Red Hat OpenShift Container Storage
4.7

Managing and allocating storage resources

Management tasks for cluster and storage administrators
Management tasks for cluster and storage administrators
Abstract

This document explains how to allocate storage to core services and hosted applications in Red Hat OpenShift Container Storage.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE .. 3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 4

CHAPTER 1. OVERVIEW .. 5

CHAPTER 2. STORAGE CLASSES AND STORAGE POOLS 6
 2.1. CREATING STORAGE CLASSES AND POOLS 6
 2.2. CREATING A STORAGE CLASS FOR PERSISTENT VOLUME ENCRYPTION 7

CHAPTER 3. CONFIGURE STORAGE FOR OPENSIGHT CONTAINER PLATFORM SERVICES 9
 3.1. CONFIGURING IMAGE REGISTRY TO USE OPENSIGHT CONTAINER STORAGE 9
 3.2. CONFIGURING MONITORING TO USE OPENSIGHT CONTAINER STORAGE 11
 3.3. CLUSTER LOGGING FOR OPENSIGHT CONTAINER STORAGE 13
 3.3.1. Configuring persistent storage ... 14
 3.3.2. Configuring cluster logging to use OpenShift Container Storage 15

CHAPTER 4. BACKING OPENSIGHT CONTAINER PLATFORM APPLICATIONS WITH OPENSIGHT CONTAINER STORAGE 18

CHAPTER 5. ADDING FILE AND OBJECT STORAGE TO AN EXISTING EXTERNAL OPENSIGHT CONTAINER STORAGE CLUSTER .. 20

CHAPTER 6. HOW TO USE DEDICATED WORKER NODES FOR RED HAT OPENSIGHT CONTAINER STORAGE .. 23
 6.1. ANATOMY OF AN INFRASTRUCTURE NODE .. 23
 6.2. MACHINE SETS FOR CREATING INFRASTRUCTURE NODES 23
 6.3. MANUAL CREATION OF INFRASTRUCTURE NODES 24

CHAPTER 7. MANAGING PERSISTENT VOLUME CLAIMS .. 26
 7.1. CONFIGURING APPLICATION PODS TO USE OPENSIGHT CONTAINER STORAGE 26
 7.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS 27
 7.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS 28
 7.4. EXPANDING PERSISTENT VOLUME CLAIMS ... 28
 7.5. DYNAMIC PROVISIONING .. 29
 7.5.1. About dynamic provisioning .. 30
 7.5.2. Dynamic provisioning in OpenShift Container Storage 30
 7.5.3. Available dynamic provisioning plug-ins ... 30

CHAPTER 8. VOLUME SNAPSHOTS ... 32
 8.1. CREATING VOLUME SNAPSHOTS ... 32
 8.2. RESTORING VOLUME SNAPSHOTS ... 33
 8.3. DELETING VOLUME SNAPSHOTS .. 35

CHAPTER 9. VOLUME CLONING .. 36
 9.1. CREATING A CLONE ... 36

CHAPTER 10. MANAGING CONTAINER STORAGE INTERFACE (CSI) COMPONENT PLACEMENTS 37
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:

• For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the *Multi-page HTML* format. In addition, ensure you see the Feedback button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the Add Feedback pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

• For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the Bugzilla website.
 2. As the Component, use Documentation.
 3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click Submit Bug.
CHAPTER 1. OVERVIEW

Read this document to understand how to create, configure, and allocate storage to core services or hosted applications in Red Hat OpenShift Container Storage.

- Chapter 2, *Storage classes and storage pools* shows you how to create custom storage classes and storage pools.

- Chapter 3, *Configure storage for OpenShift Container Platform services* shows you how to use OpenShift Container Storage for core OpenShift Container Platform services.

- Chapter 4, *Backing OpenShift Container Platform applications with OpenShift Container Storage* provides information about how to configure OpenShift Container Platform applications to use OpenShift Container Storage.

- **Adding file and object storage to an existing external OpenShift Container Storage cluster**

- Chapter 6, *How to use dedicated worker nodes for Red Hat OpenShift Container Storage* provides information about how to use dedicated worker nodes for Red Hat OpenShift Container Storage.

- Chapter 7, *Managing Persistent Volume Claims* provides information about managing Persistent Volume Claim requests, and automating the fulfillment of those requests.

- Chapter 8, *Volume Snapshots* shows you how to create, restore, and delete volume snapshots.

- Chapter 9, *Volume cloning* shows you how to create volume clones.

- Chapter 10, *Managing container storage interface (CSI) component placements* provides information about setting tolerations to bring up container storage interface component on the nodes.
CHAPTER 2. STORAGE CLASSES AND STORAGE POOLS

The OpenShift Container Storage operator installs a default storage class depending on the platform in use. This default storage class is owned and controlled by the operator and it cannot be deleted or modified. However, you can create customer storage classes to use other storage resources or to offer a different behavior to applications.

With OpenShift Container Platform, you can create multiple storage pools which map to storage classes that provide the following features:

- Enable applications with their own high availability to use persistent volumes with two replicas, potentially improving application performance.
- Save space for persistent volume claims using storage classes with compression enabled.

NOTE

Custom storage classes are not supported for external mode OpenShift Container Storage clusters.

NOTE

With a minimal cluster of a single device set, only two new storage classes can be created. Every storage cluster expansion allows two new additional storage classes.

2.1. CREATING STORAGE CLASSES AND POOLS

You can create a storage class using an existing pool or you can create a new pool for the storage class while creating it.

Prerequisites

Ensure that the OpenShift Container Storage cluster is in **Ready** state.

Procedure

1. Log in to OpenShift Web Console.
2. Click **Storage** → **Storage Classes**.
3. Click **Create Storage Class**.
4. Enter the storage class **Name** and **Description**.
5. Select either **Delete** or **Retain** for the Reclaim Policy. By default, **Delete** is selected.
6. Select RBD Provisioner which is the plugin used for provisioning the persistent volumes.
7. You can either create a new pool or use an existing one.

 Create a new pool

 a. Enter a name for the pool.

 b. Choose **2-way-Replication** or **3-way-Replication** as the Data Protection Policy.
c. Select **Enable compression** if you need to compress the data. Enabling compression can impact application performance and might prove ineffective when data to be written is already compressed or encrypted.

d. Click **Create** to create the storage pool.

e. Click **Finish** after the pool is created.

f. Click **Create** to create the storage class.

Use an existing pool

a. Choose a pool from the list.

b. Click **Create** to create the storage class with the selected pool.

2.2. CREATING A STORAGE CLASS FOR PERSISTENT VOLUME ENCRYPTION

Encryption of persistent volume provisioned through storage class encryption using an external key management system (KMS) is a technology preview feature. Persistent volume encryption is only available for RBD PVs.

IMPORTANT

Storage class encryption is a Technology Preview feature available only for RBD PVs. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information, see [Technology Preview Features Support Scope](#).

Prerequisites

- The OpenShift Container Storage cluster is in **Ready** state.

- On the external key management system (KMS),
 - Ensure that a policy with a token exists and the key value backend path in Vault is enabled. See [Enabling key value and policy in Vault](#).
 - Ensure that you are using signed certificates on your Vault servers.

- Create a secret in the tenant’s namespace as follows:
 - On the OpenShift Container Platform web console, navigate to **Workloads → Secrets**
 - Click **Create → Key/value secret**
 - Enter **Secret Name** as **ceph-csi-kms-token**.
 - Enter **Key** as **token**.
Enter **Value**. It is the token from Vault. You can either click **Browse** to select and upload the file containing the token or enter the token directly in the text box.

- Click **Create**.

NOTE

The token can be deleted only after all the encrypted PVCs using the **ceph-csi-kms-token** have been deleted.

Procedure

1. Navigate to **Storage → Storage Classes**.
2. Click **Create Storage Class**.
3. Enter the storage class **Name** and **Description**.
4. Select either Delete or Retain for the **Reclaim Policy**. By default, Delete is selected.
5. Select **RBD Provisioner openshift-storage.rbd.csi.ceph.com** which is the plugin used for provisioning the persistent volumes.
6. Select **Storage Pool** where the volume data will be stored.
7. Select **Enable Encryption** checkbox.
 a. **Key Management Service Provider** is set to Vault by default.
 b. Enter Vault **Service Name**, host **Address** of Vault server ("https://<hostname or ip>"), and **Port number**.
 c. (Optional) Expand **Advanced Settings** to enter certificate details.
 i. Enter the key value secret path in **Backend Path** that is dedicated and unique to OpenShift Container Storage.
 ii. Enter **TLS Server Name** and **Vault Enterprise Namespace**.
 iii. Provide **CA Certificate**, **Client Certificate** and **Client Private Key** by uploading the respective PEM encoded certificate file.
 iv. Click **Save**.
 d. Click **Connect**.
8. Review external key management service **Connection details**. To modify the information, click **Change connection details** and edit the fields.
9. Click **Create**.

IMPORTANT

Red Hat works with the technology partners to provide this documentation as a service to the customers. However, Red Hat does not provide support for the Hashicorp product. For technical assistance with this product, contact **Hashicorp**.
You can use OpenShift Container Storage to provide storage for OpenShift Container Platform services such as image registry, monitoring, and logging.

The process for configuring storage for these services depends on the infrastructure used in your OpenShift Container Storage deployment.

WARNING
Always ensure that you have plenty of storage capacity for these services. If the storage for these critical services runs out of space, the cluster becomes inoperable and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these services. See Configuring the Curator schedule and the Modifying retention time for Prometheus metrics data of Monitoring guide in the OpenShift Container Platform documentation for details.

If you do run out of storage space for these services, contact Red Hat Customer Support.

3.1. CONFIGURING IMAGE REGISTRY TO USE OPENSHIFT CONTAINER STORAGE

OpenShift Container Platform provides a built in Container Image Registry which runs as a standard workload on the cluster. A registry is typically used as a publication target for images built on the cluster as well as a source of images for workloads running on the cluster.

Follow the instructions in this section to configure OpenShift Container Storage as storage for the Container Image Registry. On AWS, it is not required to change the storage for the registry. However, it is recommended to change the storage to OpenShift Container Storage Persistent Volume for vSphere and Bare metal platforms.

WARNING
This process does not migrate data from an existing image registry to the new image registry. If you already have container images in your existing registry, back up your registry before you complete this process, and re-register your images when this process is complete.

Prerequisites
- You have administrative access to OpenShift Web Console.
- OpenShift Container Storage Operator is installed and running in the `openshift-storage` namespace. In OpenShift Web Console, click **Operators → Installed Operators** to view installed operators.

- Image Registry Operator is installed and running in the `openshift-image-registry` namespace. In OpenShift Web Console, click **Administration → Cluster Settings → Cluster Operators** to view cluster operators.

- A storage class with provisioner `openshift-storage.cephfs.csi.ceph.com` is available. In OpenShift Web Console, click **Storage → Storage Classes** to view available storage classes.

Procedure

1. **Create a Persistent Volume Claim for the Image Registry to use.**
 a. In the OpenShift Web Console, click **Storage → Persistent Volume Claims**
 b. Set the **Project** to `openshift-image-registry`.
 c. Click **Create Persistent Volume Claim**
 i. From the list of available storage classes retrieved above, specify the **Storage Class** with the provisioner `openshift-storage.cephfs.csi.ceph.com`.
 ii. Specify the Persistent Volume Claim **Name**, for example, `ocs4registry`.
 iii. Specify an **Access Mode** of **Shared Access (RWX)**.
 iv. Specify a **Size** of at least 100 GB.
 v. Click **Create**.
 Wait until the status of the new Persistent Volume Claim is listed as **Bound**.

2. **Configure the cluster’s Image Registry to use the new Persistent Volume Claim.**
 a. Click **Administration → Custom Resource Definitions**
 b. Click the **Config** custom resource definition associated with the `imageregistry.operator.openshift.io` group.
 c. Click the **Instances** tab.
 d. Beside the cluster instance, click the **Action Menu () → Edit Config**.
 e. Add the new Persistent Volume Claim as persistent storage for the Image Registry.
 i. Add the following under **spec:**; replacing the existing **storage:** section if necessary.

```
storage:
  pvc:
    claim: <new-pvc-name>
```

For example:

```
storage:
  pvc:
    claim: ocs4registry
```
3. Verify that the new configuration is being used.
 a. Click Workloads → Pods.
 b. Set the Project to openshift-image-registry.
 c. Verify that the new image-registry-* pod appears with a status of Running, and that the previous image-registry-* pod terminates.
 d. Click the new image-registry-* pod to view pod details.
 e. Scroll down to Volumes and verify that the registry-storage volume has a Type that matches your new Persistent Volume Claim, for example, ocs4registry.

3.2. CONFIGURING MONITORING TO USE OPENSHIFT CONTAINER STORAGE

OpenShift Container Storage provides a monitoring stack that comprises of Prometheus and Alert Manager.

Follow the instructions in this section to configure OpenShift Container Storage as storage for the monitoring stack.

IMPORTANT

Monitoring will not function if it runs out of storage space. Always ensure that you have plenty of storage capacity for monitoring.

Red Hat recommends configuring a short retention interval for this service. See the Modifying retention time for Prometheus metrics data of Monitoring guide in the OpenShift Container Platform documentation for details.

Prerequisites

- You have administrative access to OpenShift Web Console.
- OpenShift Container Storage Operator is installed and running in the openshift-storage namespace. In the OpenShift Web Console, click Operators → Installed Operators to view installed operators.
- Monitoring Operator is installed and running in the openshift-monitoring namespace. In the OpenShift Web Console, click Administration → Cluster Settings → Cluster Operators to view cluster operators.
- A storage class with provisioner openshift-storage.rbd.csi.ceph.com is available. In the OpenShift Web Console, click Storage → Storage Classes to view available storage classes.

Procedure

1. In the OpenShift Web Console, go to Workloads → Config Maps.
2. Set the Project dropdown to openshift-monitoring.
3. Click **Create Config Map**.

4. Define a new **cluster-monitoring-config** Config Map using the following example. Replace the content in angle brackets (<, >) with your own values, for example, *retention: 24h* or *storage: 40Gi*.

Replace the **storageClassName** with the **storageclass** that uses the provisioner `openshift-storage.rbd.csi.ceph.com`. In the example given below the name of the **storageclass** is `ocs-storagecluster-ceph-rbd`.

Example cluster-monitoring-config Config Map

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: cluster-monitoring-config
  namespace: openshift-monitoring
data:
  config.yaml: |
    prometheusK8s:
      retention: <time to retain monitoring files, e.g. 24h>
    volumeClaimTemplate:
      metadata:
        name: ocs-prometheus-claim
      spec:
        storageClassName: ocs-storagecluster-ceph-rbd
        resources:
          requests:
            storage: <size of claim, e.g. 40Gi>
    alertmanagerMain:
      volumeClaimTemplate:
        metadata:
          name: ocs-alertmanager-claim
        spec:
          storageClassName: ocs-storagecluster-ceph-rbd
          resources:
            requests:
              storage: <size of claim, e.g. 40Gi>
```

5. Click **Create** to save and create the Config Map.

Verification steps

1. Verify that the Persistent Volume Claims are bound to the pods.
 a. Go to **Storage → Persistent Volume Claims**
 b. Set the **Project** dropdown to **openshift-monitoring**.
 c. Verify that 5 Persistent Volume Claims are visible with a state of **Bound**, attached to three **alertmanager-main-* pods**, and two **prometheus-k8s-* pods**.

 Monitoring storage created and bound
2. Verify that the new `alertmanager-main-*` pods appear with a state of **Running**.

 a. Go to Workloads → Pods.

 b. Click the new `alertmanager-main-*` pods to view the pod details.

 c. Scroll down to Volumes and verify that the volume has a **Type**, `ocs-alertmanager-claim` that matches one of your new Persistent Volume Claims, for example, `ocs-alertmanager-claim-alertmanager-main-0`.

3. Verify that the new `prometheus-k8s-*` pods appear with a state of **Running**.

 a. Click the new `prometheus-k8s-*` pods to view the pod details.

 b. Scroll down to Volumes and verify that the volume has a **Type**, `ocs-prometheus-claim` that matches one of your new Persistent Volume Claims, for example, `ocs-prometheus-claim-prometheus-k8s-0`.

3.3. CLUSTER LOGGING FOR OPENSHIFT CONTAINER STORAGE

CHAPTER 3. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

Project: openshift-monitoring

Persistent Volume Claims

Create Persistent Volume Claim

Filter by name...

Pending: 0 Bound: 5 Lost: 0

<table>
<thead>
<tr>
<th>Name</th>
<th>Namespace</th>
<th>Status</th>
<th>Persistent Volume</th>
<th>Requested</th>
</tr>
</thead>
<tbody>
<tr>
<td>my-alertmanager-claim-0</td>
<td>openshift-monitoring</td>
<td>Bound</td>
<td>pvc-d00428a5-0ce6-11ea-bfe8-023bd9a29edc</td>
<td>40Gi</td>
</tr>
<tr>
<td>my-alertmanager-claim-1</td>
<td>openshift-monitoring</td>
<td>Bound</td>
<td>pvc-d0051111-0ce6-11ea-bfe8-023bd9a29edc</td>
<td>40Gi</td>
</tr>
<tr>
<td>my-alertmanager-claim-2</td>
<td>openshift-monitoring</td>
<td>Bound</td>
<td>pvc-d00f77f-0ce6-11ee-bfe8-023bd9a29edc</td>
<td>40Gi</td>
</tr>
<tr>
<td>my-prometheus-claim-0</td>
<td>openshift-monitoring</td>
<td>Bound</td>
<td>pvc-ce2901b-0ce6-11ee-bfe8-023bd9a29edc</td>
<td>40Gi</td>
</tr>
<tr>
<td>my-prometheus-claim-1</td>
<td>openshift-monitoring</td>
<td>Bound</td>
<td>pvc-ce5e4fe0-0ce6-11ee-bfe8-023bd9a29edc</td>
<td>40Gi</td>
</tr>
</tbody>
</table>
You can deploy cluster logging to aggregate logs for a range of OpenShift Container Platform services. For information about how to deploy cluster logging, see Deploying cluster logging.

Upon initial OpenShift Container Platform deployment, OpenShift Container Storage is not configured by default and the OpenShift Container Platform cluster will solely rely on default storage available from the nodes. You can edit the default configuration of OpenShift logging (ElasticSearch) to be backed by OpenShift Container Storage to have OpenShift Container Storage backed logging (Elasticsearch).

IMPORTANT

Always ensure that you have plenty of storage capacity for these services. If you run out of storage space for these critical services, the logging application becomes inoperable and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these services. See Cluster logging curator in the OpenShift Container Platform documentation for details.

If you run out of storage space for these services, contact Red Hat Customer Support.

3.3.1. Configuring persistent storage

You can configure a persistent storage class and size for the Elasticsearch cluster using the storage class name and size parameters. The Cluster Logging Operator creates a Persistent Volume Claim for each data node in the Elasticsearch cluster based on these parameters. For example:

```yaml
spec:
  logStore:
    type: "elasticsearch"
    elasticsearch:
      nodeCount: 3
      storage:
        storageClassName: "ocs-storagecluster-ceph-rbd"
        size: "200G"
```

This example specifies that each data node in the cluster will be bound to a Persistent Volume Claim that requests 200GiB of ocs-storagecluster-ceph-rbd storage. Each primary shard will be backed by a single replica. A copy of the shard is replicated across all the nodes and are always available and the copy can be recovered if at least two nodes exist due to the single redundancy policy. For information about Elasticsearch replication policies, see Elasticsearch replication policy in About deploying and configuring cluster logging.

NOTE

Omission of the storage block will result in a deployment backed by default storage. For example:

```yaml
spec:
  logStore:
    type: "elasticsearch"
    elasticsearch:
      nodeCount: 3
      storage: {}
```
For more information, see Configuring cluster logging.

3.3.2. Configuring cluster logging to use OpenShift Container Storage

Follow the instructions in this section to configure OpenShift Container Storage as storage for the OpenShift cluster logging.

NOTE

You can obtain all the logs when you configure logging for the first time in OpenShift Container Storage. However, after you uninstall and reinstall logging, the old logs are removed and only the new logs are processed.

Prerequisites

- You have administrative access to OpenShift Web Console.
- OpenShift Container Storage Operator is installed and running in the `openshift-storage` namespace.
- Cluster logging Operator is installed and running in the `openshift-logging` namespace.

Procedure

1. Click Administration → Custom Resource Definitions from the left pane of the OpenShift Web Console.

3. On the Custom Resource Definition Overview page, select View Instances from the Actions menu or click the Instances Tab.

4. On the Cluster Logging page, click Create Cluster Logging. You might have to refresh the page to load the data.

5. In the YAML, replace the `storageClassName` with the `storageclass` that uses the provisioner `openshift-storage.rbd.csi.ceph.com`. In the example given below the name of the `storageclass` is ocs-storagecluster-ceph-rbd:

```yaml
apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
  name: "instance"
  namespace: "openshift-logging"
spec:
  managementState: "Managed"
  logStore:
    type: "elasticsearch"
    elasticsearch:
      nodeCount: 3
    storage:
      storageClassName: ocs-storagecluster-ceph-rbd
      size: 200G # Change as per your requirement
      redundancyPolicy: "SingleRedundancy"
  visualization:
```
If you have tainted the OpenShift Container Storage nodes, you must add toleration to enable scheduling of the daemonset pods for logging.

spec:
 [...]
 collection:
 logs:
 fluentd:
 tolerations:
 - effect: NoSchedule
 key: node.ocs.openshift.io/storage
 value: 'true'
 type: fluentd

6. Click **Save**.

Verification steps

1. Verify that the Persistent Volume Claims are bound to the **elasticsearch** pods.

 a. Go to **Storage → Persistent Volume Claims**

 b. Set the **Project** dropdown to **openshift-logging**.

 c. Verify that Persistent Volume Claims are visible with a state of **Bound**, attached to **elasticsearch-** pods.

 Figure 3.1. Cluster logging created and bound

2. Verify that the new cluster logging is being used.

 a. Click **Workload → Pods**
b. Set the Project to `openshift-logging`.

c. Verify that the new `elasticsearch-`* pods appear with a state of `Running`.

d. Click the new `elasticsearch-`* pod to view pod details.

e. Scroll down to `Volumes` and verify that the `elasticsearch` volume has a `Type` that matches your new Persistent Volume Claim, for example, `elasticsearch-elasticsearch-cdm-9r624biv-3`.

f. Click the Persistent Volume Claim name and verify the storage class name in the PersistentVolumeClaim Overview page.

NOTE

Make sure to use a shorter curator time to avoid PV full scenario on PVs attached to Elasticsearch pods.

You can configure Curator to delete Elasticsearch data based on retention settings. It is recommended that you set the following default index data retention of 5 days as a default.

```yaml
config.yaml:
  openshift-storage:
    delete:
      days: 5
```

For more details, see [Curation of Elasticsearch Data](#).

NOTE

To uninstall the cluster logging backed by Persistent Volume Claim, use the procedure removing the cluster logging operator from OpenShift Container Storage in the uninstall chapter of the respective deployment guide.
CHAPTER 4. BACKING OPENSHIFT CONTAINER PLATFORM APPLICATIONS WITH OPENSHIFT CONTAINER STORAGE

You cannot directly install OpenShift Container Storage during the OpenShift Container Platform installation. However, you can install OpenShift Container Storage on an existing OpenShift Container Platform by using the Operator Hub and then configure the OpenShift Container Platform applications to be backed by OpenShift Container Storage.

Prerequisites

- OpenShift Container Platform is installed and you have administrative access to OpenShift Web Console.
- OpenShift Container Storage is installed and running in the `openshift-storage` namespace.

Procedure

1. In the OpenShift Web Console, perform one of the following:

 - Click Workloads ➔ Deployments.
 In the Deployments page, you can do one of the following:

 - Select any existing deployment and click Add Storage option from the Action menu (⋮).

 - Create a new deployment and then add storage.

 i. Click Create Deployment to create a new deployment.

 ii. Edit the YAML based on your requirement to create a deployment.

 iii. Click Create.

 iv. Select Add Storage from the Actions drop down menu on the top right of the page.

 - Click Workloads ➔ Deployment Configs
 In the Deployment Configs page, you can do one of the following:

 - Select any existing deployment and click Add Storage option from the Action menu (⋮).

 - Create a new deployment and then add storage.

 i. Click Create Deployment Config to create a new deployment.

 ii. Edit the YAML based on your requirement to create a deployment.

 iii. Click Create.

 iv. Select Add Storage from the Actions drop down menu on the top right of the page.

2. In the Add Storage page, you can choose one of the following options:

 - Click the Use existing claim option and select a suitable PVC from the drop down list.
• Click the **Create new claim** option.

a. Select the appropriate **CephFS** or **RBD** storage class from the **Storage Class** drop down list.

b. Provide a name for the Persistent Volume Claim.

c. Select ReadWriteOnce (RWO) or ReadWriteMany (RWX) access mode.

NOTE

ReadOnlyMany (ROX) is deactivated as it is not supported.

d. Select the size of the desired storage capacity.

NOTE

You can expand the block PVs but cannot reduce the storage capacity after the creation of Persistent Volume Claim.

3. Specify the mount path and subpath (if required) for the mount path volume inside the container.

4. Click **Save**.

Verification steps

1. Depending on your configuration, perform one of the following:

 • Click **Workloads → Deployments**.

 • Click **Workloads → Deployment Configs**

2. Set the Project as required.

3. Click the deployment for which you added storage to display the deployment details.

4. Scroll down to **Volumes** and verify that your deployment has a **Type** that matches the Persistent Volume Claim that you assigned.

5. Click the Persistent Volume Claim name and verify the storage class name in the Persistent Volume Claim Overview page.
CHAPTER 5. ADDING FILE AND OBJECT STORAGE TO AN EXISTING EXTERNAL OPENShift CONTAINER STORAGE CLUSTER

When OpenShift Container Storage is configured in external mode, there are several ways to provide storage for persistent volume claims and object bucket claims.

- Persistent volume claims for block storage are provided directly from the external Red Hat Ceph Storage cluster.
- Persistent volume claims for file storage can be provided by adding a Metadata Server (MDS) to the external Red Hat Ceph Storage cluster.
- Object bucket claims for object storage can be provided either by using the Multicloud Object Gateway or by adding the Ceph Object Gateway to the external Red Hat Ceph Storage cluster.

Use the following process to add file storage (using Metadata Servers) or object storage (using Ceph Object Gateway) or both to an external OpenShift Container Storage cluster that was initially deployed to provide only block storage.

Prerequisites

- You have OpenShift Container Storage 4.7 installed and running on the OpenShift Container Platform version 4.7 or above. Also, the OpenShift Storage Cluster in external mode is in Ready state.
- Your external Red Hat Ceph Storage cluster is configured with one or both of the following:
 - a Ceph Object Gateway (RGW) endpoint that can be accessed by the OpenShift Container Platform cluster for object storage
 - a Metadata Server (MDS) pool for file storage
- Ensure that you know the parameters used with the ceph-external-cluster-details-exporter.py script during external OpenShift Container Storage cluster deployment.

Procedure

1. Download the OpenShift Container Storage version of the ceph-external-cluster-details-exporter.py python script using the following command:

 oc get csv $(oc get csv -n openshift-storage | grep ocs-operator | awk '{print $1}') -n openshift-storage -o jsonpath='{.metadata.annotations.external\features\ocs\io/export-script}' | base64 --decode > ceph-external-cluster-details-exporter.py

2. Update permission caps on the external Red Hat Ceph Storage cluster by running ceph-external-cluster-details-exporter.py on any client node in the external Red Hat Ceph Storage cluster. You may need to ask your Red Hat Ceph Storage administrator to do this.

 # python3 ceph-external-cluster-details-exporter.py --upgrade
 --run-as-user=ocs-client-name
 --rgw-pool-prefix rgw-pool-prefix
--run-as-user
The client name used during OpenShift Container Storage cluster deployment. Use the default client name client.healthchecker if a different client name was not set.

--rgw-pool-prefix
The prefix used for the Ceph Object Gateway pool. This can be omitted if the default prefix is used.

3. Generate and save configuration details from the external Red Hat Ceph Storage cluster.

   ```bash
   ```

 --monitoring-endpoint
 The IP address of the active Ceph Manager that can be reached from the OpenShift Container Storage cluster.

 --monitoring-endpoint-port
 The port for the Ceph Manager Prometheus Exporter endpoint.

 --run-as-user
 The client name used during OpenShift Container Storage cluster deployment. Use the default client name client.healthchecker if a different client name was not set.

 --rgw-endpoint
 Provide this parameter to provision object storage through Ceph Object Gateway for OpenShift Container Storage. (optional parameter)

 --rgw-pool-prefix
 The prefix used for the Ceph Object Gateway pool. This can be omitted if the default prefix is used.

 User permissions are updated as shown:

   ```
caps: [mgr] allow command config
caps: [mon] allow r, allow command quorum_status, allow command version
caps: [osd] allow rwx pool=default.rgw.meta, allow r pool=.rgw.root, allow rw pool=default.rgw.control, allow rx pool=default.rgw.log, allow x pool=default.rgw.buckets.index
   ```

 NOTE
 Ensure that all the parameters (including the optional arguments) except the Ceph Object Gateway details (if provided), are the same as what was used during the deployment of OpenShift Container Storage in external mode.

 b. Save the output of the script in an external-cluster-config.json file.
 The following example output shows the generated configuration changes in bold text.

   ```json
   [{"name": "rook-ceph-mon-endpoints", "kind": "ConfigMap", "data": {"data":
   ```
4. Upload the generated JSON file.

a. Log in to the OpenShift web console.

b. Click Workloads → Secrets.

c. Set project to openshift-storage.

d. Click on rook-ceph-external-cluster-details.

e. Click Actions (⋮) → Edit Secret

f. Click Browse and upload the external-cluster-config.json file.

g. Click Save.

Verification steps

- Click Overview → Home → Persistent Storage and verify the health of the OpenShift Container Storage cluster.

- If you added a Metadata Server for file storage:

a. Click Workloads → Pods and verify that csi-cephfsplugin-* pods are created new and are in the Running state.

b. Click Storage → Storage Classes and verify that the ocs-external-storagecluster-cephfs storage class is created.

- If you added the Ceph Object Gateway for object storage:

a. Click Storage → Storage Classes and verify that the ocs-external-storagecluster-cephrgw storage class is created.

b. Click Home → Overview from the left pane of the OpenShift Web Console and click the Object Service tab. On the Status card, verify that the Object Service displays a green tick icon.
CHAPTER 6. HOW TO USE DEDICATED WORKER NODES FOR RED HAT OPENSHIFT CONTAINER STORAGE

Using infrastructure nodes to schedule Red Hat OpenShift Container Storage resources saves on Red Hat OpenShift Container Platform subscription costs. Any Red Hat OpenShift Container Platform (RHOCP) node that has an `infra` node-role label requires an OpenShift Container Storage subscription, but not an RHOCP subscription.

It is important to maintain consistency across environments with or without Machine API support. Because of this, it is highly recommended in all cases to have a special category of nodes labeled as either worker or infra or have both roles. See the Section 6.3, "Manual creation of infrastructure nodes" section for more information.

6.1. ANATOMY OF AN INFRASTRUCTURE NODE

Infrastructure nodes for use with OpenShift Container Storage have a few attributes. The `infra` node-role label is required to ensure the node does not consume RHOCP entitlements. The `infra` node-role label is responsible for ensuring only OpenShift Container Storage entitlements are necessary for the nodes running OpenShift Container Storage.

- Labeled with `node-role.kubernetes.io/infra`

Adding an OpenShift Container Storage taint with a `NoSchedule` effect is also required so that the `infra` node will only schedule OpenShift Container Storage resources.

- Tainted with `node.ocs.openshift.io/storage="true"`

The label identifies the RHOCP node as an `infra` node so that RHOCP subscription cost is not applied. The taint prevents non OpenShift Container Storage resources to be scheduled on the tainted nodes.

Example of the taint and labels required on infrastructure node that will be used to run OpenShift Container Storage services:

```yaml
spec:
taints:
- effect: NoSchedule
  key: node.ocs.openshift.io/storage
  value: "true"
metadata:
  creationTimestamp: null
labels:
  node-role.kubernetes.io/worker: ""
  node-role.kubernetes.io/infra: ""
  cluster.ocs.openshift.io/openshift-storage: ""
```

6.2. MACHINE SETS FOR CREATING INFRASTRUCTURE NODES

If the Machine API is supported in the environment, then labels should be added to the templates for the Machine Sets that will be provisioning the infrastructure nodes. Avoid the anti-pattern of adding labels manually to nodes created by the machine API. Doing so is analogous to adding labels to pods created by a deployment. In both cases, when the pod/node fails, the replacement pod/node will not have the appropriate labels.
NOTE
In EC2 environments, you will need three machine sets, each configured to provision infrastructure nodes in a distinct availability zone (such as us-east-2a, us-east-2b, us-east-2c). Currently, OpenShift Container Storage does not support deploying in more than three availability zones.

The following Machine Set template example creates nodes with the appropriate taint and labels required for infrastructure nodes. This will be used to run OpenShift Container Storage services.

```yaml
template:
  metadata:
    creationTimestamp: null
  labels:
    machine.openshift.io/cluster-api-cluster: kb-s25vf
    machine.openshift.io/cluster-api-machine-role: worker
    machine.openshift.io/cluster-api-machine-type: worker
    machine.openshift.io/cluster-api-machineset: kb-s25vf-infra-us-west-2a
  spec:
    taints:
    - effect: NoSchedule
      key: node.ocs.openshift.io/storage
      value: "true"
    metadata:
      creationTimestamp: null
    labels:
      node-role.kubernetes.io/infra: ""
      cluster.ocs.openshift.io/openshift-storage: ""
```

6.3. MANUAL CREATION OF INFRASTRUCTURE NODES

Only when the Machine API is not supported in the environment should labels be directly applied to nodes. Manual creation requires that at least 3 RHOCP worker nodes are available to schedule OpenShift Container Storage services, and that these nodes have sufficient CPU and memory resources. To avoid the RHOCP subscription cost, the following is required:

```
oc label node <node> node-role.kubernetes.io/infra=""
oc label node <node> cluster.ocs.openshift.io/openshift-storage=""
```

Adding a NoSchedule OpenShift Container Storage taint is also required so that the infra node will only schedule OpenShift Container Storage resources and repel any other non-OpenShift Container Storage workloads.

```
oc adm taint node <node> node.ocs.openshift.io/storage="true":NoSchedule
```
WARNING

Do not remove the node-role.kubernetes.io/worker=""

The removal of the node-role.kubernetes.io/worker="" can cause issues unless changes are made both to the OpenShift scheduler and to MachineConfig resources.

If already removed, it should be added again to each infra node. Adding node-role node-role.kubernetes.io/infra="" and OpenShift Container Storage taint is sufficient to conform to entitlement exemption requirements.
CHAPTER 7. MANAGING PERSISTENT VOLUME CLAIMS

7.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT CONTAINER STORAGE

Follow the instructions in this section to configure OpenShift Container Storage as storage for an application pod.

Prerequisites

- You have administrative access to OpenShift Web Console.

- OpenShift Container Storage Operator is installed and running in the openshift-storage namespace. In OpenShift Web Console, click Operators → Installed Operators to view installed operators.

- The default storage classes provided by OpenShift Container Storage are available. In OpenShift Web Console, click Storage → Storage Classes to view default storage classes.

Procedure

1. Create a Persistent Volume Claim (PVC) for the application to use.
 a. In OpenShift Web Console, click Storage → Persistent Volume Claims.
 b. Set the Project for the application pod.
 c. Click Create Persistent Volume Claim
 i. Specify a Storage Class provided by OpenShift Container Storage.
 ii. Specify the PVC Name, for example, myclaim.
 iii. Select the required Access Mode.
 iv. Specify a Size as per application requirement.
 v. Click Create and wait until the PVC is in Bound status.

2. Configure a new or existing application pod to use the new PVC.
 - For a new application pod, perform the following steps:
 i. Click Workloads → Pods.
 ii. Create a new application pod.
 iii. Under the spec: section, add volume: section to add the new PVC as a volume for the application pod.

```
volumes:
- name: <volume_name>
  persistentVolumeClaim:
    claimName: <pvc_name>
```

For example:
For an existing application pod, perform the following steps:

i. Click Workloads → DeploymentConfigs.

ii. Search for the required deployment config associated with the application pod.

iii. Click on its Action menu (⋮) → Edit Deployment Config.

iv. Under the spec: section, add volume: section to add the new PVC as a volume for the application pod and click Save.

```yaml
volumes:
  - name: <volume_name>
persistentVolumeClaim:
    claimName: <pvc_name>
```

For example:

```yaml
volumes:
  - name: mypd
    persistentVolumeClaim:
      claimName: myclaim
```

3. Verify that the new configuration is being used.

 a. Click Workloads → Pods.

 b. Set the Project for the application pod.

 c. Verify that the application pod appears with a status of Running.

 d. Click the application pod name to view pod details.

 e. Scroll down to Volumes section and verify that the volume has a Type that matches your new Persistent Volume Claim, for example, myclaim.

7.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS

Use this procedure to view the status of a PVC request.

Prerequisites

- Administrator access to OpenShift Container Storage.

Procedure

1. Log in to OpenShift Web Console.

2. Click Storage → Persistent Volume Claims
3. Search for the required PVC name by using the Filter textbox. You can also filter the list of PVCs by Name or Label to narrow down the list.

4. Check the Status column corresponding to the required PVC.

5. Click the required Name to view the PVC details.

7.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS

Use this procedure to review and address Persistent Volume Claim (PVC) request events.

Prerequisites

- Administrator access to OpenShift Web Console.

Procedure

1. Log in to OpenShift Web Console.

2. Click Home → Overview → Persistent Storage

3. Locate the Inventory card to see the number of PVCs with errors.

4. Click Storage → Persistent Volume Claims

5. Search for the required PVC using the Filter textbox.

6. Click on the PVC name and navigate to Events

7. Address the events as required or as directed.

7.4. EXPANDING PERSISTENT VOLUME CLAIMS

OpenShift Container Storage 4.6 onwards has the ability to expand Persistent Volume Claims providing more flexibility in the management of persistent storage resources.

Expansion is supported for the following Persistent Volumes:

- PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on Ceph File System (CephFS) for volume mode Filesystem.

- PVC with ReadWriteOnce (RWO) access that is based on Ceph RADOS Block Devices (RBDs) with volume mode Filesystem.

- PVC with ReadWriteOnce (RWO) access that is based on Ceph RADOS Block Devices (RBDs) with volume mode Block.

WARNING

OSD and MON PVC expansion is not supported by Red Hat.
Prerequisites

- Administrator access to OpenShift Web Console.

Procedure

1. In OpenShift Web Console, navigate to Storage → Persistent Volume Claims.
2. Click the Action Menu (⋮) next to the Persistent Volume Claim you want to expand.
3. Click Expand PVC:

 ![Expand PVC](image)

 Expand Persistent Volume Claim

 Increase the capacity of claim `db-noobaa-db-0`. This can be a time-consuming process.

 Size

 | 50 GiB |

 Click **Expand**.

4. Select the new size of the Persistent Volume Claim, then click **Expand**:

5. To verify the expansion, navigate to the PVC’s details page and verify the **Capacity** field has the correct size requested.

 NOTE

 When expanding PVCs based on Ceph RADOS Block Devices (RBDs), if the PVC is not already attached to a pod the **Condition type** is `FileSystemResizePending` in the PVC’s details page. Once the volume is mounted, filesystem resize succeeds and the new size is reflected in the **Capacity** field.

7.5. DYNAMIC PROVISIONING
7.5.1. About dynamic provisioning

The StorageClass resource object describes and classifies storage that can be requested, as well as provides a means for passing parameters for dynamically provisioned storage on demand. StorageClass objects can also serve as a management mechanism for controlling different levels of storage and access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators (storage-admin) define and create the StorageClass objects that users can request without needing any intimate knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows administrators to provision a cluster with persistent storage. The framework also gives users a way to request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While all of them can be statically provisioned by an administrator, some types of storage are created dynamically using the built-in provider and plug-in APIs.

7.5.2. Dynamic provisioning in OpenShift Container Storage

Red Hat OpenShift Container Storage is software-defined storage that is optimised for container environments. It runs as an operator on OpenShift Container Platform to provide highly integrated and simplified persistent storage management for containers.

OpenShift Container Storage supports a variety of storage types, including:

- Block storage for databases
- Shared file storage for continuous integration, messaging, and data aggregation
- Object storage for archival, backup, and media storage

Version 4 uses Red Hat Ceph Storage to provide the file, block, and object storage that backs persistent volumes, and Rook.io to manage and orchestrate provisioning of persistent volumes and claims. NooBaa provides object storage, and its Multicloud Gateway allows object federation across multiple cloud environments (available as a Technology Preview).

In OpenShift Container Storage 4, the Red Hat Ceph Storage Container Storage Interface (CSI) driver for RADOS Block Device (RBD) and Ceph File System (CephFS) handles the dynamic provisioning requests. When a PVC request comes in dynamically, the CSI driver has the following options:

- Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on Ceph RBDs with volume mode Block
- Create a PVC with ReadWriteOnce (RWO) access that is based on Ceph RBDs with volume mode Filesystem
- Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on CephFS for volume mode Filesystem

The judgment of which driver (RBD or CephFS) to use is based on the entry in the storageclass.yaml file.

7.5.3. Available dynamic provisioning plug-ins
OpenShift Container Platform provides the following provisioner plug-ins, which have generic implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new storage resources:

<table>
<thead>
<tr>
<th>Storage type</th>
<th>Provisioner plug-in name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenStack Cinder</td>
<td>kubernetes.io/cinder</td>
<td>For dynamic provisioning when using multiple clusters in different zones, tag each node with Key=kubernetes.io/cluster/<cluster_name>, Value=<cluster_id> where <cluster_name> and <cluster_id> are unique per cluster.</td>
</tr>
<tr>
<td>AWS Elastic Block Store (EBS)</td>
<td>kubernetes.io/aws-ebs</td>
<td>Dynamic provisioning is accomplished through the EFS provisioner pod and not through a provisioner plug-in.</td>
</tr>
<tr>
<td>AWS Elastic File System (EFS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azure Disk</td>
<td>kubernetes.io/azure-disk</td>
<td></td>
</tr>
<tr>
<td>Azure File</td>
<td>kubernetes.io/azure-file</td>
<td>The persistent-volume-binder ServiceAccount requires permissions to create and get Secrets to store the Azure storage account and keys.</td>
</tr>
<tr>
<td>GCE Persistent Disk (gcePD)</td>
<td>kubernetes.io/gce-pd</td>
<td>In multi-zone configurations, it is advisable to run one OpenShift Container Platform cluster per GCE project to avoid PVs from being created in zones where no node in the current cluster exists.</td>
</tr>
<tr>
<td>VMware vSphere</td>
<td>kubernetes.io/vsphere-volume</td>
<td></td>
</tr>
</tbody>
</table>

IMPORTANT

Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or third-party provider as per the relevant documentation.
CHAPTER 8. VOLUME SNAPSHOTS

A volume snapshot is the state of the storage volume in a cluster at a particular point in time. These snapshots help to use storage more efficiently by not having to make a full copy each time and can be used as building blocks for developing an application.

Volume snapshot class allows an administrator to specify different attributes belonging to a volume snapshot object. The OpenShift Container Storage operator installs default volume snapshot classes depending on the platform in use. The operator owns and controls these default volume snapshot classes and they cannot be deleted or modified.

You can create multiple snapshots of the same persistent volume claim (PVC). For CephFS, you can create up to 100 snapshots per PVC. For RADOS Block Device (RBD), you can create up to 512 snapshots per PVC.

NOTE
You cannot schedule periodic creation of snapshots.

8.1. CREATING VOLUME SNAPSHOTS

You can create a volume snapshot either from the Persistent Volume Claim (PVC) page or the Volume Snapshots page.

Prerequisites

- For a consistent snapshot, the PVC should not be in use or Bound state. Ensure to stop all IO before taking the snapshot.

NOTE
OpenShift Container Storage only provides crash consistency for a volume snapshot of a PVC if a pod is using it. For application consistency, be sure to first tear down a running pod to ensure consistent snapshots or use any quiesce mechanism provided by the application to ensure it.

Procedure

From the Persistent Volume Claims page

1. Click Storage → Persistent Volume Claims from the OpenShift Web Console.
2. To create a volume snapshot, do one of the following:
 - Beside the desired PVC, click Action menu (⋮) → Create Snapshot.
 - Click on the PVC for which you want to create the snapshot and click Actions → Create Snapshot.
3. Enter a Name for the volume snapshot.
4. Choose the Snapshot Class from the drop-down list.
5. Click Create. You will be redirected to the Details page of the volume snapshot that is created.
From the Volume Snapshots page

1. Click **Storage → Volume Snapshots** from the OpenShift Web Console.
2. In the **Volume Snapshots** page, click **Create Volume Snapshot**
3. Choose the required **Project** from the drop-down list.
4. Choose the **Persistent Volume Claim** from the drop-down list.
5. Enter a **Name** for the snapshot.
6. Choose the **Snapshot Class** from the drop-down list.
7. Click **Create**. You will be redirected to the Details page of the volume snapshot that is created.

Verification steps

- Go to the **Details** page of the PVC and click the **Volume Snapshots** tab to see the list of volume snapshots. Verify that the new volume snapshot is listed.
- Click **Storage → Volume Snapshots** from the OpenShift Web Console. Verify that the new volume snapshot is listed.
- Wait for the volume snapshot to be in **Ready** state.

8.2. RESTORING VOLUME SNAPSHOTS

When you restore a volume snapshot, a new Persistent Volume Claim (PVC) gets created. The restored PVC is independent of the volume snapshot and the parent PVC.

You can restore a volume snapshot from either the Persistent Volume Claim page or the Volume Snapshots page.

Procedure

From the Persistent Volume Claims page

You can restore volume snapshot from the Persistent Volume Claims page only if the parent PVC is present.

1. Click **Storage → Persistent Volume Claims** from the OpenShift Web Console.
2. Click on the PVC name with the volume snapshot to restore a volume snapshot as a new PVC.
3. In the **Volume Snapshots** tab, click the Action menu (⋮) next to the volume snapshot you want to restore.
4. Click **Restore as new PVC**
5. Enter a name for the new PVC.
6. Select the **Access Mode** of your choice.
IMPORTANT

The ReadOnlyMany (ROX) access mode is a Developer Preview feature and is subject to Developer Preview support limitations. Developer Preview releases are not intended to be run in production environments and are not supported through the Red Hat Customer Portal case management system. If you need assistance with ReadOnlyMany feature, reach out to the ocs-devpreview@redhat.com mailing list and a member of the Red Hat Development Team will assist you as quickly as possible based on availability and work schedules. See Creating a clone or restoring a snapshot with the new readonly access mode to use the ROX access mode.

7. Select the **Storage Class** name.

NOTE

For Rados Block Device (RBD), you must select a storage class with the same pool as that of the parent PVC.

8. Click **Restore**. You are redirected to the new PVC details page.

From the Volume Snapshots page

1. Click **Storage → Volume Snapshots** from the OpenShift Web Console.

2. In the **Volume Snapshots** tab, click the Action menu (⋯) next to the volume snapshot you want to restore.

3. Click **Restore as new PVC**

4. Enter a name for the new PVC.

5. Select the **Access Mode** of your choice.

IMPORTANT

The ReadOnlyMany (ROX) access mode is a Developer Preview feature and is subject to Developer Preview support limitations. Developer Preview releases are not intended to be run in production environments and are not supported through the Red Hat Customer Portal case management system. If you need assistance with ReadOnlyMany feature, reach out to the ocs-devpreview@redhat.com mailing list and a member of the Red Hat Development Team will assist you as quickly as possible based on availability and work schedules. See Creating a clone or restoring a snapshot with the new readonly access mode to use the ROX access mode.

6. Select the **Storage Class** name.

NOTE

For Rados Block Device (RBD), you must select a storage class with the same pool as that of the parent PVC.

7. Click **Restore**. You are redirected to the new PVC details page.
8.3. DELETING VOLUME SNAPSHOTS

Prerequisites

- For deleting a volume snapshot, the volume snapshot class which is used in that particular volume snapshot should be present.

Procedure

From Persistent Volume Claims page

1. Click Storage → Persistent Volume Claims from the OpenShift Web Console.
2. Click on the PVC name which has the volume snapshot that needs to be deleted.
3. In the Volume Snapshots tab, beside the desired volume snapshot, click Action menu (⋮) → Delete Volume Snapshot

From Volume Snapshots page

1. Click Storage → Volume Snapshots from the OpenShift Web Console.
2. In the Volume Snapshots page, beside the desired volume snapshot click Action menu (⋮) → Delete Volume Snapshot

Verification steps

- Ensure that the deleted volume snapshot is not present in the Volume Snapshots tab of the PVC details page.
- Click Storage → Volume Snapshots and ensure that the deleted volume snapshot is not listed.
CHAPTER 9. VOLUME CLONING

A clone is a duplicate of an existing storage volume that is used as any standard volume. You create a clone of a volume to make a point in time copy of the data. A persistent volume claim (PVC) cannot be cloned with a different size. You can create up to 512 clones per PVC for both CephFS and RADOS Block Device (RBD).

9.1. CREATING A CLONE

Prerequisites

- Source PVC must be in Bound state and must not be in use.

NOTE

Do not create a clone of a PVC if a Pod is using it. Doing so might cause data corruption because the PVC is not quiesced (paused).

Procedure

1. Click Storage → Persistent Volume Claims from the OpenShift Web Console.

2. To create a clone, do one of the following:
 - Beside the desired PVC, click Action menu (⋮) → Clone PVC.
 - Click on the PVC that you want to clone and click Actions → Clone PVC.

3. Enter a Name for the clone.

4. Select the access mode of your choice.

 IMPORTANT

 The ReadOnlyMany (ROX) access mode is a Developer Preview feature and is subject to Developer Preview support limitations. Developer Preview releases are not intended to be run in production environments and are not supported through the Red Hat Customer Portal case management system. If you need assistance with ReadOnlyMany feature, reach out to the ocs-devpreview@redhat.com mailing list and a member of the Red Hat Development Team will assist you as quickly as possible based on availability and work schedules. See Creating a clone or restoring a snapshot with the new readonly access mode to use the ROX access mode.

5. Click Clone. You are redirected to the new PVC details page.

6. Wait for the cloned PVC status to become Bound.

 The cloned PVC is now available to be consumed by the pods. This cloned PVC is independent of its dataSource PVC.
CHAPTER 10. MANAGING CONTAINER STORAGE INTERFACE (CSI) COMPONENT PLACEMENTS

Each cluster consists of a number of dedicated nodes such as infra and storage nodes. However, an infra node with a custom taint will not be able to use OpenShift Container Storage Persistent Volume Claims (PVCs) on the node. So, if you want to use such nodes, you can set tolerations to bring up csi-plugins on the nodes. For more information, see https://access.redhat.com/solutions/4827161.

Procedure

1. Edit the configmap to add the toleration for the custom taint. Remember to save before exiting the editor.

 $ oc edit configmap rook-ceph-operator-config -n openshift-storage

2. Display the configmap to check the added toleration.

 $ oc get configmap rook-ceph-operator-config -n openshift-storage -o yaml

 Example output of the added toleration for the taint, nodetype=infra:NoSchedule:

   ```yaml
   apiVersion: v1
   data:
   [...] 
   CSI_PLUGIN_TOLERATIONS: |
   - key: nodetype
     operator: Equal
     value: infra
     effect: NoSchedule
   - key: node.ocs.openshift.io/storage
     operator: Equal
     value: "true"
     effect: NoSchedule
   [...] 
   kind: ConfigMap
   metadata:
   [...] 
   
3. Restart the rook-ceph-operator if the csi-cephfsplugin-* and csi-rbdplugin-* pods fail to come up on their own on the infra nodes.

   $ oc delete -n openshift-storage pod <name of the rook_ceph_operator pod>

   Example:

   $ oc delete -n openshift-storage pod rook-ceph-operator-5446f9b95b-jrn2j

   pod "rook-cephe-operator-5446f9b95b-jrn2j" deleted

Verification step

Verify that the csi-cephfsplugin-* and csi-rbdplugin-* pods are running on the infra nodes.