
Red Hat OpenShift Data Foundation 4.11

Red Hat OpenShift Data Foundation
architecture

Overview of OpenShift Data Foundation architecture and the roles that the
components and services perform.

Last Updated: 2024-01-17

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data
Foundation architecture

Overview of OpenShift Data Foundation architecture and the roles that the components and
services perform.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides an overview of the OpenShift Data Foundation architecture.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO OPENSHIFT DATA FOUNDATION

CHAPTER 2. AN OVERVIEW OF OPENSHIFT DATA FOUNDATION ARCHITECTURE

CHAPTER 3. OPENSHIFT DATA FOUNDATION OPERATORS
3.1. OPENSHIFT DATA FOUNDATION OPERATOR

3.1.1. Components
3.1.2. Design diagram
3.1.3. Responsibilites
3.1.4. Resources
3.1.5. Limitation
3.1.6. High availability
3.1.7. Relevant config files
3.1.8. Relevant log files
3.1.9. Lifecycle

3.2. OPENSHIFT CONTAINER STORAGE OPERATOR
3.2.1. Components
3.2.2. Design diagram
3.2.3. Responsibilities
3.2.4. Resources
3.2.5. Limitation
3.2.6. High availability
3.2.7. Relevant config files
3.2.8. Relevant log files
3.2.9. Lifecycle

3.3. ROOK-CEPH OPERATOR
3.3.1. Components
3.3.2. Design diagram
3.3.3. Responsibilities
3.3.4. Resources
3.3.5. Lifecycle

3.4. MCG OPERATOR
3.4.1. Components
3.4.2. Responsibilities and resources
3.4.3. High availability
3.4.4. Relevant log files
3.4.5. Lifecycle

CHAPTER 4. OPENSHIFT DATA FOUNDATION INSTALLATION OVERVIEW
4.1. INSTALLED OPERATORS
4.2. OPENSHIFT CONTAINER STORAGE INITIALIZATION
4.3. STORAGE CLUSTER CREATION

4.3.1. Internal mode storage cluster
4.3.1.1. Cluster Creation
4.3.1.2. NooBaa System creation

4.3.2. External mode storage cluster
4.3.2.1. Cluster Creation

4

5

6

7

8

9
9
9
9

10
10
10
10
10
10
11
11
11
11

12
12
13
13
13
14
14
14
14
15
15
16
17
17
18
18
19

20
20

21
21
21
21
22
23
24
25
26

Table of Contents

1

. .

4.3.2.2. NooBaa System creation
4.3.3. MCG Standalone StorageCluster

4.3.3.1. NooBaa System creation
4.3.3.2. StorageSystem Creation

CHAPTER 5. OPENSHIFT DATA FOUNDATION UPGRADE OVERVIEW
5.1. UPGRADE WORKFLOWS
5.2. CLUSTERSERVICEVERSION RECONCILIATION
5.3. OPERATOR RECONCILIATION

26
28
28
29

30
30
30
30

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

2

Table of Contents

3

PREFACE
This document provides an overview of the OpenShift Data Foundation architecture.

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Do let us know how we can make it better.

To give feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.

2. In the Component section, choose documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant
part(s) of documentation.

4. Click Submit Bug.

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

6

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat OpenShift Data Foundation

CHAPTER 1. INTRODUCTION TO OPENSHIFT DATA
FOUNDATION

Red Hat OpenShift Data Foundation is a highly integrated collection of cloud storage and data services
for Red Hat OpenShift Container Platform. It is available as part of the Red Hat OpenShift Container
Platform Service Catalog, packaged as an operator to facilitate simple deployment and management.

Red Hat OpenShift Data Foundation services are primarily made available to applications by way of
storage classes that represent the following components:

Block storage devices, catering primarily to database workloads. Prime examples include Red
Hat OpenShift Container Platform logging and monitoring, and PostgreSQL.

Shared and distributed file system, catering primarily to software development, messaging, and
data aggregation workloads. Examples include Jenkins build sources and artifacts, Wordpress
uploaded content, Red Hat OpenShift Container Platform registry, and messaging using JBoss
AMQ.

Multicloud object storage, featuring a lightweight S3 API endpoint that can abstract the storage
and retrieval of data from multiple cloud object stores.

On premises object storage, featuring a robust S3 API endpoint that scales to tens of petabytes
and billions of objects, primarily targeting data intensive applications. Examples include the
storage and access of row, columnar, and semi-structured data with applications like Spark,
Presto, Red Hat AMQ Streams (Kafka), and even machine learning frameworks like TensorFlow
and Pytorch.

NOTE

Running PostgresSQL workload on CephFS persistent volume is not supported and it is
recommended to use RADOS Block Device (RBD) volume.

Red Hat OpenShift Data Foundation version 4.x integrates a collection of software projects, including:

Ceph, providing block storage, a shared and distributed file system, and on-premises object
storage

Ceph CSI, to manage provisioning and lifecycle of persistent volumes and claims

NooBaa, providing a Multicloud Object Gateway

OpenShift Data Foundation, Rook-Ceph, and NooBaa operators to initialize and manage
OpenShift Data Foundation services.

CHAPTER 1. INTRODUCTION TO OPENSHIFT DATA FOUNDATION

7

CHAPTER 2. AN OVERVIEW OF OPENSHIFT DATA
FOUNDATION ARCHITECTURE

Red Hat OpenShift Data Foundation provides services for, and can run internally from Red Hat
OpenShift Container Platform.

Figure 2.1. Red Hat OpenShift Data Foundation architecture

Red Hat OpenShift Data Foundation supports deployment into Red Hat OpenShift Container Platform
clusters deployed on Installer Provisioned Infrastructure or User Provisioned Infrastructure. For details
about these two approaches, see OpenShift Container Platform - Installation process . To know more
about interoperability of components for the Red Hat OpenShift Data Foundation and Red Hat
OpenShift Container Platform, see the interoperability matrix .

For information about the architecture and lifecycle of OpenShift Container Platform, see OpenShift
Container Platform architecture.

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/architecture/index#architecture-installation
https://access.redhat.com/labs/odfsi/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/architecture/index#architecture

CHAPTER 3. OPENSHIFT DATA FOUNDATION OPERATORS
Red Hat OpenShift Data Foundation is comprised of the following three Operator Lifecycle Manager
(OLM) operator bundles, deploying four operators which codify administrative tasks and custom
resources so that task and resource characteristics can be easily automated:

OpenShift Data Foundation

odf-operator

OpenShift Container Storage

ocs-operator

rook-ceph-operator

Multicloud Object Gateway

mcg-operator

Administrators define the desired end state of the cluster, and the OpenShift Data Foundation
operators ensure the cluster is either in that state or approaching that state, with minimal administrator
intervention.

3.1. OPENSHIFT DATA FOUNDATION OPERATOR

The odf-operator can be described as a "meta" operator for OpenShift Data Foundation, that is, an
operator meant to influence other operators.

The odf-operator has the following primary functions:

Enforces the configuration and versioning of the other operators that comprise OpenShift Data
Foundation. It does this by using two primary mechanisms: operator dependencies and
Subscription management.

The odf-operator bundle specifies dependencies on other OLM operators to make sure
they are always installed at specific versions.

The operator itself manages the Subscriptions for all other operators to make sure the
desired versions of those operators are available for installation by the OLM.

Provides the OpenShift Data Foundation external plugin for the OpenShift Console.

Provides an API to integrate storage solutions with the OpenShift Console.

3.1.1. Components

The odf-operator has a dependency on the ocs-operator package. It also manages the Subscription of
the mcg-operator. In addition, the odf-operator bundle defines a second Deployment for the
OpenShift Data Foundation external plugin for the OpenShift Console. This defines an nginx-based
Pod that serves the necessary files to register and integrate OpenShift Data Foundation dashboards
directly into the OpenShift Container Platform Console.

3.1.2. Design diagram

This diagram illustrates how odf-operator is integrated with the OpenShift Container Platform.

Figure 3.1. OpenShift Data Foundation Operator

CHAPTER 3. OPENSHIFT DATA FOUNDATION OPERATORS

9

Figure 3.1. OpenShift Data Foundation Operator

3.1.3. Responsibilites

The odf-operator defines the following CRD:

StorageSystem

The StorageSystem CRD represents an underlying storage system that provides data storage and
services for OpenShift Container Platform. It triggers the operator to ensure the existence of a
Subscription for a given Kind of storage system.

3.1.4. Resources

The ocs-operator creates the following CRs in response to the spec of a given StorageSystem.

Operator Lifecycle Manager Resources

Creates a Subscription for the operator which defines and reconciles the given StorageSystem’s Kind.

3.1.5. Limitation

The odf-operator does not provide any data storage or services itself. It exists as an integration and
management layer for other storage systems.

3.1.6. High availability

High availability is not a primary requirement for the odf-operator Pod similar to most of the other
operators. In general, there are no operations that require or benefit from process distribution.
OpenShift Container Platform quickly spins up a replacement Pod whenever the current Pod becomes
unavailable or is deleted.

3.1.7. Relevant config files

The odf-operator comes with a ConfigMap of variables that can be used to modify the behavior of the
operator.

3.1.8. Relevant log files

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

10

To get an understanding of the OpenShift Data Foundation and troubleshoot issues, you can look at the
following:

Operator Pod logs

StorageSystem status

Underlying storage system CRD statuses

Operator Pod logs

Each operator provides standard Pod logs that include information about reconciliation and errors
encountered. These logs often have information about successful reconciliation which can be filtered out
and ignored.

StorageSystem status and events

The StorageSystem CR stores the reconciliation details in the status of the CR and has associated
events. The spec of the StorageSystem contains the name, namespace, and Kind of the actual storage
system’s CRD, which the administrator can use to find further information on the status of the storage
system.

3.1.9. Lifecycle

The odf-operator is required to be present as long as the OpenShift Data Foundation bundle remains
installed. This is managed as part of OLM’s reconciliation of the OpenShift Data Foundation CSV. At
least one instance of the pod should be in Ready state.

The operator operands such as CRDs should not affect the lifecycle of the operator. The creation and
deletion of StorageSystems is an operation outside the operator’s control and must be initiated by the
administrator or automated with the appropriate application programming interface (API) calls.

3.2. OPENSHIFT CONTAINER STORAGE OPERATOR

The ocs-operator can be described as a "meta" operator for OpenShift Data Foundation, that is, an
operator meant to influence other operators and serves as a configuration gateway for the features
provided by the other operators. It does not directly manage the other operators.

The ocs-operator has the following primary functions:

Creates Custom Resources (CRs) that trigger the other operators to reconcile against them.

Abstracts the Ceph and Multicloud Object Gateway configurations and limits them to known
best practices that are validated and supported by Red Hat.

Creates and reconciles the resources required to deploy containerized Ceph and NooBaa
according to the support policies.

3.2.1. Components

The ocs-operator does not have any dependent components. However, the operator has a dependency
on the existence of all the custom resource definitions (CRDs) from other operators, which are defined
in the ClusterServiceVersion (CSV).

3.2.2. Design diagram

This diagram illustrates how OpenShift Container Storage is integrated with the OpenShift Container

CHAPTER 3. OPENSHIFT DATA FOUNDATION OPERATORS

11

This diagram illustrates how OpenShift Container Storage is integrated with the OpenShift Container
Platform.

Figure 3.2. OpenShift Container Storage Operator

3.2.3. Responsibilities

The two ocs-operator CRDs are:

OCSInitialization

StorageCluster

OCSInitialization is a singleton CRD used for encapsulating operations that apply at the operator level.
The operator takes care of ensuring that one instance always exists. The CR triggers the following:

Performs initialization tasks required for OpenShift Container Storage. If needed, these tasks
can be triggered to run again by deleting the OCSInitialization CRD.

Ensures that the required Security Context Constraints (SCCs) for OpenShift Container
Storage are present.

Manages the deployment of the Ceph toolbox Pod, used for performing advanced
troubleshooting and recovery operations.

The StorageCluster CRD represents the system that provides the full functionality of OpenShift
Container Storage. It triggers the operator to ensure the generation and reconciliation of Rook-Ceph
and NooBaa CRDs. The ocs-operator algorithmically generates the CephCluster and NooBaa CRDs
based on the configuration in the StorageCluster spec. The operator also creates additional CRs, such
as CephBlockPools, Routes, and so on. These resources are required for enabling different features of
OpenShift Container Storage. Currently, only one StorageCluster CR per OpenShift Container Platform
cluster is supported.

3.2.4. Resources

The ocs-operator creates the following CRs in response to the spec of the CRDs it defines . The
configuration of some of these resources can be overridden, allowing for changes to the generated
spec or not creating them altogether.

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

12

General resources

Events

Creates various events when required in response to reconciliation.

Persistent Volumes (PVs)

PVs are not created directly by the operator. However, the operator keeps track of all the PVs
created by the Ceph CSI drivers and ensures that the PVs have appropriate annotations for the
supported features.

Quickstarts

Deploys various Quickstart CRs for the OpenShift Container Platform Console.

Rook-Ceph resources

CephBlockPool

Define the default Ceph block pools. CephFilesysPrometheusRulesoute for the Ceph object
store.

StorageClass

Define the default Storage classes. For example, for CephBlockPool and CephFilesystem).

VolumeSnapshotClass

Define the default volume snapshot classes for the corresponding storage classes.

Multicloud Object Gateway resources

NooBaa

Define the default Multicloud Object Gateway system.

Monitoring resources

Metrics Exporter Service

Metrics Exporter Service Monitor

PrometheusRules

3.2.5. Limitation

The ocs-operator neither deploys nor reconciles the other Pods of OpenShift Data Foundation. The
ocs-operator CSV defines the top-level components such as operator Deployments and the Operator
Lifecycle Manager (OLM) reconciles the specified component.

3.2.6. High availability

High availability is not a primary requirement for the ocs-operator Pod similar to most of the other
operators. In general, there are no operations that require or benefit from process distribution.
OpenShift Container Platform quickly spins up a replacement Pod whenever the current Pod becomes
unavailable or is deleted.

3.2.7. Relevant config files

The ocs-operator configuration is entirely specified by the CSV and is not modifiable without a custom
build of the CSV.

CHAPTER 3. OPENSHIFT DATA FOUNDATION OPERATORS

13

3.2.8. Relevant log files

To get an understanding of the OpenShift Container Storage and troubleshoot issues, you can look at
the following:

Operator Pod logs

StorageCluster status and events

OCSInitialization status

Operator Pod logs

Each operator provides standard Pod logs that include information about reconciliation and errors
encountered. These logs often have information about successful reconciliation which can be filtered out
and ignored.

StorageCluster status and events

The StorageCluster CR stores the reconciliation details in the status of the CR and has associated
events. Status contains a section of the expected container images. It shows the container images that
it expects to be present in the pods from other operators and the images that it currently detects. This
helps to determine whether the OpenShift Container Storage upgrade is complete.

OCSInitialization status

This status shows whether the initialization tasks are completed successfully.

3.2.9. Lifecycle

The ocs-operator is required to be present as long as the OpenShift Container Storage bundle remains
installed. This is managed as part of OLM’s reconciliation of the OpenShift Container Storage CSV. At
least one instance of the pod should be in Ready state.

The operator operands such as CRDs should not affect the lifecycle of the operator. An
OCSInitialization CR should always exist. The operator creates one if it does not exist. The creation and
deletion of StorageClusters is an operation outside the operator’s control and must be initiated by the
administrator or automated with the appropriate API calls.

3.3. ROOK-CEPH OPERATOR

Rook-Ceph operator is the Rook operator for Ceph in the OpenShift Data Foundation. Rook enables
Ceph storage systems to run on the OpenShift Container Platform.

The Rook-Ceph operator is a simple container that automatically bootstraps the storage clusters and
monitors the storage daemons to ensure the storage clusters are healthy.

3.3.1. Components

The Rook-Ceph operator manages a number of components as part of the OpenShift Data Foundation
deployment.

Ceph-CSI Driver

The operator creates and updates the CSI driver, including a provisioner for each of the two drivers,
RADOS block device (RBD) and Ceph filesystem (CephFS) and a volume plugin daemonset for
each of the two drivers.

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

14

Ceph daemons

Mons

The monitors (mons) provide the core metadata store for Ceph.

OSDs

The object storage daemons (OSDs) store the data on underlying devices.

Mgr

The manager (mgr) collects metrics and provides other internal functions for Ceph.

RGW

The RADOS Gateway (RGW) provides the S3 endpoint to the object store.

MDS

The metadata server (MDS) provides CephFS shared volumes.

3.3.2. Design diagram

The following image illustrates how Ceph Rook integrates with OpenShift Container Platform.

Figure 3.3. Rook-Ceph Operator

With Ceph running in the OpenShift Container Platform cluster, OpenShift Container Platform
applications can mount block devices and filesystems managed by Rook-Ceph, or can use the S3/Swift
API for object storage.

3.3.3. Responsibilities

The Rook-Ceph operator is a container that bootstraps and monitors the storage cluster. It performs
the following functions:

Automates the configuration of storage components

Starts, monitors, and manages the Ceph monitor pods and Ceph OSD daemons to provide the

CHAPTER 3. OPENSHIFT DATA FOUNDATION OPERATORS

15

Starts, monitors, and manages the Ceph monitor pods and Ceph OSD daemons to provide the
RADOS storage cluster

Initializes the pods and other artifacts to run the services to manage:

CRDs for pools

Object stores (S3/Swift)

Filesystems

Monitors the Ceph mons and OSDs to ensure that the storage remains available and healthy

Deploys and manages Ceph mons placement while adjusting the mon configuration based on
cluster size

Watches the desired state changes requested by the API service and applies the changes

Initializes the Ceph-CSI drivers that are needed for consuming the storage

Automatically configures the Ceph-CSI driver to mount the storage to pods

Rook-Ceph Operator architecture

The Rook-Ceph operator image includes all required tools to manage the cluster. There is no change to
the data path. However, the operator does not expose all Ceph configurations. Many of the Ceph
features like placement groups and crush maps are hidden from the users and are provided with a better
user experience in terms of physical resources, pools, volumes, filesystems, and buckets.

3.3.4. Resources

Rook-Ceph operator adds owner references to all the resources it creates in the openshift-storage
namespace. When the cluster is uninstalled, the owner references ensure that the resources are all
cleaned up. This includes OpenShift Container Platform resources such as configmaps, secrets,
services, deployments, daemonsets, and so on.

The Rook-Ceph operator watches CRs to configure the settings determined by OpenShift Data
Foundation, which includes CephCluster, CephObjectStore, CephFilesystem, and CephBlockPool.

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

16

3.3.5. Lifecycle

Rook-Ceph operator manages the lifecycle of the following pods in the Ceph cluster:

Rook operator

A single pod that owns the reconcile of the cluster.

RBD CSI Driver

Two provisioner pods, managed by a single deployment.

One plugin pod per node, managed by a daemonset.

CephFS CSI Driver

Two provisioner pods, managed by a single deployment.

One plugin pod per node, managed by a daemonset.

Monitors (mons)

Three mon pods, each with its own deployment.

Stretch clusters

Contain five mon pods, one in the arbiter zone and two in each of the other two data zones.

Manager (mgr)

There is a single mgr pod for the cluster.

Stretch clusters

There are two mgr pods (starting with OpenShift Data Foundation 4.8), one in each of the two
non-arbiter zones.

Object storage daemons (OSDs)

At least three OSDs are created initially in the cluster. More OSDs are added when the cluster is
expanded.

Metadata server (MDS)

The CephFS metadata server has a single pod.

RADOS gateway (RGW)

The Ceph RGW daemon has a single pod.

3.4. MCG OPERATOR

The Multicloud Object Gateway (MCG) operator is an operator for OpenShift Data Foundation along
with the OpenShift Data Foundation operator and the Rook-Ceph operator. The MCG operator is
available upstream as a standalone operator.

The MCG operator performs the following primary functions:

Controls and reconciles the Multicloud Object Gateway (MCG) component within OpenShift
Data Foundation.

Manages new user resources such as object bucket claims, bucket classes, and backing stores.

Creates the default out-of-the-box resources.

CHAPTER 3. OPENSHIFT DATA FOUNDATION OPERATORS

17

A few configurations and information are passed to the MCG operator through the OpenShift Data
Foundation operator.

3.4.1. Components

The MCG operator does not have sub-components. However, it consists of a reconcile loop for the
different resources that are controlled by it.

The MCG operator has a command-line interface (CLI) and is available as a part of OpenShift Data
Foundation. It enables the creation, deletion, and querying of various resources. This CLI adds a layer of
input sanitation and status validation before the configurations are applied unlike applying a YAML file
directly.

3.4.2. Responsibilities and resources

The MCG operator reconciles and is responsible for the custom resource definitions (CRDs) and
OpenShift Container Platform entities.

Backing store

Namespace store

Bucket class

Object bucket claims (OBCs)

NooBaa, pod stateful sets CRD

Prometheus Rules and Service Monitoring

Horizontal pod autoscaler (HPA)

Backing store

A resource that the customer has connected to the MCG component. This resource provides MCG the
ability to save the data of the provisioned buckets on top of it.

A default backing store is created as part of the deployment depending on the platform that the
OpenShift Container Platform is running on. For example, when OpenShift Container Platform or
OpenShift Data Foundation is deployed on Amazon Web Services (AWS), it results in a default backing
store which is an AWS::S3 bucket. Similarly, for Microsoft Azure, the default backing store is a blob
container and so on.

The default backing stores are created using CRDs for the cloud credential operator, which comes with
OpenShift Container Platform. There is no limit on the amount of the backing stores that can be added
to MCG. The backing stores are used in the bucket class CRD to define the different policies of the
bucket. Refer the documentation of the specific OpenShift Data Foundation version to identify the
types of services or resources supported as backing stores.

Namespace store

Resources that are used in namespace buckets. No default is created during deployment.

Bucketclass

A default or initial policy for a newly provisioned bucket. The following policies are set in a bucketclass:

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

18

Placement policy

Indicates the backing stores to be attached to the bucket and used to write the data of the bucket.
This policy is used for data buckets and for cache policies to indicate the local cache placement.
There are two modes of placement policy:

Spread. Strips the data across the defined backing stores

Mirror. Creates a full replica on each backing store

Namespace policy

A policy for the namespace buckets that defines the resources that are being used for aggregation
and the resource used for the write target.

Cache Policy

This is a policy for the bucket and sets the hub (the source of truth) and the time to live (TTL) for the
cache items.

A default bucket class is created during deployment and it is set with a placement policy that uses the
default backing store. There is no limit to the number of bucket class that can be added.

Refer to the documentation of the specific OpenShift Data Foundation version to identify the types of
policies that are supported.

Object bucket claims (OBCs)

CRDs that enable provisioning of S3 buckets. With MCG, OBCs receive an optional bucket class to note
the initial configuration of the bucket. If a bucket class is not provided, the default bucket class is used.

NooBaa, pod stateful sets CRD

An internal CRD that controls the different pods of the NooBaa deployment such as the DB pod, the
core pod, and the endpoints. This CRD must not be changed as it is internal. This operator reconciles the
following entities:

DB pod SCC

Role Binding and Service Account to allow SSO single sign-on between OpenShift Container
Platform and NooBaa user interfaces

Route for S3 access

Certificates that are taken and signed by the OpenShift Container Platform and are set on the
S3 route

Prometheus rules and service monitoring

These CRDs set up scraping points for Prometheus and alert rules that are supported by MCG.

Horizontal pod autoscaler (HPA)

It is Integrated with the MCG endpoints. The endpoint pods scale up and down according to CPU
pressure (amount of S3 traffic).

3.4.3. High availability

As an operator, the only high availability provided is that the OpenShift Container Platform reschedules
a failed pod.

CHAPTER 3. OPENSHIFT DATA FOUNDATION OPERATORS

19

3.4.4. Relevant log files

To troubleshoot issues with the NooBaa operator, you can look at the following:

Operator pod logs, which are also available through the must-gather.

Different CRDs or entities and their statuses that are available through the must-gather.

3.4.5. Lifecycle

The MCG operator runs and reconciles after OpenShift Data Foundation is deployed and until it is
uninstalled.

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

20

CHAPTER 4. OPENSHIFT DATA FOUNDATION INSTALLATION
OVERVIEW

OpenShift Data Foundation consists of multiple components managed by multiple operators.

4.1. INSTALLED OPERATORS

When you install OpenShift Data Foundation from the Operator Hub, the following four separate
Deployments are created:

odf-operator: Defines the odf-operator Pod

ocs-operator: Defines the ocs-operator Pod which runs processes for ocs-operator and its
metrics-exporter in the same container.

rook-ceph-operator: Defines the rook-ceph-operator Pod.

mcg-operator: Defines the mcg-operator Pod.

These operators run independently and interact with each other by creating customer resources (CRs)
watched by the other operators. The ocs-operator is primarily responsible for creating the CRs to
configure Ceph storage and Multicloud Object Gateway. The mcg-operator sometimes creates Ceph
volumes for use by its components.

4.2. OPENSHIFT CONTAINER STORAGE INITIALIZATION

The OpenShift Data Foundation bundle also defines an external plugin to the OpenShift Container
Platform Console, adding new screens and functionality not otherwise available in the Console. This
plugin runs as a web server in the odf-console-plugin Pod, which is managed by a Deployment created
by the OLM at the time of installation.

The ocs-operator automatically creates an OCSInitialization CR after it gets created. Only one
OCSInitialization CR exists at any point in time. It controls the ocs-operator behaviors that are not
restricted to the scope of a single StorageCluster, but only performs them once. When you delete the
OCSInitialization CR, the ocs-operator creates it again and this allows you to re-trigger its initialization
operations.

The OCSInitialization CR controls the following behaviors:

SecurityContextConstraints (SCCs)

After the OCSInitialization CR is created, the ocs-operator creates various SCCs for use by the
component Pods.

Ceph Toolbox Deployment

You can use the OCSInitialization to deploy the Ceph Toolbox Pod for the advanced Ceph
operations.

Rook-Ceph Operator Configuration

This configuration creates the rook-ceph-operator-config ConfigMap that governs the overall
configuration for rook-ceph-operator behavior.

4.3. STORAGE CLUSTER CREATION

The OpenShift Data Foundation operators themselves provide no storage functionality, and the desired

CHAPTER 4. OPENSHIFT DATA FOUNDATION INSTALLATION OVERVIEW

21

The OpenShift Data Foundation operators themselves provide no storage functionality, and the desired
storage configuration must be defined.

After you install the operators, create a new StorageCluster, using either the OpenShift Container
Platform console wizard or the CLI and the ocs-operator reconciles this StorageCluster. OpenShift
Data Foundation supports a single StorageCluster per installation. Any StorageCluster CRs created
after the first one is ignored by ocs-operator reconciliation.

OpenShift Data Foundation allows the following StorageCluster configurations:

Internal

In the Internal mode, all the components run containerized within the OpenShift Container Platform
cluster and uses dynamically provisioned persistent volumes (PVs) created against the
StorageClass specified by the administrator in the installation wizard.

Internal-attached

This mode is similar to the Internal mode but the administrator is required to define the local storage
devices directly attached to the cluster nodes that the Ceph uses for its backing storage. Also, the
administrator need to create the CRs that the local storage operator reconciles to provide the
StorageClass. The ocs-operator uses this StorageClass as the backing storage for Ceph.

External

In this mode, Ceph components do not run inside the OpenShift Container Platform cluster instead
connectivity is provided to an external OpenShift Container Storage installation for which the
applications can create PVs. The other components run within the cluster as required.

MCG Standalone

This mode facilitates the installation of a Multicloud Object Gateway system without an
accompanying CephCluster.

After a StorageCluster CR is found, ocs-operator validates it and begins to create subsequent
resources to define the storage components.

4.3.1. Internal mode storage cluster

Both internal and internal-attached storage clusters have the same setup process as follows:

StorageCla
sses

Create the storage classes that cluster applications use to create Ceph volumes.

SnapshotC
lasses

Create the volume snapshot classes that the cluster applications use to create snapshots of
Ceph volumes.

Ceph RGW
configuration

Create various Ceph object CRs to enable and provide access to the Ceph RGW object
storage endpoint.

Ceph RBD
Configuratio
n

Create the CephBlockPool CR to enable RBD storage.

CephFS
Configuratio
n

Create the CephFilesystem CR to enable CephFS storage.

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

22

Rook-Ceph
Configuratio
n

Create the rook-config-override ConfigMap that governs the overall behavior of the
underlying Ceph cluster.

CephClust
er

Create the CephCluster CR to trigger Ceph reconciliation from rook-ceph-operator. For
more information, see Rook-Ceph operator.

NoobaaSys
tem

Create the NooBaa CR to trigger reconciliation from mcg-operator. For more information,
see MCG operator.

Job
templates

Create OpenShift Template CRs that define Jobs to run administrative operations for
OpenShift Container Storage.

Quickstarts Create the QuickStart CRs that display the quickstart guides in the Web Console.

4.3.1.1. Cluster Creation

After the ocs-operator creates the CephCluster CR, the rook-operator creates the Ceph cluster
according to the desired configuration. The rook-operator configures the following components:

Ceph mon
daemons

Three Ceph mon daemons are started on different nodes in the cluster. They manage the
core metadata for the Ceph cluster and they must form a majority quorum. The metadata for
each mon is backed either by a PV if it is in a cloud environment or a path on the local host if
it is in a local storage device environment.

Ceph mgr
daemon

This daemon is started and it gathers metrics for the cluster and report them to Prometheus.

Ceph OSDs These OSDs are created according to the configuration of the storageClassDeviceSets.
Each OSD consumes a PV that stores the user data. By default, Ceph maintains three replicas
of the application data across different OSDs for high durability and availability using the
CRUSH algorithm.

CSI
provisioners

These provisioners are started for RBD and CephFS. When volumes are requested for the
storage classes of OpenShift Container Storage, the requests are directed to the Ceph-CSI
driver to provision the volumes in Ceph.

CSI volume
plugins and
CephFS

The CSI volume plugins for RBD and CephFS are started on each node in the cluster. The
volume plugin needs to be running wherever the Ceph volumes are required to be mounted
by the applications.

After the CephCluster CR is configured, Rook reconciles the remaining Ceph CRs to complete the
setup:

CephBlock
Pool

The CephBlockPool CR provides the configuration for Rook operator to create Ceph pools
for RWO volumes.

CHAPTER 4. OPENSHIFT DATA FOUNDATION INSTALLATION OVERVIEW

23

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html-single/red_hat_openshift_data_foundation_architecture#rook-ceph-operator_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html-single/red_hat_openshift_data_foundation_architecture#noobaa-operator_rhodf

CephFilesy
stem

The CephFilesystem CR instructs the Rook operator to configure a shared file system with
CephFS, typically for RWX volumes. The CephFS metadata server (MDS) is started to
manage the shared volumes.

CephObjec
tStore

The CephObjectStore CR instructs the Rook operator to configure an object store with the
RGW service

CephObjec
tStoreUser
CR

The CephObjectStoreUser CR instructs the Rook operator to configure an object store
user for NooBaa to consume, publishing access/private key as well as the
CephObjectStore endpoint.

The operator monitors the Ceph health to ensure that storage platform remains healthy. If a mon
daemon goes down for too long a period (10 minutes), Rook starts a new mon in its place so that the full
quorum can be fully restored.

When the ocs-operator updates the CephCluster CR, Rook immediately responds to the requested
changes to update the cluster configuration.

4.3.1.2. NooBaa System creation

When a NooBaa system is created, the mcg-operator reconciles the following:

Default BackingStore

Depending on the platform that OpenShift Container Platform and OpenShift Data Foundation are
deployed on, a default backing store resource is created so that buckets can use it for their placement
policy. The different options are as follows:

Amazon Web
Services
(AWS)
deployment

The mcg-operator uses the CloudCredentialsOperator (CCO) to mint credentials in
order to create a new AWS::S3 bucket and creates a BackingStore on top of that bucket.

Microsoft
Azure
deployment

The mcg-operator uses the CCO to mint credentials in order to create a new Azure Blob
and creates a BackingStore on top of that bucket.

Google
Cloud
Platform
(GCP)
deployment

The mcg-operator uses the CCO to mint credentials in order to create a new GCP bucket
and will create a BackingStore on top of that bucket.

On-prem
deployment

If RGW exists, the mcg-operator creates a new CephUser and a new bucket on top of
RGW and create a BackingStore on top of that bucket.

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

24

None of the
previously
mentioned
deployments
are
applicable

The mcg-operator creates a pv-pool based on the default storage class and creates a
BackingStore on top of that bucket.

Default BucketClass

A BucketClass with a placement policy to the default BackingStore is created.

NooBaa pods

The following NooBaa pods are created and started:

Database
(DB)

This is a Postgres DB holding metadata, statistics, events, and so on. However, it does not
hold the actual data being stored.

Core This is the pod that handles configuration, background processes, metadata management,
statistics, and so on.

Endpoints These pods perform the actual I/O-related work such as deduplication and compression,
communicating with different services to write and read data, and so on. The endpoints are
integrated with the HorizonalPodAutoscaler and their number increases and decreases
according to the CPU usage observed on the existing endpoint pods.

Route

A Route for the NooBaa S3 interface is created for applications that uses S3.

Service

A Service for the NooBaa S3 interface is created for applications that uses S3.

4.3.2. External mode storage cluster

For external storage clusters, ocs-operator follows a slightly different setup process. The ocs-operator
looks for the existence of the rook-ceph-external-cluster-details ConfigMap, which must be created
by someone else, either the administrator or the Console. For information about how to create the
ConfigMap, see Creating an OpenShift Data Foundation Cluster for external mode . The ocs-operator
then creates some or all of the following resources, as specified in the ConfigMap:

External
Ceph
Configuratio
n

A ConfigMap that specifies the endpoints of the external mons.

External
Ceph
Credentials
Secret

A Secret that contains the credentials to connect to the external Ceph instance.

CHAPTER 4. OPENSHIFT DATA FOUNDATION INSTALLATION OVERVIEW

25

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html-single/deploying_openshift_data_foundation_in_external_mode#creating-an-openshift-data-foundation-cluster-service-for-external-storage_ceph-external

External
Ceph
StorageClass
es

One or more StorageClasses to enable the creation of volumes for RBD, CephFS, and/or
RGW.

Enable
CephFS CSI
Driver

If a CephFS StorageClass is specified, configure rook-ceph-operator to deploy the
CephFS CSI Pods.

Ceph RGW
Configuratio
n

If an RGW StorageClass is specified, create various Ceph Object CRs to enable and provide
access to the Ceph RGW object storage endpoint.

After creating the resources specified in the ConfigMap, the StorageCluster creation process proceeds
as follows:

CephClust
er

Create the CephCluster CR to trigger Ceph reconciliation from rook-ceph-operator (see
subsequent sections).

SnapshotC
lasses

Create the SnapshotClasses that applications use to create snapshots of Ceph volumes.

NoobaaSys
tem

Create the NooBaa CR to trigger reconciliation from noobaa-operator (see subsequent
sections).

QuickStart
s

Create the Quickstart CRs that display the quickstart guides in the Console.

4.3.2.1. Cluster Creation

The Rook operator performs the following operations when the CephCluster CR is created in external
mode:

The operator validates that a connection is available to the remote Ceph cluster. The
connection requires mon endpoints and secrets to be imported into the local cluster.

The CSI driver is configured with the remote connection to Ceph. The RBD and CephFS
provisioners and volume plugins are started similarly to the CSI driver when configured in
internal mode, the connection to Ceph happens to be external to the OpenShift cluster.

Periodically watch for monitor address changes and update the Ceph-CSI configuration
accordingly.

4.3.2.2. NooBaa System creation

When a NooBaa system is created, the mcg-operator reconciles the following:

Default BackingStore

Depending on the platform that OpenShift Container Platform and OpenShift Data Foundation are

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

26

Depending on the platform that OpenShift Container Platform and OpenShift Data Foundation are
deployed on, a default backing store resource is created so that buckets can use it for their placement
policy. The different options are as follows:

Amazon Web
Services
(AWS)
deployment

The mcg-operator uses the CloudCredentialsOperator (CCO) to mint credentials in
order to create a new AWS::S3 bucket and creates a BackingStore on top of that bucket.

Microsoft
Azure
deployment

The mcg-operator uses the CCO to mint credentials in order to create a new Azure Blob
and creates a BackingStore on top of that bucket.

Google
Cloud
Platform
(GCP)
deployment

The mcg-operator uses the CCO to mint credentials in order to create a new GCP bucket
and will create a BackingStore on top of that bucket.

On-prem
deployment

If RGW exists, the mcg-operator creates a new CephUser and a new bucket on top of
RGW and create a BackingStore on top of that bucket.

None of the
previously
mentioned
deployments
are
applicable

The mcg-operator creates a pv-pool based on the default storage class and creates a
BackingStore on top of that bucket.

Default BucketClass

A BucketClass with a placement policy to the default BackingStore is created.

NooBaa pods

The following NooBaa pods are created and started:

Database
(DB)

This is a Postgres DB holding metadata, statistics, events, and so on. However, it does not
hold the actual data being stored.

Core This is the pod that handles configuration, background processes, metadata management,
statistics, and so on.

Endpoints These pods perform the actual I/O-related work such as deduplication and compression,
communicating with different services to write and read data, and so on. The endpoints are
integrated with the HorizonalPodAutoscaler and their number increases and decreases
according to the CPU usage observed on the existing endpoint pods.

Route

A Route for the NooBaa S3 interface is created for applications that uses S3.

CHAPTER 4. OPENSHIFT DATA FOUNDATION INSTALLATION OVERVIEW

27

Service

A Service for the NooBaa S3 interface is created for applications that uses S3.

4.3.3. MCG Standalone StorageCluster

In this mode, no CephCluster is created. Instead a NooBaa system CR is created using default values to
take advantage of pre-existing StorageClasses in the OpenShift Container Platform. dashboards.

4.3.3.1. NooBaa System creation

When a NooBaa system is created, the mcg-operator reconciles the following:

Default BackingStore

Depending on the platform that OpenShift Container Platform and OpenShift Data Foundation are
deployed on, a default backing store resource is created so that buckets can use it for their placement
policy. The different options are as follows:

Amazon Web
Services
(AWS)
deployment

The mcg-operator uses the CloudCredentialsOperator (CCO) to mint credentials in
order to create a new AWS::S3 bucket and creates a BackingStore on top of that bucket.

Microsoft
Azure
deployment

The mcg-operator uses the CCO to mint credentials in order to create a new Azure Blob
and creates a BackingStore on top of that bucket.

Google
Cloud
Platform
(GCP)
deployment

The mcg-operator uses the CCO to mint credentials in order to create a new GCP bucket
and will create a BackingStore on top of that bucket.

On-prem
deployment

If RGW exists, the mcg-operator creates a new CephUser and a new bucket on top of
RGW and create a BackingStore on top of that bucket.

None of the
previously
mentioned
deployments
are
applicable

The mcg-operator creates a pv-pool based on the default storage class and creates a
BackingStore on top of that bucket.

Default BucketClass

A BucketClass with a placement policy to the default BackingStore is created.

NooBaa pods

The following NooBaa pods are created and started:

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

28

Database
(DB)

This is a Postgres DB holding metadata, statistics, events, and so on. However, it does not
hold the actual data being stored.

Core This is the pod that handles configuration, background processes, metadata management,
statistics, and so on.

Endpoints These pods perform the actual I/O-related work such as deduplication and compression,
communicating with different services to write and read data, and so on. The endpoints are
integrated with the HorizonalPodAutoscaler and their number increases and decreases
according to the CPU usage observed on the existing endpoint pods.

Route

A Route for the NooBaa S3 interface is created for applications that uses S3.

Service

A Service for the NooBaa S3 interface is created for applications that uses S3.

4.3.3.2. StorageSystem Creation

As a part of the StorageCluster creation, odf-operator automatically creates a corresponding
StorageSystem CR, which exposes the StorageCluster to the OpenShift Data Foundation.

CHAPTER 4. OPENSHIFT DATA FOUNDATION INSTALLATION OVERVIEW

29

CHAPTER 5. OPENSHIFT DATA FOUNDATION UPGRADE
OVERVIEW

As an operator bundle managed by the Operator Lifecycle Manager (OLM), OpenShift Data Foundation
leverages its operators to perform high-level tasks of installing and upgrading the product through
ClusterServiceVersion (CSV) CRs.

5.1. UPGRADE WORKFLOWS

OpenShift Data Foundation recognizes two types of upgrades: Z-stream release upgrades and Minor
Version release upgrades. While the user interface workflows for these two upgrade paths are not quite
the same, the resulting behaviors are fairly similar. The distinctions are as follows:

For Z-stream releases, OCS will publish a new bundle in the redhat-operators CatalogSource. The
OLM will detect this and create an InstallPlan for the new CSV to replace the existing CSV. The
Subscription approval strategy, whether Automatic or Manual, will determine whether the OLM
proceeds with reconciliation or waits for administrator approval.

For Minor Version releases, OpenShift Container Storage will also publish a new bundle in the redhat-
operators CatalogSource. The difference is that this bundle will be part of a new channel, and channel
upgrades are not automatic. The administrator must explicitly select the new release channel. Once this
is done, the OLM will detect this and create an InstallPlan for the new CSV to replace the existing CSV.
Since the channel switch is a manual operation, OLM will automatically start the reconciliation.

From this point onwards, the upgrade processes are identical.

5.2. CLUSTERSERVICEVERSION RECONCILIATION

When the OLM detects an approved InstallPlan, it begins the process of reconciling the CSVs. Broadly,
it does this by updating the operator resources based on the new spec, verifying the new CSV installs
correctly, then deleting the old CSV. The upgrade process will push updates to the operator
Deployments, which will trigger the restart of the operator Pods using the images specified in the new
CSV.

NOTE

While it is possible to make changes to a given CSV and have those changes propagate
to the relevant resource, when upgrading to a new CSV all custom changes will be lost, as
the new CSV will be created based on its unaltered spec.

5.3. OPERATOR RECONCILIATION

At this point, the reconciliation of the OpenShift Data Foundation operands proceeds as defined in the
OpenShift Data Foundation installation overview . The operators will ensure that all relevant resources
exist in their expected configurations as specified in the user-facing resources (for example,
StorageCluster).

Red Hat OpenShift Data Foundation 4.11 Red Hat OpenShift Data Foundation architecture

30

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO OPENSHIFT DATA FOUNDATION
	CHAPTER 2. AN OVERVIEW OF OPENSHIFT DATA FOUNDATION ARCHITECTURE
	CHAPTER 3. OPENSHIFT DATA FOUNDATION OPERATORS
	3.1. OPENSHIFT DATA FOUNDATION OPERATOR
	3.1.1. Components
	3.1.2. Design diagram
	3.1.3. Responsibilites
	3.1.4. Resources
	3.1.5. Limitation
	3.1.6. High availability
	3.1.7. Relevant config files
	3.1.8. Relevant log files
	3.1.9. Lifecycle

	3.2. OPENSHIFT CONTAINER STORAGE OPERATOR
	3.2.1. Components
	3.2.2. Design diagram
	3.2.3. Responsibilities
	3.2.4. Resources
	3.2.5. Limitation
	3.2.6. High availability
	3.2.7. Relevant config files
	3.2.8. Relevant log files
	3.2.9. Lifecycle

	3.3. ROOK-CEPH OPERATOR
	3.3.1. Components
	3.3.2. Design diagram
	3.3.3. Responsibilities
	3.3.4. Resources
	3.3.5. Lifecycle

	3.4. MCG OPERATOR
	3.4.1. Components
	3.4.2. Responsibilities and resources
	3.4.3. High availability
	3.4.4. Relevant log files
	3.4.5. Lifecycle

	CHAPTER 4. OPENSHIFT DATA FOUNDATION INSTALLATION OVERVIEW
	4.1. INSTALLED OPERATORS
	4.2. OPENSHIFT CONTAINER STORAGE INITIALIZATION
	4.3. STORAGE CLUSTER CREATION
	4.3.1. Internal mode storage cluster
	4.3.1.1. Cluster Creation
	4.3.1.2. NooBaa System creation

	4.3.2. External mode storage cluster
	4.3.2.1. Cluster Creation
	4.3.2.2. NooBaa System creation

	4.3.3. MCG Standalone StorageCluster
	4.3.3.1. NooBaa System creation
	4.3.3.2. StorageSystem Creation

	CHAPTER 5. OPENSHIFT DATA FOUNDATION UPGRADE OVERVIEW
	5.1. UPGRADE WORKFLOWS
	5.2. CLUSTERSERVICEVERSION RECONCILIATION
	5.3. OPERATOR RECONCILIATION

