Replacing devices

Instructions for safely replacing failed devices
Instructions for safely replacing failed devices
Abstract

This document explains how to safely replace storage devices for Red Hat OpenShift Container Storage.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... 3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION .. 4

PREFACE .. 5

CHAPTER 1. DYNAMICALLY PROVISIONED OPENSIFT CONTAINER STORAGE DEPLOYED ON AWS 6
 1.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AWS USER-PROVISIONED INFRASTRUCTURE .. 6
 1.2. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AWS INSTALLER-PROVISIONED INFRASTRUCTURE .. 6

CHAPTER 2. DYNAMICALLY PROVISIONED OPENSIFT CONTAINER STORAGE DEPLOYED ON VMWARE 7
 2.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON VMWARE INFRASTRUCTURE .. 7

CHAPTER 3. DYNAMICALLY PROVISIONED OPENSIFT CONTAINER STORAGE DEPLOYED ON RED HAT VIRTUALIZATION ... 12
 3.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON RED HAT VIRTUALIZATION INSTALLER-PROVISIONED INFRASTRUCTURE 12

CHAPTER 4. DYNAMICALLY PROVISIONED OPENSIFT CONTAINER STORAGE DEPLOYED ON MICROSOFT AZURE ... 17
 4.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AZURE INSTALLER-PROVISIONED INFRASTRUCTURE .. 17

CHAPTER 5. OPENSIFT CONTAINER STORAGE DEPLOYED USING LOCAL STORAGE DEVICES 18
 5.1. REPLACING FAILED STORAGE DEVICES ON AMAZON EC2 INFRASTRUCTURE ... 18
 5.2. REPLACING FAILED STORAGE DEVICES ON ON-PREMISE INFRASTRUCTURES USING USER INTERFACE ... 18
 5.3. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON CLUSTERS BACKED BY LOCAL STORAGE DEVICES .. 23
 5.4. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON IBM POWER SYSTEMS .. 30
 5.5. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON IBM Z OR LINUXONE INFRASTRUCTURE .. 37
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
Providing Feedback on Red Hat Documentation

We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:

- For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the *Multi-page HTML* format. In addition, ensure you see the Feedback button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the Add Feedback pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the Bugzilla website.
 2. As the Component, use Documentation.
 3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click Submit Bug.
Depending on the type of your deployment, you can choose one of the following procedures to replace a storage device:

- For dynamically created storage clusters deployed on AWS, see:
 - Section 1.1, “Replacing operational or failed storage devices on AWS user-provisioned infrastructure”
 - Section 1.2, “Replacing operational or failed storage devices on AWS installer-provisioned infrastructure”

- For dynamically created storage clusters deployed on VMware, see Section 2.1, “Replacing operational or failed storage devices on VMware infrastructure”

- For dynamically created storage clusters deployed on Red Hat Virtualization, see Section 3.1, “Replacing operational or failed storage devices on Red Hat Virtualization installer-provisioned infrastructure”

- For dynamically created storage clusters deployed on Microsoft Azure, see Section 4.1, “Replacing operational or failed storage devices on Azure installer-provisioned infrastructure”

- For storage clusters deployed using local storage devices, see:
 - Section 5.1, “Replacing failed storage devices on Amazon EC2 infrastructure”
 - Section 5.2, “Replacing failed storage devices on on-premise infrastructures using user interface”
 - Section 5.3, “Replacing operational or failed storage devices on clusters backed by local storage devices”
 - Section 5.4, “Replacing operational or failed storage devices on IBM Power Systems”
 - Section 5.5, “Replacing operational or failed storage devices on IBM Z or LinuxONE infrastructure”
CHAPTER 1. DYNAMICALLY PROVISIONED OPENSФFT CONTAINER STORAGE DEPLOYED ON AWS

1.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AWS USER-PROVISIONED INFRASTRUCTURE

When you need to replace a device in a dynamically created storage cluster on an AWS user-provisioned infrastructure, you must replace the storage node. For information about how to replace nodes, see:

- Replacing an operational AWS node on user-provisioned infrastructure
- Replacing a failed AWS node on user-provisioned infrastructure

1.2. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AWS INSTALLER-PROVISIONED INFRASTRUCTURE

When you need to replace a device in a dynamically created storage cluster on an AWS installer-provisioned infrastructure, you must replace the storage node. For information about how to replace nodes, see:

- Replacing an operational AWS node on installer-provisioned infrastructure
- Replacing a failed AWS node on installer-provisioned infrastructure
CHAPTER 2. DYNAMICALLY PROVISIONED OPENShift CONTAINER STORAGE DEPLOYED ON VMWARE

2.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON VMWARE INFRASTRUCTURE

Use this procedure when one or more virtual machine disks (VMDK) needs to be replaced in OpenShift Container Storage which is deployed dynamically on VMware infrastructure. This procedure helps to create a new Persistent Volume Claim (PVC) on a new volume and remove the old object storage device (OSD).

Procedure

1. Identify the OSD that needs to be replaced and the OpenShift Container Platform node that has the OSD scheduled on it.

 $ oc get -n openshift-storage pods -l app=rook-ceph-osd -o wide

 Example output:

 rook-ceph-osd-0-6d77d6c7c6-m8xj6 0/1 CrashLoopBackOff 0 24h 10.129.0.16 compute-2 <none> <none>
 rook-ceph-osd-1-85d99f95f-2svc7 1/1 Running 0 24h 10.128.2.24 compute-0 <none> <none>
 rook-ceph-osd-2-6c66cdb977-jp542 1/1 Running 0 24h 10.130.0.18 compute-1 <none> <none>

 In this example, rook-ceph-osd-0-6d77d6c7c6-m8xj6 needs to be replaced and compute-2 is the OpenShift Container platform node on which the OSD is scheduled.

 NOTE

 If the OSD to be replaced is healthy, the status of the pod will be Running.

2. Scale down the OSD deployment for the OSD to be replaced.

 Each time you want to replace the OSD, repeat this step by updating the osd_id_to_remove parameter with the OSD ID.

 $ osd_id_to_remove=0
 $ oc scale -n openshift-storage deployment rook-ceph-osd-${osd_id_to_remove} --replicas=0

 where, osd_id_to_remove is the integer in the pod name immediately after the rook-ceph-osd prefix. In this example, the deployment name is rook-ceph-osd-0.

 Example output:

 deployment.extensions/rook-ceph-osd-0 scaled

3. Verify that the rook-ceph-osd pod is terminated.

 $ oc get -n openshift-storage pods -l ceph-osd-id=${osd_id_to_remove}
Example output:

No resources found.

NOTE

If the `rook-ceph-osd` pod is in **terminating** state, use the `force` option to delete the pod.

```
$ oc delete pod rook-ceph-osd-0-6d77d6c7c6-m8xj6 --force --grace-period=0
```

Example output:

warning: Immediate deletion does not wait for confirmation that the running resource has been terminated. The resource may continue to run on the cluster indefinitely.

pod "rook-ceph-osd-0-6d77d6c7c6-m8xj6" force deleted

4. Remove the old OSD from the cluster so that a new OSD can be added.

 a. Delete any old `ocs-osd-removal` jobs.

```
$ oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

job.batch "ocs-osd-removal-job" deleted

 b. Change to the `openshift-storage` project.

```
$ oc project openshift-storage
```

 c. Remove the old OSD from the cluster.

```
$ oc process -n openshift-storage ocs-osd-removal -p
FAILED_OSD_IDS=${osd_id_to_remove} |oc create -n openshift-storage -f -
```

You can remove more than one OSD by adding comma separated OSD IDs in the command. (For example: FAILED_OSD_IDS=0,1,2)

WARNING

This step results in OSD being completely removed from the cluster. Ensure that the correct value of `osd_id_to_remove` is provided.

5. Verify that the OSD is removed successfully by checking the status of the `ocs-osd-removal` pod. A status of **Completed** confirms that the OSD removal job succeeded.
$ oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage

NOTE

If **ocs-osd-removal** fails and the pod is not in the expected **Completed** state, check the pod logs for further debugging. For example:

$ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1'

6. If encryption was enabled at the time of install, remove **dm-crypt** managed **device-mapper** mapping from the OSD devices that are removed from the respective OpenShift Container Storage nodes.

 a. Get PVC name(s) of the replaced OSD(s) from the logs of **ocs-osd-removal-job** pod:

 $ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1 | egrep -i 'pvc|deviceset'

 For example:

 2021-05-12 14:31:34.666000 I | cephosd: removing the OSD PVC "ocs-deviceset-xxxx-xxx-xxx-xxx"

 b. For each of the nodes identified in step #1, do the following:

 i. Create a **debug** pod and **chroot** to the host on the storage node.

 $ oc debug node/<node name>
 $ chroot /host

 ii. Find relevant device name based on the PVC names identified in the previous step

 sh-4.4# dmsetup ls| grep <pvc name>
 ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt (253:0)

 iii. Remove the mapped device.

 $ cryptsetup luksClose --debug --verbose ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt
NOTE

If the above command gets stuck due to insufficient privileges, run the following commands:

- Press `CTRL+Z` to exit the above command.
- Find PID of the process which was stuck.
  ```bash
  $ ps -ef | grep crypt
  ```
- Terminate the process using `kill` command.
  ```bash
  $ kill -9 <PID>
  ```
- Verify that the device name is removed.
  ```bash
  $ dmsetup ls
  ```

7. Delete the `ocs-osd-removal` job.

```bash
$ oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

NOTE

When using an external key management system (KMS) with data encryption, the old OSD encryption key can be removed from the Vault server as it is now an orphan key.

Verification steps

1. Verify that there is a new OSD running.

```bash
$ oc get -n openshift-storage pods -l app=rook-ceph-osd
```

Example output:

```
- rook-ceph-osd-0-5f7f4747d4-snshw 1/1 Running 0 4m47s
- rook-ceph-osd-1-85d99fb95f-2svc7 1/1 Running 0 1d20h
- rook-ceph-osd-2-6c66c6b977-jp542 1/1 Running 0 1d20h
```

2. Verify that there is a new PVC created which is in **Bound** state.

```bash
$ oc get -n openshift-storage pvc
```

Example output:

```
NAME                      STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS    AGE
Red Hat OpenShift Container Storage 4.7 Replacing devices 10
```
3. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

 a. Identify the node(s) where the new OSD pod(s) are running.

      ```
      $ oc get -o=custom-columns=NODE:.spec.nodeName pod/<OSD pod name>
      ```

 For example:

      ```
      oc get -o=custom-columns=NODE:.spec.nodeName pod/rook-ceph-osd-0-544db49d7f-qrgqm
      ```

 b. For each of the nodes identified in previous step, do the following:

 i. Create a debug pod and open a chroot environment for the selected host(s).

      ```
      $ oc debug node/<node name>
      $ chroot /host
      ```

 ii. Run “lsblk” and check for the “crypt” keyword beside the `ocs-deviceset` name(s)

      ```
      $ lsblk
      ```

4. Log in to OpenShift Web Console and view the storage dashboard.

 Figure 2.1. OSD status in OpenShift Container Platform storage dashboard after device replacement

<table>
<thead>
<tr>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ OCS Cluster ✔ Data Resiliency</td>
</tr>
</tbody>
</table>

 No persistent storage alerts
CHAPTER 3. DYNAMICALLY PROVISIONED OPENSHEET CONTAINER STORAGE DEPLOYED ON RED HAT VIRTUALIZATION

3.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON RED HAT VIRTUALIZATION INSTALLER-PROVISIONED INFRASTRUCTURE

Use this procedure when one or more virtual machine disks (VMDK) needs to be replaced in OpenShift Container Storage which is deployed on Red Hat Virtualization infrastructure. This procedure helps to create a new Persistent Volume Claim (PVC) on a new volume and remove the old object storage device (OSD).

Procedure

1. Identify the OSD that needs to be replaced and the OpenShift Container Platform node that has the OSD scheduled on it.

 $ oc get -n openshift-storage pods -l app=rook-ceph-osd -o wide

 Example output:

 rook-ceph-osd-0-6d77d6c7c6-m8xj6 0/1 CrashLoopBackOff 0 24h 10.129.0.16
 compute-2 <none> <none>
 rook-ceph-osd-1-85d99fb95f-2svc7 1/1 Running 0 24h 10.128.2.24 compute-0 <none> <none>
 rook-ceph-osd-2-6c66cdeb977-jp542 1/1 Running 0 24h 10.130.0.18 compute-1 <none> <none>

 In this example, rook-ceph-osd-0-6d77d6c7c6-m8xj6 needs to be replaced and compute-2 is the OpenShift Container platform node on which the OSD is scheduled.

 NOTE

 If the OSD to be replaced is healthy, the status of the pod will be Running.

2. Scale down the OSD deployment for the OSD to be replaced.

 Each time you want to replace the OSD, repeat this step by updating the osd_id_to_remove parameter with the OSD ID.

 $ osd_id_to_remove=0
 $ oc scale -n openshift-storage deployment rook-ceph-osd-$osd_id_to_remove --replicas=0

 where, osd_id_to_remove is the integer in the pod name immediately after the rook-ceph-osd prefix. In this example, the deployment name is rook-ceph-osd-0.

 Example output:

 deployment.extensions/rook-ceph-osd-0 scaled
3. Verify that the `rook-ceph-osd` pod is terminated.

```
$ oc get -n openshift-storage pods -l ceph-osd-id=${osd_id_to_remove}
```

Example output:

```
No resources found.
```

NOTE

If the `rook-ceph-osd` pod is in **terminating** state, use the `force` option to delete the pod.

```
$ oc delete pod rook-ceph-osd-0-6d77d6c7c6-m8xj6 --force --grace-period=0
```

Example output:

```
warning: Immediate deletion does not wait for confirmation that the running resource has been terminated. The resource may continue to run on the cluster indefinitely.

pod "rook-ceph-osd-0-6d77d6c7c6-m8xj6" force deleted
```

4. Remove the old OSD from the cluster so that a new OSD can be added.

 a. Delete any old `ocs-osd-removal` jobs.

```
$ oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job"
```

 b. Change to the `openshift-storage` project.

```
$ oc project openshift-storage
```

 c. Remove the old OSD from the cluster.

```
$ oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=${osd_id_to_remove} | oc create -n openshift-storage -f -
```

You can remove more than one OSD by adding comma separated OSD IDs in the command. (For example: `FAILED_OSD_IDS=0,1,2`)

WARNING
This step results in OSD being completely removed from the cluster. Ensure that the correct value of `osd_id_to_remove` is provided.

5. Verify that the OSD is removed successfully by checking the status of the `ocs-osd-removal` pod. A status of `Completed` confirms that the OSD removal job succeeded.

   ```bash
   $ oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
   ```

 NOTE
 If `ocs-osd-removal` fails and the pod is not in the expected `Completed` state, check the pod logs for further debugging. For example:

   ```bash
   $ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1'
   ```

6. If encryption was enabled at the time of install, remove `dm-crypt` managed `device-mapper` mapping from the OSD devices that are removed from the respective OpenShift Container Storage nodes.

 a. Get PVC name(s) of the replaced OSD(s) from the logs of `ocs-osd-removal-job` pod:

      ```bash
      $ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1 |egrep -i 'pvc|deviceset'
      ```

 For example:

      ```sh
      2021-05-12 14:31:34.666000 I | cephosd: removing the OSD PVC "ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt"
      ```

 b. For each of the nodes identified in step #1, do the following:

 i. Create a `debug` pod and `chroot` to the host on the storage node.

         ```bash
         $ oc debug node/<node name>
         $ chroot /host
         ```

 ii. Find relevant device name based on the PVC names identified in the previous step

         ```sh
         sh-4.4# dmsetup ls| grep <pvc name>
         ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt (253:0)
         ```

 iii. Remove the mapped device.

         ```bash
         $ cryptsetup luksClose --debug --verbose ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt
         ```
If the above command gets stuck due to insufficient privileges, run the following commands:

- Press `CTRL+Z` to exit the above command.
- Find PID of the process which was stuck.

  ```
  $ ps -ef | grep crypt
  ```
- Terminate the process using `kill` command.

  ```
  $ kill -9 <PID>
  ```
- Verify that the device name is removed.

  ```
  $ dmsetup ls
  ```

7. Delete the `ocs-osd-removal` job.

```
$ oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

NOTE

When using an external key management system (KMS) with data encryption, the old OSD encryption key can be removed from the Vault server as it is now an orphan key.

Verification steps

1. Verify that there is a new OSD running.

```
$ oc get -n openshift-storage pods -l app=rook-ceph-osd
```

Example output:

```
rook-ceph-osd-0-5f7f4747d4-snshw  1/1  Running  0  4m47s
rook-ceph-osd-1-85d99f9b95f-2svc7  1/1  Running  0  1d20h
rook-ceph-osd-2-6c66cdb977-jp542  1/1  Running  0  1d20h
```

2. Verify that there is a new PVC created which is in **Bound** state.

```
$ oc get -n openshift-storage pvc
```

3. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

 a. Identify the node(s) where the new OSD pod(s) are running.
$ oc get -o=custom-columns=NODE:.spec.nodeName pod/<OSD pod name>

For example:

```
oc get -o=custom-columns=NODE:.spec.nodeName pod/rook-ceph-osd-0-544db49d7f-qrgqm
```

b. For each of the nodes identified in previous step, do the following:

i. Create a debug pod and open a chroot environment for the selected host(s).

```
$ oc debug node/<node name>
$ chroot /host
```

ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

```
$ lsblk
```

4. Log in to OpenShift Web Console and view the storage dashboard.

Figure 3.1. OSD status in OpenShift Container Platform storage dashboard after device replacement

<table>
<thead>
<tr>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>![OCS Cluster]</td>
</tr>
</tbody>
</table>

No persistent storage alerts
CHAPTER 4. DYNAMICALLY PROVISIONED OPENSFIFT CONTAINER STORAGE DEPLOYED ON MICROSOFT AZURE

4.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON AZURE INSTALLER-PROVISIONED INFRASTRUCTURE

When you need to replace a device in a dynamically created storage cluster on an Azure installer-provisioned infrastructure, you must replace the storage node. For information about how to replace nodes, see:

- Replacing operational nodes on Azure installer-provisioned infrastructure
- Replacing failed nodes on Azure installer-provisioned infrastructures.
CHAPTER 5. OPENShift CONTAINER STORAGE DEPLOYED USING LOCAL STORAGE DEVICES

5.1. REPLACING FAILED STORAGE DEVICES ON AMAZON EC2 INFRASTRUCTURE

When you need to replace a storage device on an Amazon EC2 (storage-optimized I3) infrastructure, you must replace the storage node. For information about how to replace nodes, see Replacing failed storage nodes on Amazon EC2 infrastructure.

5.2. REPLACING FAILED STORAGE DEVICES ON ON-PREMISE INFRASTRUCTURES USING USER INTERFACE

You can use this procedure to replace a storage device that has failed due to I/O errors on the following infrastructures:

- Bare metal
- VMware
- Red Hat Virtualization

You can initiate the replacement of a failed storage device from the Cluster or the Persistent Storage dashboards, Nodes page, or the Notifications.

However, if the failure has removed the disk, you need to replace the object storage device (OSD) using the command line steps described in the Replacing operational or failed storage devices on clusters backed by local storage devices section.

NOTE

For encrypted cluster, replacing a failed device from user interface is not supported. To replace the device from the command-line interface, follow the steps from chapter Replacing operational or failed storage devices on clusters backed by local storage devices section.

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.

- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created annotations to enable failed device replacement from the user interface, do so now by following the procedure described in Adding annotations.

- If you have upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created a LocalVolumeSet object to enable automatic provisioning of devices, do so now by following the procedure described in Post-update configuration changes for clusters backed by local storage.

- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created the LocalVolumeDiscovery object, do so now by following the procedure described in Post-update configuration changes for clusters backed by local storage.
Procedure

From the Cluster or Persistent Storage dashboard

1. Open either the Cluster or the Persistent Storage dashboard.
 - Click Home → Overview → Cluster from the left navigation bar of the OpenShift Web Console.

![Figure 5.1. Cluster dashboard with the alert](image)

 A cluster version update is available
 • 3 minutes ago
 Disk device /dev/sdc not responding, on host compute-1.
 • Oct 5, 7:55 am
 The pod disruption budget is preventing further disruption to pods because it is at the minimum

 • Click Home → Overview → Persistent Storage from the left navigation bar of the OpenShift Web Console.

![Figure 5.2. Persistent Storage dashboard with the alert](image)

 2. Click Troubleshoot in the Disk `<disk1>` not responding or the Disk `<disk1>` not accessible alert.
NOTE

In case the disk failure has removed the disk, you might not see the failed disk when you click the link. In such a scenario, you need to perform command line steps as described in the Replacing operational or failed storage devices on clusters backed by local storage devices section.

Figure 5.3. Disks page to replace failed disk

3. On the Disks page, you can do one of the following:
 - Click the here link in the Troubleshoot popover dialog and follow the steps in the Troubleshooting OpenShift Container Storage guide to confirm that the disk has actually failed.
 - From the Action (⋮) menu of the failed disk, click Start Disk Replacement

4. OCS Status field of the disk changes to PreparingToReplace. Wait for the OCS Status field to change to ReplacementReady.

5. Confirm that the disk alert no longer appears by clicking the notification bell.

6. Replace the disk and wait for it to appear in the inventory list.

7. Delete the ocs-osd-removal-job.
 b. Use the search by Name filter to look for ocs-osd-removal-job. Ensure that the Project selected is openshift-storage.
 c. For the listed job, click the Action (⋮) menu and select Delete Job.
 d. Confirm that the job is deleted.

8. Delete the PersistentVolume resource associated with the replaced disk.
 a. On the OpenShift Web Console, navigate to Storage→PersistentVolumes
 b. Use the search by Name filter to look for the PersistentVolume in Released status.
c. For the listed PersistentVolume from the storage class created as part of the LocalVolumeSet creation, for example, `localblock`, click the Action (⋮) menu and select **Delete PersistentVolume**

9. Verify that the **OCS Status** shows **Online** for the newly added disk.

From the inventory list

1. Click **Compute → Nodes** from the OpenShift Web Console.

2. Select the node with the failed disk.

3. Click the **Disks** tab to view the list of the disks in the node.

Figure 5.4. Inventory list of disks in the Nodes page

4. From the Action (⋮) menu of the **failed disk**, click **Start Disk Replacement**

5. **OCS Status** field of the disk changes to **PreparingToReplace**. Wait for the **OCS Status** field to change to **ReplacementReady**.

6. Confirm that the disk alert no longer appears by clicking the notification bell.

7. Replace the disk and wait for it to appear in the inventory list.

8. **Delete the ocs-osd-removal-job**.
 a. On the OpenShift Web Console, navigate to **Workloads → Jobs**.
 b. Use the search by Name filter to look for **ocs-osd-removal-job**. Ensure that the **Project** selected is **openshift-storage**.
 c. For the listed job, click the Action (⋮) menu and select **Delete Job**.
 d. Confirm that the job is deleted.

9. **Delete the PersistentVolume resource associated with the replaced disk**.
 a. On the OpenShift Web Console, navigate to **Storage → PersistentVolumes**
 b. Use the search by Name filter to look for the PersistentVolume in **Released** status.
For the listed PersistentVolume from the storage class created as part of the LocalVolumeSet creation, for example, `localblock`, click the Action (⋮) menu and select Delete PersistentVolume.

10. Verify that the OCS Status shows Online for the newly added disk.

From the Notifications

1. Click Home → Overview → Persistent Storage or Cluster dashboard or click Compute → Nodes → Disks tab.

2. Look for one of the following alerts in the Notifications of the Cluster or the Persistent Storage dashboard or in the Nodes page:
 - CephOSDDiskUnavailable
 - CephOSDDiskNotResponding

3. Click Troubleshoot in the alert notification.

 NOTE

 In case the disk failure has removed the disk, you might not see the failed disk when you click the link. In such a scenario, you need to perform command line steps as described in the Replacing operational or failed storage devices on clusters backed by local storage devices section.

4. In the Disks page, you can do one of the following:
 - Click the here link in the Troubleshoot popover dialog and follow the steps in the Troubleshooting OpenShift Container Storage guide to confirm that the disk has actually failed.
 - From the Action (⋮) menu of the failed disk, click Start Disk Replacement.
5. **OCS Status** of the disk changes to **PreparingToReplace** and once it is ready to be replaced, the status changes to **ReplacementReady**.

6. Confirm that the disk alert no longer appears by clicking the notification bell.

7. Replace the disk and wait for it to appear in the inventory list.

8. Delete the `ocs-osd-removal-job`.
 a. On the OpenShift Web Console, navigate to **Workloads → Jobs**.
 b. Use the search by Name filter to look for `ocs-osd-removal-job`. Ensure that the **Project** selected is **openshift-storage**.
 c. For the listed job, click the Action (⋮) menu and select **Delete Job**.
 d. Confirm that the job is deleted.

9. Delete the PersistentVolume resource associated with the replaced disk.
 a. On the OpenShift Web Console, navigate to **Storage → PersistentVolumes**.
 b. Use the search by Name filter to look for the PersistentVolume in **Released** status.
 c. For the listed PersistentVolume from the storage class created as part of the LocalVolumeSet creation, for example, `localblock`, click the Action (⋮) menu and select **Delete PersistentVolume**.

10. Verify that the **OCS Status** shows **Online** for the newly added disk.

5.3. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON CLUSTERS BACKED BY LOCAL STORAGE DEVICES

You can replace an object storage device (OSD) in OpenShift Container Storage deployed using local storage devices on the following infrastructures:

- Bare metal
- VMware
- Red Hat Virtualization

Use this procedure when one or more underlying storage devices need to be replaced.

Prerequisites

- Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.

- If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created a **LocalVolumeSet** object to enable automatic provisioning of devices, do so now by following the procedure described in **Post-update configuration changes for clusters backed by local storage**.
If you upgraded to OpenShift Container Storage 4.7 from a previous version and have not already created the `LocalVolumeDiscovery` object, do so now by following the procedure described in Post-update configuration changes for clusters backed by local storage.

Procedure

1. Identify the OSD that needs to be replaced and the OpenShift Container Platform node that has the OSD scheduled on it.

$$ oc\ get\ -n\ openshift-storage\ pods\ -l\ app=rook-ceph-osd\ -o\ wide $$

Example output:

```
rook-ceph-osd-0-6d77d6c7c6-m8xj6 0/1 CrashLoopBackOff 0 24h 10.129.0.16 compute-2 <none> <none>
rook-ceph-osd-1-85d99fb95f-2svc7 1/1 Running 0 24h 10.128.2.24 compute-0 <none> <none>
rook-ceph-osd-2-6c66cdbb977-jp542 1/1 Running 0 24h 10.130.0.18 compute-1 <none> <none>
```

In this example, `rook-ceph-osd-0-6d77d6c7c6-m8xj6` needs to be replaced and `compute-2` is the OpenShift Container platform node on which the OSD is scheduled.

NOTE

If the OSD to be replaced is healthy, the status of the pod will be `Running`.

2. Scale down the OSD deployment for the OSD to be replaced.

```
$ osd_id_to_remove=0
$ oc scale -n openshift-storage deployment rook-ceph-osd-${osd_id_to_remove} --replicas=0
```

Example output:

```
deployment.extensions/rook-ceph-osd-0 scaled
```

3. Verify that the `rook-ceph-osd` pod is terminated.

```
$ oc get -n openshift-storage pods -l ceph-osd-id=${osd_id_to_remove}
```

Example output:

```
No resources found in openshift-storage namespace.
```
NOTE
If the rook-ceph-osd pod is in terminating state for more than a few minutes, use the force option to delete the pod.

$ oc delete -n openshift-storage pod rook-ceph-osd-0-6d77d6c7c6-m8xj6 --
grace-period=0 --force

Example output:

warning: Immediate deletion does not wait for confirmation that the running
resource has been terminated. The resource may continue to run on the
cluster indefinitely.

pod "rook-ceph-osd-0-6d77d6c7c6-m8xj6" force deleted

4. Remove the old OSD from the cluster so that a new OSD can be added.

a. Delete any old ocs-osd-removal jobs.

$ oc delete -n openshift-storage job ocs-osd-removal-job

Example output:

job.batch "ocs-osd-removal-job" deleted

b. Change to the openshift-storage project.

$ oc project openshift-storage

c. Remove the old OSD from the cluster.

$ oc process -n openshift-storage ocs-osd-removal -p
FAILED_OSD_IDS=${osd_id_to_remove} |oc create -n openshift-storage -f -

You can remove more than one OSD by adding comma separated OSD IDs in the command. (For example: FAILED_OSD_IDS=0,1,2)

WARNING
This step results in OSD being completely removed from the cluster. Ensure that the correct value of osd_id_to_remove is provided.

5. Verify that the OSD is removed successfully by checking the status of the ocs-osd-removal pod. A status of Completed confirms that the OSD removal job succeeded.

$ oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
If `ocs-osd-removal` fails and the pod is not in the expected `Completed` state, check the pod logs for further debugging. For example:

```
$ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1
```

6. If encryption was enabled at the time of install, remove `dm-crypt` managed `device-mapper` mapping from the OSD devices that are removed from the respective OpenShift Container Storage nodes.

 a. Get PVC name(s) of the replaced OSD(s) from the logs of `ocs-osd-removal-job` pod:

```
$ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1 | egrep -i 'pvc|deviceset'
```

 For example:

```
2021-05-12 14:31:34.666000 I | cephosd: removing the OSD PVC "ocs-deviceset-xxxx-xxx-xxx-xxx"
```

 b. For each of the nodes identified in step #1, do the following:

 i. Create a `debug` pod and `chroot` to the host on the storage node.

```
$ oc debug node/<node name>
$ chroot /host
```

 ii. Find relevant device name based on the PVC names identified in the previous step

```
sh-4.4# dmsetup ls| grep <pvc name>
ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt (253:0)
```

 iii. Remove the mapped device.

```
$ cryptsetup luksClose --debug --verbose ocs-deviceset-xxx-xxx-xxx-xxx-block-dmcrypt
```
NOTE

If the above command gets stuck due to insufficient privileges, run the following commands:

- Press **CTRL+Z** to exit the above command.
- Find PID of the process which was stuck.

  ```
  $ ps -ef | grep crypt
  ```
- Terminate the process using **kill** command.

  ```
  $ kill -9 <PID>
  ```
- Verify that the device name is removed.

  ```
  $ dmsetup ls
  ```

7. Find the persistent volume (PV) that need to be deleted by the command:

```bash
$ oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
```

local-pv-d6bf175b 1490Gi RWO Delete Released openshift-
storage/ocs-deviceset-0-data-0-6c5pw localblock 2d22h compute-1

8. Delete the persistent volume.

```bash
$ oc delete pv local-pv-d6bf175b
```

9. Physically add a new device to the node.
 You can also remove the old device (optional).

10. Use the following command to track provisioning of persistent volumes for devices that match the `deviceInclusionSpec`. It can take a few minutes to provision persistent volumes.

```bash
$ oc -n openshift-local-storage describe localvolumeset localblock
```

Example output:

```
[...]
Status:
  Conditions:
    Last Transition Time: 2020-11-17T05:03:32Z
    Message: DiskMaker: Available, LocalProvisioner: Available
    Status: True
    Type: DaemonSetsAvailable
    Last Transition Time: 2020-11-17T05:03:34Z
    Message: Operator reconciled successfully.
    Status: True
    Type: Available
  Observed Generation: 1
  Total Provisioned Device Count: 4
```
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Discovered 2m30s (x4 localvolumeset- node.example.com -
NewDevice over 2m30s) symlink-controller found possible
matching disk,
waiting 1m to claim
Normal FoundMatch 89s (x4 localvolumeset- node.example.com -
ingDisk over 89s) symlink-controller symlinking matching
disk

Once the persistent volume is provisioned, a new OSD pod is automatically created for the
provisioned volume.

11. Delete the ocs-osd-removal job(s).
 $ oc delete -n openshift-storage job ocs-osd-removal-job
 Example output:
 job.batch "ocs-osd-removal-job" deleted

 NOTE
 When using an external key management system (KMS) with data encryption, the old
 OSD encryption key can be removed from the Vault server as it is now an orphan key.

Verification steps

1. Verify that there is a new OSD running.
 $ oc get -n openshift-storage pods -l app=rook-ceph-osd
 Example output:
 rook-ceph-osd-0-5f7f4747d4-snshw 1/1 Running 0 4m47s
 rook-ceph-osd-1-85d99fb95f-2svc7 1/1 Running 0 1d20h
 rook-ceph-osd-2-6c66c8b977-jp542 1/1 Running 0 1d20h

 NOTE
 If the new OSD does not show as Running after a few minutes, restart the rook-
ceph-operator pod to force a reconciliation.
 $ oc delete pod -n openshift-storage -l app=rook-ceph-operator
 Example output:
 pod "rook-ceph-operator-6f74fb5bfb-2d982" deleted

2. Verify that a new PVC is created.
$ oc get -n openshift-storage pvc | grep localblock

Example output:

```plaintext
ocs-deviceset-0-0-c2mqb   Bound    local-pv-b481410         1490Gi     RWO            localblock
  5m
ocs-deviceset-1-0-959rp   Bound    local-pv-414755e0        1490Gi     RWO            localblock
  1d20h
ocs-deviceset-2-0-79j94   Bound    local-pv-3e8964d3        1490Gi     RWO            localblock
  1d20h
```

3. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

 a. Identify the node(s) where the new OSD pod(s) are running.

      ```bash
      $ oc get -o=custom-columns=NODE:.spec.nodeName pod/<OSD pod name>
      
      For example:
      
      oc get -o=custom-columns=NODE:.spec.nodeName pod/rook-ceph-osd-0-544db49d7f-qrgqm
      
   b. For each of the nodes identified in previous step, do the following:

      i. Create a debug pod and open a chroot environment for the selected host(s).

         ```bash
 $ oc debug node/<node name>
 $ chroot /host

 ii. Run “lsblk” and check for the “crypt” keyword beside the `ocs-deviceset` name(s)

            ```bash
            $ lsblk
            ```

4. Log in to OpenShift Web Console and check the OSD status on the storage dashboard.

 Figure 5.6. OSD status in OpenShift Container Platform storage dashboard after device replacement

<table>
<thead>
<tr>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

 No persistent storage alerts

NOTE

A full data recovery may take longer depending on the volume of data being recovered.
5.4. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON IBM POWER SYSTEMS

You can replace an object storage device (OSD) in OpenShift Container Storage deployed using local storage devices on IBM Power Systems. Use this procedure when an underlying storage device needs to be replaced.

Procedure

1. Identify the OSD that needs to be replaced and the OpenShift Container Platform node that has the OSD scheduled on it.

 $ oc get -n openshift-storage pods -l app=rook-ceph-osd -o wide

 Example output:

 rook-ceph-osd-0-86bf8c08-4nb5t 0/1 crashLoopBackOff 0 24h 10.129.2.26
 worker-0 <none> <none>
 rook-ceph-osd-1-7c99657fb-fjzvz 1/1 Running 0 24h 10.128.2.46 worker-1
 <none> <none>
 rook-ceph-osd-2-5f9f6dfb-2mnw9 1/1 Running 0 24h 10.131.0.33 worker-2
 <none> <none>

 In this example, **rook-ceph-osd-0-86bf8c08-4nb5t** needs to be replaced and **worker-0** is the RHOCPP node on which the OSD is scheduled.

 NOTE

 If the OSD to be replaced is healthy, the status of the pod will be **Running**.

2. Scale down the OSD deployment for the OSD to be replaced.

 $ osd_id_to_remove=0
 $ oc scale -n openshift-storage deployment rook-ceph-osd-${osd_id_to_remove} --replicas=0

 where **osd_id_to_remove** is the integer in the pod name immediately after the **rook-ceph-osd** prefix. In this example, the deployment name is **rook-ceph-osd-0**.

 Example output:

 deployment.apps/rook-ceph-osd-0 scaled

3. Verify that the **rook-ceph-osd** pod is terminated.

 $ oc get -n openshift-storage pods -l ceph-osd-id=${osd_id_to_remove}

 Example output:

 No resources found in openshift-storage namespace.
NOTE
If the `rook-ceph-osd` pod is in `terminating` state, use the `force` option to delete the pod.

```
$ oc delete -n openshift-storage pod rook-ceph-osd-0-86bf8cdc8-4nb5t --
grace-period=0 --force
```

Example output:

```
warning: Immediate deletion does not wait for confirmation that the running
resource has been terminated. The resource may continue to run on the
cluster indefinitely.
pod “rook-ceph-osd-0-86bf8cdc8-4nb5t” force deleted
```

1. Remove the old OSD from the cluster so that a new OSD can be added.
 a. Identify the `DeviceSet` associated with the OSD to be replaced.

```
$ oc get -n openshift-storage -o yaml deployment rook-ceph-osd-${osd_id_to_remove} |
grep ceph.rook.io/pvc
```

Example output:

```
ceph.rook.io/pvc: ocs-deviceset-localblock-0-data-0-64xjl
ceph.rook.io/pvc: ocs-deviceset-localblock-0-data-0-64xjl
```

In this example, the PVC name is `ocs-deviceset-localblock-0-data-0-64xjl`.

b. Delete any old `ocs-osd-removal` jobs.

```
$ oc delete -n openshift-storage job ocs-osd-removal-job
```

Example output:

```
job.batch "ocs-osd-removal-job" deleted
```

c. Change to the `openshift-storage` project.

```
$ oc project openshift-storage
```

d. Remove the old OSD from the cluster

```
$ oc process -n openshift-storage ocs-osd-removal -p
FAILED_OSD_ID=${osd_id_to_remove} | oc -n openshift-storage create -f -
```

You can remove more than one OSD by adding comma separated OSD IDs in the command. (For example: `FAILED_OSD_ID=0,1,2`)
2. Verify that the OSD is removed successfully by checking the status of the `ocs-osd-removal` pod. A status of **Completed** confirms that the OSD removal job completed successfully.

```
$ oc get pod -l job-name=ocs-osd-removal-job -n openshift-storage
```

NOTE

If `ocs-osd-removal` fails and the pod is not in the expected **Completed** state, check the pod logs for further debugging. For example:

```
$ oc logs -l job-name=ocs-osd-removal-job -n openshift-storage --tail=-1
```

3. Delete the persistent volume claim (PVC) resources associated with the OSD to be replaced.

 a. Identify the PV associated with the PVC.

```
$ oc get -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>
```

where, `x`, `y`, and `pvc-suffix` are the values in the **DeviceSet** identified in an step 4(a).

Example output:

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
<th>VOLUME</th>
<th>CAPACITY</th>
<th>ACCESS MODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ocs-deviceset-localblock-0-data-0-64xjl</td>
<td>Bound</td>
<td>local-pv-8137c873</td>
<td>256Gi</td>
<td>RWO</td>
</tr>
<tr>
<td>localblock</td>
<td>24h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this example, the associated PV is `local-pv-8137c873`.

 b. Identify the name of the device to be replaced.

```
$ oc get pv local-pv-<pv-suffix> -o yaml | grep path
```

where, `pv-suffix` is the value in the PV name identified in an earlier step.

Example output:

```
path: /mnt/local-storage/localblock/vdc
```

In this example, the device name is `vdc`.

 c. Identify the `prepare-pod` associated with the OSD to be replaced.
$ oc describe -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix> | grep Mounted

where, \(x \), \(y \), and \(\text{pvc-suffix} \) are the values in the DeviceSet identified in an earlier step.

Example output:

Mounted By: rook-ceph-osd-prepare-ocs-deviceset-localblock-0-data-0-64knzkc

In this example the prepare-pod name is `rook-ceph-osd-prepare-ocs-deviceset-localblock-0-data-0-64knzkc`.

d. Delete the osd-prepare pod before removing the associated PVC.

$ oc delete -n openshift-storage pod rook-ceph-osd-prepare-ocs-deviceset-<x>-<y>-<pvc-suffix>-<pod-suffix>

where, \(x \), \(y \), \(\text{pvc-suffix} \), and \(\text{pod-suffix} \) are the values in the osd-prepare pod name identified in an earlier step.

Example output:

pod "rook-ceph-osd-prepare-ocs-deviceset-localblock-0-data-0-64knzkc" deleted

e. Delete the PVC associated with the OSD to be replaced.

$ oc delete -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>

where, \(x \), \(y \), and \(\text{pvc-suffix} \) are the values in the DeviceSet identified in an earlier step.

Example output:

persistentvolumeclaim "ocs-deviceset-localblock-0-data-0-64xjl" deleted

4. Delete the PV associated with the device to be replaced, which was identified in earlier steps. In this example, the PV name is `local-pv-8137c873`.

$ oc delete pv local-pv-8137c873

Example output:

persistentvolume "local-pv-8137c873" deleted

5. Replace the old device and use the new device to create a new OpenShift Container Platform PV.

a. Log in to OpenShift Container Platform node with the device to be replaced. In this example, the OpenShift Container Platform node is `worker-0`.

$ oc debug node/worker-0

Example output:
Starting pod/worker-0-debug ...
To use host binaries, run `chroot /host`
Pod IP: 192.168.88.21
If you don’t see a command prompt, try pressing enter.
chroot /host

b. Record the /dev/disk that is to be replaced using the device name, vdc, identified earlier.

ls -alh /mnt/local-storage/localblock

Example output:

```
total 0
drwxr-xr-x. 2 root root 17 Nov 18 15:23 .
drwxr-xr-x. 3 root root 24 Nov 18 15:23 ..
lrwxrwxrwx. 1 root root  8 Nov 18 15:23 vdc -> /dev/vdc
```

c. Find the name of the LocalVolumeSet CR, and remove or comment out the device /dev/disk that is to be replaced.

$ oc get -n openshift-local-storage localvolumeset
NAME AGE
localblock 25h

6. Log in to OpenShift Container Platform node with the device to be replaced and remove the old symlink.

$ oc debug node/worker-0

Example output:

Starting pod/worker-0-debug ...
To use host binaries, run `chroot /host`
Pod IP: 192.168.88.21
If you don’t see a command prompt, try pressing enter.
chroot /host

a. Identify the old symlink for the device name to be replaced. In this example, the device name is vdc.

ls -alh /mnt/local-storage/localblock

Example output:

```
total 0
drwxr-xr-x. 2 root root 17 Nov 18 15:23 .
drwxr-xr-x. 3 root root 24 Nov 18 15:23 ..
lrwxrwxrwx. 1 root root  8 Nov 18 15:23 vdc -> /dev/vdc
```

b. Remove the symlink.

rm /mnt/local-storage/localblock/vdc
c. Verify that the symlink is removed.

```bash
# ls -alh /mnt/local-storage/localblock
```

Example output:

```
total 0
drwxr-xr-x. 2 root root 6 Nov 18 17:11 .
drwxr-xr-x. 3 root root 24 Nov 18 15:23 ..
```

IMPORTANT

For new deployments of OpenShift Container Storage 4.5 or later, LVM is not in use, `ceph-volume` raw mode is in play instead. Therefore, additional validation is not needed and you can proceed to the next step.

7. Replace the device with the new device.

8. Log back into the correct OpenShift Container Platform node and identify the device name for the new drive. The device name must change unless you are reseating the same device.

```bash
# lsblk
```

Example output:

```
NAME                         MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
vda                          252:0    0   40G  0 disk
├─vda1                       252:1    0    4M  0 part
├─vda2                       252:2    0  384M  0 part /boot
└─vda4                       252:4    0 39.6G  0 part
    `coreos-luks-root-nocrypt 253:0    0 39.6G  0 dm /sysroot
vdb                          252:16   0  512B  1 disk
vdd                          252:32   0 256G  0 disk
```

In this example, the new device name is `vdd`.

9. After the new `/dev/disk` is available, it will be auto detected by `localvolumeset`.

10. Verify that there is a new PV in **Available** state and of the correct size.

```bash
$ oc get pv | grep 256Gi
```

Example output:

```
local-pv-1e31f771   256Gi   RWO    Delete Bound openshift-storage/ocs-deviceset-localblock-2-data-0-6xhkf localblock 24h
local-pv-ec7f2b80   256Gi   RWO    Delete openshift-storage/ocs-deviceset-localblock-1-data-0-hr2fx localblock 24h
local-pv-8137c873   256Gi   RWO    Delete Available localblock 32m
```

11. Create new OSD for new device.

 a. Deploy the new OSD by restarting the `rook-ceph-operator` to force operator reconciliation.
i. Identify the name of the `rook-ceph-operator`.

   ```bash
   $ oc get -n openshift-storage pod -l app=rook-ceph-operator
   ```

 Example output:

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>rook-ceph-operator-85f6494db4-sg62v</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1d20h</td>
</tr>
</tbody>
</table>

 ii. Delete the `rook-ceph-operator`.

   ```bash
   $ oc delete -n openshift-storage pod rook-ceph-operator-85f6494db4-sg62v
   ```

 Example output:

 pod "rook-ceph-operator-85f6494db4-sg62v" deleted

 In this example, the `rook-ceph-operator` pod name is `rook-ceph-operator-85f6494db4-sg62v`.

 iii. Verify that the `rook-ceph-operator` pod is restarted.

   ```bash
   $ oc get -n openshift-storage pod -l app=rook-ceph-operator
   ```

 Example output:

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>rook-ceph-operator-85f6494db4-wx9xx</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>50s</td>
</tr>
</tbody>
</table>

 Creation of the new OSD may take several minutes after the operator restarts.

12. Delete the `ocs-osd-removal` job(s).

   ```bash
   $ oc delete -n openshift-storage job ocs-osd-removal-job
   ```

 Example output:

 job.batch "ocs-osd-removal-job" deleted

Verification steps

- Verify that there is a new OSD running and a new PVC created.

   ```bash
   $ oc get -n openshift-storage pods -l app=rook-ceph-osd
   ```

 Example output:

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>rook-ceph-osd-0-76d8fb97f9-mm8qz</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>23m</td>
</tr>
<tr>
<td>rook-ceph-osd-1-7c99657cfd-jdzvz</td>
<td>1/1</td>
<td>Running</td>
<td>1</td>
<td>25h</td>
</tr>
<tr>
<td>rook-ceph-osd-2-5f9f6dfb5b-2mnw9</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>25h</td>
</tr>
</tbody>
</table>
Log in to OpenShift Web Console and view the storage dashboard.

Figure 5.7. OSD status in OpenShift Container Platform storage dashboard after device replacement

Status

- OCS Cluster
- Data Resiliency

5.5. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON IBM Z OR LINUXONE INFRASTRUCTURE

You can replace operational or failed storage devices on IBM Z or LinuxONE infrastructure with new SCSI disks.

IBM Z or LinuxONE supports SCSI FCP disk logical units (SCSI disks) as persistent storage devices from external disk storage. A SCSI disk can be identified by using its FCP Device number, two target worldwide port names (WWPN1 and WWPN2), and the logical unit number (LUN). For more information, see https://www.ibm.com/support/knowledgecenter/SSB27U_6.4.0/com.ibm.zvm.v640.hcpa5/scsiover.html

Procedure

1. List all the disks with the following command.

$ lszdev

Example output:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>ID</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>zfcp-host</td>
<td>0.0.8204</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>zfcp-lun</td>
<td>0.0.8204:0x102107630b1b5060:0x4001402900000000</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>zfcp-lun</td>
<td>0.0.8204:0x500407630c0b50a4:0x3002b030000000000</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>qeth</td>
<td>0.0.bdd0:0.0.bdd1:0.0.bdd2</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>generic-ccw</td>
<td>0.0.0009</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
A SCSI disk is represented as a `zfcp-lun` with the structure `<device-id>:<wwpn>:<lun-id>` in the ID section. The first disk is used for the operating system. If one storage device fails, it can be replaced with a new disk.

2. Remove the disk.
 Run the following command on the disk, replacing `scsi-id` with the SCSI disk identifier of the disk to be replaced.

   ```
   $ chzdev -d scsi-id
   ```

 For example, the following command removes one disk with the device ID `0.0.8204`, the WWPN `0x500507630a0b50a4`, and the LUN `0x4002403000000000` with the following command:

   ```
   $ chzdev -d 0.0.8204:0x500507630a0b50a4:0x4002403000000000
   ```

3. Append a new SCSI disk with the following command:

   ```
   $ chzdev -e 0.0.8204:0x500507630b1b50a4:0x4001302a00000000
   ```

 NOTE
 The device ID for the new disk must be the same as the disk to be replaced. The new disk is identified with its WWPN and LUN ID.

4. List all the FCP devices to verify the new disk is configured.

   ```
   $ lszdev zfcp-lun
   TYPE ID ON PERS NAMES
   zfcp-lun 0.8204:0x102107630b1b5060:0x4001402900000000 yes no sda sg0
   zfcp-lun 0.8204:0x500507630b1b50a4:0x4001302a00000000 yes yes sdb sg1
   ```