Red Hat OpenShift Data Foundation 4.9

Deploying OpenShift Data Foundation using IBM Power

Instructions on deploying Red Hat OpenShift Data Foundation on IBM Power
Instructions on deploying Red Hat OpenShift Data Foundation on IBM Power
Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read this document for instructions on installing Red Hat OpenShift Data Foundation 4.9 to use local storage on IBM Power.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... 3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 4

PREFACE .. 5

CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT DATA FOUNDATION 6
 1.1. REQUIREMENTS FOR INSTALLING OPENSHIFT DATA FOUNDATION USING LOCAL STORAGE DEVICES 6
 1.2. ENABLING KEY VALUE BACKEND PATH AND POLICY IN VAULT 7

CHAPTER 2. DEPLOY OPENSHIFT DATA FOUNDATION USING LOCAL STORAGE DEVICES 8
 2.1. INSTALLING LOCAL STORAGE OPERATOR ... 8
 2.2. INSTALLING RED HAT OPENSHIFT DATA FOUNDATION OPERATOR 8
 2.3. FINDING AVAILABLE STORAGE DEVICES ... 10
 2.4. CREATING OPENSHIFT DATA FOUNDATION CLUSTER ON IBM POWER 11

CHAPTER 3. VERIFYING OPENSHIFT DATA FOUNDATION DEPLOYMENT FOR INTERNAL MODE 16
 3.1. VERIFYING THE STATE OF THE PODS .. 16
 3.2. VERIFYING THE OPENSHIFT DATA FOUNDATION CLUSTER IS HEALTHY 18
 3.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY 18
 3.4. VERIFYING THAT THE OPENSHIFT DATA FOUNDATION SPECIFIC STORAGE CLASSES EXIST 18

CHAPTER 4. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY 19
 4.1. INSTALLING LOCAL STORAGE OPERATOR .. 19
 4.2. INSTALLING RED HAT OPENSHIFT DATA FOUNDATION OPERATOR 19
 4.3. CREATING STANDALONE MULTICLOUD OBJECT GATEWAY ON IBM POWER 21

CHAPTER 5. UNINSTALLING OPENSHIFT DATA FOUNDATION 25
 5.1. UNINSTALLING OPENSHIFT DATA FOUNDATION IN INTERNAL MODE 25
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:

- For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the *Multi-page HTML* format. In addition, ensure you see the **Feedback** button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the **Add Feedback** pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the Bugzilla website.
 2. As the Component, use **Documentation**.
 3. Fill in the **Description** field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click **Submit Bug**.
Red Hat OpenShift Data Foundation 4.9 supports deployment on existing Red Hat OpenShift Container Platform (RHOCP) IBM Power clusters in connected or disconnected environments along with out-of-the-box support for proxy environments.

NOTE

Only internal OpenShift Data Foundation clusters are supported on IBM Power. See [Planning your deployment](#) and [Preparing to deploy OpenShift Data Foundation](#) for more information about deployment requirements.

To deploy OpenShift Data Foundation, follow the appropriate deployment process:

- **Internal-Attached Devices mode**
 - Deploy using local storage devices
 - Deploy standalone Multicloud Object Gateway component
CHAPTER 1. PREPARING TO DEPLOY OPENSOURCE DATA FOUNDATION

Deploying OpenShift Data Foundation on OpenShift Container Platform using local storage devices provided by IBM Power enables you to create internal cluster resources. This approach internally provisions base services. Then, all applications can access additional storage classes.

NOTE

Only internal OpenShift Data Foundation clusters are supported on IBM Power. See Planning your deployment for more information about deployment requirements.

Before you begin the deployment of Red Hat OpenShift Data Foundation using local storage, ensure that your resource requirements are met. See requirements for installing OpenShift Data Foundation using local storage devices.

- On the external key management system (KMS),
 - Ensure that a policy with a token exists and the key value backend path in Vault is enabled. See enabling key value backend path and policy in vault.
 - Ensure that you are using signed certificates on your Vault servers.

After you have addressed the above, follow the below steps in the order given:

1. Install Local Storage Operator.
2. Install the Red Hat OpenShift Data Foundation Operator.
3. Find available storage devices.
4. Create OpenShift Data Foundation cluster on IBM Power.

1.1. REQUIREMENTS FOR INSTALLING OPENSOURCE DATA FOUNDATION USING LOCAL STORAGE DEVICES

Node requirements

- The cluster must consist of at least three OpenShift Container Platform worker nodes in the cluster with locally attached storage devices on each of them.
 - Each of the three selected nodes must have at least one raw block device available to be used by OpenShift Data Foundation.
 - The devices to be used must be empty, that is, there should be no persistent volumes (PVs), volume groups (VGs), or local volumes (LVs) remaining on the disks.
- You must have a minimum of three labeled nodes.
 - Each node that has local storage devices to be used by OpenShift Data Foundation must have a specific label to deploy OpenShift Data Foundation pods. To label the nodes, use the following command:

```
$ oc label nodes <NodeNames> cluster.ocs.openshift.io/openshift-storage=""
```
For more information, see the Resource requirements section in the Planning guide.

1.2. ENABLING KEY VALUE BACKEND PATH AND POLICY IN VAULT

Prerequisites

- Administrator access to Vault.
- Carefully, choose a unique path name as the backend path that follows the naming convention since it cannot be changed later.

Procedure

1. Enable the Key/Value (KV) backend path in Vault.
 For Vault KV secret engine API, version 1:
   ```bash
   $ vault secrets enable -path=ocs kv
   ```
 For Vault KV secret engine API, version 2:
   ```bash
   $ vault secrets enable -path=ocs kv-v2
   ```

2. Create a policy to restrict users to perform a write or delete operation on the secret using the following commands.
   ```bash
   echo 'path "ocs/*" {
       capabilities = ["create", "read", "update", "delete", "list"]
   }
   path "sys-mounts" {
       capabilities = ["read"]
   }' | vault policy write ocs -

3. Create a token matching the above policy.
   ```bash
 $ vault token create -policy=ocs -format json
   ```
CHAPTER 2. DEPLOY OPENSSHIFT DATA FOUNDATION USING LOCAL STORAGE DEVICES

Use this section to deploy OpenShift Data Foundation on IBM Power infrastructure where OpenShift Container Platform is already installed.

Also, it is possible to deploy only the Multicloud Object Gateway (MCG) component with OpenShift Data Foundation. For more information, see Deploy standalone Multicloud Object Gateway.

Perform the following steps to deploy OpenShift Data Foundation:

1. Install Local Storage Operator.
2. Install the Red Hat OpenShift Data Foundation Operator.
3. Find available storage devices.
4. Create OpenShift Data Foundation cluster on IBM Power.

2.1. INSTALLING LOCAL STORAGE OPERATOR

Use this procedure to install the Local Storage Operator from the Operator Hub before creating OpenShift Data Foundation clusters on local storage devices.

**Procedure**

1. Log in to the OpenShift Web Console.
2. Click Operators → OperatorHub.
3. Type local storage in the Filter by keyword... box to find the Local Storage Operator from the list of operators and click on it.
4. Set the following options on the Install Operator page:
   a. Update Channel as stable.
   b. Installation Mode as A specific namespace on the cluster
   c. Installed Namespace as Operator recommended namespace openshift-local-storage.
   d. Approval Strategy as Automatic.
5. Click Install.

**Verification steps**

- Verify that the Local Storage Operator shows a green tick indicating successful installation.

2.2. INSTALLING RED HAT OPENSSHIFT DATA FOUNDATION OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.
For information about the hardware and software requirements, see Planning your deployment.

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with `cluster-admin` and Operator installation permissions.
- You must have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.

**IMPORTANT**

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command in command line interface to specify a blank node selector for the `openshift-storage` namespace (create `openshift-storage` namespace in this case):

  ```
 $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

- Taint a node as `infra` to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Data Foundation chapter in Managing and Allocating Storage Resources guide.

Procedure

1. Navigate in the left pane of the OpenShift Web Console to click **Operators → OperatorHub**.
2. Scroll or type a keyword into the Filter by keyword box to search for OpenShift Data Foundation Operator.
3. Click **Install** on the OpenShift Data Foundation operator page.
4. On the **Install Operator** page, the following required options are selected by default:
   a. Update Channel as **stable-4.9**.
   b. Installation Mode as **A specific namespace on the cluster**
   c. Installed Namespace as **Operator recommended namespace openshift-storage**. If Namespace `openshift-storage` does not exist, it is created during the operator installation.
5. Select **Approval Strategy** as **Automatic** or **Manual**.
   If you select **Automatic** updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
   If you select **Manual** updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.
6. Ensure that the **Enable** option is selected for the **Console plugin**.
7. Click **Install**.

Verification steps
- Verify that **OpenShift Data Foundation** Operator shows a green tick indicating successful installation.

- After the operator is successfully installed, a pop-up with a message, **Web console update is available** appears on the user interface. Click **Refresh web console** from this pop-up for the console changes to reflect.
  - In the Web Console, navigate to **Storage** and verify if **OpenShift Data Foundation** is available.

### 2.3. FINDING AVAILABLE STORAGE DEVICES

Use this procedure to identify the device names for each of the three or more worker nodes that you have labeled with the OpenShift Data Foundation label `cluster.ocs.openshift.io/openshift-storage=''` before creating PVs for IBM Power.

#### Procedure

1. List and verify the name of the worker nodes with the OpenShift Data Foundation label.

   ```bash
 $ oc get nodes -l cluster.ocs.openshift.io/openshift-storage=

 Example output:

 NAME STATUS ROLES AGE VERSION
 worker-0 Ready worker 2d11h v1.21.1+f36aa36
 worker-1 Ready worker 2d11h v1.21.1+f36aa36
 worker-2 Ready worker 2d11h v1.21.1+f36aa36

 2. Log in to each worker node that is used for OpenShift Data Foundation resources and find the name of the additional disk that you have attached while deploying Openshift Container Platform.

   ```bash
   $ oc debug node/<node name>
   
   Example output:
   
   $ oc debug node/worker-0
   Starting pod/worker-0-debug ... 
   To use host binaries, run `chroot /host`
   Pod IP: 192.168.0.63
   If you don't see a command prompt, try pressing enter.
   
   sh-4.4#
   sh-4.4# chroot /host
   sh-4.4# lsblk
   
   NAME   MAJ:MIN  RM   SIZE RO TYPE MOUNTPOINT
   loop1   7:1      0  500G  0 loop
   sda     8:0      0  500G  0 disk
   sdb     8:16     0  120G  0 disk
   |-sdb1  8:17      0  4M  0 part
   |-sdb3  8:19     0  384M  0 part
   `-sdb4  8:20     0 119.6G  0 part
   sdc     8:32     0  500G  0 disk
   ```
<table>
<thead>
<tr>
<th>Device</th>
<th>Major</th>
<th>Minor</th>
<th>Size</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>sdd</td>
<td>8:48</td>
<td>0</td>
<td>120G</td>
<td>0 disk</td>
</tr>
<tr>
<td><code>sdd1</code></td>
<td>8:49</td>
<td>0</td>
<td>4M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdd3</code></td>
<td>8:51</td>
<td>0</td>
<td>384M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdd4</code></td>
<td>8:52</td>
<td>0</td>
<td>119.6G</td>
<td>0 part</td>
</tr>
<tr>
<td>sde</td>
<td>8:64</td>
<td>0</td>
<td>500G</td>
<td>0 disk</td>
</tr>
<tr>
<td><code>sdf1</code></td>
<td>8:81</td>
<td>0</td>
<td>4M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdf3</code></td>
<td>8:83</td>
<td>0</td>
<td>384M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdf4</code></td>
<td>8:84</td>
<td>0</td>
<td>119.6G</td>
<td>0 part</td>
</tr>
<tr>
<td>sdg</td>
<td>8:96</td>
<td>0</td>
<td>500G</td>
<td>0 disk</td>
</tr>
<tr>
<td><code>sdh1</code></td>
<td>8:112</td>
<td>0</td>
<td>120G</td>
<td>0 disk</td>
</tr>
<tr>
<td><code>sdh3</code></td>
<td>8:115</td>
<td>0</td>
<td>384M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdh4</code></td>
<td>8:116</td>
<td>0</td>
<td>119.6G</td>
<td>0 part</td>
</tr>
<tr>
<td>sdi</td>
<td>8:128</td>
<td>0</td>
<td>500G</td>
<td>0 disk</td>
</tr>
<tr>
<td><code>sdj1</code></td>
<td>8:145</td>
<td>0</td>
<td>4M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdj3</code></td>
<td>8:147</td>
<td>0</td>
<td>384M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdj4</code></td>
<td>8:148</td>
<td>0</td>
<td>119.6G</td>
<td>0 part</td>
</tr>
<tr>
<td>sdk</td>
<td>8:160</td>
<td>0</td>
<td>500G</td>
<td>0 disk</td>
</tr>
<tr>
<td>sdl</td>
<td>8:176</td>
<td>0</td>
<td>120G</td>
<td>0 disk</td>
</tr>
<tr>
<td><code>sdl1</code></td>
<td>8:177</td>
<td>0</td>
<td>4M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdl3</code></td>
<td>8:179</td>
<td>0</td>
<td>384M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdl4</code></td>
<td>8:180</td>
<td>0</td>
<td>119.6G</td>
<td>0 part /sysroot</td>
</tr>
<tr>
<td>sdm</td>
<td>8:192</td>
<td>0</td>
<td>500G</td>
<td>0 disk</td>
</tr>
<tr>
<td>sdn</td>
<td>8:208</td>
<td>0</td>
<td>120G</td>
<td>0 disk</td>
</tr>
<tr>
<td><code>sdn1</code></td>
<td>8:209</td>
<td>0</td>
<td>4M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdn3</code></td>
<td>8:211</td>
<td>0</td>
<td>384M</td>
<td>0 part /boot</td>
</tr>
<tr>
<td><code>sdn4</code></td>
<td>8:212</td>
<td>0</td>
<td>119.6G</td>
<td>0 part</td>
</tr>
<tr>
<td>sdo</td>
<td>8:224</td>
<td>0</td>
<td>500G</td>
<td>0 disk</td>
</tr>
<tr>
<td>sdp</td>
<td>8:240</td>
<td>0</td>
<td>120G</td>
<td>0 disk</td>
</tr>
<tr>
<td><code>sdp1</code></td>
<td>8:241</td>
<td>0</td>
<td>4M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdp3</code></td>
<td>8:243</td>
<td>0</td>
<td>384M</td>
<td>0 part</td>
</tr>
<tr>
<td><code>sdp4</code></td>
<td>8:244</td>
<td>0</td>
<td>119.6G</td>
<td>0 part</td>
</tr>
</tbody>
</table>

In this example, for worker-0, the available local devices of 500G are **sda, sdc, sde, sdg, sdi, sdk, sdm, sdo**.

3. Repeat the above step for all the other worker nodes that have the storage devices to be used by OpenShift Data Foundation. See this Knowledge Base article for more details.

2.4. CREATING OPENSHIFT DATA FOUNDATION CLUSTER ON IBM POWER

Use this procedure to create an OpenShift Data Foundation cluster after you install the OpenShift Data Foundation operator.

Prerequisites

- Ensure that all the requirements in the Requirements for installing OpenShift Data Foundation using local storage devices section are met.

- You must have a minimum of three worker nodes with the same storage type and size attached to each node (for example, 200 GB SSD) to use local storage devices on IBM Power.
Verify your OpenShift Container Platform worker nodes are labeled for OpenShift Data Foundation:

```
oc get nodes -l cluster.ocs.openshift.io/openshift-storage -o jsonpath='{range .items[*]}{.metadata.name}{"\n"}’
```

To identify storage devices on each node, refer to Finding available storage devices.

Procedure

1. Log into the OpenShift Web Console.

2. In `openshift-local-storage` namespace Click Operators → Installed Operators to view the installed operators.

3. Click the Local Storage installed operator.

4. On the Operator Details page, click the Local Volume link.

5. Click Create Local Volume.

6. Click on YAML view for configuring Local Volume.

7. Define a LocalVolume custom resource for block PVs using the following YAML.

```yaml
apiVersion: local.storage.openshift.io/v1
kind: LocalVolume
metadata:
  name: localblock
  namespace: openshift-local-storage
spec:
  logLevel: Normal
  managementState: Managed
  nodeSelector:
    nodeSelectorTerms:
      - matchExpressions:
          - key: kubernetes.io/hostname
            operator: In
            values:
              - worker-0
              - worker-1
              - worker-2
  storageClassDevices:
    - devicePaths:
        - /dev/sda
  storageClassName: localblock
  volumeMode: Block
```

The above definition selects `sda` local device from the worker-0, worker-1 and worker-2 nodes. The localblock storage class is created and persistent volumes are provisioned from sda.
Important

Specify appropriate values of nodeSelector as per your environment. The device name should be same on all the worker nodes. You can also specify more than one devicePaths.

8. Click Create.

9. Confirm whether diskmaker-manager pods and Persistent Volumes are created.
 a. For Pods
 i. Click Workloads → Pods from the left pane of the OpenShift Web Console.
 ii. Select openshift-local-storage from the Project drop-down list.
 iii. Check if there are diskmaker-manager pods for each of the worker node that you used while creating LocalVolume CR.
 b. For Persistent Volumes
 i. Click Storage → PersistentVolumes from the left pane of the OpenShift Web Console.
 ii. Check the Persistent Volumes with the name local-pv-. Number of Persistent Volumes will be equivalent to the product of number of worker nodes and number of storage devices provisioned while creating localVolume CR.

Important

- The flexible scaling feature is enabled only when the storage cluster that you created with 3 or more nodes are spread across fewer than the minimum requirement of 3 availability zones.
 For information about flexible scaling, see Add capacity using YAML section in Scaling Storage guide.

10. In the OpenShift Web Console, click Operators → Installed Operators to view all the installed operators.
 Ensure that the Project selected is openshift-storage.

11. Click on the OpenShift Data Foundation operator and then click Create StorageSystem.

12. In the Backing storage page, select the following:
 a. Select the Use an existing StorageClass option.
 b. Select the required Storage Class that you used while installing LocalVolume.
 By default, it is set to none.
 c. Click Next.

13. In the Capacity and nodes page, provide the necessary information:
 a. Available raw capacity is populated with the capacity value based on all the attached disks associated with the storage class. This takes some time to show up.
 b. The Selected nodes list shows the nodes based on the storage class.
c. Click Next.

14. Optional: In the Security and network page, configure the following based on your requirements:

a. To enable encryption, select **Enable data encryption for block and file storage**

b. Choose one or both of the following **Encryption level**

 - **Cluster-wide encryption**
 Encrypts the entire cluster (block and file).

 - **StorageClass encryption**
 Creates encrypted persistent volume (block only) using encryption enabled storage class.

c. Select **Connect to an external key management service** checkbox. This is optional for cluster-wide encryption.

 i. **Key Management Service Provider** is set to **Vault** by default.

 ii. Enter **Vault Service Name**, host **Address** of Vault server (‘https://<hostname or ip>’), **Port** number and **Token**.

 iii. Expand **Advanced Settings** to enter additional settings and certificate details based on your **Vault** configuration:

 A. Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Data Foundation.

 B. Optional: Enter **TLS Server Name** and **Vault Enterprise Namespace**

 C. Provide **CA Certificate**, **Client Certificate** and **Client Private Key** by uploading the respective PEM encoded certificate file.

 D. Click **Save**.

d. Select **Default (SDN)** as Multus is not yet supported on OpenShift Data Foundation on IBM Power.

e. Click **Next**.

15. In the Review and create page:

a. Review the configurations details. To modify any configuration settings, click **Back** to go back to the previous configuration page.

b. Click **Create StorageSystem**.

Verification steps

- To verify the final Status of the installed storage cluster:

 a. In the OpenShift Web Console, navigate to **Installed Operators → OpenShift Data Foundation → Storage System → ocs-storagecluster-storagesystem → Resources**.

 b. Verify that **Status of StorageCluster** is **Ready** and has a green tick mark next to it.

- To verify if flexible scaling is enabled on your storage cluster, perform the following steps:
1. In the Web Console, click **Home → Search**.

2. Select the Resource as **StorageCluster** from the drop-down list.

3. Click **ocs-storagecluster**.

4. In the YAML tab, search for the keys **flexibleScaling** in **spec** section and **failureDomain** in **status** section. If **flexible scaling** is true and **failureDomain** is set to host, flexible scaling feature is enabled.

   ```yaml
   spec:
       flexibleScaling: true
   [...]  
   status:
       failureDomain: host
   ```

 - To verify that all components for OpenShift Data Foundation are successfully installed, see [Verifying your OpenShift Data Foundation deployment](#).

Additional resources

- To expand the capacity of the initial cluster, see the [*Scaling Storage*](#) guide.
CHAPTER 3. VERIFYING OPENSHIFT DATA FOUNDATION DEPLOYMENT FOR INTERNAL MODE

Use this section to verify that OpenShift Data Foundation is deployed correctly.

1. Verify the state of the pods.
2. Verify that the OpenShift Data Foundation cluster is healthy.
3. Verify that the Multicloud Object Gateway is healthy.
4. Verify that the OpenShift Data Foundation specific storage classes exist.

3.1. VERIFYING THE STATE OF THE PODS

To determine if OpenShift Data Foundation is deployed successfully, you can verify that the pods are in Running state.

Procedure

1. Click Workloads → Pods from the left pane of the OpenShift Web Console.
2. Select openshift-storage from the Project drop-down list.

 NOTE

 If the Show default projects option is disabled, use the toggle button to list all the default projects.

 For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see Table 3.1, “Pods corresponding to OpenShift Data Foundation cluster”.

3. Verify that the following pods are in running and completed state by clicking the Running and the Completed tabs:

Table 3.1. Pods corresponding to OpenShift Data Foundation cluster

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Data Foundation Operator</td>
<td>• ocs-operator-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• ocs-metrics-exporter-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• odf-operator-controller-manager-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• odf-console-* (1 pod on any worker node)</td>
</tr>
<tr>
<td>Rook-ceph Operator</td>
<td>rook-ceph-operator-* (1 pod on any worker node)</td>
</tr>
<tr>
<td>Component</td>
<td>Corresponding pods</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>• noobaa-operator-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-core-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-db-pg-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-endpoint-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>MON</td>
<td>rook-ceph-mon-* (3 pods on each storage node)</td>
</tr>
<tr>
<td>MGR</td>
<td>rook-ceph-mgr-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>MDS</td>
<td>rook-ceph-mds-ocs-storagecluster-cephfilesystem-* (2 pods distributed across storage node)</td>
</tr>
<tr>
<td>RGW</td>
<td>rook-ceph-rgw-ocs-storagecluster-cephobjectstore-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>CSI</td>
<td>• cephfs</td>
</tr>
<tr>
<td></td>
<td>• csi-cephfsplugin-* (1 pod on each worker node)</td>
</tr>
<tr>
<td></td>
<td>• csi-cephfsplugin-provisioner-* (2 pods distributed across worker nodes)</td>
</tr>
<tr>
<td></td>
<td>• rbd</td>
</tr>
<tr>
<td></td>
<td>• csi-rbdplugin-* (1 pod on each worker node)</td>
</tr>
<tr>
<td></td>
<td>• csi-rbdplugin-provisioner-* (2 pods distributed across worker nodes)</td>
</tr>
<tr>
<td></td>
<td>rook-ceph-crashcollector-* (1 pod on each storage node)</td>
</tr>
<tr>
<td>OSD</td>
<td>• rook-ceph-osd-* (1 pod for each device)</td>
</tr>
<tr>
<td></td>
<td>• rook-ceph-osd-prepare-ocs-deviceset-* (1 pod for each device)</td>
</tr>
</tbody>
</table>
3.2. VERIFYING THE OPENSHIFT DATA FOUNDATION CLUSTER IS HEALTHY

Procedure

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. Click the Storage Systems tab and then click on ocs-storagecluster-storagesystem.

3. In the Status card of Block and File dashboard under Overview tab, verify that both Storage Cluster and Data Resiliency has a green tick mark.

4. In the Details card, verify that the cluster information is displayed.

For more information on the health of the OpenShift Data Foundation cluster using the Block and File dashboard, see Monitoring OpenShift Data Foundation.

3.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY

Procedure

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. In the Status card of the Overview tab, click Storage System and then click the storage system link from the pop up that appears.

 a. In the Status card of the Object tab, verify that both Object Service and Data Resiliency have a green tick.

 b. In the Details card, verify that the MCG information is displayed.

For more information on the health of the OpenShift Data Foundation cluster using the object service dashboard, see Monitoring OpenShift Data Foundation.

3.4. VERIFYING THAT THE OPENSHIFT DATA FOUNDATION SPECIFIC STORAGE CLASSES EXIST

Procedure

1. Click Storage → Storage Classes from the left pane of the OpenShift Web Console.

2. Verify that the following storage classes are created with the OpenShift Data Foundation cluster creation:

 • ocs-storagecluster-ceph-rbd
 • ocs-storagecluster-cephfs
 • openshift-storage.noobaa.io
 • ocs-storagecluster-ceph-rgw
CHAPTER 4. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY

Deploying only the Multicloud Object Gateway component with the OpenShift Data Foundation provides the flexibility in deployment and helps to reduce the resource consumption. Use this section to deploy only the standalone Multicloud Object Gateway component, which involves the following steps:

- Installing the Local Storage Operator.
- Installing Red Hat OpenShift Data Foundation Operator
- Creating standalone Multicloud Object Gateway

4.1. INSTALLING LOCAL STORAGE OPERATOR

Use this procedure to install the Local Storage Operator from the Operator Hub before creating OpenShift Data Foundation clusters on local storage devices.

Procedure

1. Log in to the OpenShift Web Console.

2. Click Operators → OperatorHub.

3. Type local storage in the Filter by keyword... box to find the Local Storage Operator from the list of operators and click on it.

4. Set the following options on the Install Operator page:
 a. Update Channel as stable.
 b. Installation Mode as A specific namespace on the cluster
 c. Installed Namespace as Operator recommended namespace openshift-local-storage.
 d. Approval Strategy as Automatic.

5. Click Install.

Verification steps

- Verify that the Local Storage Operator shows a green tick indicating successful installation.

4.2. INSTALLING RED HAT OPENSOURCE DATA FOUNDATION OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.

For information about the hardware and software requirements, see Planning your deployment.

Prerequisites
- Access to an OpenShift Container Platform cluster using an account with `cluster-admin` and Operator installation permissions.

- You must have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.

IMPORTANT

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command in command line interface to specify a blank node selector for the `openshift-storage` namespace (create `openshift-storage` namespace in this case):

  ```
  $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

- Taint a node as `infra` to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Data Foundation chapter in Managing and Allocating Storage Resources guide.

Procedure

1. Navigate in the left pane of the OpenShift Web Console to click **Operators → OperatorHub**.

2. Scroll or type a keyword into the Filter by keyword box to search for OpenShift Data Foundation Operator.

3. Click **Install** on the OpenShift Data Foundation operator page.

4. On the **Install Operator** page, the following required options are selected by default:
 a. Update Channel as **stable-4.9**.
 b. Installation Mode as **A specific namespace on the cluster**
 c. Installed Namespace as **Operator recommended namespace openshift-storage**. If Namespace `openshift-storage` does not exist, it is created during the operator installation.

5. Select **Approval Strategy** as **Automatic** or **Manual**.
 If you select **Automatic** updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.

 If you select **Manual** updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.

6. Ensure that the **Enable** option is selected for the **Console plugin**.

7. Click **Install**.

Verification steps

- Verify that **OpenShift Data Foundation** Operator shows a green tick indicating successful installation.
After the operator is successfully installed, a pop-up with a message, **Web console update is available** appears on the user interface. Click **Refresh web console** from this pop-up for the console changes to reflect.

- In the Web Console, navigate to Storage and verify if **OpenShift Data Foundation** is available.

4.3. CREATING STANDALONE MULTICLOUD OBJECT GATEWAY ON IBM POWER

Use this section to create only the Multicloud Object Gateway component with OpenShift Data Foundation.

Prerequisites

- Ensure that OpenShift Data Foundation Operator is installed.
- (For deploying using local storage devices only) Ensure that Local Storage Operator is installed.

To identify storage devices on each node, refer to **Finding available storage devices**.

Procedure

1. Log into the OpenShift Web Console.

2. In **openshift-local-storage** namespace, click **Operators → Installed Operators** to view the installed operators.

3. Click the **Local Storage** installed operator.

4. On the **Operator Details** page, click the **Local Volume** link.

5. Click **Create Local Volume**

6. Click on **YAML view** for configuring Local Volume.

7. Define a **LocalVolume** custom resource for filesystem PVs using the following YAML.

```yaml
apiVersion: local.storage.openshift.io/v1
kind: LocalVolume
metadata:
  name: localblock
  namespace: openshift-local-storage
spec:
  logLevel: Normal
  managementState: Managed
  nodeSelector:
    nodeSelectorTerms:
    - matchExpressions:
      - key: kubernetes.io/hostname
        operator: In
        values:
        - worker-0
        - worker-1
        - worker-2
```
storageClassDevices:
 - devicePaths:
 - /dev/sda

storageClassName: localblock
volumeMode: Filesystem

The above definition selects sda local device from the worker-0, worker-1 and worker-2 nodes. The localblock storage class is created and persistent volumes are provisioned from sda.

IMPORTANT

Specify appropriate values of nodeSelector as per your environment. The device name should be same on all the worker nodes. You can also specify more than one devicePaths.

8. Click Create.

9. Make localblock storage class as the default storage class by annotating it.
 a. Click Storage → StorageClasses from the left pane of the OpenShift Web Console.
 b. Click on the localblock storageClass.
 c. Edit the Annotations by adding the Key as storageclass.kubernetes.io/is-default-class and Value as true.
 d. Click Save.

10. In the OpenShift Web Console, click Operators → Installed Operators to view all the installed operators. Ensure that the Project selected is openshift-storage.

11. Click OpenShift Data Foundation operator and then click Create StorageSystem.

12. In the Backing storage page, expand Advanced.

13. Select Multicloud Object Gateway for Deployment type.

14. Click Next.

15. Optional: In the Security page, select Connect to an external key management service
 a. Key Management Service Provider is set to Vault by default.
 b. Enter Vault Service Name, host Address of Vault server ('https://<hostname or ip>'), Port number, and Token.
 c. Expand Advanced Settings to enter additional settings and certificate details based on your Vault configuration:
 i. Enter the Key Value secret path in the Backend Path that is dedicated and unique to OpenShift Data Foundation.
 ii. Optional: Enter TLS Server Name and Vault Enterprise Namespace.
iii. Upload the respective PEM encoded certificate file to provide the **CA Certificate**, **Client Certificate**, and **Client Private Key**.

d. Click **Save**.

16. In the **Review and create** page, review the configuration details:
 To modify any configuration settings, click **Back**.

17. Click **Create StorageSystem**.

Verification steps

Verifying that the OpenShift Data Foundation cluster is healthy

1. In the OpenShift Web Console, click **Storage → OpenShift Data Foundation**.

2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.
 a. In the **Status card** of the **Object** tab, verify that both **Object Service** and **Data Resiliency** have a green tick.
 b. In the **Details** card, verify that the MCG information is displayed.

Verify the state of the pods

1. Click **Workloads → Pods** from the OpenShift Web Console.

2. Select **openshift-storage** from the **Project** drop-down list and verify that the following pods are in **Running** state.

 NOTE
 If the **Show default projects** option is disabled, use the toggle button to list all the default projects.

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Data Foundation Operator</td>
<td>• ocs-operator- * (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• ocs-metrics-exporter- * (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• odf-operator-controller-manager- * (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• odf-console- * (1 pod on any worker node)</td>
</tr>
<tr>
<td>Rook-ceph Operator</td>
<td>rook-ceph-operator- *</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any worker node)</td>
</tr>
<tr>
<td>Component</td>
<td>Corresponding pods</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>• noobaa-operator-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-core-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-db-pg-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-endpoint-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-default-backing-store-noobaa-pod-* (1 pod on</td>
</tr>
<tr>
<td></td>
<td>any worker node)</td>
</tr>
</tbody>
</table>
CHAPTER 5. UNINSTALLING OPENSSHIFT DATA FOUNDATION

5.1. UNINSTALLING OPENShift DATA FOUNDATION IN INTERNAL MODE

To uninstall OpenShift Data Foundation in Internal mode, refer to the knowledge base article on Uninstalling OpenShift Data Foundation.