -c ruby-container -i -t

# Get output from the first pod of a replica set named nginx
oc attach rs/nginx
```

2.6.1.9. oc auth can-i

Check whether an action is allowed

Example usage

```
# Check to see if I can create pods in any namespace
oc auth can-i create pods --all-namespaces

# Check to see if I can list deployments in my current namespace
oc auth can-i list deployments.apps

# Check to see if service account "foo" of namespace "dev" can list pods
# in the namespace "prod".
# You must be allowed to use impersonation for the global option "--as".
oc auth can-i list pods --as=system:serviceaccount:dev:foo -n prod

# Check to see if I can do everything in my current namespace ("*" means all)
oc auth can-i '*' '*'

# Check to see if I can get the job named "bar" in namespace "foo"
oc auth can-i list jobs.batch/bar -n foo

# Check to see if I can read pod logs
oc auth can-i get pods --subresource=log

# Check to see if I can access the URL /logs/
oc auth can-i get /logs/
```
2.6.1.10. oc auth reconcile

Reconciles rules for RBAC role, role binding, cluster role, and cluster role binding objects

Example usage

```
# Reconcile RBAC resources from a file
oc auth reconcile -f my-rbac-rules.yaml
```

2.6.1.11. oc auth whoami

Experimental: Check self subject attributes

Example usage

```
# Get your subject attributes.
oc auth whoami

# Get your subject attributes in JSON format.
oc auth whoami -o json
```

2.6.1.12. oc autoscale

Autoscale a deployment config, deployment, replica set, stateful set, or replication controller

Example usage

```
# Auto scale a deployment "foo", with the number of pods between 2 and 10, no target CPU
utilization specified so a default autoscaling policy will be used
  oc autoscale deployment foo --min=2 --max=10

# Auto scale a replication controller "foo", with the number of pods between 1 and 5, target CPU
utilization at 80%
  oc autoscale rc foo --max=5 --cpu-percent=80
```

2.6.1.13. oc cancel-build

Cancel running, pending, or new builds

Example usage

```
# Cancel the build with the given name
oc cancel-build ruby-build-2

# Cancel the named build and print the build logs
oc cancel-build ruby-build-2 --dump-logs

# Cancel the named build and create a new one with the same parameters
```
2.6.14. oc cluster-info
Display cluster information

Example usage

Print the address of the control plane and cluster services
oc cluster-info

2.6.15. oc cluster-info dump
Dump relevant information for debugging and diagnosis

Example usage

Dump current cluster state to stdout
oc cluster-info dump

Dump current cluster state to /path/to/cluster-state
oc cluster-info dump --output-directory=/path/to/cluster-state

Dump all namespaces to stdout
oc cluster-info dump --all-namespaces

Dump a set of namespaces to /path/to/cluster-state
oc cluster-info dump --namespaces default,kube-system --output-directory=/path/to/cluster-state

2.6.16. oc completion
Output shell completion code for the specified shell (bash, zsh, fish, or powershell)

Example usage

Installing bash completion on macOS using homebrew
If running Bash 3.2 included with macOS
brew install bash-completion
or, if running Bash 4.1+
brew install bash-completion@2
If oc is installed via homebrew, this should start working immediately
If you've installed via other means, you may need add the completion to your completion directory
oc completion bash > $(brew --prefix)/etc/bash_completion.d/oc

Installing bash completion on Linux
If bash-completion is not installed on Linux, install the 'bash-completion' package
2.6.17. oc config current-context

Display the current-context

Example usage

```bash
# Display the current-context
oc config current-context
```

2.6.18. oc config delete-cluster

Delete the specified cluster from the kubeconfig

Example usage

```bash
# Delete the minikube cluster
oc config delete-cluster minikube
```
2.6.19. `oc config delete-context`
Delete the specified context from the kubeconfig

Example usage

```
# Delete the context for the minikube cluster
oc config delete-context minikube
```

2.6.20. `oc config delete-user`
Delete the specified user from the kubeconfig

Example usage

```
# Delete the minikube user
oc config delete-user minikube
```

2.6.21. `oc config get-clusters`
Display clusters defined in the kubeconfig

Example usage

```
# List the clusters that oc knows about
oc config get-clusters
```

2.6.22. `oc config get-contexts`
Describe one or many contexts

Example usage

```
# List all the contexts in your kubeconfig file
oc config get-contexts

# Describe one context in your kubeconfig file
oc config get-contexts my-context
```

2.6.23. `oc config get-users`
Display users defined in the kubeconfig

Example usage

```
# List the users that oc knows about
oc config get-users
```

2.6.24. `oc config new-admin-kubeconfig`
Generate, make the server trust, and display a new admin.kubeconfig.
Example usage

Generate a new admin kubeconfig
oc config new-admin-kubeconfig

2.6.1.25. oc config new-kubelet-bootstrap-kubeconfig
Generate, make the server trust, and display a new kubelet /etc/kubernetes/kubeconfig.

Example usage

Generate a new kublet bootstrap kubeconfig
oc config new-kubelet-bootstrap-kubeconfig

2.6.1.26. oc config refresh-ca-bundle
Update the OpenShift CA bundle by contacting the apiserver.

Example usage

Refresh the CA bundle for the current context's cluster
oc config refresh-ca-bundle

Refresh the CA bundle for the cluster named e2e in your kubeconfig
oc config refresh-ca-bundle e2e

Print the CA bundle from the current OpenShift cluster's apiserver.
oc config refresh-ca-bundle --dry-run

2.6.1.27. oc config rename-context
Rename a context from the kubeconfig file

Example usage

Rename the context 'old-name' to 'new-name' in your kubeconfig file
oc config rename-context old-name new-name

2.6.1.28. oc config set
Set an individual value in a kubeconfig file

Example usage

Set the server field on the my-cluster cluster to https://1.2.3.4
oc config set clusters.my-cluster.server https://1.2.3.4

Set the certificate-authority-data field on the my-cluster cluster
oc config set clusters.my-cluster.certificate-authority-data $(echo "cert_data_here" | base64 -i -)

Set the cluster field in the my-context context to my-cluster
oc config set contexts.my-context.cluster my-cluster
2.6.1.29. oc config set-cluster

Set a cluster entry in kubeconfig

Example usage

Set the client-key-data field in the cluster-admin user using --set-raw-bytes option
oc config set users.cluster-admin.client-key-data cert_data_here --set-raw-bytes=true

2.6.1.30. oc config set-context

Set a context entry in kubeconfig

Example usage

Set only the server field on the e2e cluster entry without touching other values
oc config set-cluster e2e --server=https://1.2.3.4

Embed certificate authority data for the e2e cluster entry
oc config set-cluster e2e --embed-certs --certificate-authority=~/.kube/e2e/kubernetes.ca.crt

Disable cert checking for the e2e cluster entry
oc config set-cluster e2e --insecure-skip-tls-verify=true

Set the custom TLS server name to use for validation for the e2e cluster entry
oc config set-cluster e2e --tls-server-name=my-cluster-name

Set the proxy URL for the e2e cluster entry
oc config set-cluster e2e --proxy-url=https://1.2.3.4

2.6.1.31. oc config set-credentials

Set a user entry in kubeconfig

Example usage

Set the user field on the gce context entry without touching other values
oc config set-context gce --user=cluster-admin

Set only the "client-key" field on the "cluster-admin" entry, without touching other values
oc config set-credentials cluster-admin --client-key=~/.kube/admin.key

Set basic auth for the "cluster-admin" entry
oc config set-credentials cluster-admin --username=admin --password=uXFGweU9l35qcif

Embed client certificate data in the "cluster-admin" entry
oc config set-credentials cluster-admin --client-certificate=~/.kube/admin.crt --embed-certs=true

Enable the Google Compute Platform auth provider for the "cluster-admin" entry
oc config set-credentials cluster-admin --auth-provider=gcp
2.6.1.32. oc config unset

Unset an individual value in a kubeconfig file

Example usage

```
# Unset the current-context
oc config unset current-context

# Unset namespace in foo context
oc config unset contexts.foo.namespace
```

2.6.1.33. oc config use-context

Set the current-context in a kubeconfig file

Example usage

```
# Use the context for the minikube cluster
oc config use-context minikube
```

2.6.1.34. oc config view

Display merged kubeconfig settings or a specified kubeconfig file

Example usage

```
# Show merged kubeconfig settings
oc config view

# Show merged kubeconfig settings, raw certificate data, and exposed secrets
oc config view --raw
```
Get the password for the e2e user
oc config view -o jsonpath='{.users[?(@.name == "e2e")].user.password}'

2.6.1.35. **oc cp**

Copy files and directories to and from containers

Example usage

```bash
# !!!Important Note!!!
# Requires that the 'tar' binary is present in your container
# image. If 'tar' is not present, 'oc cp' will fail.
#
# For advanced use cases, such as symlinks, wildcard expansion or
# file mode preservation, consider using 'oc exec'.

# Copy /tmp/foo local file to /tmp/bar in a remote pod in namespace <some-namespace>
tar cf - /tmp/foo | oc exec -i -n <some-namespace> <some-pod> -- tar xf - -C /tmp/bar

# Copy /tmp/foo from a remote pod to /tmp/bar locally
oc exec -n <some-namespace> <some-pod> -- tar cf - /tmp/foo | tar xf - -C /tmp/bar

# Copy /tmp/foo dir local directory to /tmp/bar_dir in a remote pod in the default namespace
oc cp /tmp/foo_dir <some-pod>:/tmp/bar_dir

# Copy /tmp/foo local file to /tmp/bar in a remote pod in a specific container
oc cp /tmp/foo <some-pod>:/tmp/bar -c <specific-container>

# Copy /tmp/foo local file to /tmp/bar in a remote pod in namespace <some-namespace>
oc cp /tmp/foo <some-namespace>/<some-pod>:/tmp/bar

# Copy /tmp/foo from a remote pod to /tmp/bar locally
oc cp <some-namespace>/<some-pod>:/tmp/foo /tmp/bar
```

2.6.1.36. **oc create**

Create a resource from a file or from stdin

Example usage

```bash
# Create a pod using the data in pod.json
oc create -f ./pod.json

# Create a pod based on the JSON passed into stdin
cat pod.json | oc create -f -

# Edit the data in registry.yaml in JSON then create the resource using the edited data
oc create -f registry.yaml --edit -o json
```

2.6.1.37. **oc create build**

Create a new build
Example usage

```bash
# Create a new build
oc create build myapp
```

2.6.1.38. oc create clusterresourcequota
Create a cluster resource quota

Example usage

```bash
# Create a cluster resource quota limited to 10 pods
oc create clusterresourcequota limit-bob --project-annotation-selector=openshift.io/requester=user-bob --hard=pods=10
```

2.6.1.39. oc create clusterrole
Create a cluster role

Example usage

```bash
# Create a cluster role named "pod-reader" that allows user to perform "get", "watch" and "list" on pods
oc create clusterrole pod-reader --verb=get,list,watch --resource=pods

# Create a cluster role named "pod-reader" with ResourceName specified
oc create clusterrole pod-reader --verb=get --resource=pods --resource-name=readablepod --resource-name=anotherpod

# Create a cluster role named "foo" with API Group specified
oc create clusterrole foo --verb=get,list,watch --resource=rs.apps

# Create a cluster role named "foo" with SubResource specified
oc create clusterrole foo --verb=get,list,watch --resource=pods,pods/status

# Create a cluster role name "foo" with NonResourceURL specified
oc create clusterrole "foo" --verb=get --non-resource-url=/logs/*

# Create a cluster role name "monitoring" with AggregationRule specified
oc create clusterrole monitoring --aggregation-rule="rbac.example.com/aggregate-to-monitoring=true"
```

2.6.1.40. oc create clusterrolebinding
Create a cluster role binding for a particular cluster role

Example usage

```bash
# Create a cluster role binding for user1, user2, and group1 using the cluster-admin cluster role
oc create clusterrolebinding cluster-admin --clusterrole=cluster-admin --user=user1 --user=user2 --group=group1
```
2.6.1.41. oc create configmap
Create a config map from a local file, directory or literal value

Example usage

```bash
# Create a new config map named my-config based on folder bar
oc create configmap my-config --from-file=path/to/bar

# Create a new config map named my-config with specified keys instead of file basenames on disk
oc create configmap my-config --from-file=key1=/path/to/bar/file1.txt --from-file=key2=/path/to/bar/file2.txt

# Create a new config map named my-config with key1=config1 and key2=config2
oc create configmap my-config --from-literal=key1=config1 --from-literal=key2=config2

# Create a new config map named my-config from the key=value pairs in the file
oc create configmap my-config --from-file=path/to/bar

# Create a new config map named my-config from an env file
oc create configmap my-config --from-env-file=path/to/foo.env --from-env-file=path/to/bar.env
```

2.6.1.42. oc create cronjob
Create a cron job with the specified name

Example usage

```bash
# Create a cron job
oc create cronjob my-job --image=busybox --schedule="*/1 * * * *"

# Create a cron job with a command
oc create cronjob my-job --image=busybox --schedule="*/1 * * * *" -- date
```

2.6.1.43. oc create deployment
Create a deployment with the specified name

Example usage

```bash
# Create a deployment named my-dep that runs the busybox image
oc create deployment my-dep --image=busybox

# Create a deployment with a command
oc create deployment my-dep --image=busybox -- date

# Create a deployment named my-dep that runs the nginx image with 3 replicas
oc create deployment my-dep --image=nginx --replicas=3

# Create a deployment named my-dep that runs the busybox image and expose port 5701
oc create deployment my-dep --image=busybox --port=5701
```

2.6.1.44. oc create deploymentconfig
Create a deployment config with default options that uses a given image

Example usage

```
# Create an nginx deployment config named my-nginx
oc create deploymentconfig my-nginx --image=nginx
```

2.6.1.45. oc create identity

Manually create an identity (only needed if automatic creation is disabled)

Example usage

```
# Create an identity with identity provider "acme_ldap" and the identity provider username "adamjones"
oc create identity acme_ldap:adamjones
```

2.6.1.46. oc create imagestream

Create a new empty image stream

Example usage

```
# Create a new image stream
oc create imagestream mysql
```

2.6.1.47. oc create imagestreamtag

Create a new image stream tag

Example usage

```
# Create a new image stream tag based on an image in a remote registry
oc create imagestreamtag mysql:latest --from-image=myregistry.local/mysql/mysql:5.0
```

2.6.1.48. oc create ingress

Create an ingress with the specified name

Example usage

```
# Create a single ingress called ‘simple’ that directs requests to foo.com/bar to svc
# svc1:8080 with a TLS secret "my-cert"
oc create ingress simple --rule="foo.com/bar=svc1:8080,tls=my-cert"

# Create a catch all ingress of "/path" pointing to service svc:port and Ingress Class as "otheringress"
oc create ingress catch-all --class=otheringress --rule="/path=svc:port"

# Create an ingress with two annotations: ingress.annotation1 and ingress.annotations2
oc create ingress annotated --class=default --rule="foo.com/bar=svc:port" \
--annotation ingress.annotation1=foo \
```
2.6.1.49. `oc create job`

Create a job with the specified name

Example usage

```bash
# Create a job
oc create job my-job --image=busybox

# Create a job with a command
oc create job my-job --image=busybox -- date

# Create a job from a cron job named "a-cronjob"
oc create job test-job --from=cronjob/a-cronjob
```

2.6.1.50. `oc create namespace`

Create a namespace with the specified name

Example usage

```bash
# Create a new namespace named my-namespace
oc create namespace my-namespace
```

2.6.1.51. `oc create poddisruptionbudget`

Create a pod disruption budget with the specified name
Example usage

```
# Create a pod disruption budget named my-pdb that will select all pods with the app=rails label
# and require at least one of them being available at any point in time
oc create poddisruptionbudget my-pdb --selector=app=rails --min-available=1

# Create a pod disruption budget named my-pdb that will select all pods with the app=nginx label
# and require at least half of the pods selected to be available at any point in time
oc create pdb my-pdb --selector=app=nginx --min-available=50%
```

2.6.152. oc create priorityclass

Create a priority class with the specified name

Example usage

```
# Create a priority class named high-priority
oc create priorityclass high-priority --value=1000 --description="high priority"

# Create a priority class named default-priority that is considered as the global default priority
oc create priorityclass default-priority --value=1000 --global-default=true --description="default priority"

# Create a priority class named high-priority that cannot preempt pods with lower priority
oc create priorityclass high-priority --value=1000 --description="high priority" --preemption-policy="Never"
```

2.6.153. oc create quota

Create a quota with the specified name

Example usage

```
# Create a new resource quota named my-quota
oc create quota my-quota --hard=cpu=1,memory=1G,pods=2,services=3,replicationcontrollers=2,resourcequotas=1,secrets=5,persistentvolumeclaims=10

# Create a new resource quota named best-effort
oc create quota best-effort --hard=pods=100 --scopes=BestEffort
```

2.6.154. oc create role

Create a role with single rule

Example usage

```
# Create a role named "pod-reader" that allows user to perform "get", "watch" and "list" on pods
oc create role pod-reader --verb=get --verb=list --verb=watch --resource=pods

# Create a role named "pod-reader" with ResourceName specified
oc create role pod-reader --verb=get --resource=pods --resource-name=readablepod --resource-name=anotherpod
```
2.6.1.55. oc create rolebinding

Create a role binding for a particular role or cluster role

Example usage

```shell
# Create a role binding for user1, user2, and group1 using the admin cluster role
oc create rolebinding admin --clusterrole=admin --user=user1 --user=user2 --group=group1

# Create a role binding for serviceaccount monitoring:sa-dev using the admin role
oc create rolebinding admin-binding --role=admin --serviceaccount=monitoring:sa-dev
```

2.6.1.56. oc create route edge

Create a route that uses edge TLS termination

Example usage

```shell
# Create an edge route named "my-route" that exposes the frontend service
oc create route edge my-route --service=frontend

# Create an edge route that exposes the frontend service and specify a path
# If the route name is omitted, the service name will be used
oc create route edge --service=frontend --path /assets
```

2.6.1.57. oc create route passthrough

Create a route that uses passthrough TLS termination

Example usage

```shell
# Create a passthrough route named "my-route" that exposes the frontend service
oc create route passthrough my-route --service=frontend

# Create a passthrough route that exposes the frontend service and specify a host name. If the route name is omitted, the service name will be used
oc create route passthrough --service=frontend --hostname=www.example.com
```

2.6.1.58. oc create route reencrypt

Create a route that uses reencrypt TLS termination

Example usage

```shell
# Create a route named "my-route" that exposes the frontend service
```
oc create route reencrypt my-route --service=frontend --dest-ca-cert cert.cert

Create a reencrypt route that exposes the frontend service, letting the
route name default to the service name and the destination CA certificate
default to the service CA
oc create route reencrypt --service=frontend

2.6.1.59. oc create secret docker-registry
Create a secret for use with a Docker registry

Example usage

If you do not already have a .dockercfg file, create a dockercfg secret directly
oc create secret docker-registry my-secret --docker-server=DOCKER_REGISTRY_SERVER --
docker-username=DOCKER_USER --docker-password=DOCKER_PASSWORD --docker-
email=DOCKER_EMAIL

Create a new secret named my-secret from ~/.docker/config.json
oc create secret docker-registry my-secret --from-file=.dockerconfigjson=path/to/.docker/config.json

2.6.1.60. oc create secret generic
Create a secret from a local file, directory, or literal value

Example usage

Create a new secret named my-secret with keys for each file in folder bar
oc create secret generic my-secret --from-file=path/to/bar

Create a new secret named my-secret with specified keys instead of names on disk
oc create secret generic my-secret --from-file=ssh-privatekey=path/to/id_rsa --from-file=ssh-
publickey=path/to/id_rsa.pub

Create a new secret named my-secret with key1=supersecret and key2=topsecret
oc create secret generic my-secret --from-literal=key1=supersecret --from-literal=key2=topsecret

Create a new secret named my-secret using a combination of a file and a literal
oc create secret generic my-secret --from-file=ssh-privatekey=path/to/id_rsa --from-
literal=passphrase=topsecret

Create a new secret named my-secret from env files
oc create secret generic my-secret --from-env-file=path/to/foo.env --from-env-file=path/to/bar.env

2.6.1.61. oc create secret tls
Create a TLS secret

Example usage

Create a new TLS secret named tls-secret with the given key pair
oc create secret tls tls-secret --cert=path/to/tls.cert --key=path/to/tls.key
2.6.1.62. `oc create service clusterip`
Create a ClusterIP service

Example usage

```
# Create a new ClusterIP service named my-cs
oc create service clusterip my-cs --tcp=5678:8080

# Create a new ClusterIP service named my-cs (in headless mode)
oc create service clusterip my-cs --clusterip="None"
```

2.6.1.63. `oc create service externalname`
Create an ExternalName service

Example usage

```
# Create a new ExternalName service named my-ns
oc create service externalname my-ns --external-name bar.com
```

2.6.1.64. `oc create service loadbalancer`
Create a LoadBalancer service

Example usage

```
# Create a new LoadBalancer service named my-lbs
oc create service loadbalancer my-lbs --tcp=5678:8080
```

2.6.1.65. `oc create service nodeport`
Create a NodePort service

Example usage

```
# Create a new NodePort service named my-ns
oc create service nodeport my-ns --tcp=5678:8080
```

2.6.1.66. `oc create serviceaccount`
Create a service account with the specified name

Example usage

```
# Create a new service account named my-service-account
oc create serviceaccount my-service-account
```

2.6.1.67. `oc create token`
Request a service account token
2.6.1.68. oc create user
Manually create a user (only needed if automatic creation is disabled)

Example usage

```
# Create a user with the username "ajones" and the display name "Adam Jones"
oc create user ajones --full-name="Adam Jones"
```

2.6.1.69. oc create useridentitymapping
Manually map an identity to a user

Example usage

```
# Map the identity "acme_ldap:adamjones" to the user "ajones"
oc create useridentitymapping acme_ldap:adamjones ajones
```

2.6.1.70. oc debug
Launch a new instance of a pod for debugging

Example usage

```
# Start a shell session into a pod using the OpenShift tools image
oc debug

# Debug a currently running deployment by creating a new pod
oc debug deploy/test

# Debug a node as an administrator
```
Debug a Windows Node
Note: the chosen image must match the Windows Server version (2019, 2022) of the Node
oc debug node/win-worker-1 --image=mcr.microsoft.com/powershell:lts-nanoserver-ltsc2022

Launch a shell in a pod using the provided image stream tag
oc debug istag/mysql:latest -n openshift

Test running a job as a non-root user
oc debug job/test --as-user=1000000

Debug a specific failing container by running the env command in the 'second' container
oc debug daemonset/test -c second -- /bin/env

See the pod that would be created to debug
oc debug mypod-9xbc -o yaml

Debug a resource but launch the debug pod in another namespace
Note: Not all resources can be debugged using --to-namespace without modification. For example,
volumes and service accounts are namespace-dependent. Add `-o yaml` to output the debug pod definition
to disk. If necessary, edit the definition then run `oc debug -f -` or run without --to-namespace
oc debug mypod-9xbc --to-namespace testns

2.6.1.71. oc delete

Delete resources by file names, stdin, resources and names, or by resources and label selector

Example usage

Delete a pod using the type and name specified in pod.json
oc delete -f ./pod.json

Delete resources from a directory containing kustomization.yaml - e.g. dir/kustomization.yaml
oc delete -k dir

Delete resources from all files that end with '.json'
oc delete -f `*.json`

Delete a pod based on the type and name in the JSON passed into stdin
cat pod.json | oc delete -f -

Delete pods and services with same names "baz" and "foo"
oc delete pod,service baz foo

Delete pods and services with label name=myLabel
oc delete pods,services -l name=myLabel

Delete a pod with minimal delay
oc delete pod foo --now

Force delete a pod on a dead node
oc delete pod foo --force
2.6.1.72. **oc describe**

Show details of a specific resource or group of resources

Example usage

```bash
# Describe a node
oc describe nodes kubernetes-node-emt8.c.myproject.internal

# Describe a pod
oc describe pods/nginx

# Describe a pod identified by type and name in "pod.json"
oc describe -f pod.json

# Describe all pods
oc describe pods

# Describe pods by label name=MyLabel
oc describe pods -l name=MyLabel

# Describe all pods managed by the 'frontend' replication controller
# (rc-created pods get the name of the rc as a prefix in the pod name)
oc describe pods frontend
```

2.6.1.73. **oc diff**

Diff the live version against a would-be applied version

Example usage

```bash
# Diff resources included in pod.json
oc diff -f pod.json

# Diff file read from stdin
cat service.yaml | oc diff -f -
```

2.6.1.74. **oc edit**

Edit a resource on the server

Example usage

```bash
# Edit the service named 'registry'
oc edit svc/registry

# Use an alternative editor
KUBE_EDITOR="nano" oc edit svc/registry
```
2.6.175. oc events

List events

Example usage

```bash
# Edit the job 'myjob' in JSON using the v1 API format
oc edit job.v1.batch/myjob -o json

# Edit the deployment 'mydeployment' in YAML and save the modified config in its annotation
oc edit deployment/mydeployment -o yaml --save-config

# Edit the 'status' subresource for the 'mydeployment' deployment
oc edit deployment mydeployment --subresource='status'
```

2.6.176. oc exec

Execute a command in a container

Example usage

```bash
# Get output from running the 'date' command from pod mypod, using the first container by default
oc exec mypod -- date

# Get output from running the 'date' command in ruby-container from pod mypod
oc exec mypod -c ruby-container -- date

# Switch to raw terminal mode; sends stdin to 'bash' in ruby-container from pod mypod
# and sends stdout/stderr from 'bash' back to the client
oc exec mypod -c ruby-container -i -t -- bash -il

# List contents of /usr from the first container of pod mypod and sort by modification time
# If the command you want to execute in the pod has any flags in common (e.g. -i),
# you must use two dashes (--) to separate your command's flags/arguments
# Also note, do not surround your command and its flags/arguments with quotes
# unless that is how you would execute it normally (i.e., do ls -t /usr, not "ls -t /usr")
oc exec mypod -i -t -- ls -t /usr

# Get output from running 'date' command from the first pod of the deployment mydeployment,
```
2.6.1.77. **oc explain**

Get documentation for a resource

Example usage

```bash
# Get the documentation of the resource and its fields
oc explain pods

# Get all the fields in the resource
oc explain pods --recursive

# Get the explanation for deployment in supported api versions
oc explain deployments --api-version=apps/v1

# Get the documentation of a specific field of a resource
oc explain pods.spec.containers

# Get the documentation of resources in different format
oc explain deployment --output=plaintext-openapiv2
```

2.6.1.78. **oc expose**

Expose a replicated application as a service or route

Example usage

```bash
# Create a route based on service nginx. The new route will reuse nginx's labels
oc expose service nginx

# Create a route and specify your own label and route name
oc expose service nginx -l name=myroute --name=fromdowntown

# Create a route and specify a host name
oc expose service nginx --hostname=www.example.com

# Create a route with a wildcard
oc expose service nginx --hostname=x.example.com --wildcard-policy=Subdomain
# This would be equivalent to *.example.com. NOTE: only hosts are matched by the wildcard; subdomains would not be included

# Expose a deployment configuration as a service and use the specified port
oc expose dc ruby-hello-world --port=8080

# Expose a service as a route in the specified path
oc expose service nginx --path=/nginx
```
2.6.1.79. oc extract

Extract secrets or config maps to disk

Example usage

```bash
# Extract the secret "test" to the current directory
oc extract secret/test

# Extract the config map "nginx" to the /tmp directory
oc extract configmap/nginx --to=/tmp

# Extract the config map "nginx" to STDOUT
oc extract configmap/nginx --to=-

# Extract only the key "nginx.conf" from config map "nginx" to the /tmp directory
oc extract configmap/nginx --to=/tmp --keys=nginx.conf
```

2.6.1.80. oc get

Display one or many resources

Example usage

```bash
# List all pods in ps output format
oc get pods

# List all pods in ps output format with more information (such as node name)
oc get pods -o wide

# List a single replication controller with specified NAME in ps output format
oc get replicationcontroller web

# List deployments in JSON output format, in the "v1" version of the "apps" API group
oc get deployments.v1.apps -o json

# List a single pod in JSON output format
oc get -o json pod web-pod-13je7

# List a pod identified by type and name specified in "pod.yaml" in JSON output format
oc get -f pod.yaml -o json

# List resources from a directory with kustomization.yaml - e.g. dir/kustomization.yaml
oc get -k dir/

# Return only the phase value of the specified pod
oc get -o template pod/web-pod-13je7 --template={{.status.phase}}

# List resource information in custom columns
oc get pod test-pod -o custom-columns=CONTAINER:.spec.containers[0].name,IMAGE:.spec.containers[0].image

# List all replication controllers and services together in ps output format
oc get rc,services
```
2.6.1.81. oc get-token
Experimental: Get token from external OIDC issuer as credentials exec plugin

Example usage

```
# Starts an auth code flow to the issuer url with the client id and the given extra scopes
oc get-token --client-id=client-id --issuer-url=test.issuer.url --extra-scopes=email,profile

# Starts an auth code flow to the issuer url with a different callback address.
oc get-token --client-id=client-id --issuer-url=test.issuer.url --callback-address=127.0.0.1:8343
```

2.6.1.82. oc idle
Idle scalable resources

Example usage

```
# Idle the scalable controllers associated with the services listed in to-idle.txt
$ oc idle --resource-names-file to-idle.txt
```

2.6.1.83. oc image append
Add layers to images and push them to a registry

Example usage

```
# Remove the entrypoint on the mysql:latest image
oc image append --from mysql:latest --to myregistry.com/myimage:latest --image '"Entrypoint":null"

# Add a new layer to the image
oc image append --from mysql:latest --to myregistry.com/myimage:latest layer.tar.gz

# Add a new layer to the image and store the result on disk
# This results in $(pwd)/v2/mysql/blobs,manifests
oc image append --from mysql:latest --to file://mysql:local layer.tar.gz

# Add a new layer to the image and store the result on disk in a designated directory
# This will result in $(pwd)/mysql-local/v2/mysql/blobs,manifests
oc image append --from mysql:latest --to file://mysql:local --dir mysql-local layer.tar.gz

# Add a new layer to an image that is stored on disk (~/mysql-local/v2/image exists)
oc image append --from-dir ~/mysql-local --to myregistry.com/myimage:latest layer.tar.gz

# Add a new layer to an image that was mirrored to the current directory on disk ($(pwd)/v2/image exists)
oc image append --from-dir v2 --to myregistry.com/myimage:latest layer.tar.gz
```
Copy files from an image to the file system

Example usage

Add a new layer to a multi-architecture image for an os/arch that is different from the system's os/arch
Note: The first image in the manifest list that matches the filter will be returned when --keep-manifest-list is not specified
oc image append --from docker.io/library/busybox:latest --filter-by-os=linux/s390x --to myregistry.com/myimage:latest layer.tar.gz

Add a new layer to a multi-architecture image for all the os/arch manifests when keep-manifest-list is specified
oc image append --from docker.io/library/busybox:latest --keep-manifest-list --to myregistry.com/myimage:latest layer.tar.gz

Add a new layer to a multi-architecture image for all the os/arch manifests that is specified by the filter, while preserving the manifest list
oc image append --from docker.io/library/busybox:latest --filter-by-os=linux/s390x --keep-manifest-list --to myregistry.com/myimage:latest layer.tar.gz

Extract the busybox image into the current directory
oc image extract docker.io/library/busybox:latest

Extract the busybox image into a designated directory (must exist)
oc image extract docker.io/library/busybox:latest --path /:/tmp/busybox

Extract the busybox image into the current directory for linux/s390x platform
Note: Wildcard filter is not supported with extract; pass a single os/arch to extract
oc image extract docker.io/library/busybox:latest --filter-by-os=linux/s390x

Extract a single file from the image into the current directory
oc image extract docker.io/library/centos:7 --path /bin/bash:.

Extract all .repo files from the image's /etc/yum.repos.d/ folder into the current directory
oc image extract docker.io/library/centos:7 --path /etc/yum.repos.d/*.repo:.

Extract all .repo files from the image's /etc/yum.repos.d/ folder into a designated directory (must exist)
This results in /tmp/yum.repos.d/*.repo on local system
oc image extract docker.io/library/centos:7 --path /etc/yum.repos.d/*.repo:/tmp/yum.repos.d

Extract an image stored on disk into the current directory ($(pwd)/v2/busybox/blobs, manifests exists)
--confirm is required because the current directory is not empty
oc image extract file://busybox:local --confirm

Extract an image stored on disk in a directory other than $(pwd)/v2 into the current directory
--confirm is required because the current directory is not empty ($(pwd)/busybox-mirror-dir/v2/busybox exists)
oc image extract file://busybox:local --dir busybox-mirror-dir --confirm
Extract an image stored on disk in a directory other than $(pwd)/v2 into a designated directory (must exist)
```bash
oc image extract file://busybox:local --dir busybox-mirror-dir --path /:/tmp/busybox
```

Extract the last layer in the image
```bash
oc image extract docker.io/library/centos:7[-1]
```

Extract the first three layers of the image
```bash
oc image extract docker.io/library/centos:7[:3]
```

Extract the last three layers of the image
```bash
oc image extract docker.io/library/centos:7[-3:]
```

2.6.185. oc image info

Display information about an image

Example usage

```bash
# Show information about an image
oc image info quay.io/openshift/cli:latest

# Show information about images matching a wildcard
oc image info quay.io/openshift/cli:4.*

# Show information about a file mirrored to disk under DIR
oc image info --dir=DIR file://library/busybox:latest

# Select which image from a multi-OS image to show
oc image info library/busybox:latest --filter-by-os=linux/arm64
```

2.6.186. oc image mirror

Mirror images from one repository to another

NOTE

The following example contains some values that are specific to Red Hat OpenShift Service on AWS on AWS.

Example usage

```bash
# Copy image to another tag
oc image mirror myregistry.com/myimage:latest myregistry.com/myimage:stable

# Copy image to another registry
oc image mirror myregistry.com/myimage:latest docker.io/myrepository/myimage:stable

# Copy all tags starting with mysql to the destination repository
oc image mirror myregistry.com/myimage:mysql* docker.io/myrepository/myimage

# Copy image to disk, creating a directory structure that can be served as a registry
oc image mirror myregistry.com/myimage:latest file://myrepository/myimage:latest
```
2.6.87. oc import-image

Import images from a container image registry

Example usage

Import tag latest into a new image stream
oc import-image mystream --from=registry.io/repo/image:latest --confirm

Update imported data for tag latest in an already existing image stream

2.6.1.88. oc kustomize

Build a kustomization target from a directory or URL

Example usage

```bash
# Build the current working directory
oc kustomize

# Build some shared configuration directory
oc kustomize /home/config/production

# Build from github
oc kustomize https://github.com/kubernetes-sigs/kustomize.git/examples/helloWorld?ref=v1.0.6
```

2.6.1.89. oc label

Update the labels on a resource

Example usage

```bash
# Update pod ‘foo’ with the label ‘unhealthy’ and the value ‘true’
oc label pods foo unhealthy=true

# Update pod ‘foo’ with the label ‘status’ and the value ‘unhealthy’, overwriting any existing value
oc label --overwrite pods foo status=unhealthy

# Update all pods in the namespace
oc label pods --all status=unhealthy

# Update a pod identified by the type and name in "pod.json"
oc label -f pod.json status=unhealthy

# Update pod ‘foo’ only if the resource is unchanged from version 1
oc label pods foo status=unhealthy --resource-version=1
```
Update pod 'foo' by removing a label named 'bar' if it exists
Does not require the --overwrite flag
oc label pods foo bar-

2.6.1.90. oc login

Log in to a server

Example usage

- **# Log in interactively**
 - `oc login --username=myuser`

- **# Log in to the given server with the given certificate authority file**
 - `oc login localhost:8443 --certificate-authority=/path/to/cert.crt`

- **# Log in to the given server with the given credentials (will not prompt interactively)**
 - `oc login localhost:8443 --username=myuser --password=mypass`

- **# Log in to the given server through a browser**
 - `oc login localhost:8443 --web --callback-port 8280`

- **# Log in to the external OIDC issuer through Auth Code + PKCE by starting a local server listening port 8080**
 - `oc login --exec-plugin=oc-oidc --issuer-url=<issuer_url> --client-id=<client_id> --extra-scopes=email,profile --callback-port=8080`

- **# Log in with an external OIDC if the external OIDC certificate is not publically trusted**
 - `oc login --exec-plugin=oc-oidc --issuer-url=<issuer_url> --client-id=<client_id> --extra-scopes=email --callback-port=8080 --oidc-certificate-authority <CA for external OIDC certificate>

Table 2.3. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--exec-plugin</td>
<td>Specifies the type of exec plugin credentials used to authenticate the external OIDC issuer. Currently, only oc-oidc is supported.</td>
</tr>
<tr>
<td>--issuer-url</td>
<td>Issuer URL for the external issuer. Required.</td>
</tr>
<tr>
<td>--client-id</td>
<td>Client ID for the external OIDC issuer. Only supports Auth Code and PKCE. Required.</td>
</tr>
<tr>
<td>--extra-scopes</td>
<td>Extra scopes for the external OIDC issuer. Optional.</td>
</tr>
<tr>
<td>--callback-port</td>
<td>The port that the callback server is redirected to after authentication flow is complete. The default is any random, open port.</td>
</tr>
<tr>
<td>--oidc-certificate-authority</td>
<td>Path to a certificate file for the external OIDC certificate authority.</td>
</tr>
</tbody>
</table>
2.6.1.91. oc logout

End the current server session

Example usage

```bash
# Log out
oc logout
```

2.6.1.92. oc logs

Print the logs for a container in a pod

Example usage

```bash
# Start streaming the logs of the most recent build of the openldap build config
oc logs -f bc/openldap

# Start streaming the logs of the latest deployment of the mysql deployment config
oc logs -f dc/mysql

# Get the logs of the first deployment for the mysql deployment config. Note that logs
# from older deployments may not exist either because the deployment was successful
# or due to deployment pruning or manual deletion of the deployment
oc logs --version=1 dc/mysql

# Return a snapshot of ruby-container logs from pod backend
oc logs backend -c ruby-container

# Start streaming of ruby-container logs from pod backend
oc logs -f pod/backend -c ruby-container
```

2.6.1.93. oc new-app

Create a new application

Example usage

```bash
# List all local templates and image streams that can be used to create an app
oc new-app --list

# Create an application based on the source code in the current git repository (with a public remote)
and a container image
oc new-app . --image=registry/repo/langimage

# Create an application myapp with Docker based build strategy expecting binary input
oc new-app --strategy=docker --binary --name myapp

# Create a Ruby application based on the provided [image]~[source code] combination
oc new-app centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git

# Use the public container registry MySQL image to create an app. Generated artifacts will be
labeled with db=mysql
oc new-app mysql MYSQL_USER=user MYSQL_PASSWORD=pass MYSQL_DATABASE=testdb
```
2.6.1.94. oc new-build

Create a new build configuration

Example usage

1. Create a build config based on the source code in the current git repository (with a public # remote) and a container image
 `oc new-build . --image=repo/langimage`

2. Create a NodeJS build config based on the provided [image]-[source code] combination
 `oc new-build centos/nodejs-8-centos7~https://github.com/sclorg/nodejs-ex.git`

3. Create a build config from a remote repository using its beta2 branch
 `oc new-build https://github.com/openshift/ruby-hello-world#beta2`

4. Create a build config using a Dockerfile specified as an argument
 `oc new-build -D $'FROM centos:7\nRUN yum install -y httpd'`

5. Create a build config from a remote repository and add custom environment variables

Use a MySQL image in a private registry to create an app and override application artifacts’ names
```
oc new-app --image=myregistry.com/mycompany/mysql --name=private
```

Use an image with the full manifest list to create an app and override application artifacts’ names
```
oc new-app --image=myregistry.com/mycompany/image --name=private --import-mode=PreserveOriginal
```

Create an application from a remote repository using its beta4 branch
```
oc new-app https://github.com/openshift/ruby-hello-world#beta4
```

Create an application based on a stored template, explicitly setting a parameter value
```
oc new-app --template=ruby-helloworld-sample --param=MYSQL_USER=admin
```

Create an application from a remote repository and specify a context directory
```
oc new-app https://github.com/youruser/yourgitrepo --context-dir=src/build
```

Create an application from a remote private repository and specify which existing secret to use
```
oc new-app https://github.com/youruser/yourgitrepo --source-secret=yoursecret
```

Create an application based on a template file, explicitly setting a parameter value
```
oc new-app --file=./example/myapp/template.json --param=MYSQL_USER=admin
```

Search all templates, image streams, and container images for the ones that match "ruby"
```
oc new-app --search ruby
```

Search for "ruby", but only in stored templates (--template, --image-stream and --image # can be used to filter search results)
```
oc new-app --search --template=ruby
```

Search for "ruby" in stored templates and print the output as YAML
```
oc new-app --search --template=ruby --output=yaml
```
2.6.1.95. oc new-project

Request a new project

Example usage

```bash
# Create a new project with minimal information
oc new-project web-team-dev

# Create a new project with a display name and description
oc new-project web-team-dev --display-name="Web Team Development" --description="Development project for the web team."
```

2.6.1.96. oc observe

Observe changes to resources and react to them (experimental)

Example usage

```bash
# Observe changes to services
oc observe services

# Observe changes to services, including the clusterIP and invoke a script for each
oc observe services --template '{ .spec.clusterIP }' -- register_dns.sh

# Observe changes to services filtered by a label selector
oc observe services -l regist-dns=true --template '{ .spec.clusterIP }' -- register_dns.sh
```

2.6.1.97. oc patch

Update fields of a resource

Example usage

```bash
```
2.6.1.98. oc plugin list

List all visible plugin executables on a user’s PATH

Example usage

```
# List all available plugins
oc plugin list
```

2.6.1.99. oc policy add-role-to-user

Add a role to users or service accounts for the current project

Example usage

```
# Add the ‘view’ role to user1 for the current project
oc policy add-role-to-user view user1

# Add the ‘edit’ role to serviceaccount1 for the current project
oc policy add-role-to-user edit -z serviceaccount1
```

2.6.1.100. oc policy scc-review

Check which service account can create a pod

Example usage

```
# Check whether service accounts sa1 and sa2 can admit a pod with a template pod spec specified in my_resource.yaml
# Service Account specified in myresource.yaml file is ignored
oc policy scc-review -z sa1,sa2 -f my_resource.yaml
```
2.6.1.101. oc policy scc-subject-review

Check whether a user or a service account can create a pod

Example usage

```bash
# Check whether service accounts system:serviceaccount:bob:default can admit a pod with a
template pod spec specified in my_resource.yaml
oc policy scc-review -z system:serviceaccount:bob:default -f my_resource.yaml

# Check whether the service account specified in my_resource_with_sa.yaml can admit the pod
oc policy scc-review -f my_resource_with_sa.yaml

# Check whether the default service account can admit the pod; default is taken since no service
account is defined in myresource_with_no_sa.yaml
oc policy scc-review -f myresource_with_no_sa.yaml

# Check whether user bob can create a pod specified in myresource.yaml
oc policy scc-subject-review -u bob -f myresource.yaml

# Check whether user bob who belongs to projectAdmin group can create a pod specified in
myresource.yaml
oc policy scc-subject-review -u bob -g projectAdmin -f myresource.yaml

# Check whether a service account specified in the pod template spec in myresourcewithsa.yaml
can create the pod
oc policy scc-subject-review -f myresourcewithsa.yaml
```

2.6.102. oc port-forward

Forward one or more local ports to a pod

Example usage

```bash
# Listen on ports 5000 and 6000 locally, forwarding data to/from ports 5000 and 6000 in the pod
oc port-forward pod/mypod 5000 6000

# Listen on ports 5000 and 6000 locally, forwarding data to/from ports 5000 and 6000 in a pod
selected by the deployment
oc port-forward deployment/mydeployment 5000 6000

# Listen on port 8443 locally, forwarding to the targetPort of the service's port named "https" in a pod
selected by the service
oc port-forward service/myservice 8443:https

# Listen on port 8888 locally, forwarding to 5000 in the pod
oc port-forward pod/mypod 8888:5000

# Listen on port 8888 on all addresses, forwarding to 5000 in the pod
oc port-forward --address 0.0.0.0 pod/mypod 8888:5000

# Listen on port 8888 on localhost and selected IP, forwarding to 5000 in the pod
oc port-forward --address localhost,10.19.21.23 pod/mypod 8888:5000
```
2.6.1.103. oc process

Process a template into list of resources

Example usage

```bash
# Convert the template.json file into a resource list and pass to create
oc process -f template.json | oc create -f -

# Process a file locally instead of contacting the server
oc process -f template.json --local -o yaml

# Process template while passing a user-defined label
oc process -f template.json -l name=mytemplate

# Convert a stored template into a resource list
oc process foo

# Convert a stored template into a resource list by setting/overriding parameter values
oc process foo PARM1=VALUE1 PARM2=VALUE2

# Convert a template stored in different namespace into a resource list
oc process openshift//foo

# Convert template.json into a resource list
cat template.json | oc process -f -
```

2.6.1.104. oc project

Switch to another project

Example usage

```bash
# Switch to the 'myapp' project
oc project myapp

# Display the project currently in use
oc project
```

2.6.1.105. oc projects

Display existing projects

Example usage

```bash
# List all projects
oc projects
```

2.6.1.106. oc proxy

Listen on a random port locally, forwarding to 5000 in the pod
oc port-forward pod/mypod :5000
Run a proxy to the Kubernetes API server

Example usage

```
# To proxy all of the Kubernetes API and nothing else
oc proxy --api-prefix=/

# To proxy only part of the Kubernetes API and also some static files
# You can get pods info with 'curl localhost:8001/api/v1/pods'
oc proxy --www=/my/files --www-prefix=/static/ --api-prefix=/api/

# To proxy the entire Kubernetes API at a different root
# You can get pods info with 'curl localhost:8001/custom/api/v1/pods'
oc proxy --api-prefix=/custom/

# Run a proxy to the Kubernetes API server on port 8011, serving static content from ./local/www/
oc proxy --port=8011 --www=./local/www/

# Run a proxy to the Kubernetes API server on an arbitrary local port
# The chosen port for the server will be output to stdout
oc proxy --port=0

# Run a proxy to the Kubernetes API server, changing the API prefix to k8s-api
# This makes e.g. the pods API available at localhost:8001/k8s-api/v1/pods/
oc proxy --api-prefix=/k8s-api
```

2.6.1.107. oc registry login

Log in to the integrated registry

Example usage

```
# Log in to the integrated registry
oc registry login

# Log in to different registry using BASIC auth credentials
oc registry login --registry quay.io/myregistry --auth-basic=USER:PASS
```

2.6.1.108. oc replace

Replace a resource by file name or stdin

Example usage

```
# Replace a pod using the data in pod.json
oc replace -f ./pod.json

# Replace a pod based on the JSON passed into stdin
cat pod.json | oc replace -f -

# Update a single-container pod's image version (tag) to v4
oc get pod mypod -o yaml | sed 's/image: myimage\):.*$/image: myimage\):v4/' | oc replace -f -
```
Force replace, delete and then re-create the resource
oc replace --force -f ./pod.json

2.6.109. oc rollback
Revert part of an application back to a previous deployment

Example usage

Perform a rollback to the last successfully completed deployment for a deployment config
oc rollout frontend

See what a rollback to version 3 will look like, but do not perform the rollback
oc rollout frontend --to-version=3 --dry-run

Perform a rollback to a specific deployment
oc rollout frontend-2

Perform the rollback manually by piping the JSON of the new config back to oc
oc rollout frontend -o json | oc replace dc/frontend -f -

Print the updated deployment configuration in JSON format instead of performing the rollback
oc rollout frontend -o json

2.6.110. oc rollout cancel
Cancel the in-progress deployment

Example usage

Cancel the in-progress deployment based on 'nginx'
oc rollout cancel dc/nginx

2.6.111. oc rollout history
View rollout history

Example usage

View the rollout history of a deployment
oc rollout history dc/nginx

View the details of deployment revision 3
oc rollout history dc/nginx --revision=3

2.6.112. oc rollout latest
Start a new rollout for a deployment config with the latest state from its triggers

Example usage
2.6.113. oc rollout pause

Mark the provided resource as paused

Example usage

```sh
# Mark the nginx deployment as paused. Any current state of
# the deployment will continue its function, new updates to the deployment will not
# have an effect as long as the deployment is paused
oc rollout pause dc/nginx
```

2.6.114. oc rollout restart

Restart a resource

Example usage

```sh
# Restart a deployment
oc rollout restart deployment/nginx

# Restart a daemon set
oc rollout restart daemonset/abc

# Restart deployments with the app=nginx label
oc rollout restart deployment --selector=app=nginx
```

2.6.115. oc rollout resume

Resume a paused resource

Example usage

```sh
# Resume an already paused deployment
oc rollout resume dc/nginx
```

2.6.116. oc rollout retry

Retry the latest failed rollout

Example usage

```sh
# Retry the latest failed deployment based on 'frontend'
# The deployer pod and any hook pods are deleted for the latest failed deployment
oc rollout retry dc/frontend
```
2.6.1.117. **oc rollout status**

Show the status of the rollout

Example usage

```
# Watch the status of the latest rollout
oc rollout status dc/nginx
```

2.6.1.118. **oc rollout undo**

Undo a previous rollout

Example usage

```
# Roll back to the previous deployment
oc rollout undo dc/nginx

# Roll back to deployment revision 3. The replication controller for that version must exist
oc rollout undo dc/nginx --to-revision=3
```

2.6.1.119. **oc rsh**

Start a shell session in a container

Example usage

```
# Open a shell session on the first container in pod 'foo'
oc rsh foo

# Open a shell session on the first container in pod 'foo' and namespace 'bar'
# (Note that oc client specific arguments must come before the resource name and its arguments)
oc rsh -n bar foo

# Run the command 'cat /etc/resolv.conf' inside pod 'foo'
oc rsh foo cat /etc/resolv.conf

# See the configuration of your internal registry
oc rsh dc/docker-registry cat config.yml

# Open a shell session on the container named 'index' inside a pod of your job
oc rsh -c index job/scheduled
```

2.6.1.120. **oc rsync**

Copy files between a local file system and a pod

Example usage

```
# Synchronize a local directory with a pod directory
oc rsync ./local/dir/ POD://remote/dir
```
Synchronize a pod directory with a local directory
oc rsync POD:/remote/dir/ ./local/dir

2.6.1.121. oc run

Run a particular image on the cluster

Example usage

```
# Start a nginx pod
oc run nginx --image=nginx

# Start a hazelcast pod and let the container expose port 5701
oc run hazelcast --image=hazelcast/hazelcast --port=5701

# Start a hazelcast pod and set environment variables "DNS_DOMAIN=cluster" and "POD_NAMESPACE=default" in the container
oc run hazelcast --image=hazelcast/hazelcast --env="DNS_DOMAIN=cluster" --env="POD_NAMESPACE=default"

# Start a hazelcast pod and set labels "app=hazelcast" and "env=prod" in the container
oc run hazelcast --image=hazelcast/hazelcast --labels="app=hazelcast,env=prod"

# Dry run; print the corresponding API objects without creating them
oc run nginx --image=nginx --dry-run=client

# Start a nginx pod, but overload the spec with a partial set of values parsed from JSON
oc run nginx --image=nginx --overrides='{ "apiVersion": "v1", "spec": { ... } }'

# Start a busybox pod and keep it in the foreground, don't restart it if it exits
oc run -i -t busybox --image=busybox --restart=Never

# Start the nginx pod using the default command, but use custom arguments (arg1 .. argN) for that command
oc run nginx --image=nginx -- <arg1> <arg2> ... <argN>

# Start the nginx pod using a different command and custom arguments
oc run nginx --image=nginx --command -- <cmd> <arg1> ... <argN>
```

2.6.1.122. oc scale

Set a new size for a deployment, replica set, or replication controller

Example usage

```
# Scale a replica set named 'foo' to 3
oc scale --replicas=3 rs/foo

# Scale a resource identified by type and name specified in "foo.yaml" to 3
oc scale --replicas=3 -f foo.yaml

# If the deployment named mysql's current size is 2, scale mysql to 3
oc scale --current-replicas=2 --replicas=3 deployment/mysql
```
Scale multiple replication controllers
```
oc scale --replicas=5 rc/example1 rc/example2 rc/example3
```

Scale stateful set named 'web' to 3
```
oc scale --replicas=3 statefulset/web
```

2.6.123. **oc secrets link**

Link secrets to a service account

Example usage

```
# Add an image pull secret to a service account to automatically use it for pulling pod images
oc secrets link serviceaccount-name pull-secret --for=pull

# Add an image pull secret to a service account to automatically use it for both pulling and pushing build images
oc secrets link builder builder-image-secret --for=pull,mount
```

2.6.124. **oc secrets unlink**

Detach secrets from a service account

Example usage

```
# Unlink a secret currently associated with a service account
oc secrets unlink serviceaccount-name secret-name another-secret-name ...
```

2.6.125. **oc set build-hook**

Update a build hook on a build config

Example usage

```
# Clear post-commit hook on a build config
oc set build-hook bc/mybuild --post-commit --remove

# Set the post-commit hook to execute a test suite using a new entrypoint
oc set build-hook bc/mybuild --post-commit --command -- /bin/bash -c /var/lib/test-image.sh

# Set the post-commit hook to execute a shell script
oc set build-hook bc/mybuild --post-commit --script="/var/lib/test-image.sh param1 param2 && /var/lib/done.sh"
```

2.6.126. **oc set build-secret**

Update a build secret on a build config

Example usage

```
# Clear the push secret on a build config
oc set build-secret --push --remove bc/mybuild
```
2.6.1.127. oc set data

Update the data within a config map or secret

Example usage

- Set the pull secret on a build config
 oc set build-secret --pull bc/mybuild mysecret

- Set the push and pull secret on a build config
 oc set build-secret --push --pull bc/mybuild mysecret

- Set the source secret on a set of build configs matching a selector
 oc set build-secret --source -l app=myapp gitsecret

Set the pull secret on a build config
oc set build-secret --pull bc/mybuild mysecret

Set the push and pull secret on a build config
oc set build-secret --push --pull bc/mybuild mysecret

Set the source secret on a set of build configs matching a selector
oc set build-secret --source -l app=myapp gitsecret

2.6.1.128. oc set deployment-hook

Update a deployment hook on a deployment config

Example usage

- Clear pre and post hooks on a deployment config
 oc set deployment-hook dc/myapp --remove --pre --post

- Set the pre deployment hook to execute a db migration command for an application
 # using the data volume from the application
 oc set deployment-hook dc/myapp --pre --volumes=data -- /var/lib/migrate-db.sh

- Set a mid deployment hook along with additional environment variables
 oc set deployment-hook dc/myapp --mid --volumes=data -e VAR1=value1 -e VAR2=value2 -- /var/lib/prepare-deploy.sh

2.6.1.129. oc set env

Update environment variables on a pod template

Example usage

- Update deployment config 'myapp' with a new environment variable
 oc set env dc/myapp STORAGE_DIR=/local

Set the pull secret on a build config
oc set build-secret --pull bc/mybuild mysecret

Set the push and pull secret on a build config
oc set build-secret --push --pull bc/mybuild mysecret

Set the source secret on a set of build configs matching a selector
oc set build-secret --source -l app=myapp gitsecret

Set the pull secret on a build config
oc set build-secret --pull bc/mybuild mysecret

Set the push and pull secret on a build config
oc set build-secret --push --pull bc/mybuild mysecret

Set the source secret on a set of build configs matching a selector
oc set build-secret --source -l app=myapp gitsecret
List the environment variables defined on a build config 'sample-build'
oc set env bc/sample-build --list

List the environment variables defined on all pods
oc set env pods --all --list

Output modified build config in YAML
oc set env bc/sample-build STORAGE_DIR=/data -o yaml

Update all containers in all replication controllers in the project to have ENV=prod
oc set env rc --all ENV=prod

Import environment from a secret
oc set env --from=secret/mysecret dc/myapp

Import environment from a config map with a prefix
oc set env --from=configmap/myconfigmap --prefix=MYSQL_ dc/myapp

Remove the environment variable ENV from container 'c1' in all deployment configs
oc set env dc --all --containers="c1" ENV-

Remove the environment variable ENV from a deployment config definition on disk and update the deployment config on the server
oc set env -f dc.json ENV-

Set some of the local shell environment into a deployment config on the server
oc set env | grep RAILS_ | oc env -e - dc/myapp

Set a deployment config's nginx container image to 'nginx:1.9.1', and its busybox container image to 'busybox'.
oc set image dc/nginx busybox=busybox nginx=nginx:1.9.1

Set a deployment config's app container image to the image referenced by the imagestream tag 'openshift/ruby:2.3'.
oc set image dc/myapp app=openshift/ruby:2.3 --source=imagestreamtag

Update all deployments' and rc's nginx container's image to 'nginx:1.9.1'
oc set image deployments,rc nginx=nginx:1.9.1 --all

Update image of all containers of daemonset abc to 'nginx:1.9.1'
oc set image daemonset abc *=nginx:1.9.1

Print result (in YAML format) of updating nginx container image from local file, without hitting the server
oc set image -f path/to/file.yaml nginx=nginx:1.9.1 --local -o yaml

2.6.130. oc set image

Update the image of a pod template

Example usage

```
# Set a deployment config's nginx container image to 'nginx:1.9.1', and its busybox container image to 'busybox'.
oc set image dc/nginx busybox=busybox nginx=nginx:1.9.1

# Set a deployment config's app container image to the image referenced by the imagestream tag 'openshift/ruby:2.3'.
oc set image dc/myapp app=openshift/ruby:2.3 --source=imagestreamtag

# Update all deployments' and rc's nginx container's image to 'nginx:1.9.1'
oc set image deployments,rc nginx=nginx:1.9.1 --all

# Update image of all containers of daemonset abc to 'nginx:1.9.1'
oc set image daemonset abc *=nginx:1.9.1

# Print result (in YAML format) of updating nginx container image from local file, without hitting the server
oc set image -f path/to/file.yaml nginx=nginx:1.9.1 --local -o yaml
```
Change how images are resolved when deploying applications

Example usage

```bash
# Print all of the image streams and whether they resolve local names
oc set image-lookup

# Use local name lookup on image stream mysql
oc set image-lookup mysql

# Force a deployment to use local name lookup
oc set image-lookup deploy/mysql

# Show the current status of the deployment lookup
oc set image-lookup deploy/mysql --list

# Disable local name lookup on image stream mysql
oc set image-lookup mysql --enabled=false

# Set local name lookup on all image streams
oc set image-lookup --all
```

2.6.1.132. oc set probe

Update a probe on a pod template

Example usage

```bash
# Clear both readiness and liveness probes off all containers
oc set probe dc/myapp --remove --readiness --liveness

# Set an exec action as a liveness probe to run 'echo ok'
oc set probe dc/myapp --liveness --echo ok

# Set a readiness probe to try to open a TCP socket on 3306
oc set probe rc/mysql --readiness --open-tcp=3306

# Set an HTTP startup probe for port 8080 and path /healthz over HTTP on the pod IP
oc set probe dc/webapp --startup --get-url=http://:8080/healthz

# Set an HTTP readiness probe for port 8080 and path /healthz over HTTP on the pod IP
oc set probe dc/webapp --readiness --get-url=http://:8080/healthz

# Set an HTTP readiness probe over HTTPS on 127.0.0.1 for a hostNetwork pod
oc set probe dc/router --readiness --get-url=https://127.0.0.1:1936/stats

# Set only the initial-delay-seconds field on all deployments
oc set probe dc --all --readiness --initial-delay-seconds=30
```

2.6.1.133. oc set resources

Update resource requests/limits on objects with pod templates

Example usage
2.6.1.134. oc set route-backends

Update the backends for a route

Example usage

Print the backends on the route 'web'
oc set route-backends web

Set two backend services on route 'web' with 2/3rds of traffic going to 'a'
oc set route-backends web a=2 b=1

Increase the traffic percentage going to b by 10%% relative to a
oc set route-backends web --adjust b=+10%%

Set traffic percentage going to b to 10%% of the traffic going to a
oc set route-backends web --adjust b=10%%

Set weight of b to 10
oc set route-backends web --adjust b=10

Set the weight to all backends to zero
oc set route-backends web --zero

2.6.1.135. oc set selector

Set the selector on a resource

Example usage

Set the labels and selector before creating a deployment/service pair.
oc create service clusterip my-svc --clusterip="None" -o yaml --dry-run | oc set selector --local -f -'environment=qa' -o yaml | oc create -f -
oc create deployment my-dep -o yaml --dry-run | oc label --local -f - environment=qa -o yaml | oc create -f -

2.6.1.136. oc set serviceaccount

Update the service account of a resource
Example usage

```bash
# Set deployment nginx-deployment's service account to serviceaccount1
oc set serviceaccount deployment nginx-deployment serviceaccount1

# Print the result (in YAML format) of updated nginx deployment with service account from a local file, without hitting the API server
oc set sa -f nginx-deployment.yaml serviceaccount1 --local --dry-run -o yaml
```

2.6.137. oc set subject

Update the user, group, or service account in a role binding or cluster role binding

Example usage

```bash
# Update a cluster role binding for serviceaccount1
oc set subject clusterrolebinding admin --serviceaccount=namespace:serviceaccount1

# Update a role binding for user1, user2, and group1
oc set subject rolebinding admin --user=user1 --user=user2 --group=group1

# Set all triggers to manual
oc set triggers dc/myapp --manual

# Enable all automatic triggers
oc set triggers dc/myapp --auto

# Stop triggering on config change
oc set triggers dc/myapp --from-config --remove

# Add an image trigger to a build config
oc set triggers bc/webapp --from-image=namespace1/image:latest
```

2.6.138. oc set triggers

Update the triggers on one or more objects

Example usage
2.6.139. oc set volumes

Update volumes on a pod template

Example usage

```bash
# Add an image trigger to a stateful set on the main container
oc set triggers statefulset/db --from-image=namespace1/image:latest -c main

# List volumes defined on all deployment configs in the current project
oc set volume dc --all

# Add a new empty dir volume to deployment config (dc) 'myapp' mounted under /
# /var/lib/myapp
oc set volume dc/myapp --add --mount-path=/var/lib/myapp

# Use an existing persistent volume claim (PVC) to overwrite an existing volume 'v1'
oc set volume dc/myapp --add --name=v1 -t pvc --claim-name=pvc1 --overwrite

# Remove volume 'v1' from deployment config 'myapp'
oc set volume dc/myapp --remove --name=v1

# Create a new persistent volume claim that overwrites an existing volume 'v1'
oc set volume dc/myapp --add --name=v1 -t pvc --claim-size=1G --overwrite

# Change the mount point for volume 'v1' to /data
oc set volume dc/myapp --add --name=v1 -m /data --overwrite

# Modify the deployment config by removing volume mount "v1" from container "c1"
# (and by removing the volume "v1" if no other containers have volume mounts that reference it)
oc set volume dc/myapp --remove --name=v1 --containers=c1

# Add new volume based on a more complex volume source (AWS EBS, GCE PD,
# Ceph, Gluster, NFS, ISCSI, ...)
oc set volume dc/myapp --add -m /data --source=<json-string>
```

2.6.140. oc start-build

Start a new build

Example usage

```bash
# Starts build from build config "hello-world"
oc start-build hello-world

# Starts build from a previous build "hello-world-1"
oc start-build --from-build=hello-world-1

# Use the contents of a directory as build input
oc start-build hello-world --from-dir=src/

# Send the contents of a Git repository to the server from tag 'v2'
oc start-build hello-world --from-repo=../hello-world --commit=v2
```
2.6.1.141. oc status

Show an overview of the current project

Example usage

```bash
# See an overview of the current project
oc status

# Export the overview of the current project in an svg file
oc status -o dot | dot -T svg -o project.svg

# See an overview of the current project including details for any identified issues
oc status --suggest
```

2.6.1.142. oc tag

Tag existing images into image streams

Example usage

```bash
# Tag the current image for the image stream 'openshift/ruby' and tag '2.0' into the image stream
# 'yourproject/ruby with tag 'tip'
oc tag openshift/ruby:2.0 yourproject/ruby:tip

# Tag a specific image
oc tag
openshift/ruby@sha256:6b646fa6bf5e5e4c7fa41056c27910e679c03ebe7f93e361e6515a9da7e258cc
yourproject/ruby:tip

# Tag an external container image
oc tag --source=docker openshift/origin-control-plane:latest yourproject/ruby:tip

# Tag an external container image and request pullthrough for it
oc tag --source=docker openshift/origin-control-plane:latest yourproject/ruby:tip --reference-policy=local

# Tag an external container image and include the full manifest list
oc tag --source=docker openshift/origin-control-plane:latest yourproject/ruby:tip --import-mode=PreserveOriginal

# Remove the specified spec tag from an image stream
oc tag openshift/origin-control-plane:latest -d
```
2.6.143. oc version

Print the client and server version information

Example usage

```bash
# Print the OpenShift client, kube-apiserver, and openshift-apiserver version information for the current context
oc version

# Print the OpenShift client, kube-apiserver, and openshift-apiserver version numbers for the current context in json format
oc version --output json

# Print the OpenShift client version information for the current context
oc version --client
```

2.6.144. oc wait

Experimental: Wait for a specific condition on one or many resources

Example usage

```bash
# Wait for the pod “busybox1” to contain the status condition of type “Ready”
oc wait --for=condition=Ready pod/busybox1

# The default value of status condition is true; you can wait for other targets after an equal delimiter (compared after Unicode simple case folding, which is a more general form of case-insensitivity)
oc wait --for=condition=Ready=false pod/busybox1

# Wait for the pod “busybox1” to contain the status phase to be “Running”
oc wait --for=jsonpath='{.status.phase}'=Running pod/busybox1

# Wait for the service “loadbalancer” to have ingress.
oc wait --for=jsonpath='{.status.loadBalancer.ingress}' service/loadbalancer

# Wait for the pod “busybox1” to be deleted, with a timeout of 60s, after having issued the “delete” command
oc delete pod/busybox1
oc wait --for=delete pod/busybox1 --timeout=60s
```

2.6.145. oc whoami

Return information about the current session

Example usage

```bash
# Display the currently authenticated user
oc whoami
```

2.7. OPENSSHIFT CLI ADMINISTRATOR COMMAND REFERENCE
This reference provides descriptions and example commands for OpenShift CLI (oc) administrator commands. You must have cluster-admin or equivalent permissions to use these commands.

For developer commands, see the OpenShift CLI developer command reference.

Run oc adm -h to list all administrator commands or run oc <command> --help to get additional details for a specific command.

2.7.1. OpenShift CLI (oc) administrator commands

2.7.1.1. oc adm build-chain

Output the inputs and dependencies of your builds

Example usage

```
# Build the dependency tree for the 'latest' tag in <image-stream>
oc adm build-chain <image-stream>

# Build the dependency tree for the 'v2' tag in dot format and visualize it via the dot utility
oc adm build-chain <image-stream>:v2 -o dot | dot -T svg -o deps.svg

# Build the dependency tree across all namespaces for the specified image stream tag found in the 'test' namespace
oc adm build-chain <image-stream> -n test --all
```

2.7.1.2. oc adm catalog mirror

Mirror an operator-registry catalog

Example usage

```
# Mirror an operator-registry image and its contents to a registry
oc adm catalog mirror quay.io/my/image:latest myregistry.com

# Mirror an operator-registry image and its contents to a particular namespace in a registry
oc adm catalog mirror quay.io/my/image:latest myregistry.com/my-namespace

# Mirror to an airgapped registry by first mirroring to files
oc adm catalog mirror quay.io/my/image:latest file:////local/index
oc adm catalog mirror file:////local/index/my/image:latest my-airgapped-registry.com

# Configure a cluster to use a mirrored registry
oc apply -f manifests/imageDigestMirrorSet.yaml

# Edit the mirroring mappings and mirror with "oc image mirror" manually
oc adm catalog mirror --manifests-only quay.io/my/image:latest myregistry.com
oc image mirror -f manifests/mapping.txt

# Delete all ImageDigestMirrorSets generated by oc adm catalog mirror
oc delete imagedigestmirrorset -l operators.openshift.org/catalog=true
```

2.7.1.3. oc adm certificate approve

Build the dependency tree for the 'latest' tag in <image-stream>
oc adm build-chain <image-stream>

Build the dependency tree for the 'v2' tag in dot format and visualize it via the dot utility
oc adm build-chain <image-stream>:v2 -o dot | dot -T svg -o deps.svg

Build the dependency tree across all namespaces for the specified image stream tag found in the 'test' namespace
oc adm build-chain <image-stream> -n test --all

Mirror an operator-registry image and its contents to a registry
oc adm catalog mirror quay.io/my/image:latest myregistry.com

Mirror an operator-registry image and its contents to a particular namespace in a registry
oc adm catalog mirror quay.io/my/image:latest myregistry.com/my-namespace

Mirror to an airgapped registry by first mirroring to files
oc adm catalog mirror quay.io/my/image:latest file:////local/index
oc adm catalog mirror file:////local/index/my/image:latest my-airgapped-registry.com

Configure a cluster to use a mirrored registry
oc apply -f manifests/imageDigestMirrorSet.yaml

Edit the mirroring mappings and mirror with "oc image mirror" manually
oc adm catalog mirror --manifests-only quay.io/my/image:latest myregistry.com
oc image mirror -f manifests/mapping.txt

Delete all ImageDigestMirrorSets generated by oc adm catalog mirror
oc delete imagedigestmirrorset -l operators.openshift.org/catalog=true
Approve a certificate signing request

Example usage

```
# Approve CSR 'csr-sqgzp'
oc adm certificate approve csr-sqgzp
```

2.7.1.4. `oc adm certificate deny`

Deny a certificate signing request

Example usage

```
# Deny CSR 'csr-sqgzp'
oc adm certificate deny csr-sqgzp
```

2.7.1.5. `oc adm copy-to-node`

Copies specified files to the node.

2.7.1.6. `oc adm cordon`

Mark node as unschedulable

Example usage

```
# Mark node "foo" as unschedulable
oc adm cordon foo
```

2.7.1.7. `oc adm create-bootstrap-project-template`

Create a bootstrap project template

Example usage

```
# Output a bootstrap project template in YAML format to stdout
oc adm create-bootstrap-project-template -o yaml
```

2.7.1.8. `oc adm create-error-template`

Create an error page template

Example usage

```
# Output a template for the error page to stdout
oc adm create-error-template
```

2.7.1.9. `oc adm create-login-template`

Create a login template
Example usage

```
# Output a template for the login page to stdout
oc adm create-login-template
```

2.7.1.10. oc adm create-provider-selection-template
Create a provider selection template

Example usage

```
# Output a template for the provider selection page to stdout
oc adm create-provider-selection-template
```

2.7.1.11. oc adm drain
Drain node in preparation for maintenance

Example usage

```
# Drain node "foo", even if there are pods not managed by a replication controller, replica set, job, daemon set, or stateful set on it
oc adm drain foo --force

# As above, but abort if there are pods not managed by a replication controller, replica set, job, daemon set, or stateful set, and use a grace period of 15 minutes
oc adm drain foo --grace-period=900
```

2.7.1.12. oc adm groups add-users
Add users to a group

Example usage

```
# Add user1 and user2 to my-group
oc adm groups add-users my-group user1 user2
```

2.7.1.13. oc adm groups new
Create a new group

Example usage

```
# Add a group with no users
oc adm groups new my-group

# Add a group with two users
oc adm groups new my-group user1 user2

# Add a group with one user and shorter output
oc adm groups new my-group user1 -o name
```
2.7.1.14. oc adm groups prune

Remove old OpenShift groups referencing missing records from an external provider

Example usage

```
# Prune all orphaned groups
oc adm groups prune --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Prune all orphaned groups except the ones from the denylist file
oc adm groups prune --blacklist=/path/to/denylist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Prune all orphaned groups from a list of specific groups specified in an allowlist file
oc adm groups prune --whitelist=/path/to/allowlist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Prune all orphaned groups from a list of specific groups specified in a list
oc adm groups prune groups/group_name groups/other_name --sync-config=/path/to/ldap-sync-config.yaml --confirm
```

2.7.1.15. oc adm groups remove-users

Remove users from a group

Example usage

```
# Remove user1 and user2 from my-group
oc adm groups remove-users my-group user1 user2
```

2.7.1.16. oc adm groups sync

Sync OpenShift groups with records from an external provider

Example usage

```
# Sync all groups with an LDAP server
oc adm groups sync --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Sync all groups except the ones from the blacklist file with an LDAP server
oc adm groups sync --blacklist=/path/to/blacklist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Sync specific groups specified in an allowlist file with an LDAP server
oc adm groups sync --whitelist=/path/to/allowlist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Sync all OpenShift groups that have been synced previously with an LDAP server
oc adm groups sync --type=openshift --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Sync specific OpenShift groups if they have been synced previously with an LDAP server
oc adm groups sync groups/group1 groups/group2 groups/group3 --sync-config=/path/to/ldap-sync-config.yaml --confirm
```
2.7.1.17. oc adm inspect

Collect debugging data for a given resource

Example usage

```bash
# Collect debugging data for the "openshift-apiserver" clusteroperator
oc adm inspect clusteroperator/openshift-apiserver

# Collect debugging data for the "openshift-apiserver" and "kube-apiserver" clusteroperators
oc adm inspect clusteroperator/openshift-apiserver clusteroperator/kube-apiserver

# Collect debugging data for all clusteroperators
oc adm inspect clusteroperator

# Collect debugging data for all clusteroperators and clusterversions
oc adm inspect clusteroperators,clusterversions
```

2.7.1.18. oc adm migrate icsp

Update imagecontentsourcepolicy file(s) to imagedigestmirrorset file(s)

Example usage

```bash
# Update the imagecontentsourcepolicy.yaml file to a new imagedigestmirrorset file under the mydir directory
oc adm migrate icsp imagecontentsourcepolicy.yaml --dest-dir mydir
```

2.7.1.19. oc adm migrate template-instances

Update template instances to point to the latest group-version-kinds

Example usage

```bash
# Perform a dry-run of updating all objects
oc adm migrate template-instances

# To actually perform the update, the confirm flag must be appended
oc adm migrate template-instances --confirm
```

2.7.1.20. oc adm must-gather

Launch a new instance of a pod for gathering debug information

Example usage

```bash
# Gather information using the default plug-in image and command, writing into ./must-gather.local.
<rand>
oc adm must-gather

# Gather information with a specific local folder to copy to
oc adm must-gather --dest-dir=/local/directory
```
2.7.21. `oc adm new-project`

Create a new project

Example usage

```
# Create a new project using a node selector
oc adm new-project myproject --node-selector='type=user-node,region=east'
```

2.7.22. `oc adm node-logs`

Display and filter node logs

Example usage

```
# Show kubelet logs from all masters
oc adm node-logs --role master -u kubelet

# See what logs are available in masters in /var/log
oc adm node-logs --role master --path=/

# Display cron log file from all masters
oc adm node-logs --role master --path=cron
```

2.7.23. `oc adm ocp-certificates monitor-certificates`

Watch platform certificates.

Example usage

```
# Watch platform certificates.
oc adm ocp-certificates monitor-certificates
```

2.7.24. `oc adm ocp-certificates regenerate-leaf`

Regenerate client and serving certificates of an OpenShift cluster

2.7.25. `oc adm ocp-certificates regenerate-machine-config-server-serving-cert`

Gather audit information
oc adm must-gather -- /usr/bin/gather_audit_logs

Gather information using multiple plug-in images
oc adm must-gather --image=quay.io/kubevirt/must-gather --image=quay.io/openshift/origin-must-gather

Gather information using a specific image stream plug-in
oc adm must-gather --image-stream=openshift/must-gather:latest

Gather information using a specific image, command, and pod directory
oc adm must-gather --image=my/image:tag --source-dir=/pod/directory -- myspecial-command.sh
Regenerate the machine config operator certificates in an OpenShift cluster

2.7.1.26. `oc adm ocp-certificates regenerate-top-level`

Regenerate the top level certificates in an OpenShift cluster

2.7.1.27. `oc adm ocp-certificates remove-old-trust`

Remove old CAs from ConfigMaps representing platform trust bundles in an OpenShift cluster

Example usage

```bash
# Remove only CA certificates created before a certain date from all trust bundles
oc adm ocp-certificates remove-old-trust configmaps -A --all --created-before 2023-06-05T14:44:06Z
```

2.7.1.28. `oc adm ocp-certificates update-ignition-ca-bundle-for-machine-config-server`

Update user-data secrets in an OpenShift cluster to use updated MCO certfs

Example usage

```bash
# Regenerate the MCO certs without modifying user-data secrets
oc adm certificates regenerate-machine-config-server-serving-cert --update-ignition=false

# Update the user-data secrets to use new MCS certs
oc adm certificates update-ignition-ca-bundle-for-machine-config-server
```

2.7.1.29. `oc adm pod-network isolate-projects`

Isolate project network

Example usage

```bash
# Provide isolation for project p1
oc adm pod-network isolate-projects <p1>

# Allow all projects with label name=top-secret to have their own isolated project network
oc adm pod-network isolate-projects --selector='name=top-secret'
```

2.7.1.30. `oc adm pod-network join-projects`

Join project network

Example usage

```bash
# Allow project p2 to use project p1 network
oc adm pod-network join-projects --to=<p1> <p2>

# Allow all projects with label name=top-secret to use project p1 network
oc adm pod-network join-projects --to=<p1> --selector='name=top-secret'
```

2.7.1.31. `oc adm pod-network make-projects-global`

Provide isolation for project p1
oc adm pod-network isolate-projects <p1>

Allow all projects with label name=top-secret to have their own isolated project network
oc adm pod-network isolate-projects --selector='name=top-secret'

Allow project p2 to use project p1 network
oc adm pod-network join-projects --to=<p1> <p2>

Allow all projects with label name=top-secret to use project p1 network
oc adm pod-network join-projects --to=<p1> --selector='name=top-secret'
Make project network global

Example usage

```bash
# Allow project p1 to access all pods in the cluster and vice versa
oc adm pod-network make-projects-global <p1>

# Allow all projects with label name=share to access all pods in the cluster and vice versa
oc adm pod-network make-projects-global --selector='name=share'
```

2.7.1.32. `oc adm policy add-role-to-user`

Add a role to users or service accounts for the current project

Example usage

```bash
# Add the 'view' role to user1 for the current project
oc adm policy add-role-to-user view user1

# Add the 'edit' role to serviceaccount1 for the current project
oc adm policy add-role-to-user edit -z serviceaccount1
```

2.7.1.33. `oc adm policy add-scc-to-group`

Add a security context constraint to groups

Example usage

```bash
# Add the 'restricted' security context constraint to group1 and group2
oc adm policy add-scc-to-group restricted group1 group2
```

2.7.1.34. `oc adm policy add-scc-to-user`

Add a security context constraint to users or a service account

Example usage

```bash
# Add the 'restricted' security context constraint to user1 and user2
oc adm policy add-scc-to-user restricted user1 user2

# Add the 'privileged' security context constraint to serviceaccount1 in the current namespace
oc adm policy add-scc-to-user privileged -z serviceaccount1
```

2.7.1.35. `oc adm policy scc-review`

Check which service account can create a pod

Example usage

```bash
# Check whether service accounts sa1 and sa2 can admit a pod with a template pod spec specified in my_resource.yaml
# Service Account specified in myresource.yaml file is ignored
```
2.7.1.36. oc adm policy scc-review
Check whether a user or a service account can create a pod

Example usage

```
# Check whether service accounts system:serviceaccount:bob:default can admit a pod with a
template pod spec specified in my_resource.yaml
oc adm policy scc-review -z system:serviceaccount:bob:default -f my_resource.yaml
```

```
# Check whether the service account specified in my_resource_with_sa.yaml can admit the pod
oc adm policy scc-review -f my_resource_with_sa.yaml
```

```
# Check whether the default service account can admit the pod; default is taken since no service
account is defined in myresource_with_no_sa.yaml
oc adm policy scc-review -f myresource_with_no_sa.yaml
```

```
# Check whether user bob can create a pod specified in myresource.yaml
oc adm policy scc-subject-review -u bob -f myresource.yaml
```

```
# Check whether user bob who belongs to projectAdmin group can create a pod specified in
myresource.yaml
oc adm policy scc-subject-review -u bob -g projectAdmin -f myresource.yaml
```

```
# Check whether a service account specified in the pod template spec in myresourcewithsa.yaml
can create the pod
oc adm policy scc-subject-review -f myresourcewithsa.yaml
```

2.7.1.37. oc adm prune builds
Remove old completed and failed builds

Example usage

```
# Dry run deleting older completed and failed builds and also including
# all builds whose associated build config no longer exists
oc adm prune builds --orphans
```

```
# To actually perform the prune operation, the confirm flag must be appended
oc adm prune builds --orphans --confirm
```

2.7.1.38. oc adm prune deployments
Remove old completed and failed deployment configs

Example usage

```
# Dry run deleting all but the last complete deployment for every deployment config
oc adm prune deployments --keep-complete=1
```
To actually perform the prune operation, the confirm flag must be appended
oc adm prune deployments --keep-complete=1 --confirm

2.7.1.39. oc adm prune groups

Remove old OpenShift groups referencing missing records from an external provider

Example usage

```
# Prune all orphaned groups
oc adm prune groups --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Prune all orphaned groups except the ones from the denylist file
oc adm prune groups --blacklist=/path/to/denylist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Prune all orphaned groups from a list of specific groups specified in an allowlist file
oc adm prune groups --whitelist=/path/to/allowlist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm

# Prune all orphaned groups from a list of specific groups specified in a list
oc adm prune groups groups/group_name groups/other_name --sync-config=/path/to/ldap-sync-config.yaml --confirm
```

2.7.1.40. oc adm prune images

Remove unreferenced images

Example usage

```
# See what the prune command would delete if only images and their referrers were more than an hour old
# and obsoleted by 3 newer revisions under the same tag were considered
oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m

# To actually perform the prune operation, the confirm flag must be appended
oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m --confirm

# See what the prune command would delete if we are interested in removing images
# exceeding currently set limit ranges ('openshift.io/Image')
oc adm prune images --prune-over-size-limit

# To actually perform the prune operation, the confirm flag must be appended
oc adm prune images --prune-over-size-limit --confirm

# Force the insecure HTTP protocol with the particular registry host name
oc adm prune images --registry-url=http://registry.example.org --confirm

# Force a secure connection with a custom certificate authority to the particular registry host name
oc adm prune images --registry-url=registry.example.org --certificate-authority=/path/to/custom/ca.crt --confirm
```

2.7.1.41. oc adm reboot-machine-config-pool

To actually perform the prune operation, the confirm flag must be appended
oc adm prune deployments --keep-complete=1 --confirm
Initiate reboot of the specified MachineConfigPool.

Example usage

```bash
# Reboot all MachineConfigPools
oc adm reboot-machine-config-pool mcp/worker mcp/master

# Reboot all MachineConfigPools that inherit from worker. This include all custom MachineConfigPools and infra.
oc adm reboot-machine-config-pool mcp/worker

# Reboot masters
oc adm reboot-machine-config-pool mcp/master
```

2.7.1.42. `oc adm release extract`

Extract the contents of an update payload to disk

NOTE

The following example contains some values that are specific to Red Hat OpenShift Service on AWS on AWS.

Example usage

```bash
# Use git to check out the source code for the current cluster release to DIR
oc adm release extract --git=DIR

# Extract cloud credential requests for AWS
oc adm release extract --credentials-requests --cloud=aws

# Use git to check out the source code for the current cluster release to DIR from linux/s390x image
# Note: Wildcard filter is not supported; pass a single os/arch to extract
oc adm release extract --git=DIR quay.io/openshift-release-dev/ocp-release:4.11.2 --filter-by-os=linux/s390x
```

2.7.1.43. `oc adm release info`

Display information about a release

Example usage

```bash
# Show information about the cluster's current release
oc adm release info

# Show the source code that comprises a release
oc adm release info 4.11.2 --commit-urls

# Show the source code difference between two releases
oc adm release info 4.11.0 4.11.2 --commits

# Show where the images referenced by the release are located
oc adm release info quay.io/openshift-release-dev/ocp-release:4.11.2 --pullspecs
```
2.7.1.44. oc adm release mirror

Mirror a release to a different image registry location

Example usage

```bash
# Perform a dry run showing what would be mirrored, including the mirror objects
oc adm release mirror 4.11.0 --to myregistry.local/openshift/release \
--release-image-signature-to-dir /tmp/releases --dry-run

# Mirror a release into the current directory
oc adm release mirror 4.11.0 --to file://openshift/release \
--release-image-signature-to-dir /tmp/releases

# Mirror a release to another directory in the default location
oc adm release mirror 4.11.0 --to-dir /tmp/releases

# Upload a release from the current directory to another server
oc adm release mirror --from file://openshift/release --to myregistry.com/openshift/release \
--release-image-signature-to-dir /tmp/releases

# Mirror the 4.11.0 release to repository registry.example.com and apply signatures to connected cluster
oc adm release mirror --from=quay.io/openshift-release-dev/ocp-release:4.11.0-x86_64 \
--to=registry.example.com/your/repository --apply-release-image-signature
```

2.7.1.45. oc adm release new

Create a new OpenShift release

Example usage

```bash
# Create a release from the latest origin images and push to a DockerHub repository
oc adm release new --from-image-stream=4.11 -n origin --to-image docker.io/mycompany/myrepo:latest

# Create a new release with updated metadata from a previous release
oc adm release new --from-release registry.ci.openshift.org/origin/release:v4.11 --name 4.11.1 \
--previous 4.11.0 --metadata ... --to-image docker.io/mycompany/myrepo:latest

# Create a new release and override a single image

# Run a verification pass to ensure the release can be reproduced
oc adm release new --from-release registry.ci.openshift.org/origin/release:v4.11
```

2.7.1.46. oc adm restart-kubelet
Restarts kubelet on the specified nodes

Example usage

```
# Restart all the nodes, 10% at a time
oc adm restart-kubelet nodes --all --directive=RemoveKubeletKubeconfig

# Restart all the nodes, 20 nodes at a time
oc adm restart-kubelet nodes --all --parallelism=20 --directive=RemoveKubeletKubeconfig

# Restart all the nodes, 15% at a time
oc adm restart-kubelet nodes --all --parallelism=15% --directive=RemoveKubeletKubeconfig

# Restart all the masters at the same time
oc adm restart-kubelet nodes -l node-role.kubernetes.io/master --parallelism=100% --directive=RemoveKubeletKubeconfig
```

2.7.1.47. oc adm taint

Update the taints on one or more nodes

Example usage

```
# Update node 'foo' with a taint with key 'dedicated' and value 'special-user' and effect 'NoSchedule'
# If a taint with that key and effect already exists, its value is replaced as specified
oc adm taint nodes foo dedicated=special-user:NoSchedule

# Remove from node 'foo' the taint with key 'dedicated' and effect 'NoSchedule' if one exists
oc adm taint nodes foo dedicated:NoSchedule

# Remove from node 'foo' all the taints with key 'dedicated'
oc adm taint nodes foo dedicated:

# Add a taint with key 'dedicated' on nodes having label myLabel=X
oc adm taint node -l myLabel=X dedicated=foo:PreferNoSchedule

# Add to node 'foo' a taint with key 'bar' and no value
oc adm taint nodes foo bar:NoSchedule
```

2.7.1.48. oc adm top images

Show usage statistics for images

Example usage

```
# Show usage statistics for images
oc adm top images
```

2.7.1.49. oc adm top imagestreams

Show usage statistics for image streams

Example usage
2.7.1.50. oc adm top node

Display resource (CPU/memory) usage of nodes

Example usage

```
# Show metrics for all nodes
oc adm top node

# Show metrics for a given node
oc adm top node NODE_NAME
```

2.7.1.51. oc adm top pod

Display resource (CPU/memory) usage of pods

Example usage

```
# Show metrics for all pods in the default namespace
oc adm top pod

# Show metrics for all pods in the given namespace
oc adm top pod --namespace=NAMESPACE

# Show metrics for a given pod and its containers
oc adm top pod POD_NAME --containers

# Show metrics for the pods defined by label name=myLabel
oc adm top pod -l name=myLabel
```

2.7.1.52. oc adm uncordon

Mark node as schedulable

Example usage

```
# Mark node "foo" as schedulable
oc adm uncordon foo
```

2.7.1.53. oc adm upgrade

Upgrade a cluster or adjust the upgrade channel

Example usage

```
# View the update status and available cluster updates
oc adm upgrade
```
2.7.1.54. oc adm verify-image-signature

Verify the image identity contained in the image signature

Example usage

```
# Verify the image signature and identity using the local GPG keychain
oc adm verify-image-signature
sha256:c841e9b64e4579bd56c794bddd7c36e1c257110fd2404bebb8b613e4935228c4 \  
--expected-identity=registry.local:5000/foo/bar:v1

# Verify the image signature and identity using the local GPG keychain and save the status
oc adm verify-image-signature
sha256:c841e9b64e4579bd56c794bddd7c36e1c257110fd2404bebb8b613e4935228c4 \  
--expected-identity=registry.local:5000/foo/bar:v1 --save

# Verify the image signature and identity via exposed registry route
oc adm verify-image-signature
sha256:c841e9b64e4579bd56c794bddd7c36e1c257110fd2404bebb8b613e4935228c4 \  
--expected-identity=registry.local:5000/foo/bar:v1  
--registry-url=docker-registry.foo.com

# Remove all signature verifications from the image
oc adm verify-image-signature
sha256:c841e9b64e4579bd56c794bddd7c36e1c257110fd2404bebb8b613e4935228c4 --remove-all
```

2.7.1.55. oc adm wait-for-node-reboot

Wait for nodes to reboot after running `oc adm reboot-machine-config-pool`

Example usage

```
# Wait for all nodes to complete a requested reboot from 'oc adm reboot-machine-config-pool  
  mcp/worker mcp/master'
oc adm wait-for-node-reboot nodes --all

# Wait for masters to complete a requested reboot from 'oc adm reboot-machine-config-pool  
  mcp/master'
oc adm wait-for-node-reboot nodes -l node-role.kubernetes.io/master

# Wait for masters to complete a specific reboot
oc adm wait-for-node-reboot nodes -l node-role.kubernetes.io/master --reboot-number=4
```

2.7.1.56. oc adm wait-for-stable-cluster

Wait for the platform operators to become stable

Example usage

```
# Wait for all clusteroperators to become stable
```
2.7.2. Additional resources

- OpenShift CLI developer command reference
CHAPTER 3. IMPORTANT UPDATE ON odo

Red Hat does not provide information about odo on the Red Hat OpenShift Service on AWS documentation site. See the documentation maintained by Red Hat and the upstream community for documentation information related to odo.

IMPORTANT

For the materials maintained by the upstream community, Red Hat provides support under Cooperative Community Support.
CHAPTER 4. KNATIVE CLI FOR USE WITH OPENSIFT SERERLESS

The Knative (kn) CLI enables simple interaction with Knative components on Red Hat OpenShift Service on AWS.

4.1. KEY FEATURES

The Knative (kn) CLI is designed to make serverless computing tasks simple and concise. Key features of the Knative CLI include:

- Deploy serverless applications from the command line.
- Manage features of Knative Serving, such as services, revisions, and traffic-splitting.
- Create and manage Knative Eventing components, such as event sources and triggers.
- Create sink bindings to connect existing Kubernetes applications and Knative services.
- Extend the Knative CLI with flexible plugin architecture, similar to the kubectl CLI.
- Configure autoscaling parameters for Knative services.
- Scripted usage, such as waiting for the results of an operation, or deploying custom rollout and rollback strategies.

4.2. INSTALLING THE KNATIVE CLI

See Installing the Knative CLI.
CHAPTER 5. PIPELINES CLI (TKN)

5.1. INSTALLING TKN

Use the CLI tool to manage Red Hat OpenShift Pipelines from a terminal. The following section describes how to install the CLI tool on different platforms.

IMPORTANT

Running Red Hat OpenShift Pipelines on ARM hardware is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

NOTE

Both the archives and the RPMs contain the following executables:

- `tkn`
- `tkn-pac`

5.1.1. Installing the Red Hat OpenShift Pipelines CLI on Linux

For Linux distributions, you can download the CLI as a tar.gz archive.

Procedure

1. Download the relevant CLI tool.

 - Linux (x86_64, amd64)
 - Linux on IBM Z® and IBM® LinuxONE (s390x)
 - Linux on IBM Power® (ppc64le)
 - Linux on ARM (aarch64, arm64)

2. Unpack the archive:

   ```
   $ tar xvzf <file>
   ```

3. Add the location of your `tkn` and `tkn-pac` files to your `PATH` environment variable.

4. To check your `PATH`, run the following command:

   ```
   $ echo $PATH
   ```
5.1.2. Installing the Red Hat OpenShift Pipelines CLI on Linux using an RPM

For Red Hat Enterprise Linux (RHEL) version 8, you can install the Red Hat OpenShift Pipelines CLI as an RPM.

Prerequisites
- You have an active Red Hat OpenShift Service on AWS subscription on your Red Hat account.
- You have root or sudo privileges on your local system.

Procedure
1. Register with Red Hat Subscription Manager:
   ```bash
   # subscription-manager register
   ```
2. Pull the latest subscription data:
   ```bash
   # subscription-manager refresh
   ```
3. List the available subscriptions:
   ```bash
   # subscription-manager list --available --matches "pipelines"
   ```
4. In the output for the previous command, find the pool ID for your Red Hat OpenShift Service on AWS subscription and attach the subscription to the registered system:
   ```bash
   # subscription-manager attach --pool=<pool_id>
   ```
5. Enable the repositories required by Red Hat OpenShift Pipelines:
 - Linux (x86_64, amd64)
     ```bash
     # subscription-manager repos --enable="pipelines-1.13-for-rhel-8-x86_64-rpms"
     ```
 - Linux on IBM Z® and IBM® LinuxONE (s390x)
     ```bash
     # subscription-manager repos --enable="pipelines-1.13-for-rhel-8-s390x-rpms"
     ```
 - Linux on IBM Power® (ppc64le)
     ```bash
     # subscription-manager repos --enable="pipelines-1.13-for-rhel-8-ppc64le-rpms"
     ```
 - Linux on ARM (aarch64, arm64)
     ```bash
     # subscription-manager repos --enable="pipelines-1.13-for-rhel-8-aarch64-rpms"
     ```
6. Install the `openshift-pipelines-client` package:
   ```bash
   # yum install openshift-pipelines-client
   ```
After you install the CLI, it is available using the `tkn` command:

```
$ tkn version
```

5.1.3. Installing the Red Hat OpenShift Pipelines CLI on Windows

For Windows, you can download the CLI as a `zip` archive.

Procedure

1. Download the `CLI tool`
2. Extract the archive with a ZIP program.
3. Add the location of your `tkn` and `tkn-pac` files to your `PATH` environment variable.
4. To check your `PATH`, run the following command:

   ```bash
   C:\> path
   ```

5.1.4. Installing the Red Hat OpenShift Pipelines CLI on macOS

For macOS, you can download the CLI as a `tar.gz` archive.

Procedure

1. Download the relevant CLI tool.
 - `macOS`
 - `macOS on ARM`
2. Unpack and extract the archive.
3. Add the location of your `tkn` and `tkn-pac` and files to your `PATH` environment variable.
4. To check your `PATH`, run the following command:

   ```bash
   $ echo $PATH
   ```

5.2. CONFIGURING THE OPENSHIFT PIPELINES TKN CLI

Configure the Red Hat OpenShift Pipelines `tkn` CLI to enable tab completion.

5.2.1. Enabling tab completion

After you install the `tkn` CLI, you can enable tab completion to automatically complete `tkn` commands or suggest options when you press Tab.

Prerequisites

- You must have the `tkn` CLI tool installed.
You must have **bash-completion** installed on your local system.

Procedure

The following procedure enables tab completion for Bash.

1. Save the Bash completion code to a file:
   ```
   $ tkn completion bash > tkn_bash_completion
   ```
2. Copy the file to `/etc/bash_completion.d/`:
   ```
   $ sudo cp tkn_bash_completion /etc/bash_completion.d/
   ```

 Alternatively, you can save the file to a local directory and source it from your `.bashrc` file instead.

 Tab completion is enabled when you open a new terminal.

5.3. OPENSIGNORE PIPELINES TKN REFERENCE

This section lists the basic **tkn** CLI commands.

5.3.1. Basic syntax

```
tkn [command or options] [arguments...]
```

5.3.2. Global options

```
--help, -h
```

5.3.3. Utility commands

5.3.3.1. tkn

Parent command for **tkn** CLI.

Example: Display all options

```
$ tkn
```

5.3.3.2. completion [shell]

Print shell completion code which must be evaluated to provide interactive completion. Supported shells are **bash** and **zsh**.

Example: Completion code for bash shell

```
$ tkn completion bash
```
Print version information of the tkn CLI.

Example: Check the tkn version

$ tkn version

5.3.4. Pipelines management commands

5.3.4.1. pipeline
Manage pipelines.

Example: Display help

$ tkn pipeline --help

5.3.4.2. pipeline delete
Delete a pipeline.

Example: Delete the mypipeline pipeline from a namespace

$ tkn pipeline delete mypipeline -n myspace

5.3.4.3. pipeline describe
Describe a pipeline.

Example: Describe the mypipeline pipeline

$ tkn pipeline describe mypipeline

5.3.4.4. pipeline list
Display a list of pipelines.

Example: Display a list of pipelines

$ tkn pipeline list

5.3.4.5. pipeline logs
Display the logs for a specific pipeline.

Example: Stream the live logs for the mypipeline pipeline

$ tkn pipeline logs -f mypipeline

5.3.4.6. pipeline start
Start a pipeline.

Example: Start the mypipeline pipeline

$ tkn pipeline start mypipeline

5.3.5. Pipeline run commands

5.3.5.1. pipelinerun

Manage pipeline runs.

Example: Display help

$ tkn pipelinerun -h

5.3.5.2. pipelinerun cancel

Cancel a pipeline run.

Example: Cancel the mypipelinerun pipeline run from a namespace

$ tkn pipelinerun cancel mypipelinerun -n myspace

5.3.5.3. pipelinerun delete

Delete a pipeline run.

Example: Delete pipeline runs from a namespace

$ tkn pipelinerun delete mypipelinerun1 mypipelinerun2 -n myspace

Example: Delete all pipeline runs from a namespace, except the five most recently executed pipeline runs

$ tkn pipelinerun delete -n myspace --keep 5

Replace 5 with the number of most recently executed pipeline runs you want to retain.

5.3.5.4. pipelinerun describe

Example: Delete all pipelines

$ tkn pipelinerun delete --all

NOTE

Starting with Red Hat OpenShift Pipelines 1.6, the tkn pipelinerun delete --all command does not delete any resources that are in the running state.
Describe a pipeline run.

Example: Describe the mypipelinerun pipeline run in a namespace

```bash
$ tkn pipelinerun describe mypipelinerun -n myspace
```

5.3.5.5. pipelinerun list

List pipeline runs.

Example: Display a list of pipeline runs in a namespace

```bash
$ tkn pipelinerun list -n myspace
```

5.3.5.6. pipelinerun logs

Display the logs of a pipeline run.

Example: Display the logs of the mypipelinerun pipeline run with all tasks and steps in a namespace

```bash
$ tkn pipelinerun logs mypipelinerun -a -n myspace
```

5.3.6. Task management commands

5.3.6.1. task

Manage tasks.

Example: Display help

```bash
$ tkn task -h
```

5.3.6.2. task delete

Delete a task.

Example: Delete mytask1 and mytask2 tasks from a namespace

```bash
$ tkn task delete mytask1 mytask2 -n myspace
```

5.3.6.3. task describe

Describe a task.

Example: Describe the mytask task in a namespace

```bash
$ tkn task describe mytask -n myspace
```
5.3.6.4. task list

List tasks.

Example: List all the tasks in a namespace

```bash
$ tkn task list -n myspace
```

5.3.6.5. task logs

Display task logs.

Example: Display logs for the mytaskrun task run of the mytask task

```bash
$ tkn task logs mytask mytaskrun -n myspace
```

5.3.6.6. task start

Start a task.

Example: Start the mytask task in a namespace

```bash
$ tkn task start mytask -s <ServiceAccountName> -n myspace
```

5.3.7. Task run commands

5.3.7.1. taskrun

Manage task runs.

Example: Display help

```bash
$ tkn taskrun -h
```

5.3.7.2. taskrun cancel

Cancel a task run.

Example: Cancel the mytaskrun task run from a namespace

```bash
$ tkn taskrun cancel mytaskrun -n myspace
```

5.3.7.3. taskrun delete

Delete a TaskRun.

Example: Delete the mytaskrun1 and mytaskrun2 task runs from a namespace

```bash
$ tkn taskrun delete mytaskrun1 mytaskrun2 -n myspace
```
Example: Delete all but the five most recently executed task runs from a namespace

```bash
$ tkn taskrun delete -n myspace --keep 5
```

1 Replace 5 with the number of most recently executed task runs you want to retain.

5.3.7.4. taskrun describe

Describe a task run.

Example: Describe the mytaskrun task run in a namespace

```bash
$ tkn taskrun describe mytaskrun -n myspace
```

5.3.7.5. taskrun list

List task runs.

Example: List all the task runs in a namespace

```bash
$ tkn taskrun list -n myspace
```

5.3.7.6. taskrun logs

Display task run logs.

Example: Display live logs for the mytaskrun task run in a namespace

```bash
$ tkn taskrun logs -f mytaskrun -n myspace
```

5.3.8. Condition management commands

5.3.8.1. condition

Manage Conditions.

Example: Display help

```bash
$ tkn condition --help
```

5.3.8.2. condition delete

Delete a Condition.

Example: Delete the mycondition1 Condition from a namespace

```bash
$ tkn condition delete mycondition1 -n myspace
```
5.3.8.3. condition describe

Describe a Condition.

Example: Describe the mycondition1 Condition in a namespace

$ tkn condition describe mycondition1 -n myspace

5.3.8.4. condition list

List Conditions.

Example: List Conditions in a namespace

$ tkn condition list -n myspace

5.3.9. Pipeline Resource management commands

5.3.9.1. resource

Manage Pipeline Resources.

Example: Display help

$ tkn resource -h

5.3.9.2. resource create

Create a Pipeline Resource.

Example: Create a Pipeline Resource in a namespace

$ tkn resource create -n myspace

This is an interactive command that asks for input on the name of the Resource, type of the Resource, and the values based on the type of the Resource.

5.3.9.3. resource delete

Delete a Pipeline Resource.

Example: Delete the myresource Pipeline Resource from a namespace

$ tkn resource delete myresource -n myspace

5.3.9.4. resource describe

Describe a Pipeline Resource.

Example: Describe the myresource Pipeline Resource
5.3.9.5. resource list
List Pipeline Resources.

Example: List all Pipeline Resources in a namespace

```bash
$ tkn resource list -n myspace
```

5.3.10. ClusterTask management commands

IMPORTANT
In Red Hat OpenShift Pipelines 1.10, ClusterTask functionality of the `tkn` command line utility is deprecated and is planned to be removed in a future release.

5.3.10.1. clustertask
Manage ClusterTasks.

Example: Display help

```bash
$ tkn clustertask --help
```

5.3.10.2. clustertask delete
Delete a ClusterTask resource in a cluster.

Example: Delete mytask1 and mytask2 ClusterTasks

```bash
$ tkn clustertask delete mytask1 mytask2
```

5.3.10.3. clustertask describe
Describe a ClusterTask.

Example: Describe the mytask ClusterTask

```bash
$ tkn clustertask describe mytask1
```

5.3.10.4. clustertask list
List ClusterTasks.

Example: List ClusterTasks

```bash
$ tkn clustertask list
```
5.3.10.5. clustertask start
Start ClusterTasks.

Example: Start the mytask ClusterTask

```bash
$ tkn clustertask start mytask
```

5.3.11. Trigger management commands

5.3.11.1. eventlistener
Manage EventListeners.

Example: Display help

```bash
$ tkn eventlistener -h
```

5.3.11.2. eventlistener delete
Delete an EventListener.

Example: Delete mylistener1 and mylistener2 EventListeners in a namespace

```bash
$ tkn eventlistener delete mylistener1 mylistener2 -n myspace
```

5.3.11.3. eventlistener describe
Describe an EventListener.

Example: Describe the mylistener EventListener in a namespace

```bash
$ tkn eventlistener describe mylistener -n myspace
```

5.3.11.4. eventlistener list
List EventListeners.

Example: List all the EventListeners in a namespace

```bash
$ tkn eventlistener list -n myspace
```

5.3.11.5. eventlistener logs
Display logs of an EventListener.

Example: Display the logs of the mylistener EventListener in a namespace

```bash
$ tkn eventlistener logs mylistener -n myspace
```
5.3.11.6. triggerbinding
Manage TriggerBindings.

Example: Display TriggerBindings help

$ tkn triggerbinding -h

5.3.11.7. triggerbinding delete
Delete a TriggerBinding.

Example: Delete mybinding1 and mybinding2 TriggerBindings in a namespace

$ tkn triggerbinding delete mybinding1 mybinding2 -n myspace

5.3.11.8. triggerbinding describe
Describe a TriggerBinding.

Example: Describe the mybinding TriggerBinding in a namespace

$ tkn triggerbinding describe mybinding -n myspace

5.3.11.9. triggerbinding list
List TriggerBindings.

Example: List all the TriggerBindings in a namespace

$ tkn triggerbinding list -n myspace

5.3.11.10. triggertemplate
Manage TriggerTemplates.

Example: Display TriggerTemplate help

$ tkn triggertemplate -h

5.3.11.11. triggertemplate delete
Delete a TriggerTemplate.

Example: Delete mytemplate1 and mytemplate2 TriggerTemplates in a namespace

$ tkn triggertemplate delete mytemplate1 mytemplate2 -n `myspace`

5.3.11.12. triggertemplate describe
Describe a TriggerTemplate.

Example: Describe the mytemplate TriggerTemplate in a namespace

$ tkn triggertemplate describe mytemplate -n `myspace`

5.3.11.13. triggertemplate list

List TriggerTemplates.

Example: List all the TriggerTemplates in a namespace

$ tkn triggertemplate list -n myspace

5.3.11.14. clustertriggerbinding

Manage ClusterTriggerBindings.

Example: Display ClusterTriggerBindings help

$ tkn clustertriggerbinding -h

5.3.11.15. clustertriggerbinding delete

Delete a ClusterTriggerBinding.

Example: Delete myclusterbinding1 and myclusterbinding2 ClusterTriggerBindings

$ tkn clustertriggerbinding delete myclusterbinding1 myclusterbinding2

5.3.11.16. clustertriggerbinding describe

Describe a ClusterTriggerBinding.

Example: Describe the myclusterbinding ClusterTriggerBinding

$ tkn clustertriggerbinding describe myclusterbinding

5.3.11.17. clustertriggerbinding list

List ClusterTriggerBindings.

Example: List all ClusterTriggerBindings

$ tkn clustertriggerbinding list

5.3.12. Hub interaction commands

Interact with Tekton Hub for resources such as tasks and pipelines.
5.3.12.1. hub

Interact with hub.

Example: Display help

```
$ tkn hub -h
```

Example: Interact with a hub API server

```
$ tkn hub --api-server https://api.hub.tekton.dev
```

NOTE

For each example, to get the corresponding sub-commands and flags, run `tkn hub <command> --help`.

5.3.12.2. hub downgrade

Downgrade an installed resource.

Example: Downgrade the `mytask` task in the `mynamespace` namespace to it’s older version

```
$ tkn hub downgrade task mytask --to version -n mynamespace
```

5.3.12.3. hub get

Get a resource manifest by its name, kind, catalog, and version.

Example: Get the manifest for a specific version of the `myresource` pipeline or task from the `tekton` catalog

```
$ tkn hub get [pipeline | task] myresource --from tekton --version version
```

5.3.12.4. hub info

Display information about a resource by its name, kind, catalog, and version.

Example: Display information about a specific version of the `mytask` task from the `tekton` catalog

```
$ tkn hub info task mytask --from tekton --version version
```

5.3.12.5. hub install

Install a resource from a catalog by its kind, name, and version.

Example: Install a specific version of the `mytask` task from the `tekton` catalog in the `mynamespace` namespace

```
$ tkn hub install task mytask --from tekton --version version -n mynamespace
```
5.3.12.6. hub reinstall

Reinstall a resource by its kind and name.

Example: Reinstall a specific version of the mytask task from the tekton catalog in the mynamespace namespace

```bash
tkn hub reinstall task mytask --from tekton --version version -n mynamespace
```

5.3.12.7. hub search

Search a resource by a combination of name, kind, and tags.

Example: Search a resource with a tag cli

```bash
tkn hub search --tags cli
```

5.3.12.8. hub upgrade

Upgrade an installed resource.

Example: Upgrade the installed mytask task in the mynamespace namespace to a new version

```bash
tkn hub upgrade task mytask --to version -n mynamespace
```
CHAPTER 6. OPM CLI

6.1. INSTALLING THE OPM CLI

6.1.1. About the opm CLI

The opm CLI tool is provided by the Operator Framework for use with the Operator bundle format. This tool allows you to create and maintain catalogs of Operators from a list of Operator bundles that are similar to software repositories. The result is a container image which can be stored in a container registry and then installed on a cluster.

A catalog contains a database of pointers to Operator manifest content that can be queried through an included API that is served when the container image is run. On Red Hat OpenShift Service on AWS, Operator Lifecycle Manager (OLM) can reference the image in a catalog source, defined by a CatalogSource object, which polls the image at regular intervals to enable frequent updates to installed Operators on the cluster.

6.1.2. Installing the opm CLI

You can install the opm CLI tool on your Linux, macOS, or Windows workstation.

Prerequisites

- For Linux, you must provide the following packages:
 - podman version 1.9.3+ (version 2.0+ recommended)
 - glibc version 2.28+

Procedure

1. Navigate to the OpenShift mirror site and download the latest version of the tarball that matches your operating system.

2. Unpack the archive.
 - For Linux or macOS:
     ```
     $ tar xvf <file>
     ```
 - For Windows, unzip the archive with a ZIP program.

3. Place the file anywhere in your PATH.
 - For Linux or macOS:
 a. Check your PATH:
        ```
        $ echo $PATH
        ```
 b. Move the file. For example:
        ```
        $ sudo mv ./opm /usr/local/bin/
        ```
For Windows:

a. Check your **PATH**:

   ```
   C:\> path
   ```

b. Move the file:

   ```
   C:\> move opm.exe <directory>
   ```

Verification

- After you install the **opm** CLI, verify that it is available:

  ```
  $ opm version
  ```

6.2. OPM CLI REFERENCE

The **opm** command-line interface (CLI) is a tool for creating and maintaining Operator catalogs.

opm CLI syntax

```
$ opm <command> [subcommand] [argument] [flags]
```

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-skip-tls-verify</code></td>
<td>Skip TLS certificate verification for container image registries while pulling bundles or indexes.</td>
</tr>
<tr>
<td><code>--use-http</code></td>
<td>When you pull bundles, use plain HTTP for container image registries.</td>
</tr>
</tbody>
</table>

IMPORTANT

The SQLite-based catalog format, including the related CLI commands, is a deprecated feature. Deprecated functionality is still included in Red Hat OpenShift Service on AWS and continues to be supported; however, it will be removed in a future release of this product and is not recommended for new deployments.

6.2.1. **generate**

Generate various artifacts for declarative config indexes.

Command syntax

```
$ opm generate subcommand [flags]
```

Table 6.2. **generate subcommands**
<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dockerfile</td>
<td>Generate a Dockerfile for a declarative config index.</td>
</tr>
</tbody>
</table>

Table 6.3. generate flags

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h, --help</td>
<td>Help for generate.</td>
</tr>
</tbody>
</table>

6.2.1.1. dockerfile

Generate a Dockerfile for a declarative config index.

IMPORTANT

This command creates a Dockerfile in the same directory as the `<dcRootDir>` (named `<dcDirName>.Dockerfile`) that is used to build the index. If a Dockerfile with the same name already exists, this command fails.

When specifying extra labels, if duplicate keys exist, only the last value of each duplicate key gets added to the generated Dockerfile.

Command syntax

```
$ opm generate dockerfile <dcRootDir> [flags]
```

Table 6.4. generate dockerfile flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-i, --binary-image (string)</td>
<td>Image in which to build catalog. The default value is <code>quay.io/operator-framework/opm:latest</code>.</td>
</tr>
<tr>
<td>-l, --extra-labels (string)</td>
<td>Extra labels to include in the generated Dockerfile. Labels have the form <code>key=value</code>.</td>
</tr>
<tr>
<td>-h, --help</td>
<td>Help for Dockerfile.</td>
</tr>
</tbody>
</table>

NOTE

To build with the official Red Hat image, use the `registry.redhat.io/openshift4/ose-operator-registry:v4` value with the `-i` flag.

6.2.2. index

Generate Operator index for SQLite database format container images from pre-existing Operator bundles.
IMPORTANT

As of Red Hat OpenShift Service on AWS 4.11, the default Red Hat-provided Operator catalog releases in the file-based catalog format. The default Red Hat-provided Operator catalogs for Red Hat OpenShift Service on AWS 4.6 through 4.10 released in the deprecated SQLite database format.

The `opm` subcommands, flags, and functionality related to the SQLite database format are also deprecated and will be removed in a future release. The features are still supported and must be used for catalogs that use the deprecated SQLite database format.

Many of the `opm` subcommands and flags for working with the SQLite database format, such as `opm index prune`, do not work with the file-based catalog format.

Command syntax

```bash
$ opm index <subcommand> [<flags>]
```

Table 6.5. `index` subcommands

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code></td>
<td>Add Operator bundles to an index.</td>
</tr>
<tr>
<td><code>prune</code></td>
<td>Prune an index of all but specified packages.</td>
</tr>
<tr>
<td><code>prune-stranded</code></td>
<td>Prune an index of stranded bundles, which are bundles that are not associated with a particular image.</td>
</tr>
<tr>
<td><code>rm</code></td>
<td>Delete an entire Operator from an index.</td>
</tr>
</tbody>
</table>

6.2.2.1. add

Add Operator bundles to an index.

Command syntax

```bash
$ opm index add [<flags>]
```

Table 6.6. `index add` flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-i, --binary-image</code></td>
<td>Container image for on-image <code>opm</code> command</td>
</tr>
<tr>
<td><code>-u, --build-tool (string)</code></td>
<td>Tool to build container images; <code>podman</code> (the default value) or <code>docker</code>. Overrides part of the <code>--container-tool</code> flag.</td>
</tr>
<tr>
<td><code>-b, --bundles (strings)</code></td>
<td>Comma-separated list of bundles to add.</td>
</tr>
</tbody>
</table>
6.2.2.2. prune

Prune an index of all but specified packages.

Command syntax

```
$ opm index prune [<flags>]
```

Table 6.7. index prune flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-i, --binary-image</code></td>
<td>Container image for on-image <code>opm</code> command</td>
</tr>
<tr>
<td><code>-c, --container-tool</code> (string)</td>
<td>Tool to interact with container images, such as for saving and building: <code>docker</code> or <code>podman</code>.</td>
</tr>
<tr>
<td><code>-f, --from-index</code> (string)</td>
<td>Index to prune.</td>
</tr>
<tr>
<td><code>--generate</code></td>
<td>If enabled, only creates the Dockerfile and saves it to local disk.</td>
</tr>
<tr>
<td><code>-d, --out-dockerfile</code> (string)</td>
<td>Optional: If generating the Dockerfile, specify a file name.</td>
</tr>
</tbody>
</table>
6.2.2.3. prune-stranded

Prune an index of stranded bundles, which are bundles that are not associated with a particular image.

Command syntax

```
$ opm index prune-stranded [<flags>]
```

Table 6.8. index prune-stranded flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-i, --binary-image</td>
<td>Container image for on-image <code>opm</code> command</td>
</tr>
<tr>
<td>-c, --container-tool</td>
<td>Tool to interact with container images, such as for saving and building: <code>docker</code> or <code>podman</code>.</td>
</tr>
<tr>
<td>-f, --from-index</td>
<td>Index to prune.</td>
</tr>
<tr>
<td>--generate</td>
<td>If enabled, only creates the Dockerfile and saves it to local disk.</td>
</tr>
<tr>
<td>-d, --out-dockerfile</td>
<td>Optional: If generating the Dockerfile, specify a file name.</td>
</tr>
<tr>
<td>-p, --packages</td>
<td>Comma-separated list of packages to keep.</td>
</tr>
<tr>
<td>--permissive</td>
<td>Allow registry load errors.</td>
</tr>
<tr>
<td>-t, --tag</td>
<td>Custom tag for container image being built.</td>
</tr>
</tbody>
</table>

6.2.2.4. rm

Delete an entire Operator from an index.

Command syntax
$ opm index rm [<flags>]

Table 6.9. index rm flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-i, --binary-image</td>
<td>Container image for on-image opm command</td>
</tr>
<tr>
<td>-u, --build-tool (string)</td>
<td>Tool to build container images: podman (the default value) or docker. Overrides part of the --container-tool flag.</td>
</tr>
<tr>
<td>-c, --container-tool (string)</td>
<td>Tool to interact with container images, such as for saving and building: docker or podman.</td>
</tr>
<tr>
<td>-f, --from-index (string)</td>
<td>Previous index to delete from.</td>
</tr>
<tr>
<td>--generate</td>
<td>If enabled, only creates the Dockerfile and saves it to local disk.</td>
</tr>
<tr>
<td>-o, --operators (strings)</td>
<td>Comma-separated list of Operators to delete.</td>
</tr>
<tr>
<td>-d, --out-dockerfile (string)</td>
<td>Optional: If generating the Dockerfile, specify a file name.</td>
</tr>
<tr>
<td>-p, --packages (strings)</td>
<td>Comma-separated list of packages to keep.</td>
</tr>
<tr>
<td>--permissive</td>
<td>Allow registry load errors.</td>
</tr>
<tr>
<td>-p, --pull-tool (string)</td>
<td>Tool to pull container images: none (the default value), docker, or podman. Overrides part of the --container-tool flag.</td>
</tr>
<tr>
<td>-t, --tag (string)</td>
<td>Custom tag for container image being built.</td>
</tr>
</tbody>
</table>

6.2.3. init

Generate an *olm.package* declarative config blob.

Command syntax

$ opm init <package_name> [<flags>]

Table 6.10. init flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c, --default-channel (string)</td>
<td>The channel that subscriptions will default to if unspecified.</td>
</tr>
</tbody>
</table>
6.2.4. migrate

Migrate a SQLite database format index image or database file to a file-based catalog.

![IMPORTANT]

IMPORTANT

The SQLite-based catalog format, including the related CLI commands, is a deprecated feature. Deprecated functionality is still included in Red Hat OpenShift Service on AWS and continues to be supported; however, it will be removed in a future release of this product and is not recommended for new deployments.

Command syntax

```
$ opm migrate <index_ref> <output_dir> [flags]
```

Table 6.11. migrate flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d, --description (string)</td>
<td>Path to the Operator’s README.md or other documentation.</td>
</tr>
<tr>
<td>-i, --icon (string)</td>
<td>Path to package’s icon.</td>
</tr>
<tr>
<td>-o, --output (string)</td>
<td>Output format: json (the default value) or yaml.</td>
</tr>
</tbody>
</table>

6.2.5. render

Generate a declarative config blob from the provided index images, bundle images, and SQLite database files.

Command syntax

```
$ opm render <index_image | bundle_image | sqlite_file> [flags]
```

Table 6.12. render flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-o, --output (string)</td>
<td>Output format: json (the default value) or yaml.</td>
</tr>
</tbody>
</table>

6.2.6. serve

Serve declarative configs via a GRPC server.
NOTE

The declarative config directory is loaded by the `serve` command at startup. Changes made to the declarative config after this command starts are not reflected in the served content.

Command syntax

```
$ opm serve <source_path> [flags]
```

Table 6.13. `serve` flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--cache-dir</code> (string)</td>
<td>If this flag is set, it syncs and persists the server cache directory.</td>
</tr>
<tr>
<td><code>--cache-enforce-integrity</code></td>
<td>Exits with an error if the cache is not present or is invalidated. The default value is true when the <code>--cache-dir</code> flag is set and the <code>--cache-only</code> flag is false. Otherwise, the default is false.</td>
</tr>
<tr>
<td><code>--cache-only</code></td>
<td>Syncs the serve cache and exits without serving.</td>
</tr>
<tr>
<td><code>--debug</code></td>
<td>Enables debug logging.</td>
</tr>
<tr>
<td><code>h, --help</code></td>
<td>Help for serve.</td>
</tr>
<tr>
<td><code>-p, --port</code> (string)</td>
<td>The port number for the service. The default value is 50051.</td>
</tr>
<tr>
<td><code>--pprof-addr</code> (string)</td>
<td>The address of the startup profiling endpoint. The format is Addr:Port.</td>
</tr>
<tr>
<td><code>-t, --termination-log</code> (string)</td>
<td>The path to a container termination log file. The default value is /dev/termination-log.</td>
</tr>
</tbody>
</table>

6.2.7. validate

Validate the declarative config JSON file(s) in a given directory.

Command syntax

```
$ opm validate <directory> [flags]
```
CHAPTER 7. OPERATOR SDK

7.1. INSTALLING THE OPERATOR SDK CLI

The Operator SDK provides a command-line interface (CLI) tool that Operator developers can use to build, test, and deploy an Operator. You can install the Operator SDK CLI on your workstation so that you are prepared to start authoring your own Operators.

Operator authors with cluster administrator access to a Kubernetes-based cluster, such as Red Hat OpenShift Service on AWS, can use the Operator SDK CLI to develop their own Operators based on Go, Ansible, Java, or Helm. Kubebuilder is embedded into the Operator SDK as the scaffolding solution for Go-based Operators, which means existing Kubebuilder projects can be used as is with the Operator SDK and continue to work.

7.1.1. Installing the Operator SDK CLI on Linux

You can install the OpenShift SDK CLI tool on Linux.

Prerequisites

- Go v1.19+
- docker v17.03+, podman v1.9.3+, or buildah v1.7+

Procedure

1. Navigate to the OpenShift mirror site.
2. From the latest 4 directory, download the latest version of the tarball for Linux.
3. Unpack the archive:
 $ tar xvf operator-sdk-v1.31.0-ocp-linux-x86_64.tar.gz
4. Make the file executable:
 $ chmod +x operator-sdk
5. Move the extracted operator-sdk binary to a directory that is on your PATH.
 $ sudo mv ./operator-sdk /usr/local/bin/operator-sdk

 TIP

 To check your PATH:
 $ echo $PATH
 $ sudo mv ./operator-sdk /usr/local/bin/operator-sdk

Verification

- After you install the Operator SDK CLI, verify that it is available:
7.1.2. Installing the Operator SDK CLI on macOS

You can install the OpenShift SDK CLI tool on macOS.

Prerequisites

- **Go** v1.19+
- **docker** v17.03+, **podman** v1.9.3+, or **buildah** v1.7+

Procedure

1. For the **amd64** architecture, navigate to the OpenShift mirror site for the **amd64** architecture.

2. From the latest 4 directory, download the latest version of the tarball for macOS.

3. Unpack the Operator SDK archive for **amd64** architecture by running the following command:

   ```
   $ tar xvf operator-sdk-v1.31.0-ocp-darwin-x86_64.tar.gz
   ```

4. Make the file executable by running the following command:

   ```
   $ chmod +x operator-sdk
   ```

5. Move the extracted **operator-sdk** binary to a directory that is on your **PATH** by running the following command:

   ```
   $ sudo mv ./operator-sdk /usr/local/bin/operator-sdk
   ```

 TIP

 Check your **PATH** by running the following command:

   ```
   $ echo $PATH
   ```

   ```
   $ sudo mv ./operator-sdk /usr/local/bin/operator-sdk
   ```

 Verification

 - After you install the Operator SDK CLI, verify that it is available by running the following command:

     ```
     $ operator-sdk version
     ```

 Example output
operator-sdk version: "v1.31.0-ocp", ...

7.2. OPERATOR SDK CLI REFERENCE

The Operator SDK command-line interface (CLI) is a development kit designed to make writing Operators easier.

Operator SDK CLI syntax

$ operator-sdk <command> [<subcommand>] [<argument>] [<flags>]

7.2.1. bundle

The operator-sdk bundle command manages Operator bundle metadata.

7.2.1.1. validate

The bundle validate subcommand validates an Operator bundle.

Table 7.1. bundle validate flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h, --help</td>
<td>Help output for the bundle validate subcommand.</td>
</tr>
<tr>
<td>--index-builder (string)</td>
<td>Tool to pull and unpack bundle images. Only used when validating a bundle image. Available options are docker, which is the default, podman, or none.</td>
</tr>
<tr>
<td>--list-optional</td>
<td>List all optional validators available. When set, no validators are run.</td>
</tr>
<tr>
<td>--select-optional (string)</td>
<td>Label selector to select optional validators to run. When run with the --list-optional flag, lists available optional validators.</td>
</tr>
</tbody>
</table>

7.2.2. cleanup

The operator-sdk cleanup command destroys and removes resources that were created for an Operator that was deployed with the run command.

Table 7.2. cleanup flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h, --help</td>
<td>Help output for the run bundle subcommand.</td>
</tr>
<tr>
<td>--kubeconfig (string)</td>
<td>Path to the kubeconfig file to use for CLI requests.</td>
</tr>
<tr>
<td>-n, --namespace (string)</td>
<td>If present, namespace in which to run the CLI request.</td>
</tr>
</tbody>
</table>
7.2.3. completion

The **operator-sdk completion** command generates shell completions to make issuing CLI commands quicker and easier.

Table 7.3. completion subcommands

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bash</td>
<td>Generate bash completions.</td>
</tr>
<tr>
<td>zsh</td>
<td>Generate zsh completions.</td>
</tr>
</tbody>
</table>

Table 7.4. completion flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h, --help</td>
<td>Usage help output.</td>
</tr>
</tbody>
</table>

For example:

```
$ operator-sdk completion bash
```

Example output

```
# bash completion for operator-sdk
...
# ex: ts=4 sw=4 et filetype=sh
```

7.2.4. create

The **operator-sdk create** command is used to create, or *scaffold*, a Kubernetes API.

7.2.4.1. api

The **create api** subcommand scaffolds a Kubernetes API. The subcommand must be run in a project that was initialized with the **init** command.

Table 7.5. create api flags
7.2.5. generate

The `operator-sdk generate` command invokes a specific generator to generate code or manifests.

7.2.5.1. bundle

The `generate bundle` subcommand generates a set of bundle manifests, metadata, and a `bundle.Dockerfile` file for your Operator project.

NOTE

Typically, you run the `generate kustomize manifests` subcommand first to generate the input Kustomize bases that are used by the `generate bundle` subcommand. However, you can use the `make bundle` command in an initialized project to automate running these commands in sequence.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--channels</code></td>
<td>Comma-separated list of channels to which the bundle belongs. The default value is <code>alpha</code>.</td>
</tr>
<tr>
<td><code>--crds-dir</code></td>
<td>Root directory for CustomResoureDefinition manifests.</td>
</tr>
<tr>
<td><code>--default-channel</code></td>
<td>The default channel for the bundle.</td>
</tr>
<tr>
<td><code>--deploy-dir</code></td>
<td>Root directory for Operator manifests, such as deployments and RBAC. This directory is different from the directory passed to the <code>--input-dir</code> flag.</td>
</tr>
<tr>
<td><code>-h, --help</code></td>
<td>Help for <code>generate bundle</code></td>
</tr>
<tr>
<td><code>--input-dir</code></td>
<td>Directory from which to read an existing bundle. This directory is the parent of your bundle <code>manifests</code> directory and is different from the <code>--deploy-dir</code> directory.</td>
</tr>
<tr>
<td><code>--kustomize-dir</code></td>
<td>Directory containing Kustomize bases and a <code>kustomization.yaml</code> file for bundle manifests. The default path is <code>config/manifests</code>.</td>
</tr>
<tr>
<td><code>--manifests</code></td>
<td>Generate bundle manifests.</td>
</tr>
<tr>
<td><code>--metadata</code></td>
<td>Generate bundle metadata and Dockerfile.</td>
</tr>
<tr>
<td><code>--output-dir</code></td>
<td>Directory to write the bundle to.</td>
</tr>
</tbody>
</table>
7.2.5.2. kustomize

The generate kustomize subcommand contains subcommands that generate Kustomize data for the Operator.

7.2.5.2.1. manifests

The generate kustomize manifests subcommand generates or regenerates Kustomize bases and a kustomization.yaml file in the config/manifests directory, which are used to build bundle manifests by other Operator SDK commands. This command interactively asks for UI metadata, an important component of manifest bases, by default unless a base already exists or you set the --interactive=false flag.

Table 7.7. generate kustomize manifests flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--apis-dir (string)</td>
<td>Root directory for API type definitions.</td>
</tr>
<tr>
<td>-h, --help</td>
<td>Help for generate kustomize manifests.</td>
</tr>
<tr>
<td>--input-dir (string)</td>
<td>Directory containing existing Kustomize files.</td>
</tr>
<tr>
<td>--interactive</td>
<td>When set to false, if no Kustomize base exists, an interactive command prompt is presented to accept custom metadata.</td>
</tr>
<tr>
<td>--output-dir (string)</td>
<td>Directory where to write Kustomize files.</td>
</tr>
<tr>
<td>--package (string)</td>
<td>Package name.</td>
</tr>
<tr>
<td>-q, --quiet</td>
<td>Run in quiet mode.</td>
</tr>
</tbody>
</table>

7.2.6. init

...
The **operator-sdk init** command initializes an Operator project and generates, or scaffolds, a default project directory layout for the given plugin.

This command writes the following files:

- Boilerplate license file
- PROJECT file with the domain and repository
- Makefile to build the project
- go.mod file with project dependencies
- kustomization.yaml file for customizing manifests
- Patch file for customizing images for manager manifests
- Patch file for enabling Prometheus metrics
- main.go file to run

Table 7.8. init flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--help, -h</code></td>
<td>Help output for the init command.</td>
</tr>
<tr>
<td><code>--plugins</code> (string)</td>
<td>Name and optionally version of the plugin to initialize the project with. Available plugins are ansible.sdk.operatorframework.io/v1, go.kubebuilder.io/v2, go.kubebuilder.io/v3, and helm.sdk.operatorframework.io/v1.</td>
</tr>
<tr>
<td><code>--project-version</code></td>
<td>Project version. Available values are 2 and 3-alpha, which is the default.</td>
</tr>
</tbody>
</table>

7.2.7. run

The **operator-sdk run** command provides options that can launch the Operator in various environments.

7.2.7.1. bundle

The **run bundle** subcommand deploys an Operator in the bundle format with Operator Lifecycle Manager (OLM).

Table 7.9. run bundle flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--index-image</code> (string)</td>
<td>Index image in which to inject a bundle. The default image is quay.io/operator-framework/upstream-opm-builder:latest.</td>
</tr>
<tr>
<td><code>--install-mode</code></td>
<td>Install mode supported by the cluster service version (CSV) of the Operator, for example AllNamespaces or SingleNamespace.</td>
</tr>
</tbody>
</table>
7.2.7.2. bundle-upgrade

The `run bundle-upgrade` subcommand upgrades an Operator that was previously installed in the bundle format with Operator Lifecycle Manager (OLM).

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--timeout <duration></td>
<td>Install timeout. The default value is 2m0s.</td>
</tr>
<tr>
<td>--kubeconfig (string)</td>
<td>Path to the <code>kubeconfig</code> file to use for CLI requests.</td>
</tr>
<tr>
<td>-n, --namespace (string)</td>
<td>If present, namespace in which to run the CLI request.</td>
</tr>
<tr>
<td>--security-context-config <security_context></td>
<td>Specifies the security context to use for the catalog pod. Allowed values include <code>restricted</code> and <code>legacy</code>. The default value is <code>legacy</code>. [1]</td>
</tr>
<tr>
<td>-h, --help</td>
<td>Help output for the <code>run bundle</code> subcommand.</td>
</tr>
</tbody>
</table>

1. The **restricted** security context is not compatible with the **default** namespace. To configure your Operator’s pod security admission in your production environment, see "Complying with pod security admission". For more information about pod security admission, see "Understanding and managing pod security admission".

7.2.8. scorecard
The `operator-sdk scorecard` command runs the scorecard tool to validate an Operator bundle and provide suggestions for improvements. The command takes one argument, either a bundle image or directory containing manifests and metadata. If the argument holds an image tag, the image must be present remotely.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-c, --config</code></td>
<td>Path to scorecard configuration file. The default path is <code>bundle/tests/scorecard/config.yaml</code>.</td>
</tr>
<tr>
<td><code>-h, --help</code></td>
<td>Help output for the <code>scorecard</code> command.</td>
</tr>
<tr>
<td><code>--kubeconfig</code></td>
<td>Path to <code>kubeconfig</code> file.</td>
</tr>
<tr>
<td><code>-L, --list</code></td>
<td>List which tests are available to run.</td>
</tr>
<tr>
<td><code>-n, --namespace</code></td>
<td>Namespace in which to run the test images.</td>
</tr>
<tr>
<td><code>-o, --output</code></td>
<td>Output format for results. Available values are <code>text</code>, which is the default, and <code>json</code>.</td>
</tr>
<tr>
<td><code>--pod-security</code></td>
<td>Option to run scorecard with the specified security context. Allowed values include <code>restricted</code> and <code>legacy</code>. The default value is <code>legacy</code>. [1]</td>
</tr>
<tr>
<td><code>-l, --selector</code></td>
<td>Label selector to determine which tests are run.</td>
</tr>
<tr>
<td><code>-s, --service-account</code></td>
<td>Service account to use for tests. The default value is <code>default</code>.</td>
</tr>
<tr>
<td><code>-x, --skip-cleanup</code></td>
<td>Disable resource cleanup after tests are run.</td>
</tr>
<tr>
<td><code>-w, --wait-time</code></td>
<td>Seconds to wait for tests to complete, for example <code>35s</code>. The default value is <code>30s</code>.</td>
</tr>
</tbody>
</table>

1. The `restricted` security context is not compatible with the `default` namespace. To configure your Operator’s pod security admission in your production environment, see "Complying with pod security admission". For more information about pod security admission, see "Understanding and managing pod security admission".
CHAPTER 8. ROSA CLI

8.1. GETTING STARTED WITH THE ROSA CLI

8.1.1. About the ROSA CLI

Use the Red Hat OpenShift Service on AWS (ROSA) command-line interface (CLI), the **rosa** command, to create, update, manage, and delete ROSA clusters and resources.

8.1.2. Setting up the ROSA CLI

Use the following steps to install and configure the ROSA CLI (**rosa**) on your installation host.

Procedure

1. Install and configure the latest AWS CLI (**aws**).

 a. Follow the [AWS Command Line Interface](#) documentation to install and configure the AWS CLI for your operating system. Specify your **aws_access_key_id**, **aws_secret_access_key**, and **region** in the .aws/credentials file. See [AWS Configuration basics](#) in the AWS documentation.

   ```
   NOTE
   You can optionally use the **AWS_DEFAULT_REGION** environment variable to set the default AWS region.
   ```

 b. Query the AWS API to verify if the AWS CLI is installed and configured correctly:

   ```
   $ aws sts get-caller-identity --output text
   ```

 Example output

   ```
   <aws_account_id>    arn:aws:iam::<aws_account_id>:user/<username>  <aws_user_id>
   ```

2. Download the latest version of the ROSA CLI (**rosa**) for your operating system from the Downloads page on OpenShift Cluster Manager.

3. Extract the **rosa** binary file from the downloaded archive. The following example extracts the binary from a Linux tar archive:

   ```
   $ tar xvf rosa-linux.tar.gz
   ```

4. Add **rosa** to your path. In the following example, the `/usr/local/bin` directory is included in the path of the user:

   ```
   $ sudo mv rosa /usr/local/bin/rosa
   ```

5. Verify if the ROSA CLI is installed correctly by querying the **rosa** version:

   ```
   $ rosa version
   ```
Example output

1.2.15
Your ROSA CLI is up to date.

6. Optional: Enable tab completion for the ROSA CLI. With tab completion enabled, you can press the Tab key twice to automatically complete subcommands and receive command suggestions:

- To enable persistent tab completion for Bash on a Linux host:
 a. Generate a `rosa` tab completion configuration file for Bash and save it to your `/etc/bash_completion.d/` directory:

```bash
# rosa completion bash > /etc/bash_completion.d/rosa
```

 b. Open a new terminal to activate the configuration.

- To enable persistent tab completion for Bash on a macOS host:
 a. Generate a `rosa` tab completion configuration file for Bash and save it to your `/usr/local/etc/bash_completion.d/` directory:

```bash
$ rosa completion bash > /usr/local/etc/bash_completion.d/rosa
```

 b. Open a new terminal to activate the configuration.

- To enable persistent tab completion for Zsh:
 a. If tab completion is not enabled for your Zsh environment, enable it by running the following command:

```bash
$ echo "autoload -U compinit; compinit" >> ~/.zshrc
```

 b. Generate a `rosa` tab completion configuration file for Zsh and save it to the first directory in your functions path:

```bash
$ rosa completion zsh > "${fpath[1]}/_rosa"
```

 c. Open a new terminal to activate the configuration.

- To enable persistent tab completion for fish:
 a. Generate a `rosa` tab completion configuration file for fish and save it to your `~/.config/fish/completions/` directory:

```bash
$ rosa completion fish > ~/.config/fish/completions/rosa.fish
```

 b. Open a new terminal to activate the configuration.

- To enable persistent tab completion for PowerShell:
 a. Generate a `rosa` tab completion configuration file for PowerShell and save it to a file named `rosa.ps1`:

```
PS> rosa completion powershell | Out-String | Invoke-Expression
```
b. Source the **rosa.ps1** file from your PowerShell profile.

NOTE

For more information about configuring **rosa** tab completion, see the help menu by running the **rosa completion --help** command.

8.1.3. Configuring the ROSA CLI

Use the following commands to configure the Red Hat OpenShift Service on AWS (ROSA) CLI, **rosa**.

8.1.3.1. login

Log in to your Red Hat account, saving the credentials to the **rosa** configuration file. You must provide a token when logging in. You can copy your token from the [ROSA token page](https://ssso.redhat.com/auth/realms/redhat-external/protocol/openid-connect/token).

The ROSA CLI (**rosa**) looks for a token in the following priority order:

1. Command-line arguments
2. The **ROSA_TOKEN** environment variable
3. The **rosa** configuration file
4. Interactively from a command-line prompt

Syntax

```
$ rosa login [arguments]
```

Table 8.1. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--client-id</td>
<td>The OpenID client identifier (string). Default: cloud-services</td>
</tr>
<tr>
<td>--client-secret</td>
<td>The OpenID client secret (string).</td>
</tr>
<tr>
<td>--insecure</td>
<td>Enables insecure communication with the server. This disables verification of TLS certificates and host names.</td>
</tr>
<tr>
<td>--scope</td>
<td>The OpenID scope (string). If this option is used, it replaces the default scopes. This can be repeated multiple times to specify multiple scopes. Default: openid</td>
</tr>
<tr>
<td>--token</td>
<td>Accesses or refreshes the token (string).</td>
</tr>
</tbody>
</table>

Table 8.2. Optional arguments inherited from parent commands
<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

8.1.3.2. logout

Log out of `rosa`. Logging out also removes the `rosa` configuration file.

Syntax

```bash
$ rosa logout [arguments]
```

Table 8.3. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

8.1.3.3. verify permissions

Verify that the AWS permissions required to create a ROSA cluster are configured correctly:

Syntax

```bash
$ rosa verify permissions [arguments]
```

NOTE

This command verifies permissions only for clusters that do not use the AWS Security Token Service (STS).

Table 8.4. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
</tbody>
</table>
Option Definitions

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--region</td>
<td>The AWS region (string) in which to run the command. This value overrides</td>
</tr>
<tr>
<td></td>
<td>the <code>AWS_REGION</code> environment variable.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Examples

Verify that the AWS permissions are configured correctly:

```
$ rosa verify permissions
```

Verify that the AWS permissions are configured correctly in a specific region:

```
$ rosa verify permissions --region=us-west-2
```

8.1.3.4. verify quota

Verifies that AWS quotas are configured correctly for your default region.

Syntax

```
$ rosa verify quota [arguments]
```

Table 8.5. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--region</td>
<td>The AWS region (string) in which to run the command. This value overrides</td>
</tr>
<tr>
<td></td>
<td>the <code>AWS_REGION</code> environment variable.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Examples

Verify that the AWS quotas are configured correctly for the default region:

```
$ rosa verify quota
```

Verify that the AWS quotas are configured correctly in a specific region:

```
$ rosa verify quota --region=us-west-2
```
8.1.3.5. download rosa

Download the latest compatible version of the *rosa* CLI.

After you download *rosa*, extract the contents of the archive and add it to your path.

Syntax

```
$ rosa download rosa [arguments]
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
</tbody>
</table>

8.1.3.6. download oc

Download the latest compatible version of the OpenShift Container Platform CLI (*oc*).

After you download *oc*, you must extract the contents of the archive and add it to your path.

Syntax

```
$ rosa download oc [arguments]
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
</tbody>
</table>

Example

Download *oc* client tools:

```
$ rosa download oc
```

8.1.3.7. verify oc

Verifies that the OpenShift Container Platform CLI (*oc*) is installed correctly.

Syntax

```
$ rosa verify oc [arguments]
```
Table 8.8. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
</tbody>
</table>

Example

Verify oc client tools:

```
$ rosa verify oc
```

Additional resources

- Setting up the ROSA CLI
- Getting started with the OpenShift CLI

8.1.4. Initializing ROSA

Use the **init** command to initialize Red Hat OpenShift Service on AWS (ROSA) only if you are using non-STSS.

8.1.4.1. init

Perform a series of checks to verify that you are ready to deploy a ROSA cluster.

The list of checks includes the following:

- Checks to see that you have logged in (see **login**)
- Checks that your AWS credentials are valid
- Checks that your AWS permissions are valid (see **verify permissions**)
- Checks that your AWS quota levels are high enough (see **verify quota**)
- Runs a cluster simulation to ensure cluster creation will perform as expected
- Checks that the **osdCcsAdmin** user has been created in your AWS account
- Checks that the OpenShift Container Platform command-line tool is available on your system

Syntax

```
$ rosa init [arguments]
```

Table 8.9. Arguments
### Option	Definition
--region | The AWS region (string) in which to verify quota and permissions. This value overrides the AWS_REGION environment variable only when running the `init` command, but it does not change your AWS CLI configuration.
--delete | Deletes the stack template that is applied to your AWS account during the `init` command.
--client-id | The OpenID client identifier (string). Default: `cloud-services`.
--client-secret | The OpenID client secret (string).
--insecure | Enables insecure communication with the server. This disables verification of TLS certificates and host names.
--scope | The OpenID scope (string). If this option is used, it completely replaces the default scopes. This can be repeated multiple times to specify multiple scopes. Default: `openid`.
--token | Accesses or refreshes the token (string).

Table 8.10. Optional arguments inherited from parent commands

### Option	Definition
--help | Shows help for this command.
--debug | Enables debug mode.
--profile | Specifies an AWS profile (string) from your credentials file.

Examples

Configure your AWS account to allow ROSA clusters:

```
$ rosa init
```

Configure a new AWS account using pre-existing OpenShift Cluster Manager credentials:

```
$ rosa init --token=$OFFLINE_ACCESS_TOKEN
```

8.1.5. Using a Bash script
This is an example workflow of how to use a Bash script with the Red Hat OpenShift Service on AWS (ROSA) CLI, rosa.

Prerequisites

Make sure that AWS credentials are available as one of the following options:

- AWS profile
- Environment variables (`AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`)

Procedure

1. Initialize **rosa** using a Red Hat OpenShift Cluster Manager offline token from Red Hat:

   ```bash
   $ rosa init --token=<token>
   ```

2. Create the ROSA cluster:

   ```bash
   $ rosa create cluster --cluster-name=<cluster_name>
   ```

3. Add an identity provider (IDP):

   ```bash
   $ rosa create idp --cluster=<cluster_name> --type=<identity_provider> [arguments]
   ```

4. Add a **dedicated-admin** user:

   ```bash
   $ rosa grant user dedicated-admin --user=<idp_user_name> --cluster=<cluster_name>
   ```

8.1.6. Updating the ROSA CLI

Update to the latest compatible version of the ROSA CLI (**rosa**).

Procedure

1. Confirm that a new version of the ROSA CLI (**rosa**) is available:

   ```bash
   $ rosa version
   ```

Example output

```
1.2.12
There is a newer release version '1.2.15', please consider updating:
https://mirror.openshift.com/pub/openshift-v4clients/rosa/latest/
```

2. Download the latest compatible version of the ROSA CLI:

   ```bash
   $ rosa download rosa
   ```

 This command downloads an archive called **rosa-*.tar.gz** into the current directory. The exact name of the file depends on your operating system and system architecture.

3. Extract the contents of the archive:
4. Install the new version of the ROSA CLI by moving the extracted file into your path. In the following example, the `/usr/local/bin` directory is included in the path of the user:

```
$ sudo mv rosa /usr/local/bin/rosa
```

Verification

- Verify that the new version of ROSA is installed.

```
$ rosa version
```

Example output

```
1.2.15
Your ROSA CLI is up to date.
```

8.2. MANAGING OBJECTS WITH THE ROSA CLI

Managing objects with the Red Hat OpenShift Service on AWS (ROSA) CLI, `rosa`, such as adding `dedicated-admin` users, managing clusters, and scheduling cluster upgrades.

NOTE

To access a cluster that is accessible only over an HTTP proxy server, you can set the `HTTP_PROXY`, `HTTPS_PROXY`, and `NO_PROXY` variables. These environment variables are respected by the `rosa` CLI so that all communication with the cluster goes through the HTTP proxy.

8.2.1. Common commands and arguments

These common commands and arguments are available for the Red Hat OpenShift Service on AWS (ROSA) CLI, `rosa`.

8.2.1.1. debug

Enables debug mode for the parent command to help with troubleshooting.

Example

```
$ rosa create cluster --cluster-name=<cluster_name> --debug
```

8.2.1.2. download

Downloads the latest compatible version of the specified software to the current directory in an archive file. Extract the contents of the archive and add the contents to your path to use the software. To download the latest ROSA CLI, specify `rosa`. To download the latest OpenShift CLI, specify `oc`.

Example

```bash
$ tar -xzf rosa-linux.tar.gz
```

```bash
$ sudo mv rosa /usr/local/bin/rosa
```
$ rosa download <software>

8.2.1.3. help
Displays general help information for the ROSA CLI (rosa) and a list of available commands. This option can also be used as an argument to display help information for a parent command, such as version or create.

Examples
Displays general help for the ROSA CLI.

$ rosa --help
Displays general help for version.

$ rosa version --help

8.2.1.4. interactive
Enables interactive mode.

Example

$ rosa create cluster --cluster-name=<cluster_name> --interactive

8.2.1.5. profile
Specifies an AWS profile from your credential file.

Example

$ rosa create cluster --cluster-name=<cluster_name> --profile=myAWSprofile

8.2.1.6. version
Displays the rosa version and checks whether a newer version is available.

Example

$ rosa version [arguments]

Example output
Displayed when a newer version of the ROSA CLI is available.

1.2.12
There is a newer release version '1.2.15', please consider updating: https://mirror.openshift.com/pub/openshift-v4/clients/rosa/latest/

8.2.2. Parent commands
The Red Hat OpenShift Service on AWS (ROSA) CLI, rosa, uses parent commands with child commands to manage objects. The parent commands are create, edit, delete, list, and describe. Not all parent commands can be used with all child commands. For more information, see the specific reference topics that describes the child commands.

8.2.2.1. create
Creates an object or resource when paired with a child command.

Example

```bash
$ rosa create cluster --cluster-name=mycluster
```

8.2.2.2. edit
Edits options for an object, such as making a cluster private.

Example

```bash
$ rosa edit cluster --cluster=mycluster --private
```

8.2.2.3. delete
Deletes an object or resource when paired with a child command.

Example

```bash
$ rosa delete ingress --cluster=mycluster
```

8.2.2.4. list
Lists clusters or resources for a specific cluster.

Example

```bash
$ rosa list users --cluster=mycluster
```

8.2.2.5. describe
Shows the details for a cluster.

Example

```bash
$ rosa describe cluster --cluster=mycluster
```

8.2.3. Create objects
This section describes the create commands for clusters and resources.

8.2.3.1. create account-roles
Create the required account-wide role and policy resources for your cluster.

Syntax

```
$ rosa create account-roles [flags]
```

Table 8.11. Flags

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--debug</code></td>
<td>Enable debug mode.</td>
</tr>
<tr>
<td><code>-i, --interactive</code></td>
<td>Enable interactive mode.</td>
</tr>
<tr>
<td><code>-m, --mode string</code></td>
<td>How to perform the operation. Valid options are:</td>
</tr>
<tr>
<td></td>
<td>auto</td>
</tr>
<tr>
<td></td>
<td>Resource changes will be automatically applied using the current AWS account.</td>
</tr>
<tr>
<td></td>
<td>manual</td>
</tr>
<tr>
<td></td>
<td>Commands necessary to modify AWS resources will be output to be run manually.</td>
</tr>
<tr>
<td><code>--path string</code></td>
<td>The Amazon Resource Name (ARN) path for the account-wide roles and policies, including the Operator policies.</td>
</tr>
<tr>
<td><code>--permissions-boundary string</code></td>
<td>The ARN of the policy that is used to set the permissions boundary for the account roles.</td>
</tr>
<tr>
<td><code>--prefix string</code></td>
<td>User-defined prefix for all generated AWS resources. The default is ManagedOpenShift.</td>
</tr>
<tr>
<td><code>--profile string</code></td>
<td>Use a specific AWS profile from your credential file.</td>
</tr>
<tr>
<td><code>--yes</code></td>
<td>Automatically answer yes to confirm operations.</td>
</tr>
</tbody>
</table>

8.2.3.2. create admin

Create a cluster administrator with an automatically generated password that can log in to a cluster.

Syntax

```
$ rosa create admin --cluster=<cluster_name>|<cluster_id>
```

Table 8.12. Arguments

None.
<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster <code><cluster_name></code></td>
<td>Required. The name or ID (string) of the cluster to add to the identity provider (IDP).</td>
</tr>
</tbody>
</table>

Table 8.13. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile string</td>
<td>Specifies an AWS profile from your credentials file.</td>
</tr>
</tbody>
</table>

Example

Create a cluster administrator that can log in to a cluster named `mycluster`.

```
$ rosa create admin --cluster=mycluster
```

8.2.3.3. create break glass credential

Create a break glass credential for a hosted control plane cluster with external authentication enabled.

Syntax

```
$ rosa create break-glass-credential --cluster=<cluster_name> [arguments]
```

Table 8.14. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster <code><cluster_name></code></td>
<td>Required. The name or ID of the cluster to which the break glass credential will be added.</td>
</tr>
<tr>
<td>--expiration</td>
<td>Optional: How long a break glass credential can be used before expiring. The expiration duration must be a minimum of 10 minutes and a maximum of 24 hours. If you do not enter a value, the expiration duration defaults to 24 hours.</td>
</tr>
<tr>
<td>--username</td>
<td>Optional. The username for the break glass credential. If you do not enter a value, a random username is generated for you.</td>
</tr>
</tbody>
</table>

Table 8.15. Optional arguments inherited from parent commands
Option	Definition
--help | Shows help for this command.
--debug | Enables debug mode.
--interactive | Enables interactive mode.
--profile | Specifies an AWS profile (string) from your credentials file.
--region | Specifies an AWS region, overriding the `AWS_REGION` environment variable.
--yes | Automatically answers `yes` to confirm the operation.

Examples

Add a break glass credential to a cluster named `mycluster`.

Syntax

```bash
$ rosa create break-glass-credential --cluster=mycluster
```

Add a break glass credential to a cluster named `mycluster` using the interactive mode.

Syntax

```bash
$ rosa create break-glass-credential --cluster=mycluster -i
```

8.2.3.4. create cluster

Create a new cluster.

Syntax

```bash
$ rosa create cluster --cluster-name=<cluster_name> [arguments]
```

Table 8.16. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--additional-compute-security-group-ids <code><sec_group_id></code></td>
<td>The identifier of one or more additional security groups to use along with the default security groups that are used with the standard machine pool created alongside the cluster. For more information on additional security groups, see the requirements for Security groups under Additional resources.</td>
</tr>
<tr>
<td>Option</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td><code>--additional-infra-security-group-ids <sec_group_id></code></td>
<td>The identifier of one or more additional security groups to use along with the default security groups that are used with the infra nodes created alongside the cluster. For more information on additional security groups, see the requirements for Security groups under Additional resources.</td>
</tr>
<tr>
<td><code>--additional-control-plane-security-group-ids <sec_group_id></code></td>
<td>The identifier of one or more additional security groups to use along with the default security groups that are used with the control plane nodes created alongside the cluster. For more information on additional security groups, see the requirements for Security groups under Additional resources.</td>
</tr>
<tr>
<td><code>--cluster-name <cluster_name></code></td>
<td>Required. The name of the cluster. When used with the <code>create cluster</code> command, this argument is used to set the cluster name and can hold up to 54 characters. The value for this argument must be unique within your organization.</td>
</tr>
<tr>
<td><code>--compute-machine-type <instance_type></code></td>
<td>The instance type for compute nodes in the cluster. This determines the amount of memory and vCPU that is allocated to each compute node. For more information on valid instance types, see AWS Instance types in ROSA service definition.</td>
</tr>
<tr>
<td><code>--controlplane-iam-role <arn></code></td>
<td>The ARN of the IAM role to attach to control plane instances.</td>
</tr>
<tr>
<td><code>--disable-scp-checks</code></td>
<td>Indicates whether cloud permission checks are disabled when attempting to install a cluster.</td>
</tr>
<tr>
<td><code>--dry-run</code></td>
<td>Simulates creating the cluster.</td>
</tr>
<tr>
<td><code>--domain-prefix <subnet></code></td>
<td>Optional: When used with the <code>create cluster</code> command, this argument sets the subdomain for your cluster on *.openshiftapps.com. The value for this argument must be unique within your organization, cannot be longer than 15 characters, and cannot be changed after cluster creation. If the argument is not supplied, an autogenerated value is created that depends on the length of the cluster name. If the cluster name is fewer than or equal to 15 characters, that name is used for the domain prefix. If the cluster name is longer than 15 characters, the domain prefix is randomly generated to a 15 character string.</td>
</tr>
<tr>
<td><code>--ec2-metadata-http-tokens string</code></td>
<td>Configures the use of IMDSv2 for EC2 instances. Valid values are <code>optional</code> (default) or <code>required</code>.</td>
</tr>
<tr>
<td><code>--enable-autoscaling</code></td>
<td>Enables autoscaling of compute nodes. By default, autoscaling is set to 2 nodes. To set non-default node limits, use this argument with the <code>--min-replicas</code> and <code>--max-replicas</code> arguments.</td>
</tr>
<tr>
<td><code>--host-prefix <subnet></code></td>
<td>The subnet prefix length to assign to each individual node, as an integer. For example, if host prefix is set to 23, then each node is assigned a /23 subnet out of the given CIDR.</td>
</tr>
<tr>
<td>Option</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>--machine-cidr <address_block></td>
<td>Block of IP addresses (ipNet) used by ROSA while installing the cluster, for example, 10.0.0.0/16.</td>
</tr>
</tbody>
</table>

IMPORTANT

OVN-Kubernetes, the default network provider in ROSA 4.11 and later, uses the **100.64.0.0/16** IP address range internally. If your cluster uses OVN-Kubernetes, do not include the **100.64.0.0/16** IP address range in any other CIDR definitions in your cluster.

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--max-replicas <number_of_nodes></td>
<td>Specifies the maximum number of compute nodes when enabling autoscaling. Default: 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--min-replicas <number_of_nodes></td>
<td>Specifies the minimum number of compute nodes when enabling autoscaling. Default: 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--multi-az</td>
<td>Deploys to multiple data centers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--operator-roles-prefix <string></td>
<td>Prefix that are used for all IAM roles used by the operators needed in the OpenShift installer. A prefix is generated automatically if you do not specify one.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--pod-cidr <address_block></td>
<td>Block of IP addresses (ipNet) from which pod IP addresses are allocated, for example, 10.128.0.0/14.</td>
</tr>
</tbody>
</table>

IMPORTANT

OVN-Kubernetes, the default network provider in ROSA 4.11 and later, uses the **100.64.0.0/16** IP address range internally. If your cluster uses OVN-Kubernetes, do not include the **100.64.0.0/16** IP address range in any other CIDR definitions in your cluster.

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--private</td>
<td>Restricts primary API endpoint and application routes to direct, private connectivity.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--private-link</td>
<td>Specifies to use AWS PrivateLink to provide private connectivity between VPCs and services. The --subnet-ids argument is required when using --private-link.</td>
</tr>
<tr>
<td>Option</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>--region <region_name></td>
<td>The name of the AWS region where your worker pool will be located, for example, us-east-1. This argument overrides the AWS_REGION environment variable.</td>
</tr>
<tr>
<td>--replicas n</td>
<td>The number of worker nodes to provision per availability zone. Single-zone clusters require at least 2 nodes. Multi-zone clusters require at least 3 nodes. Default: 2 for single-zone clusters; 3 for multi-zone clusters.</td>
</tr>
<tr>
<td>--role-arn <arn></td>
<td>The ARN of the installer role that OpenShift Cluster Manager uses to create the cluster. This is required if you have not already created account roles.</td>
</tr>
<tr>
<td>--service-cidr <address_block></td>
<td>Block of IP addresses (ipNet) for services, for example, 172.30.0.0/16.</td>
</tr>
<tr>
<td></td>
<td>IMPORTANT</td>
</tr>
<tr>
<td></td>
<td>OVN-Kubernetes, the default network provider in ROSA 4.11 and later, uses the 100.64.0.0/16 IP address range internally. If your cluster uses OVN-Kubernetes, do not include the 100.64.0.0/16 IP address range in any other CIDR definitions in your cluster.</td>
</tr>
<tr>
<td>--sts</td>
<td>--non-sts</td>
</tr>
<tr>
<td>--subnet-ids <aws_subnet_id></td>
<td>The AWS subnet IDs that are used when installing the cluster, for example, subnet-01abc234d5678ef9a. Subnet IDs must be in pairs with one private subnet ID and one public subnet ID per availability zone. Subnets are comma-delimited, for example, --subnet-ids=subnet-1,subnet-2. Leave the value empty for installer-provisioned subnet IDs. When using --private-link, the --subnet-ids argument is required and only one private subnet is allowed per zone.</td>
</tr>
<tr>
<td>--support-role-arn string</td>
<td>The ARN of the role used by Red Hat Site Reliability Engineers (SREs) to enable access to the cluster account to provide support.</td>
</tr>
</tbody>
</table>
Tags that are used on resources created by Red Hat OpenShift Service on AWS in AWS. Tags can help you manage, identify, organize, search for, and filter resources within AWS. Tags are comma separated, for example: "key value, foo bar".

IMPORTANT

Red Hat OpenShift Service on AWS only supports custom tags to Red Hat OpenShift resources during cluster creation. Once added, the tags cannot be removed or edited. Tags that are added by Red Hat are required for clusters to stay in compliance with Red Hat production service level agreements (SLAs). These tags must not be removed.

Red Hat OpenShift Service on AWS does not support adding additional tags outside of ROSA cluster-managed resources. These tags can be lost when AWS resources are managed by the ROSA cluster. In these cases, you might need custom solutions or tools to reconcile the tags and keep them intact.

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--version string</code></td>
<td>The version of ROSA that will be used to install the cluster or cluster resources. For cluster use an X.Y.Z format, for example, 4.15.0. For account-role use an X.Y format, for example, 4.15.</td>
</tr>
<tr>
<td><code>--worker-iam-role string</code></td>
<td>The ARN of the IAM role that will be attached to compute instances.</td>
</tr>
</tbody>
</table>

Table 8.17. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--help</code></td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td><code>--debug</code></td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td><code>--interactive</code></td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td><code>--profile</code></td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Examples

Create a cluster named **mycluster**.

```bash
$ rosa create cluster --cluster-name=mycluster
```

Create a cluster with a specific AWS region.

```bash
$ rosa create cluster --cluster-name=mycluster --region=us-east-2
```
Create a cluster with autoscaling enabled on the default worker machine pool.

$ rosa create cluster --cluster-name=mycluster -region=us-east-1 --enable-autoscaling --min-replicas=2 --max-replicas=5

8.2.3.5. create external-auth-provider

Add an external identity provider instead of the OpenShift OAuth2 server.

IMPORTANT

You can only use external authentication providers on ROSA with HCP clusters.

Syntax

$ rosa create external-auth-provider --cluster=<cluster_name> | <cluster_id> [arguments]

Table 8.18. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--claim-mapping-groups-claim <string></td>
<td>Required. Describes rules on how to transform information from an ID token into a cluster identity.</td>
</tr>
<tr>
<td>--claim-validation-rule <strings></td>
<td>Rules that are applied to validate token claims to authenticate users. The input will be in a <code><claim>:<required_value></code> format. To have multiple claim validation rules, you can separate the values by <code>,</code>. For example, <code><claim>:<required_value>,<claim>:<required_value></code>.</td>
</tr>
<tr>
<td>--claim-mapping-username-claim <string></td>
<td>The name of the claim that should be used to construct user names for the cluster identity.</td>
</tr>
<tr>
<td>--cluster <cluster_name></td>
<td>Required. The name or ID of the cluster to which the IDP will be added.</td>
</tr>
<tr>
<td>--console-client-id <string></td>
<td>The identifier of the OIDC client from the OIDC provider for the OpenShift Cluster Manager web console.</td>
</tr>
<tr>
<td>--console-client-secret <string></td>
<td>The secret that is associated with the console application registration.</td>
</tr>
<tr>
<td>--issuer-audiences <strings></td>
<td>An array of audiences to check the incoming tokens against. Valid tokens must include at least one of these values in their audience claim.</td>
</tr>
<tr>
<td>--issuer-ca-file <string></td>
<td>The path to the PEM-encoded certificate file to use when making requests to the server.</td>
</tr>
<tr>
<td>--issuer-url <string></td>
<td>The serving URL of the token issuer.</td>
</tr>
</tbody>
</table>

Red Hat OpenShift Service on AWS 4 CLI tools
Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--name <string></td>
<td>A name that is used to refer to the external authentication provider.</td>
</tr>
</tbody>
</table>

Table 8.19. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile string from your credentials file.</td>
</tr>
</tbody>
</table>

Examples

Add a Microsoft Entra ID identity provider to a cluster named `mycluster`.

```bash
$ rosa create external-auth-provider --cluster=mycluster --name <provider_name> --issuer-audiences <audience_id> --issuer-url <issuing_id> --claim-mapping-username-claim email --claim-mapping-groups-claim groups
```

8.2.3.6. create idp

Add an identity provider (IDP) to define how users log in to a cluster.

Syntax

```bash
$ rosa create idp --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.20. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster <cluster_name></td>
<td>Required. The name or ID of the cluster to which the IDP will be added.</td>
</tr>
<tr>
<td>--ca <path_to_file></td>
<td>The path to the PEM-encoded certificate file to use when making requests to the server, for example, <code>/usr/share/cert.pem</code>.</td>
</tr>
<tr>
<td>--client-id</td>
<td>The client ID (string) from the registered application.</td>
</tr>
<tr>
<td>--client-secret</td>
<td>The client secret (string) from the registered application.</td>
</tr>
<tr>
<td>--mapping-method</td>
<td>Specifies how new identities (string) are mapped to users when they log in. Default: <code>claim</code></td>
</tr>
<tr>
<td>Option</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>--name</td>
<td>The name (string) for the identity provider.</td>
</tr>
<tr>
<td>--type</td>
<td>The type (string) of identity provider. Options: <code>github</code>, <code>gitlab</code>, <code>google</code>, <code>ldap</code>, <code>openid</code></td>
</tr>
</tbody>
</table>

Table 8.21. GitHub arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--hostname</td>
<td>The optional domain (string) that are used with a hosted instance of GitHub Enterprise.</td>
</tr>
<tr>
<td>--organizations</td>
<td>Specifies the organizations for login access. Only users that are members of at least one of the listed organizations (string) are allowed to log in.</td>
</tr>
<tr>
<td>--teams</td>
<td>Specifies the teams for login access. Only users that are members of at least one of the listed teams (string) are allowed to log in. The format is <code><org>/<team></code>.</td>
</tr>
</tbody>
</table>

Table 8.22. GitLab arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--host-url</td>
<td>The host URL (string) of a GitLab provider. Default: <code>https://gitlab.com</code></td>
</tr>
</tbody>
</table>

Table 8.23. Google arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--hosted-domain</td>
<td>Restricts users to a Google Apps domain (string).</td>
</tr>
</tbody>
</table>

Table 8.24. LDAP arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--bind-dn</td>
<td>The domain name (string) to bind with during the search phase.</td>
</tr>
<tr>
<td>--bind-password</td>
<td>The password (string) to bind with during the search phase.</td>
</tr>
<tr>
<td>--email-attributes</td>
<td>The list (string) of attributes whose values should be used as the email address.</td>
</tr>
<tr>
<td>--id-attributes</td>
<td>The list (string) of attributes whose values should be used as the user ID. Default: <code>dn</code></td>
</tr>
</tbody>
</table>
Table 8.25. OpenID arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--insecure</td>
<td>Does not make TLS connections to the server.</td>
</tr>
<tr>
<td>--name-attributes</td>
<td>The list (string) of attributes whose values should be used as the display name. Default: cn</td>
</tr>
<tr>
<td>--url</td>
<td>An RFC 2255 URL (string) which specifies the LDAP search parameters that are used.</td>
</tr>
<tr>
<td>--username-attributes</td>
<td>The list (string) of attributes whose values should be used as the preferred username. Default: uid</td>
</tr>
<tr>
<td>--email-claims</td>
<td>The list (string) of claims that are used as the email address.</td>
</tr>
<tr>
<td>--extra-scopes</td>
<td>The list (string) of scopes to request, in addition to the openid scope, during the authorization token request.</td>
</tr>
<tr>
<td>--issuer-url</td>
<td>The URL (string) that the OpenID provider asserts as the issuer identifier. It must use the HTTPS scheme with no URL query parameters or fragment.</td>
</tr>
<tr>
<td>--name-claims</td>
<td>The list (string) of claims that are used as the display name.</td>
</tr>
<tr>
<td>--username-claims</td>
<td>The list (string) of claims that are used as the preferred username when provisioning a user.</td>
</tr>
<tr>
<td>--groups-claims</td>
<td>The list (string) of claims that are used as the groups names.</td>
</tr>
</tbody>
</table>

Table 8.26. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Examples

Add a GitHub identity provider to a cluster named **mycluster**.
Add an identity provider following interactive prompts.

$ rosa create idp --type=github --cluster=mycluster

Add an ingress endpoint to enable API access to the cluster.

8.2.3.7. create ingress

Syntax

$ rosa create ingress --cluster=<cluster_name> | <cluster_id> [arguments]

Table 8.27. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster <cluster_name></td>
<td>Required: The name or ID of the cluster to which the ingress will be added.</td>
</tr>
<tr>
<td><cluster_id></td>
<td></td>
</tr>
<tr>
<td>--label-match</td>
<td>The label match (string) for ingress. The format must be a comma-delimited list of key=value pairs. If no label is specified, all routes are exposed on both routers.</td>
</tr>
<tr>
<td>--private</td>
<td>Restricts application route to direct, private connectivity.</td>
</tr>
</tbody>
</table>

Table 8.28. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Examples

Add an internal ingress to a cluster named mycluster.

$ rosa create ingress --private --cluster=mycluster

Add a public ingress to a cluster named mycluster.

$ rosa create ingress --cluster=mycluster
Add an ingress with a route selector label match.

$ rosa create ingress --cluster=mycluster --label-match=foo=bar,bar=baz

8.2.3.8. create kubeletconfig

Create a custom KubeletConfig object to allow custom configuration of nodes in a machine pool. For Red Hat OpenShift Service on AWS clusters, these settings are cluster-wide. For Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP) clusters, each machine pool can be configured differently.

Syntax

$ rosa create kubeletconfig --cluster=<cluster_name|cluster_id> --name=<kubeletconfig_name> --pod-pids-limit=<number> [flags]

Table 8.29. Flags

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--pod-pids-limit <number></td>
<td>Required. The maximum number of PIDs for each node in the machine pool associated with the KubeletConfig object.</td>
</tr>
<tr>
<td>-c, --cluster <cluster_name></td>
<td>Required. The name or ID of the cluster in which to create the KubeletConfig object.</td>
</tr>
<tr>
<td>-c, --cluster <cluster_id></td>
<td></td>
</tr>
<tr>
<td>--name</td>
<td>Required for Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP) clusters. Optional for Red Hat OpenShift Service on</td>
</tr>
<tr>
<td></td>
<td>AWS, as there is only one KubeletConfig for the cluster. Specifies a name for the KubeletConfig object.</td>
</tr>
<tr>
<td>-i, --interactive</td>
<td>Enable interactive mode.</td>
</tr>
<tr>
<td>-h, --help</td>
<td>Shows help for this command.</td>
</tr>
</tbody>
</table>

For more information about setting the PID limit for the cluster, see Configuring PID limits.

8.2.3.9. create machinepool

Add a machine pool to an existing cluster.

Syntax

$ rosa create machinepool --cluster=<cluster_name> | <cluster_id> --replicas=<number> --name=<machinepool_name> [arguments]

Table 8.30. Arguments
<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--additional-security-group-ids <sec_group_id></td>
<td>The identifier of one or more additional security groups to use along with the default security groups for this machine pool. For more information on additional security groups, see the requirements for Security groups under Additional resources.</td>
</tr>
<tr>
<td>--cluster <cluster_name></td>
<td><cluster_id></td>
</tr>
<tr>
<td>--enable-autoscaling</td>
<td>Enable or disable autoscaling of compute nodes. To enable autoscaling, use this argument with the --min-replicas and --max-replicas arguments. To disable autoscaling, use --enable-autoscaling=false with the --replicas argument.</td>
</tr>
<tr>
<td>--instance-type</td>
<td>The instance type (string) that should be used. Default: m5.xlarge</td>
</tr>
<tr>
<td>--kubelet-configs <kubeletconfig_name></td>
<td>For Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP) clusters, the names of any KubeletConfig objects to apply to nodes in a machine pool.</td>
</tr>
<tr>
<td>--labels</td>
<td>The labels (string) for the machine pool. The format must be a comma-delimited list of key=value pairs. This list overwrites any modifications made to node labels on an ongoing basis.</td>
</tr>
<tr>
<td>--max-replicas</td>
<td>Specifies the maximum number of compute nodes when enabling autoscaling.</td>
</tr>
<tr>
<td>--min-replicas</td>
<td>Specifies the minimum number of compute nodes when enabling autoscaling.</td>
</tr>
<tr>
<td>--name</td>
<td>Required: The name (string) for the machine pool.</td>
</tr>
<tr>
<td>--replicas</td>
<td>Required when autoscaling is not configured. The number (integer) of machines for this machine pool.</td>
</tr>
<tr>
<td>--tags</td>
<td>Apply user defined tags to all resources created by ROSA in AWS. Tags are comma separated, for example: 'key value, foo bar'.</td>
</tr>
<tr>
<td>--taints</td>
<td>Taints for the machine pool. This string value should be formatted as a comma-separated list of key=value:ScheduleType. This list will overwrite any modifications made to Node taints on an ongoing basis.</td>
</tr>
</tbody>
</table>

Table 8.31. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
</tbody>
</table>
Option Definition

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Examples

Interactively add a machine pool to a cluster named `mycluster`.

```
$ rosa create machinepool --cluster=mycluster --interactive
```

Add a machine pool that is named `mp-1` to a cluster with autoscaling enabled.

```
$ rosa create machinepool --cluster=mycluster --enable-autoscaling --min-replicas=2 --max-replicas=5 --name=mp-1
```

Add a machine pool that is named `mp-1` with 3 replicas of `m5.xlarge` to a cluster.

```
$ rosa create machinepool --cluster=mycluster --replicas=3 --instance-type=m5.xlarge --name=mp-1
```

Add a machine pool with labels to a cluster.

```
$ rosa create machinepool --cluster=mycluster --replicas=2 --instance-type=r5.2xlarge --labels=foo=bar,bar=baz --name=mp-1
```

Add a machine pool with tags to a cluster.

```
$ rosa create machinepool --cluster=mycluster --replicas=2 --instance-type=r5.2xlarge --tags='foo bar,bar baz' --name=mp-1
```

8.2.3.10. create ocm-role

Create the required `ocm-role` resources for your cluster.

Syntax

```
$ rosa create ocm-role [flags]
```

Table 8.32. Flags

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--admin</td>
<td>Enable admin capabilities for the role.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enable debug mode.</td>
</tr>
</tbody>
</table>
Option Definition

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>-i, --interactive</td>
<td>Enable interactive mode.</td>
</tr>
<tr>
<td>-m, --mode string</td>
<td>How to perform the operation. Valid options are:</td>
</tr>
<tr>
<td></td>
<td>- auto: Resource changes will be automatically applied using the</td>
</tr>
<tr>
<td></td>
<td>current AWS account</td>
</tr>
<tr>
<td></td>
<td>- manual: Commands necessary to modify AWS resources will be</td>
</tr>
<tr>
<td></td>
<td>output to be run manually</td>
</tr>
<tr>
<td>--path string</td>
<td>The ARN path for the OCM role and policies.</td>
</tr>
<tr>
<td>--permissions-boundary string</td>
<td>The ARN of the policy that is used to set the permissions boundary for the OCM role.</td>
</tr>
<tr>
<td>--prefix string</td>
<td>User-defined prefix for all generated AWS resources. The default is</td>
</tr>
<tr>
<td></td>
<td>ManagedOpenShift</td>
</tr>
<tr>
<td>--profile string</td>
<td>Use a specific AWS profile from your credential file.</td>
</tr>
<tr>
<td>-y, --yes</td>
<td>Automatically answer yes to confirm operation.</td>
</tr>
</tbody>
</table>

For more information about the OCM role created with the `rosa create ocm-role` command, see [Account-wide IAM role and policy reference](#).

8.2.3.11. create user-role

Create the required user-role resources for your cluster.

Syntax

```
$ rosa create user-role [flags]
```

Table 8.33. Flags

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--debug</td>
<td>Enable debug mode.</td>
</tr>
<tr>
<td>-i, --interactive</td>
<td>Enable interactive mode.</td>
</tr>
</tbody>
</table>
Option Definitions

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-m, --mode string</code></td>
<td>How to perform the operation. Valid options are:</td>
</tr>
<tr>
<td></td>
<td>- auto: Resource changes will be automatically applied using the</td>
</tr>
<tr>
<td></td>
<td>current AWS account</td>
</tr>
<tr>
<td></td>
<td>- manual: Commands necessary to modify AWS resources will be</td>
</tr>
<tr>
<td></td>
<td>output to be run manually</td>
</tr>
<tr>
<td><code>--path string</code></td>
<td>The ARN path for the user role and policies.</td>
</tr>
<tr>
<td><code>--permissions-boundary string</code></td>
<td>The ARN of the policy that is used to set the permissions boundary for the</td>
</tr>
<tr>
<td></td>
<td>user role.</td>
</tr>
<tr>
<td><code>--prefix string</code></td>
<td>User-defined prefix for all generated AWS resources The default is</td>
</tr>
<tr>
<td></td>
<td>ManagedOpenShift.</td>
</tr>
<tr>
<td><code>--profile string</code></td>
<td>Use a specific AWS profile from your credential file.</td>
</tr>
<tr>
<td><code>-y, --yes</code></td>
<td>Automatically answer yes to confirm operation.</td>
</tr>
</tbody>
</table>

For more information about the user role created with the `rosa create user-role` command, see [Understanding AWS account association](#).

8.2.4. Additional resources

- See [AWS Instance types](#) for a list of supported instance types.
- See [Account-wide IAM role and policy reference](#) for a list of IAM roles needed for cluster creation.
- See [Understanding AWS account association](#) for more information about the OCM role and user role.
- See [Additional custom security groups](#) for information about security group requirements.

8.2.5. Edit objects

This section describes the `edit` commands for clusters and resources.

8.2.5.1. edit cluster

Allows edits to an existing cluster.

Syntax

```
$ rosa edit cluster --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.34. Arguments
<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster to edit.</td>
</tr>
<tr>
<td>--private</td>
<td>Restricts a primary API endpoint to direct, private connectivity.</td>
</tr>
<tr>
<td>--enable-delete-protection=true</td>
<td>Enables the delete protection feature.</td>
</tr>
<tr>
<td>--enable-delete-protection=false</td>
<td>Disables the delete protection feature.</td>
</tr>
</tbody>
</table>

Table 8.35. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Examples

Edit a cluster named `mycluster` to make it private.

```bash
$ rosa edit cluster --cluster=mycluster --private
```

Edit all cluster options interactively on a cluster named `mycluster`.

```bash
$ rosa edit cluster --cluster=mycluster --interactive
```

8.2.5.2. edit ingress

Edits the additional non-default application router for a cluster.

Syntax

```bash
$ rosa edit ingress --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.36. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster to which the ingress will be added.</td>
</tr>
</tbody>
</table>
Table 8.37. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Examples

Make an additional ingress with the ID **a1b2** as a private connection on a cluster named **mycluster**.

```
$ rosa edit ingress --private --cluster=mycluster a1b2
```
Update the router selectors for the additional ingress with the ID \texttt{a1b2} on a cluster named \texttt{mycluster}.

$$\texttt{rosa edit ingress --label-match=foo=bar --cluster=mycluster a1b2}$$

Update the default ingress using the sub-domain identifier \texttt{apps} on a cluster named \texttt{mycluster}.

$$\texttt{rosa edit ingress --private=false --cluster=mycluster apps}$$

Update the load balancer type of the \texttt{apps2} ingress.

$$\texttt{rosa edit ingress --lb-type=nlb --cluster=mycluster apps2}$$

8.2.5.3. \texttt{edit kubeletconfig}

Edit a custom \texttt{KubeletConfig} object in a machine pool.

Syntax

$$\texttt{rosa edit kubeletconfig --cluster=<cluster_name|cluster_id> --name=<kubeletconfig_name> --pod-pids-limit=<number> [flags]}$$

Table 8.38. Flags

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{-c, --cluster {cluster_name</td>
<td>cluster_id}}</td>
</tr>
<tr>
<td>\texttt{-i, --interactive}</td>
<td>Enable interactive mode.</td>
</tr>
<tr>
<td>\texttt{--pod-pids-limit {number}}</td>
<td>Required. The maximum number of PIDs for each node in the machine pool associated with the \texttt{KubeletConfig} object.</td>
</tr>
<tr>
<td>\texttt{--name}</td>
<td>Required for Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP) clusters. Optional for Red Hat OpenShift Service on AWS, as there is only one \texttt{KubeletConfig} for the cluster. Specifies a name for the \texttt{KubeletConfig} object.</td>
</tr>
<tr>
<td>\texttt{-h, --help}</td>
<td>Shows help for this command.</td>
</tr>
</tbody>
</table>

For more information about setting the PID limit for the cluster, see \textit{Configuring PID limits}.

8.2.5.4. \texttt{edit machinepool}

Allows edits to the machine pool in a cluster.

Syntax

$$\texttt{rosa edit machinepool --cluster=<cluster_name> | <cluster_id> <machinepool_ID> [arguments]}$$
Table 8.39. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster to edit on which the additional machine pool will be edited.</td>
</tr>
<tr>
<td>--enable-autoscaling</td>
<td>Enable or disable autoscaling of compute nodes. To enable autoscaling, use this argument with the --min-replicas and --max-replicas arguments. To disable autoscaling, use --enable-autoscaling=false with the--replicas argument.</td>
</tr>
<tr>
<td>--labels</td>
<td>The labels (string) for the machine pool. The format must be a comma-delimited list of key=value pairs. Editing this value only affects newly created nodes of the machine pool, which are created by increasing the node number, and does not affect the existing nodes. This list overwrites any modifications made to node labels on an ongoing basis.</td>
</tr>
<tr>
<td>--kubelet-configs <kubeletconfig_name></td>
<td>For Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP) clusters, the names of any KubeletConfig objects to apply to nodes in a machine pool.</td>
</tr>
<tr>
<td>--max-replicas</td>
<td>Specifies the maximum number of compute nodes when enabling autoscaling.</td>
</tr>
<tr>
<td>--min-replicas</td>
<td>Specifies the minimum number of compute nodes when enabling autoscaling.</td>
</tr>
<tr>
<td>--node-drain-grace-period</td>
<td>Specifies the node drain grace period when upgrading or replacing the machine pool. (This is for ROSA with HCP clusters only.)</td>
</tr>
<tr>
<td>--replicas</td>
<td>Required when autoscaling is not configured. The number (integer) of machines for this machine pool.</td>
</tr>
<tr>
<td>--taints</td>
<td>Taints for the machine pool. This string value should be formatted as a comma-separated list of key=value:ScheduleType. Editing this value only affect newly created nodes of the machine pool, which are created by increasing the node number, and does not affect the existing nodes. This list overwrites any modifications made to Node taints on an ongoing basis.</td>
</tr>
</tbody>
</table>

Table 8.40. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
</tbody>
</table>
Option | Definition
---|---
--profile | Specifies an AWS profile (string) from your credentials file.

Examples

Set 4 replicas on a machine pool named `mp1` on a cluster named `mycluster`.

```
$ rosa edit machinepool --cluster=mycluster --replicas=4 --name=mp1
```

Enable autoscaling on a machine pool named `mp1` on a cluster named `mycluster`.

```
$ rosa edit machinepool --cluster=mycluster --enable-autoscaling --min-replicas=3 --max-replicas=5 --name=mp1
```

Disable autoscaling on a machine pool named `mp1` on a cluster named `mycluster`.

```
$ rosa edit machinepool --cluster=mycluster --enable-autoscaling=false --replicas=3 --name=mp1
```

Modify the autoscaling range on a machine pool named `mp1` on a cluster named `mycluster`.

```
$ rosa edit machinepool --max-replicas=9 --cluster=mycluster --name=mp1
```

Associate a `KubeletConfig` object with an existing machine pool on a Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP) cluster.

```
$ rosa edit machinepool -c mycluster --kubelet-configs=set-high-pids --name high-pid-pool
```

8.2.6. Delete objects

This section describes the **delete** commands for clusters and resources.

8.2.6.1. delete admin

Deletes a cluster administrator from a specified cluster.

Syntax

```
$ rosa delete admin --cluster=<cluster_name> | <cluster_id>
```

Table 8.41. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster to add to the identity provider (IDP).</td>
</tr>
</tbody>
</table>

Table 8.42. Optional arguments inherited from parent commands
<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example
Delete a cluster administrator from a cluster named `mycluster`.

```
$ rosa delete admin --cluster=mycluster
```

8.2.6.2. delete cluster

Deletes a cluster.

Syntax

```
$ rosa delete cluster --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.43. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster to delete.</td>
</tr>
<tr>
<td>--watch</td>
<td>Watches the cluster uninstallation logs.</td>
</tr>
<tr>
<td>--best-effort</td>
<td>Skips steps in the cluster destruction chain that are known to cause the</td>
</tr>
<tr>
<td></td>
<td>cluster deletion process to fail. You should use this option with care</td>
</tr>
<tr>
<td></td>
<td>and it is recommended that you manually check your AWS account for any</td>
</tr>
<tr>
<td></td>
<td>resources that might be left over after using <code>--best-effort</code>.</td>
</tr>
</tbody>
</table>

Table 8.44. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>
Option | Definition
--yes | Automatically answers **yes** to confirm the operation.

Examples

Delete a cluster named **mycluster**.

```
$ rosa delete cluster --cluster=mycluster
```

8.2.6.3. delete external-auth-provider

Deletes an external authentication provider from a cluster.

Syntax

```
$ rosa delete external-auth-provider <name_of_external_auth_provider> --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.45. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required. The name or ID string of the cluster the external auth provider will be deleted from.</td>
</tr>
</tbody>
</table>

Table 8.46. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile string from your credentials file.</td>
</tr>
<tr>
<td>--yes</td>
<td>Automatically answers yes to confirm the operation.</td>
</tr>
</tbody>
</table>

Example

Delete an identity provider named **exauth-1** from a cluster named **mycluster**.

```
$ rosa delete external-auth-provider exauth-1 --cluster=mycluster
```
8.2.6.4. delete idp

Deletes a specific identity provider (IDP) from a cluster.

Syntax

$ rosa delete idp --cluster=<cluster_name> | <cluster_id> [arguments]

Table 8.47. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster from which the IDP will be deleted.</td>
</tr>
</tbody>
</table>

Table 8.48. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
<tr>
<td>--yes</td>
<td>Automatically answers yes to confirm the operation.</td>
</tr>
</tbody>
</table>

Example

Delete an identity provider named github from a cluster named mycluster.

$ rosa delete idp github --cluster=mycluster

8.2.6.5. delete ingress

Deletes a non-default application router (ingress) from a cluster.

Syntax

$ rosa delete ingress --cluster=<cluster_name> | <cluster_id> [arguments]

Table 8.49. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster from which the ingress will be deleted.</td>
</tr>
</tbody>
</table>
Table 8.50. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
<tr>
<td>--yes</td>
<td>Automatically answers yes to confirm the operation.</td>
</tr>
</tbody>
</table>

Examples

Delete an ingress with the ID `a1b2` from a cluster named `mycluster`.

```
$ rosa delete ingress --cluster=mycluster a1b2
```

Delete a secondary ingress with the subdomain name `apps2` from a cluster named `mycluster`.

```
$ rosa delete ingress --cluster=mycluster apps2
```

8.2.6.6. delete kubeletconfig

Delete a custom `KubeletConfig` object from a cluster.

Syntax

```
$ rosa delete kubeletconfig --cluster=<cluster_name|cluster_id> [flags]
```

Table 8.51. Flags

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c, --cluster <cluster_name></td>
<td><cluster_id></td>
</tr>
<tr>
<td>-h, --help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--name</td>
<td>Required for Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP) clusters. Optional for Red Hat OpenShift Service on AWS, as there is only one <code>KubeletConfig</code> for the cluster. Specifies a name for the <code>KubeletConfig</code> object.</td>
</tr>
<tr>
<td>-y, --yes</td>
<td>Automatically answers yes to confirm the operation.</td>
</tr>
</tbody>
</table>

8.2.6.7. delete machinepool
Deletes a machine pool from a cluster.

Syntax

$ rosa delete machinepool --cluster=<cluster_name> | <cluster_id> <machine_pool_id>

Table 8.52. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster that the machine pool will be deleted from.</td>
</tr>
</tbody>
</table>

Table 8.53. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
<tr>
<td>--yes</td>
<td>Automatically answers yes to confirm the operation.</td>
</tr>
</tbody>
</table>

Example

Delete the machine pool with the ID **mp-1** from a cluster named **mycluster**.

$ rosa delete machinepool --cluster=mycluster mp-1

8.2.7. Install and uninstall add-ons

This section describes how to install and uninstall Red Hat managed service add-ons to a cluster.

8.2.7.1. install addon

Installs a managed service add-on on a cluster.

Syntax

$ rosa install addon --cluster=<cluster_name> | <cluster_id> [arguments]

Table 8.54. Arguments
8.2.7.1. install addon

Installs a managed service add-on to a cluster.

Syntax

```bash
$ rosa install addon --cluster=<cluster_name> | <cluster_id> [arguments]
```

Example

Add the `dbaas-operator` add-on installation to a cluster named `mycluster`.

```bash
$ rosa install addon --cluster=mycluster dbaas-operator
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster where the add-on will be installed.</td>
</tr>
</tbody>
</table>

Table 8.55. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Uses a specific AWS profile (string) from your credentials file.</td>
</tr>
<tr>
<td>--yes</td>
<td>Automatically answers <code>yes</code> to confirm the operation.</td>
</tr>
</tbody>
</table>

8.2.7.2. uninstall addon

Uninstalls a managed service add-on from a cluster.

Syntax

```bash
$ rosa uninstall addon --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.56. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster that the add-on will be uninstalled from.</td>
</tr>
</tbody>
</table>

Table 8.57. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
</tbody>
</table>
8.2.8. List and describe objects

This section describes the list and describe commands for clusters and resources.

8.2.8.1. list addon

List the managed service add-on installations.

Syntax

```
$ rosa list addons --cluster=<cluster_name> | <cluster_id>
```

Table 8.58. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster to list the add-ons for.</td>
</tr>
</tbody>
</table>

Table 8.59. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

8.2.8.2. List break glass credentials

List all of the break glass credentials for a cluster.

Syntax

```
$ rosa list break-glass-credential [arguments]
```
Table 8.60. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster <cluster_name></td>
<td>Required. The name or ID of the cluster to which the break glass credentials have been added.</td>
</tr>
<tr>
<td><cluster_id></td>
<td></td>
</tr>
</tbody>
</table>

Table 8.61. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example

List all of the break glass credentials for a cluster named **mycluster**.

```
$ rosa list break-glass-credential --cluster=mycluster
```

8.2.8.3. list clusters

List all of your clusters.

Syntax

```
$ rosa list clusters [arguments]
```

Table 8.62. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--count</td>
<td>The number (integer) of clusters to display. Default: 100</td>
</tr>
</tbody>
</table>

Table 8.63. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>
8.2.8.4. list external-auth-provider

List any external authentication providers for a cluster.

Syntax

```
$ rosa list external-auth-provider --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.64. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID string of the cluster that the external authentication provider will be listed for.</td>
</tr>
</tbody>
</table>

Table 8.65. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile string from your credentials file.</td>
</tr>
</tbody>
</table>

Example

List any external authentication providers for a cluster named `mycluster`.

```
$ rosa list external-auth-provider --cluster=mycluster
```

8.2.8.5. list idps

List all of the identity providers (IDPs) for a cluster.

Syntax

```
$ rosa list idps --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.66. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster that the IDPs will be listed for.</td>
</tr>
</tbody>
</table>

Table 8.67. Optional arguments inherited from parent commands
Option Definitions

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example

List all identity providers (IDPs) for a cluster named *mycluster*.

```bash
$ rosa list idps --cluster=mycluster
```

8.2.8.6. list ingresses

List all of the API and ingress endpoints for a cluster.

Syntax

```bash
$ rosa list ingresses --cluster=<cluster_name> | <cluster_id> [arguments]
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster that the IDPs will be listed for.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example

List all API and ingress endpoints for a cluster named *mycluster*.

```bash
$ rosa list ingresses --cluster=mycluster
```

8.2.8.7. list instance-types

List all of the available instance types for use with ROSA. Availability is based on the account's AWS.
List all of the available instance types for use with ROSA. Availability is based on the account’s AWS quota.

Syntax

```
$ rosa list instance-types [arguments]
```

Table 8.70. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--output</td>
<td>The output format. Allowed formats are json or yaml.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example

List all instance types.

```
$ rosa list instance-types
```

8.2.8.8. list kubeletconfigs

List the `KubeletConfig` objects configured on a cluster.

Syntax

```
$ rosa list kubeletconfigs --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.71. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster that the machine pools will be listed for.</td>
</tr>
</tbody>
</table>

Table 8.72. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
</tbody>
</table>

Example
List all of the **KubeletConfig** objects on a cluster named **mycluster**.

```
$ rosa list kubeletconfigs --cluster=mycluster
```

8.2.8.9. list machinepools

List the machine pools configured on a cluster.

Syntax

```
$ rosa list machinepools --cluster=<cluster_name> | <cluster_id> [arguments]
```

<table>
<thead>
<tr>
<th>Table 8.73. Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
</tr>
<tr>
<td>--cluster</td>
</tr>
</tbody>
</table>

| Table 8.74. Optional arguments inherited from parent commands |
|-----------------|----------------------------------|
| **Option** | **Definition** |
| --help | Shows help for this command. |
| --debug | Enables debug mode. |
| --profile | Specifies an AWS profile (string) from your credentials file. |

Example

List all of the machine pools on a cluster named **mycluster**.

```
$ rosa list machinepools --cluster=mycluster
```

8.2.8.10. list regions

List all of the available regions for the current AWS account.

Syntax

```
$ rosa list regions [arguments]
```

<table>
<thead>
<tr>
<th>Table 8.75. Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
</tr>
<tr>
<td>--multi-az</td>
</tr>
</tbody>
</table>
Table 8.76. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example
List all of the available regions.

$ rosa list regions

8.2.8.11. list upgrades
List all available and scheduled cluster version upgrades.

Syntax

$ rosa list upgrades --cluster=<cluster_name> | <cluster_id> [arguments]

Table 8.77. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster that the available upgrades will be listed for.</td>
</tr>
</tbody>
</table>

Table 8.78. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example
List all of the available upgrades for a cluster named mycluster.

$ rosa list upgrades --cluster=mycluster

8.2.8.12. list users
List the cluster administrator and dedicated administrator users for a specified cluster.

Syntax

```bash
$ rosa list users --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.79. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster that the cluster administrators will be listed for.</td>
</tr>
</tbody>
</table>

Table 8.80. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example

List all of the cluster administrators and dedicated administrators for a cluster named `mycluster`.

```bash
$ rosa list users --cluster=mycluster
```

8.2.8.13. list versions

List all of the OpenShift versions that are available for creating a cluster.

Syntax

```bash
$ rosa list versions [arguments]
```

Table 8.81. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example

List all of the OpenShift versions that are available for creating a cluster.
List all of the OpenShift Container Platform versions.

$ rosa list versions

8.2.8.14. describe admin

Show the details of a specified `cluster-admin` user and a command to log in to the cluster.

Syntax

$ rosa describe admin --cluster=<cluster_name> | <cluster_id> [arguments]

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster to which the cluster-admin belongs.</td>
</tr>
</tbody>
</table>

Example

Describe the `cluster-admin` user for a cluster named `mycluster`.

$ rosa describe admin --cluster=mycluster

8.2.8.15. describe addon

Show the details of a managed service add-on.

Syntax

$ rosa describe addon <addon_id> | <addon_name> [arguments]

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>
Example

Describe an add-on named `dbaas-operator`.

```
$ rosa describe addon dbaas-operator
```

8.2.8.16. describe break glass credential

Shows the details for a break glass credential for a specific cluster.

Syntax

```
$ rosa describe break-glass-credential --id=<break_glass_credential_id> --cluster=<cluster_name>|<cluster_id> [arguments]
```

Table 8.85. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster.</td>
</tr>
<tr>
<td>--id</td>
<td>Required: The ID (string) of the break glass credential.</td>
</tr>
<tr>
<td>--kubeconfig</td>
<td>Optional: Retrieves the kubeconfig from the break glass credential.</td>
</tr>
</tbody>
</table>

Table 8.86. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

8.2.8.17. describe cluster

Shows the details for a cluster.

Syntax

```
$ rosa describe cluster --cluster=<cluster_name> | <cluster_id> [arguments]
```
Table 8.87. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster.</td>
</tr>
</tbody>
</table>

Table 8.88. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example

Describe a cluster named mycluster.

```
$ rosa describe cluster --cluster=mycluster
```

8.2.8.18. describe kubeletconfig

Show the details of a custom KubeletConfig object.

Syntax

```
$ rosa describe kubeletconfig --cluster=<cluster_name|cluster_id> [flags]
```

Table 8.89. Flags

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c, --cluster <cluster_name></td>
<td><cluster_id></td>
</tr>
<tr>
<td>-h, --help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--name</td>
<td>Optional. Specifies the name of the KubeletConfig object to describe.</td>
</tr>
<tr>
<td>-o, --output string</td>
<td>The output format. You can specify either json or yaml.</td>
</tr>
</tbody>
</table>

8.2.8.19. describe machinepool

Describes a specific machine pool configured on a cluster.

Syntax

```
```
Table 8.90. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster.</td>
</tr>
<tr>
<td>--machinepool</td>
<td>Required: The name or ID (string) of the machinepool.</td>
</tr>
</tbody>
</table>

Table 8.91. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example

Describe a machine pool named `mymachinepool` on a cluster named `mycluster`.

```
$ rosa describe machinepool --cluster=mycluster --machinepool=mymachinepool
```

8.2.9. Revoke objects

This section describes the `revoke` commands for clusters and resources.

8.2.9.1. revoke-break-glass-credential

Revolves all break glass credentials from a specified hosted control plane cluster with external authentication enabled.

Syntax

```
$ rosa revoke break-glass-credential --cluster=<cluster_name> | <cluster_id>
```

Table 8.92. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster from which the break glass credentials will be deleted.</td>
</tr>
</tbody>
</table>
Option Definitions

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
<tr>
<td>--yes</td>
<td>Automatically answers yes to confirm the operation.</td>
</tr>
</tbody>
</table>

Example

Revoke the break glass credentials from a cluster named **mycluster**.

```
$ rosa revoke break-glass-credential --cluster=mycluster
```

8.2.10. Upgrade and delete upgrade for objects

This section describes the **upgrade** command usage for objects.

8.2.10.1. upgrade cluster

Schedule a cluster upgrade.

Syntax

```
$ rosa upgrade cluster --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.94. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster that the upgrade will be scheduled for.</td>
</tr>
<tr>
<td>--interactive</td>
<td>Enables interactive mode.</td>
</tr>
<tr>
<td>--version</td>
<td>The version (string) of OpenShift Container Platform that the cluster will be upgraded to.</td>
</tr>
<tr>
<td>--schedule-date</td>
<td>The next date (string) when the upgrade will run at the specified time. Format: yyyy-mm-dd</td>
</tr>
<tr>
<td>--schedule-time</td>
<td>The next time the upgrade will run on the specified date. Format: HH:mm</td>
</tr>
<tr>
<td>--node-drain-grace-period [1]</td>
<td>Sets a grace period (string) for how long the pod disruption budget-protected workloads are respected during upgrades. After this grace period, any workloads protected by pod disruption budgets that have not been successfully drained from a node will be forcibly evicted. Default: 1 hour</td>
</tr>
</tbody>
</table>
Upgrades the cluster's hosted control plane.

1. Classic clusters only
2. ROSA with HCP clusters only

Table 8.95. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
</table>

Examples

Interactively schedule an upgrade on a cluster named `mycluster`.

```
$ rosa upgrade cluster --cluster=mycluster --interactive
```

Schedule a cluster upgrade within the hour on a cluster named `mycluster`.

```
$ rosa upgrade cluster --cluster=mycluster --version 4.5.20
```

8.2.10.2. delete cluster upgrade

Cancel a scheduled cluster upgrade.

Syntax

```
$ rosa delete upgrade --cluster=<cluster_name> | <cluster_id>
```

Table 8.96. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster that the upgrade will be cancelled for.</td>
</tr>
</tbody>
</table>

Table 8.97. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
</tbody>
</table>
8.2.10.3. upgrade machinepool

Upgrades a specific machine pool configured on a cluster.

NOTE

The `upgrade` command for machinepools applies to ROSA with HCP clusters only.

Syntax

```bash
$ rosa upgrade machinepool --cluster=<cluster_name> <machinepool_name>
```

Table 8.98. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster.</td>
</tr>
</tbody>
</table>

Table 8.99. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example

Upgrade a machine pool on a cluster named `mycluster`.

```bash
$ rosa upgrade machinepool --cluster=mycluster
```

8.2.10.4. delete machinepool upgrade

Cancel a scheduled machinepool upgrade.

Syntax

```bash
$ rosa delete upgrade --cluster=<cluster_name> <machinepool_name>
```

Table 8.100. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster.</td>
</tr>
</tbody>
</table>
8.3. CHECKING ACCOUNT AND VERSION INFORMATION WITH THE ROSA CLI

Use the following commands to check your account and version information.

8.3.1. whoami

Display information about your AWS and Red Hat accounts by using the following command syntax:

Syntax

```
$ rosa whoami [arguments]
```

Example

```
$ rosa whoami
```

8.3.2. version

Display the version of your **rosa** CLI by using the following command syntax:

Syntax

```
```bash
$ rosa version [arguments]
```

Table 8.103. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

**Example**

```bash
$ rosa version
```

### 8.4. CHECKING LOGS WITH THE ROSA CLI

Use the following commands to check your install and uninstall logs.

#### 8.4.1. logs install

Show the cluster install logs by using the following command syntax:

**Syntax**

```bash
$ rosa logs install --cluster=<cluster_name> | <cluster_id> [arguments]
```

Table 8.104. Arguments

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>Required: The name or ID (string) of the cluster to get logs for.</td>
</tr>
<tr>
<td>--tail</td>
<td>The number (integer) of lines to get from the end of the log. Default: 2000</td>
</tr>
<tr>
<td>--watch</td>
<td>Watches for changes after getting the logs.</td>
</tr>
</tbody>
</table>

Table 8.105. Optional arguments inherited from parent commands

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>
Examples

Show the last 100 install log lines for a cluster named `mycluster`:

```bash
$ rosa logs install mycluster --tail=100
```

Show the install logs for a cluster named `mycluster`:

```bash
$ rosa logs install --cluster=mycluster
```

8.4.2. logs uninstall

Show the cluster uninstall logs by using the following command syntax:

Syntax

```bash
$ rosa logs uninstall --cluster=<cluster_name> | <cluster_id> [arguments]
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cluster</td>
<td>The name or ID (string) of the cluster to get logs for.</td>
</tr>
<tr>
<td>--tail</td>
<td>The number (integer) of lines to get from the end of the log. Default: <strong>2000</strong></td>
</tr>
<tr>
<td>--watch</td>
<td>Watches for changes after getting the logs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>Shows help for this command.</td>
</tr>
<tr>
<td>--debug</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>--profile</td>
<td>Specifies an AWS profile (string) from your credentials file.</td>
</tr>
</tbody>
</table>

Example

Show the last 100 uninstall logs for a cluster named `mycluster`:

```bash
$ rosa logs uninstall --cluster=mycluster --tail=100
```

8.5. LEAST PRIVILEGE PERMISSIONS FOR ROSA CLI COMMANDS

You can create roles with permissions that adhere to the principal of least privilege, in which the users assigned the roles have no other permissions assigned to them outside the scope of the specific action they need to perform. These policies contain only the minimum required permissions needed to perform
specific actions by using the Red Hat OpenShift Service on AWS (ROSA) command line interface (CLI).

**IMPORTANT**

Although the policies and commands presented in this topic will work in conjunction with one another, you might have other restrictions within your AWS environment that make the policies for these commands insufficient for your specific needs. Red Hat provides these examples as a baseline, assuming no other AWS Identity and Access Management (IAM) restrictions are present.

**NOTE**

The examples listed cover several of the most common ROSA CLI commands. For more information regarding ROSA CLI commands, see Common commands and arguments.

For more information about configuring permissions, policies, and roles in the AWS console, see AWS Identity and Access Management in the AWS documentation.

8.5.1. Least privilege permissions for common ROSA CLI commands

The following required minimum permissions for the listed ROSA CLI commands are applicable for hosted control plane (HCP) and Classic clusters.

8.5.1.1. Create a managed OpenID Connect (OIDC) provider

Run the following command with the specified permissions to create your managed OIDC provider by using auto mode.

**Input**

```
$ rosa create oidc-config --mode auto
```

**Policy**

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateOidcConfig",
 "Effect": "Allow",
 "Action": [
 "iam:TagOpenIDConnectProvider",
 "iam:CreateOpenIDConnectProvider"
],
 "Resource": "*"
 }
]
}
```

8.5.1.2. Create an unmanaged OpenID Connect provider

Run the following command with the specified permissions to create your unmanaged OIDC provider by using auto mode.
8.5.1.3. List your account roles

Run the following command with the specified permissions to list your account roles.

Input

```bash
$ rosa list account-roles
```

Policy

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListAccountRoles",
 "Effect": "Allow",
 "Action": [
 "iam:ListRoleTags",
 "iam:ListRoles"
],
 "Resource": "*
 }
]
}
```
8.5.1.4. List your Operator roles

Run the following command with the specified permissions to list your Operator roles.

**Input**

```
$ rosa list operator-roles
```

**Policy**

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListOperatorRoles",
 "Effect": "Allow",
 "Action": [
 "iam:ListRoleTags",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "iam:ListPolicyTags"
],
 "Resource": "*"
 }
]
}
```

8.5.1.5. List your OIDC providers

Run the following command with the specified permissions to list your OIDC providers.

**Input**

```
$ rosa list oidc-providers
```

**Policy**

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListOidcProviders",
 "Effect": "Allow",
 "Action": [
 "iam:ListOpenIDConnectProviders",
 "iam:ListOpenIDConnectProviderTags"
],
 "Resource": "*"
 }
]
}
```
8.5.1.6. Verify your quota

Run the following command with the specified permissions to verify your quota.

Input

```bash
$ rosa verify quota
```

Policy

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VerifyQuota",
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:DescribeAccountLimits",
 "servicequotas:ListServiceQuotas"
],
 "Resource": "*"
 }
]
}
```

8.5.1.7. Delete your managed OIDC configuration

Run the following command with the specified permissions to delete your managed OIDC configuration by using `auto` mode.

Input

```bash
$ rosa delete oidc-config --mode auto
```

Policy

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DeleteOidcConfig",
 "Effect": "Allow",
 "Action": [
 "iam:ListOpenIDConnectProviders",
 "iam:DeleteOpenIDConnectProvider"
],
 "Resource": "*"
 }
]
}
```
8.5.1.8. Delete your unmanaged OIDC configuration

Run the following command with the specified permissions to delete your unmanaged OIDC configuration by using `auto` mode.

**Input**

```
$ rosa delete oidc-config --mode auto
```

**Policy**

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "iam:ListOpenIDConnectProviders",
 "iam:DeleteOpenIDConnectProvider",
 "secretsmanager:DeleteSecret",
 "s3:ListBucket",
 "s3:DeleteObject",
 "s3:DeleteBucket"
],
 "Resource": "*"
 }
]
}
```

8.5.2. Least privilege permissions for common ROSA with HCP CLI commands

The following examples show the least privilege permissions needed for the most common ROSA CLI commands when building ROSA with hosted control plane (HCP) clusters.

8.5.2.1. Create a cluster

Run the following command with the specified permissions to create ROSA with HCP clusters.

**Input**

```
$ rosa create cluster --hosted-cp
```

**Policy**

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "iam:ListOpenIDConnectProviders",
 "iam:DeleteOpenIDConnectProvider",
 "secretsmanager:DeleteSecret",
 "s3:ListBucket",
 "s3:DeleteObject",
 "s3:DeleteBucket"
],
 "Resource": "*"
 }
]
}
```
8.5.2.2. Create your account roles and Operator roles

Run the following command with the specified permissions to create account and Operator roles by using auto mode.

Input

```
$ rosa create account-roles --mode auto --hosted-cp
```

Policy

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateAccountRoles",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:ListRoleTags",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "ec2:DescribeSubnets",
 "ec2:DescribeRouteTables",
 "ec2:DescribeAvailabilityZones"
],
 "Resource": "*"
 }
]
}
```

8.5.2.3. Delete your account roles

Run the following command with the specified permissions to delete the account roles in auto mode.

Input

```
```

Red Hat OpenShift Service on AWS 4 CLI tools
200
Policy

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DeleteAccountRoles",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:ListInstanceProfilesForRole",
 "iam:DetachRolePolicy",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "iam:DeleteRole",
 "iam:ListRolePolicies"
],
 "Resource": "*"
 }
]
}
```

8.5.2.4. Delete your Operator roles

Run the following command with the specified permissions to delete your Operator roles in auto mode.

Input

```
$ rosa delete operator-roles --mode auto
```

Policy

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DeleteOperatorRoles",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:DetachRolePolicy",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "iam:DeleteRole"
],
 "Resource": "*"
 }
]
}
```

8.5.3. Least privilege permissions for common ROSA Classic CLI commands
The following examples show the least privilege permissions needed for the most common ROSA CLI commands when building ROSA Classic clusters.

### 8.5.3.1. Create a cluster

Run the following command with the specified permissions to create a ROSA Classic cluster with least privilege permissions.

**Input**

```bash
$ rosa create cluster
```

**Policy**

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateCluster",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:ListRoleTags",
 "iam:ListRoles"
],
 "Resource": "*"
 }
]
}
```

### 8.5.3.2. Create account roles and Operator roles

Run the following command with the specified permissions to create account and Operator roles in `auto` mode.

**Input**

```bash
$ rosa create account-roles --mode auto --classic
```

**Policy**

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateAccountOperatorRoles",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:UpdateAssumeRolePolicy",
 "iam:ListRoleTags",
 "iam:GetPolicy",
 "iam:TagRole"
],
 "Resource": "*"
 }
]
}
```
8.5.3.3. Delete your account roles

Run the following command with the specified permissions to delete the account roles in auto mode.

**Input**

```bash
$ rosa delete account-roles --mode auto
```

**Policy**

```yaml
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:ListInstanceProfilesForRole",
 "iam:DetachRolePolicy",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "iam:DeleteRole",
 "iam:ListRolePolicies",
 "iam:GetPolicy",
 "iam:ListPolicyVersions",
 "iam:DeletePolicy"
],
 "Resource": "*"
 }
]
}
```

8.5.3.4. Delete your Operator roles

Run the following command with the specified permissions to delete the Operator roles in auto mode.

**Input**

```bash
$ rosa delete operator-roles --mode auto
```
**Policy**

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:ListInstanceProfilesForRole",
 "iam:DetachRolePolicy",
 "iam:ListAttachedRolePolicies",
 "iam:ListRoles",
 "iam:DeleteRole",
 "iam:ListRolePolicies",
 "iam:GetPolicy",
 "iam:ListPolicyVersions",
 "iam:DeletePolicy"
],
 "Resource": "*"
 }
],
 "Resource": "*"
}
```

### 8.5.4. ROSA CLI commands with no required permissions

The following ROSA CLI commands do not require permissions or policies to run. Instead, they require an access key and configured secret key or an attached role.

**Table 8.108. Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>list cluster</td>
<td>$ rosa list cluster</td>
</tr>
<tr>
<td>list versions</td>
<td>$ rosa list versions</td>
</tr>
<tr>
<td>describe cluster</td>
<td>$ rosa describe cluster -c &lt;cluster name&gt;</td>
</tr>
<tr>
<td>create admin</td>
<td>$ rosa create admin -c &lt;cluster name&gt;</td>
</tr>
<tr>
<td>list users</td>
<td>$ rosa list users -c &lt;cluster-name&gt;</td>
</tr>
<tr>
<td>list upgrades</td>
<td>$ rosa list upgrades</td>
</tr>
<tr>
<td>list OIDC configuration</td>
<td>$ rosa list oidc-config</td>
</tr>
<tr>
<td>list identity providers</td>
<td>$ rosa list idps -c &lt;cluster-name&gt;</td>
</tr>
<tr>
<td>list ingresses</td>
<td>$ rosa list ingresses -c &lt;cluster-name&gt;</td>
</tr>
</tbody>
</table>
8.5.5. Additional resources

- For more information about AWS roles, see IAM roles.
- For more information about AWS policies and permissions, see Policies and permissions in IAM.