Menu Close
Settings Close

Language and Page Formatting Options

Deploying OpenShift Container Storage using IBM Z infrastructure

Red Hat OpenShift Container Storage 4.8

How to install and set up your IBM Z environment

Red Hat Storage Documentation Team

Abstract

Read this document for instructions on installing Red Hat OpenShift Container Storage 4.8 to use local storage on IBM Z infrastructure.
Note
While this document refers only to IBM Z, all information in it also applies to LinuxONE.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.

Providing feedback on Red Hat documentation

We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:

  • For simple comments on specific passages:

    1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition, ensure you see the Feedback button in the upper right corner of the document.
    2. Use your mouse cursor to highlight the part of text that you want to comment on.
    3. Click the Add Feedback pop-up that appears below the highlighted text.
    4. Follow the displayed instructions.
  • For submitting more complex feedback, create a Bugzilla ticket:

    1. Go to the Bugzilla website.
    2. As the Component, use Documentation.
    3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
    4. Click Submit Bug.

Preface

Red Hat OpenShift Container Storage 4.8 supports deployment on existing Red Hat OpenShift Container Platform (RHOCP) IBM Z clusters in connected or disconnected environments along with out-of-the-box support for proxy environments.

Note

Only internal Openshift Container Storage clusters are supported on IBM Z. See Planning your deployment and Preparing to deploy OpenShift Container Storage for more information about deployment requirements.

To deploy OpenShift Container Storage, follow the appropriate deployment process for your environment:

Chapter 1. Preparing to deploy OpenShift Container Storage

When you deploy OpenShift Container Storage on OpenShift Container Platform using local storage devices, you can create internal cluster resources. This approach internally provisions base services. Then all applications can access additional storage classes.

Before you begin the deployment of Red Hat OpenShift Container Storage using local storage, ensure that your resource requirements are met. See requirements for installing OpenShift Container Storage using local storage devices.

After you have addressed the above, follow these steps in the order given:

1.1. Requirements for installing OpenShift Container Storage using local storage devices

Node requirements

The cluster must consist of at least three OpenShift Container Platform worker nodes with locally attached-storage devices on each of them.

  • Each of the three selected nodes must have at least one raw block device available to be used by OpenShift Container Storage.
  • The devices you use must be empty; the disks must not include physical volumes (PVs), volume groups (VGs), or logical volumes (LVs) remaining on the disk.

For more information, see the Resource requirements section in the Planning guide.

  • For storage nodes, FCP storage devices are required.
  • Multicloud Object Gateway is not supported.

Minimum starting node requirements [Technology Preview]

An OpenShift Container Storage cluster is deployed with minimum configuration when the standard deployment resource requirement is not met.

For more information, see Resource requirements section in the Planning guide.

Chapter 2. Deploy OpenShift Container Storage using local storage devices

Deploying OpenShift Container Storage on OpenShift Container Platform using local storage devices provides you with the option to create internal cluster resources. Follow this deployment method to use local storage to back persistent volumes for your OpenShift Container Platform applications.

Use this section to deploy OpenShift Container Storage on IBM Z infrastructure where OpenShift Container Platform is already installed.

2.1. Installing Red Hat OpenShift Container Storage Operator

You can install Red Hat OpenShift Container Storage Operator using the Red Hat OpenShift Container Platform Operator Hub.

Prerequisites

  • Access to an OpenShift Container Platform cluster using an account with cluster-admin and operator installation permissions.
  • You have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.
  • You have satisfied any additional requirements required. For more information, see Planning your deployment.
Note
  • When you need to override the cluster-wide default node selector for OpenShift Container Storage, you can use the following command to specify a blank node selector for the openshift-storage namespace (create openshift-storage namespace in this case):

    $ oc annotate namespace openshift-storage openshift.io/node-selector=
  • Taint a node as infra to ensure only Red Hat OpenShift Container Storage resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Container Storage chapter in Managing and Allocating Storage Resources guide.

Procedure

  1. Log in to OpenShift Web Console.
  2. Click OperatorsOperatorHub.
  3. Search for OpenShift Container Storage from the list of operators and click on it.
  4. Click Install.
  5. Set the following options on the Install Operator page:

    1. Channel as stable-4.8.
    2. Installation Mode as A specific namespace on the cluster.
    3. Installed Namespace as Operator recommended namespace openshift-storage. If Namespace openshift-storage does not exist, it will be created during the operator installation.
    4. Approval Strategy as Automatic or Manual.
    5. Click Install.

      If you select Automatic updates, the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your operator without any intervention.

      If you select Manual updates, the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to have the operator updated to the new version.

Verification step

  • Verify that the OpenShift Container Storage Operator shows a green tick indicating successful installation.

2.2. Installing Local Storage Operator

You can install the Local Storage Operator using the Red Hat OpenShift Container Platform Operator Hub.

Prerequisite

  • Access to an OpenShift Container Platform cluster using an account with cluster-admin and Operator installation permissions.

Procedure

  1. Log in to the OpenShift Web Console.
  2. Click Operators → OperatorHub.
  3. Type local storage in the Filter by keyword…​ box to search for Local Storage operator from the list of operators and click on it.
  4. Click Install.
  5. Set the following options on the Install Operator page:

    1. Channel as stable-4.8.
    2. Installation Mode as A specific namespace on the cluster.
    3. Installed Namespace as Operator recommended namespace openshift-local-storage.
    4. Approval Strategy as Automatic.
  6. Click Install.

Verification step

  • Verify that the Local Storage Operator shows the Status as Succeeded.

2.3. Finding available storage devices (optional)

This step is additional information and can be skipped as the disks are automatically discovered during storage cluster creation. Use this procedure to identify the device names for each of the three or more worker nodes that you have labeled with the OpenShift Container Storage label cluster.ocs.openshift.io/openshift-storage='' before creating Persistent Volumes (PV) for IBM Z.

Procedure

  1. List and verify the name of the worker nodes with the OpenShift Container Storage label.

    $ oc get nodes -l=cluster.ocs.openshift.io/openshift-storage=

    Example output:

    NAME          STATUS   ROLES    AGE     VERSION
    bmworker01    Ready    worker   6h45m   v1.16.2
    bmworker02    Ready    worker   6h45m   v1.16.2
    bmworker03    Ready    worker   6h45m   v1.16.2
  2. Log in to each worker node that is used for OpenShift Container Storage resources and find the unique by-id device name for each available raw block device.

    $ oc debug node/<node name>

    Example output:

    $ oc debug node/bmworker01
    Starting pod/bmworker01-debug ...
    To use host binaries, run `chroot /host`
    Pod IP: 10.0.135.71
    If you don't see a command prompt, try pressing enter.
    sh-4.2# chroot /host
    sh-4.4# lsblk
    NAME                         MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
    loop0                          7:0    0   500G  0 loop
    sda                            8:0    0   120G  0 disk
    |-sda1                         8:1    0   384M  0 part /boot
    `-sda4                         8:4    0 119.6G  0 part
    `-coreos-luks-root-nocrypt   253:0    0 119.6G  0 dm   /sysroot
    sdb                            8:16   0   500G  0 disk

    In this example, for bmworker01, the available local device is sdb.

  3. Identify the unique ID for each of the devices selected in Step 2.

    sh-4.4#ls -l /dev/disk/by-id/  | grep sdb
    lrwxrwxrwx. 1 root root  9 Feb  3 16:49 scsi-360050763808104bc2800000000000259 -> ../../sdb
    lrwxrwxrwx. 1 root root  9 Feb  3 16:49 scsi-SIBM_2145_00e020412f0aXX00 -> ../../sdb
    lrwxrwxrwx. 1 root root  9 Feb  3 16:49 scsi-0x60050763808104bc2800000000000259 -> ../../sdb

    In the above example, the ID for the local device sdb

    scsi-0x60050763808104bc2800000000000259
  4. Repeat the above step to identify the device ID for all the other nodes that have the storage devices to be used by OpenShift Container Storage. See this Knowledge Base article for more details.

2.4. Creating OpenShift Container Storage cluster on IBM Z

Use this procedure to create storage cluster on IBM Z.

Prerequisites

Procedure

  1. Log into the OpenShift Web Console.
  2. Click Operators → Installed Operators to view all the installed operators.

    Ensure that the Project selected is openshift-storage.

  3. Click OpenShift Container Storage.
  4. Click Create Instance link of Storage Cluster.
  5. Select Internal-Attached devices for the Select Mode. By default, Internal is selected.
  6. Create a storage cluster using the wizard that includes disk discovery, storage class creation, and storage cluster creation.

    You are prompted to install the Local Storage Operator if it is not already installed. Click Install and install the operator as described in Installing Local Storage Operator.

    Discover disks

    You can discover a list of potentially usable disks on the selected nodes. Block disks and partitions that are not in use and available for provisioning persistent volumes (PVs) are discovered.

    1. Choose one of the following:

      • All nodes to discover disks in all the nodes.
      • Select nodes to discover disks from a subset of the listed nodes.

        To find specific worker nodes in the cluster, you can filter nodes on the basis of Name or Label. Name allows you to search by name of the node and Label allows you to search by selecting the predefined label.

        If the nodes selected do not match the OpenShift Container Storage cluster requirement of an aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster will be deployed. For minimum starting node requirements, see Resource requirements section in Planning guide.

        Note

        If the nodes to be selected are tainted and not discovered in the wizard, follow the steps provided in the Red Hat Knowledgebase Solution as a workaround to add tolerations for Local Storage Operator resources.

    2. Click Next.
    Create Storage Class

    You can create a dedicated storage class to consume storage by filtering a set of storage volumes.

    1. Enter the Volume Set Name.
    2. Enter the Storage Class Name. By default, the volume set name appears for the storage class name.
    3. The nodes selected for disk discovery in the earlier step are displayed in the Filter Disks section. Choose one of the following:

      • All nodes to select all the nodes for which you discovered the devices.
      • Select nodes to select a subset of the nodes for which you discovered the devices.

        To find specific worker nodes in the cluster, you can filter nodes on the basis of Name or Label. Name allows you to search by name of the node and Label allows you to search by selecting the predefined label.

        It is recommended that the worker nodes are spread across three different physical nodes, racks or failure domains for high availability.

        Note

        Ensure OpenShift Container Storage rack labels are aligned with physical racks in the datacenter to prevent a double node failure at the failure domain level.

    4. Select the required Disk Type. The following options are available:

      All

      Selects all types of disks present on the nodes. By default, this option is selected.

      SSD/NVME

      Selects only SSD NVME type of disks.

      HDD

      Selects only HDD type of disks.

    5. In the Advanced section, you can set the following:

      Volume Mode

      Block is selected by default.

      Disk Size

      Minimum and maximum available size of the device that needs to be included.

      Note

      You must set a minimum size of 100GB for the device.

      Max Disk Limit

      This indicates the maximum number of PVs that can be created on a node. If this field is left empty, then PVs are created for all the available disks on the matching nodes.

    6. (Optional) You can view the selected capacity of the disks on the selected nodes using the Select Capacity chart.

      This chart might take a few minutes to reflect the disks that are discovered in the previous step.

      You can click on the Nodes and Disks links on the chart to bring up the list of nodes and disks to view more details.

    7. Click Next.
    8. Click Yes in the message alert to confirm the creation of the storage class.

      After the local volume set and storage class are created, it is not possible to go back to the step.

    Create Storage Cluster
    1. Select the required storage class.

      You might need to wait a couple of minutes for the storage nodes corresponding to the selected storage class to get populated. The nodes corresponding to the storage class are displayed based on the storage class that you selected from the drop down list.

    2. Click Next.
    3. (Optional) In the Encryption section, set the toggle to Enabled to enable data encryption on the cluster. Security configuration:
    4. Click Save.
    5. Click Next to review your storage cluster.
    6. Click Create.

      The Create button is enabled only when a minimum of three nodes are selected. A new storage cluster with the number of volumes equal to the total number of devices attached to each node is created. The default configuration uses a replication factor of 1.

      To expand the capacity of the initial cluster, see Scaling Storage guide.

Chapter 3. Verifying OpenShift Container Storage deployment for Internal-attached devices mode

Use this section to verify that OpenShift Container Storage is deployed correctly.

3.1. Verifying the state of the pods

To verify that the pods of OpenShift Containers Storage are in running state, follow the below procedure:

Procedure

  1. Log in to OpenShift Web Console.
  2. Click Workloads → Pods from the left pane of the OpenShift Web Console.
  3. Select openshift-storage from the Project drop down list.

    For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see Table 3.1, “Pods corresponding to OpenShift Container storage cluster”.

  4. Click on the Running and Completed tabs to verify that the pods are running and in a completed state:

    Table 3.1. Pods corresponding to OpenShift Container storage cluster

    ComponentCorresponding pods

    OpenShift Container Storage Operator

    • ocs-operator-* (1 pod on any worker node)
    • ocs-metrics-exporter-*

    (1 pod on any worker node)

    Rook-ceph Operator

    rook-ceph-operator-*

    (1 pod on any worker node)

    Multicloud Object Gateway

    • noobaa-operator-* (1 pod on any worker node)
    • noobaa-core-* (1 pod on any storage node)
    • nooba-db-* (1 pod on any storage node)
    • noobaa-endpoint-* (1 pod on any storage node)

    MON

    rook-ceph-mon-*

    (3 pods distributed across storage nodes)

    MGR

    rook-ceph-mgr-*

    (1 pod on any storage node)

    MDS

    rook-ceph-mds-ocs-storagecluster-cephfilesystem-*

    (2 pods distributed across storage nodes)

    RGW

    rook-ceph-rgw-ocs-storagecluster-cephobjectstore-* (1 pod on any storage node)

    CSI

    • cephfs

      • csi-cephfsplugin-* (1 pod on each worker node)
      • csi-cephfsplugin-provisioner-* (2 pods distributed across storage nodes)
    • rbd

      • csi-rbdplugin-* (1 pod on each worker node)
      • csi-rbdplugin-provisioner-* (2 pods distributed across storage nodes)

    rook-ceph-crashcollector

    rook-ceph-crashcollector-*

    (1 pod on each storage node)

    OSD

    • rook-ceph-osd-* (1 pod for each device)
    • rook-ceph-osd-prepare-ocs-deviceset-* (1 pod for each device)

3.2. Verifying the OpenShift Container Storage cluster is healthy

To verify that the cluster of OpenShift Container Storage is healthy, follow the steps in the procedure.

Procedure

  1. Click Storage → Overview and click the Block and File tab.
  2. In the Status card, verify that Storage Cluster and Data Resiliency has a green tick mark.
  3. In the Details card, verify that the cluster information is displayed.

For more information on the health of the OpenShift Container Storage clusters using the Block and File dashboard, see Monitoring OpenShift Container Storage.

3.3. Verifying that the OpenShift Container Storage specific storage classes exist

To verify the storage classes exists in the cluster, follow the steps in the procedure.

Procedure

  1. Click Storage → Storage Classes from the OpenShift Web Console.
  2. Verify that the following storage classes are created with the OpenShift Container Storage cluster creation:

    • ocs-storagecluster-ceph-rbd
    • ocs-storagecluster-cephfs
    • openshift-storage.noobaa.io
    • ocs-storagecluster-ceph-rgw

Chapter 4. Uninstalling OpenShift Container Storage

4.1. Uninstalling OpenShift Container Storage in Internal-attached devices mode

Use the steps in this section to uninstall OpenShift Container Storage.

Uninstall Annotations

Annotations on the Storage Cluster are used to change the behavior of the uninstall process. To define the uninstall behavior, the following two annotations have been introduced in the storage cluster:

  • uninstall.ocs.openshift.io/cleanup-policy: delete
  • uninstall.ocs.openshift.io/mode: graceful

The below table provides information on the different values that can used with these annotations:

Table 4.1. uninstall.ocs.openshift.io uninstall annotations descriptions

AnnotationValueDefaultBehavior

cleanup-policy

delete

Yes

Rook cleans up the physical drives and the DataDirHostPath

cleanup-policy

retain

No

Rook does not clean up the physical drives and the DataDirHostPath

mode

graceful

Yes

Rook and NooBaa pauses the uninstall process until the PVCs and the OBCs are removed by the administrator/user

mode

forced

No

Rook and NooBaa proceeds with uninstall even if PVCs/OBCs provisioned using Rook and NooBaa exist respectively.

You can change the cleanup policy or the uninstall mode by editing the value of the annotation by using the following commands:

$ oc -n openshift-storage annotate storagecluster ocs-storagecluster uninstall.ocs.openshift.io/cleanup-policy="retain" --overwrite
storagecluster.ocs.openshift.io/ocs-storagecluster annotated
$ oc -n openshift-storage annotate storagecluster ocs-storagecluster uninstall.ocs.openshift.io/mode="forced" --overwrite
storagecluster.ocs.openshift.io/ocs-storagecluster annotated

Prerequisites

  • Ensure that the OpenShift Container Storage cluster is in a healthy state. The uninstall process can fail when some of the pods are not terminated successfully due to insufficient resources or nodes. In case the cluster is in an unhealthy state, contact Red Hat Customer Support before uninstalling OpenShift Container Storage.
  • Ensure that applications are not consuming persistent volume claims (PVCs) or object bucket claims (OBCs) using the storage classes provided by OpenShift Container Storage.
  • If any custom resources (such as custom storage classes, cephblockpools) were created by the admin, they must be deleted by the admin after removing the resources which consumed them.

Procedure

  1. Delete the volume snapshots that are using OpenShift Container Storage.

    1. List the volume snapshots from all the namespaces.

      $ oc get volumesnapshot --all-namespaces
    2. From the output of the previous command, identify and delete the volume snapshots that are using OpenShift Container Storage.

      $ oc delete volumesnapshot <VOLUME-SNAPSHOT-NAME> -n <NAMESPACE>
  2. Delete PVCs and OBCs that are using OpenShift Container Storage.

    In the default uninstall mode (graceful), the uninstaller waits till all the PVCs and OBCs that use OpenShift Container Storage are deleted.

    If you wish to delete the Storage Cluster without deleting the PVCs beforehand, you may set the uninstall mode annotation to "forced" and skip this step. Doing so will result in orphan PVCs and OBCs in the system.

    1. Delete OpenShift Container Platform monitoring stack PVCs using OpenShift Container Storage.

      See Removing monitoring stack from OpenShift Container Storage

    2. Delete OpenShift Container Platform Registry PVCs using OpenShift Container Storage.

      Removing OpenShift Container Platform registry from OpenShift Container Storage

    3. Delete OpenShift Container Platform logging PVCs using OpenShift Container Storage.

      Removing the cluster logging operator from OpenShift Container Storage

  3. Delete the Storage Cluster object and wait for the removal of the associated resources.

    $ oc delete -n openshift-storage storagecluster --all --wait=true
  4. Check for cleanup pods if the uninstall.ocs.openshift.io/cleanup-policy was set to delete(default) and ensure that their status is Completed.

    $ oc get pods -n openshift-storage | grep -i cleanup
    NAME                                READY   STATUS      RESTARTS   AGE
    cluster-cleanup-job-<xx>        	0/1     Completed   0          8m35s
    cluster-cleanup-job-<yy>     		0/1     Completed   0          8m35s
    cluster-cleanup-job-<zz>     		0/1     Completed   0          8m35s
  5. Confirm that the directory /var/lib/rook is now empty. This directory will be empty only if the uninstall.ocs.openshift.io/cleanup-policy annotation was set to delete(default).

    $ for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/${i} -- chroot /host  ls -l /var/lib/rook; done
  6. If encryption was enabled at the time of install, remove dm-crypt managed device-mapper mapping from OSD devices on all the OpenShift Container Storage nodes.

    1. Create a debug pod and chroot to the host on the storage node.

      $ oc debug node/<node name>
      $ chroot /host
    2. Get Device names and make note of the OpenShift Container Storage devices.

      $ dmsetup ls
      ocs-deviceset-0-data-0-57snx-block-dmcrypt (253:1)
    3. Remove the mapped device.

      $ cryptsetup luksClose --debug --verbose ocs-deviceset-0-data-0-57snx-block-dmcrypt
      Note

      If the above command gets stuck due to insufficient privileges, run the following commands:

      • Press CTRL+Z to exit the above command.
      • Find PID of the process which was stuck.

        $ ps -ef | grep crypt
      • Terminate the process using kill command.

        $ kill -9 <PID>
      • Verify that the device name is removed.

        $ dmsetup ls
  7. Delete the namespace and wait till the deletion is complete. You will need to switch to another project if openshift-storage is the active project.

    For example:

    $ oc project default
    $ oc delete project openshift-storage

    The project is deleted if the following command returns a NotFound error.

    $ oc get project openshift-storage
    Note

    While uninstalling OpenShift Container Storage, if namespace is not deleted completely and remains in Terminating state, perform the steps in Troubleshooting and deleting remaining resources during Uninstall to identify objects that are blocking the namespace from being terminated.

  8. Delete local storage operator configurations if you have deployed OpenShift Container Storage using local storage devices. See Removing local storage operator configurations.
  9. Unlabel the storage nodes.

    $ oc label nodes  --all cluster.ocs.openshift.io/openshift-storage-
    $ oc label nodes  --all topology.rook.io/rack-
  10. Remove the OpenShift Container Storage taint if the nodes were tainted.

    $ oc adm taint nodes --all node.ocs.openshift.io/storage-
  11. Confirm all PVs provisioned using OpenShift Container Storage are deleted. If there is any PV left in the Released state, delete it.

    $ oc get pv
    $ oc delete pv <pv name>
  12. Delete the Multicloud Object Gateway storageclass.

    $ oc delete storageclass openshift-storage.noobaa.io --wait=true --timeout=5m
  13. Remove CustomResourceDefinitions.

    $ oc delete crd backingstores.noobaa.io bucketclasses.noobaa.io cephblockpools.ceph.rook.io cephclusters.ceph.rook.io cephfilesystems.ceph.rook.io cephnfses.ceph.rook.io cephobjectstores.ceph.rook.io cephobjectstoreusers.ceph.rook.io noobaas.noobaa.io ocsinitializations.ocs.openshift.io storageclusters.ocs.openshift.io cephclients.ceph.rook.io cephobjectrealms.ceph.rook.io cephobjectzonegroups.ceph.rook.io cephobjectzones.ceph.rook.io cephrbdmirrors.ceph.rook.io --wait=true --timeout=5m
  14. To ensure that OpenShift Container Storage is uninstalled completely, on the OpenShift Container Platform Web Console,

    1. Click Storage.
    2. Verify that Overview no longer appears under Storage.

4.1.1. Removing local storage operator configurations

Use the instructions in this section only if you have deployed OpenShift Container Storage using local storage devices.

Note

For OpenShift Container Storage deployments only using localvolume resources, go directly to step 8.

Procedure

  1. Identify the LocalVolumeSet and the corresponding StorageClassName being used by OpenShift Container Storage.

    $ oc get localvolumesets.local.storage.openshift.io -n openshift-local-storage
  2. Set the variable SC to the StorageClass providing the LocalVolumeSet.

    $ export SC="<StorageClassName>"
  3. List and note the devices to be cleaned up later. Inorder to list the device ids of the disks, please follow the procedure mentioned here, See Find the available storage devices.

    Example output:

    /dev/disk/by-id/scsi-360050763808104bc28000000000000eb
    /dev/disk/by-id/scsi-360050763808104bc28000000000000ef
    /dev/disk/by-id/scsi-360050763808104bc28000000000000f3
  4. Delete the LocalVolumeSet.

    $ oc delete localvolumesets.local.storage.openshift.io <name-of-volumeset> -n openshift-local-storage
  5. Delete the local storage PVs for the given StorageClassName.

    $ oc get pv | grep $SC | awk '{print $1}'| xargs oc delete pv
  6. Delete the StorageClassName.

    $ oc delete sc $SC
  7. Delete the symlinks created by the LocalVolumeSet.

    [[ ! -z $SC ]] && for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/${i} -- chroot /host rm -rfv /mnt/local-storage/${SC}/; done
  8. Delete LocalVolumeDiscovery.

    $ oc delete localvolumediscovery.local.storage.openshift.io/auto-discover-devices -n openshift-local-storage
  9. Removing LocalVolume resources (if any).

    Use the following steps to remove the LocalVolume resources that were used to provision PVs in the current or previous OpenShift Container Storage version. Also, ensure that these resources are not being used by other tenants on the cluster.

    For each of the local volumes, do the following:

    1. Identify the LocalVolume and the corresponding StorageClassName being used by OpenShift Container Storage.

      $ oc get localvolume.local.storage.openshift.io -n openshift-local-storage
    2. Set the variable LV to the name of the LocalVolume and variable SC to the name of the StorageClass

      For example:

      $ LV=local-block
      $ SC=localblock
    3. List and note the devices to be cleaned up later.

      $ oc get localvolume -n openshift-local-storage $LV -o jsonpath='{ .spec.storageClassDevices[].devicePaths[] }{"\n"}'

      Example output:

      /dev/sdb
      /dev/sdc
      /dev/sdd
      /dev/sde
    4. Delete the local volume resource.

      $ oc delete localvolume -n openshift-local-storage --wait=true $LV
    5. Delete the remaining PVs and StorageClasses if they exist.

      $ oc delete pv -l storage.openshift.com/local-volume-owner-name=${LV} --wait --timeout=5m
      $ oc delete storageclass $SC --wait --timeout=5m
    6. Clean up the artifacts from the storage nodes for that resource.

      $ [[ ! -z $SC ]] && for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/${i} -- chroot /host rm -rfv /mnt/local-storage/${SC}/; done

      Example output:

      Starting pod/node-xxx-debug ...
      To use host binaries, run `chroot /host`
      removed '/mnt/local-storage/localblock/nvme2n1'
      removed directory '/mnt/local-storage/localblock'
      
      Removing debug pod ...
      Starting pod/node-yyy-debug ...
      To use host binaries, run `chroot /host`
      removed '/mnt/local-storage/localblock/nvme2n1'
      removed directory '/mnt/local-storage/localblock'
      
      Removing debug pod ...
      Starting pod/node-zzz-debug ...
      To use host binaries, run `chroot /host`
      removed '/mnt/local-storage/localblock/nvme2n1'
      removed directory '/mnt/local-storage/localblock'
      
      Removing debug pod ...
  10. Wipe the disks for each of the local volumesets or local volumes listed in step 1 and 8 respectively so that they can be reused.

    1. List the storage nodes.

      oc get nodes -l cluster.ocs.openshift.io/openshift-storage=

      Example output:

      NAME      STATUS   ROLES    AGE     VERSION
      node-xxx  Ready    worker   4h45m  v1.18.3+6c42de8
      node-yyy  Ready    worker   4h46m  v1.18.3+6c42de8
      node-zzz  Ready    worker   4h45m  v1.18.3+6c42de8
    2. Obtain the node console and execute chroot /host command when the prompt appears.

      $ oc debug node/node-xxx
      Starting pod/node-xxx-debug …
      To use host binaries, run `chroot /host`
      Pod IP: w.x.y.z
      If you don't see a command prompt, try pressing enter.
      sh-4.2# chroot /host
    3. Store the disk paths in the DISKS variable within quotes. For the list of disk paths, see step 3 and step 8.c for local volumeset and local volume respectively.

      Example output:

      sh-4.4# DISKS="/dev/disk/by-id/scsi-360050763808104bc28000000000000eb /dev/disk/by-id/scsi-360050763808104bc28000000000000ef /dev/disk/by-id/scsi-360050763808104bc28000000000000f3 "
      or
      sh-4.2# DISKS="/dev/sdb /dev/sdc /dev/sdd /dev/sde ".
    4. Run sgdisk --zap-all on all the disks.

      sh-4.4# for disk in $DISKS; do sgdisk --zap-all $disk;done

      Example output:

      Creating new GPT entries.
      GPT data structures destroyed! You may now partition the disk using fdisk or
      other utilities.
      Creating new GPT entries.
      GPT data structures destroyed! You may now partition the disk using fdisk or
      other utilities.
      Creating new GPT entries.
      GPT data structures destroyed! You may now partition the disk using fdisk or
      other utilities.
      Creating new GPT entries.
      GPT data structures destroyed! You may now partition the disk using fdisk or
      other utilities.
    5. Exit the shell and repeat for the other nodes.

      sh-4.4# exit
      exit
      sh-4.2# exit
      exit
      Removing debug pod ...
  11. Delete the openshift-local-storage namespace and wait till the deletion is complete. You will need to switch to another project if the openshift-local-storage namespace is the active project.

    For example:

    $ oc project default
    $ oc delete project openshift-local-storage --wait=true --timeout=5m

    The project is deleted if the following command returns a NotFound error.

    $ oc get project openshift-local-storage

4.2. Removing monitoring stack from OpenShift Container Storage

Use this section to clean up the monitoring stack from OpenShift Container Storage.

The PVCs that are created as a part of configuring the monitoring stack are in the openshift-monitoring namespace.

Prerequisites

Procedure

  1. List the pods and PVCs that are currently running in the openshift-monitoring namespace.

    $ oc get pod,pvc -n openshift-monitoring
    NAME                           READY   STATUS    RESTARTS   AGE
    pod/alertmanager-main-0         3/3     Running   0          8d
    pod/alertmanager-main-1         3/3     Running   0          8d
    pod/alertmanager-main-2         3/3     Running   0          8d
    pod/cluster-monitoring-
    operator-84457656d-pkrxm        1/1     Running   0          8d
    pod/grafana-79ccf6689f-2ll28    2/2     Running   0          8d
    pod/kube-state-metrics-
    7d86fb966-rvd9w                 3/3     Running   0          8d
    pod/node-exporter-25894         2/2     Running   0          8d
    pod/node-exporter-4dsd7         2/2     Running   0          8d
    pod/node-exporter-6p4zc         2/2     Running   0          8d
    pod/node-exporter-jbjvg         2/2     Running   0          8d
    pod/node-exporter-jj4t5         2/2     Running   0          6d18h
    pod/node-exporter-k856s         2/2     Running   0          6d18h
    pod/node-exporter-rf8gn         2/2     Running   0          8d
    pod/node-exporter-rmb5m         2/2     Running   0          6d18h
    pod/node-exporter-zj7kx         2/2     Running   0          8d
    pod/openshift-state-metrics-
    59dbd4f654-4clng                3/3     Running   0          8d
    pod/prometheus-adapter-
    5df5865596-k8dzn                1/1     Running   0          7d23h
    pod/prometheus-adapter-
    5df5865596-n2gj9                1/1     Running   0          7d23h
    pod/prometheus-k8s-0            6/6     Running   1          8d
    pod/prometheus-k8s-1            6/6     Running   1          8d
    pod/prometheus-operator-
    55cfb858c9-c4zd9                1/1     Running   0          6d21h
    pod/telemeter-client-
    78fc8fc97d-2rgfp                3/3     Running   0          8d
    
    NAME                                                              STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS                  AGE
    persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-0   Bound    pvc-0d519c4f-15a5-11ea-baa0-026d231574aa   40Gi       RWO            ocs-storagecluster-ceph-rbd   8d
    persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-1   Bound    pvc-0d5a9825-15a5-11ea-baa0-026d231574aa   40Gi       RWO            ocs-storagecluster-ceph-rbd   8d
    persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-2   Bound    pvc-0d6413dc-15a5-11ea-baa0-026d231574aa   40Gi       RWO            ocs-storagecluster-ceph-rbd   8d
    persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-0        Bound    pvc-0b7c19b0-15a5-11ea-baa0-026d231574aa   40Gi       RWO            ocs-storagecluster-ceph-rbd   8d
    persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-1        Bound    pvc-0b8aed3f-15a5-11ea-baa0-026d231574aa   40Gi       RWO            ocs-storagecluster-ceph-rbd   8d
  2. Edit the monitoring configmap.

    $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
  3. Remove any config sections that reference the OpenShift Container Storage storage classes as shown in the following example and save it.

    Before editing

    .
    .
    .
    apiVersion: v1
    data:
      config.yaml: |
        alertmanagerMain:
          volumeClaimTemplate:
            metadata:
              name: my-alertmanager-claim
            spec:
              resources:
                requests:
                  storage: 40Gi
              storageClassName: ocs-storagecluster-ceph-rbd
        prometheusK8s:
          volumeClaimTemplate:
            metadata:
              name: my-prometheus-claim
            spec:
              resources:
                requests:
                  storage: 40Gi
              storageClassName: ocs-storagecluster-ceph-rbd
    kind: ConfigMap
    metadata:
      creationTimestamp: "2019-12-02T07:47:29Z"
      name: cluster-monitoring-config
      namespace: openshift-monitoring
      resourceVersion: "22110"
      selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config
      uid: fd6d988b-14d7-11ea-84ff-066035b9efa8
    .
    .
    .

    After editing

    .
    .
    .
    apiVersion: v1
    data:
      config.yaml: |
    kind: ConfigMap
    metadata:
      creationTimestamp: "2019-11-21T13:07:05Z"
      name: cluster-monitoring-config
      namespace: openshift-monitoring
      resourceVersion: "404352"
      selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config
      uid: d12c796a-0c5f-11ea-9832-063cd735b81c
    .
    .
    .

    In this example, alertmanagerMain and prometheusK8s monitoring components are using the OpenShift Container Storage PVCs.

  4. Delete relevant PVCs. Make sure you delete all the PVCs that are consuming the storage classes.

    $ oc delete -n openshift-monitoring pvc <pvc-name> --wait=true --timeout=5m

4.3. Removing OpenShift Container Platform registry from OpenShift Container Storage

Use this section to clean up OpenShift Container Platform registry from OpenShift Container Storage. If you want to configure an alternative storage, see image registry

The PVCs that are created as a part of configuring OpenShift Container Platform registry are in the openshift-image-registry namespace.

Prerequisites

  • The image registry should have been configured to use an OpenShift Container Storage PVC.

Procedure

  1. Edit the configs.imageregistry.operator.openshift.io object and remove the content in the storage section.

    $ oc edit configs.imageregistry.operator.openshift.io

    Before editing

    .
    .
    .
    managementState: Managed
    storage:
      pvc:
        claim: registry-cephfs-rwx-pvc
    .
    .
    .

    After editing

    .
    .
    .
    managementState: Removed
    storage:
      emptyDir: {}
    .
    .
    .

    In this example, the PVC is called registry-cephfs-rwx-pvc, which is now safe to delete.

  2. Delete the PVC.

    $ oc delete pvc <pvc-name> -n openshift-image-registry --wait=true --timeout=5m

4.4. Removing the cluster logging operator from OpenShift Container Storage

To clean the cluster logging operator from the OpenShift Container Storage, follow the steps in the procedure.

The PVCs created as a part of configuring cluster logging operator are in the openshift-logging namespace.

Prerequisites

  • The cluster logging instance must be configured to use OpenShift Container Storage PVCs.

Procedure

  1. Remove the ClusterLogging instance in the namespace.

    $ oc delete clusterlogging instance -n openshift-logging --wait=true --timeout=5m

    The PVCs in the openshift-logging namespace are now safe to delete.

  2. Delete PVCs.

    $ oc delete pvc <pvc-name> -n openshift-logging --wait=true --timeout=5m