Red Hat OpenShift Serverless 1.30

Eventing

How to use event-driven architectures with OpenShift Serverless
How to use event-driven architectures with OpenShift Serverless
Abstract

This document provides information on Eventing features such as event sources and sinks, brokers, triggers, channels, and subscriptions.
Table of Contents

1. **CHAPTER 1. KNATIVE EVENTING** .. 6
 1.1. KNATIVE EVENTING USE CASES: .. 6

2. **CHAPTER 2. EVENT SOURCES** ... 7
 2.1. EVENT SOURCES ... 7
 2.2. EVENT SOURCE IN THE ADMINISTRATOR PERSPECTIVE 7
 2.2.1. Creating an event source by using the Administrator perspective 7
 2.3. CREATING AN API SERVER SOURCE .. 8
 2.3.1. Creating an API server source by using the web console 8
 2.3.2. Creating an API server source by using the Knative CLI 11
 2.3.2.1. Knative CLI sink flag ... 14
 2.3.3. Creating an API server source by using YAML files 15
 2.4. CREATING A PING SOURCE .. 19
 2.4.1. Creating a ping source by using the web console 19
 2.4.2. Creating a ping source by using the Knative CLI 22
 2.4.2.1. Knative CLI sink flag ... 23
 2.4.3. Creating a ping source by using YAML 24
 2.5. SOURCE FOR APACHE KAFKA ... 27
 2.5.1. Creating an Apache Kafka event source by using the web console 27
 2.5.2. Creating an Apache Kafka event source by using the Knative CLI 28
 2.5.2.1. Knative CLI sink flag ... 30
 2.5.3. Creating an Apache Kafka event source by using YAML 30
 2.5.4. Configuring SASL authentication for Apache Kafka sources 32
 2.6. CUSTOM EVENT SOURCES .. 33
 2.6.1. Sink binding .. 34
 2.6.1.1. Creating a sink binding by using YAML 34
 2.6.1.2. Creating a sink binding by using the Knative CLI 37
 2.6.1.2.1. Knative CLI sink flag ... 40
 2.6.1.3. Creating a sink binding by using the web console 41
 2.6.1.4. Sink binding reference ... 44
 2.6.1.4.1. Subject parameter ... 45
 2.6.1.4.2. CloudEvent overrides .. 47
 2.6.1.4.3. The include label ... 48
 2.6.1.5. Integrating Service Mesh with SinkBinding 48
 2.6.2. Container source ... 51
 2.6.2.1. Guidelines for creating a container image 51
 2.6.2.2. Creating and managing container sources by using the Knative CLI 54
 2.6.2.3. Creating a container source by using the web console 55
 2.6.2.4. Container source reference .. 56
 2.6.2.4.1. CloudEvent overrides ... 57
 2.6.2.5. Integrating Service Mesh with ContainerSource 58
 2.7. CONNECTING AN EVENT SOURCE TO AN EVENT SINK BY USING THE DEVELOPER PERSPECTIVE ... 60
 2.7.1. Connect an event source to an event sink by using the Developer perspective 60

3. **CHAPTER 3. EVENT SINKS** .. 61
 3.1. EVENT SINKS .. 61
 3.1.1. Knative CLI sink flag ... 61
 3.2. CREATING EVENT SINKS ... 61
 3.3. SINK FOR APACHE KAFKA .. 62
 3.3.1. Creating an Apache Kafka sink by using YAML 62
 3.3.2. Creating an event sink for Apache Kafka by using the OpenShift Container Platform web console 63
CHAPTER 4. BROKERS

4.1. BROKERS

4.2. BROKER TYPES

4.2.1. Default broker implementation for development purposes

4.2.2. Production-ready Knative broker implementation for Apache Kafka

4.3. CREATING BROKERS

4.3.1. Creating a broker by using the Knative CLI

4.3.2. Creating a broker by annotating a trigger

4.3.3. Creating a broker by labeling a namespace

4.3.4. Deleting a broker that was created by injection

4.3.5. Creating a broker by using the web console

4.3.6. Creating a broker by using the Administrator perspective

4.3.7. Next steps

4.3.8. Additional resources

4.4. CONFIGURING THE DEFAULT BROKER BACKING CHANNEL

4.5. CONFIGURING THE DEFAULT BROKER CLASS

4.6. KNATIVE BROKER IMPLEMENTATION FOR APACHE KAFKA

4.6.1. Creating an Apache Kafka broker when it is not configured as the default broker type

4.6.1.1. Creating an Apache Kafka broker by using YAML

4.6.1.2. Creating an Apache Kafka broker that uses an externally managed Kafka topic

4.6.1.3. Knative Broker implementation for Apache Kafka with isolated data plane

4.6.1.4. Creating a Knative broker for Apache Kafka that uses an isolated data plane

4.6.2. Configuring Apache Kafka broker settings

4.6.3. Security configuration for the Knative broker implementation for Apache Kafka

4.6.3.1. Configuring TLS authentication for Apache Kafka brokers

4.6.3.2. Configuring SASL authentication for Apache Kafka brokers

4.6.4. Additional resources

4.7. MANAGING BROKERS

4.7.1. Managing brokers using the CLI

4.7.1.1. Listing existing brokers by using the Knative CLI

4.7.1.2. Describing an existing broker by using the Knative CLI

4.7.2. Connect a broker to a sink using the Developer perspective

CHAPTER 5. TRIGGERS

5.1. TRIGGERS OVERVIEW

5.1.1. Configuring event delivery ordering for triggers

5.1.2. Next steps

5.2. CREATING TRIGGERS

5.2.1. Creating a trigger by using the Administrator perspective

5.2.2. Creating a trigger by using the Developer perspective

5.2.3. Creating a trigger by using the Knative CLI

5.3. LIST TRIGGERS FROM THE COMMAND LINE

5.3.1. Listing triggers by using the Knative CLI

5.4. DESCRIBE TRIGGERS FROM THE COMMAND LINE

5.4.1. Describing a trigger by using the Knative CLI

5.5. CONNECTING A TRIGGER TO A SINK

5.6. FILTERING TRIGGERS FROM THE COMMAND LINE

5.6.1. Filtering events with triggers by using the Knative CLI

5.7. UPDATING TRIGGERS FROM THE COMMAND LINE

5.7.1. Updating a trigger by using the Knative CLI

5.8. DELETING TRIGGERS FROM THE COMMAND LINE
CHAPTER 1. KNATIVE EVENTING

Knative Eventing on OpenShift Container Platform enables developers to use an event-driven architecture with serverless applications. An event-driven architecture is based on the concept of decoupled relationships between event producers and event consumers.

Event producers create events, and event sinks, or consumers, receive events. Knative Eventing uses standard HTTP POST requests to send and receive events between event producers and sinks. These events conform to the CloudEvents specifications, which enables creating, parsing, sending, and receiving events in any programming language.

1.1. KNATIVE EVENTING USE CASES:

Knative Eventing supports the following use cases:

Publish an event without creating a consumer
You can send events to a broker as an HTTP POST, and use binding to decouple the destination configuration from your application that produces events.

Consume an event without creating a publisher
You can use a trigger to consume events from a broker based on event attributes. The application receives events as an HTTP POST.

To enable delivery to multiple types of sinks, Knative Eventing defines the following generic interfaces that can be implemented by multiple Kubernetes resources:

Addressable resources
Able to receive and acknowledge an event delivered over HTTP to an address defined in the status.address.url field of the event. The Kubernetes Service resource also satisfies the addressable interface.

Callable resources
Able to receive an event delivered over HTTP and transform it, returning 0 or 1 new events in the HTTP response payload. These returned events may be further processed in the same way that events from an external event source are processed.
CHAPTER 2. EVENT SOURCES

2.1. EVENT SOURCES

A Knative event source can be any Kubernetes object that generates or imports cloud events, and relays those events to another endpoint, known as a sink. Sourcing events is critical to developing a distributed system that reacts to events.

You can create and manage Knative event sources by using the Developer perspective in the OpenShift Container Platform web console, the Knative (kn) CLI, or by applying YAML files.

Currently, OpenShift Serverless supports the following event source types:

API server source
Brings Kubernetes API server events into Knative. The API server source sends a new event each time a Kubernetes resource is created, updated or deleted.

Ping source
Produces events with a fixed payload on a specified cron schedule.

Kafka event source
Connects an Apache Kafka cluster to a sink as an event source.

You can also create a custom event source.

2.2. EVENT SOURCE IN THE ADMINISTRATOR PERSPECTIVE

Sourcing events is critical to developing a distributed system that reacts to events.

2.2.1. Creating an event source by using the Administrator perspective

A Knative event source can be any Kubernetes object that generates or imports cloud events, and relays those events to another endpoint, known as a sink.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have logged in to the web console and are in the Administrator perspective.
- You have cluster administrator permissions on OpenShift Container Platform, or you have cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or OpenShift Dedicated.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate to Serverless → Eventing.

2. In the Create list, select Event Source. You will be directed to the Event Sources page.

3. Select the event source type that you want to create.
2.3. CREATING AN API SERVER SOURCE

The API server source is an event source that can be used to connect an event sink, such as a Knative service, to the Kubernetes API server. The API server source watches for Kubernetes events and forwards them to the Knative Eventing broker.

2.3.1. Creating an API server source by using the web console

After Knative Eventing is installed on your cluster, you can create an API server source by using the web console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to create an event source.

Prerequisites

- You have logged in to the OpenShift Container Platform web console.
- The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have installed the OpenShift CLI (oc).

PROCEDURE

If you want to re-use an existing service account, you can modify your existing ServiceAccount resource to include the required permissions instead of creating a new resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

```yaml
apiVersion: v1
kind: ServiceAccount
metadata:
  name: events-sa
  namespace: default

---

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: event-watcher
  namespace: default

rules:
  - apiGroups:
      - ""
    resources:
      - events
      verbs:
        - get
        - list
        - watch

---
```
1. Change this namespace to the namespace that you have selected for installing the event source.

2. Apply the YAML file:

   ```bash
   $ oc apply -f <filename>
   ```

3. In the Developer perspective, navigate to +Add → Event Source. The Event Sources page is displayed.

4. Optional: If you have multiple providers for your event sources, select the required provider from the Providers list to filter the available event sources from the provider.

5. Select ApiServerSource and then click Create Event Source. The Create Event Source page is displayed.

6. Configure the ApiServerSource settings by using the Form view or YAML view:

   ```yaml
   apiVersion: rbac.authorization.k8s.io/v1
   kind: RoleBinding
   metadata:
     name: k8s-ra-event-watcher
     namespace: default
   roleRef:
     apiGroup: rbac.authorization.k8s.io
     kind: Role
     name: event-watcher
   subjects:
     - kind: ServiceAccount
       name: events-sa
       namespace: default
   ```

 NOTE

 You can switch between the Form view and YAML view. The data is persisted when switching between the views.

 a. Enter v1 as the APIVERSION and Event as the KIND.

 b. Select the Service Account Name for the service account that you created.

 c. In the Target section, select your event sink. This can be either a Resource or a URI:

 i. Select Resource to use a channel, broker, or service as an event sink for the event source.

 ii. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed to.

 7. Click Create.

Verification
After you have created the API server source, check that it is connected to the event sink by viewing it in the **Topology** view.

NOTE

If a URI sink is used, you can modify the URI by right-clicking on **URI sink → Edit URI**.

Deleting the API server source

1. Navigate to the **Topology** view.

2. Right-click the API server source and select **Delete ApiServerSource**.
2.3.2. Creating an API server source by using the Knative CLI

You can use the `kn source apiserver create` command to create an API server source by using the `kn` CLI. Using the `kn` CLI to create an API server source provides a more streamlined and intuitive user interface than modifying YAML files directly.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have installed the OpenShift CLI (`oc`).
- You have installed the Knative (`kn`) CLI.

PROCEDURE

If you want to re-use an existing service account, you can modify your existing `ServiceAccount` resource to include the required permissions instead of creating a new resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

```yaml
apiVersion: v1
kind: ServiceAccount
metadata:
  name: events-sa
  namespace: default

---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: event-watcher
  namespace: default
rules:
- apiGroups: 
  - ""
  resources:
  - events
  verbs:
  - get
  - list
  - watch

---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: k8s-ra-event-watcher
  namespace: default
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: event-watcher
  namespace: default
```

```
```
1. Change this namespace to the namespace that you have selected for installing the event source.

2. Apply the YAML file:

   ```bash
   $ oc apply -f <filename>
   ```

3. Create an API server source that has an event sink. In the following example, the sink is a broker:

   ```bash
   $ kn source apiserver create <event_source_name> --sink broker:<broker_name> --resource "event:v1" --service-account <service_account_name> --mode Resource
   ```

4. To check that the API server source is set up correctly, create a Knative service that dumps incoming messages to its log:

   ```bash
   $ kn service create event-display --image quay.io/openshift-knative/showcase
   ```

5. If you used a broker as an event sink, create a trigger to filter events from the default broker to the service:

   ```bash
   $ kn trigger create <trigger_name> --sink ksvc:event-display
   ```

6. Create events by launching a pod in the default namespace:

   ```bash
   $ oc create deployment event-origin --image quay.io/openshift-knative/showcase
   ```

7. Check that the controller is mapped correctly by inspecting the output generated by the following command:

   ```bash
   $ kn source apiserver describe <source_name>
   ```

Example output

```
Name:               mysource
Namespace:          default
Annotations:        sources.knative.dev/creator=developer,
                    sources.knative.dev/lastModifier=developer
Age:               3m
ServiceAccountName: events-sa
Mode:               Resource
Sink:
  Name:       default
  Namespace:  default
  Kind:       Broker (eventing.knative.dev/v1)
Resources:
```
Verification

To verify that the Kubernetes events were sent to Knative, look at the event-display logs or use web browser to see the events.

- To view the events in a web browser, open the link returned by the following command:

 $ kn service describe event-display -o url

Figure 2.1. Example browser page

Welcome to Serverless, Cloud-Native world!

What can I do from here?

Invoke a hello endpoint

```
$ oc send-cloudevent -t knative-hello
```

Collected CloudEvents (1)

- Alternatively, to see the logs in the terminal, view the event-display logs for the pods by entering the following command:

 $ oc logs $(oc get pod -o name | grep event-display) -c user-container

Example output

```
  cloudevents.Event
  Validation: valid
  Context Attributes,
  specversion: 1.0
  type: dev.knative.apiserver.resource.update
datacontenttype: application/json
...
```
Deleting the API server source

1. Delete the trigger:

   ```
   $ kn trigger delete <trigger_name>
   ```

2. Delete the event source:

   ```
   $ kn source apiserver delete <source_name>
   ```

3. Delete the service account, cluster role, and cluster binding:

   ```
   $ oc delete -f authentication.yaml
   ```

2.3.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are sent to from that resource by using the `--sink` flag. The sink can be any addressable or callable resource that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, `http://event-display.svc.cluster.local`, as the sink:

Example command using the sink flag

```
$ kn source binding create bind-heartbeat \  
   --namespace sinkbinding-example \  
   --subject "Job.batch/v1:app=heartbeat-cron" \  
   --sink http://event-display.svc.cluster.local \  
   --ce-override "sink=bound"
```
svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other default sink prefixes include channel, and broker.

2.3.3. Creating an API server source by using YAML files

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe event sources declaratively and in a reproducible manner. To create an API server source by using YAML, you must create a YAML file that defines an ApiServerSource object, then apply it by using the oc apply command.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have created the default broker in the same namespace as the one defined in the API server source YAML file.
- Install the OpenShift CLI (oc).

PROCEDURE

If you want to re-use an existing service account, you can modify your existing ServiceAccount resource to include the required permissions instead of creating a new resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

```yaml
apiVersion: v1
kind: ServiceAccount
metadata:
  name: events-sa
namespace: default

---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: event-watcher
namespace: default
rules:
- apiGroups: 
  - ""
  resources:
  - events
  verbs:
  - get
  - list
  - watch

---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: event-watcher
subjects:
- kind: ServiceAccount
  name: events-sa
  namespace: default
roleRef:
  kind: Role
  name: event-watcher
  namespace: default
```
1. Change this namespace to the namespace that you have selected for installing the event source.

2. Apply the YAML file:

   ```bash
   $ oc apply -f <filename>
   
   3. Create an API server source as a YAML file:

   ```yaml
 apiVersion: sources.knative.dev/v1alpha1
 kind: ApiServerSource
 metadata:
 name: testevents
 spec:
 serviceAccountName: events-sa
 mode: Resource
 resources:
 - apiVersion: v1
 kind: Event
 sink:
 ref:
 apiVersion: eventing.knative.dev/v1
 kind: Broker
 name: default

 4. Apply the `ApiServerSource` YAML file:

   ```bash
   $ oc apply -f <filename>
   
   5. To check that the API server source is set up correctly, create a Knative service as a YAML file that dumps incoming messages to its log:

   ```yaml
 apiVersion: serving.knative.dev/v1
 kind: Service
 metadata:
 name: event-display
 namespace: default
 spec:
 template:
```
Apply the Service YAML file:

```bash
$ oc apply -f <filename>
```

Create a Trigger object as a YAML file that filters events from the default broker to the service created in the previous step:

```yaml
apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: event-display-trigger
 namespace: default
spec:
 broker: default
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display
```

Apply the Trigger YAML file:

```bash
$ oc apply -f <filename>
```

Create events by launching a pod in the default namespace:

```bash
$ oc create deployment event-origin --image=quay.io/openshift-knative/showcase
```

Check that the controller is mapped correctly, by entering the following command and inspecting the output:

```bash
$ oc get apiserversource.sources.knative.dev testevents -o yaml
```

**Example output**

```yaml
apiVersion: sources.knative.dev/v1alpha1
kind: ApiServerSource
metadata:
 annotations:
 creationTimestamp: "2020-04-07T17:24:54Z"
 generation: 1
 name: testevents
 namespace: default
 resourceVersion: "62868"
 selfLink: /apis/sources.knative.dev/v1alpha1/namespaces/default/apiserversources/testevents2
 uid: 1603d863-bb06-4d1c-b371-ff80b4db99fa
spec:
 mode: Resource
```
Verification

To verify that the Kubernetes events were sent to Knative, you can look at the event-display logs or use a web browser to see the events.

- To view the events in a web browser, open the link returned by the following command:

  ```
 $ oc get ksvc event-display -o jsonpath='{.status.url}'
  ```

**Figure 2.2. Example browser page**

![Welcome to Serverless, Cloud-Native world!](https://example.com/next)

**What can I do from here?**

Invoke a hello endpoint: [Hello](https://example.com/hello)

Collected CloudEvents (1)

- To see the logs in the terminal, view the event-display logs for the pods by entering the following command:

  ```
 $ oc logs $(oc get pod -o name | grep event-display) -c user-container
  ```

**Example output**
Deleting the API server source

1. Delete the trigger:

   $ oc delete -f trigger.yaml

2. Delete the event source:

   $ oc delete -f k8s-events.yaml

3. Delete the service account, cluster role, and cluster binding:

   $ oc delete -f authentication.yaml

### 2.4. CREATING A PING SOURCE

A ping source is an event source that can be used to periodically send ping events with a constant payload to an event consumer. A ping source can be used to schedule sending events, similar to a timer.

#### 2.4.1. Creating a ping source by using the web console

After Knative Eventing is installed on your cluster, you can create a ping source by using the web console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to create an event source.
Prerequisites

- You have logged in to the OpenShift Container Platform web console.
- The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming messages to the logs of the service.

   a. In the Developer perspective, navigate to +Add → YAML.

   b. Copy the example YAML:

   ```yaml
 apiVersion: serving.knative.dev/v1
 kind: Service
 metadata:
 name: event-display
 spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/showcase
   ```

   c. Click Create.

2. Create a ping source in the same namespace as the service created in the previous step, or any other sink that you want to send events to.

   a. In the Developer perspective, navigate to +Add → Event Source. The Event Sources page is displayed.

   b. Optional: If you have multiple providers for your event sources, select the required provider from the Providers list to filter the available event sources from the provider.

   c. Select Ping Source and then click Create Event Source. The Create Event Source page is displayed.

   NOTE

   You can configure the PingSource settings by using the Form view or YAML view and can switch between the views. The data is persisted when switching between the views.

   d. Enter a value for Schedule. In this example, the value is */2 * * * *, which creates a PingSource that sends a message every two minutes.

   e. Optional: You can enter a value for Data, which is the message payload.

   f. In the Target section, select your event sink. This can be either a Resource or a URI:
Select Resource to use a channel, broker, or service as an event sink for the event source. In this example, the event-display service created in the previous step is used as the target Resource.

Select URI to specify a Uniform Resource Identifier (URI) where the events are routed to.

g. Click Create.

Verification

You can verify that the ping source was created and is connected to the sink by viewing the Topology page.

1. In the Developer perspective, navigate to Topology.

2. View the ping source and sink.

3. View the event-display service in the web browser. You should see the ping source events in the web UI.

What can I do from here?

Invoke a hello endpoint: `hello`.

Collected CloudEvents (1)

Deleting the ping source

1. Navigate to the Topology view.

2. Right-click the API server source and select Delete Ping Source.
2.4.2. Creating a ping source by using the Knative CLI

You can use the `kn source ping create` command to create a ping source by using the Knative (`kn`) CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user interface than modifying YAML files directly.

**Prerequisites**

- The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the cluster.
- You have installed the Knative (`kn`) CLI.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- Optional: If you want to use the verification steps for this procedure, install the OpenShift CLI (`oc`).

**Procedure**

1. To verify that the ping source is working, create a simple Knative service that dumps incoming messages to the service logs:

   ```bash
 $ kn service create event-display
 --image quay.io/openshift-knative/showcase
   ```

2. For each set of ping events that you want to request, create a ping source in the same namespace as the event consumer:

   ```bash
 $ kn source ping create test-ping-source
 --schedule "/2 * * * *"
 --data "{"message": "Hello world!"}"
 --sink ksvc:event-display
   ```

3. Check that the controller is mapped correctly by entering the following command and inspecting the output:

   ```bash
 $ kn source ping describe test-ping-source
   ```

**Example output**

- **Name:** test-ping-source
- **Namespace:** default
- **Annotations:** `sources.knative.dev/creator=developer`, `sources.knative.dev/lastModifier=developer`
- **Age:** 15s
- **Schedule:** `*/2 * * * *`
- **Data:** `"{"message": "Hello world!"}`

  - **Sink:**
    - **Name:** event-display
    - **Namespace:** default
    - **Resource:** Service (serving.knative.dev/v1)
Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the logs of the sink pod.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The example shown in this guide creates a ping source that sends a message every 2 minutes, so each message should be observed in a newly created pod.

1. Watch for new pods created:

   ```bash
 $ watch oc get pods
   ```

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

   ```bash
 $ oc logs $(oc get pod -o name | grep event-display) -c user-container
   ```

Example output

```yaml
cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
type: dev.knative.sources.ping
source: /apis/v1/namespaces/default/pingsources/test-ping-source
id: 99e4f4f6-08ff-4bff-acf1-47f61ded68c9
time: 2020-04-07T16:16:00.000601161Z
datacontenttype: application/json
Data,
 {
 "message": "Hello world!"
 }
```

Deleting the ping source

- Delete the ping source:

  ```bash
 $ kn delete pingsources.sources.knative.dev <ping_source_name>
  ```

2.4.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource that can receive incoming events from other resources.
The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local, as the sink:

**Example command using the sink flag**

```bash
$ kn source binding create bind-heartbeat
 --namespace sinkbinding-example
 --subject "Job:batch/v1:app=heartbeat-cron"
 --sink http://event-display.svc.cluster.local
 --ce-override "sink=bound"
```

1. `svc` in `http://event-display.svc.cluster.local` determines that the sink is a Knative service. Other default sink prefixes include `channel`, and `broker`.

### 2.4.3. Creating a ping source by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe event sources declaratively and in a reproducible manner. To create a serverless ping source by using YAML, you must create a YAML file that defines a PingSource object, then apply it by using `oc apply`.

**Example PingSource object**

```yaml
apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
 name: test-ping-source
spec:
 schedule: "*/2 * * * *" 1
 data: '{"message": "Hello world!"}’ 2
 sink: 3
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display
```

- **1** The schedule of the event specified using **CRON expression**.
- **2** The event message body expressed as a JSON encoded data string.
- **3** These are the details of the event consumer. In this example, we are using a Knative service named `event-display`.

**Prerequisites**

- The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the cluster.
- Install the OpenShift CLI (`oc`).
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming messages to the service’s logs.
   a. Create a service YAML file:

```yaml
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
template:
 spec:
 containers:
 - image: quay.io/openshift-knative/showcase
```

   b. Create the service:

   ```bash
 $ oc apply -f <filename>
   ```

2. For each set of ping events that you want to request, create a ping source in the same namespace as the event consumer.
   a. Create a YAML file for the ping source:

```yaml
apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
 name: test-ping-source
spec:
schedule: "*/2 * * * *"
data: '{"message": "Hello world!"}'
sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display
```

   b. Create the ping source:

   ```bash
 $ oc apply -f <filename>
   ```

3. Check that the controller is mapped correctly by entering the following command:

```bash
$ oc get pingsource.sources.knative.dev <ping_source_name> -oyaml
```

Example output

```yaml
apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
 annotations:
 sources.knative.dev/creator: developer
 sources.knative.dev/lastModifier: developer
```
You can verify that the Kubernetes events were sent to the Knative event sink by looking at the sink pod's logs.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The example shown in this guide creates a PingSource that sends a message every 2 minutes, so each message should be observed in a newly created pod.

1. Watch for new pods created:

   ```$ watch oc get pods```

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

   ```$ oc logs $(oc get pod -o name | grep event-display) -c user-container```

**Example output**

```bash
cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
type: dev.knative.sources.ping
source: /apis/v1/namespaces/default/pingsources/test-ping-source
id: 042ff529-240e-45ee-b40c-3a908129853e
time: 2020-04-07T16:22:00.000791674Z
datacontenttype: application/json
Data,
 {
 "message": "Hello world!"
 }
```

**Deleting the ping source**

- Delete the ping source:
2.5. SOURCE FOR APACHE KAFKA

You can create an Apache Kafka source that reads events from an Apache Kafka cluster and passes these events to a sink. You can create a Kafka source by using the OpenShift Container Platform web console, the Knative (kn) CLI, or by creating a KafkaSource object directly as a YAML file and using the OpenShift CLI (oc) to apply it.

NOTE

See the documentation for Installing Knative broker for Apache Kafka.

2.5.1. Creating an Apache Kafka event source by using the web console

After the Knative broker implementation for Apache Kafka is installed on your cluster, you can create an Apache Kafka source by using the web console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to create a Kafka source.

Prerequisites

- The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource are installed on your cluster.
- You have logged in to the web console.
- You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages you want to import.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to the +Add page and select Event Source.
2. In the Event Sources page, select Kafka Source in the Type section.
3. Configure the Kafka Source settings:
   a. Add a comma-separated list of Bootstrap Servers.
   b. Add a comma-separated list of Topics.
   c. Add a Consumer Group.
   d. Select the Service Account Name for the service account that you created.
   e. In the Target section, select your event sink. This can be either a Resource or a URI:

```
$ oc delete -f <filename>
$ oc delete -f ping-source.yaml
```
i. Select **Resource** to use a channel, broker, or service as an event sink for the event source.

ii. Select **URI** to specify a Uniform Resource Identifier (URI) where the events are routed to.

f. Enter a **Name** for the Kafka event source.

4. Click **Create**.

**Verification**

You can verify that the Kafka event source was created and is connected to the sink by viewing the **Topology** page.

1. In the **Developer** perspective, navigate to **Topology**.

2. View the Kafka event source and sink.

2.5.2. Creating an Apache Kafka event source by using the Knative CLI

You can use the **kn source kafka create** command to create a Kafka source by using the Knative (**kn**) CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user interface than modifying YAML files directly.

**Prerequisites**

- The OpenShift Serverless Operator, Knative Eventing, Knative Serving, and the **KnativeKafka** custom resource (CR) are installed on your cluster.

- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

- You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages you want to import.

- You have installed the Knative (**kn**) CLI.

- Optional: You have installed the OpenShift CLI (**oc**) if you want to use the verification steps in this procedure.
Procedure

1. To verify that the Kafka event source is working, create a Knative service that dumps incoming events into the service logs:

   ```
 $ kn service create event-display \
 --image quay.io/openshift-knative/showcase
   ```

2. Create a **KafkaSource** CR:

   ```
 $ kn source kafka create <kafka_source_name> \
 --servers <cluster_kafka_bootstrap>.kafka.svc:9092 \
 --topics <topic_name> --consumergroup my-consumer-group \
 --sink event-display
   ```

   **NOTE**
   Replace the placeholder values in this command with values for your source name, bootstrap servers, and topics.

   The **--servers**, **--topics**, and **--consumergroup** options specify the connection parameters to the Kafka cluster. The **--consumergroup** option is optional.

3. Optional: View details about the **KafkaSource** CR you created:

   ```
 $ kn source kafka describe <kafka_source_name>
   ```

   **Example output**

   ```
 Name: example-kafka-source
 Namespace: kafka
 Age: 1h
 BootstrapServers: example-cluster-kafka-bootstrap.kafka.svc:9092
 Topics: example-topic
 ConsumerGroup: example-consumer-group

 Sink:
 Name: event-display
 Namespace: default
 Resource: Service (serving.knative.dev/v1)
 Conditions:
 OK TYPE AGE REASON
 ++ Ready 1h
 ++ Deployed 1h
 ++ SinkProvided 1h
   ```

**Verification steps**

1. Trigger the Kafka instance to send a message to the topic:

   ```
 $ oc -n kafka run kafka-producer \
 -ti --image=quay.io/strimzi/kafka:latest-kafka-2.7.0 --rm=true \
   ```
Enter the message in the prompt. This command assumes that:

- The Kafka cluster is installed in the **kafka** namespace.
- The **KafkaSource** object has been configured to use the **my-topic** topic.

2. Verify that the message arrived by viewing the logs:

```bash
$ oc logs $(oc get pod -o name | grep event-display) -c user-container
```

**Example output**

```yaml
cloudEvents.Event
Validation: valid
Context Attributes,
specversion: 1.0
type: dev.knative.kafka.event
source: /apis/v1/namespaces/default/kafkasources/example-kafka-source#example-topic
subject: partition:46#0
id: partition:46/offset:0
time: 2021-03-10T11:21:49.4Z
Extensions,
traceparent: 00-161ff3815727d8755848ec01c866d1cd-7ff3916c44334678-00
Data,
Hello!
```

### 2.5.2.1. Knative CLI sink flag

When you create an event source by using the Knative (**kn**) CLI, you can specify a sink where events are sent to from that resource by using the **--sink** flag. The sink can be any addressable or callable resource that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, `http://event-display.svc.cluster.local`, as the sink:

**Example command using the sink flag**

```bash
$ kn source binding create bind-heartbeat \
--namespace sinkbinding-example \
--subject "Job:batch/v1:app=heartbeat-cron" \
--sink http://event-display.svc.cluster.local \n--ce-override "sink=bound"
```

1. **svc** in `http://event-display.svc.cluster.local` determines that the sink is a Knative service. Other default sink prefixes include **channel**, and **broker**.

### 2.5.3. Creating an Apache Kafka event source by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe applications declaratively and in a reproducible manner. To create a Kafka source by using YAML, you
must create a YAML file that defines a **KafkaSource** object, then apply it by using the `oc apply` command.

**Prerequisites**

- The OpenShift Serverless Operator, Knative Eventing, and the **KnativeKafka** custom resource are installed on your cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages you want to import.
- Install the OpenShift CLI (`oc`).

**Procedure**

1. Create a **KafkaSource** object as a YAML file:

   ```yaml
 apiVersion: sources.knative.dev/v1beta1
 kind: KafkaSource
 metadata:
 name: <source_name>
 spec:
 consumerGroup: <group_name> # 1
 bootstrapServers:
 - <list_of_bootstrap_servers>
 topics:
 - <list_of_topics> # 2
 sink:
 - <list_of_sinks> # 3
   ```

   1. A consumer group is a group of consumers that use the same group ID, and consume data from a topic.
   2. A topic provides a destination for the storage of data. Each topic is split into one or more partitions.
   3. A sink specifies where events are sent to from a source.

   **IMPORTANT**

   Only the `v1beta1` version of the API for **KafkaSource** objects on OpenShift Serverless is supported. Do not use the `v1alpha1` version of this API, as this version is now deprecated.

**Example KafkaSource object**

```yaml
apiVersion: sources.knative.dev/v1beta1
kind: KafkaSource
metadata:
 name: kafka-source
```
Apply the KafkaSource YAML file:

```
$ oc apply -f <filename>
```

Verification

- Verify that the Kafka event source was created by entering the following command:

```
$ oc get pods
```

**Example output**

```
NAME READY STATUS RESTARTS AGE
kafkasource-kafka-source-5ca0248f-... 1/1 Running 0 13m
```

2.5.4. Configuring SASL authentication for Apache Kafka sources

*Simple Authentication and Security Layer* (SASL) is used by Apache Kafka for authentication. If you use SASL authentication on your cluster, users must provide credentials to Knative for communicating with the Kafka cluster; otherwise events cannot be produced or consumed.

**Prerequisites**

- You have cluster or dedicated administrator permissions on OpenShift Container Platform.

- The OpenShift Serverless Operator, Knative Eventing, and the *KnativeKafka* CR are installed on your OpenShift Container Platform cluster.

- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

- You have a username and password for a Kafka cluster.

- You have chosen the SASL mechanism to use, for example, *PLAIN*, *SCRAM-SHA-256*, or *SCRAM-SHA-512*.

- If TLS is enabled, you also need the *ca.crt* certificate file for the Kafka cluster.

- You have installed the OpenShift (*oc*) CLI.

**Procedure**
1. Create the certificate files as secrets in your chosen namespace:

```bash
$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-file=ca.crt=caroot.pem \
 --from-literal=password="SecretPassword" \
 --from-literal=saslType="SCRAM-SHA-512" \
 --from-literal=user="my-sasl-user"
```

1. The SASL type can be **PLAIN, SCRAM-SHA-256, or SCRAM-SHA-512**.

2. Create or modify your Kafka source so that it contains the following `spec` configuration:

```yaml
apiVersion: sources.knative.dev/v1beta1
kind: KafkaSource
metadata:
 name: example-source
spec:
 ...
 net:
 sasl:
 enable: true
 user:
 secretKeyRef:
 name: <kafka_auth_secret>
 key: user
 password:
 secretKeyRef:
 name: <kafka_auth_secret>
 key: password
 type:
 secretKeyRef:
 name: <kafka_auth_secret>
 key: saslType
 tls:
 enable: true
 caCert:
 secretKeyRef:
 name: <kafka_auth_secret>
 key: ca.crt
 ...
```

1. The `caCert` spec is not required if you are using a public cloud Kafka service.

### 2.6. CUSTOM EVENT SOURCES

If you need to ingress events from an event producer that is not included in Knative, or from a producer that emits events which are not in the **CloudEvent** format, you can do this by creating a custom event source. You can create a custom event source by using one of the following methods:

- Use a **PodSpecable** object as an event source, by creating a sink binding.
- Use a container as an event source, by creating a container source.
2.6.1. Sink binding

The SinkBinding object supports decoupling event production from delivery addressing. Sink binding is used to connect event producers to an event consumer, or sink. An event producer is a Kubernetes resource that embeds a PodSpec template and produces events. A sink is an addressable Kubernetes object that can receive events.

The SinkBinding object injects environment variables into the PodTemplateSpec of the sink, which means that the application code does not need to interact directly with the Kubernetes API to locate the event destination. These environment variables are as follows:

K_SINK
The URL of the resolved sink.

K_CE_OVERRIDES
A JSON object that specifies overrides to the outbound event.

NOTE
The SinkBinding object currently does not support custom revision names for services.

2.6.1.1. Creating a sink binding by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe event sources declaratively and in a reproducible manner. To create a sink binding by using YAML, you must create a YAML file that defines an SinkBinding object, then apply it by using the oc apply command.

Prerequisites

- The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the cluster.
- Install the OpenShift CLI (oc).
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. To check that sink binding is set up correctly, create a Knative event display service, or event sink, that dumps incoming messages to its log.
   a. Create a service YAML file:

```
Example service YAML file

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
```

b. Create the service:

```bash
$ oc apply -f <filename>
```

2. Create a sink binding instance that directs events to the service.

   a. Create a sink binding YAML file:

   **Example service YAML file**

   ```yaml
 apiVersion: sources.knative.dev/v1alpha1
 kind: SinkBinding
 metadata:
 name: bind-heartbeat
 spec:
 subject:
 apiVersion: batch/v1
 kind: Job
 selector:
 matchLabels:
 app: heartbeat-cron
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

 In this example, any Job with the label **app: heartbeat-cron** will be bound to the event sink.
   ```

   b. Create the sink binding:

   ```bash
 $ oc apply -f <filename>
   ```

3. Create a **CronJob** object.

   a. Create a cron job YAML file:

   **Example cron job YAML file**

   ```yaml
 apiVersion: batch/v1
 kind: CronJob
 metadata:
 name: heartbeat-cron
 spec:
 # Run every minute
 schedule: "* * * * *"
 jobTemplate:
 metadata:
   ```
To use sink binding, you must manually add a `bindings.knative.dev/include=true` label to your Knative resources.

For example, to add this label to a CronJob resource, add the following lines to the Job resource YAML definition:

```yaml
jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"
```

b. Create the cron job:

```bash
$ oc apply -f <filename>
```

4. Check that the controller is mapped correctly by entering the following command and inspecting the output:

```bash
$ oc get sinkbindings.sources.knative.dev bind-heartbeat -oyaml
```

Example output

```yaml
spec:
sink:
 ref:
 apiVersion: serving.knative.dev/v1
```
Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the message dumper function logs.

1. Enter the command:
   
   ```bash
 $ oc get pods
   ```

2. Enter the command:
   
   ```bash
 $ oc logs $(oc get pod -o name | grep event-display) -c user-container
   ```

Example output

```
☁ cloudevents.Event
Validation: valid
Context Attributes,
specversion: 1.0
type: dev.knative.eventing.samples.heartbeat
source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
id: 2b72d7bf-c38f-4a98-a433-608fbcddd2596
contenttype: application/json
Extensions,
beats: true
heart: yes
the: 42
Data,
{
 "id": 1,
 "label": ""
}
```

2.6.1.2. Creating a sink binding by using the Knative CLI

You can use the `kn source binding create` command to create a sink binding by using the Knative (kn) CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user interface than modifying YAML files directly.

Prerequisites
The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the cluster.

You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Install the Knative (kn) CLI.

Install the OpenShift CLI (oc).

**NOTE**

The following procedure requires you to create YAML files.

If you change the names of the YAML files from those used in the examples, you must ensure that you also update the corresponding CLI commands.

**Procedure**

1. To check that sink binding is set up correctly, create a Knative event display service, or event sink, that dumps incoming messages to its log:

   ```shell
 $ kn service create event-display --image quay.io/openshift-knative/showcase
 ``

2. Create a sink binding instance that directs events to the service:

   ```shell
   $ kn source binding create bind-heartbeat --subject Job:batch/v1:app=heartbeat-cron --sink ksvc:event-display
   ``

3. Create a **CronJob** object.

   a. Create a cron job YAML file:

   **Example cron job YAML file**

   ```yaml
 apiVersion: batch/v1
 kind: CronJob
 metadata:
 name: heartbeat-cron
 spec:
 # Run every minute
 schedule: "* * * * *"
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"
 spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/heartbeats:latest
 args:
   ```
To use sink binding, you must manually add a `bindings.knative.dev/include=true` label to your Knative CRs.

For example, to add this label to a CronJob CR, add the following lines to the CronJob CR YAML definition:

```yaml
jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"
```

b. Create the cron job:

```
$ oc apply -f <filename>
```

4. Check that the controller is mapped correctly by entering the following command and inspecting the output:

```
$ kn source binding describe bind-heartbeat
```

**Example output**

Name: bind-heartbeat
Namespace: demo-2
Annotations: sources.knative.dev/creator=minikube-user, sources.knative.dev/lastModifier=minikube ...
Age: 2m
Subject:
  Resource: job (batch/v1)
  Selector:
    app: heartbeat-cron
Sink:
  Name: event-display
  Resource: Service (serving.knative.dev/v1)
Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the message dumper function logs.

- View the message dumper function logs by entering the following commands:

  ```
 $ oc get pods
 $ oc logs $(oc get pod -o name | grep event-display) -c user-container
  ```

Example output

```
| 1. cloudevents.Event |
|-----------------------
| Validation: valid |
| Context Attributes, |
| specversion: 1.0 |
| type: dev.knative.eventing.samples.heartbeat |
| source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod |
| id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596 |
| contenttype: application/json |

Extensions,
beat: true
heart: yes
the: 42

Data,
{
 "id": 1,
 "label": ""
}
```

2.6.1.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are sent to from that resource by using the `--sink` flag. The sink can be any addressable or callable resource that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, `http://event-display.svc.cluster.local`, as the sink:

Example command using the sink flag

```
$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \
 --ce-override "sink=bound"
```

```
svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
```
default sink prefixes include channel, and broker.

2.6.1.3. Creating a sink binding by using the web console

After Knative Eventing is installed on your cluster, you can create a sink binding by using the web console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to create an event source.

Prerequisites

- You have logged in to the OpenShift Container Platform web console.
- The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a Knative service to use as a sink:
   a. In the Developer perspective, navigate to +Add → YAML.
   b. Copy the example YAML:

```
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/showcase
```
   c. Click Create.

2. Create a CronJob resource that is used as an event source and sends an event every minute.
   a. In the Developer perspective, navigate to +Add → YAML.
   b. Copy the example YAML:

```
apiVersion: batch/v1
kind: CronJob
metadata:
 name: heartbeat-cron
spec:
 # Run every minute
 schedule: "*/1 * * * *
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
```
Ensure that you include the `bindings.knative.dev/include: true` label. The default namespace selection behavior of OpenShift Serverless uses inclusion mode.

c. Click **Create**.

3. Create a sink binding in the same namespace as the service created in the previous step, or any other sink that you want to send events to.

   a. In the **Developer** perspective, navigate to +Add → **Event Source**. The **Event Sources** page is displayed.

   b. Optional: If you have multiple providers for your event sources, select the required provider from the **Providers** list to filter the available event sources from the provider.

   c. Select **Sink Binding** and then click **Create Event Source**. The **Create Event Source** page is displayed.

   **NOTE**

   You can configure the **Sink Binding** settings by using the **Form view** or **YAML view** and can switch between the views. The data is persisted when switching between the views.

   d. In the **apiVersion** field enter **batch/v1**.

   e. In the **Kind** field enter **Job**.

   **NOTE**

   The **CronJob** kind is not supported directly by OpenShift Serverless sink binding, so the **Kind** field must target the **Job** objects created by the cron job, rather than the cron job object itself.
In the **Target** section, select your event sink. This can be either a **Resource** or a **URI**:

i. Select **Resource** to use a channel, broker, or service as an event sink for the event source. In this example, the **event-display** service created in the previous step is used as the target **Resource**.

ii. Select **URI** to specify a Uniform Resource Identifier (URI) where the events are routed to.

In the **Match labels** section:

i. Enter **app** in the **Name** field.

ii. Enter **heartbeat-cron** in the **Value** field.

**NOTE**

The label selector is required when using cron jobs with sink binding, rather than the resource name. This is because jobs created by a cron job do not have a predictable name, and contain a randomly generated string in their name. For example, **heartbeat-cron-1cc23f**.

Click **Create**.

**Verification**

You can verify that the sink binding, sink, and cron job have been created and are working correctly by viewing the **Topology** page and pod logs.

1. In the **Developer** perspective, navigate to **Topology**.

2. View the sink binding, sink, and heartbeats cron job.

3. Observe that successful jobs are being registered by the cron job once the sink binding is added. This means that the sink binding is successfully reconfiguring the jobs created by the cron job.

4. Browse the **event-display** service to see events produced by the heartbeats cron job.
2.6.1.4. Sink binding reference

You can use a **PodSpecable** object as an event source by creating a sink binding. You can configure multiple parameters when creating a **SinkBinding** object.

**SinkBinding** objects support the following parameters:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Required or optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>apiVersion</td>
<td>Specifies the API version, for example <strong>sources.knative.dev/v1</strong>.</td>
<td>Required</td>
</tr>
<tr>
<td>kind</td>
<td>Identifies this resource object as a <strong>SinkBinding</strong> object.</td>
<td>Required</td>
</tr>
<tr>
<td>metadata</td>
<td>Specifies metadata that uniquely identifies the <strong>SinkBinding</strong> object. For example, a <strong>name</strong>.</td>
<td>Required</td>
</tr>
<tr>
<td>spec</td>
<td>Specifies the configuration information for this <strong>SinkBinding</strong> object.</td>
<td>Required</td>
</tr>
<tr>
<td>spec.sink</td>
<td>A reference to an object that resolves to a URI to use as the sink.</td>
<td>Required</td>
</tr>
</tbody>
</table>
2.6.1.4.1. Subject parameter

The **Subject** parameter references the resources for which the runtime contract is augmented by binding implementations. You can configure multiple fields for a **Subject** definition.

The **Subject** definition supports the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Required or optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>spec.subject</td>
<td>References the resources for which the runtime contract is augmented by binding implementations.</td>
<td>Required</td>
</tr>
<tr>
<td>spec.ceOverrides</td>
<td>Defines overrides to control the output format and modifications to the event sent to the sink.</td>
<td>Optional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Required or optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>apiVersion</td>
<td>API version of the referent.</td>
<td>Required</td>
</tr>
<tr>
<td>kind</td>
<td>Kind of the referent.</td>
<td>Required</td>
</tr>
<tr>
<td>namespace</td>
<td>Namespace of the referent. If omitted, this defaults to the namespace of the object.</td>
<td>Optional</td>
</tr>
<tr>
<td>name</td>
<td>Name of the referent.</td>
<td>Do not use if you configure selector.</td>
</tr>
<tr>
<td>selector</td>
<td>Selector of the referents.</td>
<td>Do not use if you configure name.</td>
</tr>
<tr>
<td>selector.matchExpressions</td>
<td>A list of label selector requirements.</td>
<td>Only use one of either matchExpressions or matchLabels.</td>
</tr>
<tr>
<td>selector.matchExpressions.key</td>
<td>The label key that the selector applies to.</td>
<td>Required if using matchExpressions.</td>
</tr>
<tr>
<td>selector.matchExpressions.operator</td>
<td>Represents a key’s relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.</td>
<td>Required if using matchExpressions.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Required or optional</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td><strong>selector.matchExpressions.values</strong></td>
<td>An array of string values. If the <code>operator</code> parameter value is <code>In</code> or <code>NotIn</code>, the values array must be non-empty. If the <code>operator</code> parameter value is <code>Exists</code> or <code>DoesNotExist</code>, the values array must be empty. This array is replaced during a strategic merge patch.</td>
<td>Required if using <code>matchExpressions</code>.</td>
</tr>
<tr>
<td><strong>selector.matchLabels</strong></td>
<td>A map of key-value pairs. Each key-value pair in the <code>matchLabels</code> map is equivalent to an element of <code>matchExpressions</code>, where the key field is <code>matchLabels.&lt;key&gt;</code>, the <code>operator</code> is <code>In</code>, and the <code>values</code> array contains only <code>matchLabels.&lt;value&gt;</code></td>
<td>Only use one of either <code>matchExpressions</code> or <code>matchLabels</code>.</td>
</tr>
</tbody>
</table>

**Subject parameter examples**

Given the following YAML, the **Deployment** object named **mysubject** in the **default** namespace is selected:

```yaml
apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: apps/v1
 kind: Deployment
 namespace: default
 name: mysubject
...
```

Given the following YAML, any **Job** object with the label **working=example** in the **default** namespace is selected:

```yaml
apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: batch/v1
 kind: Job
 namespace: default
 selector:
```
Given the following YAML, any Pod object with the label `working=example` or `working=sample` in the `default` namespace is selected:

```yaml
apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: v1
 kind: Pod
 namespace: default
 selector:
 - matchExpression:
 key: working
 operator: In
 values:
 - example
 - sample
```

### 2.6.1.4.2. CloudEvent overrides

A `ceOverrides` definition provides overrides that control the CloudEvent’s output format and modifications sent to the sink. You can configure multiple fields for the `ceOverrides` definition.

A `ceOverrides` definition supports the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Required or optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>extensions</td>
<td>Specifies which attributes are added or overridden on the outbound event. Each <code>extensions</code> key-value pair is set independently on the event as an attribute extension.</td>
<td>Optional</td>
</tr>
</tbody>
</table>

**NOTE**

Only valid CloudEvent attribute names are allowed as extensions. You cannot set the spec defined attributes from the extensions override configuration. For example, you cannot modify the `type` attribute.
This sets the `K_CE_OVERRIDES` environment variable on the `subject`.

Example output

```
{ "extensions": { "extra": "this is an extra attribute", "additional": "42" } }
```

2.6.1.4.3. The include label

To use a sink binding, you need to do assign the `bindings.knative.dev/include: "true"` label to either the resource or the namespace that the resource is included in. If the resource definition does not include the label, a cluster administrator can attach it to the namespace by running:

```
$ oc label namespace <namespace> bindings.knative.dev/include=true
```

2.6.1.5. Integrating Service Mesh with SinkBinding

Prerequisites

- You have integrated Service Mesh with OpenShift Serverless.

Procedure

1. Create a `Service` in a namespace that is a member of the `ServiceMeshMemberRoll`.

```
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
namespace: <namespace> 1
spec:
template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true" 2
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest
```

1 A namespace that is a member of the `ServiceMeshMemberRoll`.
2 Injects Service Mesh sidecars into the Knative service pods.

2. Apply the `Service` resource.
3. Create a **SinkBinding**.

```yaml
apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
 name: bind-heartbeat
 namespace: <namespace>
spec:
 subject:
 apiVersion: batch/v1
 kind: Job
 selector:
 matchLabels:
 app: heartbeat-cron

sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

A namespace that is a member of the **ServiceMeshMemberRoll**.

In this example, any Job with the label `app: heartbeat-cron` is bound to the event sink.

4. Apply the **SinkBinding** resource.

```bash
$ oc apply -f <filename>
```

5. Create a **CronJob**:

```yaml
apiVersion: batch/v1
kind: CronJob
metadata:
  name: heartbeat-cron
  namespace: <namespace>  
spec:
  # Run every minute
  schedule: "* * * * *"
  jobTemplate:
    metadata:
      labels:
        app: heartbeat-cron
        bindings.knative.dev/include: "true"
    spec:
      template:
        metadata:
          annotations:
            sidecar.istio.io/inject: "true"
            sidecar.istio.io/rewriteAppHTTPProbers: "true"
```

```yaml
spec:  
```
A namespace that is a member of the **ServiceMeshMemberRoll**.

Infects Service Mesh sidecars into the **CronJob** pods.

6. Apply the **CronJob** resource.

   ```
   $ oc apply -f <filename>
   ```

Verification

To verify that the events were sent to the Knative event sink, look at the message dumper function logs.

1. Enter the following command:

   ```
   $ oc get pods
   ```

2. Enter the following command:

   ```
   $ oc logs $(oc get pod -o name | grep event-display) -c user-container
   ```

Example output

```
cloudevents.Event
Validation: valid
Context Attributes,
  specversion: 1.0
type: dev.knative.eventing.samples.heartbeat
source: https://knative.dev/eventing/test/heartbeats/#event-test/mypod
id: 2b72d7bf-c38f-4a98-a433-608fcdd2596
contenttype: application/json
Extensions,
  beats: true
  heart: yes
the: 42
Data,
```
Additional resources

- Integrating Service Mesh with OpenShift Serverless

2.6.2. Container source

Container sources create a container image that generates events and sends events to a sink. You can use a container source to create a custom event source, by creating a container image and a `ContainerSource` object that uses your image URI.

2.6.2.1. Guidelines for creating a container image

Two environment variables are injected by the container source controller: `K_SINK` and `K_CE_OVERRIDES`. These variables are resolved from the `sink` and `ceOverrides` spec, respectively. Events are sent to the sink URI specified in the `K_SINK` environment variable. The message must be sent as a `POST` using the `CloudEvent` HTTP format.

Example container images

The following is an example of a heartbeats container image:

```go
package main

import (  
    "context"  
    "encoding/json"  
    "flag"  
    "fmt"  
    "log"  
    "os"  
    "strconv"  
    "time"
)

duckv1 "knative.dev/pkg/apis/duck/v1"

cloudevents "github.com/cloudevents/sdk-go/v2"  
  "github.com/kelseyhightower/envconfig"
)

type Heartbeat struct {  
    Sequence int  
        `json:"id"`  
    Label string  
        `json:"label"` 
}

var (  
    eventSource string  
    eventType string  
    sink string  
    label string  
    periodStr string
)
func init() {
    flag.StringVar(&eventSource, "eventSource", "", "the event-source (CloudEvents)")
    flag.StringVar(&eventType, "eventType", "dev.knative.eventing.samples.heartbeat", "the event-type (CloudEvents)")
    flag.StringVar(&sink, "sink", "", "the host url to heartbeat to")
    flag.StringVar(&label, "label", "", "a special label")
    flag.StringVar(&periodStr, "period", "5", "the number of seconds between heartbeats")
}

type envConfig struct {
    // Sink URL where to send heartbeat cloud events
    Sink string `envconfig:"K_SINK"`

    // CEOverrides are the CloudEvents overrides to be applied to the outbound event.
    CEOverrides string `envconfig:"K_CE_OVERRIDES"`

    // Name of this pod.
    Name string `envconfig:"POD_NAME" required:"true"

    // Namespace this pod exists in.
    Namespace string `envconfig:"POD_NAMESPACE" required:"true"

    // Whether to run continuously or exit.
    OneShot bool `envconfig:"ONE_SHOT" default:"false"
}

func main() {
    flag.Parse()
    var env envConfig
    if err := envconfig.Process("", &env); err != nil {
        log.Printf("[ERROR] Failed to process env var: %s", err)
        os.Exit(1)
    }

    if env.Sink != "" {
        sink = env.Sink
    }

    var ceOverridess *duckv1.CloudEventOverrides
    if len(env.CEOverrides) > 0 {
        overrides := duckv1.CloudEventOverrides{
            err := json.Unmarshal([]byte(env.CEOverrides), &overrides)
        if err != nil {
            log.Printf("[ERROR] Unparseable CloudEvents overrides %s: %v", env.CEOverrides, err)
            os.Exit(1)
        }
        ceOverridess = &overrides
    }

    p, err := cloudevents.NewHTTP(cloudevents.WithTarget(sink))
    if err != nil {
        log.Fatalf("failed to create http protocol: %s", err.Error())
    }
}
c, err := cloudevents.NewClient(p, cloudevents.WithUUIDs(), cloudevents.WithTimeNow())
if err != nil {
    log.Fatalf("failed to create client: %s", err.Error())
}

var period time.Duration
if p, err := strconv.Atoi(periodStr); err != nil {
    period = time.Duration(5) * time.Second
} else {
    period = time.Duration(p) * time.Second
}

if eventSource == "" {
    log.Printf("Heartbeats Source: %s", eventSource)
}

if len(label) > 0 && label[0] == '"' {
    label, _ = strconv.Unquote(label)
}

hb := &Heartbeat{
    Sequence: 0,
    Label:    label,
}
ticker := time.NewTicker(period)
for {
    hb.Sequence++

    event := cloudevents.NewEvent("1.0")
    event.SetType(eventType)
    event.SetSource(eventSource)
    event.SetExtension("the", 42)
    event.SetExtension("heart", "yes")
    event.SetExtension("beats", true)

    if ceOverrides != nil && ceOverrides.Extensions != nil {
        for n, v := range ceOverrides.Extensions {
            event.SetExtension(n, v)
        }
    }

    if err := event.SetData(cloudevents.ApplicationJSON, hb); err != nil {
        log.Printf("failed to set cloudevents data: %s", err.Error())
    }

    log.Printf("sending cloudevent to %s", sink)
    if res := c.Send(context.Background(), event); !cloudevents.IsACK(res) {
        log.Printf("failed to send cloudevent: %v", res)
    }
}

if env.OneShot {
    return
}
The following is an example of a container source that references the previous heartbeats container image:

```yaml
apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
 name: test-heartbeats
spec:
template:
 spec:
 containers:
 # This corresponds to a heartbeats image URI that you have built and published
 - image: gcr.io/knative-releases/knative.dev/eventing/cmd/heartbeats
 name: heartbeats
 args:
 - --period=1
 env:
 - name: POD_NAME
 value: "example-pod"
 - name: POD_NAMESPACE
 value: "event-test"
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: showcase
...
```

2.6.2.2. Creating and managing container sources by using the Knative CLI

You can use the `kn source container` commands to create and manage container sources by using the Knative (`kn`) CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user interface than modifying YAML files directly.

**Create a container source**

```bash
$ kn source container create <container_source_name> --image <image_uri> --sink <sink>
```

**Delete a container source**

```bash
$ kn source container delete <container_source_name>
```

**Describe a container source**

```bash
$ kn source container describe <container_source_name>
```

**List existing container sources**

```bash
$ kn source container list
```
List existing container sources in YAML format
$ kn source container list
$ kn source container list -o yaml

Update a container source
This command updates the image URI for an existing container source:
$ kn source container update <container_source_name> --image <image_uri>

2.6.2.3. Creating a container source by using the web console
After Knative Eventing is installed on your cluster, you can create a container source by using the web console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to create an event source.

Prerequisites
- You have logged in to the OpenShift Container Platform web console.
- The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure
1. In the Developer perspective, navigate to +Add → Event Source. The Event Sources page is displayed.
2. Select Container Source and then click Create Event Source. The Create Event Source page is displayed.
3. Configure the Container Source settings by using the Form view or YAML view:

   **NOTE**

   You can switch between the Form view and YAML view. The data is persisted when switching between the views.

   a. In the Image field, enter the URI of the image that you want to run in the container created by the container source.
   b. In the Name field, enter the name of the image.
   c. Optional: In the Arguments field, enter any arguments to be passed to the container.
   d. Optional: In the Environment variables field, add any environment variables to set in the container.
   e. In the Target section, select your event sink. This can be either a Resource or a URI:
i. Select **Resource** to use a channel, broker, or service as an event sink for the event source.

ii. Select **URI** to specify a Uniform Resource Identifier (URI) where the events are routed to.

4. After you have finished configuring the container source, click **Create**.

### 2.6.2.4. Container source reference

You can use a container as an event source, by creating a **ContainerSource** object. You can configure multiple parameters when creating a **ContainerSource** object.

**ContainerSource** objects support the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Required or optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>apiVersion</td>
<td>Specifies the API version, for example sources.knative.dev/v1.</td>
<td>Required</td>
</tr>
<tr>
<td>kind</td>
<td>Identifies this resource object as a <strong>ContainerSource</strong> object.</td>
<td>Required</td>
</tr>
<tr>
<td>metadata</td>
<td>Specifies metadata that uniquely identifies the <strong>ContainerSource</strong> object. For example, a name.</td>
<td>Required</td>
</tr>
<tr>
<td>spec</td>
<td>Specifies the configuration information for this <strong>ContainerSource</strong> object.</td>
<td>Required</td>
</tr>
<tr>
<td>spec.sink</td>
<td>A reference to an object that resolves to a URI to use as the sink.</td>
<td>Required</td>
</tr>
<tr>
<td>spec.template</td>
<td>A <strong>template</strong> spec for the <strong>ContainerSource</strong> object.</td>
<td>Required</td>
</tr>
<tr>
<td>spec.ceOverrides</td>
<td>Defines overrides to control the output format and modifications to the event sent to the sink.</td>
<td>Optional</td>
</tr>
</tbody>
</table>

#### Template parameter example

```yaml
apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
 name: test-heartbeats
spec:
 template:
 spec:
```
2.6.2.4.1. CloudEvent overrides

A `ceOverrides` definition provides overrides that control the CloudEvent’s output format and modifications sent to the sink. You can configure multiple fields for the `ceOverrides` definition.

A `ceOverrides` definition supports the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Required or optional</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>extensions</code></td>
<td>Specifies which attributes are added or overridden on the outbound event. Each <code>extensions</code> key-value pair is set independently on the event as an attribute extension.</td>
<td>Optional</td>
</tr>
</tbody>
</table>

**NOTE**

Only valid `CloudEvent` attribute names are allowed as extensions. You cannot set the spec defined attributes from the extensions override configuration. For example, you cannot modify the `type` attribute.

**CloudEvent Overrides example**

```yaml
apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
 name: test-heartbeats
spec:
 ...
 ceOverrides:
 extensions:
 extra: this is an extra attribute
 additional: 42

This sets the `K_CE_OVERRIDES` environment variable on the `subject`.

Example output

```json
{ "extensions": { "extra": "this is an extra attribute", "additional": "42" } }
```
2.6.2.5. Integrating Service Mesh with ContainerSource

Prerequisites

- You have integrated Service Mesh with OpenShift Serverless.

Procedure

1. Create a `Service` in a namespace that is a member of the `ServiceMeshMemberRoll`.

```yaml
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: event-display
namespace: <namespace>  # A namespace that is a member of the ServiceMeshMemberRoll.
spec:
template:
  metadata:
    annotations:
      sidecar.istio.io/inject: "true"  # Injects Service Mesh sidecars into the Knative service pods.
      sidecar.istio.io/rewriteAppHTTPProbers: "true"
  spec:
    containers:
    - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest
```

2. Apply the `Service` resource.

```
$ oc apply -f <filename>
```

3. Create a `ContainerSource` in a namespace that is a member of the `ServiceMeshMemberRoll` and sink set to the `event-display`.

```yaml
apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
  name: test-heartbeats
namespace: <namespace>  # A namespace that is a member of the ServiceMeshMemberRoll.
spec:
template:
  metadata:
    annotations:
      sidecar.istio.io/inject: "true"
      sidecar.istio.io/rewriteAppHTTPProbers: "true"
  spec:
    containers:
    - image: quay.io/openshift-knative/heartbeats:latest
      name: heartbeats
      args:
      - --period=1s
```

Red Hat OpenShift Serverless 1.30 Eventing
A namespace is part of the `ServiceMeshMemberRoll`.

Enables Service Mesh integration with a `ContainerSource`.

4. Apply the `ContainerSource` resource.

```
$ oc apply -f <filename>
```

Verification

To verify that the events were sent to the Knative event sink, look at the message dumper function logs.

1. Enter the following command:

```
$ oc get pods
```

2. Enter the following command:

```
$ oc logs $(oc get pod -o name | grep event-display) -c user-container
```

Example output

```yaml
cloudevents.Event
Validation: valid
Context Attributes,
  specversion: 1.0
type: dev.knative.eventing.samples.heartbeat
source: https://knative.dev/eventing/test/heartbeats/#event-test/mypod
id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
contenttype: application/json
Extensions,
  beats: true
  heart: yes
  the: 42
Data,
  {
    "id": 1,
    "label": ""
  }
```

Additional resources
2.7. CONNECTING AN EVENT SOURCE TO AN EVENT SINK BY USING THE DEVELOPER PERSPECTIVE

When you create an event source by using the OpenShift Container Platform web console, you can specify a target event sink that events are sent to from that source. The event sink can be any addressable or callable resource that can receive incoming events from other resources.

2.7.1. Connect an event source to an event sink by using the Developer perspective

Prerequisites

- The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have logged in to the web console and are in the Developer perspective.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have created an event sink, such as a Knative service, channel or broker.

Procedure

1. Create an event source of any type, by navigating to +Add → Event Source and selecting the event source type that you want to create.

2. In the Target section of the Create Event Source form view, select your event sink. This can be either a Resource or a URI:
 a. Select Resource to use a channel, broker, or service as an event sink for the event source.
 b. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed to.

3. Click Create.

Verification

You can verify that the event source was created and is connected to the sink by viewing the Topology page.

1. In the Developer perspective, navigate to Topology.

2. View the event source and click the connected event sink to see the sink details in the right panel.
CHAPTER 3. EVENT SINKS

3.1. EVENT SINKS

When you create an event source, you can specify an event sink where events are sent to from the source. An event sink is an addressable or a callable resource that can receive incoming events from other resources. Knative services, channels, and brokers are all examples of event sinks. There is also a specific Apache Kafka sink type available.

Addressable objects receive and acknowledge an event delivered over HTTP to an address defined in their `status.address.url` field. As a special case, the core Kubernetes Service object also fulfills the addressable interface.

Callable objects are able to receive an event delivered over HTTP and transform the event, returning 0 or 1 new events in the HTTP response. These returned events may be further processed in the same way that events from an external event source are processed.

3.1.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are sent to from that resource by using the `--sink` flag. The sink can be any addressable or callable resource that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, `http://event-display.svc.cluster.local`, as the sink:

Example command using the sink flag

```bash
$ kn source binding create bind-heartbeat
  --namespace sinkbinding-example
  --subject "Job:batch/v1:app=heartbeat-cron"
  --sink http://event-display.svc.cluster.local
  --ce-override "sink=bound"
```

svc in `http://event-display.svc.cluster.local` determines that the sink is a Knative service. Other default sink prefixes include channel, and broker.

TIP

You can configure which CRs can be used with the `--sink` flag for Knative (kn) CLI commands by Customizing kn.

3.2. CREATING EVENT SINKS

When you create an event source, you can specify an event sink where events are sent to from the source. An event sink is an addressable or a callable resource that can receive incoming events from other resources. Knative services, channels, and brokers are all examples of event sinks. There is also a specific Apache Kafka sink type available.

For information about creating resources that can be used as event sinks, see the following documentation:
3.3. SINK FOR APACHE KAFKA

Apache Kafka sinks are a type of event sink that are available if a cluster administrator has enabled Apache Kafka on your cluster. You can send events directly from an event source to a Kafka topic by using a Kafka sink.

3.3.1. Creating an Apache Kafka sink by using YAML

You can create a Kafka sink that sends events to a Kafka topic. By default, a Kafka sink uses the binary content mode, which is more efficient than the structured mode. To create a Kafka sink by using YAML, you must create a YAML file that defines a KafkaSink object, then apply it by using the `oc apply` command.

Prerequisites

- The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource (CR) are installed on your cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages you want to import.
- Install the OpenShift CLI (`oc`).

Procedure

1. Create a KafkaSink object definition as a YAML file:

 Kafka sink YAML

   ```yaml
   apiVersion: eventing.knative.dev/v1alpha1
   kind: KafkaSink
   metadata:
     name: <sink-name>
     namespace: <namespace>
   spec:
     topic: <topic-name>
     bootstrapServers:
     - <bootstrap-server>
   ```

2. To create the Kafka sink, apply the KafkaSink YAML file:

   ```bash
   $ oc apply -f <filename>
   ```
3. Configure an event source so that the sink is specified in its spec:

Example of a Kafka sink connected to an API server source

```yaml
apiVersion: sources.knative.dev/v1alpha2
kind: ApiServerSource
metadata:
  name: <source-name> ①
  namespace: <namespace> ②
spec:
  serviceAccountName: <service-account-name> ③
  mode: Resource
  resources:
    - apiVersion: v1
      kind: Event
      sink:
        ref:
          apiVersion: eventing.knative.dev/v1alpha1
          kind: KafkaSink
          name: <sink-name> ④
```

① The name of the event source.
② The namespace of the event source.
③ The service account for the event source.
④ The Kafka sink name.

3.3.2. Creating an event sink for Apache Kafka by using the OpenShift Container Platform web console

You can create a Kafka sink that sends events to a Kafka topic by using the **Developer** perspective in the OpenShift Container Platform web console. By default, a Kafka sink uses the binary content mode, which is more efficient than the structured mode.

As a developer, you can create an event sink to receive events from a particular source and send them to a Kafka topic.

Prerequisites

- You have installed the OpenShift Serverless Operator, with Knative Serving, Knative Eventing, and Knative broker for Apache Kafka APIs, from the OperatorHub.
- You have created a Kafka topic in your Kafka environment.

Procedure

1. In the **Developer** perspective, navigate to the **+Add** view.
2. Click **Event Sink** in the **Eventing catalog**.
3. Search for **KafkaSink** in the catalog items and click it.
4. Click **Create Event Sink**

5. In the form view, type the URL of the bootstrap server, which is a combination of host name and port.

 ![Create Event Sink](image)

 Create Event Sink

 Create an Event sink to receive incoming events from a particular source. Configure using YAML and form views.

 Configure via:
 - Form view
 - YAML view

 Note: Some fields may not be represented in this form view. Please select "YAML view" for full control of object creation.

 KafkaSink
 - Bootstrap servers: https://my-server.com
 - The address of the Kafka broker

 Topic: knative-topic
 - Topic name to send events

 Secret: cli-secret
 - A unique name given to the application grouping to label your resources

 General
 - Application name

 ![KafkaSink](image)

 KafkaSink is addressable, it receives events and sends them to a Kafka topic.

6. Type the name of the topic to send event data.

7. Type the name of the event sink.

8. Click **Create**.

Verification

1. In the **Developer** perspective, navigate to the **Topology** view.

2. Click the created event sink to view its details in the right panel.

3.3.3. Configuring security for Apache Kafka sinks

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption for the Knative broker implementation for Apache Kafka.

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use SASL authentication on your cluster, users must provide credentials to Knative for communicating with the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

- The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resources (CRs) are installed on your OpenShift Container Platform cluster.

- Kafka sink is enabled in the KnativeKafka CR.
You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

- You have a Kafka cluster CA certificate stored as a .pem file.
- You have a Kafka cluster client certificate and a key stored as .pem files.
- You have installed the OpenShift (oc) CLI.
- You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or SCRAM-SHA-512.

Procedure

1. Create the certificate files as a secret in the same namespace as your KafkaSink object:

   ```
   $ oc create secret -n <namespace> generic <secret_name> \
   --from-literal=protocol=SASL_PLAINTEXT \n   --from-literal=sasl.mechanism=<sasl_mechanism> \n   --from-literal=user=<username> \n   --from-literal=password=<password>
   ``

   **IMPORTANT**
   
   Certificates and keys must be in PEM format.

   - For authentication using SASL without encryption:

     ```
 $ oc create secret -n <namespace> generic <secret_name> \
 --from-literal=protocol=SASL_SSL \n --from-literal=sasl.mechanism=<sasl_mechanism> \n --from-file=ca.crt=<my_caroot.pem_file_path> \n --from-literal=user=<username> \n --from-literal=password=<password>
 ``

 The `ca.crt` can be omitted to use the system’s root CA set if you are using a public cloud managed Kafka service.

 - For authentication using SASL and encryption using TLS:

     ```
     $ oc create secret -n <namespace> generic <secret_name> \
     --from-literal=protocol=SASL_SSL \n     --from-literal=sasl.mechanism=<sasl_mechanism> \n     --from-file=ca.crt=<my_caroot.pem_file_path> \n     --from-file=user.crt=<my_cert.pem_file_path> \n     --from-file=user.key=<my_key.pem_file_path>
     ``

     The `ca.crt` can be omitted to use the system’s root CA set if you are using a public cloud managed Kafka service.

2. Create or modify a KafkaSink object and add a reference to your secret in the auth spec:
Apply the KafkaSink object:

```yaml
apiVersion: eventing.knative.dev/v1alpha1
kind: KafkaSink
metadata:
 name: <sink_name>
 namespace: <namespace>
spec:
 ...
 auth:
 secret:
 ref:
 name: <secret_name>
 ...
```

3. Apply the **KafkaSink** object:

```bash
$ oc apply -f <filename>
```
CHAPTER 4. BROKERS

4.1. BROKERS

Brokers can be used in combination with triggers to deliver events from an event source to an event sink. Events are sent from an event source to a broker as an HTTP POST request. After events have entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP POST request to an event sink.

4.2. BROKER TYPES

Cluster administrators can set the default broker implementation for a cluster. When you create a broker, the default broker implementation is used, unless you provide set configurations in the Broker object.

4.2.1. Default broker implementation for development purposes

Knative provides a default, channel-based broker implementation. This channel-based broker can be used for development and testing purposes, but does not provide adequate event delivery guarantees for production environments. The default broker is backed by the InMemoryChannel channel implementation by default.

If you want to use Apache Kafka to reduce network hops, use the Knative broker implementation for Apache Kafka. Do not configure the channel-based broker to be backed by the KafkaChannel channel implementation.

4.2.2. Production-ready Knative broker implementation for Apache Kafka

For production-ready Knative Eventing deployments, Red Hat recommends using the Knative broker implementation for Apache Kafka. The broker is an Apache Kafka native implementation of the Knative broker, which sends CloudEvents directly to the Kafka instance.

The Knative broker has a native integration with Kafka for storing and routing events. This allows better integration with Kafka for the broker and trigger model over other broker types, and reduces network hops. Other benefits of the Knative broker implementation include:

- At-least-once delivery guarantees
- Ordered delivery of events, based on the CloudEvents partitioning extension
The Knative broker implementation for Apache Kafka stores incoming CloudEvents as Kafka records, using the binary content mode. This means that all CloudEvent attributes and extensions are mapped as headers on the Kafka record, while the data spec of the CloudEvent corresponds to the value of the Kafka record.

4.3. CREATING BROKERS

Knative provides a default, channel-based broker implementation. This channel-based broker can be used for development and testing purposes, but does not provide adequate event delivery guarantees for production environments.

If a cluster administrator has configured your OpenShift Serverless deployment to use Apache Kafka as the default broker type, creating a broker by using the default settings creates a Knative broker for Apache Kafka.

If your OpenShift Serverless deployment is not configured to use the Knative broker for Apache Kafka as the default broker type, the channel-based broker is created when you use the default settings in the following procedures.

4.3.1. Creating a broker by using the Knative CLI

Brokers can be used in combination with triggers to deliver events from an event source to an event sink. Using the Knative (kn) CLI to create brokers provides a more streamlined and intuitive user interface over modifying YAML files directly. You can use the kn broker create command to create a broker.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have installed the Knative (kn) CLI.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

- Create a broker:

  ```
 $ kn broker create <broker_name>
  ```

Verification

1. Use the kn command to list all existing brokers:

  ```
 $ kn broker list
  ```

Example output
2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to the Topology view in the Developer perspective, and observe that the broker exists:

![Topology view in the Developer perspective](image)

### 4.3.2. Creating a broker by annotating a trigger

Brokers can be used in combination with triggers to deliver events from an event source to an event sink. You can create a broker by adding the `eventing.knative.dev/injection: enabled` annotation to a Trigger object.

**IMPORTANT**

If you create a broker by using the `eventing.knative.dev/injection: enabled` annotation, you cannot delete this broker without cluster administrator permissions. If you delete the broker without having a cluster administrator remove this annotation first, the broker is created again after deletion.

#### Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- Install the OpenShift CLI (oc).
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

#### Procedure

1. Create a **Trigger** object as a YAML file that has the `eventing.knative.dev/injection: enabled` annotation:

```yaml
apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 annotations:
 eventing.knative.dev/injection: enabled
```

---

<table>
<thead>
<tr>
<th>NAME</th>
<th>URL</th>
<th>AGE</th>
<th>CONDITIONS</th>
<th>READY</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td><a href="http://broker-ingress.knative-eventing.svc.cluster.local/test/default">http://broker-ingress.knative-eventing.svc.cluster.local/test/default</a></td>
<td>45s</td>
<td>5 OK / 5 True</td>
<td></td>
</tr>
</tbody>
</table>
Specify details about the event sink, or subscriber, that the trigger sends events to.

2. Apply the **Trigger YAML file**:

   ```bash
 $ oc apply -f <filename>
   ```

**Verification**

You can verify that the broker has been created successfully by using the `oc` CLI, or by observing it in the **Topology** view in the web console.

1. Enter the following `oc` command to get the broker:

   ```bash
 $ oc -n <namespace> get broker default
   ```

**Example output**

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>REASON</th>
<th>URL</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>True</td>
<td></td>
<td><a href="http://broker-ingress.knative-eventing.svc.cluster.local/test/default">http://broker-ingress.knative-eventing.svc.cluster.local/test/default</a></td>
<td>3m56s</td>
</tr>
</tbody>
</table>

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to the **Topology** view in the **Developer** perspective, and observe that the broker exists:

4.3.3. Creating a broker by labeling a namespace

Brokers can be used in combination with triggers to deliver events from an event source to an event sink. You can create the **default** broker automatically by labelling a namespace that you own or have write permissions for.
NOTE
Brokers created using this method are not removed if you remove the label. You must manually delete them.

Prerequisites
- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- Install the OpenShift CLI (oc).
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have cluster or dedicated administrator permissions if you are using Red Hat OpenShift Service on AWS or OpenShift Dedicated.

Procedure
- Label a namespace with eventing.knative.dev/injection=enabled:

  $ oc label namespace <namespace> eventing.knative.dev/injection=enabled

Verification
You can verify that the broker has been created successfully by using the oc CLI, or by observing it in the Topology view in the web console.

1. Use the oc command to get the broker:

  $ oc -n <namespace> get broker <broker_name>

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>REASON</th>
<th>URL</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>True</td>
<td></td>
<td><a href="http://broker-ingress.knative-eventing.svc.cluster.local/test/default">http://broker-ingress.knative-eventing.svc.cluster.local/test/default</a></td>
<td>3m56s</td>
</tr>
</tbody>
</table>

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to the Topology view in the Developer perspective, and observe that the broker exists:
4.3.4. Deleting a broker that was created by injection

If you create a broker by injection and later want to delete it, you must delete it manually. Brokers created by using a namespace label or trigger annotation are not deleted permanently if you remove the label or annotation.

Prerequisites

- Install the OpenShift CLI (oc).

Procedure

1. Remove the `eventing.knative.dev/injection=enabled` label from the namespace:

   ```
 $ oc label namespace <namespace> eventing.knative.dev/injection=enabled

 Removing the annotation prevents Knative from recreating the broker after you delete it.
   ```

2. Delete the broker from the selected namespace:

   ```
 $ oc -n <namespace> delete broker <broker_name>
   ```

Verification

- Use the `oc` command to get the broker:

  ```
 $ oc -n <namespace> get broker <broker_name>
  ```

Example command

```
$ oc -n default get broker default
```

Example output

```
No resources found.
Error from server (NotFound): brokers.eventing.knative.dev "default" not found
```

4.3.5. Creating a broker by using the web console
After Knative Eventing is installed on your cluster, you can create a broker by using the web console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to create a broker.

**Prerequisites**

- You have logged in to the OpenShift Container Platform web console.
- The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

**Procedure**

1. In the **Developer** perspective, navigate to +Add → **Broker**. The **Broker** page is displayed.
2. Optional. Update the **Name** of the broker. If you do not update the name, the generated broker is named **default**.
3. Click **Create**.

**Verification**

You can verify that the broker was created by viewing broker components in the **Topology** page.

1. In the **Developer** perspective, navigate to **Topology**.

4.3.6. Creating a broker by using the Administrator perspective

Brokers can be used in combination with triggers to deliver events from an event source to an event sink. Events are sent from an event source to a broker as an HTTP **POST** request. After events have entered the broker, they can be filtered by **CloudEvent attributes** using triggers, and sent as an HTTP **POST** request to an event sink.
Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have logged in to the web console and are in the Administrator perspective.
- You have cluster administrator permissions on OpenShift Container Platform, or you have cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or OpenShift Dedicated.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate to Serverless → Eventing.
2. In the Create list, select Broker. You will be directed to the Create Broker page.
3. Optional: Modify the YAML configuration for the broker.
4. Click Create.

4.3.7. Next steps

- Configure event delivery parameters that are applied in cases where an event fails to be delivered to an event sink.

4.3.8. Additional resources

- Configuring the default broker class
- Triggers
- Connect a broker to a sink using the Developer perspective

4.4. CONFIGURING THE DEFAULT BROKER BACKING CHANNEL

If you are using a channel-based broker, you can set the default backing channel type for the broker to either InMemoryChannel or KafkaChannel.
Prerequisites

- You have administrator permissions on OpenShift Container Platform.
- You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.
- You have installed the OpenShift (oc) CLI.
- If you want to use Apache Kafka channels as the default backing channel type, you must also install the KnativeKafka CR on your cluster.

Procedure

1. Modify the KnativeEventing custom resource (CR) to add configuration details for the config-br-default-channel config map:

   ```yaml
 apiVersion: operator.knative.dev/v1beta1
 kind: KnativeEventing
 metadata:
 name: knative-eventing
 namespace: knative-eventing
 spec:
 config:
 config-br-default-channel:
 channel-template-spec:
 apiVersion: messaging.knative.dev/v1beta1
 kind: KafkaChannel
 spec:
 numPartitions: 6
 replicationFactor: 3

 1 In **spec.config**, you can specify the config maps that you want to add modified configurations for.
 2 The default backing channel type configuration. In this example, the default channel implementation for the cluster is KafkaChannel.
 3 The number of partitions for the Kafka channel that backs the broker.
 4 The replication factor for the Kafka channel that backs the broker.

2. Apply the updated KnativeEventing CR:

   ```bash
   $ oc apply -f <filename>
   ```

4.5. CONFIGURING THE DEFAULT BROKER CLASS

You can use the config-br-defaults config map to specify default broker class settings for Knative Eventing. You can specify the default broker class for the entire cluster or for one or more namespaces. Currently the MTChannelBasedBroker and Kafka broker types are supported.

Prerequisites

- You have administrator permissions on OpenShift Container Platform.
You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.

If you want to use the Knative broker for Apache Kafka as the default broker implementation, you must also install the KnativeKafka CR on your cluster.

Procedure

- Modify the `KnativeEventing` custom resource to add configuration details for the `config-br-defaults` config map:

  ```yaml
  apiVersion: operator.knative.dev/v1beta1
  kind: KnativeEventing
  metadata:
    name: knative-eventing
  namespace: knative-eventing
  spec:
    defaultBrokerClass: Kafka
    config:
      config-br-defaults:
        default-br-config:
          clusterDefault:
            brokerClass: Kafka
            apiVersion: v1
            kind: ConfigMap
            name: kafka-broker-config
            namespace: knative-eventing
            namespaceDefaults:
              my-namespace:
                brokerClass: MTChannelBasedBroker
                apiVersion: v1
                kind: ConfigMap
                name: config-br-default-channel
                namespace: knative-eventing
    ...  
  ```

1. The default broker class for Knative Eventing.
2. In `spec.config`, you can specify the config maps that you want to add modified configurations for.
3. The `config-br-defaults` config map specifies the default settings for any broker that does not specify `spec.config` settings or a broker class.
4. The cluster-wide default broker class configuration. In this example, the default broker class implementation for the cluster is Kafka.
5. The `kafka-broker-config` config map specifies default settings for the Kafka broker. See "Configuring Knative broker for Apache Kafka settings" in the "Additional resources" section.
6. The namespace where the `kafka-broker-config` config map exists.
7. The namespace-scoped default broker class configuration. In this example, the default broker class implementation for the `my-namespace` namespace is MTChannelBasedBroker. You can specify default broker class implementations for
The `config-br-default-channel` config map specifies the default backing channel for the broker. See "Configuring the default broker backing channel" in the "Additional resources" section.

The namespace where the `config-br-default-channel` config map exists.

IMPORTANT

Configuring a namespace-specific default overrides any cluster-wide settings.

4.6. KNATIVE BROKER IMPLEMENTATION FOR APACHE KAFKA

For production-ready Knative Eventing deployments, Red Hat recommends using the Knative broker implementation for Apache Kafka. The broker is an Apache Kafka native implementation of the Knative broker, which sends CloudEvents directly to the Kafka instance.

The Knative broker has a native integration with Kafka for storing and routing events. This allows better integration with Kafka for the broker and trigger model over other broker types, and reduces network hops. Other benefits of the Knative broker implementation include:

- At-least-once delivery guarantees
- Ordered delivery of events, based on the CloudEvents partitioning extension
- Control plane high availability
- A horizontally scalable data plane

The Knative broker implementation for Apache Kafka stores incoming CloudEvents as Kafka records, using the binary content mode. This means that all CloudEvent attributes and extensions are mapped as headers on the Kafka record, while the `data` spec of the CloudEvent corresponds to the value of the Kafka record.

4.6.1. Creating an Apache Kafka broker when it is not configured as the default broker type

If your OpenShift Serverless deployment is not configured to use Kafka broker as the default broker type, you can use one of the following procedures to create a Kafka-based broker.

4.6.1.1. Creating an Apache Kafka broker by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe applications declaratively and in a reproducible manner. To create a Kafka broker by using YAML, you must create a YAML file that defines a `Broker` object, then apply it by using the `oc apply` command.

Prerequisites

- The OpenShift Serverless Operator, Knative Eventing, and the `KnativeKafka` custom resource are installed on your OpenShift Container Platform cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
You have installed the OpenShift CLI (oc).

Procedure

1. Create a Kafka-based broker as a YAML file:

```yaml
apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
  annotations:
    eventing.knative.dev/broker.class: Kafka
  name: example-kafka-broker
spec:
  config:
    apiVersion: v1
    kind: ConfigMap
    name: kafka-broker-config
    namespace: knative-eventing
```

 1. The broker class. If not specified, brokers use the default class as configured by cluster administrators. To use the Kafka broker, this value must be Kafka.

 2. The default config map for Knative brokers for Apache Kafka. This config map is created when the Kafka broker functionality is enabled on the cluster by a cluster administrator.

2. Apply the Kafka-based broker YAML file:

   ```bash
   $ oc apply -f <filename>
   ```

4.6.1.2. Creating an Apache Kafka broker that uses an externally managed Kafka topic

If you want to use a Kafka broker without allowing it to create its own internal topic, you can use an externally managed Kafka topic instead. To do this, you must create a Kafka Broker object that uses the kafka.eventing.knative.dev/external.topic annotation.

Prerequisites

- The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource are installed on your OpenShift Container Platform cluster.
- You have access to a Kafka instance such as Red Hat AMQ Streams, and have created a Kafka topic.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have installed the OpenShift CLI (oc).

Procedure

1. Create a Kafka-based broker as a YAML file:

   ```yaml
   apiVersion: eventing.knative.dev/v1
   ```
kind: Broker
metadata:
 annotations:
 eventing.knative.dev/broker.class: Kafka 1
 kafka.eventing.knative.dev/external.topic: <topic_name> 2
...

1 The broker class. If not specified, brokers use the default class as configured by cluster administrators. To use the Kafka broker, this value must be Kafka.

2 The name of the Kafka topic that you want to use.

2. Apply the Kafka-based broker YAML file:

 $ oc apply -f <filename>

4.6.1.3 Knative Broker implementation for Apache Kafka with isolated data plane

IMPORTANT

The Knative Broker implementation for Apache Kafka with isolated data plane is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

The Knative Broker implementation for Apache Kafka has 2 planes:

Control plane
Consists of controllers that talk to the Kubernetes API, watch for custom objects, and manage the data plane.

Data plane
The collection of components that listen for incoming events, talk to Apache Kafka, and send events to the event sinks. The Knative Broker implementation for Apache Kafka data plane is where events flow. The implementation consists of kafka-broker-receiver and kafka-broker-dispatcher deployments.

When you configure a Broker class of Kafka, the Knative Broker implementation for Apache Kafka uses a shared data plane. This means that the kafka-broker-receiver and kafka-broker-dispatcher deployments in the knative-eventing namespace are used for all Apache Kafka Brokers in the cluster.

However, when you configure a Broker class of KafkaNamespaced, the Apache Kafka broker controller creates a new data plane for each namespace where a broker exists. This data plane is used by all KafkaNamespaced brokers in that namespace. This provides isolation between the data planes, so that the kafka-broker-receiver and kafka-broker-dispatcher deployments in the user namespace are only used for the broker in that namespace.
IMPORTANT

As a consequence of having separate data planes, this security feature creates more deployments and uses more resources. Unless you have such isolation requirements, use a regular Broker with a class of Kafka.

4.6.1.4. Creating a Knative broker for Apache Kafka that uses an isolated data plane

IMPORTANT

The Knative Broker implementation for Apache Kafka with isolated data plane is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

To create a KafkaNamespaced broker, you must set the eventing.knative.dev/broker.class annotation to KafkaNamespaced.

Prerequisites

- The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource are installed on your OpenShift Container Platform cluster.
- You have access to an Apache Kafka instance, such as Red Hat AMQ Streams, and have created a Kafka topic.
- You have created a project, or have access to a project, with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have installed the OpenShift CLI (oc).

Procedure

1. Create an Apache Kafka-based broker by using a YAML file:

```yaml
apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
  annotations:
    eventing.knative.dev/broker.class: KafkaNamespaced
  name: default
  namespace: my-namespace
spec:
  config:
    apiVersion: v1
    kind: ConfigMap
    name: my-config
...
```
To use the Apache Kafka broker with isolated data planes, the broker class value must be `KafkaNamespaced`.

The referenced `ConfigMap` object `my-config` must be in the same namespace as the `Broker` object, in this case `my-namespace`.

2. Apply the Apache Kafka-based broker YAML file:

```
$ oc apply -f <filename>
```

IMPORTANT

The `ConfigMap` object in `spec.config` must be in the same namespace as the `Broker` object:

```
apiVersion: v1
kind: ConfigMap
metadata:
  name: my-config
  namespace: my-namespace
data:
  ...
```

After the creation of the first `Broker` object with the `KafkaNamespaced` class, the `kafka-broker-receiver` and `kafka-broker-dispatcher` deployments are created in the namespace. Subsequently, all brokers with the `KafkaNamespaced` class in the same namespace will use the same data plane. If no brokers with the `KafkaNamespaced` class exist in the namespace, the data plane in the namespace is deleted.

4.6.2. Configuring Apache Kafka broker settings

You can configure the replication factor, bootstrap servers, and the number of topic partitions for a Kafka broker, by creating a config map and referencing this config map in the Kafka `Broker` object.

Prerequisites

- You have cluster or dedicated administrator permissions on OpenShift Container Platform.
- The OpenShift Serverless Operator, Knative Eventing, and the `KnativeKafka` custom resource (CR) are installed on your OpenShift Container Platform cluster.
- You have created a project or have access to a project that has the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have installed the OpenShift CLI (`oc`).

Procedure

1. Modify the `kafka-broker-config` config map, or create your own config map that contains the following configuration:

```
apiVersion: v1
kind: ConfigMap
```
The config map name.

The namespace where the config map exists.

The number of topic partitions for the Kafka broker. This controls how quickly events can be sent to the broker. A higher number of partitions requires greater compute resources.

The replication factor of topic messages. This prevents against data loss. A higher replication factor requires greater compute resources and more storage.

A comma separated list of bootstrap servers. This can be inside or outside of the OpenShift Container Platform cluster, and is a list of Kafka clusters that the broker receives events from and sends events to.

IMPORTANT

The `default.topic.replication.factor` value must be less than or equal to the number of Kafka broker instances in your cluster. For example, if you only have one Kafka broker, the `default.topic.replication.factor` value should not be more than “1”.

Example Kafka broker config map

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: kafka-broker-config
  namespace: knative-eventing
data:
  default.topic.partitions: "10"
  default.topic.replication.factor: "3"
  bootstrap.servers: "my-cluster-kafka-bootstrap.kafka:9092"
```

2. Apply the config map:

   ```bash
   $ oc apply -f <config_map_filename>
   ```

3. Specify the config map for the Kafka **Broker** object:

 Example Broker object

   ```yaml
   apiVersion: eventing.knative.dev/v1
   kind: Broker
   metadata:
   ```
name: <broker_name> 1
namespace: <namespace> 2
annotations:
 eventing.knative.dev/broker.class: Kafka 3
spec:
 config:
 apiVersion: v1
 kind: ConfigMap
 name: <config_map_name> 4
 namespace: <namespace> 5
...

1. The broker name.
2. The namespace where the broker exists.
3. The broker class annotation. In this example, the broker is a Kafka broker that uses the class value Kafka.
4. The config map name.
5. The namespace where the config map exists.

4. Apply the broker:

$ oc apply -f <broker_filename>

4.6.3. Security configuration for the Knative broker implementation for Apache Kafka

Kafka clusters are generally secured by using the TLS or SASL authentication methods. You can configure a Kafka broker or channel to work against a protected Red Hat AMQ Streams cluster by using TLS or SASL.

NOTE

Red Hat recommends that you enable both SASL and TLS together.

4.6.3.1. Configuring TLS authentication for Apache Kafka brokers

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption for the Knative broker implementation for Apache Kafka.

Prerequisites

- You have cluster or dedicated administrator permissions on OpenShift Container Platform.
- The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed on your OpenShift Container Platform cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
You have a Kafka cluster CA certificate stored as a .pem file.

You have a Kafka cluster client certificate and a key stored as .pem files.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as a secret in the knative-eventing namespace:

   ```bash
   $ oc create secret -n knative-eventing generic <secret_name> \
   --from-literal=protocol=SSL \
   --from-file=ca.crt=caroot.pem \
   --from-file=user.crt=certificate.pem \
   --from-file=user.key=key.pem
   ```

 IMPORTANT

 Use the key names ca.crt, user.crt, and user.key. Do not change them.

2. Edit the KnativeKafka CR and add a reference to your secret in the broker spec:

   ```yaml
   apiVersion: operator.serverless.openshift.io/v1alpha1
   kind: KnativeKafka
   metadata:
     namespace: knative-eventing
     name: knative-kafka
   spec:
     broker:
       enabled: true
       defaultConfig:
         authSecretName: <secret_name>
   ...
   ```

4.6.3.2. Configuring SASL authentication for Apache Kafka brokers

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use SASL authentication on your cluster, users must provide credentials to Knative for communicating with the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

- You have cluster or dedicated administrator permissions on OpenShift Container Platform.
- The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed on your OpenShift Container Platform cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have a username and password for a Kafka cluster.
- You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or SCRAM-SHA-512.
If TLS is enabled, you also need the `ca.crt` certificate file for the Kafka cluster.

- Install the OpenShift CLI (`oc`).

Procedure

1. Create the certificate files as a secret in the `knative-eventing` namespace:

   ```bash
   $ oc create secret -n knative-eventing generic <secret_name> \
   --from-literal=protocol=SASL_SSL \
   --from-literal=sasl.mechanism=<sasl_mechanism> \
   --from-file=ca.crt=caroot.pem \
   --from-literal=password="SecretPassword" \
   --from-literal=user="my-sasl-user"
   
   $ oc create secret -n <namespace> generic <kafka_auth_secret> \
   --from-literal=tls.enabled=true \
   --from-literal=password="SecretPassword" \
   --from-literal=saslType="SCRAM-SHA-512" \
   --from-literal=user="my-sasl-user"
   
   Use the key names `ca.crt`, `password`, and `sasl.mechanism`. Do not change them.

   - If you want to use SASL with public CA certificates, you must use the `tls.enabled=true` flag, rather than the `ca.crt` argument, when creating the secret. For example:

     ```bash
 $ oc create secret -n knative-eventing generic <secret_name> \
 --from-literal=protocol=SASL_SSL \
 --from-literal=sasl.mechanism=<sasl_mechanism> \
 --from-file=ca.crt=caroot.pem \
 --from-literal=password="SecretPassword" \
 --from-literal=user="my-sasl-user"

 $ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-literal=tls.enabled=true \
 --from-literal=password="SecretPassword" \
 --from-literal=saslType="SCRAM-SHA-512" \
 --from-literal=user="my-sasl-user"

 2. Edit the `KnativeKafka` CR and add a reference to your secret in the `broker` spec:

   ```yaml
   apiVersion: operator.serverless.openshift.io/v1alpha1
   kind: KnativeKafka
   metadata:
     namespace: knative-eventing
     name: knative-kafka
   spec:
     broker:
       enabled: true
       defaultConfig:
         authSecretName: <secret_name>
   ...
   ```

4.6.4. Additional resources

- Red Hat AMQ Streams documentation
- TLS and SASL on Kafka

4.7. MANAGING BROKERS

After you have created a broker, you can manage your broker by using Knative (`kn`) CLI commands, or by modifying it in the OpenShift Container Platform web console.

4.7.1. Managing brokers using the CLI

The Knative (`kn`) CLI provides commands that can be used to describe and list existing brokers.
4.7.1.1. Listing existing brokers by using the Knative CLI

Using the Knative (kn) CLI to list brokers provides a streamlined and intuitive user interface. You can use the kn broker list command to list existing brokers in your cluster by using the Knative CLI.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have installed the Knative (kn) CLI.

Procedure

- List all existing brokers:

 $ kn broker list

Example output

NAME URL AGE CONDITIONS READY REASON
default http://broker-ingress.knative-eventing.svc.cluster.local/test/default 45s 5 OK / 5 True

4.7.1.2. Describing an existing broker by using the Knative CLI

Using the Knative (kn) CLI to describe brokers provides a streamlined and intuitive user interface. You can use the kn broker describe command to print information about existing brokers in your cluster by using the Knative CLI.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have installed the Knative (kn) CLI.

Procedure

- Describe an existing broker:

 $ kn broker describe <broker_name>

Example command using default broker

 $ kn broker describe default

Example output

Name: default
Namespace: default
Annotations: eventing.knative.dev/broker.class=MTChannelBasedBroker,
4.7.2. Connect a broker to a sink using the Developer perspective

You can connect a broker to an event sink in the OpenShift Container Platform Developer perspective by creating a trigger.

Prerequisites

- The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have logged in to the web console and are in the Developer perspective.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have created a sink, such as a Knative service or channel.
- You have created a broker.

Procedure

1. In the Topology view, point to the broker that you have created. An arrow appears. Drag the arrow to the sink that you want to connect to the broker. This action opens the Add Trigger dialog box.

2. In the Add Trigger dialog box, enter a name for the trigger and click Add.

Verification

You can verify that the broker is connected to the sink by viewing the Topology page.

1. In the Developer perspective, navigate to Topology.

2. Click the line that connects the broker to the sink to see details about the trigger in the Details panel.
5.1. TRIGGERS OVERVIEW

Brokers can be used in combination with triggers to deliver events from an event source to an event sink. Events are sent from an event source to a broker as an HTTP POST request. After events have entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP POST request to an event sink.

5.1.1. Configuring event delivery ordering for triggers

If you are using a Knative broker for Apache Kafka, you can configure the delivery order of events from triggers to event sinks. See Configuring event delivery ordering for triggers.

Prerequisites

- The OpenShift Serverless Operator, Knative Eventing, and Knative Kafka are installed on your OpenShift Container Platform cluster.
- Kafka broker is enabled for use on your cluster, and you have created a Kafka broker.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have installed the OpenShift (oc) CLI.

Procedure

1. Create or modify a Trigger object and set the `kafka.eventing.knative.dev/delivery.order` annotation:

```yaml
apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
  name: <trigger_name>
```
The supported consumer delivery guarantees are:

unordered
An unordered consumer is a non-blocking consumer that delivers messages unordered, while preserving proper offset management.

ordered
An ordered consumer is a per-partition blocking consumer that waits for a successful response from the CloudEvent subscriber before it delivers the next message of the partition.
The default ordering guarantee is **unordered**.

2. Apply the **Trigger** object:

```bash
$ oc apply -f <filename>
```

5.1.2. Next steps
- Configure event delivery parameters that are applied in cases where an event fails to be delivered to an event sink.

5.2. CREATING TRIGGERS

Brokers can be used in combination with triggers to deliver events from an event source to an event sink. Events are sent from an event source to a broker as an HTTP **POST** request. After events have entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP **POST** request to an event sink.

5.2.1. Creating a trigger by using the Administrator perspective

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to create a trigger. After Knative Eventing is installed on your cluster and you have created a broker, you can create a trigger by using the web console.
Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.

- You have logged in to the web console and are in the Administrator perspective.

- You have cluster administrator permissions on OpenShift Container Platform, or you have cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or OpenShift Dedicated.

- You have created a Knative broker.

- You have created a Knative service to use as a subscriber.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate to Serverless → Eventing.

2. In the Broker tab, select the Options menu for the broker that you want to add a trigger to.

3. Click Add Trigger in the list.

4. In the Add Trigger dialogue box, select a Subscriber for the trigger. The subscriber is the Knative service that will receive events from the broker.

5. Click Add.

5.2.2. Creating a trigger by using the Developer perspective

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to create a trigger. After Knative Eventing is installed on your cluster and you have created a broker, you can create a trigger by using the web console.

Prerequisites

- The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your OpenShift Container Platform cluster.

- You have logged in to the web console.

- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

- You have created a broker and a Knative service or other event sink to connect to the trigger.

Procedure

1. In the Developer perspective, navigate to the Topology page.

2. Hover over the broker that you want to create a trigger for, and drag the arrow. The Add Trigger option is displayed.
3. Click **Add Trigger**.

4. Select your sink in the **Subscriber** list.

5. Click **Add**.

Verification

- After the subscription has been created, you can view it in the **Topology** page, where it is represented as a line that connects the broker to the event sink.

Deleting a trigger

1. In the **Developer** perspective, navigate to the **Topology** page.

2. Click on the trigger that you want to delete.

3. In the **Actions** context menu, select **Delete Trigger**.

5.2.3. Creating a trigger by using the Knative CLI

You can use the `kn trigger create` command to create a trigger.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.

- You have installed the Knative (**kn**) CLI.

- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

- Create a trigger:

  ```
  $ kn trigger create <trigger_name> --broker <broker_name> --filter <key=value> --sink <sink_name>
  ```

 Alternatively, you can create a trigger and simultaneously create the **default** broker using broker injection:

  ```
  $ kn trigger create <trigger_name> --inject-broker --filter <key=value> --sink <sink_name>
  ```

By default, triggers forward all events sent to a broker to sinks that are subscribed to that broker. Using the **--filter** attribute for triggers allows you to filter events from a broker, so that subscribers will only receive a subset of events based on your defined criteria.

5.3. LIST TRIGGERS FROM THE COMMAND LINE

Using the Knative (**kn**) CLI to list triggers provides a streamlined and intuitive user interface.
5.3.1. Listing triggers by using the Knative CLI

You can use the `kn trigger list` command to list existing triggers in your cluster.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have installed the Knative (`kn`) CLI.

Procedure

1. Print a list of available triggers:

   ```
   $ kn trigger list
   
   Example output
   
   NAME    BROKER    SINK           AGE   CONDITIONS   READY   REASON
   email   default   ksvc:edisplay   4s    5 OK / 5     True
   ping    default   ksvc:edisplay   32s   5 OK / 5     True
   ```

2. Optional: Print a list of triggers in JSON format:

   ```
   $ kn trigger list -o json
   ```

5.4. DESCRIBE TRIGGERS FROM THE COMMAND LINE

Using the Knative (`kn`) CLI to describe triggers provides a streamlined and intuitive user interface.

5.4.1. Describing a trigger by using the Knative CLI

You can use the `kn trigger describe` command to print information about existing triggers in your cluster by using the Knative CLI.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have installed the Knative (`kn`) CLI.
- You have created a trigger.

Procedure

- Enter the command:

  ```
  $ kn trigger describe <trigger_name>
  
  Example output
  ```
5.5. CONNECTING A TRIGGER TO A SINK

You can connect a trigger to a sink, so that events from a broker are filtered before they are sent to the sink. A sink that is connected to a trigger is configured as a subscriber in the Trigger object’s resource spec.

Example of a Trigger object connected to an Apache Kafka sink

```yaml
apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
  name: <trigger_name> 1
spec:
  ...
  subscriber:
    ref:
      apiVersion: eventing.knative.dev/v1alpha1
      kind: KafkaSink
      name: <kafka_sink_name> 2
```

1. The name of the trigger being connected to the sink.
2. The name of a KafkaSink object.

5.6. FILTERING TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to filter events by using triggers provides a streamlined and intuitive user interface. You can use the kn trigger create command, along with the appropriate flags, to filter events by using triggers.
5.6.1. Filtering events with triggers by using the Knative CLI

In the following trigger example, only events with the attribute type: dev.knative.samples.helloworld are sent to the event sink:

```bash
$ kn trigger create <trigger_name> --broker <broker_name> --filter type=dev.knative.samples.helloworld --sink ksvc:<service_name>
```

You can also filter events by using multiple attributes. The following example shows how to filter events using the type, source, and extension attributes:

```bash
$ kn trigger create <trigger_name> --broker <broker_name> --sink ksvc:<service_name> \
--filter type=dev.knative.samples.helloworld \
--filter source=dev.knative.samples/helloworldsource \
--filter myextension=my-extension-value
```

5.7. UPDATING TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to update triggers provides a streamlined and intuitive user interface.

5.7.1. Updating a trigger by using the Knative CLI

You can use the `kn trigger update` command with certain flags to update attributes for a trigger.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have installed the Knative (kn) CLI.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

- Update a trigger:
  ```bash
  $ kn trigger update <trigger_name> --filter <key=value> --sink <sink_name> [flags]
  ```
 - You can update a trigger to filter exact event attributes that match incoming events. For example, using the `type` attribute:
    ```bash
    $ kn trigger update <trigger_name> --filter type=knative.dev.event
    ```
 - You can remove a filter attribute from a trigger. For example, you can remove the filter attribute with key `type`:
    ```bash
    $ kn trigger update <trigger_name> --filter type=
    ```
 - You can use the `--sink` parameter to change the event sink of a trigger:
    ```bash
    $ kn trigger update <trigger_name> --sink ksvc:my-event-sink
    ```
5.8. Deleting Triggers from the Command Line

Using the Knative (kn) CLI to delete a trigger provides a streamlined and intuitive user interface.

5.8.1. Deleting a trigger by using the Knative CLI

You can use the `kn trigger delete` command to delete a trigger.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have installed the Knative (kn) CLI.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

- Delete a trigger:

  ```
  $ kn trigger delete <trigger_name>
  ```

Verification

1. List existing triggers:

  ```
  $ kn trigger list
  ```

2. Verify that the trigger no longer exists:

 Example output

 No triggers found.
CHAPTER 6. CHANNELS

6.1. CHANNELS AND SUBSCRIPTIONS

Channels are custom resources that define a single event-forwarding and persistence layer. After events have been sent to a channel from an event source or producer, these events can be sent to multiple Knative services or other sinks by using a subscription.

You can create channels by instantiating a supported Channel object, and configure re-delivery attempts by modifying the delivery spec in a Subscription object.

After you create a Channel object, a mutating admission webhook adds a set of spec.channelTemplate properties for the Channel object based on the default channel implementation. For example, for an InMemoryChannel default implementation, the Channel object looks as follows:

```yaml
apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
  name: example-channel
  namespace: default
spec:
  channelTemplate:
    apiVersion: messaging.knative.dev/v1
    kind: InMemoryChannel
```

The channel controller then creates the backing channel instance based on the spec.channelTemplate configuration.

NOTE

The spec.channelTemplate properties cannot be changed after creation, because they are set by the default channel mechanism rather than by the user.

When this mechanism is used with the preceding example, two objects are created: a generic backing channel and an InMemoryChannel channel. If you are using a different default channel implementation, the InMemoryChannel is replaced with one that is specific to your implementation. For example, with the Knative broker for Apache Kafka, the KafkaChannel channel is created.

The backing channel acts as a proxy that copies its subscriptions to the user-created channel object, and sets the user-created channel object status to reflect the status of the backing channel.
6.1.1. Channel implementation types

InMemoryChannel and **KafkaChannel** channel implementations can be used with OpenShift Serverless for development use.

The following are limitations of **InMemoryChannel** type channels:

- No event persistence is available. If a pod goes down, events on that pod are lost.
- **InMemoryChannel** channels do not implement event ordering, so two events that are received in the channel at the same time can be delivered to a subscriber in any order.
- If a subscriber rejects an event, there are no re-delivery attempts by default. You can configure re-delivery attempts by modifying the `delivery` spec in the **Subscription** object.

6.2. CREATING CHANNELS

Channels are custom resources that define a single event-forwarding and persistence layer. After events have been sent to a channel from an event source or producer, these events can be sent to multiple Knative services or other sinks by using a subscription.

You can create channels by instantiating a supported **Channel** object, and configure re-delivery attempts by modifying the `delivery` spec in a **Subscription** object.

6.2.1. Creating a channel by using the Administrator perspective

After Knative Eventing is installed on your cluster, you can create a channel by using the Administrator perspective.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have logged in to the web console and are in the **Administrator** perspective.
- You have cluster administrator permissions on OpenShift Container Platform, or you have cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or OpenShift Dedicated.

Procedure
1. In the Administrator perspective of the OpenShift Container Platform web console, navigate to Serverless → Eventing.

2. In the Create list, select Channel. You will be directed to the Channel page.

3. Select the type of Channel object that you want to create in the Type list.

 NOTE

 Currently only InMemoryChannel channel objects are supported by default. Knative channels for Apache Kafka are available if you have installed the Knative broker implementation for Apache Kafka on OpenShift Serverless.

4. Click Create.

6.2.2. Creating a channel by using the Developer perspective

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to create a channel. After Knative Eventing is installed on your cluster, you can create a channel by using the web console.

Prerequisites

- You have logged in to the OpenShift Container Platform web console.
- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to +Add → Channel.

2. Select the type of Channel object that you want to create in the Type list.

3. Click Create.

Verification

- Confirm that the channel now exists by navigating to the Topology page.

6.2.3. Creating a channel by using the Knative CLI
Using the Knative (kn) CLI to create channels provides a more streamlined and intuitive user interface than modifying YAML files directly. You can use the kn channel create command to create a channel.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
- You have installed the Knative (kn) CLI.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

- Create a channel:

  ```bash
  $ kn channel create <channel_name> --type <channel_type>
  ``

  The channel type is optional, but where specified, must be given in the format **Group:Version:Kind**. For example, you can create an **InMemoryChannel** object:

  ```bash
 $ kn channel create mychannel --type messaging.knative.dev:v1:InMemoryChannel
 ``

 Example output

 Channel 'mychannel' created in namespace 'default'.

Verification

- To confirm that the channel now exists, list the existing channels and inspect the output:

  ```bash
  $ kn channel list
  ``

  **Example output**

  ```
 NAME TYPE URL AGE READY REASON
 mychannel InMemoryChannel http://mychannel-kn-channel.default.svc.cluster.local 93s True
 ``

Deleting a channel

- Delete a channel:

  ```bash
  $ kn channel delete <channel_name>
  ``

### 6.2.4. Creating a default implementation channel by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe channels declaratively and in a reproducible manner. To create a serverless channel by using YAML, you must create a YAML file that defines a **Channel** object, then apply it by using the oc apply command.
**Prerequisites**

- The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
- Install the OpenShift CLI (`oc`).
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

**Procedure**

1. Create a **Channel** object as a YAML file:

   ```yaml
 apiVersion: messaging.knative.dev/v1
 kind: Channel
 metadata:
 name: example-channel
 namespace: default
   ```

2. Apply the YAML file:

   ```bash
 $ oc apply -f <filename>
   ```

**6.2.5. Creating a channel for Apache Kafka by using YAML**

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe channels declaratively and in a reproducible manner. You can create a Knative Eventing channel that is backed by Kafka topics by creating a Kafka channel. To create a Kafka channel by using YAML, you must create a YAML file that defines a **KafkaChannel** object, then apply it by using the `oc apply` command.

**Prerequisites**

- The OpenShift Serverless Operator, Knative Eventing, and the **KnativeKafka** custom resource are installed on your OpenShift Container Platform cluster.
- Install the OpenShift CLI (`oc`).
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

**Procedure**

1. Create a **KafkaChannel** object as a YAML file:

   ```yaml
 apiVersion: messaging.knative.dev/v1beta1
 kind: KafkaChannel
 metadata:
 name: example-channel
 namespace: default
 spec:
 numPartitions: 3
 replicationFactor: 1
   ```
2. Apply the KafkaChannel YAML file:

```
$ oc apply -f <filename>
```

### 6.2.6. Next steps

- After you have created a channel, you can connect the channel to a sink so that the sink can receive events.
- Configure event delivery parameters that are applied in cases where an event fails to be delivered to an event sink.

### 6.3. CONNECTING CHANNELS TO SINKS

Events that have been sent to a channel from an event source or producer can be forwarded to one or more sinks by using subscriptions. You can create subscriptions by configuring a Subscription object, which specifies the channel and the sink (also known as a subscriber) that consumes the events sent to that channel.

#### 6.3.1. Creating a subscription by using the Developer perspective

After you have created a channel and an event sink, you can create a subscription to enable event delivery. Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to create a subscription.

**Prerequisites**

- The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have logged in to the web console.
- You have created an event sink, such as a Knative service, and a channel.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

**Procedure**

1. In the Developer perspective, navigate to the Topology page.

2. Create a subscription using one of the following methods:
   - a. Hover over the channel that you want to create a subscription for, and drag the arrow. The Add Subscription option is displayed.
i. Select your sink in the **Subscriber** list.

ii. Click **Add**.

b. If the service is available in the **Topology** view under the same namespace or project as the channel, click on the channel that you want to create a subscription for, and drag the arrow directly to a service to immediately create a subscription from the channel to that service.

**Verification**

- After the subscription has been created, you can see it represented as a line that connects the channel to the service in the **Topology** view:

---

### 6.3.2. Creating a subscription by using YAML

After you have created a channel and an event sink, you can create a subscription to enable event delivery. Creating Knative resources by using YAML files uses a declarative API, which enables you to describe subscriptions declaratively and in a reproducible manner. To create a subscription by using YAML, you must create a YAML file that defines a **Subscription** object, then apply it by using the **oc apply** command.

**Prerequisites**

- The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
- Install the OpenShift CLI (`oc`).
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

**Procedure**

- Create a **Subscription** object:
  - Create a YAML file and copy the following sample code into it:

    ```yaml
 apiVersion: messaging.knative.dev/v1beta1
 kind: Subscription
 metadata:
 name: my-subscription
 namespace: default
 spec:
 channel:
 apiVersion: messaging.knative.dev/v1beta1
 kind: Channel
 name: example-channel
 delivery:
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: error-handler
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display
    ```

    1. Name of the subscription.
    2. Configuration settings for the channel that the subscription connects to.
    3. Configuration settings for event delivery. This tells the subscription what happens to events that cannot be delivered to the subscriber. When this is configured, events that failed to be consumed are sent to the `deadLetterSink`. The event is dropped, no re-delivery of the event is attempted, and an error is logged in the system. The `deadLetterSink` value must be a Destination.
    4. Configuration settings for the subscriber. This is the event sink that events are delivered to from the channel.

  - Apply the YAML file:

    ```bash
 $ oc apply -f <filename>
    ```

**6.3.3. Creating a subscription by using the Knative CLI**

After you have created a channel and an event sink, you can create a subscription to enable event delivery. Using the Knative (`kn`) CLI to create subscriptions provides a more streamlined and intuitive
user interface than modifying YAML files directly. You can use the `kn subscription create` command with the appropriate flags to create a subscription.

**Prerequisites**

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have installed the Knative (`kn`) CLI.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

**Procedure**

- Create a subscription to connect a sink to a channel:

```
$ kn subscription create <subscription_name> \
 --channel <group:version:kind>:<channel_name> \
 --sink <sink_prefix>:<sink_name> \
 --sink-dead-letter <sink_prefix>:<sink_name>
```

1. **--channel** specifies the source for cloud events that should be processed. You must provide the channel name. If you are not using the default `InMemoryChannel` channel that is backed by the `Channel` custom resource, you must prefix the channel name with the `<group:version:kind>` for the specified channel type. For example, this will be `messaging.knative.dev:v1beta1:KafkaChannel` for an Apache Kafka backed channel.

2. **--sink** specifies the target destination to which the event should be delivered. By default, the `<sink_name>` is interpreted as a Knative service of this name, in the same namespace as the subscription. You can specify the type of the sink by using one of the following prefixes:

   - **ksvc**
     A Knative service.
   - **channel**
     A channel that should be used as destination. Only default channel types can be referenced here.
   - **broker**
     An Eventing broker.

3. Optional: **--sink-dead-letter** is an optional flag that can be used to specify a sink which events should be sent to in cases where events fail to be delivered. For more information, see the OpenShift Serverless Event delivery documentation.

**Example command**

```
$ kn subscription create mysubscription --channel mychannel --sink ksvc:event-display
```

**Example output**

```
Subscription 'mysubscription' created in namespace 'default'.
```
Verification

- To confirm that the channel is connected to the event sink, or subscriber, by a subscription, list the existing subscriptions and inspect the output:

  $ kn subscription list

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>CHANNEL</th>
<th>SUBSCRIBER</th>
<th>REPLY</th>
<th>DEAD LETTER SINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>mysubscription</td>
<td>Channel:mychannel</td>
<td>ksvc:event-display</td>
<td>True</td>
<td></td>
</tr>
</tbody>
</table>

Deleting a subscription

- Delete a subscription:

  $ kn subscription delete <subscription_name>

6.3.4. Creating a subscription by using the Administrator perspective

After you have created a channel and an event sink, also known as a subscriber, you can create a subscription to enable event delivery. Subscriptions are created by configuring a Subscription object, which specifies the channel and the subscriber to deliver events to. You can also specify some subscriber-specific options, such as how to handle failures.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.

- You have logged in to the web console and are in the Administrator perspective.

- You have cluster administrator permissions on OpenShift Container Platform, or you have cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or OpenShift Dedicated.

- You have created a Knative channel.

- You have created a Knative service to use as a subscriber.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate to Serverless → Eventing.

2. In the Channel tab, select the Options menu for the channel that you want to add a subscription to.

3. Click Add Subscription in the list.
4. In the **Add Subscription** dialogue box, select a **Subscriber** for the subscription. The subscriber is the Knative service that receives events from the channel.

5. Click **Add**.

### 6.3.5. Next steps

- Configure **event delivery parameters** that are applied in cases where an event fails to be delivered to an event sink.

### 6.4. DEFAULT CHANNEL IMPLEMENTATION

You can use the **default-ch-webhook** config map to specify the default channel implementation of Knative Eventing. You can specify the default channel implementation for the entire cluster or for one or more namespaces. Currently the **InMemoryChannel** and **KafkaChannel** channel types are supported.

#### 6.4.1. Configuring the default channel implementation

**Prerequisites**

- You have administrator permissions on OpenShift Container Platform.
- You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.
- If you want to use Knative channels for Apache Kafka as the default channel implementation, you must also install the **KnativeKafka** CR on your cluster.

**Procedure**

- Modify the **KnativeEventing** custom resource to add configuration details for the **default-ch-webhook** config map:

```yaml
apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 config:
 default-ch-webhook: {}
 default-ch-config:
 clusterDefault:
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel
 spec:
 delivery:
 backoffDelay: PT0.5S
 backoffPolicy: exponential
 retry: 5
 namespaceDefaults:
 my-namespace:
 apiVersion: messaging.knative.dev/v1beta1
 kind: KafkaChannel
```
In `spec.config`, you can specify the config maps that you want to add modified configurations for.

The `default-ch-webhook` config map can be used to specify the default channel implementation for the cluster or for one or more namespaces.

The cluster-wide default channel type configuration. In this example, the default channel implementation for the cluster is `InMemoryChannel`.

The namespace-scoped default channel type configuration. In this example, the default channel implementation for the `my-namespace` namespace is `KafkaChannel`.

**IMPORTANT**

Configuring a namespace-specific default overrides any cluster-wide settings.

6.5. SECURITY CONFIGURATION FOR CHANNELS

6.5.1. Configuring TLS authentication for Knative channels for Apache Kafka

*Transport Layer Security* (TLS) is used by Apache Kafka clients and servers to encrypt traffic between Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption for the Knative broker implementation for Apache Kafka.

**Prerequisites**

- You have cluster or dedicated administrator permissions on OpenShift Container Platform.
- The OpenShift Serverless Operator, Knative Eventing, and the `KnativeKafka` CR are installed on your OpenShift Container Platform cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have a Kafka cluster CA certificate stored as a `.pem` file.
- You have a Kafka cluster client certificate and a key stored as `.pem` files.
- Install the OpenShift CLI (`oc`).

**Procedure**

1. Create the certificate files as secrets in your chosen namespace:

   ```bash
 $ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-file=ca.crt=caroot.pem \
 --from-file=user.crt=certificate.pem \
 --from-file=user.key=key.pem
   ```
2. Start editing the KnativeKafka custom resource:

```bash
$ oc edit knativekafka
```

3. Reference your secret and the namespace of the secret:

```yaml
apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: <kafka_auth_secret>
 authSecretNamespace: <kafka_auth_secret_namespace>
 bootstrapServers: <bootstrap_servers>
 enabled: true
 source:
 enabled: true
```

**NOTE**

Make sure to specify the matching port in the bootstrap server.

For example:

```yaml
apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: tls-user
 authSecretNamespace: kafka
 bootstrapServers: eventing-kafka-bootstrap.kafka.svc:9094
 enabled: true
 source:
 enabled: true
```

### 6.5.2. Configuring SASL authentication for Knative channels for Apache Kafka

*Simple Authentication and Security Layer (SASL)* is used by Apache Kafka for authentication. If you use SASL authentication on your cluster, users must provide credentials to Knative for communicating with the Kafka cluster; otherwise events cannot be produced or consumed.

**Prerequisites**

- You have cluster or dedicated administrator permissions on OpenShift Container Platform.
The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

You have a username and password for a Kafka cluster.

You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or SCRAM-SHA-512.

If TLS is enabled, you also need the ca.crt certificate file for the Kafka cluster.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as secrets in your chosen namespace:

   ```bash
 $ oc create secret -n <namespace> generic <kafka_auth_secret>
 --from-file=ca.crt=caroot.pem
 --from-literal=password="SecretPassword"
 --from-literal=saslType="SCRAM-SHA-512"
 --from-literal=user="my-sasl-user"

 $ oc create secret -n <namespace> generic <kafka_auth_secret>
 --from-literal=tls.enabled=true
 --from-literal=password="SecretPassword"
 --from-literal=saslType="SCRAM-SHA-512"
 --from-literal=user="my-sasl-user"

 $ oc edit knativekafka
   ```

   Use the key names ca.crt, password, and sasl.mechanism. Do not change them.

   If you want to use SASL with public CA certificates, you must use the tls.enabled=true flag, rather than the ca.crt argument, when creating the secret. For example:

   ```bash
 $ oc create secret -n <namespace> generic <kafka_auth_secret>
 --from-literal=tls.enabled=true
 --from-literal=password="SecretPassword"
 --from-literal=saslType="SCRAM-SHA-512"
 --from-literal=user="my-sasl-user"
   ```

2. Start editing the KnativeKafka custom resource:

   ```bash
 $ oc edit knativekafka
   ```

3. Reference your secret and the namespace of the secret:

   ```yaml
 apiVersion: operator.serverless.openshift.io/v1alpha1
 kind: KnativeKafka
 metadata:
 namespace: knative-eventing
 name: knative-kafka
 spec:
 channel:
 authSecretName: <kafka_auth_secret>
 authSecretNamespace: <kafka_auth_secret_namespace>
 bootstrapServers: <bootstrap_servers>
 enabled: true
 source:
 enabled: true
   ```
NOTE

Make sure to specify the matching port in the bootstrap server.

For example:

```yaml
apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: scram-user
 authSecretNamespace: kafka
 bootstrapServers: eventing-kafka-bootstrap.kafka.svc:9093
 enabled: true
 source:
 enabled: true
```
7.1. CREATING SUBSCRIPTIONS

After you have created a channel and an event sink, you can create a subscription to enable event delivery. Subscriptions are created by configuring a Subscription object, which specifies the channel and the sink (also known as a subscriber) to deliver events to.

7.1.1. Creating a subscription by using the Administrator perspective

After you have created a channel and an event sink, also known as a subscriber, you can create a subscription to enable event delivery. Subscriptions are created by configuring a Subscription object, which specifies the channel and the subscriber to deliver events to. You can also specify some subscriber-specific options, such as how to handle failures.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have logged in to the web console and are in the Administrator perspective.
- You have cluster administrator permissions on OpenShift Container Platform, or you have cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or OpenShift Dedicated.
- You have created a Knative channel.
- You have created a Knative service to use as a subscriber.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate to Serverless → Eventing.

2. In the Channel tab, select the Options menu for the channel that you want to add a subscription to.

3. Click Add Subscription in the list.

4. In the Add Subscription dialogue box, select a Subscriber for the subscription. The subscriber is the Knative service that receives events from the channel.

5. Click Add.

7.1.2. Creating a subscription by using the Developer perspective

After you have created a channel and an event sink, you can create a subscription to enable event delivery. Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to create a subscription.

Prerequisites
The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your OpenShift Container Platform cluster.

You have logged in to the web console.

You have created an event sink, such as a Knative service, and a channel.

You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to the Topology page.

2. Create a subscription using one of the following methods:
   
   a. Hover over the channel that you want to create a subscription for, and drag the arrow. The Add Subscription option is displayed.
   
      i. Select your sink in the Subscriber list.
      
         ii. Click Add.

   b. If the service is available in the Topology view under the same namespace or project as the channel, click on the channel that you want to create a subscription for, and drag the arrow directly to a service to immediately create a subscription from the channel to that service.

Verification

- After the subscription has been created, you can see it represented as a line that connects the channel to the service in the Topology view:
7.1.3. Creating a subscription by using YAML

After you have created a channel and an event sink, you can create a subscription to enable event delivery. Creating Knative resources by using YAML files uses a declarative API, which enables you to describe subscriptions declaratively and in a reproducible manner. To create a subscription by using YAML, you must create a YAML file that defines a **Subscription** object, then apply it by using the `oc apply` command.

**Prerequisites**

- The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
- Install the OpenShift CLI (`oc`).
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

**Procedure**

- Create a **Subscription** object:
  - Create a YAML file and copy the following sample code into it:

```yaml
apiVersion: messaging.knative.dev/v1beta1
kind: Subscription
metadata:
 name: my-subscription
 namespace: default
spec:
 channel:
 apiVersion: messaging.knative.dev/v1beta1
 kind: Channel
 name: example-channel
 delivery:
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: error-handler
```
subscriber:
  ref:
    apiVersion: serving.knative.dev/v1
    kind: Service
    name: event-display

1. Name of the subscription.
2. Configuration settings for the channel that the subscription connects to.
3. Configuration settings for event delivery. This tells the subscription what happens to events that cannot be delivered to the subscriber. When this is configured, events that failed to be consumed are sent to the `deadLetterSink`. The event is dropped, no re-delivery of the event is attempted, and an error is logged in the system. The `deadLetterSink` value must be a Destination.
4. Configuration settings for the subscriber. This is the event sink that events are delivered to from the channel.

- Apply the YAML file:
  
  ```sh
 $ oc apply -f <filename>
  ```

### 7.1.4. Creating a subscription by using the Knative CLI

After you have created a channel and an event sink, you can create a subscription to enable event delivery. Using the Knative (`kn`) CLI to create subscriptions provides a more streamlined and intuitive user interface than modifying YAML files directly. You can use the `kn subscription create` command with the appropriate flags to create a subscription.

**Prerequisites**

- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have installed the Knative (`kn`) CLI.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

**Procedure**

- Create a subscription to connect a sink to a channel:

  ```sh
 $ kn subscription create <subscription_name> \
 --channel <group:version:kind>:<channel_name> \
 --sink <sink_prefix>:<sink_name> \
 --sink-dead-letter <sink_prefix>:<sink_name>
  ```

  - `--channel` specifies the source for cloud events that should be processed. You must provide the channel name. If you are not using the default `InMemoryChannel` channel that is backed by the `Channel` custom resource, you must prefix the channel name with the `<group:version:kind>` for the specified channel type. For example, this will be...
messaging.knative.dev:v1beta1:KafkaChannel for an Apache Kafka backed channel.

--sink specifies the target destination to which the event should be delivered. By default, the <sink_name> is interpreted as a Knative service of this name, in the same namespace as the subscription. You can specify the type of the sink by using one of the following prefixes:

ksvc
A Knative service.

channel
A channel that should be used as destination. Only default channel types can be referenced here.

broker
An Eventing broker.

Optional: --sink-dead-letter is an optional flag that can be used to specify a sink which events should be sent to in cases where events fail to be delivered. For more information, see the OpenShift Serverless Event delivery documentation.

Example command

$ kn subscription create mysubscription --channel mychannel --sink ksvc:event-display

Example output

Subscription 'mysubscription' created in namespace 'default'.

Verification

- To confirm that the channel is connected to the event sink, or subscriber, by a subscription, list the existing subscriptions and inspect the output:

$ kn subscription list

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>CHANNEL</th>
<th>SUBSCRIBER</th>
<th>REPLY</th>
<th>DEAD LETTER SINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>mysubscription</td>
<td>Channel:mychannel</td>
<td>ksvc:event-display</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deleting a subscription

- Delete a subscription:

$ kn subscription delete <subscription_name>

7.1.5. Next steps

- Configure event delivery parameters that are applied in cases where an event fails to be delivered to an event sink.
7.2. MANAGING SUBSCRIPTIONS

7.2.1. Describing subscriptions by using the Knative CLI

You can use the `kn subscription describe` command to print information about a subscription in the terminal by using the Knative (kn) CLI. Using the Knative CLI to describe subscriptions provides a more streamlined and intuitive user interface than viewing YAML files directly.

**Prerequisites**

- You have installed the Knative (kn) CLI.
- You have created a subscription in your cluster.

**Procedure**

- Describe a subscription:

  ```
 $ kn subscription describe <subscription_name>
  ```

**Example output**

```
Name: my-subscription
Namespace: default
Annotations: messaging.knative.dev/creator=openshift-user,
 messaging.knative.dev/lastModifier=min ...
Age: 43s
Channel: Channel:my-channel (messaging.knative.dev/v1)
Subscriber:
 URI: http://edisplay.default.example.com
Reply:
 Name: default
 Resource: Broker (eventing.knative.dev/v1)
DeadLetterSink:
 Name: my-sink
 Resource: Service (serving.knative.dev/v1)
Conditions:
 OK TYPE AGE REASON
 ++ Ready 43s
 ++ AddedToChannel 43s
 ++ ChannelReady 43s
 ++ ReferencesResolved 43s
```

7.2.2. Listing subscriptions by using the Knative CLI

You can use the `kn subscription list` command to list existing subscriptions on your cluster by using the Knative (kn) CLI. Using the Knative CLI to list subscriptions provides a streamlined and intuitive user interface.

**Prerequisites**

- You have installed the Knative (kn) CLI.
Procedure

- List subscriptions on your cluster:

  ```
 $ kn subscription list
  ```

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>CHANNEL</th>
<th>SUBSCRIBER</th>
<th>REPLY</th>
<th>DEAD LETTER SINK</th>
<th>READY</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>mysubscription</td>
<td>Channel:mychannel</td>
<td>ksvc:event-display</td>
<td>True</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 7.2.3. Updating subscriptions by using the Knative CLI

You can use the `kn subscription update` command as well as the appropriate flags to update a subscription from the terminal by using the Knative (`kn`) CLI. Using the Knative CLI to update subscriptions provides a more streamlined and intuitive user interface than updating YAML files directly.

**Prerequisites**

- You have installed the Knative (`kn`) CLI.
- You have created a subscription.

**Procedure**

- Update a subscription:

  ```
 $ kn subscription update <subscription_name> \
 --sink <sink_prefix>:<sink_name> \ \
 --sink-dead-letter <sink_prefix>:<sink_name>
  ```

1. `--sink` specifies the updated target destination to which the event should be delivered. You can specify the type of the sink by using one of the following prefixes:

   - **ksvc**: A Knative service.
   - **channel**: A channel that should be used as destination. Only default channel types can be referenced here.
   - **broker**: An Eventing broker.

2. Optional: `--sink-dead-letter` is an optional flag that can be used to specify a sink which events should be sent to in cases where events fail to be delivered. For more information, see the OpenShift Serverless Event delivery documentation.

**Example command**

```
$ kn subscription update mysubscription --sink ksvc:event-display
```
CHAPTER 8. EVENT DELIVERY

You can configure event delivery parameters that are applied in cases where an event fails to be delivered to an event sink. Different channel and broker types have their own behavior patterns that are followed for event delivery.

Configuring event delivery parameters, including a dead letter sink, ensures that any events that fail to be delivered to an event sink are retried. Otherwise, undelivered events are dropped.

IMPORTANT

If an event is successfully delivered to a channel or broker receiver for Apache Kafka, the receiver responds with a 202 status code, which means that the event has been safely stored inside a Kafka topic and is not lost. If the receiver responds with any other status code, the event is not safely stored, and steps must be taken by the user to resolve the issue.

8.1. CONFIGURABLE EVENT DELIVERY PARAMETERS

The following parameters can be configured for event delivery:

Dead letter sink

You can configure the deadLetterSink delivery parameter so that if an event fails to be delivered, it is stored in the specified event sink. Undelivered events that are not stored in a dead letter sink are dropped. The dead letter sink be any addressable object that conforms to the Knative Eventing sink contract, such as a Knative service, a Kubernetes service, or a URI.

Retries

You can set a minimum number of times that the delivery must be retried before the event is sent to the dead letter sink, by configuring the retry delivery parameter with an integer value.

Back off delay

You can set the backoffDelay delivery parameter to specify the time delay before an event delivery retry is attempted after a failure. The duration of the backoffDelay parameter is specified using the ISO 8601 format. For example, PT1S specifies a 1 second delay.

Back off policy

The backoffPolicy delivery parameter can be used to specify the retry back off policy. The policy can be specified as either linear or exponential. When using the linear back off policy, the back off delay is equal to backoffDelay * <numberOfRetries>. When using the exponential backoff policy, the back off delay is equal to backoffDelay^<numberOfRetries>.

8.2. EXAMPLES OF CONFIGURING EVENT DELIVERY PARAMETERS

You can configure event delivery parameters for Broker, Trigger, Channel, and Subscription objects. If you configure event delivery parameters for a broker or channel, these parameters are propagated to triggers or subscriptions created for those objects. You can also set event delivery parameters for triggers or subscriptions to override the settings for the broker or channel.

Example Broker object

```yaml
apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
...
```
Example Trigger object

```yaml
apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

spec:
broker: <broker_name>
delivery:
deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: <sink_name>
 backoffDelay: <duration>
 backoffPolicy: <policy_type>
 retry: <integer>

...
```

Example Channel object

```yaml
apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:

spec:
delivery:
deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: <sink_name>
 backoffDelay: <duration>
 backoffPolicy: <policy_type>
 retry: <integer>

...
```

Example Subscription object

```yaml
apiVersion: messaging.knative.dev/v1
kind: Subscription
metadata:
```
8.3. CONFIGURING EVENT DELIVERY ORDERING FOR TRIGGERS

If you are using a Kafka broker, you can configure the delivery order of events from triggers to event sinks.

Prerequisites

- The OpenShift Serverless Operator, Knative Eventing, and Knative Kafka are installed on your OpenShift Container Platform cluster.
- Kafka broker is enabled for use on your cluster, and you have created a Kafka broker.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have installed the OpenShift (oc) CLI.

Procedure

1. Create or modify a Trigger object and set the `kafka.eventing.knative.dev/delivery.order` annotation:

```yaml
apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: <trigger_name>
annotations:
 kafka.eventing.knative.dev/delivery.order: ordered
...
```

The supported consumer delivery guarantees are:

- **unordered**
  An unordered consumer is a non-blocking consumer that delivers messages unordered, while preserving proper offset management.

- **ordered**
An ordered consumer is a per-partition blocking consumer that waits for a successful response from the CloudEvent subscriber before it delivers the next message of the partition. The default ordering guarantee is unordered.

2. Apply the **Trigger** object:

   ```
 $ oc apply -f <filename>
   ```
CHAPTER 9. EVENT DISCOVERY

9.1. LISTING EVENT SOURCES AND EVENT SOURCE TYPES

It is possible to view a list of all event sources or event source types that exist or are available for use on your OpenShift Container Platform cluster. You can use the Knative (kn) CLI or the Developer perspective in the OpenShift Container Platform web console to list available event sources or event source types.

9.2. LISTING EVENT SOURCE TYPES FROM THE COMMAND LINE

Using the Knative (kn) CLI provides a streamlined and intuitive user interface to view available event source types on your cluster.

9.2.1. Listing available event source types by using the Knative CLI

You can list event source types that can be created and used on your cluster by using the kn source list-types CLI command.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
- You have installed the Knative (kn) CLI.

Procedure

1. List the available event source types in the terminal:

   ```bash
 $ kn source list-types
   ```

2. Optional: On OpenShift Container Platform, you can also list the available event source types in YAML format:

   ```bash
 $ kn source list-types -o yaml
   ```

9.3. LISTING EVENT SOURCE TYPES FROM THE DEVELOPER PERSPECTIVE
It is possible to view a list of all available event source types on your cluster. Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface to view available event source types.

9.3.1. Viewing available event source types within the Developer perspective

Prerequisites

- You have logged in to the OpenShift Container Platform web console.
- The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift Container Platform cluster.
- You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Access the Developer perspective.
2. Click **+Add**.
3. Click **Event Source**.
4. View the available event source types.

9.4. LISTING EVENT SOURCES FROM THE COMMAND LINE

Using the Knative (`kn`) CLI provides a streamlined and intuitive user interface to view existing event sources on your cluster.

9.4.1. Listing available event sources by using the Knative CLI

You can list existing event sources by using the `kn source list` command.

Prerequisites

- The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
- You have installed the Knative (`kn`) CLI.

Procedure

1. List the existing event sources in the terminal:

   ```
 $ kn source list
   ```

   Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>RESOURCE</th>
<th>SINK</th>
<th>READY</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>ApiServerSource</td>
<td>apiserversources.sources.knative.dev</td>
<td>ksvc:eshow2</td>
<td>True</td>
</tr>
<tr>
<td>b1</td>
<td>SinkBinding</td>
<td>sinkbindings.sources.knative.dev</td>
<td>ksvc:eshow3</td>
<td>False</td>
</tr>
<tr>
<td>p1</td>
<td>PingSource</td>
<td>pingsources.sources.knative.dev</td>
<td>ksvc:eshow1</td>
<td>True</td>
</tr>
</tbody>
</table>
2. Optional: You can list event sources of a specific type only, by using the --type flag:

```
$ kn source list --type <event_source_type>
```

**Example command**

```
$ kn source list --type PingSource
```

**Example output**

```
NAME TYPE RESOURCE SINK READY
p1 PingSource pingsources.sources.knative.dev ksvc:eshow1 True
```
10.1. OVERRIDING KNATIVE EVENTING SYSTEM DEPLOYMENT CONFIGURATIONS

You can override the default configurations for some specific deployments by modifying the `deployments` spec in the `KnativeEventing` custom resource (CR). Currently, overriding default configuration settings is supported for the `eventing-controller`, `eventing-webhook`, and `imc-controller` fields, as well as for the `readiness` and `liveness` fields for probes.

**IMPORTANT**

The `replicas` spec cannot override the number of replicas for deployments that use the Horizontal Pod Autoscaler (HPA), and does not work for the `eventing-webhook` deployment.

**NOTE**

You can only override probes that are defined in the deployment by default.

All Knative Serving deployments define a readiness and a liveness probe by default, with these exceptions:

- `net-kourier-controller` and `3scale-kourier-gateway` only define a readiness probe.
- `net-istio-controller` and `net-istio-webhook` define no probes.

### 10.1.1. Overriding deployment configurations

Currently, overriding default deployment configuration settings is supported for the `eventing-controller`, `eventing-webhook`, and `imc-controller` fields, as well as for the `readiness` and `liveness` fields for probes.

**IMPORTANT**

The `replicas` spec cannot override the number of replicas for deployments that use the Horizontal Pod Autoscaler (HPA), and does not work for the `eventing-webhook` deployment.

In the following example, a `KnativeEventing` CR overrides the `eventing-controller` deployment so that:

- The `readiness` probe timeout `eventing-controller` is set to be 10 seconds.
- The deployment has specified CPU and memory resource limits.
- The deployment has 3 replicas.
- The `example-label: label` label is added.
- The `example-annotation: annotation` annotation is added.
- The `nodeSelector` field is set to select nodes with the `disktype: hdd` label.
KnativeEventing CR example

apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
  name: knative-eventing
  namespace: knative-eventing
spec:
deployments:
- name: eventing-controller
  readinessProbes:
    - container: controller
      timeoutSeconds: 10
  resources:
    - container: eventing-controller
      requests:
        cpu: 300m
        memory: 100Mi
      limits:
        cpu: 1000m
        memory: 250Mi
  replicas: 3
  labels:
    example-label: label
  annotations:
    example-annotation: annotation
  nodeSelector:
    disktype: hdd

You can use the readiness and liveness probe overrides to override all fields of a probe in a container of a deployment as specified in the Kubernetes API except for the fields related to the probe handler: exec, grpc, httpGet, and tcpSocket.

NOTE
The KnativeEventing CR label and annotation settings override the deployment’s labels and annotations for both the deployment itself and the resulting pods.

Additional resources

- Probe configuration section of the Kubernetes API documentation

10.2. HIGH AVAILABILITY

High availability (HA) is a standard feature of Kubernetes APIs that helps to ensure that APIs stay operational if a disruption occurs. In an HA deployment, if an active controller crashes or is deleted, another controller is readily available. This controller takes over processing of the APIs that were being serviced by the controller that is now unavailable.

HA in OpenShift Serverless is available through leader election, which is enabled by default after the Knative Serving or Eventing control plane is installed. When using a leader election HA pattern, instances of controllers are already scheduled and running inside the cluster before they are required. These
controller instances compete to use a shared resource, known as the leader election lock. The instance of the controller that has access to the leader election lock resource at any given time is called the leader.

HA in OpenShift Serverless is available through leader election, which is enabled by default after the Knative Serving or Eventing control plane is installed. When using a leader election HA pattern, instances of controllers are already scheduled and running inside the cluster before they are required. These controller instances compete to use a shared resource, known as the leader election lock. The instance of the controller that has access to the leader election lock resource at any given time is called the leader.

### 10.2.1. Configuring high availability replicas for Knative Eventing

High availability (HA) is available by default for the Knative Eventing `eventing-controller`, `eventing-webhook`, `imc-controller`, `imc-dispatcher`, and `mt-broker-controller` components, which are configured to have two replicas each by default. You can change the number of replicas for these components by modifying the `spec.high-availability.replicas` value in the `KnativeEventing` custom resource (CR).

**NOTE**

For Knative Eventing, the `mt-broker-filter` and `mt-broker-ingress` deployments are not scaled by HA. If multiple deployments are needed, scale these components manually.

**Prerequisites**

- You have cluster administrator permissions on OpenShift Container Platform, or you have cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or OpenShift Dedicated.
- The OpenShift Serverless Operator and Knative Eventing are installed on your cluster.

**Procedure**

1. In the OpenShift Container Platform web console Administrator perspective, navigate to OperatorHub → Installed Operators.

2. Select the `knative-eventing` namespace.

3. Click Knative Eventing in the list of Provided APIs for the OpenShift Serverless Operator to go to the Knative Eventing tab.

4. Click `knative-eventing`, then go to the YAML tab in the `knative-eventing` page.
5. Modify the number of replicas in the `KnativeEventing` CR:

Example YAML

```yaml
apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 high-availability:
 replicas: 3
```

10.2.2. Configuring high availability replicas for the Knative broker implementation for Apache Kafka

High availability (HA) is available by default for the Knative broker implementation for Apache Kafka components `kafka-controller` and `kafka-webhook-eventing`, which are configured to have two each replicas by default. You can change the number of replicas for these components by modifying the `spec.high-availability.replicas` value in the `KnativeKafka` custom resource (CR).

**Prerequisites**

- You have cluster administrator permissions on OpenShift Container Platform, or you have cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or OpenShift Dedicated.
The OpenShift Serverless Operator and Knative broker for Apache Kafka are installed on your cluster.

**Procedure**

1. In the OpenShift Container Platform web console **Administrator** perspective, navigate to **OperatorHub → Installed Operators**.

2. Select the **knative-eventing** namespace.

3. Click **Knative Kafka** in the list of **Provided APIs** for the OpenShift Serverless Operator to go to the **Knative Kafka** tab.

4. Click **knative-kafka**, then go to the **YAML** tab in the **knative-kafka** page.

5. Modify the number of replicas in the **KnativeKafka** CR:

**Example YAML**

```yaml
apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 name: knative-kafka
 namespace: knative-eventing
spec:
 high-availability:
 replicas: 3
```

---

CHAPTER 10. TUNING EVENTING CONFIGURATION

129
CHAPTER 11. CONFIGURING KUBE-RBAC-PROXY FOR EVENTING

The kube-rbac-proxy component provides internal authentication and authorization capabilities for Knative Eventing.

11.1. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR EVENTING

You can globally override resource allocation for the kube-rbac-proxy container by using the OpenShift Serverless Operator CR.

You can also override resource allocation for a specific deployment.

The following configuration sets Knative Eventing kube-rbac-proxy minimum and maximum CPU and memory allocation:

KnativeEventing CR example

```yaml
apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 config:
 deployment:
 "kube-rbac-proxy-cpu-request": "10m" # Sets minimum CPU allocation.
 "kube-rbac-proxy-memory-request": "20Mi" # Sets minimum RAM allocation.
 "kube-rbac-proxy-cpu-limit": "100m" # Sets maximum CPU allocation.
 "kube-rbac-proxy-memory-limit": "100Mi" # Sets maximum RAM allocation.
```

1. Sets minimum CPU allocation.
2. Sets minimum RAM allocation.
3. Sets maximum CPU allocation.
4. Sets maximum RAM allocation.