Red Hat OpenShift Container Storage 4.8

Deploying OpenShift Container Storage using Red Hat Virtualization platform

How to install
Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read this document for instructions on installing Red Hat OpenShift Container Storage using Red Hat Virtualization platform.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE .. 3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 4

PREFACE ... 5

CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT CONTAINER STORAGE USING RED HAT VIRTUALIZATION PLATFORM .. 6
 1.1. ENABLING KEY VALUE BACKEND PATH AND POLICY IN VAULT 6
 1.2. REQUIREMENTS FOR INSTALLING OPENSHIFT CONTAINER STORAGE USING LOCAL STORAGE DEVICES ... 7

CHAPTER 2. DEPLOY USING DYNAMIC STORAGE DEVICES 8
 2.1. INSTALLING RED HAT OPENSHIFT CONTAINER STORAGE OPERATOR .. 8
 2.2. CREATING AN OPENSHIFT CONTAINER STORAGE CLUSTER SERVICE IN INTERNAL MODE .. 9

CHAPTER 3. DEPLOY USING LOCAL STORAGE DEVICES 12
 3.1. INSTALLING LOCAL STORAGE OPERATOR 12
 3.2. INSTALLING RED HAT OPENSHIFT CONTAINER STORAGE OPERATOR .. 13
 3.3. CREATING OPENSHIFT CONTAINER STORAGE CLUSTER ON RED HAT VIRTUALIZATION PLATFORM .. 14

CHAPTER 4. VERIFYING OPENSHIFT CONTAINER STORAGE DEPLOYMENT 19
 4.1. VERIFYING THE STATE OF THE PODS .. 19
 4.2. VERIFYING THE OPENSHIFT CONTAINER STORAGE CLUSTER IS HEALTHY .. 20
 4.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY 21
 4.4. VERIFYING THAT THE OPENSHIFT CONTAINER STORAGE SPECIFIC STORAGE CLASSES EXIST .. 21

CHAPTER 5. UNINSTALLING OPENSHIFT CONTAINER STORAGE 22
 5.1. UNINSTALLING OPENSHIFT CONTAINER STORAGE IN INTERNAL MODE .. 22
 5.1.1. Removing local storage operator configurations 28
 5.2. REMOVING MONITORING STACK FROM OPENSHIFT CONTAINER STORAGE .. 30
 5.3. REMOVING OPENSHIFT CONTAINER PLATFORM REGISTRY FROM OPENSHIFT CONTAINER STORAGE .. 33
 5.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSHIFT CONTAINER STORAGE .. 34
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:

- For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the *Multi-page HTML* format. In addition, ensure you see the **Feedback** button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the **Add Feedback** pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the **Bugzilla** website.
 2. As the Component, use **Documentation**.
 3. Fill in the **Description** field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click **Submit Bug**.
Preface

Red Hat OpenShift Container Storage 4.8 supports deployment on existing Red Hat OpenShift Container Platform (RHOCP) Red Hat Virtualization platform clusters.

Deploying OpenShift Container Storage on OpenShift Container Platform using shared storage devices provided by Red Hat Virtualization installer-provisioned infrastructure (IPI) enables you to create internal cluster resources.

NOTE

Only internal Openshift Container Storage clusters are supported on Red Hat Virtualization platform. See Planning your deployment for more information about deployment requirements.

Based on your requirement, perform one of the following methods of deployment:

- **Deploy using dynamic storage devices** for deploying OpenShift Container Storage using dynamic storage devices.
- **Deploy using local storage devices** for deploying OpenShift Container Storage using local storage devices.
CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT CONTAINER STORAGE USING RED HAT VIRTUALIZATION PLATFORM

Before you begin the deployment of Red Hat OpenShift Container Storage using dynamic or local storage, ensure that your resource requirements are met. See Planning your deployment.

1. Optional: If you want to enable cluster-wide encryption using an external Key Management System (KMS):
 - Ensure that a policy with a token exists and the key value backend path in Vault is enabled. See Enabling key value backend path and policy in vault.
 - Ensure that you are using signed certificates on your Vault servers.

2. Minimum starting node requirements [Technology Preview]
 An OpenShift Container Storage cluster will be deployed with minimum configuration when the standard deployment resource requirement is not met. See Resource requirements section in Planning guide.

3. Ensure that the requirements for installing OpenShift Container Storage using local storage devices are met.

1.1. ENABLING KEY VALUE BACKEND PATH AND POLICY IN VAULT

Prerequisites

- Administrator access to Vault.
- Choose a unique path name as the backend path that follows the naming convention since it cannot be changed later.

Procedure

1. Enable the Key/Value (KV) backend path in Vault.
 For Vault KV secret engine API, version 1:

 $ vault secrets enable -path=ocs kv

 For Vault KV secret engine API, version 2:

 $ vault secrets enable -path=ocs kv-v2

2. Create a policy to restrict users to perform a write or delete operation on the secret using the following commands:

   ```bash
   echo 'path "ocs/*" {
       capabilities = ["create", "read", "update", "delete", "list"]
   }
   path "sys/mounts" {
       capabilities = ["read"]
   }' | vault policy write ocs
   ```
Create a token matching the above policy:

```
$ vault token create -policy=ocs -format json
```

1.2. REQUIREMENTS FOR INSTALLING OPENSHIFT CONTAINER STORAGE USING LOCAL STORAGE DEVICES

Node requirements

The cluster must consist of at least three OpenShift Container Platform worker nodes with locally attached-storage devices on each of them.

- Each of the three selected nodes must have at least one raw block device available to be used by OpenShift Container Storage.

- The devices you use must be empty; the disks must not include physical volumes (PVs), volume groups (VGs), or logical volumes (LVs) remaining on the disk.

For more information, see the Resource requirements section in the Planning guide.

Arbiter stretch cluster requirements [Technology Preview]

In this case, a single cluster is stretched across two zones with a third zone as the location for the arbiter. This is a technology preview feature that is currently intended for deployment in the OpenShift Container Platform on-premises.

For detailed requirements and instructions, see Configuring OpenShift Container Storage for Metro-DR stretch cluster.

NOTE

You cannot enable both flexible scaling and arbiter as they have conflicting scaling logic. With flexing scaling, you can add one node at a time to the OpenShift Container Storage cluster. Whereas, in an arbiter cluster, you need to add at least one node in each of the 2 data zones.

Minimum starting node requirements [Technology Preview]

An OpenShift Container Storage cluster is deployed with minimum configuration when the standard deployment resource requirement is not met.

For more information, see Resource requirements section in the Planning guide.
CHAPTER 2. DEPLOY USING DYNAMIC STORAGE DEVICES

Deploying OpenShift Container Storage on OpenShift Container Platform using dynamic storage devices provided by Red Hat Virtualization gives you the option to create internal cluster resources. This results in the internal provisioning of the base services, which helps to make additional storage classes available to applications.

Ensure that you have addressed the requirements in Preparing to deploy OpenShift Container Storage chapter before proceeding with the below steps for deploying using dynamic storage devices:

1. Install the Red Hat OpenShift Container Storage Operator.
2. Create the OpenShift Container Storage Cluster Service.

2.1. INSTALLING RED HAT OPENSHEF CONTAINER STORAGE OPERATOR

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with cluster-admin and operator installation permissions.
- You have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.
- You have satisfied any additional requirements required. For more information, see Planning your deployment.

NOTE

- When you need to override the cluster-wide default node selector for OpenShift Container Storage, you can use the following command to specify a blank node selector for the openshift-storage namespace (create openshift-storage namespace in this case):

 $ oc annotate namespace openshift-storage openshift.io/node-selector=

- Taint a node as infra to ensure only Red Hat OpenShift Container Storage resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Container Storage chapter in Managing and Allocating Storage Resources guide.

Procedure

1. Log in to OpenShift Web Console.
2. Click Operators → OperatorHub.
3. Search for OpenShift Container Storage from the list of operators and click on it.
4. Click Install.
5. Set the following options on the **Install Operator** page:

 a. Channel as **stable-4.8**.

 b. Installation Mode as **A specific namespace on the cluster**.

 c. Installed Namespace as **Operator recommended namespace openshift-storage**. If Namespace **openshift-storage** does not exist, it will be created during the operator installation.

 d. **Approval Strategy** as **Automatic** or **Manual**.

 e. Click **Install**.

 If you select **Automatic** updates, the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your operator without any intervention.

 If you select **Manual** updates, the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to have the operator updated to the new version.

Verification step

- Verify that the **OpenShift Container Storage** Operator shows a green tick indicating successful installation.

2.2. CREATING AN OPENSIFT CONTAINER STORAGE CLUSTER SERVICE IN INTERNAL MODE

Use this procedure to create an OpenShift Container Storage Cluster Service after you install the OpenShift Container Storage operator.

Prerequisites

- The OpenShift Container Storage operator must be installed from the Operator Hub. For more information, see [Installing OpenShift Container Storage Operator using the Operator Hub](#).

Procedure

1. Log into the OpenShift Web Console.
2. Click **Operators → Installed Operators** to view all the installed operators. Ensure that the **Project** selected is **openshift-storage**.
3. Click **OpenShift Container Storage → Create Instance** link of Storage Cluster.
4. **Select Mode** is set to **Internal** by default.
5. **Select Capacity and nodes**

 a. Select **Requested Capacity** from the drop down list. It is set to **2 TiB** by default. You can use the drop down to modify the capacity value.
Once you select the initial storage capacity, cluster expansion is performed only using the selected usable capacity (3 times of raw storage).

b. In the Select Nodes section, select at least three available nodes.

c. Click Next.

6. (Optional) Set Security and network configuration
 a. Select the Enable encryption checkbox to encrypt block and file storage.

b. Choose any one or both Encryption level
 - Cluster-wide encryption to encrypt the entire cluster (block and file).
 - Storage class encryption to create encrypted persistent volume (block only) using encryption enabled storage class.

c. Select the Connect to an external key management service checkbox. This is optional for cluster-wide encryption.
 i. Key Management Service Provider is set to Vault by default.
 ii. Enter Vault Service Name, host Address of Vault server ('https://<hostname or ip>'), Port number and Token.
 iii. Expand Advanced Settings to enter additional settings and certificate details based on your Vault configuration:

 A. Enter the Key Value secret path in Backend Path that is dedicated and unique to OpenShift Container Storage.
 B. (Optional) Enter TLS Server Name and Vault Enterprise Namespace.
 C. Provide CA Certificate, Client Certificate and Client Private Key by uploading the respective PEM encoded certificate file.

 D. Click Save.

7. Select Default (SDN) if you are using a single network or Custom (Multus) Network if you plan on using multiple network interfaces.
 a. Select a Public Network Interface from drop down.

b. Select a Cluster Network Interface from drop down.

NOTE

If only using one additional network interface select the single NetworkAttachmentDefinition (i.e. ocs-public-cluster) for the Public Network Interface and leave the Cluster Network Interface blank.

8. Click Next.
9. Review the configuration details. To modify any configuration settings, click Back to go back to the previous configuration page.

10. Click Create.

11. Edit the configmap if Vault Key/Value (KV) secret engine API, version 2 is used for cluster-wide encryption with Key Management System (KMS).

b. To view the KMS connection details, click ocs-kms-connection-details.

c. Edit the configmap.

i. Click Action menu (⋮) → Edit ConfigMap

 ii. Set the VAULT_BACKEND parameter to v2.

   ```yaml
   kind: ConfigMap
   apiVersion: v1
   metadata:
     name: ocs-kms-connection-details
     [...]
   data:
     KMS_PROVIDER: vault
     KMS_SERVICE_NAME: vault
     [...]
     VAULT_BACKEND: v2
     [...]
   ```

 iii. Click Save.

Verification steps

1. On the storage cluster details page, the storage cluster name displays a green tick next to it to indicate that the cluster was created successfully.

2. Verify that the final Status of the installed storage cluster shows as Phase: Ready with a green tick mark.

 • Click Operators → Installed Operators → Storage Cluster link to view the storage cluster installation status.

 • Alternatively, when you are on the Operator Details tab, you can click on the Storage Cluster tab to view the status.
CHAPTER 3. DEPLOY USING LOCAL STORAGE DEVICES

Deploying OpenShift Container Storage on OpenShift Container Platform using local storage devices provides you with the option to create internal cluster resources. This results in the internal provisioning of the base services, which helps to make additional storage classes available to applications.

Use this section to deploy OpenShift Container Storage on Red Hat Virtualization where OpenShift Container Platform is already installed.

Also, ensure that you have addressed the requirements in Preparing to deploy OpenShift Container Storage chapter before proceeding with the next steps.

1. Installing Local Storage Operator

2. Install the Red Hat OpenShift Container Storage Operator.

3. Create the OpenShift Container Storage Cluster Service.

3.1. INSTALLING LOCAL STORAGE OPERATOR

You can install the Local Storage Operator using the Red Hat OpenShift Container Platform Operator Hub.

Prerequisite

- Access to an OpenShift Container Platform cluster using an account with cluster-admin and Operator installation permissions.

Procedure

1. Log in to the OpenShift Web Console.

2. Click Operators → OperatorHub.

3. Type local storage in the Filter by keyword... box to search for Local Storage operator from the list of operators and click on it.

4. Click Install.

5. Set the following options on the Install Operator page:
 a. Channel as stable-4.8.
 b. Installation Mode as A specific namespace on the cluster
 c. Installed Namespace as Operator recommended namespace openshift-local-storage.
 d. Approval Strategy as Automatic.

6. Click Install.

Verification step

- Verify that the Local Storage Operator shows the Status as Succeeded.
3.2. INSTALLING RED HAT OPENSSHIFT CONTAINER STORAGE OPERATOR

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with cluster-admin and operator installation permissions.
- You have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.
- You have satisfied any additional requirements required. For more information, see Planning your deployment.

NOTE

- When you need to override the cluster-wide default node selector for OpenShift Container Storage, you can use the following command to specify a blank node selector for the openshift-storage namespace (create openshift-storage namespace in this case):

  ```bash
  $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

- Taint a node as infra to ensure only Red Hat OpenShift Container Storage resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Container Storage chapter in Managing and Allocating Storage Resources guide.

Procedure

1. Log in to OpenShift Web Console.
2. Click Operators → OperatorHub.
3. Search for OpenShift Container Storage from the list of operators and click on it.
4. Click Install.
5. Set the following options on the Install Operator page:
 a. Channel as stable-4.8.
 b. Installation Mode as A specific namespace on the cluster
 c. Installed Namespace as Operator recommended namespace openshift-storage. If Namespace openshift-storage does not exist, it will be created during the operator installation.
 d. Approval Strategy as Automatic or Manual.
 e. Click Install.
If you select **Automatic** updates, the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your operator without any intervention.

If you select **Manual** updates, the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to have the operator updated to the new version.

Verification step
- Verify that the **OpenShift Container Storage** Operator shows a green tick indicating successful installation.

3.3. CREATING OPENSIGHT CONTAINER STORAGE CLUSTER ON RED HAT VIRTUALIZATION PLATFORM

Use this procedure to create an OpenShift Container Storage Cluster Service using local storage devices after you install the OpenShift Container Storage operator.

Prerequisites
- The OpenShift Container Storage operator must be installed from the Operator Hub. For more information, see [Installing OpenShift Container Storage Operator using the Operator Hub](#).
- Ensure that all the requirements in the Requirements for installing OpenShift Container Storage using local storage devices section are met.

Procedure

1. Log into the OpenShift Web Console.
2. Click **Operators** → **Installed Operators** to view all the installed operators. Ensure that the **Project** selected is **openshift-storage**.
3. Click **OpenShift Container Storage** → **Create Instance** link of Storage Cluster.
4. Choose **Select Mode** as **Internal-Attached devices**.

 NOTE
 You are prompted to install the Local Storage Operator if it is not already installed. Click **Install** and follows procedure as described in [Installing Local Storage Operator](#).
5. Discover disks
 - Choose one of the following:
 - **All nodes** to discover disks in all the nodes.
 - **Select nodes** to discover disks from a subset of available nodes.
For using arbiter mode, do not select the **All nodes** option. Instead, use the **Select nodes** option to select the labeled nodes with attached storage device(s) from the two data-center zones.

NOTE

If the nodes to be selected are tainted and not discovered in the wizard, follow the steps provided in the [Red Hat Knowledgebase Solution](#) as a workaround to add tolerations for Local Storage Operator resources.

If the nodes selected do not match the OpenShift Container Storage cluster requirement of an aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster will be deployed. For minimum starting node requirements, see [Resource requirements](#) section in Planning guide.

b. Click **Next**.

6. Create Storage class.
 You can create a dedicated storage class to consume storage by filtering a set of storage volumes.

 a. Enter the **Local Volume Set Name**

 b. Enter the **Storage Class Name**. By default, the volume set name appears for the storage class name. You can also change the name.

 c. The nodes selected for disk discovery in the previous step are displayed in the **Filter Disks By** section. Choose one of the following:
 - **Disks on all nodes** to select all the nodes for which you discovered the devices.
 - **Disks on selected nodes** to select a subset of the nodes for which you discovered the devices. Spread the worker nodes across three different physical nodes, racks or failure domains for high availability.

IMPORTANT

The flexible scaling feature gets enabled on creating a storage cluster with 3 or more nodes spread across fewer than the minimum requirement of 3 availability zones. This feature is available only for the new deployments of OpenShift Container Storage 4.7 clusters and does not support the upgraded clusters. For information about flexible scaling, see [Scaling Storage Guide](#).

d. Select **SSD/NVME Disk Type** from the available list.

e. Expand the **Advanced** section and set the following options:

<table>
<thead>
<tr>
<th>Volume Mode</th>
<th>Block is selected by default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Type</td>
<td>Select one or more disk type from the drop down list.</td>
</tr>
<tr>
<td>Disk Size</td>
<td>Set a minimum size of 100GB for the device and maximum available size of the device that needs to be included.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Maximum Disk Limit</td>
<td>This indicates the maximum number of PVs that can be created on a node. If this field is left empty, then PVs are created for all the available disks on the matching nodes.</td>
</tr>
</tbody>
</table>

f. Click **Next**. A pop-up to confirm creation of the new storage class is displayed.

g. Click **Yes** to continue.

7. Set **Capacity and nodes**

 a. Select **Storage Class**. By default, the new storage class created in the previous step is selected.

 b. **Selected Nodes** shows the nodes selected in the previous step. This list takes a few minutes to reflect the disks that were discovered in the previous step.

 c. Click **Next**.

8. (Optional) Set **Security and network** configuration

 a. Select **Enable encryption** checkbox to encrypt block and file storage.

 b. Choose one of the following **Encryption level**:

 - **Cluster-wide encryption** to encrypt the entire cluster (block and file).
 - **Storage class encryption** to create encrypted persistent volume (block only) using encryption enabled storage class.

 c. Select **Connect to an external key management service** checkbox. This is optional for cluster-wide encryption.

 i. **Key Management Service Provider** is set to **Vault** by default.

 ii. Enter Vault **Service Name**, host **Address** of Vault server ('https://<hostname or ip>'), **Port number** and **Token**.

 iii. Expand **Advanced Settings** to enter additional settings and certificate details based on your Vault configuration:

 A. Enter the Key Value secret path in **Backend Path** that is dedicated and unique to OpenShift Container Storage.

 B. (Optional) Enter **TLS Server Name** and **Vault Enterprise Namespace**

 C. Provide **CA Certificate**, **Client Certificate** and **Client Private Key** by uploading the respective PEM encoded certificate file.

 D. Click **Save**.

9. Select **Default** (SDN) if you are using a single network or **Custom** (Multus) Network if you plan on using multiple network interfaces.

 a. Select a **Public Network Interface** from drop down.
b. Select a **Cluster Network Interface** from drop down.

10. Click **Next**.

11. Review the configuration details. To modify any configuration settings, click **Back** to go back to the previous configuration page.

12. Click **Create**.

13. Edit the configmap if Vault Key/Value (KV) secret engine API, version 2 is used for cluster-wide encryption with Key Management System (KMS).

 a. On the OpenShift Web Console, navigate to **Workloads → ConfigMaps**

 b. To view the KMS connection details, click **ocs-kms-connection-details**

 c. Edit the configmap.

 i. Click **Action menu (⋮) → Edit ConfigMap**

 ii. Set the **VAULT_BACKEND** parameter to **v2**

         ```yaml
         kind: ConfigMap
         apiVersion: v1
         metadata:
           name: ocs-kms-connection-details
         [...] 
         data:
           KMS_PROVIDER: vault
           KMS_SERVICE_NAME: vault
         [...] 
         VAULT_BACKEND: v2
         [...] 
         ```

 iii. Click **Save**.

Verification steps

- Verify that the final **Status** of the installed storage cluster shows as Phase: Ready with a green tick mark.

 - Click **Operators → Installed Operators → Storage Cluster** link to view the storage cluster installation status.

 - Alternatively, when you are on the Operator **Details** tab, you can click on the **Storage Cluster** tab to view the status.

- To verify if flexible scaling is enabled on your storage cluster, perform the following steps (for arbiter mode, flexible scaling is disabled):

 1. Click **ocs-storagecluster** in **Storage Cluster** tab.

 2. In the YAML tab, search for the keys **flexibleScaling** in **spec** section and **failureDomain** in **status** section. If **flexible scaling** is **true** and **failureDomain** is set to **host**, flexible scaling feature is enabled.

     ```yaml
     spec:
     ```
flexibleScaling: true

[...]

status:

failureDomain: host

- To verify that all components for OpenShift Container Storage are successfully installed, see Verifying your OpenShift Container Storage installation.

Additional resources

- To expand the capacity of the initial cluster, see Scaling Storage.
CHAPTER 4. VERIFYING OPENSHIFT CONTAINER STORAGE DEPLOYMENT

Use this section to verify that OpenShift Container Storage is deployed correctly.

4.1. VERIFYING THE STATE OF THE PODS

To verify that the pods of OpenShift Containers Storage are in running state, follow the below procedure:

Procedure

1. Log in to OpenShift Web Console.

2. Click Workloads → Pods from the left pane of the OpenShift Web Console.

3. Select openshift-storage from the Project drop down list. For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see Table 4.1, “Pods corresponding to OpenShift Container storage cluster”.

4. Click on the Running and Completed tabs to verify that the pods are running and in a completed state:

Table 4.1. Pods corresponding to OpenShift Container storage cluster

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Container Storage Operator</td>
<td>ocs-operator-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>ocs-metrics-exporter-*</td>
</tr>
<tr>
<td>Rook-cephe Operator</td>
<td>rook-cephe-operator-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any worker node)</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>noobaa-operator-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>noobaa-core-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>noobaa-db-pg-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>noobaa-endpoint-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>MON</td>
<td>rook-cephe-mon-*</td>
</tr>
<tr>
<td></td>
<td>(3 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>Component</td>
<td>Corresponding pods</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>MGR</td>
<td>rook-ceph-mgr-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td>MDS</td>
<td>rook-ceph-mds-ocs-storagecluster-cephfilesystem-*</td>
</tr>
<tr>
<td></td>
<td>(2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>RGW</td>
<td>rook-ceph-rgw-ocs-storagecluster-cephobjectstore-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td>CSI</td>
<td>● cephfs</td>
</tr>
<tr>
<td></td>
<td>○ csi-cephfsplugin-* (1 pod on each worker node)</td>
</tr>
<tr>
<td></td>
<td>○ csi-cephfsplugin-provisioner-* (2 pods distributed across worker nodes)</td>
</tr>
<tr>
<td></td>
<td>● rbd</td>
</tr>
<tr>
<td></td>
<td>○ csi-rbdplugin-* (1 pod on each worker node)</td>
</tr>
<tr>
<td></td>
<td>○ csi-rbdplugin-provisioner-* (2 pods distributed across worker nodes)</td>
</tr>
<tr>
<td></td>
<td>rook-ceph-crashcollector</td>
</tr>
<tr>
<td></td>
<td>rook-ceph-crashcollector-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on each storage node)</td>
</tr>
<tr>
<td>OSD</td>
<td>● rook-ceph-osd-*</td>
</tr>
<tr>
<td></td>
<td>● rook-ceph-osd-prepare-ocs-deviceset-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod for each device)</td>
</tr>
</tbody>
</table>

4.2. VERIFYING THE OPENSSHIFT CONTAINER STORAGE CLUSTER IS HEALTHY

To verify that the cluster of OpenShift Container Storage is healthy, follow the steps in the procedure.

Procedure

1. Click Storage → Overview and click the Block and File tab.
2. In the Status card, verify that Storage Cluster and Data Resiliency has a green tick mark.
3. In the Details card, verify that the cluster information is displayed.
4.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY

To verify that the OpenShift Container Storage Multicloud Object Gateway is healthy, follow the steps in the procedure.

Procedure

1. Click Storage ➔ Overview from the OpenShift Web Console and click the Object tab.

2. In the Status card, verify that both Object Service and Data Resiliency are in Ready state (green tick).

3. In the Details card, verify that the Multicloud Object Gateway information is displayed.

For more information on the health of the OpenShift Container Storage cluster using the object service dashboard, see Monitoring OpenShift Container Storage.

4.4. VERIFYING THAT THE OPENSHIFT CONTAINER STORAGE SPECIFIC STORAGE CLASSES EXIST

To verify the storage classes exists in the cluster, follow the steps in the procedure.

Procedure

1. Click Storage ➔ Storage Classes from the OpenShift Web Console.

2. Verify that the following storage classes are created with the OpenShift Container Storage cluster creation:

 - ocs-storagecluster-ceph-rbd
 - ocs-storagecluster-cephfs
 - openshift-storage.noobaa.io
 - ocs-storagecluster-ceph-rgw
CHAPTER 5. UNINSTALLING OPENSOURCE CONTAINER STORAGE

5.1. UNINSTALLING OPENSOURCE CONTAINER STORAGE IN INTERNAL MODE

Use the steps in this section to uninstall OpenShift Container Storage.

Uninstall Annotations

Annotations on the Storage Cluster are used to change the behavior of the uninstall process. To define the uninstall behavior, the following two annotations have been introduced in the storage cluster:

- uninstall.ocs.openshift.io/cleanup-policy: delete
- uninstall.ocs.openshift.io/mode: graceful

The below table provides information on the different values that can used with these annotations:

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Value</th>
<th>Default</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>cleanup-policy</td>
<td>delete</td>
<td>Yes</td>
<td>Rook cleans up the physical drives and the DataDirHostPath</td>
</tr>
<tr>
<td>cleanup-policy</td>
<td>retain</td>
<td>No</td>
<td>Rook does not clean up the physical drives and the DataDirHostPath</td>
</tr>
<tr>
<td>mode</td>
<td>graceful</td>
<td>Yes</td>
<td>Rook and NooBaa pauses the uninstall process until the PVCs and the OBCs are removed by the administrator/user</td>
</tr>
<tr>
<td>mode</td>
<td>forced</td>
<td>No</td>
<td>Rook and NooBaa proceeds with uninstall even if PVCs/OBCs provisioned using Rook and NooBaa exist respectively.</td>
</tr>
</tbody>
</table>

You can change the cleanup policy or the uninstall mode by editing the value of the annotation by using the following commands:

```
$ oc annotate storagecluster -n openshift-storage ocs-storagecluster uninstall.ocs.openshift.io/cleanup-policy="retain" --overwrite
storagecluster.ocs.openshift.io/ocs-storagecluster annotated
```
Prerequisites

- Ensure that the OpenShift Container Storage cluster is in a healthy state. The uninstall process can fail when some of the pods are not terminated successfully due to insufficient resources or nodes. In case the cluster is in an unhealthy state, contact Red Hat Customer Support before uninstalling OpenShift Container Storage.

- Ensure that applications are not consuming persistent volume claims (PVCs) or object bucket claims (OBCs) using the storage classes provided by OpenShift Container Storage.

- If any custom resources (such as custom storage classes, cephblockpools) were created by the admin, they must be deleted by the admin after removing the resources which consumed them.

Procedure

1. Delete the volume snapshots that are using OpenShift Container Storage.
 a. List the volume snapshots from all the namespaces.

   ```
   $ oc get volumesnapshot --all-namespaces
   ```

 b. From the output of the previous command, identify and delete the volume snapshots that are using OpenShift Container Storage.

   ```
   $ oc delete volumesnapshot <VOLUME-SNAPSHOT-NAME> -n <NAMESPACE>
   ```

2. Delete PVCs and OBCs that are using OpenShift Container Storage.
 In the default uninstall mode (graceful), the uninstaller waits till all the PVCs and OBCs that use OpenShift Container Storage are deleted.

 If you wish to delete the Storage Cluster without deleting the PVCs beforehand, you may set the uninstall mode annotation to **forced** and skip this step. Doing this results in orphan PVCs and OBCs in the system.

 For more information, see Section 5.2, “Removing monitoring stack from OpenShift Container Storage”.

 b. Delete OpenShift Container Platform Registry PVCs using OpenShift Container Storage.
 For more information, see Section 5.3, “Removing OpenShift Container Platform registry from OpenShift Container Storage”.

 c. Delete OpenShift Container Platform logging PVCs using OpenShift Container Storage.
 For more information, see Section 5.4, “Removing the cluster logging operator from OpenShift Container Storage”.

 d. Delete other PVCs and OBCs provisioned using OpenShift Container Storage.

 - Following script is sample script to identify the PVCs and OBCs provisioned using OpenShift Container Storage. The script ignores the PVCs that are used internally by OpenShift Container Storage.

   ```
   oc annotate storagecluster -n openshift-storage ocs-storagecluster uninstall.ocs.openshift.io/mode="forced" --overwrite
   storagecluster.ocs.openshift.io/ocs-storagecluster annotated
   ```
#!/bin/bash

RBD_PROVISIONER="openshift-storage.rbd.csi.ceph.com"
CEPHFS_PROVISIONER="openshift-storage.cephfs.csi.ceph.com"
NOOBAA_PROVISIONER="openshift-storage.noobaa.io/obc"
RGW_PROVISIONER="openshift-storage.ceph.rook.io/bucket"

NOOBAA_DB_PVC="noobaa-db"
NOOBAA_BACKINGSTORE_PVC="noobaa-default-backing-store-noobaa-pvc"

Find all the OCS StorageClasses
OCS_STORAGECLASSES=$(oc get storageclasses | grep -e "$RBD_PROVISIONER" -e "$CEPHFS_PROVISIONER" -e "$NOOBAA_PROVISIONER" -e "$RGW_PROVISIONER" | awk '{print $1}')

List PVCs in each of the StorageClasses
for SC in $OCS_STORAGECLASSES
do
echo "===
==
== $SC StorageClass PVCs and OBCs"
 oc get pvc --all-namespaces --no-headers 2>/dev/null | grep $SC | grep -v -e "$NOOBAA_DB_PVC" -e "$NOOBAA_BACKINGSTORE_PVC"
 oc get obc --all-namespaces --no-headers 2>/dev/null | grep $SC
 echo
done

NOTE

Omit RGW_PROVISIONER for cloud platforms.

- Delete the OBCs.

 $ oc delete obc <obc name> -n <project name>

- Delete the PVCs.

 $ oc delete pvc <pvc name> -n <project-name>

NOTE

Ensure that you have removed any custom backing stores, bucket classes, etc., created in the cluster.

3. Delete the Storage Cluster object and wait for the removal of the associated resources.

 $ oc delete -n openshift-storage storagecluster --all --wait=true
4. Check for cleanup pods if the `uninstall.ocs.openshift.io/cleanup-policy` was set to `delete` (default) and ensure that their status is Completed.

```
$ oc get pods -n openshift-storage | grep -i cleanup
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster-cleanup-job-<xx></td>
<td>0/1</td>
<td>Completed</td>
<td>0</td>
<td>8m35s</td>
</tr>
<tr>
<td>cluster-cleanup-job-<yy></td>
<td>0/1</td>
<td>Completed</td>
<td>0</td>
<td>8m35s</td>
</tr>
<tr>
<td>cluster-cleanup-job-<zz></td>
<td>0/1</td>
<td>Completed</td>
<td>0</td>
<td>8m35s</td>
</tr>
</tbody>
</table>

5. Confirm that the directory `/var/lib/rook` is now empty. This directory will be empty only if the `uninstall.ocs.openshift.io/cleanup-policy` annotation was set to `delete` (default).

```
$ for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{{.items[*].metadata.name }}'); do oc debug node/${i} -- chroot /host  ls -l /var/lib/rook; done
```

6. If encryption was enabled at the time of install, remove `dm-crypt` managed `device-mapper` mapping from OSD devices on all the OpenShift Container Storage nodes.

 a. Create a debug pod and `chroot` to the host on the storage node.

```
$ oc debug node/<node name>
$ chroot /host
```

 b. Get Device names and make note of the OpenShift Container Storage devices.

```
$ dmsetup ls
```

 ocs-deviceset-0-data-0-57snx-block-dmcrypt (253:1)

 c. Remove the mapped device.

```
$ cryptsetup luksClose --debug --verbose ocs-deviceset-0-data-0-57snx-block-dmcrypt
```

NOTE

If the above command gets stuck due to insufficient privileges, run the following commands:

- Press `CTRL+Z` to exit the above command.
- Find PID of the process which was stuck.

```
$ ps -ef | grep crypt
```

- Terminate the process using `kill` command.

```
$ kill -9 <PID>
```

- Verify that the device name is removed.

```
$ dmsetup ls
```
7. Delete the namespace and wait till the deletion is complete. You need to switch to another project if `openshift-storage` is the active project. For example:

```
$ oc project default
$ oc delete project openshift-storage --wait=true --timeout=5m
```

The project is deleted if the following command returns a NotFound error.

```
$ oc get project openshift-storage
```

NOTE

While uninstalling OpenShift Container Storage, if `namespace` is not deleted completely and remains in Terminating state, perform the steps in Troubleshooting and deleting remaining resources during Uninstall to identify objects that are blocking the namespace from being terminated.

8. Delete the local storage operator configurations if you have deployed OpenShift Container Storage using local storage devices. See Removing local storage operator configurations.

9. Unlabel the storage nodes.

```
$ oc label nodes --all cluster.ocs.openshift.io/openshift-storage- 
$ oc label nodes --all topology.rook.io/rack-
```

10. Remove the OpenShift Container Storage taint if the nodes were tainted.

```
$ oc adm taint nodes --all node.ocs.openshift.io/storage-
```

11. Confirm all PVs provisioned using OpenShift Container Storage are deleted. If there is any PV left in the Released state, delete it.

```
$ oc get pv 
$ oc delete pv <pv name>
```

12. Delete the Multicloud Object Gateway storageclass.

```
$ oc delete storageclass openshift-storage.noobaa.io --wait=true --timeout=5m
```


```
$ oc delete crd backingstores.noobaa.io bucketclasses.noobaa.io cephblockpools.ceph.rook.io cephclusters.ceph.rook.io cephfilesystems.ceph.rook.io cephfs esos.ceph.rook.io cepheobjectstores.ceph.rook.io cephobjectstoreusers.ceph.rook.io noobaaas.noobaa.io ocsinitializations.ocs.openshift.io storageclusters.ocs.openshift.io cephhclients.ceph.rook.io cephobjectrealms.ceph.rook.io cephobjectzonegroups.ceph.rook.io cephobjectzones.ceph.rook.io cephrbdmirrors.ceph.rook.io --wait=true --timeout=5m
```

14. Optional: To ensure that the vault keys are deleted permanently you need to manually delete the metadata associated with the vault key.
NOTE

Execute this step only if Vault Key/Value (KV) secret engine API, version 2 is used for cluster-wide encryption with Key Management System (KMS) since the vault keys are marked as deleted and not permanently deleted during the uninstallation of OpenShift Container Storage. You can always restore it later if required.

a. List the keys in the vault.

```
$ vault kv list <backend_path>
```

`<backend_path>`
Is the path in the vault where the encryption keys are stored.
For example:

```
$ vault kv list kv-v2
```

Example output:

```
Keys
-----
NOOBAA_ROOT_SECRET_PATH/
  rook-ceph-osd-encryption-key-ocs-deviceset-thin-0-data-0m27q8
  rook-ceph-osd-encryption-key-ocs-deviceset-thin-1-data-0sq227
  rook-ceph-osd-encryption-key-ocs-deviceset-thin-2-data-0xzszb
```

b. List the metadata associated with the vault key.

```
$ vault kv get kv-v2/<key>
```

For the Multicloud Object Gateway (MCG) key:

```
$ vault kv get kv-v2/NOOBAA_ROOT_SECRET_PATH/<key>
```

`<key>`
Is the encryption key.
For Example:

```
$ vault kv get kv-v2/rook-ceph-osd-encryption-key-ocs-deviceset-thin-0-data-0m27q8
```

Example output:

```
====== Metadata ======
Key                Value
---                ----- 
created_time      2021-06-23T10:06:30.650103555Z
deletion_time     2021-06-23T11:46:35.045328495Z
destroyed         false
version           1
```
c. Delete the metadata.

 \$ vault kv metadata delete kv-v2/<key>

 For the MCG key:

 \$ vault kv metadata delete kv-v2/NOOBA_ROOT_SECRET_PATH/<key>

 <key>

 Is the encryption key.

 For Example:

 \$ vault kv metadata delete kv-v2/rook-ceph-osd-encryption-key-ocs-deviceset-thin-0-data-0m27q8

 Example output:

 Success! Data deleted (if it existed) at: kv-v2/metadata/rook-ceph-osd-encryption-key-ocs-deviceset-thin-0-data-0m27q8

d. Repeat these steps to delete the metadata associated with all the vault keys.

15. To ensure that OpenShift Container Storage is uninstalled completely, on the OpenShift Container Platform Web Console,

 a. Click **Storage**.

 b. Verify that **Overview** no longer appears under **Storage**.

5.1.1. Removing local storage operator configurations

Use the instructions in this section only if you have deployed OpenShift Container Storage using local storage devices.

NOTE

For OpenShift Container Storage deployments using only **localvolume** resources, refer step 8.

Procedure

1. Identify the **LocalVolumeSet** and the corresponding **StorageClassName** being used by OpenShift Container Storage.

2. Set the variable SC to the **StorageClass** providing the **LocalVolumeSet**.

 \$ export SC="<StorageClassName>"

3. Delete the **LocalVolumeSet**.

 \$ oc delete localvolumesets.local.storage.openshift.io <name-of-volumeset> -n openshift-local-storage
4. Delete the local storage PVs for the given StorageClassName.

 `$ oc get pv | grep $SC | awk '{print $1}'}| xargs oc delete pv`

5. Delete the StorageClassName.

 `$ oc delete sc $SC`

6. Delete the symlinks created by the LocalVolumeSet.

   ```
   [[ ! -z $SC ]] && for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/${i} -- chroot /host rm -rfv /mnt/local-storage/${SC}/; done
   ```

7. Delete LocalVolumeDiscovery.

 `$ oc delete localvolumediscovery.local.storage.openshift.io/auto-discover-devices -n openshift-local-storage`

8. Removing LocalVolume resources (if any).

 Use the following steps to remove the LocalVolume resources used to provision PVs in the current or previous OpenShift Container Storage version. Also, ensure that these resources are not being used by other tenants in the cluster.

 For each of the local volumes, perform the following:

 a. Identify the LocalVolume and the corresponding StorageClassName being used by OpenShift Container Storage.

 b. Set the variable LV to the name of the LocalVolume and variable SC to the name of the StorageClass

 For example:

   ```
   $ LV=local-block
   $ SC=localblock
   ```

 c. Delete the local volume resource.

   ```
   $ oc delete localvolume -n local-storage --wait=true $LV
   ```

 d. Delete the remaining PVs and StorageClasses if they exist.

   ```
   $ oc delete pv -l storage.openshift.com/local-volume-owner-name=${LV} --wait --timeout=5m
   $ oc delete storageclass $SC --wait --timeout=5m
   ```

 e. Clean up the artifacts from the storage nodes for that resource.

   ```
   $ [[ ! -z $SC ]] && for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/${i} -- chroot /host rm -rfv /mnt/local-storage/${SC}/; done
   ```

 Example output:
Starting pod/node-xxx-debug ...
To use host binaries, run `chroot /host`
removed `/mnt/local-storage/localblock/nvme2n1`
removed directory `/mnt/local-storage/localblock`

Removing debug pod ...
Starting pod/node-yyy-debug ...
To use host binaries, run `chroot /host`
removed `/mnt/local-storage/localblock/nvme2n1`
removed directory `/mnt/local-storage/localblock`

Removing debug pod ...
Starting pod/node-zzz-debug ...
To use host binaries, run `chroot /host`
removed `/mnt/local-storage/localblock/nvme2n1`
removed directory `/mnt/local-storage/localblock`

Removing debug pod ...

5.2. REMOVING MONITORING STACK FROM OPENShift CONTAINER STORAGE

Use this section to clean up the monitoring stack from OpenShift Container Storage.

The PVCs that are created as a part of configuring the monitoring stack are in the `openshift-monitoring` namespace.

Prerequisites

- PVCs are configured to use OpenShift Container Platform monitoring stack.
 For information, see configuring monitoring stack.

Procedure

1. List the pods and PVCs that are currently running in the `openshift-monitoring` namespace.

   ```bash
   $ oc get pod,pvc -n openshift-monitoring
   NAME                           READY   STATUS    RESTARTS   AGE
   pod/alertmanager-main-0         3/3     Running   0          8d
   pod/alertmanager-main-1         3/3     Running   0          8d
   pod/alertmanager-main-2         3/3     Running   0          8d
   pod/cluster-monitoring-operator-84457656d-pkrxm        1/1     Running   0          8d
   pod/grafana-79ccf6689f-2ll28    2/2     Running   0          8d
   pod/kube-state-metrics-7d86fb966-rvd9w                 3/3     Running   0          8d
   pod/node-exporter-25894         2/2     Running   0          8d
   pod/node-exporter-4dsd7         2/2     Running   0          8d
   pod/node-exporter-6p4zc         2/2     Running   0          8d
   pod/node-exporter-jbjvg         2/2     Running   0          8d
   pod/node-exporter-jj4t5         2/2     Running   0          8d
   pod/node-exporter-k856s         2/2     Running   0          6d18h
   pod/node-exporter-rf8gn         2/2     Running   0          8d
   pod/node-exporter-rmb5m         2/2     Running   0          6d18h
   ```
2. Edit the monitoring configmap.

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

3. Remove any config sections that reference the OpenShift Container Storage storage classes as shown in the following example and save it.

Before editing
In this example, alertmanagerMain and prometheusK8s monitoring components are using the OpenShift Container Storage PVCs.

4. Delete relevant PVCs. Make sure you delete all the PVCs that are consuming the storage classes.

 $ oc delete -n openshift-monitoring pvc <pvc-name> --wait=true --timeout=5m

5.3. REMOVING OPENSHIFT CONTAINER PLATFORM REGISTRY FROM OPENSHIFT CONTAINER STORAGE

Use this section to clean up OpenShift Container Platform registry from OpenShift Container Storage. If you want to configure an alternative storage, see image registry

The PVCs that are created as a part of configuring OpenShift Container Platform registry are in the openshift-image-registry namespace.

Prerequisites

- The image registry should have been configured to use an OpenShift Container Storage PVC.

Procedure

1. Edit the configs.imageregistry.operator.openshift.io object and remove the content in the storage section.

 $ oc edit configs.imageregistry.operator.openshift.io

Before editing
After editing

storage:
 pvc:
 claim: registry-cephfs-rwx-pvc

In this example, the PVC is called `registry-cephfs-rwx-pvc`, which is now safe to delete.

2. Delete the PVC.

   ```
   $ oc delete pvc <pvc-name> -n openshift-image-registry --wait=true --timeout=5m
   ```

5.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSHIFT CONTAINER STORAGE

To clean the cluster logging operator from the OpenShift Container Storage, follow the steps in the procedure.

The PVCs created as a part of configuring cluster logging operator are in the `openshift-logging` namespace.

Prerequisites

- The cluster logging instance must be configured to use OpenShift Container Storage PVCs.

Procedure

1. Remove the `ClusterLogging` instance in the namespace.

   ```
   $ oc delete clusterlogging instance -n openshift-logging --wait=true --timeout=5m
   ```

 The PVCs in the `openshift-logging` namespace are now safe to delete.
2. Delete PVCs.

$ oc delete pvc <pvc-name> -n openshift-logging --wait=true --timeout=5m