Red Hat OpenShift Data Foundation 4.14

Deploying OpenShift Data Foundation using IBM Power

Instructions on deploying Red Hat OpenShift Data Foundation on IBM Power
Instructions on deploying Red Hat OpenShift Data Foundation on IBM Power
Abstract

Read this document for instructions about how to install Red Hat OpenShift Data Foundation to use local storage on IBM Power.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... 3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION .. 4

PREFACE ... 5

CHAPTER 1. PREPARING TO DEPLOY OPENSSHIFT DATA FOUNDATION 6
 1.1. REQUIREMENTS FOR INSTALLING OPENSSHIFT DATA FOUNDATION USING LOCAL STORAGE DEVICES 6

CHAPTER 2. DEPLOY OPENSХIFT DATA FOUNDATION USING LOCAL STORAGE DEVICES 8
 2.1. INSTALLING LOCAL STORAGE OPERATOR .. 8
 2.2. INSTALLING RED HAT OPENSХIFT DATA FOUNDATION OPERATOR 8
 2.3. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE TOKEN AUTHENTICATION METHOD 10
 2.4. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE KUBERNETES AUTHENTICATION METHOD 11
 2.5. FINDING AVAILABLE STORAGE DEVICES .. 13
 2.6. CREATING OPENSХIFT DATA FOUNDATION CLUSTER ON IBM POWER 15

CHAPTER 3. VERIFYING OPENSХIFT DATA FOUNDATION DEPLOYMENT FOR INTERNAL MODE 21
 3.1. VERIFYING THE STATE OF THE PODS .. 21
 3.2. VERIFYING THE OPENSХIFT DATA FOUNDATION CLUSTER IS HEALTHY 23
 3.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY 23
 3.4. VERIFYING THAT THE SPECIFIC STORAGE CLASSES EXIST 23

CHAPTER 4. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY 25
 4.1. INSTALLING LOCAL STORAGE OPERATOR .. 25
 4.2. INSTALLING RED HAT OPENSХIFT DATA FOUNDATION OPERATOR 25
 4.3. CREATING STANDALONE MULTICLOUD OBJECT GATEWAY ON IBM POWER 27

CHAPTER 5. VIEW OPENSХIFT DATA FOUNDATION TOPOLOGY ... 31

CHAPTER 6. UNINSTALLING OPENSХIFT DATA FOUNDATION ... 32
 6.1. UNINSTALLING OPENSХIFT DATA FOUNDATION IN INTERNAL MODE 32
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better.

To give feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.
2. In the Component section, choose documentation.
3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
4. Click Submit Bug.
Red Hat OpenShift Data Foundation supports deployment on existing Red Hat OpenShift Container Platform (RHOCP) IBM Power clusters in connected or disconnected environments along with out-of-the-box support for proxy environments.

Both internal and external OpenShift Data Foundation clusters are supported on IBM Power. See Planning your deployment and Preparing to deploy OpenShift Data Foundation for more information about deployment requirements.

To deploy OpenShift Data Foundation, follow the appropriate deployment process based on your requirement:

- Internal-Attached Devices mode
 - Deploy using local storage devices
 - Deploy standalone Multicloud Object Gateway component
- External mode using Red Hat Ceph Storage
 - External mode
CHAPTER 1. PREPARING TO DEPLOY OPENSOURCES DATA FOUNDATION

When you deploy OpenShift Data Foundation on OpenShift Container Platform using the local storage devices provided by IBM Power, you can create internal cluster resources. This approach internally provisions base services so that all the applications can access additional storage classes.

Before you begin the deployment of Red Hat OpenShift Data Foundation using a local storage, ensure that you meet the resource requirements. See Requirements for installing OpenShift Data Foundation using local storage devices.

Optional: If you want to enable cluster-wide encryption using the external Key Management System (KMS) follow these steps:

- Ensure that you have a valid Red Hat OpenShift Data Foundation Advanced subscription. To know how subscriptions for OpenShift Data Foundation work, see knowledgebase article on OpenShift Data Foundation subscriptions.
- When the Token authentication method is selected for encryption then refer to Enabling cluster-wide encryption with the Token authentication using KMS.
- When the Kubernetes authentication method is selected for encryption then refer to Enabling cluster-wide encryption with the Kubernetes authentication using KMS.
- Ensure that you are using signed certificates on your Vault servers.

NOTE

If you are using Thales CipherTrust Manager as your KMS, you will enable it during deployment.

After you have addressed the above, follow the below steps in the order given:

1. Install Local Storage Operator.
2. Install the Red Hat OpenShift Data Foundation Operator.
3. Find available storage devices.
4. Create OpenShift Data Foundation cluster on IBM Power.

1.1. REQUIREMENTS FOR INSTALLING OPENSOURCES DATA FOUNDATION USING LOCAL STORAGE DEVICES

Node requirements

- The cluster must consist of at least three OpenShift Container Platform worker nodes in the cluster with locally attached storage devices on each of them.
 - Each of the three selected nodes must have at least one raw block device available to be used by OpenShift Data Foundation.
 - The devices to be used must be empty, that is, there should be no persistent volumes (PVs), volume groups (VGs), or local volumes (LVs) remaining on the disks.
You must have a minimum of three labeled worker nodes.

- Each node that has local storage devices to be used by OpenShift Data Foundation must have a specific label to deploy OpenShift Data Foundation pods. To label the nodes, use the following command:

  ```bash
  $ oc label nodes <NodeNames> cluster.ocs.openshift.io/openshift-storage=""
  ```

For more information, see the Resource requirements section in the Planning guide.

Disaster recovery requirements

Disaster Recovery features supported by Red Hat OpenShift Data Foundation require all of the following prerequisites to successfully implement a disaster recovery solution:

- A valid Red Hat OpenShift Data Foundation Advanced subscription.
- A valid Red Hat Advanced Cluster Management (RHACM) for Kubernetes subscription.

To know in detail how subscriptions for OpenShift Data Foundation work, see knowledgebase article on OpenShift Data Foundation subscriptions.

For detailed disaster recovery solution requirements, see Configuring OpenShift Data Foundation Disaster Recovery for OpenShift Workloads guide, and Requirements and recommendations section of the Install guide in Red Hat Advanced Cluster Management for Kubernetes documentation.
CHAPTER 2. DEPLOY OPENSSHIFT DATA FOUNDATION USING LOCAL STORAGE DEVICES

Use this section to deploy OpenShift Data Foundation on IBM Power infrastructure where OpenShift Container Platform is already installed. Also, it is possible to deploy only the Multicloud Object Gateway (MCG) component with OpenShift Data Foundation. For more information, see Deploy standalone Multicloud Object Gateway.

Perform the following steps to deploy OpenShift Data Foundation:

1. **Install the Local Storage Operator**.
2. **Install the Red Hat OpenShift Data Foundation Operator**.
3. **Find available storage devices**.
4. **Create an OpenShift Data Foundation cluster on IBM Power**.

2.1. INSTALLING LOCAL STORAGE OPERATOR

Use this procedure to install the Local Storage Operator from the Operator Hub before creating OpenShift Data Foundation clusters on local storage devices.

Procedure

1. Log in to the OpenShift Web Console.
2. Click **Operators → OperatorHub**.
3. Type **local storage** in the **Filter by keyword...** box to find the **Local Storage Operator** from the list of operators and click on it.
4. Set the following options on the **Install Operator** page:
 a. Update channel as **stable**.
 b. Installation Mode as **A specific namespace on the cluster**
 c. Installed Namespace as **Operator recommended namespace openshift-local-storage**.
 d. Approval Strategy as **Automatic**.
5. Click **Install**.

Verification steps

- Verify that the Local Storage Operator shows a green tick indicating successful installation.

2.2. INSTALLING RED HAT OPENSHEET DATA FOUNDATION OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.
For information about the hardware and software requirements, see Planning your deployment.

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with cluster-admin and Operator installation permissions.
- You must have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.

IMPORTANT

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command in the command line interface to specify a blank node selector for the openshift-storage namespace (create openshift-storage namespace in this case):

  ```
  $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

- Taint a node as infra to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Data Foundation chapter in the Managing and Allocating Storage Resources guide.

Procedure

1. Log in to the OpenShift Web Console.
2. Click Operators → OperatorHub.
3. Scroll or type OpenShift Data Foundation into the Filter by keyword box to find the OpenShift Data Foundation Operator.
4. Click Install.
5. Set the following options on the Install Operator page:
 b. Installation Mode as A specific namespace on the cluster
 c. Installed Namespace as Operator recommended namespace openshift-storage. If Namespace openshift-storage does not exist, it is created during the operator installation.
 If you select Automatic updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
 If you select Manual updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.
7. Ensure that the Enable option is selected for the Console plugin.
8. Click Install.
Verification steps

- Verify that the OpenShift Data Foundation Operator shows a green tick indicating successful installation.

- After the operator is successfully installed, a pop-up with a message, Web console update is available appears on the user interface. Click Refresh web console from this pop-up for the console changes to reflect.
 - In the Web Console, navigate to Storage and verify if Data Foundation is available.

2.3. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE TOKEN AUTHENTICATION METHOD

You can enable the key value backend path and policy in the vault for token authentication.

Prerequisites

- Administrator access to the vault.

- A valid Red Hat OpenShift Data Foundation Advanced subscription. For more information, see the knowledgebase article on OpenShift Data Foundation subscriptions.

- Carefully, select a unique path name as the backend path that follows the naming convention since you cannot change it later.

Procedure

1. Enable the Key/Value (KV) backend path in the vault.
 For vault KV secret engine API, version 1:

   ```
   $ vault secrets enable -path=odf kv
   ```

 For vault KV secret engine API, version 2:

   ```
   $ vault secrets enable -path=odf kv-v2
   ```

2. Create a policy to restrict the users to perform a write or delete operation on the secret:

   ```
   echo 'path "odf/*" {
   capabilities = ["create", "read", "update", "delete", "list"]
   }
   path "sys/mounts" {
   capabilities = ["read"]
   }' | vault policy write odf -
   ```

3. Create a token that matches the above policy:

   ```
   $ vault token create -policy=odf -format json
   ```
2.4. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE KUBERNETES AUTHENTICATION METHOD

You can enable the Kubernetes authentication method for cluster-wide encryption using the Key Management System (KMS).

Prerequisites

- Administrator access to Vault.
- A valid Red Hat OpenShift Data Foundation Advanced subscription. For more information, see the knowledgebase article on OpenShift Data Foundation subscriptions.
- The OpenShift Data Foundation operator must be installed from the Operator Hub.
- Select a unique path name as the backend path that follows the naming convention carefully. You cannot change this path name later.

Procedure

1. Create a service account:

 $ oc -n openshift-storage create serviceaccount <serviceaccount_name>

 where, <serviceaccount_name> specifies the name of the service account.

 For example:

 $ oc -n openshift-storage create serviceaccount odf-vault-auth

2. Create clusterrolebindings and clusterroles:

 $ oc -n openshift-storage create clusterrolebinding vault-tokenreview-binding --clusterrole=system:auth-delegator --serviceaccount=openshift-storage:_<serviceaccount_name>_

 For example:

 $ oc -n openshift-storage create clusterrolebinding vault-tokenreview-binding --clusterrole=system:auth-delegator --serviceaccount=openshift-storage:odf-vault-auth

3. Create a secret for the serviceaccount token and CA certificate.

 $ cat <<EOF | oc create -f -
 apiVersion: v1
 kind: Secret
 metadata:
 name: odf-vault-auth-token
 namespace: openshift-storage
 annotations:
 kubernetes.io/service-account.name: <serviceaccount_name>
 type: kubernetes.io/service-account-token
 data: {}
 EOF
where, `<serviceaccount_name>` is the service account created in the earlier step.

4. Get the token and the CA certificate from the secret.

```bash
$ SA_JWT_TOKEN=$(oc -n openshift-storage get secret odf-vault-auth-token -o jsonpath="(.data["token"])") | base64 --decode; echo
$ SA_CA_CRT=$(oc -n openshift-storage get secret odf-vault-auth-token -o jsonpath="(.data["ca.crt"])") | base64 --decode; echo
```

5. Retrieve the OCP cluster endpoint.

```bash
$ OCP_HOST=$(oc config view --minify --flatten -o jsonpath="{.clusters[0].cluster.server}")
```

6. Fetch the service account issuer:

```bash
$ oc proxy &
$ proxy_pid=$!
$ issuer=$(curl --silent http://127.0.0.1:8001/.well-known/openid-configuration | jq -r .issuer)
$ kill $proxy_pid
```

7. Use the information collected in the previous step to setup the Kubernetes authentication method in Vault:

```bash
$ vault auth enable kubernetes
$ vault write auth/kubernetes/config
   token_reviewer_jwt="$SA_JWT_TOKEN"
   kubernetes_host="$OCP_HOST"
   kubernetes_ca_cert="$SA_CA_CRT"
   issuer="$issuer"
```

IMPORTANT

To configure the Kubernetes authentication method in Vault when the issuer is empty:

```bash
$ vault write auth/kubernetes/config
   token_reviewer_jwt="$SA_JWT_TOKEN"
   kubernetes_host="$OCP_HOST"
   kubernetes_ca_cert="$SA_CA_CRT"
```

8. Enable the Key/Value (KV) backend path in Vault.

For Vault KV secret engine API, version 1:

```bash
$ vault secrets enable -path=odf kv
```

For Vault KV secret engine API, version 2:

```bash
$ vault secrets enable -path=odf kv-v2
```
9. Create a policy to restrict the users to perform a write or delete operation on the secret:

```bash
echo 'path "odf/**" {
    capabilities = ["create", "read", "update", "delete", "list"]
} path "sys/mounts" {
    capabilities = ["read"]
}' | vault policy write odf -
```

10. Generate the roles:

```bash
$ vault write auth/kubernetes/role/odf-rook-ceph-op \
    bound_service_account_names=rook-ceph-system,rook-ceph-osd,noobaa \
    bound_service_account_namespaces=openshift-storage \
    policies=odf \
    ttl=1440h
```

The role odf-rook-ceph-op is later used while you configure the KMS connection details during the creation of the storage system.

```bash
$ vault write auth/kubernetes/role/odf-rook-ceph-osd \
    bound_service_account_names=rook-ceph-osd \
    bound_service_account_namespaces=openshift-storage \
    policies=odf \
    ttl=1440h
```

2.5. FINDING AVAILABLE STORAGE DEVICES

Use this procedure to identify the device names for each of the three or more worker nodes that you have labeled with the OpenShift Data Foundation label `cluster.ocs.openshift.io/openshift-storage="` before creating PVs for IBM Power.

Procedure

1. List and verify the name of the worker nodes with the OpenShift Data Foundation label.

   ```bash
   $ oc get nodes -l cluster.ocs.openshift.io/openshift-storage=
   ```

 Example output:

   ```
   NAME       STATUS   ROLES    AGE     VERSION
   worker-0   Ready    worker   2d11h   v1.23.3+e419edf
   worker-1   Ready    worker   2d11h   v1.23.3+e419edf
   worker-2   Ready    worker   2d11h   v1.23.3+e419edf
   ```

2. Log in to each worker node that is used for OpenShift Data Foundation resources and find the name of the additional disk that you have attached while deploying OpenShift Container Platform.

   ```bash
   $ oc debug node/<node name>
   ```

 Example output:
$ oc debug node/worker-0
Starting pod/worker-0-debug ...
To use host binaries, run `chroot /host`
Pod IP: 192.168.0.63
If you don't see a command prompt, try pressing enter.
sh-4.4#
sh-4.4# chroot /host
sh-4.4# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop1 7:1 0 500G 0 loop
sda 8:0 0 500G 0 disk
sdb 8:16 0 120G 0 disk
|sdb1 8:17 0 4M 0 part
|sdb3 8:19 0 384M 0 part
 `sdb4 8:20 119.6G 0 part
sdc 8:32 0 500G 0 disk
sdd 8:48 0 120G 0 disk
|sdd1 8:49 0 4M 0 part
|sdd3 8:51 0 384M 0 part
 `sdd4 8:52 119.6G 0 part
sde 8:64 0 500G 0 disk
sdf 8:80 0 120G 0 disk
|sdf1 8:81 0 4M 0 part
|sdf3 8:83 0 384M 0 part
 `sdf4 8:84 119.6G 0 part
sdg 8:96 0 500G 0 disk
sdh 8:112 0 120G 0 disk
|sdh1 8:113 0 4M 0 part
|sdh3 8:115 0 384M 0 part
 `sdh4 8:116 119.6G 0 part
sdi 8:128 0 500G 0 disk
sdj 8:144 0 120G 0 disk
|sdj1 8:145 0 4M 0 part
|sdj3 8:147 0 384M 0 part
 `sdj4 8:148 119.6G 0 part
sdk 8:160 0 500G 0 disk
sdl 8:176 0 120G 0 disk
|sdl1 8:177 0 4M 0 part
|sdl3 8:179 0 384M 0 part
 `sdl4 8:180 119.6G 0 part /sysroot
sdm 8:192 0 500G 0 disk
sdc 8:208 0 120G 0 disk
|sdc1 8:209 0 4M 0 part
|sdc3 8:211 0 384M 0 part /boot
 `sdc4 8:212 119.6G 0 part
sdo 8:224 0 500G 0 disk
sdp 8:240 0 120G 0 disk
|sdp1 8:241 0 4M 0 part
|sdp3 8:243 0 384M 0 part
 `sdp4 8:244 119.6G 0 part

In this example, for worker-0, the available local devices of 500G are sda, sdc, sde, sdg, sdi, sdk, sdm, sdo.

3. Repeat the above step for all the other worker nodes that have the storage devices to be used by OpenShift Data Foundation. See this Knowledge Base article for more details.
2.6. CREATING OPENSHIFT DATA FOUNDATION CLUSTER ON IBM POWER

Use this procedure to create an OpenShift Data Foundation cluster after you install the OpenShift Data Foundation operator.

Prerequisites

- Ensure that all the requirements in the [Requirements for installing OpenShift Data Foundation using local storage devices](#) section are met.
- You must have a minimum of three worker nodes with the same storage type and size attached to each node (for example, 200 GB SSD) to use local storage devices on IBM Power.
- Verify your OpenShift Container Platform worker nodes are labeled for OpenShift Data Foundation:

  ```bash
  oc get nodes -l cluster.ocs.openshift.io/openshift-storage -o jsonpath='{range .items[*]}{.metadata.name}\n'"'
  ```

 To identify storage devices on each node, refer to [Finding available storage devices](#).

Procedure

1. Log into the OpenShift Web Console.
2. In the `openshift-local-storage` namespace, click **Operators** → **Installed Operators** to view the installed operators.
3. Click the **Local Storage** installed operator.
4. On the **Operator Details** page, click the **Local Volume** link.
5. Click **Create Local Volume**.
6. Click on **YAML view** for configuring Local Volume.
7. Define a **LocalVolume** custom resource for block PVs using the following YAML.

```
apiVersion: local.storage.openshift.io/v1
kind: LocalVolume
metadata:
  name: localblock
  namespace: openshift-local-storage
spec:
  logLevel: Normal
  managementState: Managed
  nodeSelector:
    nodeSelectorTerms:
      - matchExpressions:
          - key: kubernetes.io/hostname
            operator: In
            values:
              - worker-0
              - worker-1
```
worker-2
storageClassDevices:
- devicePaths:
 - /dev/sda
storageClassName: localblock
volumeMode: Block

The above definition selects sda local device from the worker-0, worker-1 and worker-2 nodes. The localblock storage class is created and persistent volumes are provisioned from sda.

IMPORTANT

Specify appropriate values of nodeSelector as per your environment. The device name should be same on all the worker nodes. You can also specify more than one devicePaths.

8. Click Create.

9. Confirm whether diskmaker-manager pods and Persistent Volumes are created.
 a. For Pods
 i. Click Workloads → Pods from the left pane of the OpenShift Web Console.
 ii. Select openshift-local-storage from the Project drop-down list.
 iii. Check if there are diskmaker-manager pods for each of the worker node that you used while creating LocalVolume CR.
 b. For Persistent Volumes
 i. Click Storage → PersistentVolumes from the left pane of the OpenShift Web Console.
 ii. Check the Persistent Volumes with the name local-pv-*.

IMPORTANT

- The flexible scaling feature is enabled only when the storage cluster that you created with three or more nodes are spread across fewer than the minimum requirement of three availability zones. For information about flexible scaling, see knowledgebase article on Scaling OpenShift Data Foundation cluster using YAML when flexible scaling is enabled.
- Flexible scaling features get enabled at the time of deployment and can not be enabled or disabled later on.

10. In the OpenShift Web Console, click Operators → Installed Operators to view all the installed operators. Ensure that the Project selected is openshift-storage.

11. Click on the OpenShift Data Foundation operator and then click Create StorageSystem.
12. In the Backing storage page, perform the following:
 a. Select Full Deployment for the Deployment type option.
 b. Select the Use an existing StorageClass option.
 c. Select the required Storage Class that you used while installing LocalVolume. By default, it is set to none.
 d. Click Next.

13. In the Capacity and nodes page, configure the following:
 a. Available raw capacity is populated with the capacity value based on all the attached disks associated with the storage class. This takes some time to show up.

 \[\text{NOTE}\]

 Once you select the initial storage capacity, cluster expansion is performed only using the selected usable capacity (three times of raw storage).

 b. The Selected nodes list shows the nodes based on the storage class.
 c. Optional: Select the Taint nodes checkbox to dedicate the selected nodes for OpenShift Data Foundation.
 d. Optional [Technology preview]: Select the Add replica-1 pool checkbox to deploy OpenShift Data Foundation with a single replica. This avoids redundant data copies and allows resiliency management on the application level. In order to enable replica-1 pool, atleast 2 storage disks should be attached to each of the storage nodes.

 \[\text{WARNING}\]

 Enabling this feature creates a single replica pool without data replication, increasing the risk of data loss, data corruption, and potential system instability if your application does not have its own replication.

 \[\text{IMPORTANT}\]

 Single replica deployment is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

 For more information, see Technology Preview Features Support Scope.
 e. Click Next.
14. Optional: In the **Security and network** page, configure the following based on your requirements:

 a. To enable encryption, select **Enable data encryption for block and file storage**

 i. Select either one or both the encryption levels:

 - **Cluster-wide encryption**

 Encrypts the entire cluster (block and file).

 - **StorageClass encryption**

 Creates encrypted persistent volume (block only) using encryption enabled storage class.

 ii. Optional: Select the **Connect to an external key management service** checkbox. This is optional for cluster-wide encryption.

 A. From the **Key Management Service Provider** drop-down list, either select **Vault** or **Thales CipherTrust Manager (using KMIP)**. If you selected **Vault**, go to the next step. If you selected **Thales CipherTrust Manager (using KMIP)**, go to step iii.

 B. Select an **Authentication Method**

 Using Token authentication method

 - Enter a unique **Connection Name**, host **Address** of the Vault server ('https://<hostname or ip>'), **Port** number and **Token**.

 - Expand **Advanced Settings** to enter additional settings and certificate details based on your **Vault** configuration:

 - Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Data Foundation.

 - Optional: Enter **TLS Server Name** and **Vault Enterprise Namespace**

 - Upload the respective PEM encoded certificate file to provide the **CA Certificate, Client Certificate** and **Client Private Key**.

 - Click **Save** and skip to step iv.

 Using Kubernetes authentication method

 - Enter a unique Vault **Connection Name**, host **Address** of the Vault server ('https://<hostname or ip>'), **Port** number and **Role** name.

 - Expand **Advanced Settings** to enter additional settings and certificate details based on your **Vault** configuration:

 - Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Data Foundation.

 - Optional: Enter **TLS Server Name** and **Authentication Path** if applicable.

 - Upload the respective PEM encoded certificate file to provide the **CA Certificate, Client Certificate** and **Client Private Key**.
C. To use Thales CipherTrust Manager (using KMIP) as the KMS provider, follow the steps below:

I. Enter a unique Connection Name for the Key Management service within the project.

II. In the Address and Port sections, enter the IP of Thales CipherTrust Manager and the port where the KMIP interface is enabled. For example:

- **Address**: 123.34.3.2
- **Port**: 5696

III. Upload the Client Certificate, CA certificate, and Client Private Key.

IV. If StorageClass encryption is enabled, enter the Unique Identifier to be used for encryption and decryption generated above.

V. The TLS Server field is optional and used when there is no DNS entry for the KMIP endpoint. For example, `kmip_all_<port>.ciphertrustmanager.local`.

D. Select a Network.

I. Select Default (OVN) network as Multus is not yet supported on OpenShift Data Foundation on IBM Power.

E. Click Next.

b. To enable in-transit encryption, select In-transit encryption.

 i. Select a Network.

 ii. Click Next.

15. In the Data Protection page, if you are configuring Regional-DR solution for Openshift Data Foundation then select the Prepare cluster for disaster recovery(Regional-DR only) checkbox, else click Next.

16. In the Review and create page:

 a. Review the configurations details. To modify any configuration settings, click Back to go back to the previous configuration page.

 b. Click Create StorageSystem.

Verification steps

- To verify the final Status of the installed storage cluster:

 a. In the OpenShift Web Console, navigate to Installed Operators → OpenShift Data Foundation → Storage System → ocs-storagecluster-storagesystem → Resources.

 b. Verify that Status of StorageCluster is Ready and has a green tick mark next to it.

- To verify if flexible scaling is enabled on your storage cluster, perform the following steps:
1. In the OpenShift Web Console, navigate to **Installed Operators → OpenShift Data Foundation → Storage System → ocs-storagecluster-storagesystem → Resources → ocs-storagecluster**.

2. In the YAML tab, search for the keys **flexibleScaling** in **spec** section and **failureDomain** in **status** section. If **flexible scaling** is true and **failureDomain** is set to host, flexible scaling feature is enabled.

```yaml
spec:
  flexibleScaling: true
[...]
status:
  failureDomain: host
```

- To verify that all the components for OpenShift Data Foundation are successfully installed, see [Verifying your OpenShift Data Foundation deployment](https://example.com).

Additional resources

- To expand the capacity of the initial cluster, see the [Scaling Storage](https://example.com) guide.
CHAPTER 3. VERIFYING OPENSIFT DATA FOUNDATION DEPLOYMENT FOR INTERNAL MODE

Use this section to verify that OpenShift Data Foundation is deployed correctly.

1. Verify the state of the pods.
2. Verify that the OpenShift Data Foundation cluster is healthy.
3. Verify that the Multicloud Object Gateway is healthy.
4. Verify that the OpenShift Data Foundation specific storage classes exist.

3.1. VERIFYING THE STATE OF THE PODS

To determine if OpenShift Data Foundation is deployed successfully, you can verify that the pods are in **Running** state.

Procedure

1. Click Workloads → Pods from the left pane of the OpenShift Web Console.
2. Select openshift-storage from the Project drop-down list.

 NOTE

 If the Show default projects option is disabled, use the toggle button to list all the default projects.

 For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see Table 3.1, "Pods corresponding to OpenShift Data Foundation cluster".

3. Verify that the following pods are in running and completed state by clicking the Running and the Completed tabs:

 Table 3.1. Pods corresponding to OpenShift Data Foundation cluster

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Data Foundation Operator</td>
<td>- ocs-operator-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>- ocs-metrics-exporter-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>- odf-operator-controller-manager-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>- odf-console-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>- csi-addons-controller-manager-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>Component</td>
<td>Corresponding pods</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Rook-ceph Operator</td>
<td>rook-ceph-operator-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>• noobaa-operator-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-core-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-db-pg-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-endpoint-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>MON</td>
<td>rook-ceph-mon-* (3 pods on each storage node)</td>
</tr>
<tr>
<td>MGR</td>
<td>rook-ceph-mgr-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>MDS</td>
<td>rook-ceph-mds-ocs-storagecluster-cephfilesystem-* (2 pods distributed across storage node)</td>
</tr>
<tr>
<td>RGW</td>
<td>rook-ceph-rgw-ocs-storagecluster-cephobjectstore-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>CSI</td>
<td>• cephfs</td>
</tr>
<tr>
<td></td>
<td>• csi-cephfsplugin-* (1 pod on each storage node)</td>
</tr>
<tr>
<td></td>
<td>• csi-cephfsplugin-provisioner-* (2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td></td>
<td>• rbd</td>
</tr>
<tr>
<td></td>
<td>• csi-rbdplugin-* (1 pod on each storage node)</td>
</tr>
<tr>
<td></td>
<td>• csi-rbdplugin-provisioner-* (2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>rook-ceph-crashcollector</td>
<td>rook-ceph-crashcollector-* (1 pod on each storage node)</td>
</tr>
</tbody>
</table>
3.2. VERIFYING THE OPENSHIFT DATA FOUNDATION CLUSTER IS HEALTHY

Procedure

1. In the OpenShift Web Console, click **Storage → Data Foundation**.
2. Click the **Storage Systems** tab and then click on **ocs-storagecluster-storagesystem**.
3. In the **Status card** of Block and File dashboard under Overview tab, verify that both **Storage Cluster** and **Data Resiliency** has a green tick mark.
4. In the **Details card**, verify that the cluster information is displayed.

For more information on the health of the OpenShift Data Foundation cluster using the Block and File dashboard, see [Monitoring OpenShift Data Foundation](#).

3.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY

Procedure

1. In the OpenShift Web Console, click **Storage → Data Foundation**.
2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.

 a. In the **Status card** of the **Object** tab, verify that both **Object Service** and **Data Resiliency** have a green tick.

 b. In the **Details** card, verify that the MCG information is displayed.

For more information on the health of the OpenShift Data Foundation cluster using the object service dashboard, see [Monitoring OpenShift Data Foundation](#).

3.4. VERIFYING THAT THE SPECIFIC STORAGE CLASSES EXIST

Procedure

1. Click **Storage → Storage Classes** from the left pane of the OpenShift Web Console.
2. Verify that the following storage classes are created with the OpenShift Data Foundation cluster creation:

 - **ocs-storagecluster-ceph-rbd**
- ocs-storagecluster-cephfs
- openshift-storage.noobaa.io
- ocs-storagecluster-ceph-rgw
Deploying only the Multicloud Object Gateway component with the OpenShift Data Foundation provides the flexibility in deployment and helps to reduce the resource consumption. Use this section to deploy only the standalone Multicloud Object Gateway component, which involves the following steps:

- Installing the Local Storage Operator.
- Installing Red Hat OpenShift Data Foundation Operator
- Creating standalone Multicloud Object Gateway

4.1. INSTALLING LOCAL STORAGE OPERATOR

Use this procedure to install the Local Storage Operator from the Operator Hub before creating OpenShift Data Foundation clusters on local storage devices.

Procedure

1. Log in to the OpenShift Web Console.
2. Click Operators → OperatorHub.
3. Type local storage in the Filter by keyword... box to find the Local Storage Operator from the list of operators and click on it.
4. Set the following options on the Install Operator page:
 a. Update channel as stable.
 b. Installation Mode as A specific namespace on the cluster
 c. Installed Namespace as Operator recommended namespace openshift-local-storage.
 d. Approval Strategy as Automatic.
5. Click Install.

Verification steps

- Verify that the Local Storage Operator shows a green tick indicating successful installation.

4.2. INSTALLING RED HAT OPENSIFT DATA FOUNDATION OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.

For information about the hardware and software requirements, see Planning your deployment.

Prerequisites
- Access to an OpenShift Container Platform cluster using an account with cluster-admin and Operator installation permissions.

- You must have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.

IMPORTANT

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command in the command line interface to specify a blank node selector for the openshift-storage namespace (create openshift-storage namespace in this case):

 $ oc annotate namespace openshift-storage openshift.io/node-selector=

- Taint a node as infra to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Data Foundation chapter in the Managing and Allocating Storage Resources guide.

Procedure

1. Log in to the OpenShift Web Console.

2. Click Operators ➔ OperatorHub.

3. Scroll or type OpenShift Data Foundation into the Filter by keyword box to find the OpenShift Data Foundation Operator.

4. Click Install.

5. Set the following options on the Install Operator page:
 b. Installation Mode as A specific namespace on the cluster
 c. Installed Namespace as Operator recommended namespace openshift-storage. If Namespace openshift-storage does not exist, it is created during the operator installation.

 If you select Automatic updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.

 If you select Manual updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.

7. Ensure that the Enable option is selected for the Console plugin.

8. Click Install.

Verification steps
• Verify that the OpenShift Data Foundation Operator shows a green tick indicating successful installation.

• After the operator is successfully installed, a pop-up with a message, **Web console update is available** appears on the user interface. Click **Refresh web console** from this pop-up for the console changes to reflect.

 o In the Web Console, navigate to **Storage** and verify if **Data Foundation** is available.

4.3. CREATING STANDALONE MULTICLOUD OBJECT GATEWAY ON IBM POWER

You can create only the standalone Multicloud Object Gateway component while deploying OpenShift Data Foundation.

Prerequisites

- Ensure that the OpenShift Data Foundation Operator is installed.
- (For deploying using local storage devices only) Ensure that Local Storage Operator is installed.

To identify storage devices on each node, refer to **Finding available storage devices**.

Procedure

1. Log into the OpenShift Web Console.

2. In `openshift-local-storage` namespace, click **Operators → Installed Operators** to view the installed operators.

3. Click the **Local Storage** installed operator.

4. On the **Operator Details** page, click the **Local Volume** link.

5. Click **Create Local Volume**

6. Click on **YAML view** for configuring Local Volume.

7. Define a **LocalVolume** custom resource for filesystem PVs using the following YAML.

```yaml
apiVersion: local.storage.openshift.io/v1
kind: LocalVolume
metadata:
  name: localblock
  namespace: openshift-local-storage
spec:
  logLevel: Normal
  managementState: Managed
  nodeSelector:
    nodeSelectorTerms:
    - matchExpressions:
      - key: kubernetes.io/hostname
        operator: In
        values:
        - worker-0
        - worker-1
```
The above definition selects `sda` local device from the `worker-0`, `worker-1` and `worker-2` nodes. The **localblock** storage class is created and persistent volumes are provisioned from `sda`.

IMPORTANT

Specify appropriate values of nodeSelector as per your environment. The device name should be same on all the worker nodes. You can also specify more than one devicePaths.

8. Click **Create**.

9. In the OpenShift Web Console, click **Operators → Installed Operators** to view all the installed operators. Ensure that the **Project** selected is **openshift-storage**.

10. Click **OpenShift Data Foundation** operator and then click **Create StorageSystem**.

11. In the **Backing storage** page, select **Multicloud Object Gateway** for **Deployment type**.

12. Select the **Use an existing StorageClass** option for **Backing storage type**.
 a. Select the **Storage Class** that you used while installing LocalVolume.

13. Click **Next**.

14. Optional: In the **Security** page, select the **Connect to an external key management service** checkbox. This is optional for cluster-wide encryption.

 a. From the **Key Management Service Provider** drop down list, either select **Vault** or **Thales CipherTrust Manager (using KMIP)**. If you selected **Vault**, go to the next step. If you selected **Thales CipherTrust Manager (using KMIP)**, go to step iii.

 b. Select an **Authentication Method**.

 Using Token authentication method

 - Enter a unique **Connection Name**, host **Address** of the Vault server (`https://<hostname or ip>`), **Port** number and **Token**.

 - Expand **Advanced Settings** to enter additional settings and certificate details based on your **Vault** configuration:
 - Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Data Foundation.
 - Optional: Enter **TLS Server Name** and **Vault Enterprise Namespace**
 - Upload the respective PEM encoded certificate file to provide the **CA Certificate**, **Client Certificate** and **Client Private Key**.
- Click Save and skip to step iv.

Using Kubernetes authentication method

- Enter a unique Vault Connection Name, host Address of the Vault server (‘https://<hostname or ip>’), Port number and Role name.
- Expand Advanced Settings to enter additional settings and certificate details based on your Vault configuration:
 - Enter the Key Value secret path in the Backend Path that is dedicated and unique to OpenShift Data Foundation.
 - Optional: Enter TLS Server Name and Authentication Path if applicable.
 - Upload the respective TLS encoded certificate file to provide the CA Certificate, Client Certificate, and Client Private Key.
- Click Save and skip to step iv.

C. To use Thales CipherTrust Manager (using KMIP) as the KMS provider, follow the steps below:

 i. Enter a unique Connection Name for the Key Management service within the project.

 ii. In the Address and Port sections, enter the IP of Thales CipherTrust Manager and the port where the KMIP interface is enabled. For example:
 - Address: 123.34.3.2
 - Port: 5696

 iii. Upload the Client Certificate, CA certificate, and Client Private Key.

 iv. If StorageClass encryption is enabled, enter the Unique Identifier to be used for encryption and decryption generated above.

 v. The TLS Server field is optional and used when there is no DNS entry for the KMIP endpoint. For example, kmip_all_<port>.ciphertrustmanager.local.

 D. Select a Network.

 E. Click Next.

15. In the Review and create page, review the configuration details:
To modify any configuration settings, click Back.

16. Click Create StorageSystem.

Verification steps

Verifying that the OpenShift Data Foundation cluster is healthy

1. In the OpenShift Web Console, click Storage → Data Foundation.

2. Click the Storage Systems tab and then click on ocs-storagecluster-storagesystem.

3. In the Status card of the Object tab verify that both Object Service and Data Resiliency
a. In the Status card of the Object tab, verify that both Object Service and Data Resiliency have a green tick.

b. In the Details card, verify that the MCG information is displayed.

Verifying the state of the pods

1. Click Workloads → Pods from the OpenShift Web Console.

2. Select openshift-storage from the Project drop-down list and verify that the following pods are in Running state.

 NOTE

 If the Show default projects option is disabled, use the toggle button to list all the default projects.

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Data Foundation Operator</td>
<td>• ocs-operator-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• ocs-metrics-exporter-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• odf-operator-controller-manager-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• odf-console-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• csi-addons-controller-manager-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>Rook-ceph Operator</td>
<td>rook-ceph-operator-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>• noobaa-operator-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-core-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-db-pg-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-endpoint-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-default-backing-store-noobaa-pod-* (1 pod on any storage node)</td>
</tr>
</tbody>
</table>
CHAPTER 5. VIEW OPENS SHIFT DATA FOUNDATION TOPOLOGY

The topology shows the mapped visualization of the OpenShift Data Foundation storage cluster at various abstraction levels and also lets you to interact with these layers. The view also shows how the various elements compose the Storage cluster altogether.

Procedure

1. On the OpenShift Web Console, navigate to Storage → Data Foundation → Topology. The view shows the storage cluster and the zones inside it. You can see the nodes depicted by circular entities within the zones, which are indicated by dotted lines. The label of each item or resource contains basic information such as status and health or indication for alerts.

2. Choose a node to view node details on the right-hand panel. You can also access resources or deployments within a node by clicking on the search/preview decorator icon.

3. To view deployment details
 a. Click the preview decorator on a node. A modal window appears above the node that displays all of the deployments associated with that node along with their statuses.
 b. Click the Back to main view button in the model’s upper left corner to close and return to the previous view.
 c. Select a specific deployment to see more information about it. All relevant data is shown in the side panel.

4. Click the Resources tab to view the pods information. This tab provides a deeper understanding of the problems and offers granularity that aids in better troubleshooting.

5. Click the pod links to view the pod information page on OpenShift Container Platform. The link opens in a new window.
CHAPTER 6. UNINSTALLING OPENSHEET DATA FOUNDATION

6.1. UNINSTALLING OPENSHEET DATA FOUNDATION IN INTERNAL MODE

To uninstall OpenShift Data Foundation in Internal mode, refer to the knowledge base article on Uninstalling OpenShift Data Foundation.