Red Hat OpenShift Container Storage 4.7

Deploying OpenShift Container Storage using IBM Z infrastructure

How to install and set up your IBM Z environment
Red Hat OpenShift Container Storage 4.7 Deploying OpenShift Container Storage using IBM Z infrastructure

How to install and set up your IBM Z environment
Abstract

Read this document for instructions on installing Red Hat OpenShift Container Storage 4.7 to use local storage on IBM Z infrastructure. While this document refers only to IBM Z, all information in it also applies to LinuxONE.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION .. 4
PREFACE .. 5

CHAPTER 1. DEPLOY OPENSIFT CONTAINER STORAGE USING LOCAL STORAGE DEVICES 6
 1.1. REQUIREMENTS FOR INSTALLING OPENSIFT CONTAINER STORAGE USING LOCAL STORAGE
 DEVICES .. 6
 1.2. INSTALLING RED HAT OPENSIFT CONTAINER STORAGE OPERATOR 6
 1.3. INSTALLING LOCAL STORAGE OPERATOR .. 8
 1.4. FINDING AVAILABLE STORAGE DEVICES (OPTIONAL) 8
 1.5. CREATING OPENSIFT CONTAINER STORAGE CLUSTER ON IBM Z 10

CHAPTER 2. VERIFYING OPENSIFT CONTAINER STORAGE DEPLOYMENT FOR INTERNAL-ATTACHED
 DEVICES MODE .. 18
 2.1. VERIFYING THE STATE OF THE PODS ... 18
 2.2. VERIFYING THE OPENSIFT CONTAINER STORAGE CLUSTER IS HEALTHY 19
 2.3. VERIFYING THAT THE OPENSIFT CONTAINER STORAGE SPECIFIC STORAGE CLASSES EXIST 20

CHAPTER 3. UNINSTALLING OPENSIFT CONTAINER STORAGE .. 21
 3.1. UNINSTALLING OPENSIFT CONTAINER STORAGE IN INTERNAL-ATTACHED DEVICES MODE 21
 3.1.1. Removing local storage operator configurations ... 25
 3.2. REMOVING MONITORING STACK FROM OPENSIFT CONTAINER STORAGE 28
 3.3. REMOVING OPENSIFT CONTAINER PLATFORM REGISTRY FROM OPENSIFT CONTAINER STORAGE 31
 3.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSIFT CONTAINER STORAGE 32
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:

- For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the *Multi-page HTML* format. In addition, ensure you see the **Feedback** button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the **Add Feedback** pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the [Bugzilla](https://bugzilla.redhat.com) website.
 2. As the Component, use **Documentation**.
 3. Fill in the **Description** field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click **Submit Bug**.
Red Hat OpenShift Container Storage 4.7 supports deployment on existing Red Hat OpenShift Container Platform (RHOCP) IBM Z clusters in connected environments along with out-of-the-box support for proxy environments.

NOTE

Only internal Openshift Container Storage clusters are supported on IBM Z. See [Planning your deployment](#) for more information about deployment requirements.

To deploy OpenShift Container Storage, follow the appropriate deployment process for your environment:

- Internal Attached Devices mode
 - Deploy using local storage devices
CHAPTER 1. DEPLOY OPENSOURCE CONTAINER STORAGE USING LOCAL STORAGE DEVICES

Deploying OpenShift Container Storage on OpenShift Container Platform using local storage devices provides you with the option to create internal cluster resources. Follow this deployment method to use local storage to back persistent volumes for your OpenShift Container Platform applications.

Use this section to deploy OpenShift Container Storage on IBM Z infrastructure where OpenShift Container Platform is already installed.

To deploy Red Hat OpenShift Container Storage using local storage, follow these steps:

1. Understand the requirements for installing OpenShift Container Storage using local storage devices.

2. Install the Red Hat OpenShift Container Storage Operator.

3. Install Local Storage Operator.

4. Find the available storage devices.

5. Creating OpenShift Container Storage cluster service on IBM Z.

1.1. REQUIREMENTS FOR INSTALLING OPENSOURCE CONTAINER STORAGE USING LOCAL STORAGE DEVICES

Node requirements

The cluster must consist of at least three OpenShift Container Platform worker nodes with locally attached-storage devices on each of them.

- Each of the three selected nodes must have at least one raw block device available to be used by OpenShift Container Storage.

- The devices you use must be empty; the disks must not include physical volumes (PVs), volume groups (VGs), or logical volumes (LVs) remaining on the disk.

See the Resource requirements section in Planning guide.

- For storage nodes, FCP storage devices are required. DASD is not supported.

- Multicloud Object Gateway is not supported.

Minimum starting node requirements [Technology Preview]

An OpenShift Container Storage cluster will be deployed with minimum configuration when the standard deployment resource requirement is not met. See Resource requirements section in Planning guide.

1.2. INSTALLING RED HAT OPENSOURCE CONTAINER STORAGE OPERATOR

Prerequisites

- Access to an OpenShift Container Platform cluster using an account with cluster-admin and Operator installation permissions.
- You have at least three worker nodes in the RHOC cluster.
- For additional resource requirements, see Planning your deployment.

NOTE

- When you need to override the cluster-wide default node selector for OpenShift Container Storage, you can use the following command in command line interface to specify a blank node selector for the openshift-storage namespace (create openshift-storage namespace in this case):

  ```
  $ oc annotate namespace openshift-storage openshift.io/node-selector=
  ```

- Taint a node as *infra* to ensure only Red Hat OpenShift Container Storage resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Container Storage chapter in Managing and Allocating Storage Resources guide.

Procedure

1. Navigate in the web console to the click **Operators → OperatorHub**.

2. Scroll or type a keyword into the Filter by keyword box to search for OpenShift Container Storage Operator.

3. Click **Install** on the OpenShift Container Storage operator page.

4. On the **Install Operator** page, the following required options are selected by default:

 - a. Update Channel as **stable-4.7**.
 - b. Installation Mode as **A specific namespace on the cluster**
 - c. Installed Namespace as **Operator recommended namespace openshift-storage**. If Namespace *openshift-storage* does not exist, it will be created during the operator installation.
 - d. Select **Approval Strategy** as **Automatic** or **Manual**.
 - e. Click **Install**.

 If you selected **Automatic** updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.

 If you selected **Manual** updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to have the Operator updated to the new version.
Verification steps

Verify that the **OpenShift Container Storage** Operator shows a green tick indicating successful installation.

Next steps

- Create OpenShift Container Storage cluster.

For information, see [Creating OpenShift Container Storage cluster on IBM Z](#).

1.3. INSTALLING LOCAL STORAGE OPERATOR

Procedure

1. Log in to the OpenShift Web Console.
2. Click **Operators → OperatorHub**.
3. Search for **Local Storage Operator** from the list of operators and click on it.
4. Click **Install**.
5. Set the following options on the **Install Operator** page:
 a. Update Channel as **stable-4.7**
 b. Installation Mode as **A specific namespace on the cluster**
 c. Installed Namespace as **Operator recommended namespace openshift-local-storage**
 d. Approval Strategy as **Automatic**
6. Click **Install**.
7. Verify that the Local Storage Operator shows the **Status** as **Succeeded**.

1.4. FINDING AVAILABLE STORAGE DEVICES (OPTIONAL)
This step is additional information and can be skipped as the disks are automatically discovered during storage cluster creation. Use this procedure to identify the device names for each of the three or more worker nodes that you have labeled with the OpenShift Container Storage label `cluster.ocs.openshift.io/openshift-storage=''` before creating Persistent Volumes (PV) for IBM Z.

Procedure

1. List and verify the name of the worker nodes with the OpenShift Container Storage label.

   ```
   $ oc get nodes -l=cluster.ocs.openshift.io/openshift-storage=
   ```

 Example output:
   ```
   NAME          STATUS   ROLES    AGE     VERSION
   bmworker01    Ready    worker   6h45m   v1.16.2
   bmworker02    Ready    worker   6h45m   v1.16.2
   bmworker03    Ready    worker   6h45m   v1.16.2
   ```

2. Log in to each worker node that is used for OpenShift Container Storage resources and find the unique by-id device name for each available raw block device.

   ```
   $ oc debug node/<node name>
   ```

 Example output:
   ```
   $ oc debug node/bmworker01
   Starting pod/bmworker01-debug ...
   To use host binaries, run `chroot /host`
   Pod IP: 10.0.135.71
   If you don't see a command prompt, try pressing enter.
   sh-4.2# chroot /host
   sh-4.4# lsblk
   ```

 In this example, for `bmworker01`, the available local device is `sdb`.

3. Identify the unique ID for each of the devices selected in Step 2.

   ```
   sh-4.4#ls -l /dev/disk/by-id/  | grep sdb
   lnwxrwxrwx. 1 root root  9 Feb  3 16:49 scsi-360050763808104bc2800000000000259 -> ...
   lnwxrwxrwx. 1 root root  9 Feb  3 16:49 scsi-SIBM_2145_00e020412f0aXX00 -> ...
   lnwxrwxrwx. 1 root root  9 Feb  3 16:49 sdb -> ...
   ```

 In the above example, the ID for the local device `sdb`

   ```
   scsi-0x60050763808104bc280000000000259
   ```
4. Repeat the above step to identify the device ID for all the other nodes that have the storage devices to be used by OpenShift Container Storage. See this Knowledge Base article for more details.

1.5. CREATING OPENSIFT CONTAINER STORAGE CLUSTER ON IBM Z

Use this procedure to create storage cluster on IBM Z.

Prerequisites

- Ensure that all the requirements in the Requirements for installing OpenShift Container Storage using local storage devices section are met.

- You must have three worker nodes with the same storage type and size attached to each node (for example, 200 GB) to use local storage devices on IBM Z or LinuxONE.

Procedure

1. Log into the OpenShift Web Console.

2. Click Operators → Installed Operators to view all the installed operators. Ensure that the Project selected is openshift-storage.

3. Click OpenShift Container Storage.
4. Click **Create Instance** link of Storage Cluster.

Figure 1.3. Create Storage Cluster page

5. Select **Internal-Attached devices** for the **Select Mode**. By default, Internal is selected.

6. Create a storage cluster using the wizard that includes disk discovery, storage class creation, and storage cluster creation.

 You are prompted to install the Local Storage Operator if it is not already installed. Click **Install** and install the operator as described in **Installing Local Storage Operator**.

Discover disks

You can discover a list of potentially usable disks on the selected nodes. Block disks and partitions that are not in use and available for provisioning persistent volumes (PVs) are discovered.
Figure 1.4. Discovery Disks wizard page

Choose one of the following:

- **All nodes** to discover disks in all the nodes.
- **Select nodes** to discover disks from a subset of the listed nodes.

To find specific worker nodes in the cluster, you can filter nodes on the basis of Name or Label. Name allows you to search by name of the node and Label allows you to search by selecting the predefined label.

If the nodes selected do not match the OpenShift Container Storage cluster requirement of an aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster will be deployed. For minimum starting node requirements, see Resource requirements section in Planning guide.

NOTE

If the nodes to be selected are tainted and not discovered in the wizard, follow the steps provided in the Red Hat Knowledgebase Solution as a workaround.

b. Click Next.

Create Storage Class

You can create a dedicated storage class to consume storage by filtering a set of storage volumes.
a. Enter the **Volume Set Name**.

b. Enter the **Storage Class Name** By default, the volume set name appears for the storage class name.

c. The nodes selected for disk discovery in the earlier step are displayed in the **Filter Disks** section. Choose one of the following:

- **All nodes** to select all the nodes for which you discovered the devices.
- **Select nodes** to select a subset of the nodes for which you discovered the devices.

To find specific worker nodes in the cluster, you can filter nodes on the basis of Name or Label. Name allows you to search by name of the node and Label allows you to search by selecting the predefined label.

It is recommended that the worker nodes are spread across three different physical nodes, racks or failure domains for high availability.

NOTE

Ensure OpenShift Container Storage rack labels are aligned with physical racks in the datacenter to prevent a double node failure at the failure domain level.

d. Select the required **Disk Type**. The following options are available:

<table>
<thead>
<tr>
<th>Disk Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Selects all types of disks present on the nodes. By default, this option is selected.</td>
</tr>
<tr>
<td>SSD/NVME</td>
<td>Selects only SSD NVME type of disks.</td>
</tr>
<tr>
<td>HDD</td>
<td>Selects only HDD type of disks.</td>
</tr>
</tbody>
</table>
e. In the **Advanced** section, you can set the following:

<table>
<thead>
<tr>
<th>Volume Mode</th>
<th>Block is selected by default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Size</td>
<td>Minimum and maximum available size of the device that needs to be included.</td>
</tr>
</tbody>
</table>

NOTE

You must set a minimum size of 100GB for the device.

| Max Disk Limit | This indicates the maximum number of PVs that can be created on a node. If this field is left empty, then PVs are created for all the available disks on the matching nodes. |

f. (Optional) You can view the selected capacity of the disks on the selected nodes using the *Select Capacity* chart. This chart might take a few minutes to reflect the disks that are discovered in the previous step.

You can click on the **Nodes** and **Disks** links on the chart to bring up the list of nodes and disks to view more details.

Figure 1.6. List of selected nodes

<table>
<thead>
<tr>
<th>Selected Nodes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Role</td>
</tr>
<tr>
<td>worker-0.m301000locslnxne.boe</td>
<td>worker</td>
</tr>
<tr>
<td>worker-1.m301000locslnxne.boe</td>
<td>worker</td>
</tr>
<tr>
<td>worker-2.m301000locslnxne.boe</td>
<td>worker</td>
</tr>
</tbody>
</table>

Figure 1.7. List of selected disks

Selected Nodes

- worker-0.m301000locslnxne.boe
- worker-1.m301000locslnxne.boe
- worker-2.m301000locslnxne.boe

Close
g. Click Next.

h. Click Yes in the message alert to confirm the creation of the storage class. After the local volume set and storage class are created, it is not possible to go back to the step.

Create Storage Cluster

Figure 1.8. Create Storage Cluster wizard page

...
c. Click **Next** to review your storage cluster.

d. Click **Create**.

The **Create** button is enabled only when a minimum of three nodes are selected. A new storage cluster of three volumes will be created with one volume per worker node. The default configuration uses a replication factor of 3.

To expand the capacity of the initial cluster, see **Scaling Storage** guide.
Verification steps

See Verifying your OpenShift Container Storage installation.
CHAPTER 2. VERIFYING OPENSOURCE CONTAINER STORAGE
DEPLOYMENT FOR INTERNAL-ATTACHED DEVICES MODE

Use this section to verify that OpenShift Container Storage is deployed correctly.

2.1. VERIFYING THE STATE OF THE PODS

To determine if OpenShift Container storage is deployed successfully, you can verify that the pods are in **Running** state.

Procedure

1. Click **Workloads → Pods** from the left pane of the OpenShift Web Console.

2. Select **openshift-storage** from the **Project** drop down list.
 For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see Table 2.1, “Pods corresponding to OpenShift Container storage cluster”.

3. Verify that the following pods are in running and completed state by clicking on the **Running** and the **Completed** tabs:

 ![Table 2.1. Pods corresponding to OpenShift Container storage cluster](image)

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Container Storage Operator</td>
<td>● ocs-operator-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>● ocs-metrics-exporter-* (1 pod on any worker node)</td>
</tr>
<tr>
<td>Rook-ceph Operator</td>
<td>rook-ceph-operator-* (1 pod on any worker node)</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>● noobaa-operator-* (1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>● noobaa-core-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>● nooba-db-* (1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>● noobaa-endpoint-* (1 pod on any storage node)</td>
</tr>
<tr>
<td>MON</td>
<td>rook-ceph-mon-* (3 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>Component</td>
<td>Corresponding pods</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>MGR</td>
<td><code>rook-ceph-mgr-*</code></td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td>MDS</td>
<td><code>rook-ceph-mds-ocs-storagecluster-cephfilesystem-*</code></td>
</tr>
<tr>
<td></td>
<td>(2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>RGW</td>
<td><code>rook-ceph-rgw-ocs-storagecluster-cephobjectstore-*</code></td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td>CSI</td>
<td>● cephfs</td>
</tr>
<tr>
<td></td>
<td>○ <code>csi-cephfsplugin-*</code></td>
</tr>
<tr>
<td></td>
<td>(1 pod on each worker node)</td>
</tr>
<tr>
<td></td>
<td>○ <code>csi-cephfsplugin-provisioner-*</code></td>
</tr>
<tr>
<td></td>
<td>(2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td></td>
<td>● rbd</td>
</tr>
<tr>
<td></td>
<td>○ <code>csi-rbdplugin-*</code></td>
</tr>
<tr>
<td></td>
<td>(1 pod on each worker node)</td>
</tr>
<tr>
<td></td>
<td>○ <code>csi-rbdplugin-provisioner-*</code></td>
</tr>
<tr>
<td></td>
<td>(2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td></td>
<td><code>rook-ceph-crashcollector-*</code></td>
</tr>
<tr>
<td></td>
<td>(1 pod on each storage node)</td>
</tr>
<tr>
<td>OSD</td>
<td>● <code>rook-ceph-osd-*</code></td>
</tr>
<tr>
<td></td>
<td>(1 pod for each device)</td>
</tr>
<tr>
<td></td>
<td>● <code>rook-ceph-osd-prepare-ocs-deviceset-*</code></td>
</tr>
<tr>
<td></td>
<td>(1 pod for each device)</td>
</tr>
</tbody>
</table>

2.2. VERIFYING THE OPENSHIFT CONTAINER STORAGE CLUSTER IS HEALTHY

- Click Home → Overview from the left pane of the OpenShift Web Console and click Persistent Storage tab.

- In the Status card, verify that OCS Cluster and Data Resiliency has a green tick mark as shown in the following image:
In the Details card, verify that the cluster information is displayed as follows:

- **Service Name**: OpenShift Container Storage
- **Cluster Name**: ocs-storagecluster
- **Provider**: None
- **Mode**: Internal
- **Version**: ocs-operator-4.7.0

For more information on the health of OpenShift Container Storage cluster using the persistent storage dashboard, see Monitoring OpenShift Container Storage.

2.3. VERIFYING THAT THE OPENSHIFT CONTAINER STORAGE SPECIFIC STORAGE CLASSES EXIST

To verify the storage classes exists in the cluster:

- Click **Storage → Storage Classes** from the left pane of the OpenShift Web Console.

- Verify that the following storage classes are created with the OpenShift Container Storage cluster creation:
 - ocs-storagecluster-ceph-rbd
 - ocs-storagecluster-cephfs
 - openshift-storage.noobaa.io
 - ocs-storagecluster-ceph-rgw
CHAPTER 3. UNINSTALLING OPENSHIFT CONTAINER STORAGE

3.1. UNINSTALLING OPENSHIFT CONTAINER STORAGE IN INTERNAL-ATTACHED DEVICES MODE

Use the steps in this section to uninstall OpenShift Container Storage.

Uninstall Annotations

Annotations on the Storage Cluster are used to change the behavior of the uninstall process. To define the uninstall behavior, the following two annotations have been introduced in the storage cluster:

- uninstall.ocs.openshift.io/cleanup-policy: delete
- uninstall.ocs.openshift.io/mode: graceful

The below table provides information on the different values that can used with these annotations:

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Value</th>
<th>Default</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>cleanup-policy</td>
<td>delete</td>
<td>Yes</td>
<td>Rook cleans up the physical drives and the DataDirHostPath</td>
</tr>
<tr>
<td>cleanup-policy</td>
<td>retain</td>
<td>No</td>
<td>Rook does not clean up the physical drives and the DataDirHostPath</td>
</tr>
<tr>
<td>mode</td>
<td>graceful</td>
<td>Yes</td>
<td>Rook and NooBaa pauses the uninstall process until the PVCs and the OBCs are removed by the administrator/user</td>
</tr>
<tr>
<td>mode</td>
<td>forced</td>
<td>No</td>
<td>Rook and NooBaa proceeds with uninstall even if PVCs/OBCs provisioned using Rook and NooBaa exist respectively.</td>
</tr>
</tbody>
</table>

You can change the cleanup policy or the uninstall mode by editing the value of the annotation by using the following commands:

```bash
$ oc -n openshift-storage annotate storagecluster ocs-storagecluster
uninstall.ocs.openshift.io/cleanup-policy="retain" --overwrite
storagecluster.ocs.openshift.io/ocs-storagecluster annotated
```
$ oc -n openshift-storage annotate storagecluster ocs-storagecluster uninstall.ocs.openshift.io/mode="forced" --overwrite storagecluster.ocs.openshift.io/ocs-storagecluster annotated

Prerequisites

- Ensure that the OpenShift Container Storage cluster is in a healthy state. The uninstall process can fail when some of the pods are not terminated successfully due to insufficient resources or nodes. In case the cluster is in an unhealthy state, contact Red Hat Customer Support before uninstalling OpenShift Container Storage.

- Ensure that applications are not consuming persistent volume claims (PVCs) or object bucket claims (OBCs) using the storage classes provided by OpenShift Container Storage.

- If any custom resources (such as custom storage classes, cephblockpools) were created by the admin, they must be deleted by the admin after removing the resources which consumed them.

Procedure

1. Delete the volume snapshots that are using OpenShift Container Storage.
 a. List the volume snapshots from all the namespaces.

 $ oc get volumesnapshot --all-namespaces

 b. From the output of the previous command, identify and delete the volume snapshots that are using OpenShift Container Storage.

 $ oc delete volumesnapshot <VOLUME-SNAPSHOT-NAME> -n <NAMESPACE>

2. Delete PVCs and OBCs that are using OpenShift Container Storage.
 In the default uninstall mode (graceful), the uninstaller waits till all the PVCs and OBCs that use OpenShift Container Storage are deleted.

 If you wish to delete the Storage Cluster without deleting the PVCs beforehand, you may set the uninstall mode annotation to "forced" and skip this step. Doing so will result in orphan PVCs and OBCs in the system.

 See Section 3.2, “Removing monitoring stack from OpenShift Container Storage”

 b. Delete OpenShift Container Platform Registry PVCs using OpenShift Container Storage.
 See Section 3.3, “Removing OpenShift Container Platform registry from OpenShift Container Storage”

 c. Delete OpenShift Container Platform logging PVCs using OpenShift Container Storage.
 See Section 3.4, “Removing the cluster logging operator from OpenShift Container Storage”

3. Delete the Storage Cluster object and wait for the removal of the associated resources.

 $ oc delete -n openshift-storage storagecluster --all --wait=true
4. Check for cleanup pods if the `uninstall.ocs.openshift.io/cleanup-policy` was set to `delete`(default) and ensure that their status is `Completed`.

```bash
$ oc get pods -n openshift-storage | grep -i cleanup
NAME                                READY   STATUS      RESTARTS   AGE
cluster-cleanup-job-<xx>         0/1     Completed   0          8m35s
cluster-cleanup-job-<yy>       0/1     Completed   0          8m35s
cluster-cleanup-job-<zz>       0/1     Completed   0          8m35s
```

5. Confirm that the directory `/var/lib/rook` is now empty. This directory will be empty only if the `uninstall.ocs.openshift.io/cleanup-policy` annotation was set to `delete`(default).

```bash
$ for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{{.items[*].metadata.name }}'); do oc debug node/${i} -- chroot /host ls -l /var/lib/rook; done
```

6. If encryption was enabled at the time of install, remove `dm-crypt` managed `device-mapper` mapping from OSD devices on all the OpenShift Container Storage nodes.
 a. Create a `debug` pod and `chroot` to the host on the storage node.

```bash
$ oc debug node/<node name>  
$ chroot /host
```
 b. Get Device names and make note of the OpenShift Container Storage devices.

```bash
$ dmsetup ls  
ocs-deviceset-0-data-0-57snx-block-dmcrypt (253:1)
```
 c. Remove the mapped device.

```bash
$ cryptsetup luksClose --debug --verbose ocs-deviceset-0-data-0-57snx-block-dmcrypt
```

NOTE

If the above command gets stuck due to insufficient privileges, run the following commands:

- Press `CTRL+Z` to exit the above command.
- Find PID of the process which was stuck.

```bash
$ ps -ef | grep crypt
```
- Terminate the process using `kill` command.

```bash
$ kill -9 <PID>
```
- Verify that the device name is removed.

```bash
$ dmsetup ls
```
7. Delete the namespace and wait till the deletion is complete. You will need to switch to another project if `openshift-storage` is the active project. For example:

```
$ oc project default
$ oc delete project openshift-storage
```

The project is deleted if the following command returns a NotFound error.

```
$ oc get project openshift-storage
```

NOTE

While uninstalling OpenShift Container Storage, if `namespace` is not deleted completely and remains in Terminating state, perform the steps in Troubleshooting and deleting remaining resources during Uninstall to identify objects that are blocking the namespace from being terminated.

8. Delete local storage operator configurations if you have deployed OpenShift Container Storage using local storage devices. See Removing local storage operator configurations.

9. Unlabel the storage nodes.

```
$ oc label nodes --all cluster.ocs.openshift.io/openshift-storage-
$ oc label nodes --all topology.rook.io/rack-
```

10. Remove the OpenShift Container Storage taint if the nodes were tainted.

```
$ oc adm taint nodes --all node.ocs.openshift.io/storage-
```

11. Confirm all PVs provisioned using OpenShift Container Storage are deleted. If there is any PV left in the Released state, delete it.

```
$ oc get pv
$ oc delete pv <pv name>
```

12. Delete the Multicloud Object Gateway storageclass.

```
$ oc delete storageclass openshift-storage.noobaa.io --wait=true --timeout=5m
```


```
$ oc delete crd backingstores.noobaa.io bucketclasses.noobaa.io
cephblockpools.ceph.rook.io cephclusters.ceph.rook.io cephfilesystems.ceph.rook.io
cephfsses.ceph.rook.iocephobjectstores.ceph.rook.io cephobjectstoreusers.ceph.rook.io
noobaas.noobaa.io ocsinitializations.ocs.openshift.io storageclusters.ocs.openshift.io
cephclients.ceph.rook.io cephobjectrealmss.ceph.rook.io cephobjectzonegroups.ceph.rook.io
cephobjectzones.ceph.rook.io cephbdmirrors.ceph.rook.io --wait=true --timeout=5m
```

14. To ensure that OpenShift Container Storage is uninstalled completely, on the OpenShift Container Platform Web Console,

 a. Click **Home** ➔ **Overview** to access the dashboard.
b. Verify that the Persistent Storage and Object Service tabs no longer appear next to the Clu
Cluster tab.

3.1.1. Removing local storage operator configurations

Use the instructions in this section only if you have deployed OpenShift Container Storage using local storage devices.

NOTE

For OpenShift Container Storage deployments only using localvolume resources, go directly to step 8.

Procedure

1. Identify the LocalVolumeSet and the corresponding StorageClassName being used by OpenShift Container Storage.

 $ oc get localvolumesets.local.storage.openshift.io -n openshift-local-storage

2. Set the variable SC to the StorageClass providing the LocalVolumeSet.

 $ export SC="<StorageClassName>"

3. List and note the devices to be cleaned up later. Inorder to list the device ids of the disks, please follow the procedure mentioned here, See Find the available storage devices. Example output:

 /dev/disk/by-id/scsi-360050763808104bc28000000000000eb
 /dev/disk/by-id/scsi-360050763808104bc28000000000000ef
 /dev/disk/by-id/scsi-360050763808104bc28000000000000f3

4. Delete the LocalVolumeSet.

 $ oc delete localvolumesets.local.storage.openshift.io <name-of-volumeset> -n openshift-local-storage

5. Delete the local storage PVs for the given StorageClassName.

 $ oc get pv | grep $SC | awk '{print $1}'| xargs oc delete pv

6. Delete the StorageClassName.

 $ oc delete sc $SC

7. Delete the symlinks created by the LocalVolumeSet.

 [[! -z $SC]]] && for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{ .items[*].metadata.name }'); do oc debug node/$i -- chroot /host rm -rfv /mnt/local-storage/$SC/; done
8. **Delete LocalVolumeDiscovery.**

   ```bash
   $ oc delete localvolumediscovery.local.storage.openshift.io/auto-discover-devices -n openshift-local-storage
   ```

9. **Removing LocalVolume resources (if any).**

 Use the following steps to remove the LocalVolume resources that were used to provision PVs in the current or previous OpenShift Container Storage version. Also, ensure that these resources are not being used by other tenants on the cluster.

 For each of the local volumes, do the following:

 a. Identify the LocalVolume and the corresponding StorageClassName being used by OpenShift Container Storage.

   ```bash
   $ oc get localvolume.local.storage.openshift.io -n openshift-local-storage
   ```

 b. Set the variable LV to the name of the LocalVolume and variable SC to the name of the StorageClass.

 For example:

   ```bash
   $ LV=local-block
   $ SC=localblock
   ```

 c. List and note the devices to be cleaned up later.

   ```bash
   $ oc get localvolume -n openshift-local-storage $LV -o jsonpath='{{.spec.storageClassDevices[]}.devicePaths[] }}""'}
   ```

 Example output:

   ```
   /dev/sdb
   /dev/sdc
   /dev/sdd
   /dev/sde
   ```

 d. Delete the local volume resource.

   ```bash
   $ oc delete localvolume -n openshift-local-storage --wait=true $LV
   ```

 e. Delete the remaining PVs and StorageClasses if they exist.

   ```bash
   $ oc delete pv -l storage.openshift.com/local-volume-owner-name=${LV} --wait --timeout=5m
   $ oc delete storageclass $SC --wait --timeout=5m
   ```

 f. Clean up the artifacts from the storage nodes for that resource.

   ```bash
   $ [[ ! -z $SC ]] && for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{{.items[*].metadata.name }}'); do oc debug node/$i -- chroot /host rm -rfv /mnt/local-storage/$SC/; done
   ```

 Example output:
Starting pod/node-xxx-debug ...
To use host binaries, run `chroot /host`
removed `/mnt/local-storage/localblock/nvme2n1`
removed directory `/mnt/local-storage/localblock`

Removing debug pod ...
Starting pod/node-yyy-debug ...
To use host binaries, run `chroot /host`
removed `/mnt/local-storage/localblock/nvme2n1`
removed directory `/mnt/local-storage/localblock`

Removing debug pod ...
Starting pod/node-zzz-debug ...
To use host binaries, run `chroot /host`
removed `/mnt/local-storage/localblock/nvme2n1`
removed directory `/mnt/local-storage/localblock`

Removing debug pod ...

10. Wipe the disks for each of the local volumesets or local volumes listed in step 1 and 8 respectively so that they can be reused.

 a. List the storage nodes.

 oc get nodes -l cluster.ocs.openshift.io/openshift-storage=

 Example output:

 NAME STATUS ROLES AGE VERSION
 node-xxx Ready worker 4h45m v1.18.3+6c42de8
 node-yyy Ready worker 4h46m v1.18.3+6c42de8
 node-zzz Ready worker 4h45m v1.18.3+6c42de8

 b. Obtain the node console and execute *chroot /host* command when the prompt appears.

 $ oc debug node/node-xxx
 Starting pod/node-xxx-debug ...
 To use host binaries, run `chroot /host`
 Pod IP: w.x.y.z
 If you don’t see a command prompt, try pressing enter.
 sh-4.2# chroot /host

 c. Store the disk paths in the *DISKS* variable within quotes. For the list of disk paths, see step 3 and step 8.c for local volumeset and local volume respectively.

 Example output:

 sh-4.4# DISKS="/dev/disk/by-id/scsi-360050763808104bc28000000000000eb /
 /dev/disk/by-id/scsi-360050763808104bc28000000000000ef /dev/disk/by-id/scsi-
 360050763808104bc28000000000000f3 "
 or
 sh-4.2# DISKS="/dev/sdb /dev/sdc /dev/sdd /dev/sde ".

 d. Run *sgdisk --zap-all* on all the disks.
sh-4.4# for disk in $DISKS; do sgdisk --zap-all $disk; done

Example output:

Creating new GPT entries.
GPT data structures destroyed! You may now partition the disk using fdisk or other utilities.
Creating new GPT entries.
GPT data structures destroyed! You may now partition the disk using fdisk or other utilities.
Creating new GPT entries.
GPT data structures destroyed! You may now partition the disk using fdisk or other utilities.
Creating new GPT entries.
GPT data structures destroyed! You may now partition the disk using fdisk or other utilities.

e. Exit the shell and repeat for the other nodes.

sh-4.4# exit
exit
sh-4.2# exit
exit
Removing debug pod ...

11. Delete the openshift-local-storage namespace and wait till the deletion is complete. You will need to switch to another project if the openshift-local-storage namespace is the active project.
For example:

$ oc project default
$ oc delete project openshift-local-storage --wait=true --timeout=5m

The project is deleted if the following command returns a NotFound error.

$ oc get project openshift-local-storage

3.2. REMOVING MONITORING STACK FROM OPENSIFT CONTAINER STORAGE

Use this section to clean up the monitoring stack from OpenShift Container Storage.

The PVCs that are created as a part of configuring the monitoring stack are in the openshift-monitoring namespace.

Prerequisites

- PVCs are configured to use OpenShift Container Platform monitoring stack.
 For information, see configuring monitoring stack.

Procedure
1. List the pods and PVCs that are currently running in the `openshift-monitoring` namespace.

```
$ oc get pod,pvc -n openshift-monitoring
NAME                           READY   STATUS    RESTARTS   AGE
pod/alertmanager-main-0         3/3     Running   0          8d
pod/alertmanager-main-1         3/3     Running   0          8d
pod/alertmanager-main-2         3/3     Running   0          8d
pod/cluster-monitoring-operator-84457656d-pkrxm 1/1     Running   0          8d
pod/grafana-79ccf6689f-2ll28   2/2     Running   0          8d
pod/kube-state-metrics-7d866b966-rv9d9w 3/3     Running   0          8d
pod/node-exporter-25894        2/2     Running   0          8d
pod/node-exporter-4dsd7         2/2     Running   0          8d
pod/node-exporter-6p4zc         2/2     Running   0          8d
pod/node-exporter-bjy7v        2/2     Running   0          8d
pod/node-exporter-jj4t5         2/2     Running   0          6d18h
pod/node-exporter-k856s         2/2     Running   0          6d18h
pod/node-exporter-rf8gn         2/2     Running   0          8d
pod/node-exporter-rmb5m         2/2     Running   0          6d18h
pod/node-exporter-zj7kk         2/2     Running   0          8d
pod/openshift-state-metrics-59dbd4f654-4c1mg 3/3     Running   0          8d
pod/prometheus-adapter-5df5865596-k8dzr 1/1     Running   0          7d23h
pod/prometheus-adapter-5df5865596-n2gij9 1/1     Running   0          7d23h
pod/prometheus-k8s-0            6/6     Running   1          8d
pod/prometheus-k8s-1            6/6     Running   1          8d
pod/prometheus-operator-55c8f8589c9-c4zd9 1/1     Running   0          6d21h
pod/telemeter-client-78fc8fc97d-2rgfp 3/3     Running   0          8d
```

```
NAME                                                              STATUS   VOLUME
CAPACITY   ACCESS MODES   STORAGECLASS                  AGE
persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-0 Bound pvc-0d519c4f-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-1 Bound pvc-0d5a9825-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-2 Bound pvc-0d6413dc-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-0 Bound pvc-0b7c19b0-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-1 Bound pvc-0b8aed3f-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
```

2. Edit the monitoring `configmap`.

```
$ oc -n openshift-monitoring edit configmap cluster-monitoring-config
```

3. Remove any `config` sections that reference the OpenShift Container Storage storage classes as shown in the following example and save it.
Before editing

```yaml
apiVersion: v1
data:
  config.yaml: |
    alertmanagerMain:
      volumeClaimTemplate:
        metadata:
          name: my-alertmanager-claim
        spec:
          resources:
            requests:
              storage: 40Gi
              storageClassName: ocs-storagecluster-ceph-rbd
    prometheusK8s:
      volumeClaimTemplate:
        metadata:
          name: my-prometheus-claim
        spec:
          resources:
            requests:
              storage: 40Gi
              storageClassName: ocs-storagecluster-ceph-rbd

kind: ConfigMap
metadata:
  creationTimestamp: "2019-12-02T07:47:29Z"
  name: cluster-monitoring-config
  namespace: openshift-monitoring
  resourceVersion: "22110"
  selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config
  uid: fd6d988b-14d7-11ea-84ff-066035b9efa8
```

After editing
In this example, `alertmanagerMain` and `prometheusK8s` monitoring components are using the OpenShift Container Storage PVCs.

4. Delete relevant PVCs. Make sure you delete all the PVCs that are consuming the storage classes.

 $ oc delete -n openshift-monitoring pvc <pvc-name> --wait=true --timeout=5m

3.3. REMOVING OPENSHIFT CONTAINER PLATFORM REGISTRY FROM OPENSHIFT CONTAINER STORAGE

Use this section to clean up OpenShift Container Platform registry from OpenShift Container Storage. If you want to configure an alternative storage, see `image registry`

The PVCs that are created as a part of configuring OpenShift Container Platform registry are in the `openshift-image-registry` namespace.

Prerequisites

- The image registry should have been configured to use an OpenShift Container Storage PVC.

Procedure

1. Edit the `configs.imageregistry.operator.openshift.io` object and remove the content in the `storage` section.

 $ oc edit configs.imageregistry.operator.openshift.io

Before editing
managementState: Managed
storage:
pvc:
 claim: registry-cephfs-rwx-pvc

After editing

managementState: Removed
storage:
 emptyDir: {}

+ In this example, the PVC is called `registry-cephfs-rwx-pvc`, which is now safe to delete.

2. Delete the PVC.

 $ oc delete pvc <pvc-name> -n openshift-image-registry --wait=true --timeout=5m

3.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSHIFT CONTAINER STORAGE

Use this section to clean up the cluster logging operator from OpenShift Container Storage.

The PVCs that are created as a part of configuring cluster logging operator are in the `openshift-logging` namespace.

Prerequisites

- The cluster logging instance should have been configured to use OpenShift Container Storage PVCs.

Procedure

1. Remove the `ClusterLogging` instance in the namespace.

 $ oc delete clusterlogging instance -n openshift-logging --wait=true --timeout=5m
The PVCs in the `openshift-logging` namespace are now safe to delete.

2. Delete PVCs.

```bash
$ oc delete pvc <pvc-name> -n openshift-logging --wait=true --timeout=5m
```