Recovering failed nodes

How to prepare replacement nodes and replace failed nodes
How to prepare replacement nodes and replace failed nodes
Abstract

This document explains how to safely replace a node in a Red Hat OpenShift Container Storage cluster.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE .. 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ... 4
PREFACE .. 5

CHAPTER 1. OPENSİFT CONTAINER STORAGE DEPLOYED ON AWS 6
 1.1. REPLACING AN OPERATIONAL AWS NODE ON USER-PROVISIONED INFRASTRUCTURE 6
 1.2. REPLACING AN OPERATIONAL AWS NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE 8
 1.3. REPLACING A FAILED AWS NODE ON USER-PROVISIONED INFRASTRUCTURE 9
 1.4. REPLACING A FAILED AWS NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE 11

CHAPTER 2. OPENSİFT CONTAINER STORAGE DEPLOYED ON VMWARE 13
 2.1. REPLACING AN OPERATIONAL VMWARE NODE ON USER-PROVISIONED INFRASTRUCTURE 13
 2.2. REPLACING AN OPERATIONAL VMWARE NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE 15
 2.3. REPLACING A FAILED VMWARE NODE ON USER-PROVISIONED INFRASTRUCTURE 17
 2.4. REPLACING A FAILED VMWARE NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE 18

CHAPTER 3. OPENSİFT CONTAINER STORAGE DEPLOYED ON RED HAT VIRTUALIZATION 21
 3.1. REPLACING AN OPERATIONAL RED HAT VIRTUALIZATION NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE 21
 3.2. REPLACING A FAILED RED HAT VIRTUALIZATION NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE 22

CHAPTER 4. OPENSİFT CONTAINER STORAGE DEPLOYED ON MICROSOFT AZURE 25
 4.1. REPLACING OPERATIONAL NODES ON AZURE INSTALLER-PROVISIONED INFRASTRUCTURE 25
 4.2. REPLACING FAILED NODES ON AZURE INSTALLER-PROVISIONED INFRASTRUCTURE 26

CHAPTER 5. OPENSİFT CONTAINER STORAGE DEPLOYED USING LOCAL STORAGE DEVICES 29
 5.1. REPLACING STORAGE NODES ON BARE METAL INFRASTRUCTURE 29
 5.1.1. Replacing an operational node on bare metal user-provisioned infrastructure 29
 5.1.2. Replacing a failed node on bare metal user-provisioned infrastructure 34
 5.2. REPLACING STORAGE NODES ON IBM Z OR LINUXONE INFRASTRUCTURE 39
 5.2.1. Replacing operational nodes on IBM Z or LinuxONE infrastructure 39
 5.2.2. Replacing failed nodes on IBM Z or LinuxONE infrastructure 41
 5.3. REPLACING STORAGE NODES ON AMAZON EC2 INFRASTRUCTURE 42
 5.3.1. Replacing an operational Amazon EC2 node on user-provisioned infrastructure 43
 5.3.2. Replacing an operational Amazon EC2 node on installer-provisioned infrastructure 48
 5.3.3. Replacing a failed Amazon EC2 node on user-provisioned infrastructure 48
 5.3.4. Replacing a failed Amazon EC2 node on installer-provisioned infrastructure 59
 5.4. REPLACING STORAGE NODES ON VMWARE INFRASTRUCTURE 65
 5.4.1. Replacing an operational node on VMware user-provisioned infrastructure 65
 5.4.2. Replacing an operational node on VMware installer-provisioned infrastructure 70
 5.4.3. Replacing a failed node on VMware user-provisioned infrastructure 74
 5.4.4. Replacing a failed node on VMware installer-provisioned infrastructure 79
 5.5. REPLACING STORAGE NODES ON RED HAT VIRTUALIZATION INFRASTRUCTURE 84
 5.5.1. Replacing an operational node on Red Hat Virtualization installer-provisioned infrastructure 84
 5.5.2. Replacing a failed node on Red Hat Virtualization installer-provisioned infrastructure 89
 5.6. REPLACING STORAGE NODES ON IBM POWER SYSTEMS INFRASTRUCTURE 94
 5.6.1. Replacing an operational or failed storage node on IBM Power Systems 94
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:

- For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the *Multi-page HTML* format. In addition, ensure you see the Feedback button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the Add Feedback pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the Bugzilla website.
 2. As the Component, use Documentation.
 3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click Submit Bug.
For OpenShift Container Storage, node replacement can be performed proactively for an operational node and reactively for a failed node for the following deployments:

- For Amazon Web Services (AWS)
 - User-provisioned infrastructure
 - Installer-provisioned infrastructure
- For VMware
 - User-provisioned infrastructure
- For Red Hat Virtualization
 - Installer-provisioned infrastructure
- For Microsoft Azure
 - Installer-provisioned infrastructure
- For local storage devices
 - Bare metal
 - Amazon EC2 I3
 - VMware
 - Red Hat Virtualization
 - IBM Power Systems
- For replacing your storage nodes in external mode, see Red Hat Ceph Storage documentation.
CHAPTER 1. OPENSIFT CONTAINER STORAGE DEPLOYED ON AWS

1.1. REPLACING AN OPERATIONAL AWS NODE ON USER-PROVISIONED INFRASTRUCTURE

Perform this procedure to replace an operational node on AWS user-provisioned infrastructure.

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
- You must be logged into the OpenShift Container Platform (RHOC) cluster.

Procedure

1. Identify the node that needs to be replaced.

2. Mark the node as unschedulable using the following command:

   ```bash
   $ oc adm cordon <node_name>
   ```

3. Drain the node using the following command:

   ```bash
   $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
   ```

 IMPORTANT
 This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

4. Delete the node using the following command:

   ```bash
   $ oc delete nodes <node_name>
   ```

5. Create a new AWS machine instance with the required infrastructure. See Platform requirements.

6. Create a new OpenShift Container Platform node using the new AWS machine instance.

7. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in **Pending** state:

   ```bash
   $ oc get csr
   ```

8. Approve all required OpenShift Container Platform CSRs for the new node:

   ```bash
   $ oc adm certificate approve <Certificate_Name>
   ```
9. Click **Compute → Nodes**, confirm if the new node is in **Ready** state.

10. Apply the OpenShift Container Storage label to the new node.

 From the web user interface

 a. For the new node, click **Action Menu (⋮) → Edit Labels**

 b. Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.

 From the command line interface

 - Execute the following command to apply the OpenShift Container Storage label to the new node:

     ```bash
     $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
     ```

Verification steps

1. Execute the following command and verify that the new node is present in the output:

   ```bash
   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
   ```

2. Click **Workloads → Pods**, confirm that at least the following pods on the new node are in **Running** state:

 - `csi-cephfsplugin-*`
 - `csi-rbdplugin-*`

3. Verify that all other required OpenShift Container Storage pods are in **Running** state.

4. Verify that new OSD pods are running on the replacement node.

   ```bash
   $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
   ```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

 a. For each of the new nodes identified in previous step, do the following:

 i. Create a debug pod and open a chroot environment for the selected host(s).

      ```bash
      $ oc debug node/<node name>
      $ chroot /host
      ```

 ii. Run `lsblk` and check for the “crypt” keyword beside the `ocs-deviceset` name(s)

      ```bash
      $ lsblk
      ```

6. If verification steps fail, **contact Red Hat Support**.
1.2. REPLACING AN OPERATIONAL AWS NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE

Use this procedure to replace an operational node on AWS installer-provisioned infrastructure (IPI).

Procedure

1. Log in to OpenShift Web Console and click **Compute → Nodes**.
2. Identify the node that needs to be replaced. Take a note of its **Machine Name**.
3. Mark the node as unschedulable using the following command:
   ```
   $ oc adm cordon <node_name>
   ```
4. Drain the node using the following command:
   ```
   $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
   ```
 IMPORTANT
 This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.
5. Click **Compute → Machines**. Search for the required machine.
6. Besides the required machine, click the **Action menu (⋯) → Delete Machine**.
7. Click **Delete** to confirm the machine deletion. A new machine is automatically created.
8. Wait for new machine to start and transition into **Running** state.
 IMPORTANT
 This activity may take at least 5-10 minutes or more.
9. Click **Compute → Nodes**, confirm if the new node is in **Ready** state.
10. Apply the OpenShift Container Storage label to the new node using any one of the following:

 From User interface

 a. For the new node, click **Action Menu (⋯) → Edit Labels**
 b. Add **cluster.ocs.openshift.io/openshift-storage** and click **Save**.

 From Command line interface

 • Execute the following command to apply the OpenShift Container Storage label to the new node:
    ```
    $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
    ```
Verification steps

1. Execute the following command and verify that the new node is present in the output:


   ```bash
   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1
   ```

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:
 - csi-cephfsplugin-*
 - csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.


   ```bash
   $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
   ```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
 a. For each of the new nodes identified in previous step, do the following:
 i. Create a debug pod and open a chroot environment for the selected host(s).


         ```bash
         $ oc debug node/<node name>
         $ chroot /host
         ```

 ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)


         ```bash
         $ lsblk
         ```

6. If verification steps fail, contact Red Hat Support.

1.3. REPLACING A FAILED AWS NODE ON USER-PROVISIONED INFRASTRUCTURE

Perform this procedure to replace a failed node which is not operational on AWS user-provisioned infrastructure (UPI) for OpenShift Container Storage.

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
- You must be logged into the OpenShift Container Platform (RHOCBP) cluster.

Procedure

1. Identify the AWS machine instance of the node that needs to be replaced.

2. Log in to AWS and terminate the identified AWS machine instance.
3. Create a new AWS machine instance with the required infrastructure. See platform requirements.

4. Create a new OpenShift Container Platform node using the new AWS machine instance.

5. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

 $ oc get csr

6. Approve all required OpenShift Container Platform CSRs for the new node:

 $ oc adm certificate approve <Certificate_Name>

7. Click Compute → Nodes, confirm if the new node is in Ready state.

8. Apply the OpenShift Container Storage label to the new node using any one of the following:

 From User interface

 a. For the new node, click Action Menu (⋯) → Edit Labels

 b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

 From Command line interface

 - Execute the following command to apply the OpenShift Container Storage label to the new node:

 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

1. Execute the following command and verify that the new node is present in the output:

 $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

 - csi-cephfsplugin-*
 - csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

 $ oc get pods -o wide -n openshift-storage| grep -i new-node-name | grep osd

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted:

 a. For each of the new nodes identified in previous step, do the following:
Create a debug pod and open a chroot environment for the selected host(s).

```bash
$ oc debug node/<node name>
$ chroot /host
```

Run "lsblk" and check for the "crypt" keyword beside the ocs-deviceset name(s)

```bash
$ lsblk
```

6. If verification steps fail, contact Red Hat Support.

1.4. REPLACING A FAILED AWS NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE

Perform this procedure to replace a failed node which is not operational on AWS installer-provisioned infrastructure (IPI) for OpenShift Container Storage.

Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.
2. Identify the faulty node and click on its Machine Name.
3. Click Actions → Edit Annotations, and click Add More.
4. Add `machine.openshift.io/exclude-node-draining` and click Save.
5. Click Actions → Delete Machine, and click Delete.
6. A new machine is automatically created, wait for new machine to start.

IMPORTANT

This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

7. Click Compute → Nodes, confirm if the new node is in Ready state.
8. Apply the OpenShift Container Storage label to the new node using any one of the following:

 From User interface

 a. For the new node, click Action Menu (⋮) → Edit Labels

 b. Add `cluster.ocs.openshift.io/openshift-storage` and click Save.

 From Command line interface

 - Execute the following command to apply the OpenShift Container Storage label to the new node:

     ```bash
     $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
     ```
9. [Optional]: If the failed AWS instance is not removed automatically, terminate the instance from AWS console.

Verification steps

1. Execute the following command and verify that the new node is present in the output:

   ```
   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1
   ```

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

 - csi-cephfsplugin-
 - csi-rbdplugin-

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

   ```
   $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
   ```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

 a. For each of the new nodes identified in previous step, do the following:

 i. Create a debug pod and open a chroot environment for the selected host(s).

         ```
         $ oc debug node/<node name>
         $ chroot /host
         ```

 ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

         ```
         $ lsblk
         ```

6. If verification steps fail, contact Red Hat Support.
CHAPTER 2. OPENSHIFT CONTAINER STORAGE DEPLOYED ON VMWARE

- To replace an operational node, see:
 - Section 2.1, “Replacing an operational VMware node on user-provisioned infrastructure”
 - Section 2.2, “Replacing an operational VMware node on installer-provisioned infrastructure”

- To replace a failed node, see:
 - Section 2.3, “Replacing a failed VMware node on user-provisioned infrastructure”
 - Section 2.4, “Replacing a failed VMware node on installer-provisioned infrastructure”

2.1. REPLACING AN OPERATIONAL VMware NODE ON USER-PROVISIONED INFRASTRUCTURE

Perform this procedure to replace an operational node on VMware user-provisioned infrastructure (UPI).

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
- You must be logged into the OpenShift Container Platform (RHOCPS) cluster.

Procedure

1. Identify the node and its VM that needs to be replaced.

2. Mark the node as unschedulable using the following command:

 $ oc adm cordon <node_name>

3. Drain the node using the following command:

 $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

 IMPORTANT

 This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

4. Delete the node using the following command:

 $ oc delete nodes <node_name>

5. Log in to vSphere and terminate the identified VM.
IMPORTANT

VM should be deleted only from the inventory and not from the disk.

6. Create a new VM on vSphere with the required infrastructure. See Platform requirements.

7. Create a new OpenShift Container Platform worker node using the new VM.

8. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

   ```
   $ oc get csr
   ```

9. Approve all required OpenShift Container Platform CSRs for the new node:

   ```
   $ oc adm certificate approve <Certificate_Name>
   ```

10. Click Compute → Nodes, confirm if the new node is in Ready state.

11. Apply the OpenShift Container Storage label to the new node using any one of the following:
 - From User interface
 * a. For the new node, click Action Menu (⋯) → Edit Labels
 * b. Add `cluster.ocs.openshift.io/openshift-storage` and click Save.
 - From Command line interface
 * Execute the following command to apply the OpenShift Container Storage label to the new node:
     ```
     $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
     ```

Verification steps

1. Execute the following command and verify that the new node is present in the output:

   ```
   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1
   ```

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:
 * `csi-cephfsplugin-*`
 * `csi-rbdplugin-*`

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

   ```
   $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
   a. For each of the new nodes identified in previous step, do the following:
      i. Create a debug pod and open a chroot environment for the selected host(s).
         
         ```
 $ oc debug node/<node name>
 $ chroot /host
         ```
      ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)
         
         ```
 $ lsblk
         ```

6. If verification steps fail, contact Red Hat Support.

### 2.2. REPLACING AN OPERATIONAL VMWARE NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE

Use this procedure to replace an operational node on VMware installer-provisioned infrastructure (IPI).

**Procedure**

1. Log in to OpenShift Web Console and click **Compute → Nodes**.
2. Identify the node that needs to be replaced. Take a note of its **Machine Name**.
3. Mark the node as unschedulable using the following command:
   ```
 $ oc adm cordon <node_name>
   ```
4. Drain the node using the following command:
   ```
 $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
   ```

   **IMPORTANT**
   
   This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

5. Click **Compute → Machines**. Search for the required machine.
6. Besides the required machine, click the **Action menu ( ⋮ ) → Delete Machine**.
7. Click **Delete** to confirm the machine deletion. A new machine is automatically created.
8. Wait for new machine to start and transition into **Running** state.

   **IMPORTANT**
   
   This activity may take at least 5-10 minutes or more.
9. Click **Compute → Nodes**, confirm if the new node is in **Ready** state.

10. Apply the OpenShift Container Storage label to the new node using any one of the following:

    **From User interface**
    
    a. For the new node, click **Action Menu (⋯) → Edit Labels**
    
    b. Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.

    **From Command line interface**
    
    • Execute the following command to apply the OpenShift Container Storage label to the new node:
      
      ```bash
 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
      ```

**Verification steps**

1. Execute the following command and verify that the new node is present in the output:

   ```bash
 $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1
   ```

2. Click **Workloads → Pods**, confirm that at least the following pods on the new node are in **Running** state:

   • `csi-cephfsplugin-*`
   
   • `csi-rbdplugin-*`

3. Verify that all other required OpenShift Container Storage pods are in **Running** state.

4. Verify that new OSD pods are running on the replacement node.
   
   ```bash
 $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
   ```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

   a. For each of the new nodes identified in previous step, do the following:
      
      i. Create a debug pod and open a chroot environment for the selected host(s).
      
      ```bash
 $ oc debug node/<node name>
 $ chroot /host
      ```

      ii. Run “lsblk” and check for the “crypt” keyword beside the `ocs-deviceset` name(s)
      
      ```bash
 $ lsblk
      ```

6. If verification steps fail, **contact Red Hat Support**.
2.3. REPLACING A FAILED VMWARE NODE ON USER-PROVISIONED INFRASTRUCTURE

Perform this procedure to replace a failed node on VMware user-provisioned infrastructure (UPI).

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
- You must be logged into the OpenShift Container Platform (RHOCPP) cluster.

Procedure

1. Identify the node and its VM that needs to be replaced.

2. Delete the node using the following command:

   ```
 $ oc delete nodes <node_name>
   ```

3. Log in to vSphere and terminate the identified VM.

   IMPORTANT
   
   VM should be deleted only from the inventory and not from the disk.

4. Create a new VM on vSphere with the required infrastructure. See Platform requirements.

5. Create a new OpenShift Container Platform worker node using the new VM.

6. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

   ```
 $ oc get csr
   ```

7. Approve all required OpenShift Container Platform CSRs for the new node:

   ```
 $ oc adm certificate approve <Certificate_Name>
   ```

8. Click Compute → Nodes, confirm if the new node is in Ready state.

9. Apply the OpenShift Container Storage label to the new node using any one of the following:

   **From User interface**
   a. For the new node, click Action Menu (⋮) → Edit Labels
   b. Add `cluster.ocs.openshift.io/openshift-storage` and click Save.

   **From Command line interface**

   - Execute the following command to apply the OpenShift Container Storage label to the new node:
$ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

1. Execute the following command and verify that the new node is present in the output:

   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:
   - csi-cephfsplugin-*
   - csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

   $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
   a. For each of the new nodes identified in previous step, do the following:
      i. Create a debug pod and open a chroot environment for the selected host(s).

         $ oc debug node/<node name>
         $ chroot /host

      ii. Run "lsblk" and check for the "crypt" keyword beside the ocs-deviceset name(s)

         $ lsblk

6. If verification steps fail, contact Red Hat Support.

2.4. REPLACING A FAILED VMWARE NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE

Perform this procedure to replace a failed node which is not operational on VMware installer-provisioned infrastructure (IPI) for OpenShift Container Storage.

Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.

2. Identify the faulty node and click on its Machine Name.

3. Click Actions → Edit Annotations, and click Add More.

4. Add machine.openshift.io/exclude-node-draining and click Save.
5. Click **Actions → Delete Machine**, and click **Delete**.

6. A new machine is automatically created, wait for new machine to start.

   **IMPORTANT**

   This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

7. Click **Compute → Nodes**, confirm if the new node is in **Ready** state.

8. Apply the OpenShift Container Storage label to the new node using any one of the following:

   **From User interface**
   a. For the new node, click **Action Menu (⋯) → Edit Labels**
   b. Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.

   **From Command line interface**
   - Execute the following command to apply the OpenShift Container Storage label to the new node:
     
     ```bash
 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
     ```

9. [Optional]: If the failed VM is not removed automatically, terminate the VM from vSphere.

**Verification steps**

1. Execute the following command and verify that the new node is present in the output:

   ```bash
 $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1
   ```

2. Click **Workloads → Pods**, confirm that at least the following pods on the new node are in **Running** state:

   - `csi-cephfsplugin-*`
   - `csi-rbdplugin-*`

3. Verify that all other required OpenShift Container Storage pods are in **Running** state.

4. Verify that new OSD pods are running on the replacement node.

   ```bash
 $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
   ```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

   a. For each of the new nodes identified in previous step, do the following:
   i. Create a debug pod and open a chroot environment for the selected host(s).
$ oc debug node/<node name>
$ chroot /host

ii. Run “lsblk” and check for the “crypt” keyword beside the `ocs-deviceset` name(s)

$ lsblk

6. If verification steps fail, contact Red Hat Support.
**CHAPTER 3. OPENSHIFT CONTAINER STORAGE DEPLOYED ON RED HAT VIRTUALIZATION**

### 3.1. REPLACING AN OPERATIONAL RED HAT VIRTUALIZATION NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE

Use this procedure to replace an operational node on Red Hat Virtualization installer-provisioned infrastructure (IPI).

**Procedure**

1. Log in to **OpenShift Web Console** and click **Compute → Nodes**

2. Identify the node that needs to be replaced. Take a note of its **Machine Name**

3. Mark the node as unschedulable using the following command:
   ```bash
 $ oc adm cordon <node_name>
   ```

4. Drain the node using the following command:
   ```bash
 $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
   ```
   **IMPORTANT**
   This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

5. Click **Compute → Machines**. Search for the required machine.

6. Besides the required machine, click the **Action menu (⋯) → Delete Machine**

7. Click **Delete** to confirm the machine deletion. A new machine is automatically created. Wait for new machine to start and transition into **Running** state.
   **IMPORTANT**
   This activity may take at least 5-10 minutes or more.

8. Click **Compute → Nodes**, confirm if the new node is in **Ready** state.

9. Apply the OpenShift Container Storage label to the new node using any one of the following:
   - **From User interface**
     a. For the new node, click **Action Menu (⋯) → Edit Labels**
     b. Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.
   - **From Command line interface**
Execute the following command to apply the OpenShift Container Storage label to the new node:

```bash
$ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
```

Verification steps

1. Execute the following command and verify that the new node is present in the output:

```bash
$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
```

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:
   - `csi-cephfsplugin-*`
   - `csi-rbdplugin-*`

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

```bash
$ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
   a. For each of the new nodes identified in previous step, do the following:
      i. Create a debug pod and open a chroot environment for the selected host(s).

         ```bash
 $ oc debug node/<node name>
 $ chroot /host
         ```

      ii. Run “lsblk” and check for the “crypt” keyword beside the `ocs-deviceset` name(s)

         ```bash
 $ lsblk
         ```

6. If verification steps fail, contact Red Hat Support.

### 3.2. REPLACING A FAILED RED HAT VIRTUALIZATION NODE ON INSTALLER-PROVISIONED INFRASTRUCTURE

Perform this procedure to replace a failed node which is not operational on Red Hat Virtualization installer-provisioned infrastructure (IPI) for OpenShift Container Storage.

**Procedure**

1. Log in to OpenShift Web Console and click Compute → Nodes

2. Identify the faulty node. Take a note of its Machine Name.
3. Log in to Red Hat Virtualization Administration Portal and remove the virtual disks associated with mon and OSDs from the failed Virtual Machine. This step is required so that the disks are not deleted when the VM instance is deleted as part of the Delete machine step.

**IMPORTANT**
Do not select the Remove Permanently option when removing the disk(s).

4. In the OpenShift Web Console, click Compute → Machines. Search for the required machine.

5. Click Actions → Edit Annotations and click Add More.

6. Add machine.openshift.io/exclude-node-draining and click Save.

7. Click Actions → Delete Machine and click Delete.
A new machine is automatically created, wait for new machine to start.

**IMPORTANT**
This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

8. Click Compute → Nodes confirm if the new node is in Ready state.

9. Apply the OpenShift Container Storage label to the new node using any one of the following:

   **From User interface**
   a. For the new node, click Action Menu ( ⋮ ) → Edit Labels
   b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

   **From Command line interface**
   - Execute the following command to apply the OpenShift Container Storage label to the new node:
     
     ```console
 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
     ```

10. (Optional) If the failed VM is not removed automatically, remove the VM from Red Hat Virtualization Administration Portal.

**Verification steps**

   1. Execute the following command and verify that the new node is present in the output:
      
      ```console
 $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
      ```

   2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:
      - `csi-cephfsplugin-*`
3. Verify that all other required OpenShift Container Storage pods are in **Running** state.

4. Verify that new OSD pods are running on the replacement node.

   
   
   ```bash
 $ oc get pods -o wide -n openshift-storage | grep -i new-node-name | grep osd
   ```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

   a. For each of the new nodes identified in previous step, do the following:
      
      i. Create a debug pod and open a chroot environment for the selected host(s).

        ```bash
 $ oc debug node/<node name>
 $ chroot /host
        ```

      ii. Run “lsblk” and check for the “crypt” keyword beside the **ocs-deviceset** name(s)

        ```bash
 $ lsblk
        ```

6. If verification steps fail, contact Red Hat Support.
CHAPTER 4. OPENSSHIFT CONTAINER STORAGE DEPLOYED ON MICROSOFT AZURE

4.1. REPLACING OPERATIONAL NODES ON AZURE INSTALLER-PROVISIONED INFRASTRUCTURE

Use this procedure to replace an operational node on Azure installer-provisioned infrastructure (IPI).

Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.

2. Identify the node that needs to be replaced. Take a note of its Machine Name.

3. Mark the node as unschedulable using the following command:
   
   $ oc adm cordon <node_name>

4. Drain the node using the following command:

   $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

   **IMPORTANT**
   
   This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

5. Click Compute → Machines. Search for the required machine.

6. Besides the required machine, click the Action menu (⋯) → Delete Machine.

7. Click Delete to confirm the machine deletion. A new machine is automatically created.

8. Wait for new machine to start and transition into Running state.

   **IMPORTANT**
   
   This activity may take at least 5-10 minutes or more.

9. Click Compute → Nodes, confirm if the new node is in Ready state.

10. Apply the OpenShift Container Storage label to the new node using any one of the following:

    **From User interface**

    a. For the new node, click Action Menu (⋯) → Edit Labels

    b. Add `cluster.ocs.openshift.io/openshift-storage` and click Save.

    **From Command line interface**
Execute the following command to apply the OpenShift Container Storage label to the new node:

```
$ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
```

Verification steps

1. Execute the following command and verify that the new node is present in the output:

```
$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage="" |cut -d' ' -f1
```

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:
   - csi-cephfsplugin-*
   - csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

```
$ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
   a. For each of the new nodes identified in previous step, do the following:
      i. Create a debug pod and open a chroot environment for the selected host(s).

```
$ oc debug node/<node name>
$ chroot /host
```

      ii. Run "lsblk" and check for the “crypt” keyword beside the ocs-deviceset name(s)

```
$ lsblk
```

6. If verification steps fail, contact Red Hat Support.

### 4.2. REPLACING FAILED NODES ON AZURE INSTALLER-PROVISIONED INFRASTRUCTURE

Perform this procedure to replace a failed node which is not operational on Azure installer-provisioned infrastructure (IPI) for OpenShift Container Storage.

**Procedure**

1. Log in to OpenShift Web Console and click Compute → Nodes.

2. Identify the faulty node and click on its Machine Name.

3. Click Actions → Edit Annotations, and click Add More.
4. Add `machine.openshift.io/exclude-node-draining` and click Save.

5. Click Actions → Delete Machine, and click Delete.

6. A new machine is automatically created, wait for new machine to start.

   **IMPORTANT**

   This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

7. Click Compute → Nodes, confirm if the new node is in Ready state.

8. Apply the OpenShift Container Storage label to the new node using any one of the following:

   **From User interface**
   
   a. For the new node, click Action Menu (⋮) → Edit Labels
      
   b. Add `cluster.ocs.openshift.io/openshift-storage` and click Save.

   **From Command line interface**
   
   - Execute the following command to apply the OpenShift Container Storage label to the new node:
     
     ```bash
 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
     ```

9. [Optional]: If the failed Azure instance is not removed automatically, terminate the instance from Azure console.

**Verification steps**

1. Execute the following command and verify that the new node is present in the output:

   ```bash
 $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
   ```

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

   - `csi-cephfsplugin-*`
   - `csi-rbdplugin-*`

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

   ```bash
 $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
   ```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
a. For each of the new nodes identified in previous step, do the following:

   i. Create a debug pod and open a chroot environment for the selected host(s).
      
      $ oc debug node/<node name>
      $ chroot /host

   ii. Run "lsblk" and check for the "crypt" keyword beside the `ocs-deviceset` name(s)
      
      $ lsblk

6. If verification steps fail, contact Red Hat Support.
5.1. REPLACING STORAGE NODES ON BARE METAL INFRASTRUCTURE

- To replace an operational node, see Section 5.1.1, “Replacing an operational node on bare metal user-provisioned infrastructure”
- To replace a failed node, see Section 5.1.2, “Replacing a failed node on bare metal user-provisioned infrastructure”

5.1.1. Replacing an operational node on bare metal user-provisioned infrastructure

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
- You must be logged into the OpenShift Container Platform (RHOCP) cluster.
- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created a LocalVolumeSet object to enable automatic provisioning of devices, do so now following the procedure described in Post-update configuration changes for clusters backed by local storage.
- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created the LocalVolumeDiscovery object, do so now following the procedure described in Post-update configuration changes for clusters backed by local storage.

Procedure

1. Identify the node and get labels on the node to be replaced.

   $ oc get nodes --show-labels | grep <node_name>

2. Identify the mon (if any) and OSDs that are running in the node to be replaced.

   $ oc get pods -n openshift-storage -o wide | grep -i <node_name>

3. Scale down the deployments of the pods identified in the previous step.

   For example:

   $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
   $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
   $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name> --replicas=0 -n openshift-storage

4. Mark the node as unschedulable.

   $ oc adm cordon <node_name>
5. Drain the node.

   $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

6. Delete the node.

   $ oc delete node <node_name>

7. Get a new bare metal machine with required infrastructure. See Installing a cluster on bare metal.

8. Create a new OpenShift Container Platform node using the new bare metal machine.

9. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

   $ oc get csr

10. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>

11. Click Compute → Nodes in OpenShift Web Console, confirm if the new node is in Ready state.

12. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    
    a. For the new node, click Action Menu (⋯) → Edit Labels
    
    b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

    From Command line interface
    
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

    $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

13. Identify the namespace where OpenShift local storage operator is installed and assign it to local_storage_project variable:

    $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)

    For example:

    $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
    echo $local_storage_project
    openshift-local-storage

14. Add a new worker node to localVolumeDiscovery and localVolumeSet.
a. Update the `localVolumeDiscovery` definition to include the new node and remove the failed node.

```bash
oc edit -n $local_storage_project localvolumediscovery auto-discover-devices
[...]
nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - server1.example.com
 - server2.example.com
 #- server3.example.com
 - newnode.example.com
[...]
```

Remember to save before exiting the editor.

In the above example, `server3.example.com` was removed and `newnode.example.com` is the new node.

b. Determine which `localVolumeSet` to edit.

```bash
oc get -n $local_storage_project localvolumeset
NAME AGE
localblock 25h
```

c. Update the `localVolumeSet` definition to include the new node and remove the failed node.

```bash
oc edit -n $local_storage_project localvolumeset localblock
[...]
nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - server1.example.com
 - server2.example.com
 #- server3.example.com
 - newnode.example.com
[...]
```

Remember to save before exiting the editor.

In the above example, `server3.example.com` was removed and `newnode.example.com` is the new node.

15. Verify that the new `localblock` PV is available.

```bash
$ oc get pv | grep localblock
CAPA- ACCESS RECLAIM STORAGE
NAME CITY MODES POLICY STATUS CLAIM CLASS AGE
```
16. Change to the `openshift-storage` project.

   $ oc project openshift-storage

17. Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

   $ oc process -n openshift-storage ocs-osd-removal \
   -p FAILED_OSD_IDS=failed-osd-id1,failed-osd-id2 | oc create -f -

18. Verify that the OSD was removed successfully by checking the status of the `ocs-osd-removal-job` pod.
   A status of **Completed** confirms that the OSD removal job succeeded.

   # oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage

   **NOTE**

   If `ocs-osd-removal-job` fails and the pod is not in the expected **Completed** state, check the pod logs for further debugging. For example:

   # oc logs -l job-name=ocs-osd-removal-job -n openshift-storage

19. Delete the PV associated with the failed node.

   a. Identify the PV associated with the PVC.

      # oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
      local-pv-d6bf175b 1490Gi RWO Delete Released openshift-storage/ocs-deviceset-0-data-0-6c5pw localblock 2d22h compute-1

   b. Delete the PV.

      # oc delete pv <persistent-volume>

      For example:

      # oc delete pv local-pv-d6bf175b
      persistentvolume "local-pv-d6bf175b" deleted

20. Delete the `crashcollector` pod deployment.
$ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage


# oc delete -n openshift-storage job ocs-osd-removal-job

Example output:

job.batch "ocs-osd-removal-job" deleted

Verification steps

1. Execute the following command and verify that the new node is present in the output:

$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods confirm that at least the following pods on the new node are in Running state:

- csi-cephfsplugin-*
- csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state. Ensure that the new incremental mon is created and is in the Running state.

$ oc get pod -n openshift-storage | grep mon

Example output:

rook-ceph-mon-c-64556f7659-c2ngc 1/1 Running 0 6h14m
rook-ceph-mon-d-7c8b74dc4d-tt6hd 1/1 Running 0 4h24m
rook-ceph-mon-e-57fb8c657-wg5f2 1/1 Running 0 162m

OSD and Mon might take several minutes to get to the Running state.

4. Verify that new OSD pods are running on the replacement node.

$ oc get pods -o wide -n openshift-storage | egrep -i new-node-name | egrep osd

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

   a. For each of the new nodes identified in previous step, do the following:

      i. Create a debug pod and open a chroot environment for the selected host(s).

         $ oc debug node/<node name>
         $ chroot /host

      ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)
5.1.2. Replacing a failed node on bare metal user-provisioned infrastructure

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
- You must be logged into the OpenShift Container Platform (RHOC) cluster.
- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created a **LocalVolumeSet** object to enable automatic provisioning of devices, do so now following the procedure described in *Post-update configuration changes for clusters backed by local storage*.
- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created the **LocalVolumeDiscovery** object, do so now following the procedure described in *Post-update configuration changes for clusters backed by local storage*.

Procedure

1. Identify the node and get labels on the node to be replaced.

   ```bash
 $ oc get nodes --show-labels | grep <node_name>
   ```

2. Identify the **mon** (if any) and OSDs that are running in the node to be replaced.

   ```bash
 $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
   ```

3. Scale down the deployments of the pods identified in the previous step.
   For example:

   ```bash
 $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
 $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
 $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name> --replicas=0 -n openshift-storage
   ```

4. Mark the node as unschedulable.

   ```bash
 $ oc adm cordon <node_name>
   ```

5. Remove the pods which are in Terminating state.

   ```bash
 $ oc get pods -A -o wide | grep -i <node_name> | awk '{if ($4 == "Terminating") system ("oc -n "$1 " delete pods "$2 " --grace-period=0 " --force ")}'
   ```

6. Drain the node.

   ```bash
 $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
   ```
7. Delete the node.

   $ oc delete node <node_name>

8. Get a new bare metal machine with required infrastructure. See Installing a cluster on bare metal.

9. Create a new OpenShift Container Platform node using the new bare metal machine.

10. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr

11. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>

12. Click Compute → Nodes in OpenShift Web Console, confirm if the new node is in Ready state.

13. Apply the OpenShift Container Storage label to the new node using any one of the following:

    **From User interface**
    
    a. For the new node, click Action Menu (⅃) → Edit Labels
    b. Add `cluster.ocs.openshift.io/openshift-storage` and click Save.

    **From Command line interface**
    
    - Execute the following command to apply the OpenShift Container Storage label to the new node:
      
      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

14. Identify the namespace where OpenShift local storage operator is installed and assign it to `local_storage_project` variable:

    $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)

    For example:

    $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
    
    echo $local_storage_project

    openshift-local-storage

15. Add a new worker node to `localVolumeDiscovery` and `localVolumeSet`.

    a. Update the `localVolumeDiscovery` definition to include the new node and remove the failed node.

    # oc edit -n $local_storage_project localvolumediscovery auto-discover-devices

    [...]
nodeSelector:
  nodeSelectorTerms:
    - matchExpressions:
      - key: kubernetes.io/hostname
        operator: In
        values:
          - server1.example.com
          - server2.example.com
          - newnode.example.com

[...]

Remember to save before exiting the editor.

In the above example, server3.example.com was removed and newnode.example.com is the new node.

b. Determine which localVolumeSet to edit.

```
oc get -n $local_storage_project localvolumeset
NAME AGE
localblock 25h
```

c. Update the localVolumeSet definition to include the new node and remove the failed node.

```
oc edit -n $local_storage_project localvolumeset localblock
[...]
nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - server1.example.com
 - server2.example.com
 - newnode.example.com

[...]
```

Remember to save before exiting the editor.

In the above example, server3.example.com was removed and newnode.example.com is the new node.

16. Verify that the new localblock PV is available.

```
$ oc get pv | grep localblock
NAME CITY MODES POLICY STATUS CLAIM CLASS AGE
local-pv- 931Gi RWO Delete Bound openshift-storage/ localblock 25h
 3e8964d3 ocs-deviceset-2-0
local-pv- 931Gi RWO Delete Bound openshift-storage/ localblock 25h
 414755e0 ocs-deviceset-1-0
```

Red Hat OpenShift Container Storage 4.7 Replacing nodes
17. Change to the `openshift-storage` project.

   ```bash
 $ oc project openshift-storage
   ```

18. Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

   ```bash
 $ oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=failed-osd-id1,failed-osd-id2 | oc create -f -
   ```

19. Verify that the OSD was removed successfully by checking the status of the `ocs-osd-removal-job` pod.

   A status of `Completed` confirms that the OSD removal job succeeded.

   ```bash
 # oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
   ```

   **NOTE**

   If `ocs-osd-removal-job` fails and the pod is not in the expected `Completed` state, check the pod logs for further debugging. For example:

   ```bash
 # oc logs -l job-name=ocs-osd-removal-job -n openshift-storage
   ```

20. Delete the PV associated with the failed node.

   a. Identify the PV associated with the PVC.

   ```bash
 # oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
   ```

   b. Delete the PV.

   ```bash
 # oc delete pv <persistent-volume>
   ```

   For example:

   ```bash
 # oc delete pv local-pv-d6bf175b persistentvolume "local-pv-d9c5cbd6" deleted
   ```

21. Delete the `crashcollector` pod deployment.

   ```bash
 $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
   ```

22. Delete the `ocs-osd-removal-job`.

   ```bash
   ```
# oc delete -n openshift-storage job ocs-osd-removal-job

Example output:

job.batch "ocs-osd-removal-job" deleted

Verification steps

1. Execute the following command and verify that the new node is present in the output:

   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods confirm that at least the following pods on the new node are in Running state:
   - csi-cephfsplugin-*
   - csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state. Ensure that the new incremental mon is created and is in the Running state.

   $ oc get pod -n openshift-storage | grep mon

   Example output:

<table>
<thead>
<tr>
<th>Pod Name</th>
<th>State</th>
<th>Age</th>
</tr>
</thead>
</table>
   | rook-ceph-mon-c-64556f7659-c2ngc                                         | 1/1   | Running 0   | 6h14m
   | rook-ceph-mon-d-7c8b74dc4d-tt6hd                                         | 1/1   | Running 0   | 4h24m
   | rook-ceph-mon-e-57fb8c657-wg5f2                                          | 1/1   | Running 0   | 162m

OSD and Mon might take several minutes to get to the Running state.

4. Verify that new OSD pods are running on the replacement node.

   $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
   a. For each of the new nodes identified in previous step, do the following:
      i. Create a debug pod and open a chroot environment for the selected host(s).

         $ oc debug node/<node name>
         $ chroot /host

      ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

         $ lsblk

6. If verification steps fail, contact Red Hat Support.
5.2. REPLACING STORAGE NODES ON IBM Z OR LINUXONE INFRASTRUCTURE

You can choose one of the following procedures to replace storage nodes:

- Section 5.2.1, “Replacing operational nodes on IBM Z or LinuxONE infrastructure”
- Section 5.2.2, “Replacing failed nodes on IBM Z or LinuxONE infrastructure”

5.2.1. Replacing operational nodes on IBM Z or LinuxONE infrastructure

Use this procedure to replace an operational node on IBM Z or LinuxONE infrastructure.

Procedure

1. Log in to OpenShift Web Console.
2. Click **Compute → Nodes**.
3. Identify the node that needs to be replaced. Take a note of its **Machine Name**.
4. Mark the node as unschedulable using the following command:
   ```bash
 $ oc adm cordon <node_name>
   ```
5. Drain the node using the following command:
   ```bash
 $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
   ```
   **IMPORTANT**
   This activity may take at least 5-10 minutes. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.
6. Click **Compute → Machines**. Search for the required machine.
7. Besides the required machine, click the **Action menu (⋯) → Delete Machine**.
8. Click **Delete** to confirm the machine deletion. A new machine is automatically created.
9. Wait for the new machine to start and transition into **Running** state.
   **IMPORTANT**
   This activity may take at least 5-10 minutes.
10. Click **Compute → Nodes**, confirm if the new node is in **Ready** state.
11. Apply the OpenShift Container Storage label to the new node using any one of the following:

    **From User interface**
    a. For the new node, click **Action Menu (⋯) → Edit Labels**
b. Add `cluster.ocs.openshift.io/openshift-storage` and click Save.

From command line interface

- Execute the following command to apply the OpenShift Container Storage label to the new node:
  
  ```bash
 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  ```

Verification steps

1. Execute the following command and verify that the new node is present in the output:

  ```bash
 $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  ```

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

   - `csi-cephfsplugin-*`
   - `csi-rbdplugin-*`

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

  ```bash
 $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  ```

5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

   a. Identify the Persistent Volume Claim bound to a given OSD.

      ```bash
 $ oc describe pod/rook-ceph-osd-0-544db49d7f-qrgqm|grep pvc
 ceph.rook.io/pvc=ocs-deviceset-thin-0-data-0lg6zp
      ```

   b. Identify where the OSD pod runs.

      ```bash
 $ oc get -o=custom-columns=NODE:.spec.nodeName pod/rook-ceph-osd-0-544db49d7f-qrgqm
      ```

   c. Create a debug pod and open a `chroot` environment for the host.

      ```bash
 $ oc debug node/<node name>
 $ chroot /host
      ```

   d. Verify the devices are encrypted.

      ```bash
 $ dmsetup ls | grep ocs-deviceset
 ocs-deviceset-0-data-0-57snx-block-dmcrypt (253:1)
      ```
6. If verification steps fail, contact Red Hat Support.

5.2.2. Replacing failed nodes on IBM Z or LinuxONE infrastructure

Perform this procedure to replace a failed node which is not operational on IBM Z or LinuxONE infrastructure for OpenShift Container Storage.

Procedure

1. Log in to OpenShift Web Console and click **Compute → Nodes**.
2. Identify the faulty node and click on its **Machine Name**.
3. Click **Actions → Edit Annotations**, and click **Add More**.
4. Add `machine.openshift.io/exclude-node-draining` and click **Save**.
5. Click **Actions → Delete Machine**, and click **Delete**.
6. A new machine is automatically created, wait for new machine to start.

**IMPORTANT**

This activity may take at least 5-10 minutes. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

7. Click **Compute → Nodes**, confirm if the new node is in **Ready** state.
8. Apply the OpenShift Container Storage label to the new node using any one of the following:

**From the web user interface**

a. For the new node, click **Action Menu (⋮) → Edit Labels**

b. Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.

**From the command line interface**

- Execute the following command to apply the OpenShift Container Storage label to the new node:

  ```
 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  ```

9. Execute the following command and verify that the new node is present in the output:

  ```
 $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage=" | cut -d' ' -f1
  ```

10. Click **Workloads → Pods**, confirm that at least the following pods on the new node are in **Running** state:
- csi-cephfsplugin-
- csi-rbdplugin-

11. Verify that all other required OpenShift Container Storage pods are in Running state.

12. Verify that new OSD pods are running on the replacement node.

   $ oc get pods -o wide -n openshift-storage | egrep -i new-node-name | grep osd

13. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
   
   a. Identify the Persistent Volume Claim bound to a given OSD.

   $ oc describe pod/rook-ceph-osd-0-544db49d7f-qrgqm | grep pvc
   ceph.rook.io/pvc=ocs-deviceset-thin-0-data-0lg6zp

   b. Identify where the OSD pod runs.

   $ oc get -o=custom-columns=NODE:.spec.nodeName pod/rook-ceph-osd-0-544db49d7f-qrgqm

   c. Create a debug pod and open a chroot environment for the host.

   $ oc debug node/<node name>
   $ chroot /host

   d. Verify the devices are encrypted.

   $ dmsetup ls | grep ocs-deviceset
   ocs-deviceset-0-data-0-57snx-block-dmcrypt (253:1)

   $ lsblk | grep ocs-deviceset
   -ocs-deviceset-0-data-0-57snx-block-dmcrypt 253:1 0 512G 0 crypt

14. If verification steps fail, contact Red Hat Support.

5.3. REPLACING STORAGE NODES ON AMAZON EC2 INFRASTRUCTURE

- To replace an operational Amazon EC2 node on user-provisioned and installer provisioned infrastructures, see:
  
  - Section 5.3.1, “Replacing an operational Amazon EC2 node on user-provisioned infrastructure”

  - Section 5.3.2, “Replacing an operational Amazon EC2 node on installer-provisioned infrastructure”

- To replace a failed Amazon EC2 node on user-provisioned and installer provisioned infrastructures, see:
  
  - Section 5.3.3, “Replacing a failed Amazon EC2 node on user-provisioned infrastructure”
5.3.1. Replacing an operational Amazon EC2 node on user-provisioned infrastructure

Perform this procedure to replace an operational node on Amazon EC2 I3 user-provisioned infrastructure (UPI).

**IMPORTANT**

Replacing storage nodes in Amazon EC2 I3 infrastructure is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

**Prerequisites**

- Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
- You must be logged into the OpenShift Container Platform (RHOCP) cluster.

**Procedure**

1. Identify the node and get labels on the node to be replaced.
   
   ```bash
 $ oc get nodes --show-labels | grep <node_name>
   ```

2. Identify the mon (if any) and OSDs that are running in the node to be replaced.
   
   ```bash
 $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
   ```

3. Scale down the deployments of the pods identified in the previous step.
   For example:
   
   ```bash
 $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
 $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
 $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name> --replicas=0 -n openshift-storage
   ```

4. Mark the nodes as unschedulable.
   
   ```bash
 $ oc adm cordon <node_name>
   ```

5. Drain the node.
   
   ```bash
 $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
   ```

6. Delete the node.
   
   ```bash
 $ oc delete node <node_name>
   ```
7. Create a new Amazon EC2 I3 machine instance with the required infrastructure. See Supported Infrastructure and Platforms.

8. Create a new OpenShift Container Platform node using the new Amazon EC2 I3 machine instance.

9. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

   $ oc get csr

10. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>

11. Click **Compute → Nodes** in the OpenShift web console. Confirm if the new node is in **Ready** state.

12. Apply the OpenShift Container Storage label to the new node using any one of the following:

    **From User interface**
    
    a. For the new node, click **Action Menu (⋮) → Edit Labels**.
    
    b. Add **cluster.ocs.openshift.io/openshift-storage** and click **Save**.

    **From Command line interface**
    
    - Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

13. Identify the namespace where OpenShift local storage operator is installed and assign it to **local_storage_project** variable:

    $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)

    For example:

    $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
    echo $local_storage_project
    openshift-local-storage

14. Add the local storage devices available in the new worker node to the OpenShift Container Storage StorageCluster.

    a. Add the new disk entries to LocalVolume CR.

       Edit **LocalVolume** CR. You can either remove or comment out the failed device 
       /dev/disk/by-id/{id} and add the new /dev/disk/by-id/{id}.

       $ oc get -n $local_storage_project localvolume
NAME          AGE
local-block   25h

$ oc edit -n $local_storage_project localvolume local-block

Example output:

[...]  
stORAGECLASSDEVICES:
  - DEVICEPATHS:
    - /dev/disk/by-id/nvme-
      Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441494EC
    - /dev/disk/by-id/nvme-
      Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84FE3E9
    - /dev/disk/by-id/nvme-
      Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE4
    - /dev/disk/by-id/nvme-
      Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441464EP
    # - /dev/disk/by-id/nvme-
      Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84F43E7
    # - /dev/disk/by-id/nvme-
      Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE8
    - /dev/disk/by-id/nvme-
      Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
    - /dev/disk/by-id/nvme-
      Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4
      STORAGECLASSNAME: localblock
      VOLUMEMODE: Block
[...]

Make sure to save the changes after editing the CR.

You can see that in this CR the below two new devices using by-id have been added.

- nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
- nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4

b. Display PVs with localblock.

$ oc get pv | grep localblock

Example output:

local-pv-3646185e  2328Gi  RWO Delete  Available
localblock  9s
local-pv-3933e86  2328Gi  RWO Delete  Bound  openshift-storage/ocs-deviceset-2-1-v9jp4 localblock  5h1m
local-pv-8176b2bf  2328Gi  RWO Delete  Bound  openshift-storage/ocs-deviceset-0-0-nvs68 localblock  5h1m
local-pv-ab7cabb3  2328Gi  RWO Delete  Available
localblock  9s
15. Delete the storage resources associated with the failed node.

a. Identify the DeviceSet associated with the OSD to be replaced.

```bash
$ osd_id_to_remove=0
$ oc get -n openshift-storage -o yaml deployment rook-ceph-osd-${osd_id_to_remove} | grep ceph.rook.io/pvc
```

where, `osd_id_to_remove` is the integer in the pod name immediately after the `rook-ceph-osd` prefix. In this example, the deployment name is `rook-ceph-osd-0`.

Example output:

```
ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
```

b. Identify the PV associated with the PVC.

```bash
$ oc get -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>
```

where, `x`, `y`, and `pvc-suffix` are the values in the DeviceSet identified in an earlier step.

Example output:

```
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
ocs-deviceset-0-0-nvs68 Bound local-pv-8176b2bf 2328Gi RWO localblock
4h49m
```

In this example, the associated PV is `local-pv-8176b2bf`.

c. Change to the `openshift-storage` project.

```bash
$ oc project openshift-storage
```

d. Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

```bash
$ oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=${osd_id_to_remove} | oc create -f -
```

e. Verify that the OSD is removed successfully by checking the status of the `ocs-osd-removal-job` pod. A status of `Completed` confirms that the OSD removal job succeeded.

```bash
oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
```
NOTE

If `ocs-osd-removal-job` fails and the pod is not in the expected **Completed** state, check the pod logs for further debugging. For example:

```
oc logs -l job-name=ocs-osd-removal-job -n openshift-storage
```

f. Delete the PV which was identified in earlier steps. In this example, the PV name is **local-pv-8176b2bf**.

```
$ oc delete pv local-pv-8176b2bf
```

Example output:

```
persistentvolume "local-pv-8176b2bf" deleted
```

16. Delete `crashcollector` pod deployment identified in an earlier step.

```
$ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name= <old_node_name> -n openshift-storage
```

17. Delete the `ocs-osd-removal-job`.

```
oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

**Verification steps**

1. Execute the following command and verify that the new node is present in the output:

```
$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
```

2. Click **Workloads → Pods**, confirm that at least the following pods on the new node are in **Running** state:

   - `csi-cephfsplugin-*`
   - `csi-rbdplugin-*`

3. Verify that all other required OpenShift Container Storage pods are in **Running** state. Also, ensure that the new incremental `mon` is created and is in the **Running** state.

```
$ oc get pod -n openshift-storage | grep mon
```

Example output:
OSDs and mon's might take several minutes to get to the Running state.

4. Verify that new OSD pods are running on the replacement node.

   $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

   a. For each of the new nodes identified in previous step, do the following:
      
      i. Create a debug pod and open a chroot environment for the selected host(s).

         $ oc debug node/<node name>
         $ chroot /host

      ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

         $ lsblk

6. If verification steps fail, contact Red Hat Support.

5.3.2. Replacing an operational Amazon EC2 node on installer-provisioned infrastructure

Use this procedure to replace an operational node on Amazon EC2 I3 installer-provisioned infrastructure (IPI).

**IMPORTANT**

Replacing storage nodes in Amazon EC2 I3 infrastructure is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

**Prerequisites**

- Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
- You must be logged into the OpenShift Container Platform (RHOCNP) cluster.

**Procedure**

1. Log in to OpenShift Web Console and click **Compute → Nodes**
2. Identify the node that needs to be replaced. Take a note of its Machine Name.
3. Get labels on the node to be replaced.

\[ $\text{oc get nodes --show-labels | grep } <\text{node\_name}> \]

4. Identify the mon (if any) and OSDs that are running in the node to be replaced.

\[ $\text{oc get pods -n openshift-storage -o wide | grep -i } <\text{node\_name}> \]

5. Scale down the deployments of the pods identified in the previous step. For example:

\[ $\text{oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage} \]
\[ $\text{oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage} \]
\[ $\text{oc scale deployment --selector=app=rook-ceph-crashcollector,\text{node\_name}=}<\text{node\_name}>\text{--replicas=0 -n openshift-storage} \]

6. Mark the nodes as unschedulable.

\[ $\text{oc adm cordon } <\text{node\_name}> \]

7. Drain the node.

\[ $\text{oc adm drain } <\text{node\_name}> \text{ --force --delete-local-data --ignore-daemonsets} \]

8. Click **Compute → Machines**. Search for the required machine.

9. Besides the required machine, click the **Action menu (⋮) → Delete Machine**

10. Click **Delete** to confirm the machine deletion. A new machine is automatically created.

11. Wait for the new machine to start and transition into Running state.

   **IMPORTANT**

   This activity may take at least 5-10 minutes or more.

12. Click **Compute → Nodes** in the OpenShift web console. Confirm if the new node is in **Ready** state.

13. Apply the OpenShift Container Storage label to the new node using any one of the following:

   **From User interface**
   
   a. For the new node, click **Action Menu (⋮) → Edit Labels**

   b. Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.

   **From Command line interface**

   * Execute the following command to apply the OpenShift Container Storage label to the new node:

\[ $\text{oc label node } <\text{new\_node\_name}> \text{ cluster.ocs.openshift.io/openshift-storage=}"" \]
14. Identify the namespace where OpenShift local storage operator is installed and assign it to `local_storage_project` variable:

   ```bash
 $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)

 For example:

   ```bash
   $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
echo $local_storage_project
   openshift-local-storage
   ```

15. Add the local storage devices available in the new worker node to the OpenShift Container Storage StorageCluster.

 a. Add the new disk entries to LocalVolume CR.

 Edit `LocalVolume` CR. You can either remove or comment out the failed device `/dev/disk/by-id/{id}` and add the new `/dev/disk/by-id/{id}`.

      ```bash
      $ oc get -n $local_storage_project localvolume
      
      Example output:
      
      NAME   AGE
      local-block 25h
      ```

      ```bash
      $ oc edit -n $local_storage_project localvolume local-block
      
      Example output:
      
      [...]  
      storageClassDevices:
      - devicePaths:
        - /dev/disk/by-id/nvme-
          Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441494EC  
        - /dev/disk/by-id/nvme-
          Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84FE3E9  
        - /dev/disk/by-id/nvme-
          Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE4  
        - /dev/disk/by-id/nvme-
          Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441464EP  
        # - /dev/disk/by-id/nvme-
        Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84F43E7  
        # - /dev/disk/by-id/nvme-
        Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE8  
        - /dev/disk/by-id/nvme-
        Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9  
        - /dev/disk/by-id/nvme-
        Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4  
      storageClassName: localblock
      volumeMode: Block
      [...]  
      ```

 Make sure to save the changes after editing the CR.
You can see that in this CR the below two new devices using by-id have been added.

- **nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9**
- **nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4**

b. Display PVs with `localblock`.

```
$ oc get pv | grep localblock
```

Example output:

```
local-pv-3646185e   2328Gi  RWO     Delete      Available
localblock  9s
local-pv-3933e86    2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-1-v9jp4  localblock  5h1m
local-pv-8176b2bf   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-0-nvs68  localblock  5h1m
local-pv-ab7cabb3   2328Gi  RWO     Delete      Available
localblock  9s
local-pv-ac52e8a    2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-0-knrgr  localblock  5h1m
local-pv-b7e6fd37   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-0-rdm7m  localblock  5h1m
local-pv-cb454338   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-1-h9hfm  localblock  5h1m
local-pv-da5e3175   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-1-g97lq  localblock  5h
...`

16. Delete the storage resources associated with the failed node.

a. Identify the DeviceSet associated with the OSD to be replaced.

```
$ osd_id_to_remove=0
$ oc get -n openshift-storage -o yaml deployment rook-ceph-osd-${osd_id_to_remove} | grep ceph.rook.io/pvc
```

where, `osd_id_to_remove` is the integer in the pod name immediately after the `rook-ceph-osd` prefix. In this example, the deployment name is `rook-ceph-osd-0`.

Example output:

```
ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
```

b. Identify the PV associated with the PVC.

```
$ oc get -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>
```

where, `x`, `y`, and `pvc-suffix` are the values in the DeviceSet identified in an earlier step.

Example output:
In this example, the associated PV is `local-pv-8176b2bf`.

c. Change to the `openshift-storage` project.

```
$ oc project openshift-storage
```

d. Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

```
$ oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=${osd_id_to_remove} | oc create -f -
```

e. Verify that the OSD is removed successfully by checking the status of the `ocs-osd-removal-job` pod. A status of **Completed** confirms that the OSD removal job succeeded.

```
oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
```

**NOTE**

If `ocs-osd-removal-job` fails and the pod is not in the expected **Completed** state, check the pod logs for further debugging. For example:

```
oc logs -l job-name=ocs-osd-removal-job -n openshift-storage
```

f. Delete the PV which was identified in earlier steps. In this example, the PV name is `local-pv-8176b2bf`.

```
$ oc delete pv local-pv-8176b2bf
```

Example output:

```
persistentvolume "local-pv-8176b2bf" deleted
```

17. Delete `crashcollector` pod deployment identified in an earlier step.

```
$ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=<old_node_name> -n openshift-storage
```

a. Delete the `rook-ceph-operator`.

```
$ oc delete -n openshift-storage pod rook-ceph-operator-6f74fb5bff-2d982
```

Example output:

```
pod "rook-ceph-operator-6f74fb5bff-2d982" deleted
```

b. Verify that the `rook-ceph-operator` pod is restarted.
$ oc get -n openshift-storage pod -l app=rook-ceph-operator

Example output:

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>rook-ceph-operator-6f74fb5bff-7mvrq</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>66s</td>
</tr>
</tbody>
</table>

Creation of the new OSD may take several minutes after the operator starts.

18. Delete the `ocs-osd-removal-job`.

# oc delete -n openshift-storage job ocs-osd-removal-job

Example output:

job.batch "ocs-osd-removal-job" deleted

**Verification steps**

1. Execute the following command and verify that the new node is present in the output:

   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click **Workloads → Pods** confirm that at least the following pods on the new node are in Running state:

   - csi-cephfsplugin-
   - csi-rbdplugin-

3. Verify that all other required OpenShift Container Storage pods are in **Running** state. Also, ensure that the new incremental **mon** is created and is in the **Running** state.

   $ oc get pod -n openshift-storage | grep mon

   Example output:

<table>
<thead>
<tr>
<th>rook-ceph-mon-a-64556f7659-c2ngc</th>
<th>1/1</th>
<th>Running</th>
<th>0</th>
<th>5h1m</th>
</tr>
</thead>
<tbody>
<tr>
<td>rook-ceph-mon-b-7c8b74dc4d-tt6hd</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>5h1m</td>
</tr>
<tr>
<td>rook-ceph-mon-d-57fb8c657-wg5f2</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>27m</td>
</tr>
</tbody>
</table>

OSDs and mon’s might take several minutes to get to the **Running** state.

4. Verify that new OSD pods are running on the replacement node.

   $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

   a. For each of the new nodes identified in previous step, do the following:

      i. Create a debug pod and open a chroot environment for the selected host(s).
$ oc debug node/<node name>
$ chroot /host

ii. Run "lsblk" and check for the "crypt" keyword beside the `ocs-deviceset` name(s)

$ lsblk

6. If verification steps fail, contact Red Hat Support.

5.3.3. Replacing a failed Amazon EC2 node on user-provisioned infrastructure

The ephemeral storage of Amazon EC2 I3 for OpenShift Container Storage might cause data loss when there is an instance power off. Use this procedure to recover from such an instance power off on Amazon EC2 infrastructure.

**IMPORTANT**

Replacing storage nodes in Amazon EC2 I3 infrastructure is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

**Prerequisites**

- Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
- You must be logged into the OpenShift Container Platform (RHOCP) cluster.

**Procedure**

1. Identify the node and get labels on the node to be replaced.

   $ oc get nodes --show-labels | grep <node_name>

2. Identify the mon (if any) and OSDs that are running in the node to be replaced.

   $ oc get pods -n openshift-storage -o wide | grep -i <node_name>

3. Scale down the deployments of the pods identified in the previous step. For example:

   $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
   $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
   $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name> --replicas=0 -n openshift-storage

4. Mark the nodes as unschedulable.

   $ oc adm cordon <node_name>
5. Remove the pods which are in Terminating state.

   $ oc get pods -A -o wide | grep -i <node_name> | awk '{if ($4 == "Terminating") system("oc -n "$1" delete pods "$2" --grace-period=0 "--force ")}'

6. Drain the node.

   $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

7. Delete the node.

   $ oc delete node <node_name>

8. Create a new Amazon EC2 I3 machine instance with the required infrastructure. See Supported Infrastructure and Platforms.

9. Create a new OpenShift Container Platform node using the new Amazon EC2 I3 machine instance.

10. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr

11. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>

12. Click Compute → Nodes in the OpenShift web console. Confirm if the new node is in Ready state.

13. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    a. For the new node, click Action Menu (⋮) → Edit Labels
    b. Add `cluster.ocs.openshift.io/openshift-storage` and click Save.

    From Command line interface
    - Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

14. Identify the namespace where OpenShift local storage operator is installed and assign it to `local_storage_project` variable:

    $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)

    For example:
15. Add the local storage devices available in the new worker node to the OpenShift Container Storage StorageCluster.

a. Add the new disk entries to LocalVolume CR.
   Edit LocalVolume CR. You can either remove or comment out the failed device /dev/disk/by-id/{id} and add the new /dev/disk/by-id/{id}.

```bash
$ oc get -n $local_storage_project localvolume
```

Example output:

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>local-block</td>
<td>25h</td>
</tr>
</tbody>
</table>

```bash
$ oc edit -n $local_storage_project localvolume local-block
```

Example output:

```
[...]
storageClassDevices:
 - devicePaths:
 - /dev/disk/by-id/nvme-
 Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441494EC
 - /dev/disk/by-id/nvme-
 Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84FE3E9
 - /dev/disk/by-id/nvme-
 Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE4
 - /dev/disk/by-id/nvme-
 Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441464EP
 # - /dev/disk/by-id/nvme-
 Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84F43E7
 # - /dev/disk/by-id/nvme-
 Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE8
 - /dev/disk/by-id/nvme-
 Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
 - /dev/disk/by-id/nvme-
 Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4
storageClassName: localblock
volumeMode: Block
[...]
```

Make sure to save the changes after editing the CR.

You can see that in this CR the below two new devices using by-id have been added.

- nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
- nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4

b. Display PVs with localblock.
$ oc get pv | grep localblock

Example output:

local-pv-3646185e  2328Gi  RWO  Delete   Available
localblock  9s
local-pv-3933e86  2328Gi  RWO  Delete  Bound  openshift-storage/ocs-deviceset-2-1-v9jp4  localblock  5h1m
local-pv-8176b2bf  2328Gi  RWO  Delete  Bound  openshift-storage/ocs-deviceset-0-0-nvs68  localblock  5h1m
local-pv-ab7cabb3  2328Gi  RWO  Delete  Available
localblock  9s
local-pv-ac52e8a  2328Gi  RWO  Delete  Bound  openshift-storage/ocs-deviceset-1-0-knrgr  localblock  5h1m
local-pv-b7e6fd37  2328Gi  RWO  Delete  Bound  openshift-storage/ocs-deviceset-2-0-rdm7m  localblock  5h1m
local-pv-cb454338  2328Gi  RWO  Delete  Bound  openshift-storage/ocs-deviceset-0-1-h9hf6m  localblock  5h1m
local-pv-da5e3175  2328Gi  RWO  Delete  Bound  openshift-storage/ocs-deviceset-1-1-g977lq  localblock  5h
...  

16. Delete the storage resources associated with the failed node.

a. Identify the DeviceSet associated with the OSD to be replaced.

```bash
$ osd_id_to_remove=0
$ oc get -n openshift-storage -o yaml deployment rook-ceph-osd-${osd_id_to_remove} | grep ceph.rook.io/pvc
```

where, `osd_id_to_remove` is the integer in the pod name immediately after the `rook-ceph-osd` prefix. In this example, the deployment name is `rook-ceph-osd-0`.

Example output:

```
ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
```

b. Identify the PV associated with the PVC.

```bash
$ oc get -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>
```

where, `x`, `y`, and `pvc-suffix` are the values in the DeviceSet identified in an earlier step.

Example output:

```
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
ocs-deviceset-0-0-nvs68 Bound local-pv-8176b2bf 2328Gi RWO localblock
4h49m
```

In this example, the associated PV is `local-pv-8176b2bf`.

c. Change into the `openshift-storage` project.
Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

```bash
$ oc process -n openshift-storage ocs-osd-removal -p
FAILED_OSD_IDS=${osd_ids_to_remove} | oc create -f -
```

Verify that the OSD is removed successfully by checking the status of the `ocs-osd-removal-job` pod. A status of `Completed` confirms that the OSD removal job succeeded.

```bash
oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
```

If `ocs-osd-removal-job` fails and the pod is not in the expected `Completed` state, check the pod logs for further debugging. For example:

```bash
oc logs -l job-name=ocs-osd-removal-job -n openshift-storage
```

Delete the PV which was identified in earlier steps. In this example, the PV name is `local-pv-8176b2bf`.

```bash
$ oc delete pv local-pv-8176b2bf
```

Example output:

```
persistentvolume "local-pv-8176b2bf" deleted
```

Delete the `crashcollector` pod deployment identified in an earlier step.

```bash
$ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name= <old_node_name> -n openshift-storage
```

Delete the `ocs-osd-removal-job`.

```bash
oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

**Verification steps**

1. Execute the following command and verify that the new node is present in the output:

   ```bash
 $ oc get nodes --show-labels | grep cluster:ocs.openshift.io/openshift-storage= | cut -d'' -f1

 # Run command

 $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1 | grep <new_node_name>

 Output: `<new_node_name>`

2. Click **Workloads → Pods** confirm that at least the following pods on the new node are in Running state:
 - `csi-cephfsplugin-*`
3. Verify that all other required OpenShift Container Storage pods are in Running state. Also, ensure that the new incremental mon is created and is in the Running state.

```
$ oc get pod -n openshift-storage | grep mon
```

Example output:

```
rook-ceph-mon-a-64556f7659-c2ngc  1/1     Running     0   5h1m
rook-ceph-mon-b-7c8b74dc4d-tt6hd    1/1     Running     0   5h1m
rook-ceph-mon-d-57fb8c657-wg5f2     1/1     Running     0   27m
```

OSDs and mon’s might take several minutes to get to the Running state.

4. Verify that new OSD pods are running on the replacement node.

```
$ oc get pods -o wide -n openshift-storage | egrep -i new-node-name | egrep osd
```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

 a. For each of the new nodes identified in previous step, do the following:

 i. Create a debug pod and open a chroot environment for the selected host(s).

   ```
   $ oc debug node/<node name>
   $ chroot /host
   ```

 ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

   ```
   $ lsblk
   ```

6. If verification steps fail, contact Red Hat Support.

5.3.4. Replacing a failed Amazon EC2 node on installer-provisioned infrastructure

The ephemeral storage of Amazon EC2 I3 for OpenShift Container Storage might cause data loss when there is an instance power off. Use this procedure to recover from such an instance power off on Amazon EC2 infrastructure.

IMPORTANT

Replacing storage nodes in Amazon EC2 I3 infrastructure is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
You must be logged into the OpenShift Container Platform (RHOCPP) cluster.

Procedure

1. Log in to OpenShift Web Console and click **Compute → Nodes**
2. Identify the node that needs to be replaced. Take a note of its Machine Name.
3. Get the labels on the node to be replaced.

 $ oc get nodes --show-labels | grep <node_name>

4. Identify the mon (if any) and OSDs that are running in the node to be replaced.

 $ oc get pods -n openshift-storage -o wide | grep -i <node_name>

5. Scale down the deployments of the pods identified in the previous step.
 For example:

 $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
 $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
 $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name> --replicas=0 -n openshift-storage

6. Mark the node as unschedulable.

 $ oc adm cordon <node_name>

7. Remove the pods which are in Terminating state.

 $ oc get pods -A -o wide | grep -i <node_name> | awk '{if ($4 == "Terminating") system("oc -n "$1" delete pods "$2" --grace-period=0 "--force "")}'

8. Drain the node.

 $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

9. Click **Compute → Machines**. Search for the required machine.

10. Besides the required machine, click the **Action menu (⋮) → Delete Machine**

11. Click **Delete** to confirm the machine deletion. A new machine is automatically created.

12. Wait for the new machine to start and transition into Running state.

 IMPORTANT

 This activity may take at least 5-10 minutes or more.

13. Click **Compute → Nodes** in the OpenShift web console. Confirm if the new node is in **Ready** state.

14. Apply the OpenShift Container Storage label to the new node using any one of the following:
From User interface

a. For the new node, click Action Menu (⋮) → Edit Labels

b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

From Command line interface

- Execute the following command to apply the OpenShift Container Storage label to the new node:

  ```bash
  $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  ```

15. Identify the namespace where OpenShift local storage operator is installed and assign it to local_storage_project variable:

  ```bash
  $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
  ```

 For example:

  ```bash
  $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
  echo $local_storage_project
  ```

  ```bash
  openshift-local-storage
  ```

16. Add the local storage devices available in the new worker node to the OpenShift Container Storage StorageCluster.

a. Add the new disk entries to LocalVolume CR.

 Edit LocalVolume CR. You can either remove or comment out the failed device /dev/disk/by-id/{id} and add the new /dev/disk/by-id/{id}.

   ```bash
   $ oc get -n $local_storage_project localvolume
   ```

 Example output:

   ```bash
   NAME   AGE
   local-block 25h
   ```

   ```bash
   $ oc edit -n $local_storage_project localvolume local-block
   ```

 Example output:

   ```bash
   [...]  
   storageClassDevices:
   - devicePaths:
     - /dev/disk/by-id/nvme-
       Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441494EC
     - /dev/disk/by-id/nvme-
       Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84FE3E9
     - /dev/disk/by-id/nvme-
       Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE4
     - /dev/disk/by-id/nvme-
       Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441464EP
   ```
- /dev/disk/by-id/nvme-
Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84F43E7
- /dev/disk/by-id/nvme-
Amazon_EC2_NVMe_Instance_Storage_AWS136B945B4ECB9AE8
 - /dev/disk/by-id/nvme-
Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
 - /dev/disk/by-id/nvme-
Amazon_EC2_NVMe_Instance_Storage_AWS636B945B4ECB9AE4
 storageClassName: localblock
 volumeMode: Block

 [...]

Make sure to save the changes after editing the CR.

You can see that in this CR the below two new devices using by-id have been added.

- nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
- nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636B945B4ECB9AE4

b. Display PVs with localblock.

```bash
$ oc get pv | grep localblock
```

Example output:

```bash
local-pv-3646185e  2328Gi  RWO     Delete      Available
localblock  9s
local-pv-3933e86   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-1-v9jp4 localblock 5h1m
local-pv-8176b2bf   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-0-nvs68 localblock 5h1m
local-pv-ab7cabb3   2328Gi  RWO     Delete      Available
localblock  9s
local-pv-ac52e8a    2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-0-krnr localblock 5h1m
local-pv-b7e6fd37   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-0-ram7m localblock 5h1m
local-pv-cb454338   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-1-h9hfm localblock 5h1m
local-pv-da5e3175   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-1-g97lq localblock 5h
... 
```

17. Delete the storage resources associated with the failed node.

a. Identify the DeviceSet associated with the OSD to be replaced.

```bash
$ osd_id_to_remove=0
$ oc get -n openshift-storage -o yaml deployment rook-ceph-osd-$osd_id_to_remove | grep ceph.rook.io/pvc
```

where, **osd_id_to_remove** is the integer in the pod name immediately after the **rook-ceph-osd** prefix. In this example, the deployment name is **rook-ceph-osd-0**.

62
Example output:

```plaintext
ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
```

b. Identify the PV associated with the PVC.

```bash
$ oc get -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>
```

where, \(x \), \(y \), and \(\text{pvc-suffix} \) are the values in the DeviceSet identified in an earlier step.

Example output:

```
NAME                      STATUS        VOLUME        CAPACITY   ACCESS MODES
STORAGECLASS   AGE
ocs-deviceset-0-0-nvs68   Bound   local-pv-8176b2bf   2328Gi      RWO            localblock
4h49m
```

In this example, the associated PV is `local-pv-8176b2bf`.

c. Change into the `openshift-storage` project.

```bash
$ oc project openshift-storage
```

d. Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

```bash
$ oc process -n openshift-storage ocs-osd-removal -p
FAILED_OSD_IDS=${osd_ids_to_remove} | oc create -f -
```

e. Verify that the OSD is removed successfully by checking the status of the `ocs-osd-removal-job` pod. A status of `Completed` confirms that the OSD removal job succeeded.

```bash
# oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
```

NOTE

If `ocs-osd-removal-job` fails and the pod is not in the expected `Completed` state, check the pod logs for further debugging. For example:

```bash
# oc logs -l job-name=ocs-osd-removal-job -n openshift-storage
```

f. Delete the PV which was identified in earlier steps. In this example, the PV name is `local-pv-8176b2bf`.

```bash
$ oc delete pv local-pv-8176b2bf
```

Example output:

```
persistentvolume "local-pv-8176b2bf" deleted
```

18. Delete `crashcollector` pod deployment identified in an earlier step.
Delete the `ocs-osd-removal-job`.

```bash
# oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

Verification steps

1. Execute the following command and verify that the new node is present in the output:

   ```bash
   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
   ```

2. Click **Workloads** → **Pods** confirm that at least the following pods on the new node are in **Running** state:

 - `csi-cephfsplugin-*`
 - `csi-rbdplugin-*`

3. Verify that all other required OpenShift Container Storage pods are in **Running** state. Also, ensure that the new incremental **mon** is created and is in the **Running** state.

   ```bash
   $ oc get pod -n openshift-storage | grep mon
   ```

 Example output:

   ```
   rook-ceph-mon-a-64556f7659-c2ngc    1/1     Running     0   5h1m
   rook-ceph-mon-b-7c8b74dc4d-tt6hd    1/1     Running     0   5h1m
   rook-ceph-mon-d-57fb8c657-wg5f2     1/1     Running     0   27m
   ```

 OSDs and mon’s might take several minutes to get to the **Running** state.

4. Verify that new OSD pods are running on the replacement node.

   ```bash
   $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
   ```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

 a. For each of the new nodes identified in previous step, do the following:

 i. Create a debug pod and open a chroot environment for the selected host(s).

         ```bash
         $ oc debug node/<node name>
         $ chroot /host
         ```

 ii. Run “lsblk” and check for the “crypt” keyword beside the **ocs-deviceset** name(s)
5.4. REPLACING STORAGE NODES ON VMWARE INFRASTRUCTURE

To replace an operational node, see:

- Section 5.4.1, “Replacing an operational node on VMware user-provisioned infrastructure”
- Section 5.4.2, “Replacing an operational node on VMware installer-provisioned infrastructure”

To replace a failed node, see:

- Section 5.4.3, “Replacing a failed node on VMware user-provisioned infrastructure”
- Section 5.4.4, “Replacing a failed node on VMware installer-provisioned infrastructure”

5.4.1. Replacing an operational node on VMware user-provisioned infrastructure

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
- You must be logged into the OpenShift Container Platform (RHOCP) cluster.
- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created a `LocalVolumeSet` object to enable automatic provisioning of devices, do so now following the procedure described in Post-update configuration changes for clusters backed by local storage.
- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created the `LocalVolumeDiscovery` object, do so now following the procedure described in Post-update configuration changes for clusters backed by local storage.

Procedure

1. Identify the node and get labels on the node to be replaced.

 $ oc get nodes --show-labels | grep <node_name>

2. Identify the mon (if any) and OSDs that are running in the node to be replaced.

 $ oc get pods -n openshift-storage -o wide | grep -i <node_name>

3. Scale down the deployments of the pods identified in the previous step.
 For example:

 $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
 $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
 $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>--replicas=0 -n openshift-storage
- 4. Mark the node as unschedulable.

   ```
   $ oc adm cordon <node_name>
   ```

- 5. Drain the node.

   ```
   $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
   ```

- 6. Delete the node.

   ```
   $ oc delete node <node_name>
   ```

- 7. Log in to vSphere and terminate the identified VM.

- 8. Create a new VM on VMware with the required infrastructure. See Supported Infrastructure and Platforms.

- 9. Create a new OpenShift Container Platform worker node using the new VM.

- 10. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    ```
    $ oc get csr
    ```

- 11. Approve all required OpenShift Container Platform CSRs for the new node:

    ```
    $ oc adm certificate approve <Certificate_Name>
    ```

- 12. Click Compute → Nodes in OpenShift Web Console, confirm if the new node is in Ready state.

- 13. Apply the OpenShift Container Storage label to the new node using any one of the following:

 From User interface

 a. For the new node, click Action Menu (⋮) → Edit Labels

 b. Add `cluster.ocs.openshift.io/openshift-storage` and click Save.

 From Command line interface

 - Execute the following command to apply the OpenShift Container Storage label to the new node:

     ```
     $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
     ```

- 14. Identify the namespace where OpenShift local storage operator is installed and assign it to local_storage_project variable:

    ```
    $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
    ```

 For example:
Add a new worker node to `localVolumeDiscovery` and `localVolumeSet`.

a. Update the `localVolumeDiscovery` definition to include the new node and remove the failed node.

```
# oc edit -n $local_storage_project localvolumediscovery auto-discover-devices
[...]
nodeSelector:
  nodeSelectorTerms:
    - matchExpressions:
        - key: kubernetes.io/hostname
          operator: In
          values:
            - server1.example.com
            - server2.example.com
            # - server3.example.com
            - newnode.example.com
[...]
```

Remember to save before exiting the editor.

In the above example, `server3.example.com` was removed and `newnode.example.com` is the new node.

b. Determine which `localVolumeSet` to edit.

```
# oc get -n $local_storage_project localvolumeset
NAME          AGE
localblock    25h
```

c. Update the `localVolumeSet` definition to include the new node and remove the failed node.

```
# oc edit -n $local_storage_project localvolumeset localblock
[...]
nodeSelector:
  nodeSelectorTerms:
    - matchExpressions:
        - key: kubernetes.io/hostname
          operator: In
          values:
            - server1.example.com
            - server2.example.com
            # - server3.example.com
            - newnode.example.com
[...]
```

Remember to save before exiting the editor.

In the above example, `server3.example.com` was removed and `newnode.example.com` is the new node.
Verify that the new **localblock** PV is available.

```
$ oc get pv | grep localblock
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>CITY</th>
<th>MODES</th>
<th>POLICY</th>
<th>STATUS</th>
<th>CLAIM</th>
<th>CLASS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>local-pv-</td>
<td>931Gi</td>
<td>RWO</td>
<td>Delete</td>
<td>Bound</td>
<td>openshift-storage/</td>
<td>localblock</td>
<td>25h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ocs-deviceset-2-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-79j94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>local-pv-</td>
<td>931Gi</td>
<td>RWO</td>
<td>Delete</td>
<td>Bound</td>
<td>openshift-storage/</td>
<td>localblock</td>
<td>25h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ocs-deviceset-1-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-959rp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>local-pv-</td>
<td>931Gi</td>
<td>RWO</td>
<td>Delete</td>
<td>Available</td>
<td>localblock</td>
<td>3m24s b481410</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>openshift-storage/</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>localblock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d9c5cbd6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-nvs68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change to the **openshift-storage** project.

```
$ oc project openshift-storage
```

Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

```
$ oc process -n openshift-storage ocs-osd-removal
   -p FAILED_OSD_IDS=failed-osd-id1,failed-osd-id2 | oc create -f -
```

Verify that the OSD was removed successfully by checking the status of the **ocs-osd-removal-job** pod.
A status of **Completed** confirms that the OSD removal job succeeded.

```
# oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
```

NOTE

If **ocs-osd-removal-job** fails and the pod is not in the expected **Completed** state, check the pod logs for further debugging. For example:

```
# oc logs -l job-name=ocs-osd-removal-job -n openshift-storage
```

Delete the PV associated with the failed node.

a. Identify the PV associated with the PVC.

```
# oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
local-pv-d6bf175b  1490Gi  RWO Delete Released openshift-storage/ocs-deviceset-0-data-0-6c5pw localblock 2d22h compute-1
```

b. Delete the PV.

```
# oc delete pv <persistent-volume>
```

For example:
21. Delete the crashcollector pod deployment.

```
$ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
```

22. Delete the ocs-osd-removal-job.

```
# oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

Verification steps

1. Execute the following command and verify that the new node is present in the output:

```
$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
```

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

 - csi-cephfsplugin-*
 - csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state. Ensure that the new incremental mon is created and is in the Running state.

```
$ oc get pod -n openshift-storage | grep mon
```

Example output:

```
rook-ceph-mon-c-64556f7659-c2ngc 1/1 Running 0 6h14m
rook-ceph-mon-d-7c8b74dc4d-tt6hd 1/1 Running 0 4h24m
rook-ceph-mon-e-57fb8c657-wg5f2 1/1 Running 0 162m
```

OSD and Mon might take several minutes to get to the Running state.

4. Verify that new OSD pods are running on the replacement node.

```
$ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

 a. For each of the new nodes identified in previous step, do the following:

 i. Create a debug pod and open a chroot environment for the selected host(s).
5.4.2. Replacing an operational node on VMware installer-provisioned infrastructure

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
- You must be logged into the OpenShift Container Platform (RHOCP) cluster.
- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created a LocalVolumeSet object to enable automatic provisioning of devices, do so now following the procedure described in Post-update configuration changes for clusters backed by local storage.
- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created the LocalVolumeDiscovery object, do so now following the procedure described in Post-update configuration changes for clusters backed by local storage.

Procedure

1. Log in to OpenShift Web Console and click **Compute → Nodes**
2. Identify the node that needs to be replaced. Take a note of its **Machine Name**.
3. Get labels on the node to be replaced.

   ```
   $ oc get nodes --show-labels | grep <node_name>
   ```
4. Identify the **mon** (if any) and OSDs that are running in the node to be replaced.

   ```
   $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
   ```
5. Scale down the deployments of the pods identified in the previous step.
 For example:

   ```
   $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
   $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
   $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name> --replicas=0 -n openshift-storage
   ```
6. Mark the node as unschedulable.

   ```
   $ oc adm cordon <node_name>
   ```

If verification steps fail, contact Red Hat Support.
7. Drain the node.

 $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

8. Click **Compute → Machines**. Search for the required machine.

9. Besides the required machine, click the **Action menu (⋮) → Delete Machine**

10. Click **Delete** to confirm the machine deletion. A new machine is automatically created.

11. Wait for the new machine to start and transition into **Running** state.

 IMPORTANT

 This activity may take at least 5-10 minutes or more.

12. Click **Compute → Nodes** in OpenShift Web Console, confirm if the new node is in **Ready** state.

13. Physically add a new device to the node.

14. Apply the OpenShift Container Storage label to the new node using any one of the following:

 From User interface

 a. For the new node, click **Action Menu (⋮) → Edit Labels**

 b. Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.

 From Command line interface

 - Execute the following command to apply the OpenShift Container Storage label to the new node:

 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

15. Identify the namespace where OpenShift local storage operator is installed and assign it to `local_storage_project` variable:

 $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)

 For example:

 $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)

 `openshift-local-storage`

16. Add a new worker node to `localVolumeDiscovery` and `localVolumeSet`.

 a. Update the `localVolumeDiscovery` definition to include the new node and remove the failed node.

 # oc edit -n $local_storage_project localvolumediscovery auto-discover-devices

 [...] nodeSelector:
nodeSelectorTerms:
- matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - server1.example.com
 - server2.example.com
 - server3.example.com
 - newnode.example.com

[...]

Remember to save before exiting the editor.

In the above example, server3.example.com was removed and newnode.example.com is the new node.

b. Determine which localVolumeSet to edit.

```bash
# oc get -n $local_storage_project localvolumeset
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>localblock</td>
<td>25h</td>
</tr>
</tbody>
</table>

c. Update the localVolumeSet definition to include the new node and remove the failed node.

```bash
# oc edit -n $local_storage_project localvolumeset localblock
```

[...]

nodeSelector:
nodeSelectorTerms:
- matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - server1.example.com
 - server2.example.com
 - server3.example.com
 - newnode.example.com

[...]

Remember to save before exiting the editor.

In the above example, server3.example.com was removed and newnode.example.com is the new node.

17. Verify that the new localblock PV is available.

```bash
$ oc get pv | grep localblock | grep Available
local-pv-551d950  512Gi    RWO    Delete Available
localblock  26s
```

18. Change to the openshift-storage project.

```bash
$ oc project openshift-storage
```

19. Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.
20. Verify that the OSD was removed successfully by checking the status of the `ocs-osd-removal-job` pod.
 A status of **Completed** confirms that the OSD removal job succeeded.

   ```shell
   # oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
   ```

 NOTE
 If `ocs-osd-removal-job` fails and the pod is not in the expected **Completed** state, check the pod logs for further debugging. For example:

   ```shell
   # oc logs -l job-name=ocs-osd-removal-job -n openshift-storage
   ```

21. Identify the PV associated with the PVC.

   ```shell
   # oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
   ```

 If there is a PV in **Released** state, delete it.

   ```shell
   # oc delete pv <persistent-volume>
   ```

 For example:

   ```shell
   # oc delete pv local-pv-d6bf175b
   persistentvolume "local-pv-d9c5cbd6" deleted
   ```

22. Identify the **crashcollector** pod deployment.

   ```shell
   $ oc get deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
   ```

 If there is an existing **crashcollector** pod deployment, delete it.

   ```shell
   $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
   ```

23. Delete the `ocs-osd-removal-job`.

   ```shell
   # oc delete -n openshift-storage job ocs-osd-removal-job
   ```

 Example output:

   ```shell
   job.batch "ocs-osd-removal-job" deleted
   ``
1. Execute the following command and verify that the new node is present in the output:

   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods confirm that at least the following pods on the new node are in Running state:

   - csi-cephfsplugin-*
   - csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state. Ensure that the new incremental mon is created and is in the Running state.

   $ oc get pod -n openshift-storage | grep mon

   Example output:

   - rook-ceph-mon-a-cd575c89b-b6k66         2/2     Running
     0          38m
   - rook-ceph-mon-b-6776bc469b-tzzt8        2/2     Running
     0          38m
   - rook-ceph-mon-d-5ff5d488b5-7v8xh        2/2     Running
     0        4m8s

   OSD and Mon might take several minutes to get to the Running state.

4. Verify that new OSD pods are running on the replacement node.

   $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

   a. For each of the new nodes identified in previous step, do the following:

      i. Create a debug pod and open a chroot environment for the selected host(s).

         $ oc debug node/<node name>
         $ chroot /host

      ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

         $ lsblk

6. If verification steps fail, contact Red Hat Support.

5.4.3. Replacing a failed node on VMware user-provisioned infrastructure

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
You must be logged into the OpenShift Container Platform (RHOCPP) cluster.

If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created a **LocalVolumeSet** object to enable automatic provisioning of devices, do so now following the procedure described in Post-update configuration changes for clusters backed by local storage.

If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created the **LocalVolumeDiscovery** object, do so now following the procedure described in Post-update configuration changes for clusters backed by local storage.

**Procedure**

1. Identify the node and get labels on the node to be replaced.
   
   ```
 $ oc get nodes --show-labels | grep <node_name>
   ```

2. Identify the mon (if any) and OSDs that are running in the node to be replaced.
   
   ```
 $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
   ```

3. Scale down the deployments of the pods identified in the previous step.
   For example:
   
   ```
 $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
 $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
 $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>
 --replicas=0 -n openshift-storage
   ```

4. Mark the node as unschedulable.
   
   ```
 $ oc adm cordon <node_name>
   ```

5. Remove the pods which are in Terminating state.
   
   ```
 $ oc get pods -A -o wide | grep -i <node_name> | awk '{if ($4 == "Terminating") system("oc -n "$1" delete pods "$2" --grace-period=0 "--force ")}'
   ```

6. Drain the node.
   
   ```
 $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
   ```

7. Delete the node.
   
   ```
 $ oc delete node <node_name>
   ```

8. Log in to vSphere and terminate the identified VM.

9. Create a new VM on VMware with the required infrastructure. See Supported Infrastructure and Platforms.

10. Create a new OpenShift Container Platform worker node using the new VM.
11. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

```bash
$ oc get csr
```

12. Approve all required OpenShift Container Platform CSRs for the new node:

```bash
$ oc adm certificate approve <Certificate_Name>
```

13. Click Compute → Nodes in OpenShift Web Console, confirm if the new node is in Ready state.

14. Apply the OpenShift Container Storage label to the new node using any one of the following:

   From User interface
   
   a. For the new node, click Action Menu (⋯) → Edit Labels
   
   b. Add `cluster.ocs.openshift.io/openshift-storage` and click Save.

   From Command line interface
   
   - Execute the following command to apply the OpenShift Container Storage label to the new node:

   ```bash
 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
   ```

15. Identify the namespace where OpenShift local storage operator is installed and assign it to `local_storage_project` variable:

```bash
$ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1} | grep local)
```

For example:

```bash
$ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1} | grep local)
echo $local_storage_project
```

```
openshift-local-storage
```

16. Add a new worker node to `localVolumeDiscovery` and `localVolumeSet`.

   a. Update the `localVolumeDiscovery` definition to include the new node and remove the failed node.

```
oc edit -n $local_storage_project localvolumediscovery auto-discover-devices
[...]
nodeSelector:
nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - server1.example.com
 - server2.example.com
```
Remember to save before exiting the editor.

In the above example, `server3.example.com` was removed and `newnode.example.com` is the new node.

b. Determine which `localVolumeSet` to edit.

```bash
oc get -n $local_storage_project localvolumeset
NAME AGE
localblock 25h
```

c. Update the `localVolumeSet` definition to include the new node and remove the failed node.

```bash
oc edit -n $local_storage_project localvolumeset localblock
[...]
nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - server1.example.com
 - server2.example.com
 #- server3.example.com
 - newnode.example.com
[...]
```

Remember to save before exiting the editor.

In the above example, `server3.example.com` was removed and `newnode.example.com` is the new node.

17. Verify that the new `localblock` PV is available.

```bash
$ oc get pv | grep localblock
CAPA- ACCESS RECLAIM STORAGE
NAME CITY MODES POLICY STATUS CLAIM CLASS AGE
local-pv- 931Gi RWO Delete Bound openshift-storage/ localblock 25h
 3e8964d3 ocs-deviceset-2-0
 -79j94
local-pv- 931Gi RWO Delete Bound openshift-storage/ localblock 25h
 414755e0 ocs-deviceset-1-0
 -959rp
local-pv- 931Gi RWO Delete Available localblock 3m24s b481410
local-pv- 931Gi RWO Delete Bound openshift-storage/ localblock 25h
 d9c5cbd6 ocs-deviceset-0-0
 -nvs68
```

18. Change to the `openshift-storage` project.
$ oc project openshift-storage

19. Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

$ oc process -n openshift-storage ocs-osd-removal \
-p FAILED_OSD_IDS=failed-osd-id1,failed-osd-id2 | oc create -f -

20. Verify that the OSD was removed successfully by checking the status of the `ocs-osd-removal-job` pod.
A status of `Completed` confirms that the OSD removal job succeeded.

# oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage

NOTE
If `ocs-osd-removal-job` fails and the pod is not in the expected `Completed` state, check the pod logs for further debugging. For example:

# oc logs -l job-name=ocs-osd-removal-job -n openshift-storage

21. Delete the PV associated with the failed node.

a. Identify the PV associated with the PVC.

# oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
local-pv-d6bf175b  1490Gi  RWO  Delete  Released  openshift-storage/ocs-deviceset-0-data-0-6c5pw  localblock  2d22h  compute-1

b. Delete the PV.

# oc delete pv <persistent-volume>

For example:

# oc delete pv local-pv-d6bf175b
persistentvolume "local-pv-d9c5cbd6" deleted

22. Delete the `crashcollector` pod deployment.

$ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage

23. Delete the `ocs-osd-removal-job`.

# oc delete -n openshift-storage job ocs-osd-removal-job

Example output:

job.batch "ocs-osd-removal-job" deleted

Verification steps
Verification steps

1. Execute the following command and verify that the new node is present in the output:
   
   ```bash
 $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1
   ```

2. Click Workloads → Pods confirm that at least the following pods on the new node are in Running state:
   
   - csi-cephfsplugin-*
   - csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state. Ensure that the new incremental mon is created and is in the Running state.
   
   ```bash
 $ oc get pod -n openshift-storage | grep mon
   ```
   
   Example output:
   
   ```
 rook-ceph-mon-c-64556f7659-c2ngc 1/1 Running 0 6h14m
 rook-ceph-mon-d-7c8b74dc4d-tt6hd 1/1 Running 0 4h24m
 rook-ceph-mon-e-57fb8c657-wg5f2 1/1 Running 0 162m
   ```

   OSD and Mon might take several minutes to get to the Running state.

4. Verify that new OSD pods are running on the replacement node.
   
   ```bash
 $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
   ```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
   
   a. For each of the new nodes identified in previous step, do the following:
      
      i. Create a debug pod and open a chroot environment for the selected host(s).
         
         ```bash
 $ oc debug node/<node name>
 $ chroot /host
         ```
      
      ii. Run "lsblk" and check for the "crypt" keyword beside the ocs-deviceset name(s)
         
         ```bash
 $ lsblk
         ```

6. If verification steps fail, contact Red Hat Support.

### 5.4.4. Replacing a failed node on VMware installer-provisioned infrastructure

**Prerequisites**

- Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.

- You must be logged into the OpenShift Container Platform (RHOC) cluster.
If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created a LocalVolumeSet object to enable automatic provisioning of devices, do so now following the procedure described in Post-update configuration changes for clusters backed by local storage.

If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created the LocalVolumeDiscovery object, do so now following the procedure described in Post-update configuration changes for clusters backed by local storage.

Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.

2. Identify the node that needs to be replaced. Take a note of its Machine Name.

3. Get labels on the node to be replaced.

   $ oc get nodes --show-labels | grep <node_name>

4. Identify the mon (if any) and OSDs that are running in the node to be replaced.

   $ oc get pods -n openshift-storage -o wide | grep -i <node_name>

5. Scale down the deployments of the pods identified in the previous step.
   For example:

   $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
   $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
   $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>
   --replicas=0 -n openshift-storage

6. Mark the node as unschedulable.

   $ oc adm cordon <node_name>

7. Remove the pods which are in Terminating state.

   $ oc get pods -A -o wide | grep -i <node_name> | awk '{if ($4 == "Terminating") system ("oc -n "$1" delete pods "$2" --grace-period=0 " --force ")}’

8. Drain the node.

   $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

9. Click Compute → Machines. Search for the required machine.

10. Besides the required machine, click the Action menu (⋮) → Delete Machine

11. Click Delete to confirm the machine deletion. A new machine is automatically created.

12. Wait for the new machine to start and transition into Running state.
IMPORTANT
This activity may take at least 5-10 minutes or more.

13. Click **Compute → Nodes** in OpenShift Web Console, confirm if the new node is in **Ready** state.

14. Physically add a new device to the node.

15. Apply the OpenShift Container Storage label to the new node using any one of the following:

   **From User interface**
   a. For the new node, click **Action Menu (⋮) → Edit Labels**
   b. Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.

   **From Command line interface**
   - Execute the following command to apply the OpenShift Container Storage label to the new node:

     ```
 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
     ```

16. Identify the namespace where OpenShift local storage operator is installed and assign it to `local_storage_project` variable:

   ```
 $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
   ```

   For example:

   ```
 $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
 echo $local_storage_project
 openshift-local-storage
   ```

17. Add a new worker node to `localVolumeDiscovery` and `localVolumeSet`.

   a. Update the `localVolumeDiscovery` definition to include the new node and remove the failed node.

   ```
 # oc edit -n $local_storage_project localvolumediscovery auto-discover-devices
 [...]
 nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - server1.example.com
 - server2.example.com
 #- server3.example.com
 - newnode.example.com
 [...]
   ```

   Remember to save before exiting the editor.
In the above example, server3.example.com was removed and newnode.example.com is the new node.

b. Determine which `localVolumeSet` to edit.

```bash
oc get -n $local_storage_project localvolumeset
NAME AGE
localblock 25h
```

c. Update the `localVolumeSet` definition to include the new node and remove the failed node.

```bash
oc edit -n $local_storage_project localvolumeset localblock

[...]

nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - server1.example.com
 - server2.example.com
 # server3.example.com
 - newnode.example.com

[...]
```

Remember to save before exiting the editor.

In the above example, server3.example.com was removed and newnode.example.com is the new node.

18. Verify that the new `localblock` PV is available.

```bash
$ oc get pv | grep localblock | grep Available
local-pv-551d950 512Gi RWO Delete Available
localblock 26s
```

19. Change to the `openshift-storage` project.

```bash
$ oc project openshift-storage
```

20. Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

```bash
$ oc process -n openshift-storage ocs-osd-removal \
-p FAILED_OSD_IDS=failed-osd-id1,failed-osd-id2 | oc create -f -
```

21. Verify that the OSD was removed successfully by checking the status of the `ocs-osd-removal-job` pod.

A status of **Completed** confirms that the OSD removal job succeeded.

```bash
oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
```
NOTE

If ocs-osd-removal-job fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

```
oc logs -l job-name=ocs-osd-removal-job -n openshift-storage
```

22. Identify the PV associated with the PVC.

```
oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
local-pv-d6bf175b 1490Gi RWO Delete Released openshift-storage/ocs-deviceset-0-data-0-6c5pw localblock 2d22h compute-1
```

If there is a PV in Released state, delete it.

```
oc delete pv <persistent-volume>
```

For example:

```
oc delete pv local-pv-d6bf175b
persistentvolume "local-pv-d9c5c8d6" deleted
```

23. Identify the crashcollector pod deployment.

```
$ oc get deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
```

If there is an existing crashcollector pod deployment, delete it.

```
$ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
```

24. Delete the ocs-osd-removal-job.

```
oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

Verification steps

1. Execute the following command and verify that the new node is present in the output:

```
$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1
```

2. Click Workloads → Pods confirm that at least the following pods on the new node are in Running state:
   - csi-cephfsplugin-*
   - csi-rbdplugin-*
3. Verify that all other required OpenShift Container Storage pods are in Running state. Ensure that the new incremental mon is created and is in the Running state.

```bash
$ oc get pod -n openshift-storage | grep mon
```

Example output:

```
rook-ceph-mon-a-cd575c89b-b6k66 2/2 Running
0 38m
rook-ceph-mon-b-6776bc469b-tzzt8 2/2 Running
0 38m
rook-ceph-mon-d-5ff5d488b5-7v8xh 2/2 Running
0 4m8s
```

OSD and Mon might take several minutes to get to the Running state.

4. Verify that new OSD pods are running on the replacement node.

```bash
$ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

   a. For each of the new nodes identified in previous step, do the following:

      i. Create a debug pod and open a chroot environment for the selected host(s).

         ```bash
 $ oc debug node/<node name>
 $ chroot /host
         ```

      ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

         ```bash
 $ lsblk
         ```

6. If verification steps fail, contact Red Hat Support.

### 5.5. REPLACING STORAGE NODES ON RED HAT VIRTUALIZATION INFRASTRUCTURE

- To replace an operational node, see Section 5.5.1, “Replacing an operational node on Red Hat Virtualization installer-provisioned infrastructure”

- To replace a failed node, see Section 5.5.2, “Replacing a failed node on Red Hat Virtualization installer-provisioned infrastructure”

#### 5.5.1. Replacing an operational node on Red Hat Virtualization installer-provisioned infrastructure

Use this procedure to replace an operational node on Red Hat Virtualization installer-provisioned infrastructure (IPI).

**Prerequisites**
Red Hat recommends that replacement nodes are configured with similar infrastructure, resources and disks to the node being replaced.

You must be logged into the OpenShift Container Platform (RHOC) cluster.

If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created a **LocalVolumeSet** object to enable automatic provisioning of devices, you can do it now by following the procedure in Post-update configuration changes for clusters backed by local storage.

If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created the **LocalVolumeDiscovery** object, you can do it now by following the procedure in Post-update configuration changes for clusters backed by local storage.

**Procedure**

1. Log in to OpenShift Web Console and click **Compute → Nodes**.
2. Identify the node that needs to be replaced. Take a note of its **Machine Name**.
3. Get labels on the node to be replaced.
   ```bash
 $ oc get nodes --show-labels | grep <node_name>
   ```
4. Identify the mon (if any) and OSDs that are running in the node to be replaced.
   ```bash
 $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
   ```
5. Scale down the deployments of the pods identified in the previous step.
   For example:
   ```bash
 $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
 $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
 $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>
 --replicas=0 -n openshift-storage
   ```
6. Mark the nodes as unschedulable.
   ```bash
 $ oc adm cordon <node_name>
   ```
7. Drain the node.
   ```bash
 $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
   ```
8. Click **Compute → Machines**. Search for the required machine.
9. Besides the required machine, click the **Action menu (…) → Delete Machine**
10. Click **Delete** to confirm the machine deletion. A new machine is automatically created. Wait for the new machine to start and transition into Running state.

**IMPORTANT**

This activity may take at least 5-10 minutes or more.
11. Click **Compute → Nodes** in the OpenShift web console. Confirm if the new node is in **Ready** state.

12. Physically add the new device(s) to the node.

13. Apply the OpenShift Container Storage label to the new node using any one of the following:

   **From User interface**
   
   a. For the new node, click **Action Menu (⋮) → Edit Labels**
   
   b. Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.

   **From Command line interface**
   
   • Execute the following command to apply the OpenShift Container Storage label to the new node:

     ```
 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
     ```

14. Identify the namespace where OpenShift local storage operator is installed and assign it to **local_storage_project** variable:

   ```
 $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
   ```

   For example:

   ```
 $ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
 openshift-local-storage
   ```

15. Add a new worker node to **localVolumeDiscovery** and **localVolumeSet**.

   a. Update the **localVolumeDiscovery** definition to include the new node and remove the failed node.

   ```
 # oc edit -n $local_storage_project localvolumediscovery auto-discover-devices
 ...
 nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - server1.example.com
 - server2.example.com
 - server3.example.com
 - newnode.example.com
 ...
   ```

   Remember to save before exiting the editor.

   In the above example, `server3.example.com` was removed and `newnode.example.com` is the new node.
b. Determine which `localVolumeSet` to edit.

```shell
oc get -n $local_storage_project localvolumeset
NAME AGE
localblock 25h
```

c. Update the `localVolumeSet` definition to include the new node and remove the failed node.

```shell
oc edit -n $local_storage_project localvolumeset localblock
[...]
nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - server1.example.com
 - server2.example.com
 #- server3.example.com
 - newnode.example.com
[...]
```

Remember to save before exiting the editor.

In the above example, `server3.example.com` was removed and `newnode.example.com` is the new node.

16. Verify that the new `localblock` PV is available.

```shell
$ oc get pv | grep localblock | grep Available
local-pv-551d950 512Gi RWO Delete Available
localblock 26s
```

17. Change to the `openshift-storage` project.

```shell
$ oc project openshift-storage
```

18. Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

```shell
$ oc process -n openshift-storage ocs-osd-removal \
 -p FAILED_OSD_IDS=failed-osd-id1,failed-osd-id2 | oc create -f -
```

19. Verify that the OSD was removed successfully by checking the status of the `ocs-osd-removal-job` pod.

A status of **Completed** confirms that the OSD removal job succeeded.

```shell
oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
```
NOTE

If **ocs-osd-removal-job** fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

```
oc logs -l job-name=ocs-osd-removal-job -n openshift-storage
```

20. Identify the PV associated with the PVC.

```
oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
local-pv-d6bf175b 512Gi RWO Delete Released openshift-storage/ocs-deviceset-0-data- 0-6c5pw localblock 2d22h server3.example.com
```

If there is a PV in **Released** state, delete it.

```
oc delete pv <persistent-volume>
```

For example:

```
oc delete pv local-pv-d6bf175b
persistentvolume "local-pv-d6bf175b" deleted
```

21. Identify the **crashcollector** pod deployment.

```
$ oc get deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
```

If there is an existing **crashcollector** pod, delete it.

```
$ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
```

22. Delete the **ocs-osd-removal** job.

```
oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

**Verification steps**

1. Execute the following command and verify that the new node is present in the output:

```
$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1
```

2. Click **Workloads → Pods** confirm that at least the following pods on the new node are in **Running** state:

- csi-cephfsplugin-*
- csi-rbdplugin-*
3. Verify that all other required OpenShift Container Storage pods are in Running state.

Ensure that the new incremental mon is created and is in the Running state.

```bash
$ oc get pod -n openshift-storage | grep mon
```

Example output:

```
rook-ceph-mon-a-279d7d75db-c2b8d 2/2 Running 0 38m
rook-ceph-mon-b-b776b6c4e9-b3b8d 2/2 Running 0 38m
rook-ceph-mon-c-5ff5d488b5-7v8xh 2/2 Running 0 4m8s
```

OSD and Mon might take several minutes to get to the Running state.

4. Verify that new OSD pods are running on the replacement node.

```bash
$ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
```

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

a. For each of the new nodes identified in previous step, do the following:

   i. Create a debug pod and open a chroot environment for the selected host(s).

      ```bash
 $ oc debug node/<node name>
 $ chroot /host
      ```

   ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      ```bash
 $ lsblk
      ```

6. If verification steps fail, contact Red Hat Support.

### 5.5.2. Replacing a failed node on Red Hat Virtualization installer-provisioned infrastructure

Perform this procedure to replace a failed node which is not operational on Red Hat Virtualization installer-provisioned infrastructure (IPI) for OpenShift Container Storage.

**Prerequisites**

- Red Hat recommends that replacement nodes are configured with similar infrastructure, resources and disks to the node being replaced.

- You must be logged into the OpenShift Container Platform (RHOCP) cluster.

- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created a **LocalVolumeSet** object to enable automatic provisioning of devices, you can do it now by following the procedure in **Post-update configuration changes for clusters backed by local storage**.

- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created the **LocalVolumeDiscovery** object, you can do it now by following the procedure in **Post-update configuration changes for clusters backed by local storage**.
Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.

2. Identify the node that needs to be replaced. Take a note of its Machine Name.

3. Get the labels on the node to be replaced.
   
   $ oc get nodes --show-labels | grep <node_name>

4. Identify the mon (if any) and OSDs that are running in the node to be replaced.
   
   $ oc get pods -n openshift-storage -o wide | grep -i <node_name>

5. Scale down the deployments of the pods identified in the previous step.
   For example:
   
   $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
   $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
   $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name> --replicas=0 -n openshift-storage

6. Mark the node as unschedulable.
   
   $ oc adm cordon <node_name>

7. Remove the pods which are in the Terminating state.
   
   $ oc get pods -A -o wide | grep -i <node_name> | awk '{if ($4 == "Terminating") system("oc -n "$1" delete pods "$2" --grace-period=0 "--force")}'

8. Drain the node.
   
   $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

9. Click Compute → Machines. Search for the required machine.

10. Besides the required machine, click the Action menu ( ⋮ ) → Delete Machine.

11. Click Delete to confirm the machine deletion. A new machine is automatically created. Wait for the new machine to start and transition into Running state.

   IMPORTANT
   
   This activity may take at least 5-10 minutes or more.

12. Click Compute → Nodes in the OpenShift web console. Confirm if the new node is in Ready state.

13. Physically add the new device(s) to the node.

14. Apply the OpenShift Container Storage label to the new node using any one of the following:

   From User interface
a. For the new node, click **Action Menu ( ⋮ ) → Edit Labels**.

b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

**From Command line interface**

- Execute the following command to apply the OpenShift Container Storage label to the new node:

  ```
 $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  ```

15. Identify the namespace where OpenShift local storage operator is installed and assign it to `local_storage_project` variable:

```
$ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
```

For example:

```$ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
echo $local_storage_project
openshift-local-storage```

16. Add a new worker node to `localVolumeDiscovery` and `localVolumeSet`.

a. Update the `localVolumeDiscovery` definition to include the new node and remove the failed node.

```
# oc edit -n $local_storage_project localvolumediscovery auto-discover-devices
[...]
nodeSelector:
nodeSelectorTerms:
  - matchExpressions:
    - key: kubernetes.io/hostname
      operator: In
      values:
        - server1.example.com
        - server2.example.com
        #- server3.example.com
        - newnode.example.com
[...]
```

Remember to save before exiting the editor.

In the above example, `server3.example.com` was removed and `newnode.example.com` is the new node.

b. Determine which `localVolumeSet` to edit.

```
# oc get -n $local_storage_project localvolumeset
NAME   AGE
localblock   25h
```
c. Update the `localVolumeSet` definition to include the new node and remove the failed node.

```bash
# oc edit -n $local_storage_project localvolumeset localblock
[...]  
  nodeSelector:
  nodeSelectorTerms:  
    - matchExpressions:  
      - key: kubernetes.io/hostname
        operator: In
        values:  
          - server1.example.com
          - server2.example.com
          #- server3.example.com
          - newnode.example.com

[...]
```

Remember to save before exiting the editor.

In the above example, `server3.example.com` was removed and `newnode.example.com` is the new node.

17. Verify that the new `localblock` PV is available.

```bash
$oc get pv | grep localblock | grep Available
local-pv-551d950     512Gi    RWO    Delete  Available
localblock     26s
```

18. Change to the `openshift-storage` project.

```bash
$ oc project openshift-storage
```

19. Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

```bash
$ oc process -n openshift-storage ocs-osd-removal \  
  -p FAILED_OSD_IDS=failed-osd-id1,failed-osd-id2 | oc create -f -
```

20. Verify that the OSD was removed successfully by checking the status of the `ocs-osd-removal-job` pod.

A status of **Completed** confirms that the OSD removal job succeeded.

```bash
# oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
```

NOTE

If `ocs-osd-removal-job` fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

```bash
# oc logs -l job-name=ocs-osd-removal-job -n openshift-storage
```

21. Identify the PV associated with the PVC.
If there is a PV in Released state, delete it.

```
# oc delete pv <persistent-volume>
```

For example:

```
# oc delete pv local-pv-d6bf175b
persistentvolume "local-pv-d6bf175b" deleted
```

22. Identify the crashcollector pod deployment.

```
$ oc get deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
```

If there is an existing crashcollector pod deployment, delete it.

```
$ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
```

23. Delete the ocs-osd-removal job.

```
# oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

Verification steps

1. Execute the following command and verify that the new node is present in the output:

```
$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
```

2. Click Workloads → Pods confirm that at least the following pods on the new node are in Running state:

 - csi-cephfsplugin-*
 - csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state. Ensure that the new incremental mon is created and is in the Running state.

```
$ oc get pod -n openshift-storage | grep mon
```

Example output:

```
rook-ceph-mon-a-cd575c89b-b6k66 2/2 Running 0 38m
```
rook-ceph-mon-b-6776bc469b-tzzt8 2/2 Running 0 38m
rook-ceph-mon-d-5ff5d488b5-7v8xh 2/2 Running 0 4m8s

OSD and Mon might take several minutes to get to the Running state.

4. Verify that new OSD pods are running on the replacement node.

 $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.
 a. For each of the new nodes identified in previous step, do the following:
 i. Create a debug pod and open a chroot environment for the selected host(s).
 $ oc debug node/<node name>
 $ chroot /host
 ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)
 $ lsblk

6. If verification steps fail, contact Red Hat Support.

5.6. REPLACING STORAGE NODES ON IBM POWER SYSTEMS INFRASTRUCTURE

For OpenShift Container Storage, node replacement can be performed proactively for an operational node and reactively for a failed node for the IBM Power Systems related deployments.

5.6.1. Replacing an operational or failed storage node on IBM Power Systems

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
- You must be logged into OpenShift Container Platform (RHOCP) cluster.

Procedure

1. Identify the node and get labels on the node to be replaced.

 $ oc get nodes --show-labels | grep <node_name>

2. Identify the mon (if any) and OSDs that are running in the node to be replaced.

 $ oc get pods -n openshift-storage -o wide | grep -i <node_name>

3. Scale down the deployments of the pods identified in the previous step.
For example:

```
$ oc scale deployment rook-ceph-mon-a --replicas=0 -n openshift-storage
$ oc scale deployment rook-ceph-osd-1 --replicas=0 -n openshift-storage
$ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>
               --replicas=0 -n openshift-storage
```

4. Mark the node as unschedulable.

```
$ oc adm cordon <node_name>
```

5. Remove the pods which are in Terminating state

```
$ oc get pods -A -o wide | grep -i <node_name> | awk '{if ($4 == "Terminating") system("oc -n " $1 " delete pods " $2 " --grace-period=0 " --force ")}'
```

6. Drain the node.

```
$ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
```

7. Delete the node.

```
$ oc delete node <node_name>
```


10. Check for certificate signing requests (CSRs) related to OpenShift Container Storage that are in Pending state:

```
$ oc get csr
```

11. Approve all required OpenShift Container Storage CSRs for the new node:

```
$ oc adm certificate approve <Certificate_Name>
```

12. Click Compute → Nodes in OpenShift Web Console, confirm if the new node is in Ready state.

13. Apply the OpenShift Container Storage label to the new node using your preferred interface:

 From User interface
 a. For the new node, click Action Menu (⋮) → Edit Labels.
 b. Add `cluster.ocs.openshift.io/openshift-storage` and click Save.

 From Command line interface
 a. Execute the following command to apply the OpenShift Container Storage label to the new node:
14. Identify the namespace where OpenShift local storage operator is installed and assign it to `local_storage_project` variable:

```bash
$ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
```

For example:

```bash
$ local_storage_project=$(oc get csv --all-namespaces | awk '{print $1}' | grep local)
```

15. Add a newly added worker node to `localVolumeSet`.

a. Determine which `localVolumeSet` to edit.

```bash
# oc get -n $local_storage_project localvolumeset
NAME  AGE
localblock 25h
```

b. Update the `localVolumeSet` definition to include the new node and remove the failed node.

```bash
# oc edit -n $local_storage_project localvolumeset localblock
[...]
nodeSelector:
  nodeSelectorTerms:
    - matchExpressions:
      - key: kubernetes.io/hostname
        operator: In
        values:
        # worker-0
        - worker-1
        - worker-2
        - worker-3
[...]
```

Remember to save before exiting the editor.

In the above example, `worker-0` was removed and `worker-3` is the new node.

16. Verify that the new `localblock` PV is available.

```bash
$ oc get pv | grep localblock
NAME    CAPACITY ACCESSMODES RECLAIMPOLICY STATUS       CLAIM
STORAGECLASS AGE
local-pv-3e8964d3 500Gi RWO Delete Bound  ocs-deviceset-localblock-2-data-0-mdbg9 localblock 25h
local-pv-414755e0 500Gi RWO Delete Bound  ocs-deviceset-localblock-1-data-0-4csfl localblock 25h
local-pv-b481410 500Gi RWO Delete Available
```
17. Change to the **openshift-storage** project.

```bash
$ oc project openshift-storage
```

18. Remove the failed OSD from the cluster. You can specify multiple failed OSDs if required.

a. Identify the PVC as afterwards we need to delete PV associated with that specific PVC.

```bash
$ osd_id_to_remove=1
$ oc get -n openshift-storage -o yaml deployment rook-ceph-osd-$(osd_id_to_remove) |
grep ceph.rook.io/pvc
```

where, `osd_id_to_remove` is the integer in the pod name immediately after the `rook-ceph-osd` prefix. In this example, the deployment name is `rook-ceph-osd-1`.

Example output:

```bash
ceph.rook.io/pvc: ocs-deviceset-localblock-0-data-0-g2mmc
ceph.rook.io/pvc: ocs-deviceset-localblock-0-data-0-g2mmc
```

In this example, the PVC name is `ocs-deviceset-localblock-0-data-0-g2mmc`.

b. Remove the failed OSD from the cluster.

```bash
$ oc process -n openshift-storage ocs-osd-removal -p
FAILED_OSD_IDS=$osd_id_to_remove |oc create -f -
```

You can remove more than one OSD by adding comma separated OSD IDs in the command. (For example: `FAILED_OSD_IDS=0,1,2`)

WARNING

This step results in OSD being completely removed from the cluster. Ensure that the correct value of `osd_id_to_remove` is provided.

19. Verify that the OSD is removed successfully by checking the status of the **ocs-osd-removal-job** pod.

A status of **Completed** confirms that the OSD removal job succeeded.

```bash
# oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
```
NOTE

If `ocs-osd-removal-job` fails and the pod is not in the expected **Completed** state, check the pod logs for further debugging. For example:

```
# oc logs -l job-name=ocs-osd-removal-job -n openshift-storage
```

20. Delete the PV associated with the failed node.

 a. Identify the PV associated with the PVC. PVC name should be identical to what we obtained in Step 16(a).

   ```
   # oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
   local-pv-5c9b8982  500Gi  RWO Delete Released openshift-storage/ocs-deviceset-localblock-0-data-0-g2mmc localblock 24h worker-0
   ```

 b. Delete the PV.

   ```
   # oc delete pv <persistent-volume>
   ```

 For example:

   ```
   # oc delete pv local-pv-5c9b8982
   persistentvolume "local-pv-5c9b8982" deleted
   ```

21. Delete the **crashcollector** pod deployment.

   ```
   $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name> -n openshift-storage
   ```

22. Delete the **ocs-osd-removal-job**.

   ```
   # oc delete -n openshift-storage job ocs-osd-removal-job
   ```

 Example output:

   ```
   job.batch "ocs-osd-removal-job" deleted
   ```

Verification steps

1. Execute the following command and verify that the new node is present in the output:

   ```
   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1
   ```

2. Click **Workloads → Pods**, confirm that at least the following pods on the new node are in **Running** state:

 - **csi-cephfsplugin-***
 - **csi-rbdplugin-***

3. Verify that all other required OpenShift Container Storage pods are in **Running** state.
Ensure that the new incremental **mon** is created and is in the **Running** state.

```
$ oc get pod -n openshift-storage | grep mon
```

Example output:

```
rook-ceph-mon-b-74f6dc9dd6-4llzq  1/1   Running  0   6h14m
rook-ceph-mon-c-74948755c-h7wtx   1/1   Running  0   4h24m
rook-ceph-mon-d-598f69869b-4bv49   1/1   Running  0   162m
```

OSD and Mon might take several minutes to get to the **Running** state.

4. Verify that new OSD pods are running on the replacement node.

```
$ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
```

5. If verification steps fail, contact Red Hat Support.