Deploying OpenShift Data Foundation in external mode

Instructions for deploying OpenShift Data Foundation to use an external Red Hat Ceph Storage cluster and IBM FlashSystem.
Instructions for deploying OpenShift Data Foundation to use an external Red Hat Ceph Storage cluster and IBM FlashSystem.
Abstract

Read this document for instructions on installing Red Hat OpenShift Data Foundation 4.11 to use an external Red Hat Ceph Storage cluster or IBM FlashSystem.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... 3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 4

CHAPTER 1. OVERVIEW OF DEPLOYING IN EXTERNAL MODE 5

CHAPTER 2. ENABLING FILE SYSTEM ACCESS FOR CONTAINERS ON RED HAT ENTERPRISE LINUX BASED NODES ... 7

CHAPTER 3. DEPLOY OPENSIFT DATA FOUNDATION USING RED HAT CEPH STORAGE 8
 3.1. INSTALLING RED HAT OPENSIFT DATA FOUNDATION OPERATOR 8
 3.2. CREATING AN OPENSIFT DATA FOUNDATION CLUSTER FOR EXTERNAL CEPH STORAGE SYSTEM 9
 3.3. VERIFYING YOUR OPENSIFT DATA FOUNDATION INSTALLATION FOR EXTERNAL CEPH STORAGE SYSTEM 14
 3.3.1. Verifying the state of the pods ... 14
 3.3.2. Verifying that the OpenShift Data Foundation cluster is healthy 15
 3.3.3. Verifying that the Multicloud Object Gateway is healthy 16
 3.3.4. Verifying that the storage classes are created and listed 16
 3.3.5. Verifying that Ceph cluster is connected 17
 3.3.6. Verifying that storage cluster is ready 17

CHAPTER 4. DEPLOY OPENSIFT DATA FOUNDATION USING IBM FLASHSYSTEM 18
 4.1. INSTALLING RED HAT OPENSIFT DATA FOUNDATION OPERATOR 18
 4.2. CREATING AN OPENSIFT DATA FOUNDATION CLUSTER FOR EXTERNAL IBM FLASHSYSTEM STORAGE .. 19

CHAPTER 5. UNINSTALLING OPENSIFT DATA FOUNDATION FROM EXTERNAL STORAGE SYSTEM .. 25
 5.1. REMOVING MONITORING STACK FROM OPENSIFT DATA FOUNDATION 25
 5.2. REMOVING OPENSIFT CONTAINER PLATFORM REGISTRY FROM OPENSIFT DATA FOUNDATION ... 28
 5.3. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSIFT DATA FOUNDATION .. 32
 5.4. REMOVING EXTERNAL IBM FLASHSYSTEM SECRET 33
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:

- For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the *Multi-page HTML* format. In addition, ensure you see the **Feedback** button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the **Add Feedback** pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the **Bugzilla** website.
 2. In the **Component** section, choose **documentation**.
 3. Fill in the **Description** field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click **Submit Bug**.
CHAPTER 1. OVERVIEW OF DEPLOYING IN EXTERNAL MODE

Red Hat OpenShift Data Foundation can make services from an external Red Hat Ceph Storage cluster or use IBM FlashSystems available for consumption through OpenShift Container Platform clusters running on the following platforms:

- VMware vSphere
- Bare metal
- Red Hat OpenStack platform (Technology Preview)
- IBM Power
- IBM Z infrastructure

IMPORTANT

Connecting and monitoring IBM FlashSystem® storage using OpenShift Data Foundation is a Developer Preview feature. Developer Preview features are subject to Developer Preview support limitations. Developer Preview releases are not intended to be run in production environments. The clusters deployed with the Developer Preview features are considered to be development clusters and are not supported through the Red Hat Customer Portal case management system. If you need assistance with Developer Preview features, reach out to the ocs-devpreview@redhat.com mailing list and a member of the Red Hat Development Team will assist you as quickly as possible based on availability and work schedules.

See Planning your deployment for more information.

WARNING

The existing users of OpenShift Data Foundation 4.10 cannot upgrade to OpenShift Data Foundation 4.11 due to object storage data accessibility issues which are planned to be fixed in a 4.11.z release. Also, note that the Red Hat Ceph Storage cluster used for external mode is blocked from upgrading. For more information, see the Red Hat Knowledgebase article Support Restrictions for upgrades for RADOS Gateway (RGW) on Red Hat Ceph Storage 5.2.

For instructions regarding how to install a RHCS 4 cluster, see Installation guide.

Follow these steps to deploy OpenShift Data Foundation in external mode:

1. If you use Red Hat Enterprise Linux hosts for worker nodes, Enable file system access for containers.
 Skip this step if you use Red Hat Enterprise Linux CoreOS (RHCOS) hosts.

2. Deploy the following:
 - Deploy OpenShift Data Foudation using Red Hat Ceph Storage.
Deploy OpenShift Data Foundation using IBM FlashSystem.

Disaster recovery requirements [Developer Preview]

Disaster Recovery features supported by Red Hat OpenShift Data Foundation require all of the following prerequisites to successfully implement a disaster recovery solution:

- A valid Red Hat OpenShift Data Foundation Advanced subscription
- A valid Red Hat Advanced Cluster Management for Kubernetes subscription

For more information, see the knowledgebase article on OpenShift Data Foundation subscriptions.

For detailed disaster recovery solution requirements, see Configuring OpenShift Data Foundation Disaster Recovery for OpenShift Workloads guide, and Requirements and recommendations section of the Install guide in Red Hat Advanced Cluster Management for Kubernetes documentation.
CHAPTER 2. ENABLING FILE SYSTEM ACCESS FOR CONTAINERS ON RED HAT ENTERPRISE LINUX BASED NODES

Deploying OpenShift Data Foundation on an OpenShift Container Platform with worker nodes on a Red Hat Enterprise Linux (RHEL) base in a user-provisioned infrastructure does not automatically provide container access to the underlying Ceph file system.

NOTE
Skip this step for hosts based on Red Hat Enterprise Linux CoreOS (RHCOS).

Procedure

1. Log in to the RHEL based node and open a terminal.

2. For each node in your cluster:
 a. Verify that the node has access to the rhel-7-server-extras-rpms repository:
      ```
      # subscription-manager repos --list-enabled | grep rhel-7-server
      ```
 b. Optional: If you do not see both rhel-7-server-rpms and rhel-7-server-extras-rpms in the output, or if there is no output, run the following commands to enable each repository:
      ```
      # subscription-manager repos --enable=rhel-7-server-rpms
      # subscription-manager repos --enable=rhel-7-server-extras-rpms
      ```
 c. Install the required packages:
      ```
      # yum install -y policycoreutils container-selinux
      ```
 d. Persistently enable the container use of the Ceph file system in SELinux:
      ```
      # setsebool -P container_use_cephfs on
      ```
CHAPTER 3. DEPLOY OPENSOURCES DATA FOUNDATION USING RED HAT CEPH STORAGE

Red Hat OpenShift Data Foundation can make services from an external Red Hat Ceph Storage cluster available for consumption through OpenShift Container Platform clusters. You need to install the OpenShift Data Foundation operator and then create OpenShift Data Foundation cluster for external Ceph storage system.

WARNING

The existing users of OpenShift Data Foundation 4.10 cannot upgrade to OpenShift Data Foundation 4.11 due to object storage data accessibility issues which are planned to be fixed in a 4.11.z release. Also, note that the Red Hat Ceph Storage cluster used for external mode is blocked from upgrading. For more information, see the Red Hat Knowledgebase article Support Restrictions for upgrades for RADOS Gateway (RGW) on Red Hat Ceph Storage 5.2.

3.1. INSTALLING RED HAT OPENSOURCES DATA FOUNDATION OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with `cluster-admin` and operator installation permissions.
- For additional resource requirements, see the Planning your deployment guide.

IMPORTANT

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command to specify a blank node selector for the `openshift-storage` namespace (create `openshift-storage` namespace in this case):

  ```
  $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

Procedure

1. Log in to the OpenShift Web Console.

2. Click Operators → OperatorHub.

3. Scroll or type OpenShift Data Foundation into the Filter by keyword box to find the OpenShift Data Foundation Operator.
4. Click **Install**.

5. Set the following options on the **Install Operator** page:

a. Update Channel as **stable-4.11**.

b. Installation Mode as **A specific namespace on the cluster**

c. Installed Namespace as **Operator recommended namespace openshift-storage**. If Namespace **openshift-storage** does not exist, it is created during the operator installation.

d. Select Approval Strategy as **Automatic** or **Manual**.

 If you select **Automatic** updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.

 If you select **Manual** updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.

e. Ensure that the **Enable** option is selected for the **Console plugin**.

f. Click **Install**.

Verification steps

- Verify that the **OpenShift Data Foundation** Operator shows a green tick indicating successful installation.

- After the operator is successfully installed, a pop-up with a message, **Web console update is available** appears on the user interface. Click **Refresh web console** from this pop-up for the console changes to reflect.

 - In the Web Console, navigate to **Operators** and verify if **OpenShift Data Foundation** is available.

3.2. CREATING AN OPENSHIFT DATA FOUNDATION CLUSTER FOR EXTERNAL CEPH STORAGE SYSTEM

You need to create a new OpenShift Data Foundation cluster after you install OpenShift Data Foundation operator on OpenShift Container Platform deployed on VMware vSphere or user-provisioned bare metal infrastructures.

Prerequisites

- A valid Red Hat OpenShift Data Foundation Advanced subscription. To know how subscriptions for OpenShift Data Foundation work, see knowledgebase article on OpenShift Data Foundation subscriptions.

- Ensure the OpenShift Container Platform version is 4.11 or above before deploying OpenShift Data Foundation 4.11.

- OpenShift Data Foundation operator must be installed. For more information, see Installing OpenShift Data Foundation Operator using the Operator Hub.
Red Hat Ceph Storage version 4.2z1 or later is required for the external cluster. For more information, see this knowledge base article on Red Hat Ceph Storage releases and corresponding Ceph package versions. If you have updated the Red Hat Ceph Storage cluster from a version lower than 4.1.1 to the latest release and is not a freshly deployed cluster, you must manually set the application type for CephFS pool on the Red Hat Ceph Storage cluster to enable CephFS PVC creation in external mode.

For more details, see Troubleshooting CephFS PVC creation in external mode.

- Red Hat Ceph Storage must have Ceph Dashboard installed and configured. For more information, see Ceph Dashboard installation and access.

- It is recommended that the external Red Hat Ceph Storage cluster has the PG Autoscaler enabled. For more information, see The placement group autoscaler section in the Red Hat Ceph Storage documentation.

- The external Ceph cluster should have an existing RBD pool pre-configured for use. If it does not exist, contact your Red Hat Ceph Storage administrator to create one before you move ahead with OpenShift Data Foundation deployment. Red Hat recommends to use a separate pool for each OpenShift Data Foundation cluster.

- Optional: If there is a zonegroup created apart from the default zonegroup, you need to add the hostname, `rook-ceph-rgw-ocs-external-storage-cluster-cephobjectstore.openshift-storage.svc` to the zonegroup as OpenShift Data Foundation sends S3 requests to the RADOS Object Gateways (RGWs) with this hostname. For more information, see the Red Hat Knowledgebase solution Ceph - How to add hostnames in RGW zonegroup?

Procedure

1. Click Operators → Installed Operators to view all the installed operators. Ensure that the Project selected is openshift-storage.

2. Click OpenShift Data Foundation and then click Create StorageSystem.

3. In the Backing storage page, select the following options:
 a. Select Full deployment for the Deployment type option.
 b. Select Connect an external storage platform from the available options.
 c. Select Red Hat Ceph Storage for Storage platform.
 d. Click Next.

4. In the Connection details page, provide the necessary information:
 a. Click on the Download Script link to download the python script for extracting Ceph cluster details.
 b. For extracting the Red Hat Ceph Storage (RHCS) cluster details, contact the RHCS administrator to run the downloaded python script on a Red Hat Ceph Storage node with the admin key.

 i. Run the following command on the RHCS node to view the list of available arguments:

   ```bash
   # python3 ceph-external-cluster-details-exporter.py --help
   ```
IMPORTANT

Use `python` instead of `python3` if the Red Hat Ceph Storage 4.x cluster is deployed on Red Hat Enterprise Linux 7.x (RHEL 7.x) cluster.

You can also run the script from inside a MON container (containerized deployment) or from a MON node (RPM deployment).

NOTE

Use the `yum install cephadm` command and then the `cephadm` command to deploy your RHCS cluster using containers. You must pull the RHCS container images using the `cephadm` command, rather than using `yum` for installing the Ceph packages onto nodes. For more information, see RHCS product documentation.

ii. To retrieve the external cluster details from the RHCS cluster, run the following command:

```bash
# python3 ceph-external-cluster-details-exporter.py \
--rbd-data-pool-name <rbd block pool name> [optional arguments]
```

For example:

```bash
```

In this example,

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rbd-data-pool-name</code></td>
<td>A mandatory parameter that is used for providing block storage in OpenShift Data Foundation.</td>
</tr>
<tr>
<td><code>rgw-endpoint</code></td>
<td>(Optional) This parameter is required only if the object storage is to be provisioned through Ceph Rados Gateway for OpenShift Data Foundation. Provide the endpoint in the following format: <code><ip_address>:<port></code></td>
</tr>
<tr>
<td><code>monitoring-endpoint</code></td>
<td>(Optional) This parameter accepts comma-separated list of IP addresses of active and standby mgrs reachable from the OpenShift Container Platform cluster. If not provided, the value is automatically populated.</td>
</tr>
<tr>
<td><code>monitoring-endpoint-port</code></td>
<td>(Optional) It is the port associated with the ceph-mgr Prometheus exporter specified by <code>--monitoring-endpoint</code>. If not provided, the value is automatically populated.</td>
</tr>
<tr>
<td></td>
<td>A fully-qualified domain name (FQDN) is also supported in the format <code><FQDN>:<PORT></code>.</td>
</tr>
<tr>
<td>run-as-user</td>
<td>(Optional) This parameter is used for providing name for the Ceph user which is created by the script. If this parameter is not specified, a default user name <code>client.healthchecker</code> is created. The permissions for the new user is set as:</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>• caps: [mgr] allow command config</td>
</tr>
<tr>
<td></td>
<td>• caps: [mon] allow r, allow command quorum_status, allow command version</td>
</tr>
<tr>
<td></td>
<td>• caps: [osd] allow rwx pool=<code>RGW_POOL_PREFIX.rgw.meta</code>, allow r pool=<code>rgw.root</code>, allow rw pool=<code>RGW_POOL_PREFIX.rgw.control</code>, allow rx pool=<code>RGW_POOL_PREFIX.rgw.log</code>, allow x pool=<code>RGW_POOL_PREFIX.rgw.buckets.index</code></td>
</tr>
</tbody>
</table>

Additional flags:*

<table>
<thead>
<tr>
<th>rgw-pool-prefix</th>
<th>(Optional) The prefix of the RGW pools. If not specified, the default prefix is default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>rgw-tls-cert-path</td>
<td>(Optional) The file path of the RADOS Gateway endpoint TLS certificate.</td>
</tr>
<tr>
<td>rgw-skip-tls</td>
<td>(Optional) This parameter ignores the TLS certification validation when a self-signed certificate is provided (NOT RECOMMENDED).</td>
</tr>
<tr>
<td>ceph-conf</td>
<td>(Optional) The name of the Ceph configuration file.</td>
</tr>
<tr>
<td>cluster-name</td>
<td>(Optional) The Ceph cluster name.</td>
</tr>
<tr>
<td>output</td>
<td>(Optional) The file where the output is required to be stored.</td>
</tr>
<tr>
<td>cephfs-metadata-pool-name</td>
<td>(Optional) The name of the CephFS meta data pool.</td>
</tr>
<tr>
<td>cephfs-data-pool-name</td>
<td>(Optional) The name of the CephFS data pool.</td>
</tr>
<tr>
<td>cephfs-filesystem-name</td>
<td>(Optional) The name of the CephFS filesystem.</td>
</tr>
<tr>
<td>rbd-metadata-ec-pool-name</td>
<td>(Optional) The name of erasure coded RBD metadata pool.</td>
</tr>
<tr>
<td>dry-run</td>
<td>(Optional) This parameter helps to print the executed commands without running them.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>restricted-auth-permission</td>
<td>(Optional) This parameter restricts <code>cephCSIKeyrings</code> auth permissions to specific pools and cluster. Mandatory flags that need to be set with this are <code>rbd-data-pool-name</code> and <code>cluster-name</code>. You can also pass the <code>cephfs-filesystem-name</code> flag if there is CephFS user restriction so that permission is restricted to a particular CephFS filesystem.</td>
</tr>
</tbody>
</table>

NOTE

This parameter must be applied only for the new deployments. To restrict `csi-users` per pool and per cluster, you need to create new `csi-users` and new secrets for those `csi-users`.

Example with restricted auth permission:

```
# python3 /etc/ceph/create-external-cluster-resources.py --cephfs-filesystem-name myfs --rbd-data-pool-name replicapool --cluster-name rookStorage --restricted-auth-permission true
```

Example of JSON output generated using the python script:

```json
[{
  "name": "rook-ceph-mon-endpoints", "kind": "ConfigMap", "data": {
    "data": "xxx.xxx.xxx.xxx:xxxx", "maxMonId": "0", "mapping": "{}"}, "name": "rook-ceph-mon",
  "kind": "Secret", "data": {
    "admin-secret": "admin-secret", "fsid": "<fs-id>", "mon-secret": "mon-secret"}, "name": "rook-ceph-operator-creds", "kind": "Secret", "data": {
    "userID": "<user-id>", "userKey": "<user-key>"}, "name": "rook-csi-rbd-node",
  "kind": "Secret", "data": {
    "userID": "csi-rbd-node", "userKey": "<user-key>"}, "name": "ceph-rbd",
  "kind": "StorageClass", "data": {
    "pool": "<pool>"}, "name": "monitoring-endpoint",
  "kind": "CephCluster", "data": {
    "MonitoringEndpont": "xxx.xxx.xxx.xxx",
    "MonitoringPort": " xxxx"}, "name": "rook-ceph-dashboard-link", "kind": "Secret",
  "data": {
    "userID": "ceph-dashboard-link", "userKey": "<user-key>"}, "name": "rook-csi-rbd-provisioner",
  "kind": "Secret", "data": {
    "userID": "csi-rbd-provisioner", "userKey": "<user-key>"}, "name": "rook-csi-cephfs-provisioner",
  "kind": "Secret", "data": {
    "adminID": "csi-cephfs-provisioner", "adminKey": "<admin-key>"}, "name": "rook-csi-cephfs-node",
  "kind": "Secret", "data": {
    "adminID": "csi-cephfs-node", "adminKey": "<admin-key>"}, "name": "cephfs",
  "kind": "StorageClass", "data": {
    "fsName": "cephfs", "pool": "cephfs_data"}, "name": "ceph-rgw",
  "kind": "StorageClass", "data": {
    "endpoint": "xxx.xxx.xxx.xxx:xxxx", "poolPrefix": "default"}, "name": "rgw-admin-ops-user",
  "kind": "Secret", "data": {
    "accessKey": "<access-key>", "secretKey": "<secret-key>"}}
]```

iii. Save the JSON output to a file with `.json` extension
NOTE

For OpenShift Data Foundation to work seamlessly, ensure that the parameters (RGW endpoint, CephFS details, RBD pool, and so on) to be uploaded using the JSON file remains unchanged on the RHCS external cluster after the storage cluster creation.

iv. Run the command when there is a multi-tenant deployment in which RHCS cluster is already connected to OpenShift Data Foundation deployment with a lower version.

```
python3 ceph-external-cluster-details-exporter.py --upgrade
```

c. Click **Browse** to select and upload the JSON file.
The content of the JSON file is populated and displayed in the text box.

d. Click **Next**
The **Next** button is enabled only after you upload the .json file.

5. In the Review and create page, review if all the details are correct:
   - To modify any configuration settings, click **Back** to go back to the previous configuration page.

6. Click **Create StorageSystem**

Verification steps

To verify the final Status of the installed storage cluster:

1. In the OpenShift Web Console, navigate to **Installed Operators → OpenShift Data Foundation → Storage System → ocs-external-storagecluster-storagesystem → Resources**.

2. Verify that **Status** of **StorageCluster** is **Ready** and has a green tick.

3. To verify that OpenShift Data Foundation, pods and StorageClass are successfully installed, see **Verifying your external mode OpenShift Data Foundation installation for external Ceph storage system**.

### 3.3. VERIFYING YOUR OPENSHPIT DATA FOUNDATION INSTALLATION FOR EXTERNAL CEPH STORAGE SYSTEM

Use this section to verify that OpenShift Data Foundation is deployed correctly.

#### 3.3.1. Verifying the state of the pods

1. Click **Workloads → Pods** from the left pane of the OpenShift Web Console.

2. Select **openshift-storage** from the **Project** drop-down list.

**NOTE**

If the **Show default projects** option is disabled, use the toggle button to list all the default projects.
For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see Table 3.1, "Pods corresponding to OpenShift Data Foundation components"

3. Verify that the following pods are in running state:

Table 3.1. Pods corresponding to OpenShift Data Foundation components

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Data Foundation Operator</td>
<td></td>
</tr>
</tbody>
</table>
  - ocs-operator-\* (1 pod on any worker node)                        |
  - ocs-metrics-exporter-\* (1 pod on any worker node)                |
  - odf-operator-controller-manager-\* (1 pod on any worker node)    |
  - odf-console-\* (1 pod on any worker node)                         |
  - csi-addons-controller-manager-\* (1 pod on any worker node)      |
| Rook-ceph Operator             | 
  - rook-ceph-operator-\* (1 pod on any worker node)                 |
| Multicloud Object Gateway      | 
  - noobaa-operator-\* (1 pod on any worker node)                    |
  - noobaa-core-\* (1 pod on any worker node)                        |
  - noobaa-db-pg-\* (1 pod on any worker node)                       |
  - noobaa-endpoint-\* (1 pod on any worker node)                    |
| CSI                            | 
  - cephfs                                                           |
    - csi-cephfsplugin-\* (1 pod on each worker node)                 |
    - csi-cephfsplugin-provisioner-\* (2 pods distributed across worker nodes) |
  - rbd                                                               |
    - csi-rbdplugin-\* (1 pod on each worker node)                    |
    - csi-rbdplugin-provisioner-\* (2 pods distributed across worker nodes) |

NOTE

If an MDS is not deployed in the external cluster, the csi-cephfsplugin pods will not be created.

3.3.2. Verifying that the OpenShift Data Foundation cluster is healthy
1. In the OpenShift Web Console, click **Storage → Data Foundation**.

2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.

3. In the **Status** card of the **Block and File** tab, verify that **Storage Cluster** has a green tick.

4. In the **Details** card, verify that the cluster information is displayed.

For more information on the health of OpenShift Data Foundation cluster using the Block and File dashboard, see [Monitoring OpenShift Data Foundation](#).

### 3.3.3. Verifying that the Multicloud Object Gateway is healthy

1. In the OpenShift Web Console, click **Storage → Data Foundation**.

2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.

   a. In the **Status** card of the **Object** tab, verify that both **Object Service** and **Data Resiliency** have a green tick.

   b. In the **Details** card, verify that the Multicloud Object Gateway (MCG) information is displayed.

   **NOTE**

   The RADOS Object Gateway is only listed in case RADOS Object Gateway endpoint details are included while deploying OpenShift Data Foundation in external mode.

For more information on the health of OpenShift Data Foundation cluster using the object dashboard, see [Monitoring OpenShift Data Foundation](#).

### 3.3.4. Verifying that the storage classes are created and listed

1. Click **Storage → Storage Classes** from the left pane of the OpenShift Web Console.

2. Verify that the following storage classes are created with the OpenShift Data Foundation cluster creation:

   - `ocs-external-storagecluster-ceph-rbd`
   - `ocs-external-storagecluster-ceph-rgw`
   - `ocs-external-storagecluster-cephfs`
   - `openshift-storage.noobaa.io`
NOTE

- If an MDS is not deployed in the external cluster, `ocs-external-storagecluster-cephfs` storage class will not be created.

- If RGW is not deployed in the external cluster, the `ocs-external-storagecluster-ceph-rgw` storage class will not be created.

For more information regarding MDS and RGW, see Red Hat Ceph Storage documentation.

3.3.5. Verifying that Ceph cluster is connected

Run the following command to verify if the OpenShift Data Foundation cluster is connected to the external Red Hat Ceph Storage cluster.

```bash
$ oc get cephcluster -n openshift-storage
NAME DATADIRHOSTPATH MONCOUNT AGE PHASE MESSAGE
HEALTH EXTERNAL
ocs-external-storagecluster-cephcluster 30m Connected Cluster connected successfully HEALTH_OK true
```

3.3.6. Verifying that storage cluster is ready

Run the following command to verify if the storage cluster is ready and the External option is set to true.

```bash
$ oc get storagecluster -n openshift-storage
NAME AGE PHASE EXTERNAL CREATED AT VERSION
ocs-external-storagecluster 30m Ready true 2021-11-17T09:09:52Z 4.11.0
CHAPTER 4. DEPLOY OPENSOURCE DATA FOUNDATION USING IBM FLASHSYSTEM

OpenShift Data Foundation can use IBM FlashSystem storage available for consumption through OpenShift Container Platform clusters. You need to install the OpenShift Data Foundation operator and then create an OpenShift Data Foundation cluster for IBM FlashSystem storage.

WARNING

The existing users of OpenShift Data Foundation 4.10 cannot upgrade to OpenShift Data Foundation 4.11 due to object storage data accessibility issues which are planned to be fixed in a 4.11.z release.

4.1. INSTALLING RED HAT OPENSOURCE DATA FOUNDATION OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with cluster-admin and operator installation permissions.

- For additional resource requirements, see the Planning your deployment guide.

IMPORTANT

- When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command to specify a blank node selector for the openshift-storage namespace (create openshift-storage namespace in this case):

  ```bash
  $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

Procedure

1. Log in to the OpenShift Web Console.

2. Click Operators → OperatorHub.

3. Scroll or type OpenShift Data Foundation into the Filter by keyword box to find the OpenShift Data Foundation Operator.

4. Click Install.

5. Set the following options on the Install Operator page:

 a. Update Channel as stable-4.11.
b. Installation Mode as **A specific namespace on the cluster**

c. Installed Namespace as **Operator recommended namespace openshift-storage**. If Namespace **openshift-storage** does not exist, it is created during the operator installation.

d. Select Approval Strategy as **Automatic** or **Manual**.
 If you select **Automatic** updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.
 If you select **Manual** updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.

e. Ensure that the **Enable** option is selected for the **Console plugin**.

f. Click **Install**.

Verification steps

- Verify that the **OpenShift Data Foundation** Operator shows a green tick indicating successful installation.

- After the operator is successfully installed, a pop-up with a message, **Web console update is available** appears on the user interface. Click **Refresh web console** from this pop-up for the console changes to reflect.

 - In the Web Console, navigate to **Operators** and verify if **OpenShift Data Foundation** is available.

4.2. **CREATING AN OPENSIFT DATA FOUNDATION CLUSTER FOR EXTERNAL IBM FLASHSYSTEM STORAGE**

You need to create a new OpenShift Data Foundation cluster after you install the OpenShift Data Foundation operator on the OpenShift Container Platform.

Prerequisites

- A valid Red Hat OpenShift Data Foundation Advanced subscription. For more information, see the knowledgebase article on OpenShift Data Foundation subscriptions.

- For Red Hat Enterprise Linux® operating system, ensure that there is iSCSI connectivity and then configure Linux multipath devices on the host.

- For Red Hat Enterprise Linux CoreOS or when the packages are already installed, configure Linux multipath devices on the host.

- Ensure to configure each worker with storage connectivity according to your storage system instructions. For the latest supported FlashSystem products and versions, see the Installing section within your Spectrum Virtualize family product documentation in IBM Documentation.

Procedure

1. In the OpenShift Web Console, click **Operators → Installed Operators** to view all the installed operators.
 Ensure that the **Project** selected is **openshift-storage**.
2. Click OpenShift Data Foundation and then click **Create StorageSystem**.

3. In the Backing storage page, select the following options:
 a. Select **Full deployment** for the **Deployment type** option.
 b. Select **Connect an external storage platform** from the available options.
 c. Select **IBM FlashSystem Storage** from the **Storage platform** list.
 d. Click **Next**.

4. In the Create storage class page, provide the following information:
 a. Enter a name for the storage class.
 When creating block storage persistent volumes, select the storage class
 `<storage_class_name>` for best performance. The storage class allows direct I/O path to the
 FlashSystem.
 b. Enter the following details of IBM FlashSystem connection:
 - IP address
 - User name
 - Password
 - Pool name
 c. Select **thick** or **thin** for the **Volume mode**.
 d. Click **Next**.

5. In the Capacity and nodes page, provide the necessary details:
 a. Select a value for Requested capacity.
 The available options are **0.5 TiB**, **2 TiB**, and **4 TiB**. The requested capacity is dynamically
 allocated on the infrastructure storage class.
 b. Select at least three nodes in three different zones.
 It is recommended to start with at least 14 CPUs and 34 GiB of RAM per node. If the nodes
 selected do not match the OpenShift Data Foundation cluster requirement of an
 aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster will be deployed. For minimum
 starting node requirements, see the **Resource requirements** section in the Planning guide.
 c. Click **Next**.

6. Optional: In the Security and network page, provide the necessary details:
 a. To enable encryption, select **Enable data encryption for block and file storage**
 b. Choose any one or both Encryption level:
 - **Cluster-wide encryption** to encrypt the entire cluster (block and file).
 - **StorageClass encryption** to create encrypted persistent volume (block only) using
 encryption enabled storage class.
c. Select the **Connect to an external key management service** checkbox. This is optional for cluster-wide encryption.

 i. Key Management Service Provider is set to Vault by default.

 ii. Enter Vault Service Name, host Address of Vault server (‘https://<hostname or ip>’), Port number, and Token.

d. Expand Advanced Settings to enter additional settings and certificate details based on your Vault configuration:

 i. Enter the Key Value secret path in the Backend Path that is dedicated and unique to OpenShift Data Foundation.

 ii. Optional: Enter TLS Server Name and Vault Enterprise Namespace.

 iii. Provide CA Certificate, Client Certificate, and Client Private Key by uploading the respective PEM encoded certificate file.

e. Click **Save**.

f. Select **Default (SDN)** if you are using a single network or **Custom (Multus)** if you are using multiple network interfaces.

 i. Select a Public Network Interface from the dropdown.

 ii. Select a Cluster Network Interface from the dropdown. NOTE: If you are using only one additional network interface, select the single NetworkAttachmentDefinition, that is, **ocs-public-cluster** for the Public Network Interface, and leave the Cluster Network Interface blank.

g. Click **Next**.

7. In the Review and create page, review if all the details are correct:

 • To modify any configuration settings, click **Back** to go back to the previous configuration page.

8. Click **Create StorageSystem**.

Verification Steps

Verifying the state of the pods

1. Click **Workloads → Pods** from the left pane of the OpenShift Web Console.

2. Select **openshift-storage** from the **Project** drop-down list.

 NOTE

 If the **Show default projects** option is disabled, use the toggle button to list all the default projects.

<p>| Table 4.1. Pods corresponding to OpenShift Data Foundation components |</p>
<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Data Foundation Operator</td>
<td>• <code>ocs-operator</code>-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• <code>ocs-metrics-exporter</code>-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• <code>odf-operator-controller-manager</code>-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• <code>odf-console</code>-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• <code>csi-addons-controller-manager</code>-* (1 pod on any worker node)</td>
</tr>
<tr>
<td>ibm-storage-odf-operator</td>
<td>• <code>ibm-storage-odf-operator</code>-* (2 pods on any worker nodes)</td>
</tr>
<tr>
<td></td>
<td>• <code>ibm-odf-console</code>-*</td>
</tr>
<tr>
<td>ibm-flashsystem-storage</td>
<td><code>ibm-flashsystem-storage</code>-* (1 pod on any worker node)</td>
</tr>
<tr>
<td>rook-ceph Operator</td>
<td><code>rook-ceph-operator</code>-* (1 pod on any worker node)</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>• <code>noobaa-operator</code>-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• <code>noobaa-core</code>-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• <code>noobaa-db-pg</code>-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>• <code>noobaa-endpoint</code>-* (1 pod on any worker node)</td>
</tr>
<tr>
<td>CSI</td>
<td>• <code>ibm-block-csi</code>-* (1 pod on any worker node)</td>
</tr>
</tbody>
</table>

Verifying that the OpenShift Data Foundation cluster is healthy

1. In the Web Console, click **Storage → Data Foundation**.

2. In the Status card of the **Overview** tab, verify that **Storage System** has a green tick mark.

3. In the **Details** card, verify that the cluster information is displayed.

For more information on the health of OpenShift Data Foundation cluster using the Block and File dashboard, see Monitoring OpenShift Data Foundation.

Verifying that the Multicloud Object Gateway is healthy

1. In the Web Console, click **Storage → Data Foundation**.
2. In the Status card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up.

3. In the Status card of the **Object** tab, verify that both **Object Service** and **Data Resiliency** have a green tick.

4. In the **Details** card, verify that the MCG information is displayed.

For more information on the health of OpenShift Data Foundation cluster using the object dashboard, see Monitoring OpenShift Data Foundation.

Verifying that IBM FlashSystem is connected and the storage cluster is ready

- Run the following command to verify if the OpenShift Data Foundation cluster is connected to the external IBM FlashSystem.

  ```bash
  $ oc get flashsystemclusters.odf.ibm.com
  NAME                     AGE   PHASE   CREATED AT
  ibm-flashsystemcluster   35s           2021-09-23T07:44:52Z
  ```

Verifying the StorageSystem of the storage

- Run the following command to verify the storageSystem of IBM FlashSystem storage cluster.

  ```bash
  $ oc get storagesystems.odf.openshift.io
  NAME                                   STORAGE-SYSTEM-KIND                       STORAGE-SYSTEM-NAME
  ibm-flashsystemcluster-storagesystem   flashsystemcluster.odf.ibm.com/v1alpha1   ibm-flashsystemcluster
  ocs-storagecluster-storagesystem       storagecluster.ocs.openshift.io/v1        ocs-storagecluster
  ```

Verifying the subscription of the IBM operator

- Run the following command to verify the subscription:

  ```bash
  $ oc get subscriptions.operators.coreos.com
  NAME                                                                      PACKAGE                    SOURCE
  CHANNEL
  certified-operators   stable
  ibm-storage-odf-operator                                                  ibm-storage-odf-operator   odf-catalogsource     alpha
  noobaa-operator-alpha-odf-catalogsource-openshift-storage                 noobaa-operator
  odf-catalogsource     alpha
  ocs-operator-alpha-odf-catalogsource-openshift-storage                    ocs-operator               odf-catalogsource     alpha
  odf-operator                                                              odf-operator               odf-catalogsource     alpha
  ```

Verifying the CSVs

- Run the following command to verify that the CSVs are in the succeeded state.

  ```bash
  $ oc get csv
  NAME                  DISPLAY VERSION   REPLACES
  ```
PHASE

- **ibm-block-csi-operator.v1.6.0** Operator for IBM block storage CSI driver 1.6.0
 - Succeeded
- **ibm-storage-odf-operator.v0.2.1** IBM Storage ODF operator 0.2.1
 - Installing
 - Succeeded
- **noobaa-operator.v5.9.0** NooBaa Operator 5.9.0
 - Succeeded
- **ocs-operator.v4.11.0** OpenShift Container Storage 4.11.0
 - Succeeded
- **odf-operator.v4.11.0** OpenShift Data Foundation 4.11.0
 - Succeeded

Verifying the IBM operator and CSI pods

- Run the following command to verify the IBM operator and CSI pods:

```
$ oc get pods
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>REPLICA</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5cb2b16ec2b11bf63dbe691d44a63535dc026bb5315d5075dc6c398b3c58f94</td>
<td>0/1</td>
<td>Completed</td>
<td>10m</td>
<td></td>
</tr>
<tr>
<td>7c806f6568f85cf10d72508261a2535c220429b54dbc87349b9b4b9838fctg</td>
<td>0/1</td>
<td>Completed</td>
<td>8m47s</td>
<td></td>
</tr>
<tr>
<td>c4b05566c04876677a22d39fc9c02512401d0962109610e85c8fb900d3jd7k2</td>
<td>0/1</td>
<td>Completed</td>
<td>10m</td>
<td></td>
</tr>
<tr>
<td>c5d1376974666727b02bf25b3a4828241612186744ef417a668b4bc1759rzts</td>
<td>0/1</td>
<td>Completed</td>
<td>10m</td>
<td></td>
</tr>
<tr>
<td>ibm-block-csi-operator-7b656d6cc8-bqnwp</td>
<td>1/1</td>
<td>Running</td>
<td>0m</td>
<td></td>
</tr>
<tr>
<td>ibm-odf-console-97cb7c84c-r52dq</td>
<td>0/1</td>
<td>ContainerCreating</td>
<td>0m</td>
<td></td>
</tr>
<tr>
<td>ibm-storage-odf-operator-57b8bc47df-mgkc7</td>
<td>1/2</td>
<td>ImagePullBackOff</td>
<td>94s</td>
<td></td>
</tr>
<tr>
<td>noobaa-operator-7698579d56-x2zqs</td>
<td>1/1</td>
<td>Running</td>
<td>0m</td>
<td></td>
</tr>
<tr>
<td>ocs-metrics-exporter-94b57d764-zq2g2</td>
<td>1/1</td>
<td>Running</td>
<td>0m</td>
<td></td>
</tr>
<tr>
<td>ocs-operator-5d96d778f6-vxlq5</td>
<td>1/1</td>
<td>Running</td>
<td>0m</td>
<td></td>
</tr>
<tr>
<td>odf-catalogsource-j7q72</td>
<td>1/1</td>
<td>Running</td>
<td>0m</td>
<td></td>
</tr>
<tr>
<td>odf-console-8987868cd-m7v29</td>
<td>1/1</td>
<td>Running</td>
<td>0m</td>
<td></td>
</tr>
<tr>
<td>odf-operator-controller-manager-5dbf785564-rwsgq</td>
<td>2/2</td>
<td>Running</td>
<td>0m</td>
<td></td>
</tr>
<tr>
<td>rook-ceph-operator-68b4b976d8-dlc6w</td>
<td>1/1</td>
<td>Running</td>
<td>0m</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 5. UNINSTALLING OPENSHIFT DATA FOUNDATION FROM EXTERNAL STORAGE SYSTEM

Use the steps in this section to uninstall OpenShift Data Foundation. Uninstalling OpenShift Data Foundation does not remove the RBD pool from the external cluster, or uninstall the external Red Hat Ceph Storage cluster.

Uninstall Annotations

Annotations on the Storage Cluster are used to change the behavior of the uninstall process. To define the uninstall behavior, the following two annotations have been introduced in the storage cluster:

- `uninstall.ocs.openshift.io/cleanup-policy: delete`
- `uninstall.ocs.openshift.io/mode: graceful`

NOTE

The `uninstall.ocs.openshift.io/cleanup-policy` is not applicable for external mode.

The below table provides information on the different values that can used with these annotations:

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Value</th>
<th>Default</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>cleanup-policy</td>
<td>delete</td>
<td>Yes</td>
<td>Rook cleans up the physical drives and the <code>DataDirHostPath</code></td>
</tr>
<tr>
<td>cleanup-policy</td>
<td>retain</td>
<td>No</td>
<td>Rook does not clean up the physical drives and the <code>DataDirHostPath</code></td>
</tr>
<tr>
<td>mode</td>
<td>graceful</td>
<td>Yes</td>
<td>Rook and NooBaa pauses the uninstall process until the PVCs and the OBCs are removed by the administrator/user</td>
</tr>
<tr>
<td>mode</td>
<td>forced</td>
<td>No</td>
<td>Rook and NooBaa proceeds with uninstall even if PVCs/OBCs provisioned using Rook and NooBaa exist respectively</td>
</tr>
</tbody>
</table>

You can change the uninstall mode by editing the value of the annotation by using the following commands:
$ oc annotate storagecluster ocs-external-storagecluster -n openshift-storage uninstall.ocs.openshift.io/mode="forced" --overwrite
storagecluster.ocs.openshift.io/ocs-external-storagecluster annotated

Prerequisites

- Ensure that the OpenShift Data Foundation cluster is in a healthy state. The uninstall process can fail when some of the pods are not terminated successfully due to insufficient resources or nodes. In case the cluster is in an unhealthy state, contact Red Hat Customer Support before uninstalling OpenShift Data Foundation.

- Ensure that applications are not consuming persistent volume claims (PVCs) or object bucket claims (OBCs) using the storage classes provided by OpenShift Data Foundation.

Procedure

1. Delete the volume snapshots that are using OpenShift Data Foundation.
 a. List the volume snapshots from all the namespaces

 $ oc get volumesnapshot --all-namespaces

 b. From the output of the previous command, identify and delete the volume snapshots that are using OpenShift Data Foundation.

 $ oc delete volumesnapshot <VOLUME-SNAPSHOT-NAME> -n <NAMESPACE>

2. Delete PVCs and OBCs that are using OpenShift Data Foundation.
 In the default uninstall mode (graceful), the uninstaller waits till all the PVCs and OBCs that use OpenShift Data Foundation are deleted.

 If you wish to delete the Storage Cluster without deleting the PVCs beforehand, you may set the uninstall mode annotation to "forced" and skip this step. Doing so will result in orphan PVCs and OBCs in the system.

 a. Delete OpenShift Container Platform monitoring stack PVCs using OpenShift Data Foundation.
 See Removing monitoring stack from OpenShift Data Foundation

 b. Delete OpenShift Container Platform Registry PVCs using OpenShift Data Foundation.
 Removing OpenShift Container Platform registry from OpenShift Data Foundation

 c. Delete OpenShift Container Platform logging PVCs using OpenShift Data Foundation.
 Removing the cluster logging operator from OpenShift Data Foundation

 d. Delete other PVCs and OBCs provisioned using OpenShift Data Foundation.

 Given below is a sample script to identify the PVCs and OBCs provisioned using OpenShift Data Foundation. The script ignores the PVCs and OBCs that are used internally by OpenShift Data Foundation.

 #!/bin/bash

 RBD_PROVISIONER="openshift-storage.rbd.csi.ceph.com"
 CEPHFS_PROVISIONER="openshift-storage.cephfs.csi.ceph.com"
NOOBAA_PROVISIONER="openshift-storage.noobaa.io/obc"
RGW_PROVISIONER="openshift-storage.ceph.rook.io/bucket"

NOOBAA_DB_PVC="noobaa-db"
NOOBAA_BACKINGSTORE_PVC="noobaa-default-backing-store-noobaa-pvc"

Find all the OCS StorageClasses
OCS_STORAGECLASSES=$(oc get storageclasses | grep -e "$RBD_PROVISIONER" -e "$CEPHFS_PROVISIONER" -e "$NOOBAA_PROVISIONER" -e "$RGW_PROVISIONER" | awk '{print $1}')

List PVCs in each of the StorageClasses
for SC in $OCS_STORAGECLASSES
do
echo
"==
=="
echo "$SC StorageClass PVCs and OBCs"
echo
"==
=="
o c get pvc --all-namespaces --no-headers 2>/dev/null | grep $SC | grep -v -e "$NOOBAA_DB_PVC" -e "$NOOBAA_BACKINGSTORE_PVC"
o c get obc --all-namespaces --no-headers 2>/dev/null | grep $SC
de

done

- Delete the OBCs.

 $ oc delete obc <obc name> -n <project name>

- Delete the PVCs.

 $ oc delete pvc <pvc name> -n <project-name>

 Ensure that you have removed any custom backing stores, bucket classes, and so on that are created in the cluster.

3. Delete the Storage Cluster object and wait for the removal of the associated resources.

 $ oc delete -n openshift-storage storagesystem --all --wait=true

4. Delete the namespace and wait until the deletion is complete. You will need to switch to another project if openshift-storage is the active project.

 For example:

 $ oc project default
 $ oc delete project openshift-storage --wait=true --timeout=5m

 The project is deleted if the following command returns a **NotFound** error.

 $ oc get project openshift-storage
NOTE

While uninstalling OpenShift Data Foundation, if the namespace is not deleted completely and remains in Terminating state, perform the steps in Troubleshooting and deleting remaining resources during Uninstall to identify objects that are blocking the namespace from being terminated.

5. Confirm all PVs provisioned using OpenShift Data Foundation are deleted. If there is any PV left in the Released state, delete it.

 $ oc get pv
 $ oc delete pv <pv name>

 $ oc delete crd backingstores.noobaa.io bucketclasses.noobaa.io
 cephblockpools.ceph.rook.io cephclusters.ceph.rook.io cephfilesystems.ceph.rook.io
 cephnfses.ceph.rook.io cephobjectstores.ceph.rook.io cephobjectstoreusers.ceph.rook.io
 noobaas.noobaa.io ocsinitializations.ocs.openshift.io storageclusters.ocs.openshift.io
 cephclients.ceph.rook.io cephobjectrealms.ceph.rook.io cephobjectzonegroups.ceph.rook.io
 cephobjectzones.ceph.rook.io cephrbdmirrors.ceph.rook.io storagesystems.odf.openshift.io --
 wait=true --timeout=5m

7. To ensure that OpenShift Data Foundation is uninstalled completely:
 a. In the OpenShift Container Platform Web Console, click Storage.
 b. Verify that OpenShift Data Foundation no longer appears under Storage.

5.1. REMOVING MONITORING STACK FROM OPENSHIFT DATA FOUNDATION

Use this section to clean up the monitoring stack from OpenShift Data Foundation.

The PVCs that are created as a part of configuring the monitoring stack are in the openshift-monitoring namespace.

Prerequisites

- PVCs are configured to use OpenShift Container Platform monitoring stack. For information, see configuring monitoring stack.

Procedure

1. List the pods and PVCs that are currently running in the openshift-monitoring namespace.

 $ oc get pod,pvc -n openshift-monitoring

 NAME READY STATUS RESTARTS AGE
 pod/alertmanager-main-0 3/3 Running 0 8d
 pod/alertmanager-main-1 3/3 Running 0 8d
 pod/alertmanager-main-2 3/3 Running 0 8d
 pod/cluster-monitoring-
 operator-84457656d-pkrxm 1/1 Running 0 8d
 pod/grafana-79ccf6689f-2ll28 2/2 Running 0 8d
pod/kube-state-metrics-7d86fb966-rvd9w 3/3 Running 0 8d
pod/node-exporter-25894 2/2 Running 0 8d
pod/node-exporter-4dsd7 2/2 Running 0 8d
pod/node-exporter-6p4zc 2/2 Running 0 8d
pod/node-exporter-jbjvg 2/2 Running 0 8d
pod/node-exporter-jj4t5 2/2 Running 0 6d18h
pod/node-exporter-k856s 2/2 Running 0 6d18h
pod/node-exporter-rf8gn 2/2 Running 0 8d
pod/node-exporter-rmb5m 2/2 Running 0 6d18h
pod/node-exporter-zj7kx 2/2 Running 0 8d
pod/openshift-state-metrics-59dbd4133c1-d492-e5e7-9f72-9e541a0d9b2a 3/3 Running 0 8d
pod/prometheus-adapter-5df5865596-k8dazn 1/1 Running 0 7d23h
pod/prometheus-adapter-5df5865596-n2gj9 1/1 Running 0 7d23h
pod/prometheus-k8s-0 6/6 Running 1 8d
pod/prometheus-k8s-1 6/6 Running 1 8d
pod/prometheus-operator-55c8b8589-c4zd9 1/1 Running 0 6d21h
pod/telemeter-client-78fc88c9d-c4zd9 3/3 Running 0 8d

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
<th>VOLUME</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-0</td>
<td>Bound</td>
<td>pvc-0d519c4f-15a5-11ea-baa0-026d231574aa</td>
<td>40Gi RWO ocs-external-storagecluster-ceph-rbd 8d</td>
</tr>
<tr>
<td>persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-1</td>
<td>Bound</td>
<td>pvc-0d5a9b825-15a5-11ea-baa0-026d231574aa</td>
<td>40Gi RWO ocs-external-storagecluster-ceph-rbd 8d</td>
</tr>
<tr>
<td>persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-0</td>
<td>Bound</td>
<td>pvc-0b7c19b0-15a5-11ea-baa0-026d231574aa</td>
<td>40Gi RWO ocs-external-storagecluster-ceph-rbd 8d</td>
</tr>
<tr>
<td>persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-1</td>
<td>Bound</td>
<td>pvc-0b8aed3f-15a5-11ea-baa0-026d231574aa</td>
<td>40Gi RWO ocs-external-storagecluster-ceph-rbd 8d</td>
</tr>
</tbody>
</table>

2. Edit the monitoring configmap.

```
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
```

Remove any config sections that reference the OpenShift Data Foundation storage classes as shown in the following example and save it.

Before editing
apiVersion: v1
data:
 config.yaml: |
 alertmanagerMain:
 volumeClaimTemplate:
 metadata:
 name: my-alertmanager-claim
 spec:
 resources:
 requests:
 storage: 40Gi
 storageClassName: ocs-external-storagecluster-ceph-rbd
 prometheusK8s:
 volumeClaimTemplate:
 metadata:
 name: my-prometheus-claim
 spec:
 resources:
 requests:
 storage: 40Gi
 storageClassName: ocs-external-storagecluster-ceph-rbd

kind: ConfigMap
metadata:
 creationTimestamp: "2019-12-02T07:47:29Z"
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 resourceVersion: "22110"
 selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config
 uid: fd6d988b-14d7-11ea-84ff-066035b9efa8

After editing
In this example, `alertmanagerMain` and `prometheusK8s` monitoring components are using the OpenShift Data Foundation PVCs.

3. List the pods consuming the PVC.

In this example, the `alertmanagerMain` and `prometheusK8s` pods that were consuming the PVCs are in the **Terminating** state. You can delete the PVCs once these pods are no longer using OpenShift Data Foundation PVC.

```bash
$ oc get pod,pvc -n openshift-monitoring

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
<th>VOLUME CAPACITY</th>
<th>ACCESS MODES</th>
<th>STORAGECLASS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pod/alertmanager-main-0</td>
<td>3/3</td>
<td>Terminating</td>
<td>0</td>
<td>10h</td>
<td></td>
</tr>
<tr>
<td>pod/alertmanager-main-1</td>
<td>3/3</td>
<td>Terminating</td>
<td>0</td>
<td>10h</td>
<td></td>
</tr>
<tr>
<td>pod/alertmanager-main-2</td>
<td>3/3</td>
<td>Terminating</td>
<td>0</td>
<td>10h</td>
<td></td>
</tr>
<tr>
<td>pod/cluster-monitoring-operator-84cd9df668-zhjfn</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>18h</td>
<td></td>
</tr>
<tr>
<td>pod/grafana-5db6fd9718-pmtbfl</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>10h</td>
<td></td>
</tr>
<tr>
<td>pod/kube-state-metrics-895899678-z2r9q</td>
<td>3/3</td>
<td>Running</td>
<td>0</td>
<td>10h</td>
<td></td>
</tr>
<tr>
<td>pod/node-exporter-4njxv</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>18h</td>
<td></td>
</tr>
<tr>
<td>pod/node-exporter-b8ckz</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>11h</td>
<td></td>
</tr>
<tr>
<td>pod/node-exporter-c2vp5</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>18h</td>
<td></td>
</tr>
<tr>
<td>pod/node-exporter-cq65n</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>18h</td>
<td></td>
</tr>
<tr>
<td>pod/node-exporter-f5sm7</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>11h</td>
<td></td>
</tr>
<tr>
<td>pod/node-exporter-f852c</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>18h</td>
<td></td>
</tr>
<tr>
<td>pod/node-exporter-l9zn7</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>11h</td>
<td></td>
</tr>
<tr>
<td>pod/node-exporter-ngbs8</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>18h</td>
<td></td>
</tr>
<tr>
<td>pod/node-exporter-rv4v9</td>
<td>2/2</td>
<td>Running</td>
<td>0</td>
<td>18h</td>
<td></td>
</tr>
<tr>
<td>pod/openshift-state-metrics-77d5f699d8-69q5x</td>
<td>3/3</td>
<td>Running</td>
<td>0</td>
<td>10h</td>
<td></td>
</tr>
<tr>
<td>pod/prometheus-adapter-765465b56-4tbxx</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>10h</td>
<td></td>
</tr>
<tr>
<td>pod/prometheus-adapter-765465b56-s2qg2</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>10h</td>
<td></td>
</tr>
<tr>
<td>pod/prometheus-k8s-0</td>
<td>6/6</td>
<td>Terminating</td>
<td>1</td>
<td>9m47s</td>
<td></td>
</tr>
<tr>
<td>pod/prometheus-k8s-1</td>
<td>6/6</td>
<td>Terminating</td>
<td>1</td>
<td>9m47s</td>
<td></td>
</tr>
<tr>
<td>pod/prometheus-operator-cbfd89f9-ldnwc</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>43m</td>
<td></td>
</tr>
<tr>
<td>pod/telemeter-client-7b5ddb4489-2xfpz</td>
<td>3/3</td>
<td>Running</td>
<td>0</td>
<td>10h</td>
<td></td>
</tr>
</tbody>
</table>

NAME | STATUS  | VOLUME CAPACITY | ACCESS MODES | STORAGECLASS | AGE |
-----|---------|----------------|---------------|--------------|-----|
|      |         |                |               |              |     |
|      |         |                |               |              |     |

CHAPTER 5. UNINSTALLING OPENSHELL DATA FOUNDATION FROM EXTERNAL STORAGE SYSTEM
4. Delete relevant PVCs. Make sure you delete all the PVCs that are consuming the storage classes.

   $ oc delete -n openshift-monitoring pvc <pvc-name> --wait=true --timeout=5m

5.2. REMOVING OPENSHIFT CONTAINER PLATFORM REGISTRY FROM OPENSHIFT DATA FOUNDATION

Use this section to clean up OpenShift Container Platform registry from OpenShift Data Foundation. If you want to configure an alternative storage, see image registry.

The PVCs that are created as a part of configuring OpenShift Container Platform registry are in the openshift-image-registry namespace.

Prerequisites

- The image registry should have been configured to use an OpenShift Data Foundation PVC.

Procedure

1. Edit the configs.imageregistry.operator.openshift.io object and remove the content in the storage section.

   $ oc edit configs.imageregistry.operator.openshift.io

Before editing
In this example, the PVC is called `registry-cephfs-rwx-pvc`, which is now safe to delete.

2. Delete the PVC.

   ```
 $ oc delete pvc <pvc-name> -n openshift-image-registry --wait=true --timeout=5m
   ```

### 5.3. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSOURCE DATA FOUNDATION

Use this section to clean up the cluster logging operator from OpenShift Data Foundation.

The Persistent Volume Claims (PVCs) that are created as a part of configuring the cluster logging operator are in the `openshift-logging` namespace.

**Prerequisites**

- The cluster logging instance should have been configured to use the OpenShift Data Foundation PVCs.

**Procedure**

1. Remove the `ClusterLogging` instance in the namespace.

   ```
 $ oc delete clusterlogging instance -n openshift-logging --wait=true --timeout=5m
   ```

   The PVCs in the `openshift-logging` namespace are now safe to delete.

2. Delete the PVCs.
5.4. REMOVING EXTERNAL IBM FLASHSYSTEM SECRET

You need to clean up the FlashSystem secret from OpenShift Data Foundation while uninstalling. This secret is created when you configure the external IBM FlashSystem Storage. See Creating an OpenShift Data Foundation Cluster for external IBM FlashSystem storage.

Procedure

- Remove the IBM FlashSystem secret by using the following command:

```bash
$ oc delete secret -n openshift-storage ibm-flashsystem-storage
```