
Red Hat OpenShift Serverless 1.32

Observability

Observability features including administrator and developer metrics, cluster logging,
and tracing

Last Updated: 2024-03-18

Red Hat OpenShift Serverless 1.32 Observability

Observability features including administrator and developer metrics, cluster logging, and tracing

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides details on how to monitor the performance of Knative services. It also
details how to use OpenShift Logging and OpenShift distributed tracing with OpenShift Serverless.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ADMINISTRATOR METRICS
1.1. SERVERLESS ADMINISTRATOR METRICS

1.1.1. Prerequisites
1.2. SERVERLESS CONTROLLER METRICS
1.3. WEBHOOK METRICS
1.4. KNATIVE EVENTING METRICS

1.4.1. Broker ingress metrics
1.4.2. Broker filter metrics
1.4.3. InMemoryChannel dispatcher metrics
1.4.4. Event source metrics

1.5. KNATIVE SERVING METRICS
1.5.1. Activator metrics
1.5.2. Autoscaler metrics
1.5.3. Go runtime metrics

CHAPTER 2. DEVELOPER METRICS
2.1. SERVERLESS DEVELOPER METRICS OVERVIEW

2.1.1. Additional resources for OpenShift Container Platform
2.2. KNATIVE SERVICE METRICS EXPOSED BY DEFAULT
2.3. KNATIVE SERVICE WITH CUSTOM APPLICATION METRICS
2.4. CONFIGURATION FOR SCRAPING CUSTOM METRICS
2.5. EXAMINING METRICS OF A SERVICE

2.5.1. Queue proxy metrics
2.6. DASHBOARD FOR SERVICE METRICS

2.6.1. Examining metrics of a service in the dashboard

CHAPTER 3. CLUSTER LOGGING
3.1. USING OPENSHIFT LOGGING WITH OPENSHIFT SERVERLESS

3.1.1. About deploying the logging subsystem for Red Hat OpenShift
3.1.2. About deploying and configuring the logging subsystem for Red Hat OpenShift

3.1.2.1. Configuring and Tuning the logging subsystem
3.1.2.2. Sample modified ClusterLogging custom resource

3.2. FINDING LOGS FOR KNATIVE SERVING COMPONENTS
3.2.1. Using OpenShift Logging to find logs for Knative Serving components

3.3. FINDING LOGS FOR KNATIVE SERVING SERVICES
3.3.1. Using OpenShift Logging to find logs for services deployed with Knative Serving

CHAPTER 4. TRACING
4.1. TRACING REQUESTS

4.1.1. Distributed tracing overview
4.1.2. Additional resources for OpenShift Container Platform

4.2. USING RED HAT OPENSHIFT DISTRIBUTED TRACING
4.2.1. Using Red Hat OpenShift distributed tracing to enable distributed tracing

4.3. USING JAEGER DISTRIBUTED TRACING
4.3.1. Configuring Jaeger to enable distributed tracing

3
3
3
3
4
5
5
6
7
7
8
8
9
11

16
16
16
16
19
21
22
23
25
25

26
26
26
26
26
28
29
29
30
30

31
31
31
31
31
31

34
34

Table of Contents

1

Red Hat OpenShift Serverless 1.32 Observability

2

CHAPTER 1. ADMINISTRATOR METRICS

1.1. SERVERLESS ADMINISTRATOR METRICS

Metrics enable cluster administrators to monitor how OpenShift Serverless cluster components and
workloads are performing.

You can view different metrics for OpenShift Serverless by navigating to Dashboards in the web
console Administrator perspective.

1.1.1. Prerequisites

See the OpenShift Container Platform documentation on Managing metrics for information
about enabling metrics for your cluster.

You have access to an account with cluster administrator access (or dedicated administrator
access for OpenShift Dedicated or Red Hat OpenShift Service on AWS).

You have access to the Administrator perspective in the web console.

WARNING

If Service Mesh is enabled with mTLS, metrics for Knative Serving are disabled by
default because Service Mesh prevents Prometheus from scraping metrics.

For information about resolving this issue, see Enabling Knative Serving metrics
when using Service Mesh with mTLS.

Scraping the metrics does not affect autoscaling of a Knative service, because
scraping requests do not go through the activator. Consequently, no scraping takes
place if no pods are running.

1.2. SERVERLESS CONTROLLER METRICS

The following metrics are emitted by any component that implements a controller logic. These metrics
show details about reconciliation operations and the work queue behavior upon which reconciliation
requests are added to the work queue.

Metric name Description Type Tags Unit

work_queue_de
pth

The depth of the
work queue.

Gauge reconciler Integer (no units)

reconcile_count The number of
reconcile
operations.

Counter reconciler,
success

Integer (no units)



CHAPTER 1. ADMINISTRATOR METRICS

3

https://docs.openshift.com/container-platform/latest/monitoring/reviewing-monitoring-dashboards.html#reviewing-monitoring-dashboards-admin_reviewing-monitoring-dashboards
https://docs.openshift.com/container-platform/latest/monitoring/managing-metrics.html#managing-metrics
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.32/html-single/integrations/#serverless-ossm-enabling-serving-metrics_serverless-ossm-setup

reconcile_laten
cy

The latency of
reconcile
operations.

Histogram reconciler,
success

Milliseconds

workqueue_add
s_total

The total number
of add actions
handled by the
work queue.

Counter name Integer (no units)

workqueue_que
ue_latency_sec
onds

The length of time
an item stays in the
work queue before
being requested.

Histogram name Seconds

workqueue_retri
es_total

The total number
of retries that have
been handled by
the work queue.

Counter name Integer (no units)

workqueue_wor
k_duration_sec
onds

The length of time
it takes to process
and item from the
work queue.

Histogram name Seconds

workqueue_unfi
nished_work_s
econds

The length of time
that outstanding
work queue items
have been in
progress.

Histogram name Seconds

workqueue_lon
gest_running_p
rocessor_secon
ds

The length of time
that the longest
outstanding work
queue items has
been in progress.

Histogram name Seconds

Metric name Description Type Tags Unit

1.3. WEBHOOK METRICS

Webhook metrics report useful information about operations. For example, if a large number of
operations fail, this might indicate an issue with a user-created resource.

Metric name Description Type Tags Unit

Red Hat OpenShift Serverless 1.32 Observability

4

request_count The number of
requests that are
routed to the
webhook.

Counter admission_allo
wed,
kind_group,
kind_kind,
kind_version,
request_operati
on,
resource_group
,
resource_name
space,
resource_resou
rce,
resource_versio
n

Integer (no units)

request_latenci
es

The response time
for a webhook
request.

Histogram admission_allo
wed,
kind_group,
kind_kind,
kind_version,
request_operati
on,
resource_group
,
resource_name
space,
resource_resou
rce,
resource_versio
n

Milliseconds

Metric name Description Type Tags Unit

1.4. KNATIVE EVENTING METRICS

Cluster administrators can view the following metrics for Knative Eventing components.

By aggregating the metrics from HTTP code, events can be separated into two categories; successful
events (2xx) and failed events (5xx).

1.4.1. Broker ingress metrics

You can use the following metrics to debug the broker ingress, see how it is performing, and see which
events are being dispatched by the ingress component.

Metric name Description Type Tags Unit

CHAPTER 1. ADMINISTRATOR METRICS

5

event_count Number of events
received by a
broker.

Counter broker_name,
event_type,
namespace_na
me,
response_code,
response_code
_class,
unique_name

Integer (no units)

event_dispatch
_latencies

The time taken to
dispatch an event
to a channel.

Histogram broker_name,
event_type,
namespace_na
me,
response_code,
response_code
_class,
unique_name

Milliseconds

Metric name Description Type Tags Unit

1.4.2. Broker filter metrics

You can use the following metrics to debug broker filters, see how they are performing, and see which
events are being dispatched by the filters. You can also measure the latency of the filtering action on an
event.

Metric name Description Type Tags Unit

event_count Number of events
received by a
broker.

Counter broker_name,
container_name
, filter_type,
namespace_na
me,
response_code,
response_code
_class,
trigger_name,
unique_name

Integer (no units)

event_dispatch
_latencies

The time taken to
dispatch an event
to a channel.

Histogram broker_name,
container_name
, filter_type,
namespace_na
me,
response_code,
response_code
_class,
trigger_name,
unique_name

Milliseconds

Red Hat OpenShift Serverless 1.32 Observability

6

event_processi
ng_latencies

The time it takes to
process an event
before it is
dispatched to a
trigger subscriber.

Histogram broker_name,
container_name
, filter_type,
namespace_na
me,
trigger_name,
unique_name

Milliseconds

Metric name Description Type Tags Unit

1.4.3. InMemoryChannel dispatcher metrics

You can use the following metrics to debug InMemoryChannel channels, see how they are performing,
and see which events are being dispatched by the channels.

Metric name Description Type Tags Unit

event_count Number of events
dispatched by
InMemoryChan
nel channels.

Counter broker_name,
container_name
, filter_type,
namespace_na
me,
response_code,
response_code
_class,
trigger_name,
unique_name

Integer (no units)

event_dispatch
_latencies

The time taken to
dispatch an event
from an
InMemoryChan
nel channel.

Histogram broker_name,
container_name
, filter_type,
namespace_na
me,
response_code,
response_code
_class,
trigger_name,
unique_name

Milliseconds

1.4.4. Event source metrics

You can use the following metrics to verify that events have been delivered from the event source to
the connected event sink.

Metric name Description Type Tags Unit

CHAPTER 1. ADMINISTRATOR METRICS

7

event_count Number of events
sent by the event
source.

Counter broker_name,
container_name
, filter_type,
namespace_na
me,
response_code,
response_code
_class,
trigger_name,
unique_name

Integer (no units)

retry_event_cou
nt

Number of retried
events sent by the
event source after
initially failing to
be delivered.

Counter event_source,
event_type,
name,
namespace_na
me,
resource_group
,
response_code,
response_code
_class,
response_error,
response_timeo
ut

Integer (no units)

Metric name Description Type Tags Unit

1.5. KNATIVE SERVING METRICS

Cluster administrators can view the following metrics for Knative Serving components.

1.5.1. Activator metrics

You can use the following metrics to understand how applications respond when traffic passes through
the activator.

Metric name Description Type Tags Unit

request_concur
rency

The number of
concurrent
requests that are
routed to the
activator, or
average
concurrency over a
reporting period.

Gauge configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
revision_name,
service_name

Integer (no units)

Red Hat OpenShift Serverless 1.32 Observability

8

request_count The number of
requests that are
routed to
activator. These
are requests that
have been fulfilled
from the activator
handler.

Counter configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name,

Integer (no units)

request_latenci
es

The response time
in milliseconds for
a fulfilled, routed
request.

Histogram configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name

Milliseconds

Metric name Description Type Tags Unit

1.5.2. Autoscaler metrics

The autoscaler component exposes a number of metrics related to autoscaler behavior for each
revision. For example, at any given time, you can monitor the targeted number of pods the autoscaler
tries to allocate for a service, the average number of requests per second during the stable window, or
whether the autoscaler is in panic mode if you are using the Knative pod autoscaler (KPA).

Metric name Description Type Tags Unit

desired_pods The number of
pods the
autoscaler tries to
allocate for a
service.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

excess_burst_c
apacity

The excess burst
capacity served
over the stable
window.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

CHAPTER 1. ADMINISTRATOR METRICS

9

stable_request_
concurrency

The average
number of
requests for each
observed pod over
the stable window.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

panic_request_
concurrency

The average
number of
requests for each
observed pod over
the panic window.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

target_concurre
ncy_per_pod

The number of
concurrent
requests that the
autoscaler tries to
send to each pod.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

stable_requests
_per_second

The average
number of
requests-per-
second for each
observed pod over
the stable window.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

panic_requests
_per_second

The average
number of
requests-per-
second for each
observed pod over
the panic window.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

target_requests
_per_second

The number of
requests-per-
second that the
autoscaler targets
for each pod.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

panic_mode This value is 1 if
the autoscaler is in
panic mode, or 0 if
the autoscaler is
not in panic mode.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

Metric name Description Type Tags Unit

Red Hat OpenShift Serverless 1.32 Observability

10

requested_pods The number of
pods that the
autoscaler has
requested from
the Kubernetes
cluster.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

actual_pods The number of
pods that are
allocated and
currently have a
ready state.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

not_ready_pods The number of
pods that have a
not ready state.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

pending_pods The number of
pods that are
currently pending.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

terminating_po
ds

The number of
pods that are
currently
terminating.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

Metric name Description Type Tags Unit

1.5.3. Go runtime metrics

Each Knative Serving control plane process emits a number of Go runtime memory statistics
(MemStats).

NOTE

The name tag for each metric is an empty tag.

CHAPTER 1. ADMINISTRATOR METRICS

11

https://golang.org/pkg/runtime/#MemStats

Metric name Description Type Tags Unit

go_alloc The number of
bytes of allocated
heap objects. This
metric is the same
as heap_alloc.

Gauge name Integer (no units)

go_total_alloc The cumulative
bytes allocated for
heap objects.

Gauge name Integer (no units)

go_sys The total bytes of
memory obtained
from the operating
system.

Gauge name Integer (no units)

go_lookups The number of
pointer lookups
performed by the
runtime.

Gauge name Integer (no units)

go_mallocs The cumulative
count of heap
objects allocated.

Gauge name Integer (no units)

go_frees The cumulative
count of heap
objects that have
been freed.

Gauge name Integer (no units)

go_heap_alloc The number of
bytes of allocated
heap objects.

Gauge name Integer (no units)

go_heap_sys The number of
bytes of heap
memory obtained
from the operating
system.

Gauge name Integer (no units)

go_heap_idle The number of
bytes in idle,
unused spans.

Gauge name Integer (no units)

go_heap_in_us
e

The number of
bytes in spans that
are currently in
use.

Gauge name Integer (no units)

Red Hat OpenShift Serverless 1.32 Observability

12

go_heap_releas
ed

The number of
bytes of physical
memory returned
to the operating
system.

Gauge name Integer (no units)

go_heap_object
s

The number of
allocated heap
objects.

Gauge name Integer (no units)

go_stack_in_us
e

The number of
bytes in stack
spans that are
currently in use.

Gauge name Integer (no units)

go_stack_sys The number of
bytes of stack
memory obtained
from the operating
system.

Gauge name Integer (no units)

go_mspan_in_u
se

The number of
bytes of allocated
mspan structures.

Gauge name Integer (no units)

go_mspan_sys The number of
bytes of memory
obtained from the
operating system
for mspan
structures.

Gauge name Integer (no units)

go_mcache_in_
use

The number of
bytes of allocated
mcache
structures.

Gauge name Integer (no units)

go_mcache_sys The number of
bytes of memory
obtained from the
operating system
for mcache
structures.

Gauge name Integer (no units)

go_bucket_has
h_sys

The number of
bytes of memory
in profiling bucket
hash tables.

Gauge name Integer (no units)

Metric name Description Type Tags Unit

CHAPTER 1. ADMINISTRATOR METRICS

13

go_gc_sys The number of
bytes of memory
in garbage
collection
metadata.

Gauge name Integer (no units)

go_other_sys The number of
bytes of memory
in miscellaneous,
off-heap runtime
allocations.

Gauge name Integer (no units)

go_next_gc The target heap
size of the next
garbage collection
cycle.

Gauge name Integer (no units)

go_last_gc The time that the
last garbage
collection was
completed in
Epoch or Unix
time.

Gauge name Nanoseconds

go_total_gc_pa
use_ns

The cumulative
time in garbage
collection stop-
the-world pauses
since the program
started.

Gauge name Nanoseconds

go_num_gc The number of
completed
garbage collection
cycles.

Gauge name Integer (no units)

go_num_forced
_gc

The number of
garbage collection
cycles that were
forced due to an
application calling
the garbage
collection function.

Gauge name Integer (no units)

Metric name Description Type Tags Unit

Red Hat OpenShift Serverless 1.32 Observability

14

https://en.wikipedia.org/wiki/Unix_time

go_gc_cpu_frac
tion

The fraction of the
available CPU time
of the program
that has been used
by the garbage
collector since the
program started.

Gauge name Integer (no units)

Metric name Description Type Tags Unit

CHAPTER 1. ADMINISTRATOR METRICS

15

CHAPTER 2. DEVELOPER METRICS

2.1. SERVERLESS DEVELOPER METRICS OVERVIEW

Metrics enable developers to monitor how Knative services are performing. You can use the OpenShift
Container Platform monitoring stack to record and view health checks and metrics for your Knative
services.

You can view different metrics for OpenShift Serverless by navigating to Dashboards in the web
console Developer perspective.

WARNING

If Service Mesh is enabled with mTLS, metrics for Knative Serving are disabled by
default because Service Mesh prevents Prometheus from scraping metrics.

For information about resolving this issue, see Enabling Knative Serving metrics
when using Service Mesh with mTLS.

Scraping the metrics does not affect autoscaling of a Knative service, because
scraping requests do not go through the activator. Consequently, no scraping takes
place if no pods are running.

2.1.1. Additional resources for OpenShift Container Platform

Monitoring overview

Enabling monitoring for user-defined projects

Specifying how a service is monitored

2.2. KNATIVE SERVICE METRICS EXPOSED BY DEFAULT

Table 2.1. Metrics exposed by default for each Knative service on port 9090

Metric name, unit, and type Description Metric tags

queue_requests_per_second

Metric unit: dimensionless

Metric type: gauge

Number of requests per second
that hit the queue proxy.

Formula: stats.RequestCount /
r.reportingPeriodSeconds

stats.RequestCount is
calculated directly from the
networking pkg stats for the
given reporting duration.

destination_configuration="event
-display",
destination_namespace="pingsou
rce1", destination_pod="event-
display-00001-deployment-
6b455479cb-75p6w",
destination_revision="event-
display-00001"



Red Hat OpenShift Serverless 1.32 Observability

16

https://docs.openshift.com/container-platform/latest/monitoring/reviewing-monitoring-dashboards.html#reviewing-monitoring-dashboards-developer_reviewing-monitoring-dashboards
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.32/html-single/integrations/#serverless-ossm-enabling-serving-metrics_serverless-ossm-setup
https://docs.openshift.com/container-platform/latest/monitoring/monitoring-overview.html#monitoring-overview
https://docs.openshift.com/container-platform/latest/monitoring/enabling-monitoring-for-user-defined-projects.html
https://docs.openshift.com/container-platform/latest/monitoring/enabling-monitoring-for-user-defined-projects.html#enabling-monitoring-for-user-defined-projects

queue_proxied_operations_p
er_second

Metric unit: dimensionless

Metric type: gauge

Number of proxied requests per
second.

Formula:
stats.ProxiedRequestCount /
r.reportingPeriodSeconds

stats.ProxiedRequestCount
is calculated directly from the
networking pkg stats for the
given reporting duration.

queue_average_concurrent_
requests

Metric unit: dimensionless

Metric type: gauge

Number of requests currently
being handled by this pod.

Average concurrency is calculated
at the networking pkg side as
follows:

When a req change
happens, the time delta
between changes is
calculated. Based on the
result, the current
concurrency number
over delta is computed
and added to the current
computed concurrency.
Additionally, a sum of
the deltas is kept.
Current concurrency
over delta is computed
as follows:

global_concurrency ×
delta

Each time a reporting is
done, the sum and
current computed
concurrency are reset.

When reporting the
average concurrency the
current computed
concurrency is divided by
the sum of deltas.

When a new request
comes in, the global
concurrency counter is
increased. When a
request is completed,
the counter is decreased.

destination_configuration="event
-display",
destination_namespace="pingsou
rce1", destination_pod="event-
display-00001-deployment-
6b455479cb-75p6w",
destination_revision="event-
display-00001"

Metric name, unit, and type Description Metric tags

CHAPTER 2. DEVELOPER METRICS

17

queue_average_proxied_con
current_requests

Metric unit: dimensionless

Metric type: gauge

Number of proxied requests
currently being handled by this
pod:

stats.AverageProxiedConcur
rency

destination_configuration="event
-display",
destination_namespace="pingsou
rce1", destination_pod="event-
display-00001-deployment-
6b455479cb-75p6w",
destination_revision="event-
display-00001"

process_uptime

Metric unit: seconds

Metric type: gauge

The number of seconds that the
process has been up.

destination_configuration="event
-display",
destination_namespace="pingsou
rce1", destination_pod="event-
display-00001-deployment-
6b455479cb-75p6w",
destination_revision="event-
display-00001"

Metric name, unit, and type Description Metric tags

Table 2.2. Metrics exposed by default for each Knative service on port 9091

Metric name, unit, and type Description Metric tags

request_count

Metric unit: dimensionless

Metric type: counter

The number of requests that are
routed to queue-proxy.

configuration_name="event-
display", container_name="queue-
proxy",
namespace_name="apiserversour
ce1", pod_name="event-display-
00001-deployment-658fd4f9cf-
qcnr5", response_code="200",
response_code_class="2xx",
revision_name="event-display-
00001", service_name="event-
display"

request_latencies

Metric unit: milliseconds

Metric type: histogram

The response time in milliseconds. configuration_name="event-
display", container_name="queue-
proxy",
namespace_name="apiserversour
ce1", pod_name="event-display-
00001-deployment-658fd4f9cf-
qcnr5", response_code="200",
response_code_class="2xx",
revision_name="event-display-
00001", service_name="event-
display"

Red Hat OpenShift Serverless 1.32 Observability

18

app_request_count

Metric unit: dimensionless

Metric type: counter

The number of requests that are
routed to user-container.

configuration_name="event-
display", container_name="queue-
proxy",
namespace_name="apiserversour
ce1", pod_name="event-display-
00001-deployment-658fd4f9cf-
qcnr5", response_code="200",
response_code_class="2xx",
revision_name="event-display-
00001", service_name="event-
display"

app_request_latencies

Metric unit: milliseconds

Metric type: histogram

The response time in milliseconds. configuration_name="event-
display", container_name="queue-
proxy",
namespace_name="apiserversour
ce1", pod_name="event-display-
00001-deployment-658fd4f9cf-
qcnr5", response_code="200",
response_code_class="2xx",
revision_name="event-display-
00001", service_name="event-
display"

queue_depth

Metric unit: dimensionless

Metric type: gauge

The current number of items in
the serving and waiting queue, or
not reported if unlimited
concurrency. breaker.inFlight is
used.

configuration_name="event-
display", container_name="queue-
proxy",
namespace_name="apiserversour
ce1", pod_name="event-display-
00001-deployment-658fd4f9cf-
qcnr5", response_code="200",
response_code_class="2xx",
revision_name="event-display-
00001", service_name="event-
display"

Metric name, unit, and type Description Metric tags

2.3. KNATIVE SERVICE WITH CUSTOM APPLICATION METRICS

You can extend the set of metrics exported by a Knative service. The exact implementation depends on
your application and the language used.

The following listing implements a sample Go application that exports the count of processed events
custom metric.

package main

import (
 "fmt"

CHAPTER 2. DEVELOPER METRICS

19

 "log"
 "net/http"
 "os"

 "github.com/prometheus/client_golang/prometheus" 1
 "github.com/prometheus/client_golang/prometheus/promauto"
 "github.com/prometheus/client_golang/prometheus/promhttp"
)

var (
 opsProcessed = promauto.NewCounter(prometheus.CounterOpts{ 2
 Name: "myapp_processed_ops_total",
 Help: "The total number of processed events",
 })
)

func handler(w http.ResponseWriter, r *http.Request) {
 log.Print("helloworld: received a request")
 target := os.Getenv("TARGET")
 if target == "" {
 target = "World"
 }
 fmt.Fprintf(w, "Hello %s!\n", target)
 opsProcessed.Inc() 3
}

func main() {
 log.Print("helloworld: starting server...")

 port := os.Getenv("PORT")
 if port == "" {
 port = "8080"
 }

 http.HandleFunc("/", handler)

 // Separate server for metrics requests
 go func() { 4
 mux := http.NewServeMux()
 server := &http.Server{
 Addr: fmt.Sprintf(":%s", "9095"),
 Handler: mux,
 }
 mux.Handle("/metrics", promhttp.Handler())
 log.Printf("prometheus: listening on port %s", 9095)
 log.Fatal(server.ListenAndServe())
 }()

 // Use same port as normal requests for metrics
 //http.Handle("/metrics", promhttp.Handler()) 5
 log.Printf("helloworld: listening on port %s", port)
 log.Fatal(http.ListenAndServe(fmt.Sprintf(":%s", port), nil))
}

Red Hat OpenShift Serverless 1.32 Observability

20

1

2

3

4

5

Including the Prometheus packages.

Defining the opsProcessed metric.

Incrementing the opsProcessed metric.

Configuring to use a separate server for metrics requests.

Configuring to use the same port as normal requests for metrics and the metrics subpath.

2.4. CONFIGURATION FOR SCRAPING CUSTOM METRICS

Custom metrics scraping is performed by an instance of Prometheus purposed for user workload
monitoring. After you enable user workload monitoring and create the application, you need a
configuration that defines how the monitoring stack will scrape the metrics.

The following sample configuration defines the ksvc for your application and configures the service
monitor. The exact configuration depends on your application and how it exports the metrics.

apiVersion: serving.knative.dev/v1 1
kind: Service
metadata:
 name: helloworld-go
spec:
 template:
 metadata:
 labels:
 app: helloworld-go
 annotations:
 spec:
 containers:
 - image: docker.io/skonto/helloworld-go:metrics
 resources:
 requests:
 cpu: "200m"
 env:
 - name: TARGET
 value: "Go Sample v1"

apiVersion: monitoring.coreos.com/v1 2
kind: ServiceMonitor
metadata:
 labels:
 name: helloworld-go-sm
spec:
 endpoints:
 - port: queue-proxy-metrics
 scheme: http
 - port: app-metrics
 scheme: http
 namespaceSelector: {}
 selector:
 matchLabels:
 name: helloworld-go-sm

CHAPTER 2. DEVELOPER METRICS

21

1

2

3

Application specification.

Configuration of which application’s metrics are scraped.

Configuration of the way metrics are scraped.

2.5. EXAMINING METRICS OF A SERVICE

After you have configured the application to export the metrics and the monitoring stack to scrape
them, you can examine the metrics in the web console.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

You have installed the OpenShift Serverless Operator and Knative Serving.

Procedure

1. Optional: Run requests against your application that you will be able to see in the metrics:

Example output

2. In the web console, navigate to the Observe → Metrics interface.

3. In the input field, enter the query for the metric you want to observe, for example:

apiVersion: v1 3
kind: Service
metadata:
 labels:
 name: helloworld-go-sm
 name: helloworld-go-sm
spec:
 ports:
 - name: queue-proxy-metrics
 port: 9091
 protocol: TCP
 targetPort: 9091
 - name: app-metrics
 port: 9095
 protocol: TCP
 targetPort: 9095
 selector:
 serving.knative.dev/service: helloworld-go
 type: ClusterIP

$ hello_route=$(oc get ksvc helloworld-go -n ns1 -o jsonpath='{.status.url}') && \
 curl $hello_route

Hello Go Sample v1!

Red Hat OpenShift Serverless 1.32 Observability

22

revision_app_request_count{namespace="ns1", job="helloworld-go-sm"}

Another example:

myapp_processed_ops_total{namespace="ns1", job="helloworld-go-sm"}

4. Observe the visualized metrics:

2.5.1. Queue proxy metrics

Each Knative service has a proxy container that proxies the connections to the application container. A
number of metrics are reported for the queue proxy performance.

You can use the following metrics to measure if requests are queued at the proxy side and the actual
delay in serving requests at the application side.

Metric name Description Type Tags Unit

CHAPTER 2. DEVELOPER METRICS

23

revision_reques
t_count

The number of
requests that are
routed to queue-
proxy pod.

Counter configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name

Integer (no units)

revision_reques
t_latencies

The response time
of revision
requests.

Histogram configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name

Milliseconds

revision_app_re
quest_count

The number of
requests that are
routed to the
user-container
pod.

Counter configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name

Integer (no units)

revision_app_re
quest_latencies

The response time
of revision app
requests.

Histogram configuration_n
ame,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name

Milliseconds

Metric name Description Type Tags Unit

Red Hat OpenShift Serverless 1.32 Observability

24

revision_queue
_depth

The current
number of items in
the serving and
waiting queues.
This metric is not
reported if
unlimited
concurrency is
configured.

Gauge configuration_n
ame, event-
display,
container_name
,
namespace_na
me, pod_name,
response_code
_class,
revision_name,
service_name

Integer (no units)

Metric name Description Type Tags Unit

2.6. DASHBOARD FOR SERVICE METRICS

You can examine the metrics using a dedicated dashboard that aggregates queue proxy metrics by
namespace.

2.6.1. Examining metrics of a service in the dashboard

Prerequisites

You have logged in to the OpenShift Container Platform web console.

You have installed the OpenShift Serverless Operator and Knative Serving.

Procedure

1. In the web console, navigate to the Observe → Metrics interface.

2. Select the Knative User Services (Queue Proxy metrics) dashboard.

3. Select the Namespace, Configuration, and Revision that correspond to your application.

4. Observe the visualized metrics:

CHAPTER 2. DEVELOPER METRICS

25

CHAPTER 3. CLUSTER LOGGING

3.1. USING OPENSHIFT LOGGING WITH OPENSHIFT SERVERLESS

3.1.1. About deploying the logging subsystem for Red Hat OpenShift

OpenShift Container Platform cluster administrators can deploy the logging subsystem using the
OpenShift Container Platform web console or CLI to install the OpenShift Elasticsearch Operator and
Red Hat OpenShift Logging Operator. When the Operators are installed, you create a ClusterLogging
custom resource (CR) to schedule logging subsystem pods and other resources necessary to support
the logging subsystem. The Operators are responsible for deploying, upgrading, and maintaining the
logging subsystem.

The ClusterLogging CR defines a complete logging subsystem environment that includes all the
components of the logging stack to collect, store and visualize logs. The Red Hat OpenShift Logging
Operator watches the logging subsystem CR and adjusts the logging deployment accordingly.

Administrators and application developers can view the logs of the projects for which they have view
access.

3.1.2. About deploying and configuring the logging subsystem for Red Hat
OpenShift

The logging subsystem is designed to be used with the default configuration, which is tuned for small to
medium sized OpenShift Container Platform clusters.

The installation instructions that follow include a sample ClusterLogging custom resource (CR), which
you can use to create a logging subsystem instance and configure your logging subsystem environment.

If you want to use the default logging subsystem install, you can use the sample CR directly.

If you want to customize your deployment, make changes to the sample CR as needed. The following
describes the configurations you can make when installing your OpenShift Logging instance or modify
after installation. See the Configuring sections for more information on working with each component,
including modifications you can make outside of the ClusterLogging custom resource.

3.1.2.1. Configuring and Tuning the logging subsystem

You can configure your logging subsystem by modifying the ClusterLogging custom resource deployed
in the openshift-logging project.

You can modify any of the following components upon install or after install:

Memory and CPU

You can adjust both the CPU and memory limits for each component by modifying the resources
block with valid memory and CPU values:

spec:
 logStore:
 elasticsearch:
 resources:
 limits:
 cpu:

Red Hat OpenShift Serverless 1.32 Observability

26

Elasticsearch storage

You can configure a persistent storage class and size for the Elasticsearch cluster using the
storageClass name and size parameters. The Red Hat OpenShift Logging Operator creates a
persistent volume claim (PVC) for each data node in the Elasticsearch cluster based on these
parameters.

This example specifies each data node in the cluster will be bound to a PVC that requests "200G" of
"gp2" storage. Each primary shard will be backed by a single replica.

NOTE

 memory: 16Gi
 requests:
 cpu: 500m
 memory: 16Gi
 type: "elasticsearch"
 collection:
 logs:
 fluentd:
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu:
 memory:
 type: "fluentd"
 visualization:
 kibana:
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu:
 memory:
 type: kibana

 spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: "gp2"
 size: "200G"

CHAPTER 3. CLUSTER LOGGING

27

NOTE

Omitting the storage block results in a deployment that includes ephemeral storage only.

Elasticsearch replication policy

You can set the policy that defines how Elasticsearch shards are replicated across data nodes in the
cluster:

FullRedundancy. The shards for each index are fully replicated to every data node.

MultipleRedundancy. The shards for each index are spread over half of the data nodes.

SingleRedundancy. A single copy of each shard. Logs are always available and recoverable
as long as at least two data nodes exist.

ZeroRedundancy. No copies of any shards. Logs may be unavailable (or lost) in the event a
node is down or fails.

3.1.2.2. Sample modified ClusterLogging custom resource

The following is an example of a ClusterLogging custom resource modified using the options previously
described.

Sample modified ClusterLogging custom resource

 spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage: {}

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
 name: "instance"
 namespace: "openshift-logging"
spec:
 managementState: "Managed"
 logStore:
 type: "elasticsearch"
 retentionPolicy:
 application:
 maxAge: 1d
 infra:
 maxAge: 7d
 audit:
 maxAge: 7d
 elasticsearch:
 nodeCount: 3
 resources:
 limits:
 cpu: 200m
 memory: 16Gi

Red Hat OpenShift Serverless 1.32 Observability

28

3.2. FINDING LOGS FOR KNATIVE SERVING COMPONENTS

You can find the logs for Knative Serving components using the following procedure.

3.2.1. Using OpenShift Logging to find logs for Knative Serving components

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Get the Kibana route:

2. Use the route’s URL to navigate to the Kibana dashboard and log in.

3. Check that the index is set to .all. If the index is not set to .all, only the OpenShift Container
Platform system logs will be listed.

4. Filter the logs by using the knative-serving namespace. Enter
kubernetes.namespace_name:knative-serving in the search box to filter results.

NOTE

 requests:
 cpu: 200m
 memory: 16Gi
 storage:
 storageClassName: "gp2"
 size: "200G"
 redundancyPolicy: "SingleRedundancy"
 visualization:
 type: "kibana"
 kibana:
 resources:
 limits:
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi
 replicas: 1
 collection:
 logs:
 type: "fluentd"
 fluentd:
 resources:
 limits:
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 1Gi

$ oc -n openshift-logging get route kibana

CHAPTER 3. CLUSTER LOGGING

29

NOTE

Knative Serving uses structured logging by default. You can enable the parsing of these
logs by customizing the OpenShift Logging Fluentd settings. This makes the logs more
searchable and enables filtering on the log level to quickly identify issues.

3.3. FINDING LOGS FOR KNATIVE SERVING SERVICES

You can find the logs for Knative Serving services using the following procedure.

3.3.1. Using OpenShift Logging to find logs for services deployed with Knative
Serving

With OpenShift Logging, the logs that your applications write to the console are collected in
Elasticsearch. The following procedure outlines how to apply these capabilities to applications deployed
by using Knative Serving.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Get the Kibana route:

2. Use the route’s URL to navigate to the Kibana dashboard and log in.

3. Check that the index is set to .all. If the index is not set to .all, only the OpenShift system logs
will be listed.

4. Filter the logs by using the knative-serving namespace. Enter a filter for the service in the
search box to filter results.

Example filter

You can also filter by using /configuration or /revision.

5. Narrow your search by using kubernetes.container_name:<user_container> to only display
the logs generated by your application. Otherwise, you will see logs from the queue-proxy.

NOTE

Use JSON-based structured logging in your application to allow for the quick filtering of
these logs in production environments.

$ oc -n openshift-logging get route kibana

kubernetes.namespace_name:default AND kubernetes.labels.serving_knative_dev\/service:
{service_name}

Red Hat OpenShift Serverless 1.32 Observability

30

CHAPTER 4. TRACING

4.1. TRACING REQUESTS

Distributed tracing records the path of a request through the various services that make up an
application. It is used to tie information about different units of work together, to understand a whole
chain of events in a distributed transaction. The units of work might be executed in different processes
or hosts.

4.1.1. Distributed tracing overview

As a service owner, you can use distributed tracing to instrument your services to gather insights into
your service architecture. You can use distributed tracing for monitoring, network profiling, and
troubleshooting the interaction between components in modern, cloud-native, microservices-based
applications.

With distributed tracing you can perform the following functions:

Monitor distributed transactions

Optimize performance and latency

Perform root cause analysis

Red Hat OpenShift distributed tracing consists of two main components:

Red Hat OpenShift distributed tracing platform - This component is based on the open
source Jaeger project.

Red Hat OpenShift distributed tracing data collection - This component is based on the open
source OpenTelemetry project.

Both of these components are based on the vendor-neutral OpenTracing APIs and instrumentation.

4.1.2. Additional resources for OpenShift Container Platform

Red Hat OpenShift distributed tracing architecture

Installing distributed tracing

4.2. USING RED HAT OPENSHIFT DISTRIBUTED TRACING

You can use Red Hat OpenShift distributed tracing with OpenShift Serverless to monitor and
troubleshoot serverless applications.

4.2.1. Using Red Hat OpenShift distributed tracing to enable distributed tracing

Red Hat OpenShift distributed tracing is made up of several components that work together to collect,
store, and display tracing data.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have not yet installed the OpenShift Serverless Operator, Knative Serving, and Knative

CHAPTER 4. TRACING

31

https://www.jaegertracing.io/
https://opentelemetry.io/
https://opentracing.io/
https://docs.openshift.com/container-platform/latest/distr_tracing/distr_tracing_arch/distr-tracing-architecture.html#distr-tracing-architecture
https://docs.openshift.com/container-platform/latest/distr_tracing/distr_tracing_install/distr-tracing-installing.html#installing-distributed-tracing

You have not yet installed the OpenShift Serverless Operator, Knative Serving, and Knative
Eventing. These must be installed after the Red Hat OpenShift distributed tracing installation.

You have installed Red Hat OpenShift distributed tracing by following the OpenShift Container
Platform "Installing distributed tracing" documentation.

You have installed the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create an OpenTelemetryCollector custom resource (CR):

Example OpenTelemetryCollector CR

2. Verify that you have two pods running in the namespace where Red Hat OpenShift distributed
tracing is installed:

Example output

3. Verify that the following headless services have been created:

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: cluster-collector
 namespace: <namespace>
spec:
 mode: deployment
 config: |
 receivers:
 zipkin:
 processors:
 exporters:
 jaeger:
 endpoint: jaeger-all-in-one-inmemory-collector-headless.tracing-system.svc:14250
 tls:
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
 logging:
 service:
 pipelines:
 traces:
 receivers: [zipkin]
 processors: []
 exporters: [jaeger, logging]

$ oc get pods -n <namespace>

NAME READY STATUS RESTARTS AGE
cluster-collector-collector-85c766b5c-b5g99 1/1 Running 0 5m56s
jaeger-all-in-one-inmemory-ccbc9df4b-ndkl5 2/2 Running 0 15m

Red Hat OpenShift Serverless 1.32 Observability

32

1

Example output

These services are used to configure Jaeger, Knative Serving, and Knative Eventing. The name
of the Jaeger service may vary.

4. Install the OpenShift Serverless Operator by following the "Installing the OpenShift Serverless
Operator" documentation.

5. Install Knative Serving by creating the following KnativeServing CR:

Example KnativeServing CR

The sample-rate defines sampling probability. Using sample-rate: "0.1" means that 1 in 10
traces are sampled.

6. Install Knative Eventing by creating the following KnativeEventing CR:

Example KnativeEventing CR

The sample-rate defines sampling probability. Using sample-rate: "0.1" means that 1 in 10

$ oc get svc -n <namespace> | grep headless

cluster-collector-collector-headless ClusterIP None <none> 9411/TCP
7m28s
jaeger-all-in-one-inmemory-collector-headless ClusterIP None <none>
9411/TCP,14250/TCP,14267/TCP,14268/TCP 16m

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 config:
 tracing:
 backend: "zipkin"
 zipkin-endpoint: "http://cluster-collector-collector-headless.tracing-
system.svc:9411/api/v2/spans"
 debug: "false"
 sample-rate: "0.1" 1

apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 config:
 tracing:
 backend: "zipkin"
 zipkin-endpoint: "http://cluster-collector-collector-headless.tracing-
system.svc:9411/api/v2/spans"
 debug: "false"
 sample-rate: "0.1" 1

CHAPTER 4. TRACING

33

1 The sample-rate defines sampling probability. Using sample-rate: "0.1" means that 1 in 10
traces are sampled.

7. Create a Knative service:

Example service

8. Make some requests to the service:

Example HTTPS request

9. Get the URL for the Jaeger web console:

Example command

You can now examine traces by using the Jaeger console.

4.3. USING JAEGER DISTRIBUTED TRACING

If you do not want to install all of the components of Red Hat OpenShift distributed tracing, you can still
use distributed tracing on OpenShift Container Platform with OpenShift Serverless.

4.3.1. Configuring Jaeger to enable distributed tracing

To enable distributed tracing using Jaeger, you must install and configure Jaeger as a standalone
integration.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: helloworld-go
spec:
 template:
 metadata:
 labels:
 app: helloworld-go
 annotations:
 autoscaling.knative.dev/minScale: "1"
 autoscaling.knative.dev/target: "1"
 spec:
 containers:
 - image: quay.io/openshift-knative/helloworld:v1.2
 imagePullPolicy: Always
 resources:
 requests:
 cpu: "200m"
 env:
 - name: TARGET
 value: "Go Sample v1"

$ curl https://helloworld-go.example.com

$ oc get route jaeger-all-in-one-inmemory -o jsonpath='{.spec.host}' -n <namespace>

Red Hat OpenShift Serverless 1.32 Observability

34

1

2

3

4

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

You have installed the OpenShift Serverless Operator, Knative Serving, and Knative Eventing.

You have installed the Red Hat OpenShift distributed tracing platform Operator.

You have installed the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads.

Procedure

1. Create and apply a Jaeger custom resource (CR) that contains the following:

Jaeger CR

2. Enable tracing for Knative Serving, by editing the KnativeServing CR and adding a YAML
configuration for tracing:

Tracing YAML example for Serving

The sample-rate defines sampling probability. Using sample-rate: "0.1" means that 1 in 10
traces are sampled.

backend must be set to zipkin.

The zipkin-endpoint must point to your jaeger-collector service endpoint. To get this
endpoint, substitute the namespace where the Jaeger CR is applied.

Debugging should be set to false. Enabling debug mode by setting debug: "true" allows
all spans to be sent to the server, bypassing sampling.

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger
 namespace: default

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 config:
 tracing:
 sample-rate: "0.1" 1
 backend: zipkin 2
 zipkin-endpoint: "http://jaeger-collector.default.svc.cluster.local:9411/api/v2/spans" 3
 debug: "false" 4

CHAPTER 4. TRACING

35

1

2

3

4

3. Enable tracing for Knative Eventing by editing the KnativeEventing CR:

Tracing YAML example for Eventing

The sample-rate defines sampling probability. Using sample-rate: "0.1" means that 1 in 10
traces are sampled.

Set backend to zipkin.

Point the zipkin-endpoint to your jaeger-collector service endpoint. To get this endpoint,
substitute the namespace where the Jaeger CR is applied.

Debugging should be set to false. Enabling debug mode by setting debug: "true" allows
all spans to be sent to the server, bypassing sampling.

Verification

You can access the Jaeger web console to see tracing data, by using the jaeger route.

1. Get the jaeger route’s hostname by entering the following command:

Example output

2. Open the endpoint address in your browser to view the console.

apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 config:
 tracing:
 sample-rate: "0.1" 1
 backend: zipkin 2
 zipkin-endpoint: "http://jaeger-collector.default.svc.cluster.local:9411/api/v2/spans" 3
 debug: "false" 4

$ oc get route jaeger -n default

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
jaeger jaeger-default.apps.example.com jaeger-query <all> reencrypt None

Red Hat OpenShift Serverless 1.32 Observability

36

	Table of Contents
	CHAPTER 1. ADMINISTRATOR METRICS
	1.1. SERVERLESS ADMINISTRATOR METRICS
	1.1.1. Prerequisites

	1.2. SERVERLESS CONTROLLER METRICS
	1.3. WEBHOOK METRICS
	1.4. KNATIVE EVENTING METRICS
	1.4.1. Broker ingress metrics
	1.4.2. Broker filter metrics
	1.4.3. InMemoryChannel dispatcher metrics
	1.4.4. Event source metrics

	1.5. KNATIVE SERVING METRICS
	1.5.1. Activator metrics
	1.5.2. Autoscaler metrics
	1.5.3. Go runtime metrics

	CHAPTER 2. DEVELOPER METRICS
	2.1. SERVERLESS DEVELOPER METRICS OVERVIEW
	2.1.1. Additional resources for OpenShift Container Platform

	2.2. KNATIVE SERVICE METRICS EXPOSED BY DEFAULT
	2.3. KNATIVE SERVICE WITH CUSTOM APPLICATION METRICS
	2.4. CONFIGURATION FOR SCRAPING CUSTOM METRICS
	2.5. EXAMINING METRICS OF A SERVICE
	2.5.1. Queue proxy metrics

	2.6. DASHBOARD FOR SERVICE METRICS
	2.6.1. Examining metrics of a service in the dashboard

	CHAPTER 3. CLUSTER LOGGING
	3.1. USING OPENSHIFT LOGGING WITH OPENSHIFT SERVERLESS
	3.1.1. About deploying the logging subsystem for Red Hat OpenShift
	3.1.2. About deploying and configuring the logging subsystem for Red Hat OpenShift
	3.1.2.1. Configuring and Tuning the logging subsystem
	3.1.2.2. Sample modified ClusterLogging custom resource

	3.2. FINDING LOGS FOR KNATIVE SERVING COMPONENTS
	3.2.1. Using OpenShift Logging to find logs for Knative Serving components

	3.3. FINDING LOGS FOR KNATIVE SERVING SERVICES
	3.3.1. Using OpenShift Logging to find logs for services deployed with Knative Serving

	CHAPTER 4. TRACING
	4.1. TRACING REQUESTS
	4.1.1. Distributed tracing overview
	4.1.2. Additional resources for OpenShift Container Platform

	4.2. USING RED HAT OPENSHIFT DISTRIBUTED TRACING
	4.2.1. Using Red Hat OpenShift distributed tracing to enable distributed tracing

	4.3. USING JAEGER DISTRIBUTED TRACING
	4.3.1. Configuring Jaeger to enable distributed tracing

