Deploying OpenShift Data Foundation using Amazon Web Services

Instructions for deploying OpenShift Data Foundation using Amazon Web Services for cloud storage
Red Hat OpenShift Data Foundation 4.11 Deploying OpenShift Data Foundation using Amazon Web Services

Instructions for deploying OpenShift Data Foundation using Amazon Web Services for cloud storage
Abstract

Read this document for instructions about how to install Red Hat OpenShift Data Foundation using Red Hat OpenShift Container Platform on Amazon Web Services.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE .. 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 4
PREFACE ... 5

CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT DATA FOUNDATION 6
 1.1. ENABLING FILE SYSTEM ACCESS FOR CONTAINERS ON RED HAT ENTERPRISE LINUX BASED NODES 6

CHAPTER 2. DEPLOY OPENSHIFT DATA FOUNDATION USING DYNAMIC STORAGE DEVICES 8
 2.1. INSTALLING RED HAT OPENSHIFT DATA FOUNDATION OPERATOR 8
 2.2. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE TOKEN AUTHENTICATION METHOD 10
 2.3. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE KUBERNETES AUTHENTICATION METHOD 10
 2.4. CREATING AN OPENSHIFT DATA FOUNDATION CLUSTER 13
 2.5. VERIFYING OPENSHIFT DATA FOUNDATION DEPLOYMENT 15
 2.5.1. Verifying the state of the pods 15
 2.5.2. Verifying the OpenShift Data Foundation cluster is healthy 17
 2.5.3. Verifying the Multicloud Object Gateway is healthy 18
 2.5.4. Verifying that the OpenShift Data Foundation specific storage classes exist 18

CHAPTER 3. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY 19
 3.1. INSTALLING RED HAT OPENSHIFT DATA FOUNDATION OPERATOR 19
 3.2. CREATING A STANDALONE MULTICLOUD OBJECT GATEWAY 20

CHAPTER 4. UNINSTALLING OPENSHIFT DATA FOUNDATION 23
 4.1. UNINSTALLING OPENSHIFT DATA FOUNDATION IN INTERNAL MODE 23
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:

- For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition, ensure you see the Feedback button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the Add Feedback pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the Bugzilla website.
 2. In the Component section, choose documentation.
 3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click Submit Bug.
PREFACE

Red Hat OpenShift Data Foundation supports deployment on existing Red Hat OpenShift Container Platform (RHOCP) AWS clusters in connected or disconnected environments along with out-of-the-box support for proxy environments.

NOTE

Only internal OpenShift Data Foundation clusters are supported on AWS. See Planning your deployment and Preparing to deploy OpenShift Data Foundation for more information about deployment requirements.

To deploy OpenShift Data Foundation, start with the requirements in Preparing to deploy OpenShift Data Foundation chapter and then follow the deployment process for your environment based on your requirement:

- Deploy using dynamic storage devices
- Deploy standalone Multicloud Object Gateway component
CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT DATA FOUNDATION

Deploying OpenShift Data Foundation on OpenShift Container Platform using dynamic storage devices provides you with the option to create internal cluster resources.

Before you begin the deployment of Red Hat OpenShift Data Foundation, follow these steps:

1. For Red Hat Enterprise Linux based hosts for worker nodes, enable file system access for containers on Red Hat Enterprise Linux based nodes.

 NOTE
 Skip this step for Red Hat Enterprise Linux CoreOS (RHCOS).

2. Optional: If you want to enable cluster-wide encryption using an external Key Management System (KMS) then follow the steps:
 - Ensure that you have a valid Red Hat OpenShift Data Foundation Advanced subscription. To know how subscriptions for OpenShift Data Foundation work, see knowledgebase article on OpenShift Data Foundation subscriptions.
 - When the Token authentication method is selected for encryption then refer to Enabling cluster-wide encryption with the Token authentication using KMS.
 - When the Kubernetes authentication method is selected for encryption then refer to Enabling cluster-wide encryption with the Kubernetes authentication using KMS.
 - Ensure that you are using signed certificates on your Vault servers.

3. Minimum starting node requirements
 An OpenShift Data Foundation cluster is deployed with minimum configuration when the standard deployment resource requirement is not met. See Resource requirements section in the Planning guide.

4. Disaster recovery requirements [Developer Preview]
 Disaster Recovery features supported by Red Hat OpenShift Data Foundation require all of the following prerequisites to successfully implement a disaster recovery solution:
 - A valid Red Hat OpenShift Data Foundation Advanced subscription
 - A valid Red Hat Advanced Cluster Management for Kubernetes subscription
 To know how subscriptions for OpenShift Data Foundation work, see knowledgebase article on OpenShift Data Foundation subscriptions.

 For detailed requirements, see Configuring OpenShift Data Foundation Disaster Recovery for OpenShift Workloads guide, and Requirements and recommendations section of the Install guide in Red Hat Advanced Cluster Management for Kubernetes documentation.

1.1. ENABLING FILE SYSTEM ACCESS FOR CONTAINERS ON RED HAT ENTERPRISE LINUX BASED NODES
Deploying OpenShift Data Foundation on an OpenShift Container Platform with worker nodes on a Red Hat Enterprise Linux (RHEL) base in a user-provisioned infrastructure does not automatically provide container access to the underlying Ceph file system.

NOTE
Skip this step for hosts based on Red Hat Enterprise Linux CoreOS (RHCOS).

Procedure

1. Log in to the RHEL based node and open a terminal.

2. For each node in your cluster:
 a. Verify that the node has access to the `rhel-7-server-extras-rpms` repository:

      ```bash
      # subscription-manager repos --list-enabled | grep rhel-7-server
      ```
 b. Optional: If you do not see both `rhel-7-server-rpms` and `rhel-7-server-extras-rpms` in the output, or if there is no output, run the following commands to enable each repository:

      ```bash
      # subscription-manager repos --enable=rhel-7-server-rpms
      # subscription-manager repos --enable=rhel-7-server-extras-rpms
      ```
 c. Install the required packages:

      ```bash
      # yum install -y policycoreutils container-selinux
      ```
 d. Persistently enable the container use of the Ceph file system in SELinux:

      ```bash
      # setsebool -P container_use_cephfs on
      ```
CHAPTER 2. DEPLOY OPENSHIFT DATA FOUNDATION USING DYNAMIC STORAGE DEVICES

You can deploy OpenShift Data Foundation on OpenShift Container Platform using dynamic storage devices provided by Amazon Web Services (AWS) EBS (type, gp2 or gp3) that provides you with the option to create internal cluster resources. This results in the internal provisioning of the base services, which helps to make additional storage classes available to applications.

Also, it is possible to deploy only the Multicloud Object Gateway (MCG) component with OpenShift Data Foundation. For more information, see Deploy standalone Multicloud Object Gateway.

NOTE

Only internal OpenShift Data Foundation clusters are supported on AWS. See Planning your deployment for more information about deployment requirements.

Also, ensure that you have addressed the requirements in Preparing to deploy OpenShift Data Foundation chapter before proceeding with the below steps for deploying using dynamic storage devices:

1. Install the Red Hat OpenShift Data Foundation Operator.
2. Create the OpenShift Data Foundation Cluster.

2.1. INSTALLING RED HAT OPENSHIFT DATA FOUNDATION OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with `cluster-admin` and operator installation permissions.
- You must have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.
- For additional resource requirements, see the Planning your deployment guide.
IMPORTANT

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command to specify a blank node selector for the `openshift-storage` namespace (create `openshift-storage` namespace in this case):

  ```bash
  $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

- Taint a node as `infra` to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see the How to use dedicated worker nodes for Red Hat OpenShift Data Foundation section in the Managing and Allocating Storage Resources guide.

Procedure

1. Log in to the OpenShift Web Console.

2. Click **Operators** → **OperatorHub**.

3. Scroll or type **OpenShift Data Foundation** into the **Filter by keyword** box to find the **OpenShift Data Foundation** Operator.

4. Click **Install**.

5. Set the following options on the **Install Operator** page:
 a. Update Channel as **stable-4.11**.
 b. Installation Mode as **A specific namespace on the cluster**
 c. Installed Namespace as **Operator recommended namespace openshift-storage**. If Namespace `openshift-storage` does not exist, it is created during the operator installation.
 d. Select Approval Strategy as **Automatic** or **Manual**.
 If you select **Automatic** updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
 If you select **Manual** updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.
 e. Ensure that the **Enable** option is selected for the **Console plugin**.
 f. Click **Install**.

Verification steps

- Verify that the **OpenShift Data Foundation** Operator shows a green tick indicating successful installation.

- After the operator is successfully installed, a pop-up with a message, **Web console update is available** appears on the user interface. Click **Refresh web console** from this pop-up for the console changes to reflect.
 - In the Web Console, navigate to **Operators** and verify if **OpenShift Data Foundation** is
In the Web Console, navigate to Operators and verify if OpenShift Data Foundation is available.

2.2. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE TOKEN AUTHENTICATION METHOD

You can enable the key value backend path and policy in the vault for token authentication.

Prerequisites

- Administrator access to the vault.
- A valid Red Hat OpenShift Data Foundation Advanced subscription. For more information, see the knowledgebase article on OpenShift Data Foundation subscriptions.
- Carefully, select a unique path name as the backend path that follows the naming convention since you cannot change it later.

Procedure

1. Enable the Key/Value (KV) backend path in the vault.
 For vault KV secret engine API, version 1:
   ```
   $ vault secrets enable -path=odf kv
   ```
 For vault KV secret engine API, version 2:
   ```
   $ vault secrets enable -path=odf kv-v2
   ```

2. Create a policy to restrict the users to perform a write or delete operation on the secret:
   ```
   echo 'path "odf/*" {
   capabilities = ["create", "read", "update", "delete", "list"]
   }
   path "sys/mounts" {
   capabilities = ["read"]
   }' | vault policy write odf -
   ```

3. Create a token that matches the above policy:
   ```
   $ vault token create -policy=odf -format json
   ```

2.3. ENABLING CLUSTER-WIDE ENCRYPTION WITH KMS USING THE KUBERNETES AUTHENTICATION METHOD

You can enable the Kubernetes authentication method for cluster-wide encryption using the Key Management System (KMS).

Prerequisites

- Administrator access to Vault.
A valid Red Hat OpenShift Data Foundation Advanced subscription. For more information, see the knowledgebase article on OpenShift Data Foundation subscriptions.

The OpenShift Data Foundation operator must be installed from the Operator Hub.

Select a unique path name as the backend path that follows the naming convention carefully. You cannot change this path name later.

NOTE
Use of Vault namespaces are not supported with the Kubernetes authentication method in OpenShift Data Foundation 4.11.

Procedure

1. Create a service account:

   ```bash
   $ oc -n openshift-storage create serviceaccount <serviceaccount_name>
   ```

 where, `<serviceaccount_name>` specifies the name of the service account.

 For example:

   ```bash
   $ oc -n openshift-storage create serviceaccount odf-vault-auth
   ```

2. Create **clusterrolebindings** and **clusterroles**:

   ```bash
   $ oc -n openshift-storage create clusterrolebinding vault-tokenreview-binding --clusterrole=system:auth-delegator --serviceaccount=openshift-storage:__<serviceaccount_name>__
   ```

 For example:

   ```bash
   $ oc -n openshift-storage create clusterrolebinding vault-tokenreview-binding --clusterrole=system:auth-delegator --serviceaccount=openshift-storage:odf-vault-auth
   ```

3. Create a secret for the serviceaccount token and CA certificate.

   ```bash
   $ cat <<EOF | oc create -f -
   apiVersion: v1
   kind: Secret
   metadata:
     name: odf-vault-auth-token
   namespace: openshift-storage
   annotations:
     kubernetes.io/service-account.name: <serviceaccount_name>
   type: openshift-storage
   data: {}
   EOF
   ```

 where, `<serviceaccount_name>` is the service account created in the earlier step.

4. Get the token and the CA certificate from the secret.
5. Retrieve the OCP cluster endpoint.

```bash
$ OCP_HOST=$(oc config view --minify --flatten -o jsonpath="{.clusters[0].cluster.server}")
```

6. Fetch the service account issuer:

```bash
$ oc proxy &
$ proxy_pid=$!
$ issuer="$( curl --silent http://127.0.0.1:8001/.well-known/openid-configuration | jq -r .issuer)"
$ kill $proxy_pid
```

7. Use the information collected in the previous step to setup the Kubernetes authentication method in Vault:

```bash
$ vault auth enable kubernetes
$ vault write auth/kubernetes/config \
  token_reviewer_jwt="$SA_JWT_TOKEN" \
  kubernetes_host="$OCP_HOST" \
  kubernetes_ca_cert="$SA_CA_CRT" \
  issuer="$issuer"
```

IMPORTANT

To configure the Kubernetes authentication method in Vault when the issuer is empty:

```bash
$ vault write auth/kubernetes/config \
  token_reviewer_jwt="$SA_JWT_TOKEN" \
  kubernetes_host="$OCP_HOST" \
  kubernetes_ca_cert="$SA_CA_CRT"
```

8. Enable the Key/Value (KV) backend path in Vault.

For Vault KV secret engine API, version 1:

```bash
$ vault secrets enable -path=odf kv
```

For Vault KV secret engine API, version 2:

```bash
$ vault secrets enable -path=odf kv-v2
```

9. Create a policy to restrict the users to perform a `write` or `delete` operation on the secret:

```bash
echo '{
  path "odf/**": {
```
10. Generate the roles:

```
$ vault write auth/kubernetes/role/odf-rook-ceph-op  
  bound_service_account_names=rook-ceph-system,rook-ceph-osd,noobaa  
  bound_service_account_namespaces=openshift-storage  
  policies=odf  
  ttl=1440h
```

The role `odf-rook-ceph-op` is later used while you configure the KMS connection details during the creation of the storage system.

```
$ vault write auth/kubernetes/role/odf-rook-ceph-osd  
  bound_service_account_names=rook-ceph-osd  
  bound_service_account_namespaces=openshift-storage  
  policies=odf  
  ttl=1440h
```

2.4. CREATING AN OPENSSHIFT DATA FOUNDATION CLUSTER

Create an OpenShift Data Foundation cluster after you install the OpenShift Data Foundation operator.

Prerequisites

- The OpenShift Data Foundation operator must be installed from the Operator Hub. For more information, see Installing OpenShift Data Foundation Operator.

Procedure

1. In the OpenShift Web Console, click Operators → Installed Operators to view all the installed operators. Ensure that the Project selected is openshift-storage.

2. Click on the OpenShift Data Foundation operator, and then click Create StorageSystem.

3. In the Backing storage page, select the following:
 a. Select Full Deployment for the Deployment type option.
 b. Select the Use an existing StorageClass option.
 c. Select the Storage Class.
 As of OpenShift Data Foundation version 4.10, you can choose gp3 as the storage class. By default, it is set to gp2.
 d. Click Next.

4. In the Capacity and nodes page, provide the necessary information:
 a. Select a value for Requested Capacity from the dropdown list. It is set to 2 TiB by default.
NOTE

Once you select the initial storage capacity, cluster expansion is performed only using the selected usable capacity (three times of raw storage).

b. In the **Select Nodes** section, select at least three available nodes.

c. Optional: Select the **Taint nodes** checkbox to dedicate the selected nodes for OpenShift Data Foundation.

 For cloud platforms with multiple availability zones, ensure that the Nodes are spread across different Locations/availability zones.

 If the nodes selected do not match the OpenShift Data Foundation cluster requirements of an aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster is deployed. For minimum starting node requirements, see the **Resource requirements** section in the *Planning* guide.

d. Click **Next**.

5. Optional: In the **Security and network** page, configure the following based on your requirements:

 a. To enable encryption, select **Enable data encryption for block and file storage**

 b. Select either one or both the encryption levels:

 - **Cluster-wide encryption**

 Encrypts the entire cluster (block and file).

 - **StorageClass encryption**

 Creates encrypted persistent volume (block only) using encryption enabled storage class.

 c. Select the **Connect to an external key management service** checkbox. This is optional for cluster-wide encryption.

 i. **Key Management Service Provider** is set to **Vault** by default.

 ii. Select an **Authentication Method**.

 Using Token authentication method

 - Enter a unique **Connection Name**, host **Address** of the Vault server ('https://<hostname or ip>'), **Port** number and **Token**.

 - Expand **Advanced Settings** to enter additional settings and certificate details based on your **Vault** configuration:

 o Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Data Foundation.

 o Optional: Enter **TLS Server Name** and **Vault Enterprise Namespace**

 o Upload the respective PEM encoded certificate file to provide the **CA Certificate, Client Certificate** and **Client Private Key**.

 o Click **Save**.
Using Kubernetes authentication method

- Enter a unique Vault **Connection Name**, host **Address** of the Vault server ('https://<hostname or ip>'), **Port** number and **Role** name.

- Expand **Advanced Settings** to enter additional settings and certificate details based on your **Vault** configuration:
 - Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Data Foundation.
 - Optional: Enter **TLS Server Name** and **Authentication Path** if applicable.
 - Upload the respective PEM encoded certificate file to provide the **CA Certificate**, **Client Certificate** and **Client Private Key**.
 - Click **Save**.

 d. Click **Next**.

6. In the **Review and create** page, review the configuration details. To modify any configuration settings, click **Back**.

7. Click **Create StorageSystem**.

Verification steps

- To verify the final Status of the installed storage cluster:
 a. In the OpenShift Web Console, navigate to **Installed Operators** → **OpenShift Data Foundation** → **Storage System** → **ocs-storagecluster-storagesystem** → **Resources**.
 b. Verify that **Status** of **StorageCluster** is **Ready** and has a green tick mark next to it.

- To verify that all the components for OpenShift Data Foundation are successfully installed, see **Verifying OpenShift Data Foundation deployment**.

Additional resources

To enable Overprovision Control alerts, refer to **Alerts** in Monitoring guide.

2.5. VERIFYING OPENSШФТ DATA FOUNDATION DEPLOYMENT

To verify that OpenShift Data Foundation is deployed correctly:

1. **Verify the state of the pods**.

2. **Verify that the OpenShift Data Foundation cluster is healthy**.

3. **Verify that the Multicloud Object Gateway is healthy**.

4. **Verify that the OpenShift Data Foundation specific storage classes exist**.

2.5.1. Verifying the state of the pods
Procedure

1. Click **Workloads → Pods** from the OpenShift Web Console.

2. Select **openshift-storage** from the **Project** drop-down list.

 NOTE

 If the **Show default projects** option is disabled, use the toggle button to list all the default projects.

3. Click the **Running** and **Completed** tabs to verify that the following pods are in **Running** and **Completed** state:

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Data Foundation Operator</td>
<td>- ocs-operator- (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>- ocs-metrics-exporter- (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>- odf-operator-controller-manager- (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>- odf-console- (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>- csi-addons-controller-manager- (1 pod on any worker node)</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>rook-ceph-operator-</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>noobaa-operator-</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>noobaa-core-</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>noobaa-db-pg-</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>noobaa-endpoint-</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
</tbody>
</table>

For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see Table 2.1, “Pods corresponding to OpenShift Data Foundation cluster”.

Red Hat OpenShift Data Foundation 4.11 Deploying OpenShift Data Foundation using Amazon Web Services
<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON</td>
<td>rook-ceph-mon-*</td>
</tr>
<tr>
<td></td>
<td>(3 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>MGR</td>
<td>rook-ceph-mgr-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td>MDS</td>
<td>rook-ceph-mds-ocs-storagecluster-cephfilesystem-*</td>
</tr>
<tr>
<td></td>
<td>(2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>CSI</td>
<td>• cephfs</td>
</tr>
<tr>
<td></td>
<td>• csi-cephfsplugin-* (1 pod on each worker node)</td>
</tr>
<tr>
<td></td>
<td>• csi-cephfsplugin-provisioner-* (2 pods distributed across worker nodes)</td>
</tr>
<tr>
<td></td>
<td>• rbd</td>
</tr>
<tr>
<td></td>
<td>• csi-rbdplugin-* (1 pod on each worker node)</td>
</tr>
<tr>
<td></td>
<td>• csi-rbdplugin-provisioner-* (2 pods distributed across worker nodes)</td>
</tr>
<tr>
<td></td>
<td>rook-ceph-crashcollector</td>
</tr>
<tr>
<td></td>
<td>rook-ceph-crashcollector-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on each storage node)</td>
</tr>
<tr>
<td>OSD</td>
<td>• rook-ceph-osd-* (1 pod for each device)</td>
</tr>
<tr>
<td></td>
<td>• rook-ceph-osd-prepare-ocs-deviceset-* (1 pod for each device)</td>
</tr>
</tbody>
</table>

2.5.2. Verifying the OpenShift Data Foundation cluster is healthy

Procedure

1. In the OpenShift Web Console, click **Storage → Data Foundation**.
2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.
3. In the **Status** card of the **Block and File** tab, verify that **Storage Cluster** has a green tick.
4. In the **Details** card, verify that the cluster information is displayed.
For more information on the health of the OpenShift Data Foundation cluster using the Block and File dashboard, see Monitoring OpenShift Data Foundation.

2.5.3. Verifying the Multicloud Object Gateway is healthy

Procedure

1. In the OpenShift Web Console, click Storage → Data Foundation.

2. In the Status card of the Overview tab, click Storage System and then click the storage system link from the pop up that appears.

 a. In the Status card of the Object tab, verify that both Object Service and Data Resiliency have a green tick.

 b. In the Details card, verify that the MCG information is displayed.

For more information on the health of the OpenShift Data Foundation cluster using the object service dashboard, see Monitoring OpenShift Data Foundation.

2.5.4. Verifying that the OpenShift Data Foundation specific storage classes exist

Procedure

1. Click Storage → Storage Classes from the left pane of the OpenShift Web Console.

2. Verify that the following storage classes are created with the OpenShift Data Foundation cluster creation:

 - ocs-storagecluster-ceph-rbd
 - ocs-storagecluster-cephfs
 - openshift-storage.noobaa.io
CHAPTER 3. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY

Deploying only the Multicloud Object Gateway component with OpenShift Data Foundation provides the flexibility in deployment and helps to reduce the resource consumption. Use this section to deploy only the standalone Multicloud Object Gateway component, which involves the following steps:

- Installing Red Hat OpenShift Data Foundation Operator
- Creating standalone Multicloud Object Gateway

3.1. INSTALLING RED HAT OPENSIFT DATA FOUNDATION OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with `cluster-admin` and operator installation permissions.
- You must have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.
- For additional resource requirements, see the Planning your deployment guide.

IMPORTANT

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command to specify a blank node selector for the `openshift-storage` namespace (create `openshift-storage` namespace in this case):

  ```
  $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

- Taint a node as `infra` to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see the How to use dedicated worker nodes for Red Hat OpenShift Data Foundation section in the Managing and Allocating Storage Resources guide.

Procedure

1. Log in to the OpenShift Web Console.
2. Click Operators → OperatorHub.
3. Scroll or type OpenShift Data Foundation into the Filter by keyword box to find the OpenShift Data Foundation Operator.
4. Click Install.
5. Set the following options on the Install Operator page:
a. Update Channel as **stable-4.11**.

b. Installation Mode as **A specific namespace on the cluster**

c. Installed Namespace as **Operator recommended namespace openshift-storage**. If Namespace **openshift-storage** does not exist, it is created during the operator installation.

d. Select Approval Strategy as **Automatic** or **Manual**.
 * If you select **Automatic** updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
 * If you select **Manual** updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.

e. Ensure that the **Enable** option is selected for the **Console plugin**.

f. Click **Install**.

Verification steps

- Verify that the **OpenShift Data Foundation** Operator shows a green tick indicating successful installation.

- After the operator is successfully installed, a pop-up with a message, **Web console update is available** appears on the user interface. Click **Refresh web console** from this pop-up for the console changes to reflect.

 - In the Web Console, navigate to **Operators** and verify if **OpenShift Data Foundation** is available.

3.2. CREATING A STANDALONE MULTICLOUD OBJECT GATEWAY

You can create only the standalone Multicloud Object Gateway component while deploying OpenShift Data Foundation.

Prerequisites

- Ensure that the OpenShift Data Foundation Operator is installed.

Procedure

1. In the OpenShift Web Console, click **Operators → Installed Operators** to view all the installed operators.
 * Ensure that the **Project** selected is **openshift-storage**.

2. Click **OpenShift Data Foundation** operator and then click **Create StorageSystem**.

3. In the **Backing storage** page, select the following:
 a. Select **Multicloud Object Gateway** for **Deployment type**
 b. Select the **Use an existing StorageClass** option.
 c. Click **Next**.
CHAPTER 3. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY

4. Optional: In the Security page, select Connect to an external key management service
 a. Key Management Service Provider is set to Vault by default.

 b. Enter Vault Service Name, host Address of Vault server ('https://<hostname or ip>'), Port number, and Token.

 c. Expand Advanced Settings to enter additional settings and certificate details based on your Vault configuration:

 i. Enter the Key Value secret path in the Backend Path that is dedicated and unique to OpenShift Data Foundation.

 ii. Optional: Enter TLS Server Name and Vault Enterprise Namespace.

 iii. Upload the respective PEM encoded certificate file to provide the CA Certificate, Client Certificate, and Client Private Key.

 iv. Click Save.

 d. Click Next.

5. In the Review and create page, review the configuration details:
 To modify any configuration settings, click Back.

6. Click Create StorageSystem.

Verification steps

Verifying that the OpenShift Data Foundation cluster is healthy

1. In the OpenShift Web Console, click Storage → Data Foundation.

2. In the Status card of the Overview tab, click Storage System and then click the storage system link from the pop up that appears.

 a. In the Status card of the Object tab, verify that both Object Service and Data Resiliency have a green tick.

 b. In the Details card, verify that the MCG information is displayed.

Verifying the state of the pods

1. Click Workloads → Pods from the OpenShift Web Console.

2. Select openshift-storage from the Project drop-down list and verify that the following pods are in Running state.

 NOTE

 If the Show default projects option is disabled, use the toggle button to list all the default projects.
<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Data Foundation Operator</td>
<td>• ocs-operator-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• ocs-metrics-exporter-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• odf-operator-controller-manager-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• odf-console-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• csi-addons-controller-manager-* (1 pod on any worker node)</td>
</tr>
<tr>
<td>Rook-ceph Operator</td>
<td>rook-ceph-operator-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any worker node)</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>• noobaa-operator-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-core-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-db-pg-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• noobaa-endpoint-* (1 pod on any worker node)</td>
</tr>
</tbody>
</table>
4.1. UNINSTALLING OPENSHIFT DATA FOUNDATION IN INTERNAL MODE

To uninstall OpenShift Data Foundation in Internal mode, refer to the knowledge base article on Uninstalling OpenShift Data Foundation.