Red Hat OpenShift Service on AWS 4

Backing up and restoring applications

Backing up and restoring of applications data
Backing up and restoring of applications data
Abstract

This document provides information about backing up applications.
Table of Contents

CHAPTER 1. BACKING UP APPLICATIONS ... 3
 1.1. PREPARING AWS CREDENTIALS .. 3
 1.2. INSTALLING THE OADP OPERATOR AND PROVIDING THE IAM ROLE 6
 1.3. KNOWN ISSUES .. 8
 1.4. ADDITIONAL RESOURCES ... 8
CHAPTER 1. BACKING UP APPLICATIONS

You can employ OpenShift API for Data Protection (OADP) with Red Hat OpenShift Service on AWS (ROSA) clusters to backup and restore application data. Before installing OADP, you must set up role and policy credentials for OADP so that it can use the AWS API.

This is a two stage process:

1. Prepare AWS credentials.
2. Install the OADP Operator and provide it with the IAM role.

1.1. PREPARING AWS CREDENTIALS

An AWS account must be ready to accept an OADP installation.

Procedure

1. Create the following environment variables by running the following commands:

   ```
   $ export CLUSTER_NAME=my-cluster
   export ROSA_CLUSTER_ID-$(rosa describe cluster -c ${CLUSTER_NAME} --output json | jq -r .id)
   export REGION=$(rosa describe cluster -c ${CLUSTER_NAME} --output json | jq -r .region.id)
   export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o jsonpath='{.spec.serviceAccountIssuer}' | sed 's|^https://||')
   export AWS_ACCOUNT_ID='aws sts get-caller-identity --query Account --output text'
   export CLUSTER_VERSION='rosa describe cluster -c ${CLUSTER_NAME} -o json | jq -r .version.raw_id | but -f -2 -d '.'
   export ROLE_NAME="${CLUSTER_NAME}-openshift-oadp-aws-cloud-credentials"
   export SCRATCH="/tmp/${CLUSTER_NAME}/oadp"
   mkdir -p ${SCRATCH}
   echo "Cluster ID: ${ROSA_CLUSTER_ID}, Region: ${REGION}, OIDC Endpoint: ${OIDC_ENDPOINT}, AWS Account ID: ${AWS_ACCOUNT_ID}""
   ```

 Replace my-cluster with your ROSA cluster name.

2. On the AWS account, create an IAM policy to allow access to S3.
 a. Check to see if the policy exists by running the following command:

   ```
   $ POLICY_ARN=$(aws iam list-policies --query "Policies[? PolicyName=='RosaOadpVer1'].ARN")
   ```

 Replace RosaOadp with your policy name.
b. Use the following command to create the policy JSON file and then create the policy in ROSA.

```
NOTE

If the policy ARN is not found, the command will create the policy. If the policy ARN already exists, the if statement will intentionally skip the policy creation.

$ if [[ -z "${POLICY_ARN}" ]]; then
  cat << EOF > ${SCRATCH}/policy.json
  {
    "Version": "2012-10-17",
    "Statement": [
      {
        "Effect": "Allow",
        "Action": [
          "s3:CreateBucket", $ echo ${POLICY_ARN}
          "s3:DeleteBucket", cd openshift-docs
          "s3:PutBucketTegging",
          "s3:GetBucketTegging",
          "s3:PutEncryptionConfiguration",
          "s3:GetEncryptionConfiguration",
          "s3:PutLifecycleConfiguration",
          "s3:GetLifecycleConfiguration",
          "s3:GetBucketLocation",
          "s3:ListBucket",
          "s3:GetObject",
          "s3:PutObject",
          "s3:DeleteObject",
          "s3:ListBucketMultipartUpLoads",
          "s3:AbortMultipartUpLoads",
          "s3:ListMultipartUpLoadParts",
          "s3:DescribeSnapshots",
          "ec2:DescribeVolumes",
          "ec2:DescribeVolumeAttribute",
          "ec2:DescribeVolumesModifications",
          "ec2:DescribeVolumeStatus",
          "ec2:CreateTags",
          "ec2:CreateVolume",
          "ec2:CreateSnapshot",
          "ec2:DeleteSnapshot",
        ]
        "Resource": "*"
      }
    ]
  }
EOF
  POLICY_ARN=$(aws iam create-policy --policy-name "RosaOadpVer1" \
  --policy-document file:///${SCRATCH}/policy.json --query Policy.Arn \
  --tags Key=rosa_openshift_version,Value=${CLUSTER_VERSION} Key=rosa_role_prefix,Value=ManagedOpenShift Key=operator_namespace,Value=openshift-oadp Key=operator_name,Value=openshift-oadp \
  --output text)
fi
```
SCRATCH is a name for a temporary directory created for the environment variables.

c. View the policy ARN by running the following command:

```bash
$ echo ${POLICY_ARN}
```

3. Create an IAM role trust policy for the cluster:

 a. Create the trust policy file by running the following command:

```bash
$ cat <<EOF > ${SCRATCH}/trust-policy.json
{
  "Version": "2012-10-17",
  "Statement": [
    "Effect": "Allow",
    "Principal": {
      "Federated": "arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDC_ENDPOINT}";
    },
    "Action": "sts:AssumeRoleWithWebIdentity",
    "Condition": {
      "StringEquals": {
        "${OIDC_ENDPOINT}:sub": [
          "system:serviceaccount:openshift-adp:velero:
        ]
      }
    }
  ]
}
EOF
```

 b. Create the role by running the following command:

```bash
$ ROLE_ARN=$(aws iam create-role --role-name \\
"${ROLE_NAME}" \\
--assume-role-policy-document file://${SCRATCH}/trust-policy.json \\
--tags Key+rosa_cluster_id,Value=${ROSA_CLUSTER_ID} \\
Key=rosa_openshift_version,Value=${CLUSTER_VERSION} \\
Key=rosa_role_prefix,Value=ManagedOpenShift \\
Key=operator_namespace,Value=openshift-adp \\
Key=operator_name,Value=openshift-oadp \\
--query Role.Arn --output text)
```

 c. View the role ARN by running the following command:

```bash
$ echo ${ROLE_ARN}
```

4. Attach the IAM policy to the IAM role by running the following command:

```bash
$ aws iam attach-role-policy --role-name "${ROLE_NAME}" \\
--policy-arn ${POLICY_ARN}
```

Next steps
1.2. INSTALLING THE OADP OPERATOR AND PROVIDING THE IAM ROLE

AWS Security Token Service (AWS STS) is a global web service that provides short-term credentials for IAM or federated users. Red Hat OpenShift Service on AWS (ROSA) with STS is the recommended credential mode for ROSA clusters. This document describes how to install OpenShift API for Data Protection (OADP) on (ROSA) with AWS STS.

IMPORTANT

Restic is not supported in the OADP on ROSA with AWS STS environment. Ensure the Restic service is disabled. Use native snapshots to backup volumes. See Known Issues for more information.

Prerequisites

- A ROSA OpenShift Cluster with the required access and tokens. For instructions, see the procedure in Preparing AWS credentials.

Procedure

1. Create an Openshift secret from your AWS token file by entering the following commands.

 a. Create the credentials file:

      ```
      $ cat <<EOF > ${SCRATCH}/credentials
      [default]
      role_arn = ${ROLE_ARN}
      web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
      EOF
      
      $ oc -n openshift-adp create secret generic cloud-credentials --from-file=${SCRATCH}/credentials
      ```

 b. Create the OpenShift secret:

      ```
      $ cat << EOF | oc create -f -
      apiVersion: oadp.openshift.io/v1alpha1
      kind: CloudStorage
      metadata:
      name: ${CLUSTER_NAME}-oadp
      namespace: openshift-adp
      spec:
      EOF
      ```

2. Install the OADP Operator.

 a. In the Red Hat OpenShift Service on AWS web console, navigate to Operators → OperatorHub.

 b. Search for the OADP Operator, then click Install.

3. Create AWS cloud storage using your AWS credentials:

   ```
   $ cat << EOF | oc create -f -
   apiVersion: oadp.openshift.io/v1alpha1
   kind: CloudStorage
   metadata:
   name: ${CLUSTER_NAME}-oadp
   namespace: openshift-adp
   spec:
   EOF
   ```
Create the DataProtectionApplication resource, which is used to configure the connection to the storage where the backups and volume snapshots will be stored:

```yaml
$ cat << EOF | oc create -f -
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: ${CLUSTER_NAME}-dpa
  namespace: openshift-adp
spec:
  backupLocations:
    - bucket:
        cloudStorageRef:
          name: ${CLUSTER_NAME}-oadp
        credential:
          key: credentials
          name: cloud-credentials
          default: true
        config:
          region: ${REGION}
  configuration:
    velero:
      defaultPlugins:
        - openshift
        - aws
      restic:
        enable: false
    snapshotLocations:
      - velero:
          config:
            credentialsFile: /tmp/credentials/openshift-adp/cloud-credentials-credentials
            enableSharedConfig: "true"
            profile: default
            region: ${REGION}
            provider: aws
EOF
```

4. Create the DataProtectionApplication resource, which is used to configure the connection to the storage where the backups and volume snapshots will be stored:

The credentialsFile is the mounted location of the bucket credential on the pod.

The enableSharedConfig allows the snapshotLocations to share or reuse the credential defined for the bucket.

Assume your Velero default for your profile: default.

Specify region as your AWS region. This must be the same as the cluster region.
NOTE

The `enable` parameter of `restic` is set to `false` in this configuration because OADP does not support Restic in ROSA environments.

You are now ready to backup and restore OpenShift applications, as described in the OADP documentation.

Additional resources

- Preparing AWS credentials

1.3. KNOWN ISSUES

Restic is not supported or recommended

- CloudStorage: openshift-adp-controller-manager crashloop seg fault with Restic enabled
- Cloudstorage API: CSI Backup of an app with internal images partially fails with plugin panicked error
- (Affects OADP 1.1.x only): CloudStorage: bucket is removed on CS CR delete, although it doesn’t have "oadp.openshift.io/cloudstorage-delete": "true"

1.4. ADDITIONAL RESOURCES

- Understanding ROSA with STS
- Getting started with ROSA STS
- Creating a ROSA cluster with STS
- About installing OADP
- Configuring CSI volumes
- ROSA storage options