Replacing devices

Instructions for safely replacing operational or failed devices
Instructions for safely replacing operational or failed devices
Abstract

This document explains how to safely replace storage devices for Red Hat OpenShift Container Storage.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE 3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 4

PREFACE ... 5

CHAPTER 1. DYNAMICALLY PROVISIONED OPENSIGN CONTAINER STORAGE DEPLOYED ON AMAZON WEB SERVICES ... 6

1.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AWS USER-PROVISIONED INFRASTRUCTURE .. 6

1.2. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AWS INSTALLER-PROVISIONED INFRASTRUCTURE ... 6

CHAPTER 2. DYNAMICALLY PROVISIONED OPENSIGN CONTAINER STORAGE DEPLOYED ON VMWARE ... 7

2.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON VMWARE INFRASTRUCTURE 7

CHAPTER 3. DYNAMICALLY PROVISIONED OPENSIGN CONTAINER STORAGE DEPLOYED ON RED HAT VIRTUALIZATION 12

3.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON RED HAT VIRTUALIZATION INSTALLER-PROVISIONED INFRASTRUCTURE 12

CHAPTER 4. DYNAMICALLY PROVISIONED OPENSIGN CONTAINER STORAGE DEPLOYED ON MICROSOFT AZURE ... 17

4.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AZURE INSTALLER-PROVISIONED INFRASTRUCTURE .. 17

CHAPTER 5. OPENSIGN CONTAINER STORAGE DEPLOYED USING LOCAL STORAGE DEVICES 18

5.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON CLUSTERS BACKED BY LOCAL STORAGE DEVICES ... 18

5.2. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON IBM POWER SYSTEMS .. 24

5.3. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON IBM Z OR LINUXONE INFRASTRUCTURE .. 33
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:

- For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition, ensure you see the Feedback button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the Add Feedback pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the Bugzilla website.
 2. As the Component, use Documentation.
 3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click Submit Bug.
Depending on the type of your deployment, you can choose one of the following procedures to replace a storage device:

- For dynamically created storage clusters deployed on AWS, see:
 - Section 1.1, “Replacing operational or failed storage devices on AWS user-provisioned infrastructure”
 - Section 1.2, “Replacing operational or failed storage devices on AWS installer-provisioned infrastructure”

- For dynamically created storage clusters deployed on VMware, see Section 2.1, “Replacing operational or failed storage devices on VMware infrastructure”

- For dynamically created storage clusters deployed on Red Hat Virtualization, see Section 3.1, “Replacing operational or failed storage devices on Red Hat Virtualization installer-provisioned infrastructure”

- For dynamically created storage clusters deployed on Microsoft Azure, see Section 4.1, “Replacing operational or failed storage devices on Azure installer-provisioned infrastructure”

- For storage clusters deployed using local storage devices, see:
 - Section 5.1, “Replacing operational or failed storage devices on clusters backed by local storage devices”
 - Section 5.2, “Replacing operational or failed storage devices on IBM Power Systems”
 - Section 5.3, “Replacing operational or failed storage devices on IBM Z or LinuxONE infrastructure”

NOTE

OpenShift Container Storage does not support heterogeneous OSD sizes.
CHAPTER 1. DYNAMICALLY PROVISIONED OPENShift
CONTAINER STORAGE DEPLOYED ON AMAZON WEB SERVICES

To replace an operational or failed storage device on AWS user or installer provisioned infrastructures, follow the links in the respective sections.

1.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AWS USER-PROVISIONED INFRASTRUCTURE

If you want to replace a device in a dynamically created storage cluster on an AWS user-provisioned infrastructure, you must replace the storage node. For more information about how to replace nodes, see:

- Replacing an operational AWS node on user-provisioned infrastructure
- Replacing a failed AWS node on user-provisioned infrastructure

1.2. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AWS INSTALLER-PROVISIONED INFRASTRUCTURE

If you want to replace a device in a dynamically created storage cluster on an AWS installer-provisioned infrastructure, you must replace the storage node. For more information about how to replace nodes, see:

- Replacing an operational AWS node on installer-provisioned infrastructure
- Replacing a failed AWS node on installer-provisioned infrastructure
CHAPTER 2. DYNAMICALLY PROVISIONED OPENSIFT CONTAINER STORAGE DEPLOYED ON VMWARE

To replace an operational or failed storage device on the VMWare infrastructure, perform the steps in the following section.

2.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON VMWARE INFRASTRUCTURE

If you want to replace one or more virtual machine disks (VMDK) in OpenShift Container Storage deployed dynamically on VMware infrastructure, perform the steps in the procedure. This procedure helps to create a new Persistent Volume Claim (PVC) on a new volume and removes the old object storage device (OSD).

Prerequisites

- Ensure that the data is resilient.
 - On the OpenShift Web console, navigate to Storage → Overview.
 - Under Block and File in the Status card, confirm that the Data Resiliency has a green tick mark.

Procedure

1. Identify the OSD to be replaced and the OpenShift Container Platform node that has the OSD scheduled on it.

   ```
   $ oc get -n openshift-storage pods -l app=rook-ceph-osd -o wide
   Example output:
   rook-ceph-osd-0-6d77d6c7c6-m8xj6 0/1 CrashLoopBackOff 0 24h 10.129.0.16
   compute-2 <none> <none>
   rook-ceph-osd-1-85d99fb95f-2svc7 1/1 Running 0 24h 10.128.2.24 compute-0 <none> <none>
   rook-ceph-osd-2-6c66cde977-jp542 1/1 Running 0 24h 10.130.0.18 compute-1 <none> <none>
   
   In this example, `rook-ceph-osd-0-6d77d6c7c6-m8xj6` needs to be replaced and `compute-2` is the OpenShift Container platform node on which the OSD is scheduled.
   
   **NOTE**
   
   If the OSD to be replaced is healthy, the status of the pod is Running.
   ```

2. Scale down the OSD deployment for the OSD to be replaced.

 Each time you want to replace the OSD, repeat this step by updating the osd_id_to_remove parameter with the OSD ID.
   ```
   $ osd_id_to_remove=0
   $ oc scale -n openshift-storage deployment rook-ceph-osd-${osd_id_to_remove} --replicas=0
   ```
where, osd_id_to_remove is the integer in the pod name immediately after the \texttt{rook-ceph-osd} prefix. In this example, the deployment name is \texttt{rook-ceph-osd-0}.

Example output:

```
deployment.extensions/rook-ceph-osd-0 scaled
```

3. Verify that the \texttt{rook-ceph-osd} pod is terminated.

```
$ oc get -n openshift-storage pods -l ceph-osd-id=${osd_id_to_remove}
```

Example output:

```
No resources found.
```

\textbf{NOTE}

If the \texttt{rook-ceph-osd} pod is in the \textit{terminating} state, use the \texttt{force} option to delete the pod.

```
$ oc delete pod rook-ceph-osd-0-6d77d6c7c6-m8xj6 --force --grace-period=0
```

Example output:

```
warning: Immediate deletion does not wait for confirmation that the running resource has been terminated. The resource may continue to run on the cluster indefinitely.

pod "rook-ceph-osd-0-6d77d6c7c6-m8xj6" force deleted
```

4. Remove the old OSD from the cluster to add a new OSD.

a. Delete any old \texttt{ocs-osd-removal} jobs.

```
$ oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

b. Change to the \texttt{openshift-storage} project.

```
$ oc project openshift-storage
```

c. Remove the old OSD from the cluster.

```
$ oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=${osd_id_to_remove} |oc create -n openshift-storage -f -
```

You can remove more than one OSD by adding comma separated OSD IDs in the command. (For example: \texttt{FAILED_OSD_IDS=0,1,2})
5. Verify the OSD is removed successfully by checking the status of the `ocs-osd-removal` pod. A status of Completed confirms that the OSD removal job succeeded.

 $ oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage

NOTE

If `ocs-osd-removal` fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

 $ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1'

6. If encryption was enabled at the time of install, remove dm-crypt managed device-mapper mapping from the OSD devices that are removed from the respective OpenShift Container Storage nodes.

 a. Get PVC names of the replaced OSDs from the logs of `ocs-osd-removal-job` pod:

 $ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1 | egrep -i 'pvc|deviceset'

 For example:

 2021-05-12 14:31:34.666000 I | cephosd: removing the OSD PVC "ocs-deviceset-xxxx-xxx-xxx-xxx"

 b. For each of the nodes identified in the previous step, perform the following:

 i. Create a debug pod and chroot to the host on the storage node.

 $ oc debug node/<node name>
 $ chroot /host

 ii. Find relevant device name based on the PVC names identified in the previous step.

 sh-4.4# dmsetup ls| grep <pvc name>
 ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt (253:0)

 iii. Remove the mapped device.

 $ cryptsetup luksClose --debug --verbose ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt
NOTE
If the above command gets stuck due to insufficient privileges, run the following commands:

- Press **CTRL+Z** to exit the above command.
- Find the PID of the process that is stuck.

  ```bash
  $ ps -ef | grep crypt
  ```
- Terminate the process using the **kill** command.

  ```bash
  $ kill -9 <PID>
  ```
- Verify that the device name is removed.

  ```bash
  $ dmsetup ls
  ```

7. Delete the **ocs-osd-removal** job.

```bash
$ oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

NOTE
When using an external key management system (KMS) with data encryption, the old OSD encryption key can be removed from the Vault server as it is now an orphan key.

Verification steps

1. Verify there is a new OSD running.

```bash
$ oc get -n openshift-storage pods -l app=rook-ceph-osd
```

Example output:

```
rook-ceph-osd-0-5f7f4747d4-snshw                                  1/1     Running     0          4m47s
rook-ceph-osd-1-85d99fb95f-2svc7                                  1/1     Running     0          1d20h
rook-ceph-osd-2-6c66cdb977-jp542                                  1/1     Running     0          1d20h
```

2. Verify there is a new PVC created which is in *Bound* state.

```bash
$ oc get -n openshift-storage pvc
```

Example output:

```
NAME                      STATUS   VOLUME                                     CAPACITY   ACCESS
MODES   STORAGECLASS    AGE
```
3. Optional: If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

 a. Identify the nodes where the new OSD pods are running.

      ```bash
      $ oc get -o=custom-columns=NODE:.spec.nodeName pod/<OSD pod name>
      
      For example:
      
      oc get -o=custom-columns=NODE:.spec.nodeName pod/rook-ceph-osd-0-544db49d7f-qrgqm
      
      b. For each of the nodes identified in previous step, perform the following:

         i. Create a **debug** pod and open a **chroot** environment for the selected hosts.

            ```bash
 $ oc debug node/<node name>
 $ chroot /host

 ii. Run **lsblk** and check for the **crypt** keyword next to the **ocs-deviceset** names.

            ```bash
            $ lsblk
            
4. Log in to the OpenShift Web Console and view the storage dashboard.

   **Figure 2.1. OSD status in OpenShift Container Platform storage dashboard after device replacement**

   **Status**

   - OCS Cluster
   - Data Resiliency

   - No persistent storage alerts
CHAPTER 3. DYNAMICALLY PROVISIONED OPENSHIFT CONTAINER STORAGE DEPLOYED ON RED HAT VIRTUALIZATION

To replace an operational or failed storage device on the Red Hat Virtualization installer provisioned infrastructure, perform the steps in the following section.

3.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON RED HAT VIRTUALIZATION INSTALLER-PROVISIONED INFRASTRUCTURE

If you want to replace one or more virtual machine disks (VMDK) in OpenShift Container Storage deployed Red Hat Virtualization infrastructure, perform the steps in the procedure. This procedure helps to create a new Persistent Volume Claim (PVC) on a new volume and removes the old object storage device (OSD).

Prerequisites

- Ensure that the data is resilient.
  - On the OpenShift Web console, navigate to Storage → Overview.
  - Under Block and File in the Status card, confirm that the Data Resiliency has a green tick mark.

Procedure

1. Identify the OSD to be replaced and the OpenShift Container Platform node that has the OSD scheduled on it.

   $ oc get -n openshift-storage pods -l app=rook-ceph-osd -o wide

   Example output:

<table>
<thead>
<tr>
<th>Name</th>
<th>Phase</th>
<th>Age</th>
<th>IP Address</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>rook-ceph-osd-0-6d77d6c7c6-m8xj6</td>
<td>0/1 CrashLoopBackOff</td>
<td>0 24h</td>
<td>10.129.0.16</td>
<td>compute-2</td>
</tr>
<tr>
<td>compute-2</td>
<td>&lt;none&gt;</td>
<td>&lt;none&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rook-ceph-osd-1-85d99fb95f-2svc7</td>
<td>1/1 Running</td>
<td>0 24h</td>
<td>10.128.2.24</td>
<td>compute-0</td>
</tr>
<tr>
<td></td>
<td>&lt;none&gt;</td>
<td>&lt;none&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rook-ceph-osd-2-6c66cdb977-jp542</td>
<td>1/1 Running</td>
<td>0 24h</td>
<td>10.130.0.18</td>
<td>compute-1</td>
</tr>
<tr>
<td></td>
<td>&lt;none&gt;</td>
<td>&lt;none&gt;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

   In this example, **rook-ceph-osd-0-6d77d6c7c6-m8xj6** needs to be replaced and **compute-2** is the OpenShift Container platform node on which the OSD is scheduled.

   **NOTE**

   If the OSD to be replaced is healthy, the status of the pod is **Running**.

2. Scale down the OSD deployment for the OSD to be replaced.

   Every time you want to replace the OSD, repeat this step by updating the `osd_id_to_remove` parameter with the OSD ID.
$ osd_id_to_remove=0
$ oc scale -n openshift-storage deployment rook-ceph-osd-$(osd_id_to_remove) --replicas=0

where, osd_id_to_remove is the integer in the pod name immediately after the rook-ceph-osd prefix. In this example, the deployment name is rook-ceph-osd-0.

Example output:

```
deployment.extensions/rook-ceph-osd-0 scaled
```

3. Verify the rook-ceph-osd pod is terminated.

```
$ oc get -n openshift-storage pods -l ceph-osd-id=$(osd_id_to_remove)
```

Example output:

```
No resources found.
```

**NOTE**

If the rook-ceph-osd pod is in the terminating state, use the force option to delete the pod.

```
$ oc delete pod rook-ceph-osd-0-6d77d6c7c6-m8xj6 --force --grace-period=0
```

Example output:

```
warning: Immediate deletion does not wait for confirmation that the running resource has been terminated. The resource may continue to run on the cluster indefinitely.
pod "rook-ceph-osd-0-6d77d6c7c6-m8xj6" force deleted
```

4. Remove the old OSD from the cluster to add a new OSD.

a. Delete any old ocs-osd-removal jobs.

```
$ oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job"
```

b. Change to the openshift-storage project.

```
$ oc project openshift-storage
```

c. Remove the old OSD from the cluster.

```
$ oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=$(osd_id_to_remove) | oc create -n openshift-storage -f -
```

[107x222]CHAPTER 3. DYNAMICALLY PROVISIONED OPENSIFT CONTAINER STORAGE DEPLOYED ON RED HAT VIRTUALIZATION

13
You can remove more than one OSD by adding comma separated OSD IDs in the command. (For example: FAILED_OSD_IDS=0,1,2)

**WARNING**

This step results in OSD being completely removed from the cluster. Ensure that the correct value of `osd_id_to_remove` is provided.

5. Verify the OSD is removed successfully by checking the status of the `ocs-osd-removal` pod. A status of **Completed** confirms that the OSD removal job succeeded.

   ```bash
 $ oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
   ```

   **NOTE**

   If `ocs-osd-removal` fails and the pod is not in the expected **Completed** state, check the pod logs for further debugging. For example:

   ```bash
 $ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1'
   ```

6. If encryption was enabled at the time of install, remove `dm-crypt` managed `device-mapper` mapping from the OSD devices that are removed from the respective OpenShift Container Storage nodes.

   a. Get PVC names of the replaced OSDs from the logs of `ocs-osd-removal-job` pod:

   ```bash
 $ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1 | egrep -i 'pvc|deviceset'
   ```

   For example:

   ```
 2021-05-12 14:31:34.666000 I | cephosd: removing the OSD PVC "ocs-deviceset-xxxx-xxx-xxx-xxx"
   ```

   b. For each of the nodes identified in the previous step, perform the following:

   i. Create a `debug` pod and `chroot` to the host on the storage node.

   ```bash
 $ oc debug node/<node name>
 $ chroot /host
   ```

   ii. Find relevant device name based on the PVC names identified in the previous step

   ```bash
 sh-4.4# dmsetup ls| grep <pvc name>
 ocs-deviceset-xxx-xxx-xxx-block-dmcrypt (253:0)
   ```

   iii. Remove the mapped device.
$ cryptsetup luksClose --debug --verbose ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt

NOTE

If the above command gets stuck due to insufficient privileges, run the following commands:

- Press **CTRL+Z** to exit the above command.
- Find the PID of the process that is stuck.
  
  $ ps -ef | grep crypt

- Terminate the process using the **kill** command.
  
  $ kill -9 <PID>

- Verify that the device name is removed.
  
  $ dmsetup ls

7. Delete the **ocs-osd-removal** job.

   $ oc delete -n openshift-storage job ocs-osd-removal-job

   Example output:

   job.batch "ocs-osd-removal-job" deleted

NOTE

When using an external key management system (KMS) with data encryption, the old OSD encryption key can be removed from the Vault server as it is now an orphan key.

Verification steps

1. Verify there is a new OSD running.

   $ oc get -n openshift-storage pods -l app=rook-ceph-osd

   Example output:

   | rook-ceph-osd-0-5f7f4747d4-snshw | 1/1 | Running | 0        | 4m47s |
   | rook-ceph-osd-1-85d99fb95f-2svc7 | 1/1 | Running | 0        | 1d20h |
   | rook-ceph-osd-2-6c66c9b977-jp542  | 1/1 | Running | 0        | 1d20h |

2. Verify there is a new PVC created which is in **Bound** state.

   $ oc get -n openshift-storage pvc
3. Optional: If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
   a. Identify the nodes where the new OSD pods are running.
      
      $ oc get -o=custom-columns=NODE:.spec.nodeName pod/<OSD pod name>

      For example:

      oc get -o=custom-columns=NODE:.spec.nodeName pod/rook-ceph-osd-0-544db49d7f-qrgqm

   b. For each of the nodes identified in previous step, perform the following:
      i. Create a debug pod and open a chroot environment for the selected hosts.
      
      $ oc debug node/<node name>
      $ chroot /host

      ii. Run lsblk and check for the crypt keyword next to the ocs-deviceset names.

      $ lsblk

4. Log in to the OpenShift Web Console and view the storage dashboard.

   Figure 3.1. OSD status in OpenShift Container Platform storage dashboard after device replacement

   Status

   ✔️ OCS Cluster ✔️ Data Resiliency

   ✔️ No persistent storage alerts
CHAPTER 4. DYNAMICALLY PROVISIONED OPENSIFT CONTAINER STORAGE DEPLOYED ON MICROSOFT AZURE

To replace an operational or failed storage device on the Microsoft Azure installer provisioned infrastructure, perform the steps in the following section.

4.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AZURE INSTALLER-PROVISIONED INFRASTRUCTURE

When you need to replace a device in a dynamically created storage cluster on an Azure installer-provisioned infrastructure, you must replace the storage node. For information about how to replace nodes, see:

- Replacing operational nodes on Azure installer-provisioned infrastructure
- Replacing failed nodes on Azure installer-provisioned infrastructures.
CHAPTER 5. OPENShift Container Storage Deployed Using Local Storage Devices

5.1. Replacing Operational or Failed Storage Devices on Clusters Backed by Local Storage Devices

You can replace an object storage device (OSD) in OpenShift Container Storage deployed using local storage devices on the following infrastructures:

- Bare metal
- VMware
- Red Hat Virtualization

Use this procedure when one or more underlying storage devices need to be replaced.

Prerequisites

- Red Hat recommends that replacement devices are configured with similar infrastructure and resources to the device being replaced.

- If you upgraded to OpenShift Container Storage version 4.8 from a previous version, and have not already created the `LocalVolumeDiscovery` and `LocalVolumeSet` objects, perform the steps given in the procedure of Post-update configuration changes for clusters backed by local storage.

- Ensure that the data is resilient.
  - On the OpenShift Web console, navigate to Storage → Overview.
  - Under Block and File in the Status card, confirm that the Data Resiliency has a green tick mark.

Procedure

1. Remove the underlying storage device from relevant worker node.

2. Verify that relevant OSD Pod has moved to CrashLoopBackOff state. Identify the OSD that needs to be replaced and the OpenShift Container Platform node that has the OSD scheduled on it.

   ```bash
 $ oc get -n openshift-storage pods -l app=rook-ceph-osd -o wide
   ```

   Example output:

   ```
 rook-ceph-osd-0-6d77d6c7c6-m8xj6 0/1 CrashLoopBackOff 0 24h 10.129.0.16 compute-2 <none> <none>
 rook-ceph-osd-1-85d9f0b95f-2svc7 1/1 Running 0 24h 10.128.2.24 compute-0 <none> <none>
 rook-ceph-osd-2-6c66c8977-5p542 1/1 Running 0 24h 10.130.0.18 compute-1 <none> <none>
   ```
In this example, `rook-ceph-osd-0-6d77d6c7c6-m8xj6` needs to be replaced and `compute-2` is the OpenShift Container platform node on which the OSD is scheduled.

3. Scale down the OSD deployment for the OSD to be replaced.

   ```sh
 $ osd_id_to_remove=0
 $ oc scale -n openshift-storage deployment rook-ceph-osd-${osd_id_to_remove} --replicas=0
   ```

   where `osd_id_to_remove` is the integer in the pod name immediately after the `rook-ceph-osd` prefix. In this example, the deployment name is `rook-ceph-osd-0`.

   Example output:

   ```shell```
 deployment.extensions/rook-ceph-osd-0 scaled
   ```

4. Verify that the `rook-ceph-osd` pod is terminated.

   ```sh
 $ oc get -n openshift-storage pods -l ceph-osd-id=${osd_id_to_remove}
   ```

   Example output:

   ```shell```
 No resources found in openshift-storage namespace.
   ```

   **NOTE**

   If the `rook-ceph-osd` pod is in **terminating** state for more than a few minutes, use the **force** option to delete the pod.

   ```sh
 $ oc delete -n openshift-storage pod rook-ceph-osd-0-6d77d6c7c6-m8xj6 --grace-period=0 --force
   ```

   Example output:

   ```shell```
 warning: Immediate deletion does not wait for confirmation that the running resource has been terminated. The resource may continue to run on the cluster indefinitely.
 pod "rook-ceph-osd-0-6d77d6c7c6-m8xj6" force deleted
   ```

5. Remove the old OSD from the cluster so that a new OSD can be added.

   a. Delete any old `ocs-osd-removal` jobs.

      ```sh
 $ oc delete -n openshift-storage job ocs-osd-removal-job
      ```

      Example output:

      ```shell```
 job.batch "ocs-osd-removal-job" deleted
      ```

   b. Change to the `openshift-storage` project.

      ```sh
 $ oc project openshift-storage
      ```
c. Remove the old OSD from the cluster.

```bash
$ oc process -n openshift-storage ocs-osd-removal -p
FAILED_OSD_IDS=${osd_id_to_remove} | oc create -n openshift-storage -f -
```

You can remove more than one OSD by adding comma separated OSD IDs in the command. (For example: FAILED_OSD_IDS=0,1,2)

**WARNING**

This step results in OSD being completely removed from the cluster. Ensure that the correct value of `osd_id_to_remove` is provided.

6. Verify that the OSD is removed successfully by checking the status of the `ocs-osd-removal` pod. A status of **Completed** confirms that the OSD removal job succeeded.

```bash
$ oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
```

**NOTE**

If `ocs-osd-removal` fails and the pod is not in the expected **Completed** state, check the pod logs for further debugging. For example:

```bash
$ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1
```

7. If encryption was enabled at the time of install, remove `dm-crypt` managed `device-mapper` mapping from the OSD devices that are removed from the respective OpenShift Container Storage nodes.

a. Get PVC name(s) of the replaced OSD(s) from the logs of `ocs-osd-removal-job` pod:

```bash
$ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1 | egrep -i 'pvc|deviceset'
```

For example:

```
2021-05-12 14:31:34.666000 I | cephosd: removing the OSD PVC "ocs-deviceset-xxxx-xxx-xxx-xxx"
```

b. For each of the nodes identified in step #1, do the following:

i. Create a **debug** pod and **chroot** to the host on the storage node.

```bash
$ oc debug node/<node name>
$ chroot /host
```

ii. Find relevant device name based on the PVC names identified in the previous step
sh-4.4# dmsetup ls| grep <pvc name>
ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt (253:0)

iii. Remove the mapped device.

$ cryptsetup luksClose --debug --verbose ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt

NOTE
If the above command gets stuck due to insufficient privileges, run the following commands:

- Press **CTRL+Z** to exit the above command.
- Find PID of the process which was stuck.
  
  $ ps -ef | grep crypt

- Terminate the process using **kill** command.
  
  $ kill -9 <PID>

- Verify that the device name is removed.
  
  $ dmsetup ls

8. Find the persistent volume (PV) that need to be deleted by the command:

$ oc get pv -L kubernetes.io/hostname | grep localblock | grep Released

local-pv-d6bf175b   1490Gi   RWO   Delete   Released   openshift-storage/ocs-deviceset-0-data-0-6c5pw localblock 2d22h compute-1

9. Delete the persistent volume.

$ oc delete pv local-pv-d6bf175b

10. Physically add a new device to the node.

11. Use the following command to track provisioning of persistent volumes for devices that match the **deviceInclusionSpec**. It can take a few minutes to provision persistent volumes.

$ oc -n openshift-local-storage describe localvolumeset localblock

Example output:

[...]
Status:
Conditions:
  Last Transition Time: 2020-11-17T05:32Z
  Message: DiskMaker: Available, LocalProvisioner: Available
Status: True
Type: DaemonSetsAvailable
Last Transition Time: 2020-11-17T05:03:34Z
Message: Operator reconciled successfully.
Status: True
Type: Available
Observed Generation: 1
Total Provisioned Device Count: 4
Events:
Type  Reason       Age          From                        Message
----  ------       ----         ----                        -------
Normal Discovered 2m30s (x4 localvolumeset- node.example.com -
   NewDevice over 2m30s) symlink-controller found possible
   matching disk, waiting 1m to claim
Normal FoundMatch 89s (x4 localvolumeset- node.example.com -
   ingDisk over 89s) symlink-controller symlinking matching
   disk

Once the persistent volume is provisioned, a new OSD pod is automatically created for the
provisioned volume.

12. Delete the **ocs-osd-removal** job(s).

```bash
$ oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

**NOTE**

When using an external key management system (KMS) with data encryption, the old
OSD encryption key can be removed from the Vault server as it is now an orphan key.

**Verification steps**

1. Verify that there is a new OSD running.

```bash
$ oc get -n openshift-storage pods -l app=rook-ceph-osd
```

Example output:

```
rook-ceph-osd-0-5f7f4747d4-snshw 1/1 Running 0 4m47s
rook-ceph-osd-1-85d99fb95f-2svc7 1/1 Running 0 1d20h
rook-ceph-osd-2-6c66c8b977-yp542 1/1 Running 0 1d20h
```
NOTE

If the new OSD does not show as **Running** after a few minutes, restart the **rook-ceph-operator** pod to force a reconciliation.

```bash
$ oc delete pod -n openshift-storage -l app=rook-ceph-operator
```

Example output:

```bash
pod "rook-ceph-operator-6f74fb5bff-2d982" deleted
```

2. Verify that a new PVC is created.

```bash
$ oc get -n openshift-storage pvc | grep localblock
```

Example output:

```
ocs-deviceset-0-0-c2mqb Bound local-pv-b481410 1490Gi RWO localblock 5m
ocs-deviceset-1-0-959rp Bound local-pv-414755e0 1490Gi RWO localblock 1d20h
ocs-deviceset-2-0-79j94 Bound local-pv-3e8964d3 1490Gi RWO localblock 1d20h
```

3. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

a. Identify the node(s) where the new OSD pod(s) are running.

```bash
$ oc get -o=custom-columns=NODE:.spec.nodeName pod/<OSD pod name>
```

For example:

```
oc get -o=custom-columns=NODE:.spec.nodeName pod/rook-ceph-osd-0-544db49d7f-qrgqm
```

b. For each of the nodes identified in previous step, do the following:

i. Create a debug pod and open a chroot environment for the selected host(s).

```bash
$ oc debug node/<node name>
$ chroot /host
```

ii. Run “lsblk” and check for the “crypt” keyword beside the **ocs-deviceset** name(s)

```bash
$ lsblk
```

4. Log in to OpenShift Web Console and check the OSD status on the storage dashboard.
5.2. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON IBM POWER SYSTEMS

You can replace an object storage device (OSD) in OpenShift Container Storage deployed using local storage devices on IBM Power Systems. Use this procedure when an underlying storage device needs to be replaced.

Prerequisites

- Red Hat recommends that replacement devices are configured with similar infrastructure and resources to the device being replaced.

- If you upgraded to OpenShift Container Storage 4.8 from a previous version and have not already created the `LocalVolumeDiscovery` object, perform the steps given in the procedure of `Post-update configuration changes for clusters backed by local storage`.

- Ensure that the data is resilient.
  - On the OpenShift Web console, navigate to `Storage → Overview`.
  - Under `Block and File` in the `Status` card, confirm that the `Data Resiliency` has a green tick mark.

Procedure

1. Identify the OSD that needs to be replaced and the OpenShift Container Platform node that has the OSD scheduled on it.

   ```
 $ oc get -n openshift-storage pods -l app=rook-ceph-osd -o wide
   ```

   Example output:

   ```
 rook-ceph-osd-0-86bf8cde8-4nb5t 0/1 crashLoopBackOff 0 24h 10.129.2.26 worker-0 <none> <none>
 rook-ceph-osd-1-7c99657c0-507d 1/1 Running 0 24h 10.128.2.46 worker-1
   ```
In this example, `rook-ceph-osd-0-86bf8cdc8-4nb5t` needs to be replaced and `worker-0` is the RHOCOP node on which the OSD is scheduled.

**NOTE**

If the OSD to be replaced is healthy, the status of the pod will be **Running**.

2. Scale down the OSD deployment for the OSD to be replaced.

```bash
$ osd_id_to_remove=0
$ oc scale -n openshift-storage deployment rook-ceph-osd-$osd_id_to_remove --replicas=0
```

where `osd_id_to_remove` is the integer in the pod name immediately after the `rook-ceph-osd` prefix. In this example, the deployment name is `rook-ceph-osd-0`.

Example output:
```
deployment.apps/rook-ceph-osd-0 scaled
```

3. Verify that the `rook-ceph-osd` pod is terminated.

```bash
$ oc get -n openshift-storage pods -l ceph-osd-id=$osd_id_to_remove
```

Example output:
```
No resources found in openshift-storage namespace.
```

**NOTE**

If the `rook-ceph-osd` pod is in **terminating** state, use the `force` option to delete the pod.

```bash
$ oc delete -n openshift-storage pod rook-ceph-osd-0-86bf8cdc8-4nb5t --grace-period=0 --force
```

Example output:
```
warning: Immediate deletion does not wait for confirmation that the running resource has been terminated. The resource may continue to run on the cluster indefinitely.
pod "rook-ceph-osd-0-86bf8cdc8-4nb5t" force deleted
```

4. Remove the old OSD from the cluster so that a new OSD can be added.

a. Identify the **DeviceSet** associated with the OSD to be replaced.

```bash
$ oc get -n openshift-storage -o yaml deployment rook-ceph-osd-$osd_id_to_remove | grep ceph.rook.io/pvc
```
Example output:

```
ceph.rook.io/pvc: ocs-deviceset-localblock-0-data-0-64xjl
ceph.rook.io/pvc: ocs-deviceset-localblock-0-data-0-64xjl
```

In this example, the PVC name is `ocs-deviceset-localblock-0-data-0-64xjl`.

b. Identify the PV associated with the PVC.

```
$ oc get -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>
```

where, `x`, `y`, and `pvc-suffix` are the values in the DeviceSet identified in an step 4(a).

Example output:

```
<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
<th>VOLUME</th>
<th>CAPACITY</th>
<th>ACCESS MODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ocs-deviceset-localblock-0-data-0-64xjl</td>
<td>Bound</td>
<td>local-pv-8137c873</td>
<td>256Gi</td>
<td>RWO</td>
</tr>
<tr>
<td></td>
<td>localblock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

In this example, the associated PV is `local-pv-8137c873`.

c. Identify the name of the device to be replaced.

```
$ oc get pv local-pv-<pv-suffix> -o yaml | grep path
```

where, `pv-suffix` is the value in the PV name identified in an earlier step.

Example output:

```
path: /mnt/local-storage/localblock/vdc
```

In this example, the device name is `vdc`.

d. Identify the prepare-pod associated with the OSD to be replaced.

```
$ oc describe -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix> | grep Used
```

where, `x`, `y`, and `pvc-suffix` are the values in the DeviceSet identified in an earlier step.

Example output:

```
Used By: rook-ceph-osd-prepare-ocs-deviceset-localblock-0-data-0-64knzkc
```

In this example the prepare-pod name is `rook-ceph-osd-prepare-ocs-deviceset-localblock-0-data-0-64knzkc`.

e. Delete any old ocs-osd-removal jobs.

```
$ oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:
job.batch "ocs-osd-removal-job" deleted

f. Change to the openshift-storage project.

$ oc project openshift-storage

g. Remove the old OSD from the cluster

$ oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=${osd_id_to_remove} | oc -n openshift-storage create -f -

You can remove more than one OSD by adding comma separated OSD IDs in the command. (For example: FAILED_OSD_IDS=0,1,2)

**WARNING**

This step results in OSD being completely removed from the cluster. Make sure that the correct value of `osd_id_to_remove` is provided.

5. Verify that the OSD is removed successfully by checking the status of the `ocs-osd-removal` pod. A status of Completed confirms that the OSD removal job completed successfully.

$ oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage

**NOTE**

If `ocs-osd-removal` fails and the pod is not in the expected Complete state, check the pod logs for further debugging. For example:

$ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1

6. If encryption was enabled at the time of install, remove dm-crypt managed device-mapper mapping from the OSD devices that are removed from the respective OpenShift Container Storage nodes.

a. Get PVC name(s) of the replaced OSD(s) from the logs of `ocs-osd-removal-job` pod:

$ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1 | egrep -i 'pvc|deviceset'

For example:

2021-05-12 14:31:34.666000 I | cephosd: removing the OSD PVC "ocs-deviceset-xxxx-xxx-xxx-xxx"

b. For each of the nodes identified in step #1, do the following:
i. Create a **debug** pod and **chroot** to the host on the storage node.

   ```sh
 $ oc debug node/<node name>
 $ chroot /host
   ```

ii. Find relevant device name based on the PVC names identified in the previous step

   ```sh
 sh-4.4# dmsetup ls| grep <pvc name>
 ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt (253:0)
   ```

iii. Remove the mapped device.

   ```sh
 $ cryptsetup luksClose --debug --verbose ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt
   ```

   **NOTE**

   If the above command gets stuck due to insufficient privileges, run the following commands:

   - Press **CTRL+Z** to exit the above command.
   - Find PID of the process which was stuck.
     ```sh
 $ ps -ef | grep crypt
     ```
   - Terminate the process using **kill** command.
     ```sh
 $ kill -9 <PID>
     ```
   - Verify that the device name is removed.
     ```sh
 $ dmsetup ls
     ```

7. Replace the old device and use the new device to create a new OpenShift Container Platform PV.

   a. Log in to OpenShift Container Platform node with the device to be replaced. In this example, the OpenShift Container Platform node is **worker-0**.

      ```sh
 $ oc debug node/worker-0
      ```

      Example output:

      ```
 Starting pod/worker-0-debug ...
 To use host binaries, run `chroot /host`
 Pod IP: 192.168.88.21
 If you don't see a command prompt, try pressing enter.
 # chroot /host
      ```

   b. Record the **/dev/disk** that is to be replaced using the device name, **vdc**, identified earlier.
c. Find the name of the LocalVolume CR, and remove or comment out the device /dev/disk that is to be replaced.

```bash
$ oc get -n openshift-local-storage localvolume
NAME AGE
localblock 25h
```

# oc edit -n openshift-local-storage localvolume localblock

Example output:

```yaml
[...]
 storageClassDevices:
 - devicePaths:
 # - /dev/vdc
 storageClassName: localblock
 volumeMode: Block
[...]
```

Make sure to save the changes after editing the CR.

8. Log in to OpenShift Container Platform node with the device to be replaced and remove the old symlink.

```bash
$ oc debug node/worker-0
```

Example output:

```
Starting pod/worker-0-debug ...
To use host binaries, run `chroot /host`
Pod IP: 192.168.88.21
If you don't see a command prompt, try pressing enter.
chroot /host
```

a. Identify the old symlink for the device name to be replaced. In this example, the device name is vdc.

```bash
ls -ahl /mnt/local-storage/localblock
```

Example output:

```
total 0
drwxr-xr-x. 2 root root 17 Nov 18 15:23 .
drwxr-xr-x. 3 root root 24 Nov 18 15:23 ..
```
Remove the symlink.

```
rm /mnt/local-storage/localblock/vdc
```

c. Verify that the symlink is removed.

```
ls -lah /mnt/local-storage/localblock
```

Example output:

```
total 0
drwxr-xr-x. 2 root root 6 Nov 18 17:11 .
drwxr-xr-x. 3 root root 24 Nov 18 15:23 ..
```

**IMPORTANT**

For new deployments of OpenShift Container Storage 4.5 or later, LVM is not in use, **ceph-volume** raw mode is in play instead. Therefore, additional validation is not needed and you can proceed to the next step.

9. Find the persistent volume (PV) that needs to be deleted using the command:

```
$ oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
```

Example output:

```
local-pv-8137c873 256Gi RWO Delete Released openshift-storage/ocs-deviceset-localblock-0-data-0-64xjl localblock 2d22h worker-0
```

10. Delete the persistent volume.

```
$ oc delete pv local-pv-8137c873
```

11. Replace the device with the new device.

12. Log back into the correct OpenShift Container Platform node and identify the device name for the new drive. The device name must change unless you are reseating the same device.

```
lsblk
```

Example output:

```
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 40G 0 disk
| vda1 252:1 0 4M 0 part
| vda2 252:2 0 384M 0 part /boot
 ` vda4 252:4 0 39.6G 0 part
 ` coreos-luks-root-nocrypt 253:0 0 39.6G 0 dm /sysroot
vdb 252:16 0 512G 1 disk
vdd 252:32 0 256G 0 disk
```

In this example, the new device name is **vdd**.
13. After the new /dev/disk is available, a new disk entry can be added to the LocalVolume CR.
   a. Edit LocalVolume CR and add the new /dev/disk. In this example the new device is /dev/vdd.

```
oc edit -n openshift-local-storage localvolume localblock
```

Example output:

```
[...
 storageClassDevices:
 - devicePaths:
 # - /dev/vdc
 - /dev/vdd
 storageClassName: localblock
 volumeMode: Block
[...
```

Make sure to save the changes after editing the CR.

14. Verify that there is a new PV in Available state and of the correct size.

```
$ oc get pv | grep 256Gi
```

Example output:

```
local-pv-1e31f771 256Gi RWO Delete Bound openshift-storage/ocs-deviceset-localblock-2-data-0-xhkf localblock 24h
local-pv-ec7f2b80 256Gi RWO Delete Bound openshift-storage/ocs-deviceset-localblock-1-data-0-xr2fx localblock 24h
local-pv-8137c873 256Gi RWO Delete Available
localblock 32m
```

15. Create new OSD for new device.
   a. Delete the deployment for the OSD to be replaced.

```
osd_id_to_remove=0
oc delete -n openshift-storage deployment rook-ceph-osd-${osd_id_to_remove}
```

Example output:

```
deployment.extensions/rook-ceph-osd-0 deleted
```

b. Deploy the new OSD by restarting the rook-ceph-operator to force operator reconciliation.
   i. Identify the name of the rook-ceph-operator.

```
$ oc get -n openshift-storage pod -l app=rook-ceph-operator
```

Example output:

```
NAME READY STATUS RESTARTS AGE
rook-ceph-operator-85f6494db4-sg62v 1/1 Running 0 1d20h
```
ii. Delete the `rook-ceph-operator`.
   
   ```bash
 $ oc delete -n openshift-storage pod rook-ceph-operator-85f6494db4-sg62v

 Example output:

 pod "rook-ceph-operator-85f6494db4-sg62v" deleted

 In this example, the rook-ceph-operator pod name is `rook-ceph-operator-85f6494db4-sg62v`.

 iii. Verify that the `rook-ceph-operator` pod is restarted.

   ```bash
   $ oc get -n openshift-storage pod -l app=rook-ceph-operator
   
   Example output:
   
<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>rook-ceph-operator-85f6494db4-wx9xx</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>50s</td>
</tr>
</tbody>
</table>
   
   Creation of the new OSD may take several minutes after the operator restarts.

16. Delete the `ocs-osd-removal` job(s).
   
   ```bash
 $ oc delete -n openshift-storage job ocs-osd-removal-job

 Example output:

 job.batch "ocs-osd-removal-job" deleted

 NOTE

 When using an external key management system (KMS) with data encryption, the old OSD encryption key can be removed from the Vault server as it is now an orphan key.

Verification steps

1. Verify that there is a new OSD running.

   ```bash
   $ oc get -n openshift-storage pods -l app=rook-ceph-osd
   
   Example output:
   
<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>rook-ceph-osd-0-76d8fb97f9-mn8qz</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>23m</td>
</tr>
<tr>
<td>rook-ceph-osd-1-7c99657cfd-jdzvz</td>
<td>1/1</td>
<td>Running</td>
<td>1</td>
<td>25h</td>
</tr>
<tr>
<td>rook-ceph-osd-2-5f9f6dfb5b-2mnw9</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>25h</td>
</tr>
</tbody>
</table>
   
2. Verify that a new PVC is created.
   
   ```bash
 $ oc get -n openshift-storage pvc | grep localblock

 Example output:
ocs-deviceset-localblock-0-data-0-q4q6b Bound local-pv-8137c873 256Gi RWO
localblock 10m
ocs-deviceset-localblock-1-data-0-hr2fx Bound local-pv-ec7f2b80 256Gi RWO
localblock 1d20h
ocs-deviceset-localblock-2-data-0-6xhkf Bound local-pv-1e31f771 256Gi RWO
localblock 1d20h

3. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
 a. Identify the node(s) where the new OSD pod(s) are running.

 $ oc get -o=custom-columns=NODE:.spec.nodeName pod/<OSD pod name>

 For example:

 oc get -o=custom-columns=NODE:.spec.nodeName pod/rook-ceph-osd-0-76d8fb97f9-mn8qz

 b. For each of the nodes identified in previous step, do the following:

 i. Create a debug pod and open a chroot environment for the selected host(s).

 $ oc debug node/<node name>
 $ chroot /host

 ii. Run "lsblk" and check for the "crypt" keyword beside the ocs-deviceset name(s)

 $ lsblk

4. Log in to OpenShift Web Console and view the storage dashboard.

 Figure 5.2. OSD status in OpenShift Container Platform storage dashboard after device replacement

 Status

 ✔️ OCS Cluster
 ✔️ Data Resiliency

 NOTE

 A full data recovery may take longer depending on the volume of data being recovered.

5.3. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON IBM Z OR LINUXONE INFRASTRUCTURE
You can replace operational or failed storage devices on IBM Z or LinuxONE infrastructure with new SCSI disks.

IBM Z or LinuxONE supports SCSI FCP disk logical units (SCSI disks) as persistent storage devices from external disk storage. A SCSI disk can be identified by using its FCP Device number, two target worldwide port names (WWPN1 and WWPN2), and the logical unit number (LUN). For more information, see https://www.ibm.com/support/knowledgecenter/SSB27U_6.4.0/com.ibm.zvm.v640.hcpa5/scsiover.html

Prerequisites

- Ensure that the data is resilient.
 - On the OpenShift Web console, navigate to **Storage → Overview**.
 - Under **Block and File** in the **Status** card, confirm that the **Data Resiliency** has a green tick mark.

Procedure

1. List all the disks with the following command.

   ```bash
   $ lszdev
   ```

 Example output:

   ```
   TYPE         ID
   zfcp-host    0.0.8204                                        yes  yes
   zfcp-lun     0.0.8204:0x102107630b1b5060:0x4001402900000000 yes  no    sda sg0
   zfcp-lun     0.0.8204:0x500407630c0b50a4:0x3002b03000000000 yes  yes   sdb sg1
   qeth         0.0.bdd0:0.0.bdd1:0.0.bdd2                      yes  no    encbdd0
   generic-ccw  0.0.0009                                        yes  no
   ```

 A SCSI disk is represented as a **zfcp-lun** with the structure `<device-id>:<wwpn>:<lun-id>` in the **ID** section. The first disk is used for the operating system. If one storage device fails, it can be replaced with a new disk.

2. Remove the disk.

 Run the following command on the disk, replacing **scsi-id** with the SCSI disk identifier of the disk to be replaced.

   ```bash
   $ chzdev -d scsi-id
   ```

 For example, the following command removes one disk with the device ID **0.0.8204**, the WWPN **0x500507630a0b50a4**, and the LUN **0x4002403000000000** with the following command:

   ```bash
   $ chzdev -d 0.0.8204:0x500407630c0b50a4:0x3002b03000000000
   ```

3. Append a new SCSI disk with the following command:

   ```bash
   $ chzdev -e 0.0.8204:0x500507630b1b50a4:0x4001302a00000000
   ```
NOTE
The device ID for the new disk must be the same as the disk to be replaced. The new disk is identified with its WWPN and LUN ID.

4. List all the FCP devices to verify the new disk is configured.

```bash
$ lszdev zfcp-lun
TYPE ID ON PERS NAMES
zfcp-lun 0.0.8204:0x102107630b1b5060:0x4001402900000000 yes no sda sg0
zfcp-lun 0.0.8204:0x500507630b1b50a4:0x4001302a00000000 yes yes sdb sg1
```