Managing users and user resources

Learn to manage user permissions and environments in Red Hat OpenShift Data Science
Learn to manage user permissions and environments in Red Hat OpenShift Data Science
Abstract

Learn to manage user permissions and environments in Red Hat OpenShift Data Science.
Table of Contents

CHAPTER 1. USAGE DATA COLLECTION ... 3
1.1. USAGE DATA COLLECTION NOTICE FOR OPENSHIFT DATA SCIENCE 3
1.2. ENABLING USAGE DATA COLLECTION 4
1.3. DISABLING USAGE DATA COLLECTION 4

CHAPTER 2. OVERVIEW OF USER PERMISSIONS ... 6

CHAPTER 3. USER TYPES .. 7

CHAPTER 4. DEFINING OPENSHIFT DATA SCIENCE ADMIN AND USER GROUPS 8

CHAPTER 5. ADDING USERS FOR OPENSHIFT DATA SCIENCE 9
5.1. ADDING USERS TO SPECIALIZED OPENSHIFT DATA SCIENCE USER GROUPS 9
5.2. ADDITIONAL RESOURCES 10

CHAPTER 6. VIEWING OPENSHIFT DATA SCIENCE USERS 11

CHAPTER 7. DELETING USERS AND USER RESOURCES 12
7.1. BACKING UP STORAGE DATA FROM AMAZON EBS 12
7.2. BACKING UP STORAGE DATA FROM GOOGLE PERSISTENT DISK 13
7.3. STOPPING NOTEBOOK SERVERS OWNED BY OTHER USERS 14
7.4. REVOKING USER ACCESS TO JUPYTER 15
7.5. CLEANING UP AFTER DELETING USERS 16

CHAPTER 8. ALLOCATING ADDITIONAL RESOURCES TO OPENSHIFT DATA SCIENCE USERS 18

CHAPTER 9. ENABLING GPU SUPPORT IN OPENSHIFT DATA SCIENCE 19

CHAPTER 10. CONFIGURING THE DEFAULT PVC SIZE FOR YOUR CLUSTER 21

CHAPTER 11. RESTORING THE DEFAULT PVC SIZE FOR YOUR CLUSTER 22

CHAPTER 12. MANAGING NOTEBOOK SERVERS ... 23
12.1. ACCESSING THE JUPYTER ADMINISTRATION INTERFACE 23
12.2. STARTING NOTEBOOK SERVERS OWNED BY OTHER USERS 23
12.3. ACCESSING NOTEBOOK SERVERS OWNED BY OTHER USERS 24
12.4. STOPPING NOTEBOOK SERVERS OWNED BY OTHER USERS 25
12.5. STOPPING IDLE NOTEBOOKS 26
12.6. CONFIGURING A CUSTOM NOTEBOOK IMAGE 27

CHAPTER 13. BACKING UP STORAGE DATA .. 29
13.1. BACKING UP STORAGE DATA FROM AMAZON EBS 29
13.2. BACKING UP STORAGE DATA FROM GOOGLE PERSISTENT DISK 30
CHAPTER 1. USAGE DATA COLLECTION

Red Hat OpenShift Data Science administrators can choose whether to allow Red Hat to collect data about OpenShift Data Science usage in their cluster. Collecting this data allows Red Hat to monitor and improve our software and support. For further details about the data Red Hat collects, see Usage data collection notice for OpenShift Data Science.

Usage data collection is enabled by default when you install OpenShift Data Science on your OpenShift Dedicated cluster.

See Disabling usage data collection for instructions on disabling the collection of this data in your cluster. If you have disabled data collection on your cluster, and you want to enable it again, see Enabling usage data collection for more information.

1.1. USAGE DATA COLLECTION NOTICE FOR OPENSHIFT DATA SCIENCE

In connection with your use of this Red Hat offering, Red Hat may collect usage data about your use of the software. This data allows Red Hat to monitor the software and to improve Red Hat offerings and support, including identifying, troubleshooting, and responding to issues that impact users.

What information does Red Hat collect?

Tools within the software monitor various metrics and this information is transmitted to Red Hat. Metrics include information such as:

- Information about applications enabled in the product dashboard.
- The deployment sizes used (that is, the CPU and memory resources allocated).
- Information about documentation resources accessed from the product dashboard.
- The name of the notebook images used (that is, Minimal Python, Standard Data Science, and other images.).
- A unique random identifier that generates during the initial user login to associate data to a particular username.
- Usage information about components, features, and extensions.

Third Party Service Providers

Red Hat uses certain third party service providers to collect the telemetry data.

Security

Red Hat employs technical and organizational measures designed to protect the usage data.

Personal Data

Red Hat does not intend to collect personal information. If Red Hat discovers that personal information has been inadvertently received, Red Hat will delete such personal information and treat such personal information in accordance with Red Hat’s Privacy Statement. For more information about Red Hat’s privacy practices, see Red Hat’s Privacy Statement.

Enabling and Disabling Usage Data

You can disable or enable usage data by following the instructions in Disabling usage data collection or Enabling usage data collection.
1.2. ENABLING USAGE DATA COLLECTION

Red Hat OpenShift Data Science administrators can choose whether to allow Red Hat to collect data about OpenShift Data Science usage in their cluster. Usage data collection is enabled by default when you install OpenShift Data Science on your OpenShift Dedicated cluster. If you have disabled data collection previously, you can re-enable it by following these steps.

Prerequisites

- You have logged in to Red Hat OpenShift Data Science.
- You are part of the OpenShift Data Science administrator group in OpenShift Dedicated.

Procedure

1. From the OpenShift Data Science dashboard, click **Settings → Cluster settings**.
2. Locate the **Usage data collection** section.
3. Select the **Allow collection of usage data** checkbox.
4. Click **Save changes**.

Verification

- A notification is shown when settings are updated: **Settings changes saved**.

Additional resources

- Usage data collection notice for OpenShift Data Science

1.3. DISABLING USAGE DATA COLLECTION

Red Hat OpenShift Data Science administrators can choose whether to allow Red Hat to collect data about OpenShift Data Science usage in their cluster. Usage data collection is enabled by default when you install OpenShift Data Science on your OpenShift Dedicated cluster.

You can disable data collection by following these steps.

Prerequisites

- You have logged in to Red Hat OpenShift Data Science.
- You are part of the OpenShift Data Science administrator group in OpenShift Dedicated.

Procedure

1. From the OpenShift Data Science dashboard, click **Settings → Cluster settings**.
2. Locate the **Usage data collection** section.
3. Deselect the **Allow collection of usage data** checkbox.
4. Click **Save changes**.
Verification

- A notification is shown when settings are updated: Settings changes saved.

Additional resources

- Usage data collection notice for OpenShift Data Science
CHAPTER 2. OVERVIEW OF USER PERMISSIONS

By default, all OpenShift users have access to Red Hat OpenShift Data Science. In addition, users in the OpenShift Dedicated administrator group (by default, **dedicated-admins**), automatically have administrator access in OpenShift Data Science.

Alternatively, you can create specialized user groups to restrict access to OpenShift Data Science for users and administrators. Therefore, you must decide if you want to restrict access to your OpenShift Data Science deployment using specialized user groups, as opposed to allowing all OpenShift users access.

If you decide to restrict access, and you already have user groups defined in your configured identity provider, you can add these user groups to your OpenShift Data Science deployment. If you decide to use specialized user groups without adding these groups from an identity provider, you must create the groups in OpenShift Data Science and then add the appropriate users to them.

The user groups configured in OpenShift Dedicated, **cluster-admins** and **dedicated-admins**, are separate to any specialized OpenShift Data Science user groups. There are some operations relevant to OpenShift Data Science that require the **cluster-admins** or **dedicated-admins** role. Those operations include:

- Adding users to the OpenShift Data Science user and administrator groups, if you are using specialized groups.
- Removing users from the OpenShift Data Science user and administrator groups, if you are using specialized groups.
- Managing custom environment and storage configuration for users in OpenShift Dedicated, such as Jupyter notebook resources, ConfigMaps, and persistent volume claims (PVCs).

IMPORTANT

Although users of OpenShift Data Science and its components are authenticated through OpenShift, session management is separate from authentication. This means that logging out of OpenShift Dedicated or OpenShift Data Science does not affect a logged in Jupyter session running on those platforms. This means that when a user’s permissions change, that user must log out of all current sessions in order for the changes to take effect.
CHAPTER 3. USER TYPES

Red Hat OpenShift Data Science has the following user types:

Table 3.1. User types

<table>
<thead>
<tr>
<th>User Type</th>
<th>Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data scientists</td>
<td>Data scientists can access and use individual components of Red Hat OpenShift Data Science, such as Jupyter.</td>
</tr>
<tr>
<td>IT operations administrators</td>
<td>In addition to the actions permitted to a data scientist, IT operations administrators can:</td>
</tr>
<tr>
<td></td>
<td>• Configure Red Hat OpenShift Data Science settings.</td>
</tr>
<tr>
<td></td>
<td>• Access and manage notebook servers.</td>
</tr>
</tbody>
</table>

Additional resources

- OpenShift Dedicated Cluster administration
CHAPTER 4. DEFINING OPENSIGHT DATA SCIENCE ADMIN
AND USER GROUPS

By default, users with cluster admin permissions and users in the dedicated-admins administrator group are OpenShift Data Science administrators, but all users authenticated in OpenShift can access OpenShift Data Science. A cluster admin is a superuser that can perform any action in any project in the OpenShift cluster. When bound to a user with a local binding, they have full control over quota and every action on every resource in the project. You can also define additional OpenShift Data Science admin and user groups using the dashboard.

Prerequisites

- You have logged in to Red Hat OpenShift Data Science as described in Logging in to OpenShift Data Science.
- You are part of the OpenShift Data Science administrator group in OpenShift Dedicated.
- The groups that you want to define as admin and user groups exist in OpenShift Dedicated.

Procedure

1. From the OpenShift Data Science dashboard, click Settings → User management.

2. Define your OpenShift Data Science admin groups: Under Data science administrator groups, click the text box and select an OpenShift group. Repeat this process to define multiple admin groups.

3. Define your OpenShift Data Science user groups: Under Data science user groups, click the text box and select an OpenShift group. Repeat this process to define multiple user groups.

 IMPORTANT

 The system:authenticated setting allows all users authenticated in OpenShift to access OpenShift Data Science.

4. Click Save changes.

Verification

- Admin users can successfully log in to OpenShift Data Science and perform administrative functions.
- Non-admin users can successfully log in to OpenShift Data Science, and can access and use individual components, such as Jupyter.
CHAPTER 5. ADDING USERS FOR OPENSHIFT DATA SCIENCE

By default, all OpenShift users have access to Red Hat OpenShift Data Science. If you are using these default permission settings, no further action is required. However, if you plan to restrict access to your OpenShift Data Science instance by defining specialized user groups, you must grant users permission to access Red Hat OpenShift Data Science by adding user accounts to the Red Hat OpenShift Data Science user group, administrator group, or both. You can either use the default group name, or specify a group name that already exists in your identity provider.

The **user group** provides the user with access to developer functions in the Red Hat OpenShift Data Science dashboard, and associated services, such as Jupyter.

The **administrator group** provides the user with access to developer and administrator functions in the Red Hat OpenShift Data Science dashboard and associated services, such as Jupyter.

If you have restricted access using specialized user groups, users that are not in the OpenShift Data Science user group or administrator group can still view the dashboard, but are unable to use associated services, such as Jupyter. They are also unable to access the **Cluster settings** page.

To use the default group names, see *Adding users to specialized OpenShift Data Science user groups*. This method is easy to set up, but you must manually configure user lists in the OpenShift Dedicated web console.

IMPORTANT

If you are using LDAP as your identity provider, you need to configure LDAP syncing to OpenShift Dedicated. See *Syncing LDAP groups* for more information.

5.1. ADDING USERS TO SPECIALIZED OPENSHIFT DATA SCIENCE USER GROUPS

From Red Hat OpenShift Data Science 1.8, all OpenShift Dedicated users have access to Red Hat OpenShift Data Science by default. Additionally, users in the **dedicated-admins** administrator group automatically have administrator access to OpenShift Data Science. Versions of OpenShift Data Science before 1.8 contain specialized OpenShift Data Science administrator and user groups. To further restrict access to OpenShift Data Science in versions 1.8 or beyond, you can continue to create specialized OpenShift Data Science administrator and user groups.

Follow the steps in this section to add users to your specialized OpenShift Data Science administrator and user groups. This method is easy to set up, but you must manage the user lists manually in the OpenShift Dedicated web console.

Prerequisites

- You have configured a supported identity provider for OpenShift Dedicated.
- You are part of the **dedicated-admins** user group in OpenShift Dedicated.
- You have defined an OpenShift Data Science administrator group and user group.

Procedure

1. In the OpenShift Dedicated web console, click **User Management → Groups**.
2. Click the name of the group you want to add users to.
For administrative users, click the administrator group, for example, **rhods-admins**.

For normal users, click the user group, for example, **rhods-users**. The **Group details** page for that group appears.

3. Click **Actions → Add Users**.
 The **Add Users** dialog appears.

4. In the **Users** field, enter the relevant user name to add to the group.

5. Click **Save**.

Verification

- Click the **Details** tab for each group and confirm that the **Users** section contains the user names that you added.

5.2. ADDITIONAL RESOURCES

- Adding users to specialized OpenShift Data Science user groups
- Accessing the OpenShift Data Science dashboard
CHAPTER 6. VIEWING OPENSSHIFT DATA SCIENCE USERS

By default, all OpenShift users have access to Red Hat OpenShift Data Science. Users with the **cluster-admin** role automatically have administrator access in OpenShift Data Science. In addition, users in the OpenShift Dedicated administrator group (by default, **dedicated-admins**), automatically have administrator access in OpenShift Data Science. However, changing the name of the **dedicated-admins** group results in users belonging to this group not retaining their OpenShift Data Science administrator access privileges. However, you can create specialized user groups to restrict access to OpenShift Data Science for users and administrators. Follow these steps if you have defined specialized OpenShift Data Science user groups, so that you can view the users that belong to these groups.

Prerequisites

- The Red Hat OpenShift Data Science user group, administrator group, or both exist.
- You have the **cluster-admin** role or you are part of the **dedicated-admins** administrator group.
- You have configured a supported identity provider for OpenShift Dedicated.

Procedure

1. In the OpenShift Dedicated web console, click **User Management → Groups**.
2. Click the name of the group containing the users that you want to view.
 - For administrative users, click the name of your administrator group, for example, **rhods-admins**.
 - For normal users, click the name of your user group, for example, **rhods-users**.
 The **Group details** page for the group appears.

Verification

- In the **Users** section for the relevant group, you can view the users who have permission to access Red Hat OpenShift Data Science.
CHAPTER 7. DELETING USERS AND USER RESOURCES

Users with administrator access to OpenShift Dedicated can revoke user access to Jupyter and delete user resources from Red Hat OpenShift Data Science.

IMPORTANT

To completely remove a user from OpenShift Data Science, you must remove them from the allowed group in your OpenShift identity provider.

7.1. BACKING UP STORAGE DATA FROM AMAZON EBS

Red Hat recommends that you back up the data on your persistent volume claims (PVCs) regularly. Backing up your data is particularly important before deleting a user and before uninstalling OpenShift Data Science, as all PVCs are deleted when OpenShift Data Science is uninstalled.

Prerequisites

- You have credentials for OpenShift Cluster Manager (https://console.redhat.com/openshift/).
- You have administrator access to the OpenShift Dedicated cluster.
- You have credentials for the Amazon Web Services (AWS) account that the OpenShift Dedicated cluster is deployed under.

Procedure

1. Determine the IDs of the persistent volumes (PVs) that you want to back up.
 a. In the OpenShift Dedicated web console, change into the Administrator perspective.
 b. Click Home → Projects.
 c. Click the rhods-notebooks project. The Details page for the project opens.
 d. Click the PersistentVolumeClaims in the Inventory section. The PersistentVolumeClaims page opens.
 e. Note the ID of the persistent volume (PV) that you want to back up.

 NOTE

 The persistent volumes (PV) that you make a note of are required to identify the correct EBS volume to back up in your AWS instance.

2. Locate the EBS volume containing the PVs that you want to back up.
 See Amazon Web Services documentation: Create Amazon EBS snapshots for more information.
 a. Log in to AWS (https://aws.amazon.com) and ensure that you are viewing the region that your OpenShift Dedicated cluster is deployed in.
 b. Click Services.
c. Click Compute → EC2.

d. Click Elastic Block Storage → Volumes in the side navigation. The Volumes page opens.

e. In the search bar, enter the ID of the persistent volume (PV) that you made a note of earlier. The Volumes page reloads to display the search results.

f. Click on the volume shown and verify that any kubernetes.io/created-for/pvc/namespace tags contain the value rhods-notebooks, and any kubernetes.io/created-for/pvc/name tags match the name of the persistent volume that the EC2 volume is being used for, for example, jupyter-nb-user1-pvc.

3. Back up the EBS volume that contains your persistent volume (PV).

 a. Right-click on the volume that you want to back up and select Create Snapshot from the list. The Create Snapshot page opens.

 b. Enter a Description for the volume.

 c. Click Create Snapshot. The snapshot of the volume is created.

 d. Click Close.

Verification

- The snapshot that you created is visible on the Snapshots page in AWS.

Additional resources

- Amazon Web Services documentation: Create Amazon EBS snapshots

7.2. BACKING UP STORAGE DATA FROM GOOGLE PERSISTENT DISK

Red Hat recommends that you back up the data on your persistent volume claims (PVCs) regularly. Backing up your data is particularly important before deleting a user and before uninstalling OpenShift Data Science, as all PVCs are deleted when OpenShift Data Science is uninstalled.

Prerequisites

- You have credentials for OpenShift Cluster Manager (https://console.redhat.com/openshift/).

- You have administrator access to the OpenShift Dedicated cluster.

- You have credentials for the Google Cloud Platform (GCP) account that the OpenShift Dedicated cluster is deployed under.

Procedure

1. Determine the IDs of the persistent volumes (PVs) that you want to back up.

 a. In the OpenShift Dedicated web console, change into the Administrator perspective.

 b. Click Home → Projects.
c. Click the **rhods-notebooks** project. The **Details** page for the project opens.

d. Click the **PersistentVolumeClaims** in the **Inventory** section. The **PersistentVolumeClaims** page opens.

e. Note the ID of the persistent volume (PV) that you want to back up. The persistent volume (PV) IDs are required to identify the correct persistent disk to back up in your GCP instance.

2. Locate the persistent disk containing the PVs that you want to back up.

a. Log in to the Google Cloud console (https://console.cloud.google.com) and ensure that you are viewing the region that your OpenShift Dedicated cluster is deployed in.

b. Click the navigation menu (≡) and then click **Compute Engine**.

c. From the side navigation, under **Storage**, click **Disks**. The **Disks** page opens.

d. In the **Filter** query box, enter the ID of the persistent volume (PV) that you made a note of earlier. The **Disks** page reloads to display the search results.

e. Click on the disk shown and verify that any **kubernetes.io/created-for/pvc/namespace** tags contain the value **rhods-notebooks**, and any **kubernetes.io/created-for/pvc/name** tags match the name of the persistent volume that the persistent disk is being used for, for example, **jupyterhub-nb-user1-pvc**.

3. Back up the persistent disk that contains your persistent volume (PV).

a. Select **CREATE SNAPSHOT** from the top navigation. The **Create a snapshot** page opens.

b. Enter a unique **Name** for the snapshot.

c. Under **Source disk**, verify the persistent disk you want to back up is displayed.

d. Change any optional settings as needed.

e. Click **CREATE**. The snapshot of the persistent disk is created.

Verification

- The snapshot that you created is visible on the **Snapshots** page in GCP.

Additional resources

- [Google Cloud documentation: Create and manage disk snapshots](https://cloud.google.com/compute/docs/snapshots/create-and-manage)

7.3. STOPPING NOTEBOOK SERVERS OWNED BY OTHER USERS

Administrators can stop notebook servers that are owned by other users to reduce resource consumption on the cluster, or as part of removing a user and their resources from the cluster.
Prerequisites

- If you are using specialized OpenShift Data Science groups, you are part of the administrator group (for example, `rhods-admins`). If you are not using specialized groups, you are part of the OpenShift Dedicated administrator group. See Adding administrative users for OpenShift Dedicated for more information.
- You have launched the Jupyter application. See Launching Jupyter and starting a notebook server.
- The notebook server that you want to stop is running.

Procedure

1. On the page that opens when you launch Jupyter, click the Administration tab.

2. Stop one or more servers.
 - If you want to stop one or more specific servers, perform the following actions:
 i. In the Users section, locate the user that the notebook server belongs to.
 ii. To stop the notebook server, perform one of the following actions:
 - Click the action menu (⋮) beside the relevant user and select Stop server.
 - Click View server beside the relevant user and then click Stop notebook server.
 The Stop server dialog box appears.
 iii. Click Stop server.
 - If you want to stop all servers, perform the following actions:
 i. Click the Stop all servers button.
 ii. Click OK to confirm stopping all servers.

Verification

- The Stop server link beside each server changes to a Start server link when the notebook server has stopped.

7.4. REVOKING USER ACCESS TO JUPYTER

You can revoke a user’s access to Jupyter to prevent them from running notebook servers and consuming resources in your cluster through Jupyter, while still allowing them access to OpenShift Data Science and other services that use OpenShift’s identity provider for authentication.

IMPORTANT

Follow these steps only if you have restricted access to OpenShift Data Science using specialized user groups. To completely remove a user from OpenShift Data Science, you must remove them from the allowed group in your OpenShift identity provider.

Prerequisites
• You have stopped any notebook servers owned by the user you want to delete.

• You are part of the dedicated-admins user group in OpenShift Dedicated.

• If you are using specialized OpenShift Data Science user groups, the user is part of the OpenShift Data Science user group, administrator group, or both.

Procedure

1. In the OpenShift Dedicated web console, click User Management → Groups.

2. Click the name of the group that you want to remove the user from.

 • For administrative users, click the name of your administrator group, for example, rhods-admins.

 • For normal users, click the name of your user group, for example, rhods-users.

 The Group details page for the group appears.

3. In the Users section on the Details tab, locate the user that you want to remove.

4. Click the action menu (⋮) beside the user that you want to remove and click Remove user.

Verification

• Check the Users section on the Details tab and confirm that the user that you removed is not visible.

• In the rhods-notebooks project, check under Workload → Pods and ensure that there is no notebook server pod for this user. If you can see a pod named jupyter-nb-<username>* for the user that you have removed, delete that pod to ensure that the deleted user is not consuming resources on the cluster.

• In the data science dashboard, check the list of data science projects. Delete any projects that belong to the user.

7.5. CLEANING UP AFTER DELETING USERS

After removing a user’s access to Red Hat OpenShift Data Science or Jupyter, you must also delete their associated configuration files from OpenShift Dedicated. It is recommended that you back up the user’s data before removing their configuration files.

Prerequisites

• (Optional) If you want to completely remove the user’s access to OpenShift Data Science, you have removed their credentials from your identity provider.

• You have revoked the user’s access to Jupyter.

• You have backed up the user’s storage data from Amazon EBS or Google Persistent Disk.

• If you are using specialized OpenShift Data Science groups, you are part of the administrator group (for example, rhods-admins). If you are not using specialized groups, you are part of the OpenShift Dedicated administrator group. See Adding administrative users for OpenShift Dedicated for more information.
- You have logged in to the OpenShift Dedicated web console.
- You have logged in to OpenShift Data Science.

Procedure

1. Delete the user’s persistent volume claim (PVC).
 a. Click Storage → PersistentVolumeClaims.
 b. If it is not already selected, select the rhods-notebooks project from the project list.
 c. Locate the jupyter-nb-<username> PVC.
 Replace <username> with the relevant user name.
 d. Click the action menu (⋯) and select Delete PersistentVolumeClaim from the list.
 The Delete PersistentVolumeClaim dialog appears.
 e. Inspect the dialog and confirm that you are deleting the correct PVC.
 f. Click Delete.

2. Delete the user’s ConfigMap.
 a. Click Workloads → ConfigMaps.
 b. If it is not already selected, select the rhods-notebooks project from the project list.
 c. Locate the jupyterhub-singleuser-profile-<username> ConfigMap.
 Replace <username> with the relevant user name.
 d. Click the action menu (⋯) and select Delete ConfigMap from the list.
 The Delete ConfigMap dialog appears.
 e. Inspect the dialog and confirm that you are deleting the correct ConfigMap.
 f. Click Delete.

Verification

- The user cannot access Jupyter any more, and sees an "Access permission needed" message if they try.
- The user’s single-user profile, persistent volume claim (PVC), and ConfigMap are not visible in OpenShift Dedicated.
CHAPTER 8. ALLOCATING ADDITIONAL RESOURCES TO OPENSHIFT DATA SCIENCE USERS

As a cluster administrator, you can allocate additional resources to a cluster to support compute-intensive data science work. This includes increasing the number of nodes in the cluster and changing the cluster’s allocated machine pool.

Prerequisites

- You have credentials for administering clusters in OpenShift Cluster Manager (https://console.redhat.com/openshift/). For more information about configuring administrative access in OpenShift Cluster Manager, see Configuring access to clusters in OpenShift Cluster Manager.

- If you are increasing the size of a machine pool using NVIDIA GPUs, your OpenShift Dedicated cluster supports them.

- You have an AWS or GCP instance with the capacity to create larger container sizes.

- For compute-intensive operations, you have an AWS or GCP instance with enough capacity to accommodate the largest container size, XL.

Procedure

1. Log in to OpenShift Cluster Manager (https://console.redhat.com/openshift/).

2. Click Clusters. The Clusters page opens.

3. Click the name of the cluster you want to allocate additional resources to.

4. Click Actions → Edit node count.

5. Select a Machine pool from the list.

6. Select the number of nodes assigned to the machine pool from the Node count list.

7. Click Apply.

Verification

- The additional resources that you allocated to the cluster are displayed on the Machine Pools tab.
CHAPTER 9. ENABLING GPU SUPPORT IN OPENSSHIFT DATA SCIENCE

Optionally, to ensure that your data scientists can use compute-heavy workloads in their models, you can enable graphics processing units (GPUs) in OpenShift Data Science.

To make GPUs available in OpenShift Data Science, after you install OpenShift Data Science, you must install the NVIDIA GPU Add-on. This add-on locates and enables any GPU-enabled worker nodes in your cluster, making GPU instance types available for selection. The NVIDIA GPU Add-on automatically installs and enables the Node Feature Discovery and the relevant GPU operators to make NVIDIA GPUs available in your cluster. After you have installed the NVIDIA GPU Add-on, and you have ensured there are GPU-enabled worker nodes in your cluster, your data scientists can select one of the GPU-enabled notebooks in Jupyter, along with the number of GPUs they require for their data science work. Red Hat recommends that you use a separate machine pool for GPU nodes.

IMPORTANT

Follow the instructions in this chapter only if you want to enable GPU support in a Red Hat managed cloud service environment. To enable GPU support in an unrestricted self-managed environment, see Enabling GPU support in OpenShift Data Science for more information. To enable GPU support in a disconnected self-managed environment, see Enabling GPU support in OpenShift Data Science for more information.

Prerequisites

- You have credentials for OpenShift Cluster Manager (https://console.redhat.com/openshift/).
- You are part of the cluster-admins user group in OpenShift Dedicated.
- You have provisioned a cluster that contains enough resources to satisfy the requirements of OpenShift Data Science and the NVIDIA GPU Add-on.
- You have installed and logged in to Red Hat OpenShift Data Science.
- You must have installed and logged in to the OpenShift CLI (oc).

Procedure

1. Navigate to your cluster on OpenShift Cluster Manager.
 a. Log in to OpenShift Cluster Manager (https://console.redhat.com/openshift/).
 b. Click Clusters.
 The Clusters page opens.
 c. Click the name of the cluster that you have installed OpenShift Data Science on.
 The Details page for the cluster opens.

2. Add a machine pool for nodes with GPUs.
 a. Click the Machine pools tab.
 b. Click the Add machine pool button.
 The Add machine pool window opens.
c. Specify a **Machine pool name**.

d. Set a **Compute node instance type** Ensure that the instance type provides one or more GPUs.

e. Set a **Compute node count** of at least one.

f. Click **Add machine pool**

Your machine pool is created.

3. Install the NVIDIA GPU Add-on.

a. Click the **Add-ons** tab.

b. Click on the **NVIDIA GPU Add-on** card.

c. Click **Install**.

Verification

- In OpenShift Cluster Manager, under the **Add-ons** tab for the cluster, confirm that the NVIDIA GPU Add-on is installed.

- Check that GPU-enabled functionality is available in Red Hat OpenShift Data Science.

 - Check and validate the nvidia-device-plugin-validator logs. At the OpenShift CLI, enter the following command:

  ```
  oc logs nvidia-device-plugin-validator-<alpha-numeric-string> -n redhat-gpu-operator
  ```

 Where `<alpha-numeric-string>` is a randomly generated alpha-numeric string.

 If the validation is successful, the following response is returned:

  ```
  device-plugin validation is successful
  ```

 - Red Hat recommends that you run a sample GPU application to ensure GPU-enabled models can successfully run on Red Hat OpenShift Data Science. For more information, see [Running a sample GPU application](#).

 - Run the `nvidia-smi` command within the relevant pod to test the GPU utilization of your sample project. For more information, see [Getting information about the GPU](#).

Additional resources

- [Adding services to Red Hat OpenShift Service on AWS clusters](#)

- [Add-on services available for OpenShift Dedicated](#)

- [NVIDIA GPU Operator](#)
CHAPTER 10. CONFIGURING THE DEFAULT PVC SIZE FOR YOUR CLUSTER

To configure how resources are claimed within your OpenShift Data Science cluster, you can change the default size of the cluster's persistent volume claim (PVC) ensuring that the storage requested matches your common storage workflow. PVCs are requests for resources in your cluster and also act as claim checks to the resource.

Prerequisites

- You have logged in to Red Hat OpenShift Data Science.
- You are part of the OpenShift Data Science administrator group in OpenShift Dedicated.

Changing this setting restarts the Jupyter pod making Jupyter unavailable for up to 30 seconds. As a workaround, it is recommended that you perform this action outside of your organization's typical working day.

Procedure

1. From the OpenShift Data Science dashboard, click Settings → Cluster settings.
2. Under PVC size, enter a new size in gibibytes. The minimum size is 1 GiB, and the maximum size is 16384 GiB.
3. Click Save changes.

Verification

- New PVCs are created with the default storage size that you configured.

Additional resources

- Understanding persistent storage
CHAPTER 11. RESTORING THE DEFAULT PVC SIZE FOR YOUR CLUSTER

To change the size of resources utilized within your OpenShift Data Science cluster, you can restore the default size of your cluster’s persistent volume claim (PVC).

Prerequisites

- You have logged in to Red Hat OpenShift Data Science.
- You are part of the OpenShift Data Science administrator group in OpenShift Dedicated.

Procedure

1. From the OpenShift Data Science dashboard, click **Settings → Cluster settings**.
2. Click **Restore Default** to restore the default PVC size of 20GiB.
3. Click **Save changes**.

Verification

- New PVCs are created with the default storage size of 20 GiB.

Additional resources

- **Understanding persistent storage**
12.1. ACCESSING THE JUPYTER ADMINISTRATION INTERFACE

You can use the Jupyter administration interface to control notebook servers in your Red Hat OpenShift Data Science environment.

Prerequisites

- You are part of the OpenShift Dedicated administrator group. See Adding administrative users for OpenShift Dedicated for more information.

Procedure

- To access the Jupyter administration interface from OpenShift Data Science, perform the following actions:

 i. In OpenShift Data Science, in the Applications section of the left menu, click Enabled.

 ii. Locate the Jupyter card and click Launch application.

 iii. On the page that opens when you launch Jupyter, click the Administration tab. The Administration page opens.

- To access the Jupyter administration interface from JupyterLab, perform the following actions:

 i. Click File → Hub Control Panel.

 ii. On the page that opens in OpenShift Data Science, click the Administration tab. The Administration page opens.

Verification

- You can see the Jupyter administration interface.

12.2. STARTING NOTEBOOK SERVERS OWNED BY OTHER USERS

Administrators can start a notebook server for another existing user from the Jupyter administration interface.
Prerequisites

- You are part of the OpenShift Dedicated administrator group. See Adding administrative users for OpenShift Dedicated for more information.

- You have launched the Jupyter application. See Launching Jupyter and starting a notebook server.

Procedure

1. On the page that opens when you launch Jupyter, click the Administration tab.

2. On the Administration tab, perform the following actions:
 a. In the Users section, locate the user whose notebook server you want to start.
 b. Click Start server beside the relevant user.
 c. Complete the Start a notebook server page.
 d. Optional: Select the Start server in current tab checkbox if necessary.
 e. Click Start server.
 After the server starts, you see one of the following behaviors:
 - If you previously selected the Start server in current tab checkbox, the JupyterLab interface opens in the current tab of your web browser.
 - If you did not previously select the Start server in current tab checkbox, the Starting server dialog box prompts you to open the server in a new browser tab or in the current tab.
 The JupyterLab interface opens according to your selection.

Verification

- The JupyterLab interface opens.

Additional resources

- Launching Jupyter and starting a notebook server
- Options for notebook server environments

12.3. ACCESSING NOTEBOOK SERVERS OWNED BY OTHER USERS

Administrators can access notebook servers that are owned by other users to correct configuration errors or help a data scientist troubleshoot problems with their environment.

Prerequisites

- You are part of the OpenShift Dedicated administrator group. See Adding administrative users for OpenShift Dedicated for more information.

- You have launched the Jupyter application. See Launching Jupyter and starting a notebook server.
• The notebook server that you want to access is running.

Procedure

1. On the page that opens when you launch Jupyter, click the Administration tab.
2. On the Administration page, perform the following actions:
 a. In the Users section, locate the user that the notebook server belongs to.
 b. Click View server beside the relevant user.
 c. On the Notebook server control panel page, click Access notebook server.

Verification

• The user’s notebook server opens in JupyterLab.

12.4. STOPPING NOTEBOOK SERVERS OWNED BY OTHER USERS

Administrators can stop notebook servers that are owned by other users to reduce resource consumption on the cluster, or as part of removing a user and their resources from the cluster.

Prerequisites

• If you are using specialized OpenShift Data Science groups, you are part of the administrator group (for example, rhods-admins). If you are not using specialized groups, you are part of the OpenShift Dedicated administrator group. See Adding administrative users for OpenShift Dedicated for more information.

• You have launched the Jupyter application. See Launching Jupyter and starting a notebook server.

• The notebook server that you want to stop is running.

Procedure

1. On the page that opens when you launch Jupyter, click the Administration tab.
2. Stop one or more servers.
 • If you want to stop one or more specific servers, perform the following actions:
 i. In the Users section, locate the user that the notebook server belongs to.
 ii. To stop the notebook server, perform one of the following actions:
 • Click the action menu (⋮) beside the relevant user and select Stop server.
 • Click View server beside the relevant user and then click Stop notebook server.
 The Stop server dialog box appears.
 • Click Stop server.
 • If you want to stop all servers, perform the following actions:
i. Click the **Stop all servers** button.

ii. Click **OK** to confirm stopping all servers.

Verification

- The **Stop server** link beside each server changes to a **Start server** link when the notebook server has stopped.

12.5. STOPPING IDLE NOTEBOOKS

You can reduce resource usage in your OpenShift Data Science deployment by stopping notebook servers that have been idle (without logged in users) for a period of time. This is useful when resource demand in the cluster is high. By default, idle notebooks are not stopped after a specific time limit.

NOTE

If you have configured your cluster settings to disconnect all users from a cluster after a specified time limit, then this setting takes precedence over the idle notebook time limit. Users are logged out of the cluster when their session duration reaches the cluster-wide time limit.

Prerequisites

- You have logged in to Red Hat OpenShift Data Science.
- You are part of the OpenShift Data Science administrator group in OpenShift Dedicated.

Procedure

1. From the OpenShift Data Science dashboard, click **Settings → Cluster settings**.
2. Under **Stop idle notebooks**, select **Stop idle notebooks after**.
3. Enter a time limit, in **hours** and **minutes**, for when idle notebooks are stopped.
4. Click **Save changes**.

Verification

- The **notebook-controller-culler-config** ConfigMap, located in the **redhat-ods-applications** project on the **Workloads → ConfigMaps** page, contains the following culling configuration settings:
 - **ENABLE_CULLING**: Specifies if the culling feature is enabled or disabled (this is **false** by default).
 - **IDLENESS_CHECK_PERIOD**: The polling frequency to check for a notebook’s last known activity (in minutes).
 - **CULL_IDLE_TIME**: The maximum allotted time to scale an inactive notebook to zero (in minutes).
- Idle notebooks stop at the time limit that you set.
12.6. CONFIGURING A CUSTOM NOTEBOOK IMAGE

In addition to notebook images provided and supported by Red Hat and independent software vendors (ISVs), you can configure custom notebook images that cater to your project’s specific requirements.

Red Hat supports you in adding custom notebook images to your deployment of OpenShift Data Science and ensuring that they are available for selection when creating a notebook server. However, Red Hat does not support the contents of your custom notebook image. That is, if your custom notebook image is available for selection during notebook server creation, but does not create a usable notebook server, Red Hat does not provide support to fix your custom notebook image.

Prerequisites

- You have logged in to Red Hat OpenShift Data Science.
- You are part of the dedicated-admins user group in OpenShift Dedicated.
- Your custom notebook image exists in an image registry and is accessible.

Procedure

1. From the OpenShift Data Science dashboard, click Settings → Notebook images. The Notebook image settings page appears. Previously imported notebook images are displayed. To enable or disable a previously imported notebook image, on the row containing the relevant notebook image, click the toggle in the Enabled column.

2. Click Import new image. Alternatively, if no previously imported images were found, click Import image. The Import Notebook images dialog appears.

3. In the Repository field, enter the URL of the repository containing the notebook image.

4. In the Name field, enter an appropriate name for the notebook image.

5. In the Description field, enter an appropriate description for the notebook image.

6. Optional: Add software to the notebook image. After the import has completed, the software is added to the notebook image’s meta-data and displayed on the Jupyter server creation page.
 a. Click the Software tab.
 b. Click the Add software button.
 c. Click Edit (✎).
 d. Enter the Software name.
 e. Enter the software Version.
 f. Click Confirm (✓) to confirm your entry.
 g. To add additional software, click Add software, complete the relevant fields, and confirm your entry.
7. Optional: Add packages to the notebook images. After the import has completed, the packages are added to the notebook image’s meta-data and displayed on the Jupyter server creation page.
 a. Click the Packages tab.
 b. Click the Add package button.
 c. Click Edit ().
 d. Enter the Package name.
 e. Enter the package Version.
 f. Click Confirm () to confirm your entry.
 g. To add an additional package, click Add package, complete the relevant fields, and confirm your entry.

8. Click Import.

Verification

- The notebook image that you imported is displayed in the table on the Notebook image settings page.

- Your custom notebook image is available for selection on the Start a notebook server page in Jupyter.

Additional resources

- Managing image streams
- Understanding build configurations
CHAPTER 13. BACKING UP STORAGE DATA

13.1. BACKING UP STORAGE DATA FROM AMAZON EBS

Red Hat recommends that you back up the data on your persistent volume claims (PVCs) regularly. Backing up your data is particularly important before deleting a user and before uninstalling OpenShift Data Science, as all PVCs are deleted when OpenShift Data Science is uninstalled.

Prerequisites

- You have credentials for OpenShift Cluster Manager (https://console.redhat.com/openshift/).
- You have administrator access to the OpenShift Dedicated cluster.
- You have credentials for the Amazon Web Services (AWS) account that the OpenShift Dedicated cluster is deployed under.

Procedure

1. Determine the IDs of the persistent volumes (PVs) that you want to back up.
 a. In the OpenShift Dedicated web console, change into the Administrator perspective.
 b. Click Home → Projects.
 c. Click the rhods-notebooks project. The Details page for the project opens.
 d. Click the PersistentVolumeClaims in the Inventory section. The PersistentVolumeClaims page opens.
 e. Note the ID of the persistent volume (PV) that you want to back up.

 NOTE

 The persistent volumes (PV) that you make a note of are required to identify the correct EBS volume to back up in your AWS instance.

2. Locate the EBS volume containing the PVs that you want to back up.
 See Amazon Web Services documentation: Create Amazon EBS snapshots for more information.
 a. Log in to AWS (https://aws.amazon.com) and ensure that you are viewing the region that your OpenShift Dedicated cluster is deployed in.
 b. Click Services.
 c. Click Compute → EC2.
 d. Click Elastic Block Storage → Volumes in the side navigation. The Volumes page opens.
 e. In the search bar, enter the ID of the persistent volume (PV) that you made a note of earlier. The Volumes page reloads to display the search results.
3. Back up the EBS volume that contains your persistent volume (PV).
 a. Right-click on the volume that you want to back up and select **Create Snapshot** from the list. The **Create Snapshot** page opens.
 b. Enter a **Description** for the volume.
 c. Click **Create Snapshot**. The snapshot of the volume is created.
 d. Click **Close**.

Verification
- The snapshot that you created is visible on the **Snapshots** page in AWS.

Additional resources
- Amazon Web Services documentation: Create Amazon EBS snapshots

13.2. BACKING UP STORAGE DATA FROM GOOGLE PERSISTENT DISK

Red Hat recommends that you back up the data on your persistent volume claims (PVCs) regularly. Backing up your data is particularly important before deleting a user and before uninstalling OpenShift Data Science, as all PVCs are deleted when OpenShift Data Science is uninstalled.

Prerequisites
- You have credentials for OpenShift Cluster Manager (https://console.redhat.com/openshift/).
- You have administrator access to the OpenShift Dedicated cluster.
- You have credentials for the Google Cloud Platform (GCP) account that the OpenShift Dedicated cluster is deployed under.

Procedure
1. Determine the IDs of the persistent volumes (PVs) that you want to back up.
 a. In the OpenShift Dedicated web console, change into the **Administrator** perspective.
 b. Click **Home** → **Projects**.
 c. Click the **rhods-notebooks** project. The **Details** page for the project opens.
 d. Click the **PersistentVolumeClaims** in the **Inventory** section. The **PersistentVolumeClaims** page opens.
 e. Note the ID of the persistent volume (PV) that you want to back up.
The persistent volume (PV) IDs are required to identify the correct persistent disk to back up in your GCP instance.

2. Locate the persistent disk containing the PVs that you want to back up.
 a. Log in to the Google Cloud console (https://console.cloud.google.com) and ensure that you are viewing the region that your OpenShift Dedicated cluster is deployed in.
 b. Click the navigation menu (≡) and then click Compute Engine.
 c. From the side navigation, under Storage, click Disks.
 The Disks page opens.
 d. In the Filter query box, enter the ID of the persistent volume (PV) that you made a note of earlier.
 The Disks page reloads to display the search results.
 e. Click on the disk shown and verify that any kubernetes.io/created-for/pvc/namespace tags contain the value rhods-notebooks, and any kubernetes.io/created-for/pvc/name tags match the name of the persistent volume that the persistent disk is being used for, for example, jupyterhub-nb-user1-pvc.

3. Back up the persistent disk that contains your persistent volume (PV).
 a. Select CREATE SNAPSHOT from the top navigation.
 The Create a snapshot page opens.
 b. Enter a unique Name for the snapshot.
 c. Under Source disk, verify the persistent disk you want to back up is displayed.
 d. Change any optional settings as needed.
 e. Click CREATE.
 The snapshot of the persistent disk is created.

Verification

- The snapshot that you created is visible on the Snapshots page in GCP.

Additional resources

- Google Cloud documentation: Create and manage disk snapshots