Red Hat OpenShift Data Foundation
4.14

Deploying OpenShift Data Foundation on VMware vSphere

Instructions on deploying OpenShift Data Foundation using VMware vSphere infrastructure
Instructions on deploying OpenShift Data Foundation using VMware vSphere infrastructure
Abstract

Read this document for instructions about how to install Red Hat OpenShift Data Foundation using Red Hat OpenShift Container Platform on VMware vSphere clusters.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE .. 3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 4

PREFACE .. 5

CHAPTER 1. PREPARING TO DEPLOY OPENSIFT DATA FOUNDATION 6
 1.1. REQUIREMENTS FOR INSTALLING OPENSIFT DATA FOUNDATION USING LOCAL STORAGE DEVICES 7

CHAPTER 2. DEPLOY USING DYNAMIC STORAGE DEVICES 9
 2.1. INSTALLING RED HAT OPENSIFT DATA FOUNDATION OPERATOR 9
 2.2. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE TOKEN AUTHENTICATION METHOD 10
 2.3. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE KUBERNETES AUTHENTICATION METHOD 11
 2.4. CREATING AN OPENSIFT DATA FOUNDATION CLUSTER 14

CHAPTER 3. DEPLOY USING LOCAL STORAGE DEVICES 18
 3.1. INSTALLING LOCAL STORAGE OPERATOR 18
 3.2. INSTALLING RED HAT OPENSIFT DATA FOUNDATION OPERATOR 18
 3.3. CREATING OPENSIFT DATA FOUNDATION CLUSTER ON VMWARE VSPHERE 20

CHAPTER 4. VERIFYING OPENSIFT DATA FOUNDATION DEPLOYMENT 25
 4.1. VERIFYING THE STATE OF THE PODS 25
 4.2. VERIFYING THE OPENSIFT DATA FOUNDATION CLUSTER IS HEALTHY 27
 4.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY 27
 4.4. VERIFYING THAT THE SPECIFIC STORAGE CLASSES EXIST 27

CHAPTER 5. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY 29
 5.1. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY USING DYNAMIC STORAGE DEVICES 29
 5.1.1. Installing Red Hat OpenShift Data Foundation Operator 29
 5.1.2. Creating a standalone Multicloud Object Gateway 30
 5.2. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY USING LOCAL STORAGE DEVICES 33
 5.2.1. Installing Local Storage Operator 33
 5.2.2. Installing Red Hat OpenShift Data Foundation Operator 34
 5.2.3. Creating a standalone Multicloud Object Gateway 35

CHAPTER 6. VIEW OPENSIFT DATA FOUNDATION TOPOLOGY 40

CHAPTER 7. UNINSTALLING OPENSIFT DATA FOUNDATION 41
 7.1. UNINSTALLING OPENSIFT DATA FOUNDATION IN INTERNAL MODE 41
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better.

To give feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.
2. In the Component section, choose documentation.
3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
4. Click Submit Bug.
Red Hat OpenShift Data Foundation supports deployment on existing Red Hat OpenShift Container Platform (RHOCP) vSphere clusters in connected or disconnected environments along with out-of-the-box support for proxy environments.

To deploy OpenShift Data Foundation, start with the requirements in the Preparing to deploy OpenShift Data Foundation chapter and then follow any one of the below deployment process for your environment:

- **Internal mode**
 - Deploy using dynamic storage devices
 - Deploy using local storage devices
 - Deploy standalone Multicloud Object Gateway

- **External mode**
 - Deploying OpenShift Data Foundation in external mode
CHAPTER 1. PREPARING TO DEPLOY OPENSIFT DATA FOUNDATION

Deploying OpenShift Data Foundation on OpenShift Container Platform using dynamic or local storage devices provides you with the option to create internal cluster resources. This will result in the internal provisioning of the base services, which helps to make additional storage classes available to applications.

Before you begin the deployment of Red Hat OpenShift Data Foundation using dynamic or local storage, ensure that your resource requirements are met. See the Resource requirements section in the Planning guide.

1. Optional: If you want to enable cluster-wide encryption using the external Key Management System (KMS) HashiCorp Vault, follow these steps:
 - Ensure that you have a valid Red Hat OpenShift Data Foundation Advanced subscription. To know how subscriptions for OpenShift Data Foundation work, see knowledgebase article on OpenShift Data Foundation subscriptions.
 - When the Token authentication method is selected for encryption then refer to Enabling cluster-wide encryption with KMS using the Token authentication method.
 - When the Kubernetes authentication method is selected for encryption then refer to Enabling cluster-wide encryption with KMS using the Kubernetes authentication method.
 - Ensure that you are using signed certificates on your Vault servers.

2. Optional: If you want to enable cluster-wide encryption using the external Key Management System (KMS) Thales CipherTrust Manager, you must first enable the Key Management Interoperability Protocol (KMIP) and use signed certificates on your server. Follow these steps:
 a. Create a KMIP client if one does not exist. From the user interface, select KMIP → Client Profile → Add Profile.
 i. Add the CipherTrust username to the Common Name field during profile creation.
 b. Create a token by navigating to KMIP → Registration Token → New Registration Token. Copy the token for the next step.
 c. To register the client, navigate to KMIP → Registered Clients → Add Client. Specify the Name. Paste the Registration Token from the previous step, then click Save.
 d. Download the Private Key and Client Certificate by clicking Save Private Key and Save Certificate respectively.
 e. To create a new KMIP interface, navigate to Admin Settings → Interfaces → Add Interface.
 i. Select KMIP Key Management Interoperability Protocol and click Next.
 ii. Select a free Port.
 iii. Select Network Interface as all.
 iv. Select Interface Mode as TLS, verify client cert, user name taken from client cert, auth request is optional.
v. (Optional) You can enable hard delete to delete both metadata and material when the key is deleted. It is disabled by default.

vi. Select the CA to be used, and click Save.

f. To get the server CA certificate, click on the Action menu (⋮) on the right of the newly created interface, and click Download Certificate.

g. Optional: If StorageClass encryption is to be enabled during deployment, create a key to act as the Key Encryption Key (KEK):

 i. Navigate to Keys → Add Key.

 ii. Enter Key Name.

 iii. Set the Algorithm and Size to AES and 256 respectively.

 iv. Enable Create a key in Pre-Active state and set the date and time for activation.

 v. Ensure that Encrypt and Decrypt are enabled under Key Usage.

 vi. Copy the ID of the newly created Key to be used as the Unique Identifier during deployment.

3. Minimum starting node requirements
 An OpenShift Data Foundation cluster will be deployed with minimum configuration when the standard deployment resource requirement is not met. See Resource requirements section in Planning guide.

4. Disaster recovery requirements
 Disaster Recovery features supported by Red Hat OpenShift Data Foundation require all of the following prerequisites to successfully implement a disaster recovery solution:

 - A valid Red Hat OpenShift Data Foundation Advanced subscription
 - A valid Red Hat Advanced Cluster Management for Kubernetes subscription

 To know how subscriptions for OpenShift Data Foundation work, see knowledgebase article on OpenShift Data Foundation subscriptions.

 For detailed requirements, see Configuring OpenShift Data Foundation Disaster Recovery for OpenShift Workloads guide, and Requirements and recommendations section of the Install guide in Red Hat Advanced Cluster Management for Kubernetes documentation.

5. For deploying using local storage devices, see requirements for installing OpenShift Data Foundation using local storage devices. These are not applicable for deployment using dynamic storage devices.

1.1. REQUIREMENTS FOR INSTALLING OPENSPLIT DATA FOUNDATION USING LOCAL STORAGE DEVICES

Node requirements

The cluster must consist of at least three OpenShift Container Platform worker or infrastructure nodes with locally attached-storage devices on each of them.

- Each of the three selected nodes must have at least one raw block device available. OpenShift Data Foundation uses the one or more available raw block devices.
The devices you use must be empty, the disks must not include Physical Volumes (PVs), Volume Groups (VGs), or Logical Volumes (LVs) remaining on the disk.

For more information, see the Resource requirements section in the Planning guide.

Disaster recovery requirements

Disaster Recovery features supported by Red Hat OpenShift Data Foundation require all of the following prerequisites to successfully implement a disaster recovery solution:

- A valid Red Hat OpenShift Data Foundation Advanced subscription.
- A valid Red Hat Advanced Cluster Management (RHACM) for Kubernetes subscription.

To know in detail how subscriptions for OpenShift Data Foundation work, see knowledgebase article on OpenShift Data Foundation subscriptions.

For detailed disaster recovery solution requirements, see Configuring OpenShift Data Foundation Disaster Recovery for OpenShift Workloads guide, and Requirements and recommendations section of the Install guide in Red Hat Advanced Cluster Management for Kubernetes documentation.

Arbiter stretch cluster requirements

In this case, a single cluster is stretched across two zones with a third zone as the location for the arbiter. This solution is currently intended for deployment in the OpenShift Container Platform on-premises and in the same data center. This solution is not recommended for deployments stretching over multiple data centers. Instead, consider Metro-DR as a first option for no data loss DR solution deployed over multiple data centers with low latency networks.

To know in detail how subscriptions for OpenShift Data Foundation work, see knowledgebase article on OpenShift Data Foundation subscriptions.

NOTE

You cannot enable Flexible scaling and Arbiter both at the same time as they have conflicting scaling logic. With Flexible scaling, you can add one node at a time to your OpenShift Data Foundation cluster. Whereas, in an Arbiter cluster, you need to add at least one node in each of the two data zones.

Minimum starting node requirements

An OpenShift Data Foundation cluster is deployed with a minimum configuration when the resource requirement for a standard deployment is not met.

For more information, see the Resource requirements section in the Planning guide.
CHAPTER 2. DEPLOY USING DYNAMIC STORAGE DEVICES

Deploying OpenShift Data Foundation on OpenShift Container Platform using dynamic storage devices provided by VMware vSphere (disk format: thin) provides you with the option to create internal cluster resources. This will result in the internal provisioning of the base services, which helps to make additional storage classes available to applications.

NOTE

Both internal and external OpenShift Data Foundation clusters are supported on VMware vSphere. See Planning your deployment for more information about deployment requirements.

Also, ensure that you have addressed the requirements in Preparing to deploy OpenShift Data Foundation chapter before proceeding with the below steps for deploying using dynamic storage devices:

1. Install the Red Hat OpenShift Data Foundation Operator.
2. Create an OpenShift Data Foundation Cluster.

2.1. INSTALLING RED HAT OPENSHEET DATA FOUNDATION OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with `cluster-admin` and operator installation permissions.
- You must have at least three worker or infrastructure nodes in the Red Hat OpenShift Container Platform cluster.
- For additional resource requirements, see the Planning your deployment guide.

IMPORTANT

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command to specify a blank node selector for the `openshift-storage` namespace (create `openshift-storage` namespace in this case):

  ```sh
  $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

- Taint a node as `infra` to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see the How to use dedicated worker nodes for Red Hat OpenShift Data Foundation section in the Managing and Allocating Storage Resources guide.

Procedure
1. Log in to the OpenShift Web Console.
2. Click Operators → OperatorHub.
3. Scroll or type OpenShift Data Foundation into the Filter by keyword box to find the OpenShift Data Foundation Operator.
4. Click Install.
5. Set the following options on the Install Operator page:
 b. Installation Mode as A specific namespace on the cluster
 c. Installed Namespace as Operator recommended namespace openshift-storage. If Namespace openshift-storage does not exist, it is created during the operator installation.
 d. Select Approval Strategy as Automatic or Manual.
 If you select Automatic updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
 If you select Manual updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.
 e. Ensure that the Enable option is selected for the Console plugin.
 f. Click Install.

Verification steps
- After the operator is successfully installed, a pop-up with a message, Web console update is available appears on the user interface. Click Refresh web console from this pop-up for the console changes to reflect.
- In the Web Console:
 - Navigate to Installed Operators and verify that the OpenShift Data Foundation Operator shows a green tick indicating successful installation.
 - Navigate to Storage and verify if the Data Foundation dashboard is available.

2.2. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE TOKEN AUTHENTICATION METHOD

You can enable the key value backend path and policy in the vault for token authentication.

Prerequisites
- Administrator access to the vault.
- A valid Red Hat OpenShift Data Foundation Advanced subscription. For more information, see the knowledgebase article on OpenShift Data Foundation subscriptions.
Carefully, select a unique path name as the backend `path` that follows the naming convention since you cannot change it later.

Procedure

1. Enable the Key/Value (KV) backend path in the vault.
 For vault KV secret engine API, version 1:
   ```bash
   $ vault secrets enable -path=odf kv
   ```
 For vault KV secret engine API, version 2:
   ```bash
   $ vault secrets enable -path=odf kv-v2
   ```

2. Create a policy to restrict the users to perform a write or delete operation on the secret:
   ```bash
   echo ' 
   path "odf/*/" { 
   capabilities = ["create", "read", "update", "delete", "list"]
   } 
   path "sys/mounts" { 
   capabilities = ["read"]
   }' vault policy write odf -
   ```

3. Create a token that matches the above policy:
   ```bash
   $ vault token create -policy=odf -format json
   ```

2.3. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE KUBERNETES AUTHENTICATION METHOD

You can enable the Kubernetes authentication method for cluster-wide encryption using the Key Management System (KMS).

Prerequisites

- Administrator access to Vault.
- A valid Red Hat OpenShift Data Foundation Advanced subscription. For more information, see the knowledgebase article on OpenShift Data Foundation subscriptions.
- The OpenShift Data Foundation operator must be installed from the Operator Hub.
- Select a unique path name as the backend `path` that follows the naming convention carefully. You cannot change this path name later.

Procedure

1. Create a service account:
   ```bash
   $ oc -n openshift-storage create serviceaccount <serviceaccount_name>
   ```
 where, `<serviceaccount_name>` specifies the name of the service account.
For example:

```
$ oc -n openshift-storage create serviceaccount odf-vault-auth
```

2. Create `clusterrolebindings` and `clusterroles`:

```
$ oc -n openshift-storage create clusterrolebinding vault-tokenreview-binding --
    clusterrole=system:auth-delegator --serviceaccount=openshift-storage:<serviceaccount_name>
```

For example:

```
$ oc -n openshift-storage create clusterrolebinding vault-tokenreview-binding --
    clusterrole=system:auth-delegator --serviceaccount=openshift-storage:odf-vault-auth
```

3. Create a secret for the `serviceaccount` token and CA certificate.

```
$ cat <<EOF | oc create -f -
apiVersion: v1
kind: Secret
metadata:
  name: odf-vault-auth-token
  namespace: openshift-storage
annotations:
  kubernetes.io/service-account.name: <serviceaccount_name>
type: kubernetes.io/service-account-token
data: {}
EOF
```

where, `<serviceaccount_name>` is the service account created in the earlier step.

4. Get the token and the CA certificate from the secret.

```
$ SA_JWT_TOKEN=$(oc -n openshift-storage get secret odf-vault-auth-token -o jsonpath="
    {.data['token']}") | base64 --decode; echo
$ SA_CA_CRT=$(oc -n openshift-storage get secret odf-vault-auth-token -o jsonpath="
    {.data['ca.crt']}") | base64 --decode; echo
```

5. Retrieve the OCP cluster endpoint.

```
$ OCP_HOST=$(oc config view --minify --flatten -o jsonpath="{.clusters[0].cluster.server}")
```

6. Fetch the service account issuer:

```
$ oc proxy &
$ proxy_pid=$!
$ issuer="$( curl --silent http://127.0.0.1:8001/.well-known/openid-configuration | jq -r .issuer)"
$ kill $proxy_pid
```

7. Use the information collected in the previous step to setup the Kubernetes authentication method in Vault:
$ vault auth enable kubernetes

$ vault write auth/kubernetes/config \
 token_reviewer_jwt="$SA_JWT_TOKEN" \
 kubernetes_host="$OCP_HOST" \
 kubernetes_ca_cert="$SA_CA_CRT" \
 issuer="$issuer"

IMPORTANT

To configure the Kubernetes authentication method in Vault when the issuer is empty:

$ vault write auth/kubernetes/config \
 token_reviewer_jwt="$SA_JWT_TOKEN" \
 kubernetes_host="$OCP_HOST" \
 kubernetes_ca_cert="$SA_CA_CRT"

8. Enable the Key/Value (KV) backend path in Vault.
 For Vault KV secret engine API, version 1:

 $ vault secrets enable -path=odf kv

 For Vault KV secret engine API, version 2:

 $ vault secrets enable -path=odf kv-v2

9. Create a policy to restrict the users to perform a **write** or **delete** operation on the secret:

   ```bash
   echo 'path "odf/*" {
     capabilities = ["create", "read", "update", "delete", "list"]
   }
   path "sys/mounts" {
     capabilities = ["read"]
   }' | vault policy write odf -

10. Generate the roles:

    $ vault write auth/kubernetes/role/odf-rook-ceph-op \
        bound_service_account_names=rook-ceph-system,rook-ceph-osd,noobaa \
        bound_service_account_namespaces=openshift-storage \
        policies=odf \
        ttl=1440h

    The role **odf-rook-ceph-op** is later used while you configure the KMS connection details during the creation of the storage system.

    $ vault write auth/kubernetes/role/odf-rook-ceph-osd \
        bound_service_account_names=rook-ceph-osd \
        bound_service_account_namespaces=openshift-storage \

2.4. CREATING AN OPENSIFT DATA FOUNDATION CLUSTER

Create an OpenShift Data Foundation cluster after you install the OpenShift Data Foundation operator.

Prerequisites

- The OpenShift Data Foundation operator must be installed from the Operator Hub. For more information, see Installing OpenShift Data Foundation Operator.

- For VMs on VMware, ensure the disk.EnableUUID option is set to TRUE. You need to have vCenter account privileges to configure the VMs. For more information, see Required vCenter account privileges. To set the disk.EnableUUID option, use the Advanced option of the VM Options in the Customize hardware tab. For more information, see Installing on vSphere.

- Optional: If you want to use thick-provisioned storage for flexibility, you must create a storage class with zeroedthick or eagerzeroedthick disk format. For information, see VMware vSphere object definition.

Procedure

1. In the OpenShift Web Console, click Operators → Installed Operators to view all the installed operators. Ensure that the Project selected is openshift-storage.

2. Click on the OpenShift Data Foundation operator, and then click Create StorageSystem.

3. In the Backing storage page, select the following:
   a. Select Full Deployment for the Deployment type option.
   b. Select the Use an existing StorageClass option.
   c. Select the Storage Class
      By default, it is set to thin. If you have created a storage class with zeroedthick or eagerzeroedthick disk format for thick-provisioned storage, then that storage class is listed in addition to the default, thin storage class.
   d. Click Next.

4. In the Capacity and nodes page, provide the necessary information:
   a. Select a value for Requested Capacity from the dropdown list. It is set to 2 TiB by default.

      **NOTE**
      Once you select the initial storage capacity, cluster expansion is performed only using the selected usable capacity (three times of raw storage).

   b. In the Select Nodes section, select at least three available nodes.
   c. Optional: Select the Taint nodes checkbox to dedicate the selected nodes for OpenShift Data Foundation.
Spread the worker nodes across three different physical nodes, racks, or failure domains for high availability.

Use vCenter anti-affinity to align OpenShift Data Foundation rack labels with physical nodes and racks in the data center to avoid scheduling two worker nodes on the same physical chassis.

If the nodes selected do not match the OpenShift Data Foundation cluster requirement of the aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster is deployed. For minimum starting node requirements, see the Resource requirements section in the Planning guide.

Select the Taint nodes checkbox to make selected nodes dedicated for OpenShift Data Foundation.

d. Click Next.

5. Optional: In the Security and network page, configure the following based on your requirements:

a. To enable encryption, select Enable data encryption for block and file storage

i. Select either one or both the encryption levels:

- **Cluster-wide encryption**
  Encrypts the entire cluster (block and file).

- **StorageClass encryption**
  Creates encrypted persistent volume (block only) using encryption enabled storage class.

ii. Optional: Select the Connect to an external key management service checkbox. This is optional for cluster-wide encryption.

A. From the Key Management Service Provider drop-down list, either select Vault or Thales CipherTrust Manager (using KMIP). If you selected Vault, go to the next step. If you selected Thales CipherTrust Manager (using KMIP), go to step iii.

B. Select an Authentication Method.

**Using Token authentication method**

- Enter a unique Connection Name, host Address of the Vault server (‘https://<hostname or ip>’), Port number and Token.

- Expand Advanced Settings to enter additional settings and certificate details based on your Vault configuration:
  - Enter the Key Value secret path in Backend Path that is dedicated and unique to OpenShift Data Foundation.
  - Optional: Enter TLS Server Name and Vault Enterprise Namespace.
  - Upload the respective PEM encoded certificate file to provide the CA Certificate, Client Certificate and Client Private Key.
  - Click Save and skip to step iv.

**Using Kubernetes authentication method**
• Enter a unique Vault **Connection Name**, host **Address** of the Vault server ('https://<hostname or ip>'), **Port** number and **Role** name.

• Expand **Advanced Settings** to enter additional settings and certificate details based on your **Vault** configuration:
  ○ Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Data Foundation.
  ○ Optional: Enter **TLS Server Name** and **Authentication Path** if applicable.
  ○ Upload the respective PEM encoded certificate file to provide the **CA Certificate**, **Client Certificate** and **Client Private Key**.
  ○ Click **Save** and skip to step iv.

C. To use **Thales CipherTrust Manager (using KMIP)** as the KMS provider, follow the steps below:

  I. Enter a unique **Connection Name** for the Key Management service within the project.

  II. In the **Address** and **Port** sections, enter the IP of Thales CipherTrust Manager and the port where the KMIP interface is enabled. For example:
      ○ **Address**: 123.34.3.2
      ○ **Port**: 5696

  III. Upload the **Client Certificate**, **CA certificate**, and **Client Private Key**.

  IV. If StorageClass encryption is enabled, enter the Unique Identifier to be used for encryption and decryption generated above.

  V. The **TLS Server** field is optional and used when there is no DNS entry for the KMIP endpoint. For example, `kmip_all_<port>.ciphertrustmanager.local`.

D. Select a **Network**.

E. Click **Next**.

b. To enable in-transit encryption, select **In-transit encryption**.

  i. Select a **Network**.

  ii. Click **Next**.

6. In the **Review and create** page, review the configuration details. To modify any configuration settings, click **Back**.

7. Click **Create StorageSystem**.

**Verification steps**

• To verify the final Status of the installed storage cluster:
a. In the OpenShift Web Console, navigate to Installed Operators → OpenShift Data Foundation → Storage System → ocs-storagecluster-storagesystem → Resources.

b. Verify that Status of StorageCluster is Ready and has a green tick mark next to it.

1. To verify that all components for OpenShift Data Foundation are successfully installed, see Verifying your OpenShift Data Foundation deployment.

Additional resources

To enable Overprovision Control alerts, refer to Alerts in Monitoring guide.
CHAPTER 3. DEPLOY USING LOCAL STORAGE DEVICES

Deploying OpenShift Data Foundation on OpenShift Container Platform using local storage devices provides you with the option to create internal cluster resources. This will result in the internal provisioning of the base services, which helps to make additional storage classes available to applications.

Use this section to deploy OpenShift Data Foundation on VMware where OpenShift Container Platform is already installed.

Also, ensure that you have addressed the requirements in Preparing to deploy OpenShift Data Foundation chapter before proceeding with the next steps.

1. Installing Local Storage Operator
2. Install the Red Hat OpenShift Data Foundation Operator.
3. Create the OpenShift Data Foundation Cluster.

3.1. INSTALLING LOCAL STORAGE OPERATOR

Install the Local Storage Operator from the Operator Hub before creating Red Hat OpenShift Data Foundation clusters on local storage devices.

Procedure

1. Log in to the OpenShift Web Console.
2. Click Operators → OperatorHub.
3. Type local storage in the Filter by keyword box to find the Local Storage Operator from the list of operators, and click on it.
4. Set the following options on the Install Operator page:
   a. Update channel as stable.
   b. Installation mode as A specific namespace on the cluster
   c. Installed Namespace as Operator recommended namespace openshift-local-storage.
   d. Update approval as Automatic.
5. Click Install.

Verification steps

- Verify that the Local Storage Operator shows a green tick indicating successful installation.

3.2. INSTALLING RED HAT OPENSШIFT DATA FOUNDATION OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.
Prerequisites

- Access to an OpenShift Container Platform cluster using an account with `cluster-admin` and operator installation permissions.

- You must have at least three worker or infrastructure nodes in the Red Hat OpenShift Container Platform cluster.

- For additional resource requirements, see the Planning your deployment guide.

**IMPORTANT**

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command to specify a blank node selector for the `openshift-storage` namespace (create `openshift-storage` namespace in this case):

  ```
 $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

- Taint a node as `infra` to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see the How to use dedicated worker nodes for Red Hat OpenShift Data Foundation section in the Managing and Allocating Storage Resources guide.

Procedure

1. Log in to the OpenShift Web Console.

2. Click **Operators → OperatorHub**.

3. Scroll or type **OpenShift Data Foundation** into the **Filter by keyword** box to find the **OpenShift Data Foundation** Operator.

4. Click **Install**.

5. Set the following options on the **Install Operator** page:
   
   a. Update Channel as **stable-4.14**.
   
   b. Installation Mode as **A specific namespace on the cluster**
   
   c. Installed Namespace as **Operator recommended namespace openshift-storage**. If Namespace `openshift-storage` does not exist, it is created during the operator installation.
   
   d. Select Approval Strategy as **Automatic** or **Manual**.

   If you select **Automatic** updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.

   If you select **Manual** updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.

   e. Ensure that the **Enable** option is selected for the **Console plugin**.

   f. Click **Install**.
Verification steps

- After the operator is successfully installed, a pop-up with a message, **Web console update is available** appears on the user interface. Click **Refresh web console** from this pop-up for the console changes to reflect.

- In the Web Console:
  - Navigate to Installed Operators and verify that the **OpenShift Data Foundation** Operator shows a green tick indicating successful installation.
  - Navigate to **Storage** and verify if the **Data Foundation** dashboard is available.

3.3. CREATING OPENSHEIF DATA FOUNDATION CLUSTER ON VMWARE VSPHERE

VMware vSphere supports the following three types of local storage:

- Virtual machine disk (VMDK)
- Raw device mapping (RDM)
- VMDirectPath I/O

Prerequisites

- Ensure that all the requirements in the **Requirements for installing OpenShift Data Foundation using local storage devices** section are met.

- You must have a minimum of three worker nodes with the same storage type and size attached to each node to use local storage devices on VMware.

- For VMs on VMware vSphere, ensure the **disk.EnableUUID** option is set to **TRUE**. You need to have vCenter account privileges to configure the VMs. For more information, see **Required vCenter account privileges**. To set the **disk.EnableUUID** option, use the **Advanced** option of the **VM Options** in the **Customize hardware** tab. For more information, see **Installing on vSphere**.

Procedure

1. In the OpenShift Web Console, click **Operators → Installed Operators** to view all the installed operators. Ensure that the **Project** selected is **openshift-storage**.

2. Click on the **OpenShift Data Foundation** operator and then click **Create StorageSystem**.

3. In the Backing storage page, perform the following:
   a. Select **Full Deployment** for the **Deployment type** option.
   b. Select the **Create a new StorageClass using the local storage devices** option.
   c. Click Next.
NOTE
You are prompted to install the Local Storage Operator if it is not already installed. Click Install and follow the procedure as described in Installing Local Storage Operator.

4. In the Create local volume set page, provide the following information:
   a. Enter a name for the LocalVolumeSet and the StorageClass.
      By default, the local volume set name appears for the storage class name. You can change the name.
   b. Select one of the following:
      - **Disks on all nodes** to use the available disks that match the selected filters on all nodes.
      - **Disks on selected nodes** to use the available disks that match the selected filters only on selected nodes.

      **IMPORTANT**
      - The flexible scaling feature is enabled only when the storage cluster that you created with 3 or more nodes is spread across fewer than the minimum requirement of 3 availability zones.
        For information about flexible scaling, see knowledgebase article on Scaling OpenShift Data Foundation cluster using YAML when flexible scaling is enabled.
      - Flexible scaling features get enabled at the time of deployment and can not be enabled or disabled later on.
      - If the nodes selected do not match the OpenShift Data Foundation cluster requirement of an aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster is deployed.
        For minimum starting node requirements, see the Resource requirements section in the Planning guide.
   c. From the available list of Disk Type, select SSD/NVMe.
   d. Expand the Advanced section and set the following options:

Volume Mode	Block is selected by default.
Device Type	Select one or more device types from the dropdown list.
Disk Size	Set a minimum size of 100GB for the device and maximum available size of the device that needs to be included.
Maximum Disks Limit	This indicates the maximum number of PVs that can be created on a node. If this field is left empty, then PVs are created for all the available disks on the matching nodes.
e. Click Next.
A pop-up to confirm the creation of LocalVolumeSet is displayed.

f. Click Yes to continue.

5. In the Capacity and nodes page, configure the following:

a. Available raw capacity is populated with the capacity value based on all the attached disks associated with the storage class. This takes some time to show up. The Selected nodes list shows the nodes based on the storage class.

b. Optional: Select the Taint nodes checkbox to dedicate the selected nodes for OpenShift Data Foundation.

c. Click Next.

6. Optional: In the Security and network page, configure the following based on your requirement:

a. To enable encryption, select Enable data encryption for block and file storage.

b. Select one of the following Encryption level:
   
   - Cluster-wide encryption to encrypt the entire cluster (block and file).
   
   - StorageClass encryption to create encrypted persistent volume (block only) using encryption enabled storage class.

c. Optional: Select the Connect to an external key management service checkbox. This is optional for cluster-wide encryption.

   i. From the Key Management Service Provider drop-down list, either select Vault or Thales CipherTrust Manager (using KMIP). If you selected Vault, go to the next step. If you selected Thales CipherTrust Manager (using KMIP), go to step iii.

   ii. Select an Authentication Method.

   Using Token authentication method

   - Enter a unique Connection Name, host Address of the Vault server ('https://<hostname or ip>'), Port number and Token.

   - Expand Advanced Settings to enter additional settings and certificate details based on your Vault configuration:
     
     - Enter the Key Value secret path in the Backend Path that is dedicated and unique to OpenShift Data Foundation.
     
     - Optional: Enter TLS Server Name and Vault Enterprise Namespace

     - Upload the respective PEM encoded certificate file to provide the CA Certificate, Client Certificate and Client Private Key.

     - Click Save and skip to step iv.

   Using Kubernetes authentication method

   - Enter a unique Vault Connection Name, host Address of the Vault server ('https://<hostname or ip>'), Port number and Role name.
iii. To use Thales CipherTrust Manager (using KMIP) as the KMS provider, follow the steps below:

A. Enter a unique Connection Name for the Key Management service within the project.

B. In the Address and Port sections, enter the IP of Thales CipherTrust Manager and the port where the KMIP interface is enabled. For example:

   - Address: 123.34.3.2
   - Port: 5696

C. Upload the Client Certificate, CA certificate, and Client Private Key.

D. If StorageClass encryption is enabled, enter the Unique Identifier to be used for encryption and decryption generated above.

E. The TLS Server field is optional and used when there is no DNS entry for the KMIP endpoint. For example, kmip_all_-<port>.ciphertrustmanager.local.

iv. Select a Network.

d. Click Next.

7. In the Review and create page, review the configuration details.

   - To modify any configuration settings, click Back to go back to the previous configuration page.

8. Click Create StorageSystem.

Verification steps

- To verify the final Status of the installed storage cluster:

  a. In the OpenShift Web Console, navigate to Installed Operators → OpenShift Data Foundation → Storage System → ocs-storagecluster-storagesystem → Resources.

  b. Verify that the Status of StorageCluster is Ready and has a green tick mark next to it.

- To verify if flexible scaling is enabled on your storage cluster, perform the following steps (for arbiter mode, flexible scaling is disabled):

  1. In the OpenShift Web Console, navigate to Installed Operators → OpenShift Data
In the OpenShift Web Console, navigate to Installed Operators → OpenShift Data Foundation → Storage System → ocs-storagecluster-storagesystem → Resources.

2. In the YAML tab, search for the keys flexibleScaling in spec section and failureDomain in status section. If flexible scaling is true and failureDomain is set to host, the flexible scaling feature is enabled.

```
spec:
 flexibleScaling: true

status:
 failureDomain: host
```

- To verify that all components for OpenShift Data Foundation are successfully installed, see Verifying your OpenShift Data Foundation deployment.

Additional resources

- To expand the capacity of the initial cluster, see the Scaling Storage guide.
CHAPTER 4. VERIFYING OPENSHIFT DATA FOUNDATION DEPLOYMENT

Use this section to verify that OpenShift Data Foundation is deployed correctly.

4.1. VERIFYING THE STATE OF THE PODS

Procedure

1. Click Workloads → Pods from the OpenShift Web Console.

2. Select openshift-storage from the Project drop-down list.

   **NOTE**
   
   If the Show default projects option is disabled, use the toggle button to list all the default projects.
   
   For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see Table 4.1, “Pods corresponding to OpenShift Data Foundation cluster”.

3. Set filter for Running and Completed pods to verify that the following pods are in Running and Completed state:

   **Table 4.1. Pods corresponding to OpenShift Data Foundation cluster**

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Data Foundation Operator</td>
<td>ocs-operator-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>ocs-metrics-exporter-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>odf-operator-controller-manager-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>odf-console-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>csi-addons-controller-manager-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>Rook-ceph Operator</td>
<td>rook-ceph-operator-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>Component</td>
<td>Corresponding pods</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>• noobaa-operator-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-core-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-db-pg-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-endpoint-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>MON</td>
<td>rook-ceph-mon-*</td>
</tr>
<tr>
<td></td>
<td>(3 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>MGR</td>
<td>rook-ceph-mgr-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td>MDS</td>
<td>rook-ceph-mds-ocs-storagecluster-cephfilesystem-*</td>
</tr>
<tr>
<td></td>
<td>(2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>RGW</td>
<td>rook-ceph-rgw-ocs-storagecluster-cephobjectstore-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td>CSI</td>
<td>• cephfs</td>
</tr>
<tr>
<td></td>
<td>• csi-cephfsplugin-* (1 pod on each storage node)</td>
</tr>
<tr>
<td></td>
<td>• csi-cephfsplugin-provisioner-* (2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td></td>
<td>• rbd</td>
</tr>
<tr>
<td></td>
<td>• csi-rbdplugin-* (1 pod on each storage node)</td>
</tr>
<tr>
<td></td>
<td>• csi-rbdplugin-provisioner-* (2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td></td>
<td>rook-ceph-crashcollector</td>
</tr>
<tr>
<td></td>
<td>rook-ceph-crashcollector-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on each storage node)</td>
</tr>
</tbody>
</table>
### 4.2. VERIFYING THE OPENSSHIFT DATA FOUNDATION CLUSTER IS HEALTHY

**Procedure**

1. In the OpenShift Web Console, click **Storage → Data Foundation**.

2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.

3. In the **Status** card of the **Block and File** tab, verify that the **Storage Cluster** has a green tick.

4. In the **Details** card, verify that the cluster information is displayed.

For more information on the health of the OpenShift Data Foundation cluster using the **Block and File** dashboard, see [Monitoring OpenShift Data Foundation](#).

### 4.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY

**Procedure**

1. In the OpenShift Web Console, click **Storage → Data Foundation**.

2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.

   a. In the **Status** card of the **Object** tab, verify that both **Object Service** and **Data Resiliency** have a green tick.

   b. In the **Details** card, verify that the MCG information is displayed.

For more information on the health of the OpenShift Data Foundation cluster using the object service dashboard, see [Monitoring OpenShift Data Foundation](#).

### 4.4. VERIFYING THAT THE SPECIFIC STORAGE CLASSES EXIST

**Procedure**

1. Click **Storage → Storage Classes** from the left pane of the OpenShift Web Console.

2. Verify that the following storage classes are created with the OpenShift Data Foundation cluster creation:

   - **ocs-storagecluster-ceph-rbd**

---

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSD</td>
<td>- rook-ceph-osd-* (1 pod for each device)</td>
</tr>
<tr>
<td></td>
<td>- rook-ceph-osd-prepare-ocs-deviceset-* (1 pod for each device)</td>
</tr>
</tbody>
</table>
- ocs-storagecluster-cephfs
- openshift-storage.noobaa.io
- ocs-storagecluster-ceph-rgw
CHAPTER 5. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY

Deploying only the Multicloud Object Gateway component with the OpenShift Data Foundation provides the flexibility in deployment and helps to reduce the resource consumption. You can deploy the Multicloud Object Gateway component either using dynamic storage devices or using the local storage devices.

5.1. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY USING DYNAMIC STORAGE DEVICES

Use this section to deploy only the standalone Multicloud Object Gateway component, which involves the following steps:

- Installing Red Hat OpenShift Data Foundation Operator
- Creating standalone Multicloud Object Gateway

5.1.1. Installing Red Hat OpenShift Data Foundation Operator

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with cluster-admin and operator installation permissions.
- You must have at least three worker or infrastructure nodes in the Red Hat OpenShift Container Platform cluster.
- For additional resource requirements, see the Planning your deployment guide.

IMPORTANT

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command to specify a blank node selector for the openshift-storage namespace (create openshift-storage namespace in this case):
  
  $ oc annotate namespace openshift-storage openshift.io/node-selector=

- Taint a node as infra to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see the How to use dedicated worker nodes for Red Hat OpenShift Data Foundation section in the Managing and Allocating Storage Resources guide.

Procedure

1. Log in to the OpenShift Web Console.

2. Click Operators ➔ OperatorHub.
3. Scroll or type **OpenShift Data Foundation** into the **Filter by keyword** box to find the **OpenShift Data Foundation** Operator.

4. Click **Install**.

5. Set the following options on the **Install Operator** page:
   a. Update Channel as **stable-4.14**.
   b. Installation Mode as **A specific namespace on the cluster**
   c. Installed Namespace as **Operator recommended namespace openshift-storage**. If Namespace **openshift-storage** does not exist, it is created during the operator installation.
   d. Select Approval Strategy as **Automatic** or **Manual**.
      - If you select **Automatic** updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
      - If you select **Manual** updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.
   e. Ensure that the **Enable** option is selected for the **Console plugin**.
   f. Click **Install**.

**Verification steps**

- After the operator is successfully installed, a pop-up with a message, **Web console update is available** appears on the user interface. Click **Refresh web console** from this pop-up for the console changes to reflect.
- In the Web Console:
  - Navigate to Installed Operators and verify that the **OpenShift Data Foundation** Operator shows a green tick indicating successful installation.
  - Navigate to **Storage** and verify if the **Data Foundation** dashboard is available.

**5.1.2. Creating a standalone Multicloud Object Gateway**

You can create only the standalone Multicloud Object Gateway component while deploying OpenShift Data Foundation.

**Prerequisites**

- Ensure that the OpenShift Data Foundation Operator is installed.

**Procedure**

1. In the OpenShift Web Console, click **Operators → Installed Operators** to view all the installed operators.
   - Ensure that the **Project** selected is **openshift-storage**.

2. Click **OpenShift Data Foundation** operator and then click **Create StorageSystem**.
3. In the **Backing storage** page, select the following:
   
a. Select **Multicloud Object Gateway** for **Deployment type**.
   
b. Select the **Use an existing StorageClass** option.
   
c. Click **Next**.

4. Optional: Select the **Connect to an external key management service** checkbox. This is optional for cluster-wide encryption.
   
a. From the **Key Management Service Provider** drop-down list, either select **Vault** or **Thales CipherTrust Manager (using KMIP)**. If you selected **Vault**, go to the next step. If you selected **Thales CipherTrust Manager (using KMIP)**, go to step iii.
   
b. Select an **Authentication Method**.

   **Using Token authentication method**
   
   - Enter a unique **Connection Name**, host **Address** of the Vault server ('https://<hostname or ip>'), **Port** number and **Token**.
   
   - Expand **Advanced Settings** to enter additional settings and certificate details based on your **Vault** configuration:
     
     - Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Data Foundation.
     
     - Optional: Enter **TLS Server Name** and **Vault Enterprise Namespace**
     
     - Upload the respective PEM encoded certificate file to provide the **CA Certificate, Client Certificate** and **Client Private Key**.
     
     - Click **Save** and skip to step iv.

   **Using Kubernetes authentication method**
   
   - Enter a unique **Vault Connection Name**, host **Address** of the Vault server ('https://<hostname or ip>'), **Port** number and **Role** name.
   
   - Expand **Advanced Settings** to enter additional settings and certificate details based on your **Vault** configuration:
     
     - Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Data Foundation.
     
     - Optional: Enter **TLS Server Name** and **Authentication Path** if applicable.
     
     - Upload the respective PEM encoded certificate file to provide the **CA Certificate, Client Certificate** and **Client Private Key**.
     
     - Click **Save** and skip to step iv.

   c. To use **Thales CipherTrust Manager (using KMIP)** as the KMS provider, follow the steps below:

   i. Enter a unique **Connection Name** for the Key Management service within the project.
ii. In the Address and Port sections, enter the IP of Thales CipherTrust Manager and the port where the KMIP interface is enabled. For example:

- Address: 123.34.3.2
- Port: 5696

iii. Upload the Client Certificate, CA certificate, and Client Private Key.

iv. If StorageClass encryption is enabled, enter the Unique Identifier to be used for encryption and decryption generated above.

v. The TLS Server field is optional and used when there is no DNS entry for the KMIP endpoint. For example, kmip_all_<port>.ciphertrustmanager.local.

d. Select a Network.

e. Click Next.

5. In the Review and create page, review the configuration details:
To modify any configuration settings, click Back.

6. Click Create StorageSystem.

Verification steps

Verifying that the OpenShift Data Foundation cluster is healthy

1. In the OpenShift Web Console, click Storage → Data Foundation.

2. In the Status card of the Overview tab, click Storage System and then click the storage system link from the pop up that appears.

   a. In the Status card of the Object tab, verify that both Object Service and Data Resiliency have a green tick.

   b. In the Details card, verify that the MCG information is displayed.

Verifying the state of the pods

1. Click Workloads → Pods from the OpenShift Web Console.

2. Select openshift-storage from the Project drop-down list and verify that the following pods are in Running state.

   NOTE

   If the Show default projects option is disabled, use the toggle button to list all the default projects.

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>Corresponding pods</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>OpenShift Data Foundation Operator</td>
<td>• ocs-operator-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• ocs-metrics-exporter-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• odf-operator-controller-manager-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• odf-console-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• csi-addons-controller-manager-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>Rook-ceph Operator</td>
<td>rook-ceph-operator-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>• noobaa-operator-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-core-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-db-pg-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-endpoint-* (1 pod on any storage node)</td>
</tr>
</tbody>
</table>

5.2. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY USING LOCAL STORAGE DEVICES

Use this section to deploy only the standalone Multicloud Object Gateway component, which involves the following steps:

- Installing the Local Storage Operator
- Installing Red Hat OpenShift Data Foundation Operator
- Creating standalone Multicloud Object Gateway

5.2.1. Installing Local Storage Operator

Install the Local Storage Operator from the Operator Hub before creating Red Hat OpenShift Data Foundation clusters on local storage devices.

Procedure

1. Log in to the OpenShift Web Console.
2. Click Operators ➔ OperatorHub.
3. Type local storage in the Filter by keyword box to find the Local Storage Operator from the list of operators, and click on it.
4. Set the following options on the Install Operator page:
   a. Update channel as **stable**.
   b. Installation mode as **A specific namespace on the cluster**
   c. Installed Namespace as **Operator recommended namespace openshift-local-storage**.
   d. Update approval as **Automatic**.

5. Click **Install**.

**Verification steps**

- Verify that the Local Storage Operator shows a green tick indicating successful installation.

### 5.2.2. Installing Red Hat OpenShift Data Foundation Operator

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.

**Prerequisites**

- Access to an OpenShift Container Platform cluster using an account with **cluster-admin** and operator installation permissions.
- You must have at least three worker or infrastructure nodes in the Red Hat OpenShift Container Platform cluster.
- For additional resource requirements, see the **Planning your deployment** guide.

**IMPORTANT**

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command to specify a blank node selector for the openshift-storage namespace (create openshift-storage namespace in this case):

  ```
 $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

- Taint a node as **infra** to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see the **How to use dedicated worker nodes for Red Hat OpenShift Data Foundation** section in the **Managing and Allocating Storage Resources** guide.

**Procedure**

1. Log in to the OpenShift Web Console.

2. Click **Operators → OperatorHub**.

3. Scroll or type **OpenShift Data Foundation** into the *Filter by keyword* box to find the **OpenShift Data Foundation** Operator.
4. Click **Install**.

5. Set the following options on the **Install Operator** page:
   a. Update Channel as **stable-4.14**.
   b. Installation Mode as **A specific namespace on the cluster**.
   c. Installed Namespace as **Operator recommended namespace openshift-storage**. If Namespace openshift-storage does not exist, it is created during the operator installation.
   d. Select Approval Strategy as **Automatic** or **Manual**.
      If you select Automatic updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
      If you select Manual updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.
   e. Ensure that the **Enable** option is selected for the **Console plugin**.
   f. Click **Install**.

**Verification steps**

- After the operator is successfully installed, a pop-up with a message, **Web console update is available** appears on the user interface. Click **Refresh web console** from this pop-up for the console changes to reflect.

- In the Web Console:
  - Navigate to Installed Operators and verify that the **OpenShift Data Foundation Operator** shows a green tick indicating successful installation.
  - Navigate to **Storage** and verify if the **Data Foundation** dashboard is available.

**5.2.3. Creating a standalone Multicloud Object Gateway**

You can create only the standalone Multicloud Object Gateway component while deploying OpenShift Data Foundation.

**Prerequisites**

- Ensure that the OpenShift Data Foundation Operator is installed.

**Procedure**

1. In the OpenShift Web Console, click **Operators → Installed Operators** to view all the installed operators.
   Ensure that the **Project** selected is openshift-storage.

2. Click **OpenShift Data Foundation** operator and then click **Create StorageSystem**.

3. In the **Backing storage** page, select the following:
   a. Select **Multicloud Object Gateway** for **Deployment type**.
b. Select the **Create a new StorageClass using the local storage devices** option.

c. Click **Next**.

**NOTE**

You are prompted to install the Local Storage Operator if it is not already installed. Click **Install**, and follow the procedure as described in **Installing Local Storage Operator**.

4. In the **Create local volume set** page, provide the following information:

   a. Enter a name for the **LocalVolumeSet** and the **StorageClass**.
      By default, the local volume set name appears for the storage class name. You can change the name.

   b. Choose one of the following:

      - **Disks on all nodes**
        Uses the available disks that match the selected filters on all the nodes.

      - **Disks on selected nodes**
        Uses the available disks that match the selected filters only on the selected nodes.

   c. From the available list of **Disk Type**, select **SSD/NVMe**.

   d. Expand the **Advanced** section and set the following options:

Volume Mode	Filesystem is selected by default. Always ensure that the Filesystem is selected for **Volume Mode**.
Device Type	Select one or more device types from the dropdown list.
Disk Size	Set a minimum size of 100GB for the device and maximum available size of the device that needs to be included.
Maximum Disks Limit	This indicates the maximum number of PVs that can be created on a node. If this field is left empty, then PVs are created for all the available disks on the matching nodes.

   e. Click **Next**.
      A pop-up to confirm the creation of LocalVolumeSet is displayed.

   f. Click **Yes** to continue.

5. In the **Capacity and nodes** page, configure the following:

   a. **Available raw capacity** is populated with the capacity value based on all the attached disks associated with the storage class. This takes some time to show up. The **Selected nodes** list shows the nodes based on the storage class.

   b. Click **Next**.
6. Optional: Select the `Connect to an external key management service` checkbox. This is optional for cluster-wide encryption.

   a. From the Key Management Service Provider drop-down list, either select **Vault** or **Thales CipherTrust Manager (using KMIP)**. If you selected **Vault**, go to the next step. If you selected **Thales CipherTrust Manager (using KMIP)**, go to step iii.

   b. Select an **Authentication Method**.

   **Using Token authentication method**

   - Enter a unique **Connection Name**, host **Address** of the Vault server (`https://<hostname or ip>`), **Port** number and **Token**.

   - Expand **Advanced Settings** to enter additional settings and certificate details based on your **Vault** configuration:
     - Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Data Foundation.
     - Optional: Enter **TLS Server Name** and **Vault Enterprise Namespace**
     - Upload the respective PEM encoded certificate file to provide the **CA Certificate**, **Client Certificate** and **Client Private Key**.
     - Click **Save** and skip to step iv.

   **Using Kubernetes authentication method**

   - Enter a unique Vault **Connection Name**, host **Address** of the Vault server (`https://<hostname or ip>`), **Port** number and **Role** name.

   - Expand **Advanced Settings** to enter additional settings and certificate details based on your **Vault** configuration:
     - Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Data Foundation.
     - Optional: Enter **TLS Server Name** and **Authentication Path** if applicable.
     - Upload the respective PEM encoded certificate file to provide the **CA Certificate**, **Client Certificate** and **Client Private Key**.
     - Click **Save** and skip to step iv.

   c. To use **Thales CipherTrust Manager (using KMIP)** as the KMS provider, follow the steps below:

      i. Enter a unique **Connection Name** for the Key Management service within the project.

      ii. In the **Address** and **Port** sections, enter the IP of Thales CipherTrust Manager and the port where the KMIP interface is enabled. For example:

         - **Address**: 123.34.3.2
         - **Port**: 5696

      iii. Upload the **Client Certificate**, **CA certificate**, and **Client Private Key**.
iv. If StorageClass encryption is enabled, enter the Unique Identifier to be used for encryption and decryption generated above.

v. The **TLS Server** field is optional and used when there is no DNS entry for the KMIP endpoint. For example, `kmip_all_<port>.ciphertrustmanager.local`.

d. Select a **Network**.

e. Click **Next**.

7. In the **Review and create** page, review the configuration details:
   To modify any configuration settings, click **Back**.

8. Click **Create StorageSystem**.

**Verification steps**

**Verifying that the OpenShift Data Foundation cluster is healthy**

1. In the OpenShift Web Console, click **Storage → Data Foundation**.

2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.
   
   a. In the **Status card** of the **Object** tab, verify that both **Object Service** and **Data Resiliency** have a green tick.

   b. In the **Details** card, verify that the MCG information is displayed.

**Verifying the state of the pods**

1. Click **Workloads → Pods** from the OpenShift Web Console.

2. Select **openshift-storage** from the **Project** drop-down list and verify that the following pods are in **Running** state.

   **NOTE**
   
   If the **Show default projects** option is disabled, use the toggle button to list all the default projects.

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Data Foundation Operator</td>
<td>• ocs-operator-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• ocs-metrics-exporter-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• odf-operator-controller-manager-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• odf-console-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• csi-addons-controller-manager-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>Component</td>
<td>Corresponding pods</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------------------------</td>
</tr>
<tr>
<td>Rook-ceph Operator</td>
<td><strong>rook-ceph-operator-</strong></td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>• <strong>noobaa-operator-</strong> (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• <strong>noobaa-core-</strong> (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• <strong>noobaa-db-pg-</strong> (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>• <strong>noobaa-endpoint-</strong> (1 pod on any storage node)</td>
</tr>
</tbody>
</table>
CHAPTER 6. VIEW OPENSSHIFT DATA FOUNDATION TOPOLOGY

The topology shows the mapped visualization of the OpenShift Data Foundation storage cluster at various abstraction levels and also lets you to interact with these layers. The view also shows how the various elements compose the Storage cluster altogether.

Procedure

1. On the OpenShift Web Console, navigate to **Storage → Data Foundation → Topology**. The view shows the storage cluster and the zones inside it. You can see the nodes depicted by circular entities within the zones, which are indicated by dotted lines. The label of each item or resource contains basic information such as status and health or indication for alerts.

2. Choose a node to view node details on the right-hand panel. You can also access resources or deployments within a node by clicking on the search/preview decorator icon.

3. To view deployment details
   a. Click the preview decorator on a node. A modal window appears above the node that displays all of the deployments associated with that node along with their statuses.
   b. Click the **Back to main view** button in the model’s upper left corner to close and return to the previous view.
   c. Select a specific deployment to see more information about it. All relevant data is shown in the side panel.

4. Click the **Resources** tab to view the pods information. This tab provides a deeper understanding of the problems and offers granularity that aids in better troubleshooting.

5. Click the pod links to view the pod information page on OpenShift Container Platform. The link opens in a new window.
CHAPTER 7. UNINSTALLING OPENSHIFT DATA FOUNDATION

7.1. UNINSTALLING OPENSHIFT DATA FOUNDATION IN INTERNAL MODE

To uninstall OpenShift Data Foundation in Internal mode, refer to the knowledge base article on Uninstalling OpenShift Data Foundation.