Red Hat OpenShift Data Foundation 4.11

Monitoring OpenShift Data Foundation

View cluster health, metrics, or set alerts.
View cluster health, metrics, or set alerts.
Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read this document for instructions on monitoring Red Hat OpenShift Data Foundation using the Block and File, and Object dashboards.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... 3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 4

CHAPTER 1. CLUSTER HEALTH ... 5
 1.1. VERIFYING OPENSIGNORE DATA FOUNDATION IS HEALTHY 5
 1.2. STORAGE HEALTH LEVELS AND CLUSTER STATE 5
 1.2.1. Block and File dashboard indicators .. 5
 1.2.2. Object dashboard indicators ... 6
 1.2.3. Alert panel ... 6

CHAPTER 2. METRICS .. 7
 2.1. METRICS IN THE BLOCK AND FILE DASHBOARD 7
 2.2. METRICS IN THE OBJECT DASHBOARD .. 9
 2.3. POOL METRICS ... 12

CHAPTER 3. ALERTS .. 14
 3.1. SETTING UP ALERTS .. 14

CHAPTER 4. REMOTE HEALTH MONITORING .. 15
 4.1. ABOUT TELEMETRY .. 15
 4.2. INFORMATION COLLECTED BY TELEMETRY 15

CHAPTER 5. MONITORING MULTICLUSTER STORAGE HEALTH 17
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:

- For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the *Multi-page HTML* format. In addition, ensure you see the **Feedback** button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the **Add Feedback** pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the **Bugzilla** website.
 2. In the **Component** section, choose **documentation**.
 3. Fill in the **Description** field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click **Submit Bug**.
CHAPTER 1. CLUSTER HEALTH

1.1. VERIFYING OPENSOURCE DATA FOUNDATION IS HEALTHY

Storage health is visible on the Block and File and Object dashboards.

Procedure

1. In the OpenShift Web Console, click **Storage → Data Foundation**.

2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.

3. Check if the **Status** card has a green tick in the **Block and File** and the **Object** tabs. Green tick indicates that the cluster is healthy.

See Section 1.2, “Storage health levels and cluster state” for information about the different health states and the alerts that appear.

1.2. STORAGE HEALTH LEVELS AND CLUSTER STATE

Status information and alerts related to OpenShift Data Foundation are displayed in the storage dashboards.

1.2.1. Block and File dashboard indicators

The **Block and File** dashboard shows the complete state of OpenShift Data Foundation and the state of persistent volumes.

The states that are possible for each resource type are listed in the following table.

Table 1.1. OpenShift Data Foundation health levels

<table>
<thead>
<tr>
<th>State</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNKNOWN</td>
<td>![?]</td>
<td>OpenShift Data Foundation is not deployed or unavailable.</td>
</tr>
<tr>
<td>Green Tick</td>
<td>![✓]</td>
<td>Cluster health is good.</td>
</tr>
<tr>
<td>Warning</td>
<td>![⚠️]</td>
<td>OpenShift Data Foundation cluster is in a warning state. In internal mode, an alert will be displayed along with the issue details. Alerts are not displayed for external mode.</td>
</tr>
</tbody>
</table>
Error

OpenShift Data Foundation cluster has encountered an error and some component is nonfunctional. In internal mode, an alert is displayed along with the issue details. Alerts are not displayed for external mode.

1.2.2. Object dashboard indicators

The **Object** dashboard shows the state of the Multicloud Object Gateway and any object claims in the cluster.

The states that are possible for each resource type are listed in the following table.

Table 1.2. Object Service health levels

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Tick</td>
<td>Object storage is healthy.</td>
</tr>
<tr>
<td>Multicloud Object Gateway is not running</td>
<td>Shown when NooBaa system is not found.</td>
</tr>
<tr>
<td>All resources are unhealthy</td>
<td>Shown when all NooBaa pools are unhealthy.</td>
</tr>
<tr>
<td>Many buckets have issues</td>
<td>Shown when >= 50% of buckets encounter error(s).</td>
</tr>
<tr>
<td>Some buckets have issues</td>
<td>Shown when >= 30% of buckets encounter error(s).</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Shown when network issues and/or errors exist.</td>
</tr>
</tbody>
</table>

1.2.3. Alert panel

The Alert panel appears below the **Status** card in both the **Block and File** dashboard and the **Object** dashboard when the cluster state is not healthy.

Information about specific alerts and how to respond to them is available in *Troubleshooting OpenShift Data Foundation*.

Red Hat OpenShift Data Foundation 4.11 Monitoring OpenShift Data Foundation

6
CHAPTER 2. METRICS

2.1. METRICS IN THE BLOCK AND FILE DASHBOARD

You can navigate to the Block and File dashboard in the OpenShift Web Console as follows:

1. Click Storage → Data Foundation.

2. In the Status card of the Overview tab, click Storage System and then click the storage system link from the pop up that appears.

3. Click the Block and File tab.

The following cards on the Block and File dashboard provides the metrics based on deployment mode (internal or external):

Details card

The Details card shows the following:

- Service Name
- Cluster name
- The name of the Provider on which the system runs (example: AWS, VSphere, None for Bare metal)
- Mode (deployment mode as either Internal or External)
- OpenShift Data Foundation operator version.

Inventory card

The Inventory card shows the number of active nodes, PVCs and PVs backed by OpenShift Data Foundation provisioner. On the left hand side of the card, total number of storage nodes, PVCs and PVs are displayed. While on the corresponding right hand side of the card, number of storage nodes in Not Ready state, count of PVCs in Pending state and PVs in Released state are shown.

NOTE

For external mode, the number of nodes will be 0 by default, since there are no dedicated nodes for OpenShift Data Foundation.

Status card

This card shows whether the cluster is up and running without any errors or is experiencing some issues.

For internal mode, Data Resiliency indicates the status of data re-balancing in Ceph across the replicas. When the internal mode cluster is in a warning or error state, the Alerts section is shown along with the relevant alerts.

For external mode, Data Resiliency and alerts will not be displayed.

Raw Capacity card

This card shows the total raw storage capacity which includes replication, on the cluster.
• **Used** legend indicates space used raw storage capacity on the cluster
• **Available** legend indicates the available raw storage capacity on the cluster.

NOTE
This card is not applicable for external mode clusters.

Used Capacity Breakdown card
This card shows the actual amount of non-replicated data stored in the cluster and its distribution. You can choose between Projects, Storage Classes and Pods from the drop-down menu on the top of the card. These options are for filtering the data shown in the graph. The graph displays the used capacity for only the top five entities, based on usage. The aggregate usage of the remaining entities is displayed as Other.

<table>
<thead>
<tr>
<th>Option</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>The aggregated capacity of each project which is using the OpenShift Data Foundation and how much is being used.</td>
</tr>
<tr>
<td>Storage Classes</td>
<td>The aggregate capacity based on OpenShift Data Foundation based storage classes.</td>
</tr>
<tr>
<td>Pods</td>
<td>All the pods trying to use the PVC backed by OpenShift Data Foundation provisioner.</td>
</tr>
</tbody>
</table>

For external mode, see the **Capacity breakdown card**.

Capacity breakdown card
This card is only applicable for external mode clusters. In this card, you can view graphic breakdown of capacity per project, storage classes and pods. You can choose between Projects, Storage Classes and Pods from the drop-down menu on the top of the card. These options are for filtering the data shown in the graph. The graph displays the used capacity for only the top five entities, based on usage. The aggregate usage of the remaining entities is displayed as Other.

Utilization card
The card shows used capacity, input/output operations per second, latency, throughput, and recovery information for the internal mode cluster. For external mode, this card shows only the used and requested capacity details for that cluster.

Storage Efficiency card
This card shows the compression ratio that represents a compressible data effectiveness metric inclusive of all compression-enabled pools. It also shows the savings metric that represents the actual disk capacity saved inclusive of all compression-enabled pools and associated replicas.

Activity card
This card shows what activities are happening or have recently happened in the OpenShift Data Foundation cluster. The card is separated into two sections:
2.2. METRICS IN THE OBJECT DASHBOARD

You can navigate to the Object dashboard in the OpenShift Web Console as follows:

1. Click **Storage → Data Foundation**.
2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.
3. Click the **Object** tab.

The following metrics are available in the Object dashboard:

Details card

This card shows the following information:

- **Service Name**: The Multicloud Object Gateway (MCG) service name.
- **System Name**: The Multicloud Object Gateway and RADOS Object Gateway system names. The Multicloud Object Gateway system name is also a hyperlink to the MCG management user interface.
- **Provider**: The name of the provider on which the system runs (example: **AWS**, **VSphere**, **None** for Baremetal)
- **Version**: OpenShift Data Foundation operator version.

Storage Efficiency card

In this card you can view how the MCG optimizes the consumption of the storage backend resources through deduplication and compression and provides you with a calculated efficiency ratio (application data vs logical data) and an estimated savings figure (how many bytes the MCG did not send to the storage provider) based on capacity of bare metal and cloud based storage and egress of cloud based storage.

Buckets card

Buckets are containers maintained by the MCG and RADOS Object Gateway to store data on behalf of the applications. These buckets are created and accessed through object bucket claims (OBCs). A specific policy can be applied to bucket to customize data placement, data spill-over, data resiliency, capacity quotas, and so on.

In this card, information about object buckets (OB) and object bucket claims (OBCs) is shown separately. OB includes all the buckets that are created using S3 or the user interface(UI) and OBC includes all the buckets created using YAMLs or the command line interface (CLI). The number displayed on the left of the bucket type is the total count of OBs or OBCs. The number displayed on the right shows the error count and is visible only when the error count is greater than zero. You can click on the number to see the list of buckets that has the warning or error status.

Resource Providers card
This card displays a list of all Multicloud Object Gateway and RADOS Object Gateway resources that are currently in use. Those resources are used to store data according to the buckets policies and can be a cloud-based resource or a bare metal resource.

Status card

This card shows whether the system and its services are running without any issues. When the system is in a warning or error state, the alerts section is shown and the relevant alerts are displayed there. Click the alert links beside each alert for more information about the issue. For information about health checks, see [Cluster health](#). If multiple object storage services are available in the cluster, click the service type (such as Object Service or Data Resiliency) to see the state of the individual services.

Data resiliency in the status card indicates if there is any resiliency issue regarding the data stored through the Multicloud Object Gateway and RADOS Object Gateway.

Capacity breakdown card

In this card you can visualize how applications consume the object storage through the Multicloud Object Gateway and RADOS Object Gateway. You can use the Service Type drop-down to view the capacity breakdown for the Multicloud Gateway and Object Gateway separately. When viewing the Multicloud Object Gateway, you can use the Break By drop-down to filter the results in the graph by either Projects or Bucket Class.

Performance card

In this card, you can view the performance of the Multicloud Object Gateway or RADOS Object Gateway. Use the Service Type drop-down to choose which you would like to view.

For Multicloud Object Gateway accounts, you can view the I/O operations and logical used capacity. For providers, you can view I/O operation, physical and logical usage, and egress.

The following tables explain the different metrics that you can view based on your selection from the drop-down menus on the top of the card:

Table 2.1. Indicators for Multicloud Object Gateway

<table>
<thead>
<tr>
<th>Consumer types</th>
<th>Metrics</th>
<th>Chart display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts</td>
<td>I/O operations</td>
<td>Displays read and write I/O operations for the top five consumers. The total reads and writes of all the consumers is displayed at the bottom. This information helps you monitor the throughput demand (IOPS) per application or account.</td>
</tr>
<tr>
<td>Accounts</td>
<td>Logical Used Capacity</td>
<td>Displays total logical usage of each account for the top five consumers. This helps you monitor the throughput demand per application or account.</td>
</tr>
<tr>
<td>Consumer types</td>
<td>Metrics</td>
<td>Chart display</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>Providers</td>
<td>I/O operations</td>
<td>Displays the count of I/O operations generated by the MCG when accessing the storage backend hosted by the provider. This helps you understand the traffic in the cloud so that you can improve resource allocation according to the I/O pattern, thereby optimizing the cost.</td>
</tr>
<tr>
<td>Providers</td>
<td>Physical vs Logical usage</td>
<td>Displays the data consumption in the system by comparing the physical usage with the logical usage per provider. This helps you control the storage resources and devise a placement strategy in line with your usage characteristics and your performance requirements while potentially optimizing your costs.</td>
</tr>
<tr>
<td>Providers</td>
<td>Egress</td>
<td>The amount of data the MCG retrieves from each provider (read bandwidth originated with the applications). This helps you understand the traffic in the cloud to improve resource allocation according to the egress pattern, thereby optimizing the cost.</td>
</tr>
</tbody>
</table>

For the RADOS Object Gateway, you can use the Metric drop-down to view the **Latency** or **Bandwidth**.

- **Latency**: Provides a visual indication of the average GET/PUT latency imbalance across RADOS Object Gateway instances.

- **Bandwidth**: Provides a visual indication of the sum of GET/PUT bandwidth across RADOS Object Gateway instances.

Activity card

This card displays what activities are happening or have recently happened in the OpenShift Data Foundation cluster. The card is separated into two sections:

- **Ongoing**: Displays the progress of ongoing activities related to rebuilding of data resiliency and upgrading of OpenShift Data Foundation operator.

- **Recent Events**: Displays the list of events that happened in the `openshift-storage` namespace.
2.3. POOL METRICS

The Pool metrics dashboard provides information to ensure efficient data consumption, and how to enable or disable compression if less effective.

Viewing pool metrics

To view the pool list:

1. Click **Storage → Data Foundation**

2. In the **Storage systems** tab, select the storage system and then click **BlockPools**.

When you click on a pool name, the following cards on each Pool dashboard is displayed along with the metrics based on deployment mode (internal or external):

Details card

The Details card shows the following:

- Pool Name
- Volume type
- Replicas

Status card

This card shows whether the pool is up and running without any errors or is experiencing some issues.

Mirroring card

When the mirroring option is enabled, this card shows the mirroring status, image health, and last checked time-stamp. The mirroring metrics are displayed when cluster level mirroring is enabled. The metrics help to prevent disaster recovery failures and notify of any discrepancies so that the data is kept intact.

The mirroring card shows high-level information such as:

- Mirroring state as either enabled or disabled for the particular pool.
- Status of all images under the pool as replicating successfully or not.
- Percentage of images that are replicating and not replicating.

Inventory card

The Inventory card shows the number of storage classes and Persistent Volume Claims.

Compression card

This card shows the compression status as enabled or disabled as the case may be. It also displays the storage efficiency details as follows:

- Compression eligibility that indicates what portion of written compression-eligible data is compressible (per ceph parameters)
- Compression ratio of compression-eligible data
- Compression savings provides the total savings (including replicas) of compression-eligible data
For information on how to enable or disable compression for an existing pool, see Updating an existing pool.

Raw Capacity card
This card shows the total raw storage capacity which includes replication, on the cluster.

- **Used** legend indicates storage capacity used by the pool
- **Available** legend indicates the available raw storage capacity on the cluster

Performance card
In this card, you can view the usage of I/O operations and throughput demand per application or account. The graph indicates the average latency or bandwidth across the instances.
3.1. SETTING UP ALERTS

For internal Mode clusters, various alerts related to the storage metrics services, storage cluster, disk devices, cluster health, cluster capacity, and so on are displayed in the Block and File, and the object dashboards. These alerts are not available for external Mode.

NOTE

It might take a few minutes for alerts to be shown in the alert panel, because only firing alerts are visible in this panel.

You can also view alerts with additional details and customize the display of Alerts in the OpenShift Container Platform.

For more information, see Managing alerts.
CHAPTER 4. REMOTE HEALTH MONITORING

OpenShift Data Foundation collects anonymized aggregated information about the health, usage, and size of clusters and reports it to Red Hat via an integrated component called Telemetry. This information allows Red Hat to improve OpenShift Data Foundation and to react to issues that impact customers more quickly.

A cluster that reports data to Red Hat via Telemetry is considered a connected cluster.

4.1. ABOUT TELEMETRY

Telemetry sends a carefully chosen subset of the cluster monitoring metrics to Red Hat. These metrics are sent continuously and describe:

- The size of an OpenShift Data Foundation cluster
- The health and status of OpenShift Data Foundation components
- The health and status of any upgrade being performed
- Limited usage information about OpenShift Data Foundation components and features
- Summary info about alerts reported by the cluster monitoring component

This continuous stream of data is used by Red Hat to monitor the health of clusters in real time and to react as necessary to problems that impact our customers. It also allows Red Hat to roll out OpenShift Data Foundation upgrades to customers so as to minimize service impact and continuously improve the upgrade experience.

This debugging information is available to Red Hat Support and engineering teams with the same restrictions as accessing data reported via support cases. All connected cluster information is used by Red Hat to help make OpenShift Data Foundation better and more intuitive to use. None of the information is shared with third parties.

4.2. INFORMATION COLLECTED BY TELEMETRY

Primary information collected by Telemetry includes:

- The size of the Ceph cluster in bytes: ":ceph_cluster_total_bytes",
- The amount of the Ceph cluster storage used in bytes: ":ceph_cluster_total_used_raw_bytes",
- Ceph cluster health status: ":ceph_health_status",
- The total count of object storage devices (OSDs) : ":job:ceph_osd_metadata:count",
- The total number of OpenShift Data Foundation Persistent Volumes (PVs) present in the Red Hat OpenShift Container Platform cluster : ":job:kube_pv:count",
- The total input/output operations per second (IOPS) (reads+writes) value for all the pools in the Ceph cluster : ":job:ceph_pools_iops:total",
- The total IOPS (reads+writes) value in bytes for all the pools in the Ceph cluster : ":job:ceph_pools_iops_bytes:total"
• The total count of the Ceph cluster versions running: "job:ceph_versions_running:count"

• The total number of unhealthy NooBaa buckets: "job:noobaa_total_unhealthy_buckets:sum",

• The total number of NooBaa buckets: "job:noobaa_bucket_count:sum",

• The total number of NooBaa objects: "job:noobaa_total_object_count:sum",

• The count of NooBaa accounts: "noobaa_accounts_num",

• The total usage of storage by NooBaa in bytes: "noobaa_total_usage",

• The total amount of storage requested by the persistent volume claims (PVCs) from a particular storage provisioner in bytes: "cluster:kube_persistentvolumeclaim_resource_requests_storage_bytes:provisioner:sum",

• The total amount of storage used by the PVCs from a particular storage provisioner in bytes: "cluster:kubelet_volume_stats_used_bytes:provisioner:sum".

Telemetry does not collect identifying information such as user names, passwords, or the names or addresses of user resources.
CHAPTER 5. MONITORING MULTICLUSTER STORAGE HEALTH

To view the overall storage health status across all the clusters with OpenShift Data Foundation and manage it’s capacity, you must first enable the multicluster dashboard on the Hub cluster.

For instructions on how to enable the multicluster dashboard, see Enabling multicluster dashboard.