Red Hat OpenShift Container Storage 4.7
Managing hybrid and multicloud resources

Hybrid and multicloud resource management for cluster and storage administrators

 Red Hat Storage Documentation Team
	

Abstract

				This document explains how to manage storage resources across a hybrid cloud or multicloud environment.
			

Making open source more inclusive

			Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
		

Providing feedback on Red Hat documentation

			We appreciate your input on our documentation. Do let us know how we can make it better. To give feedback:
		
	
					For simple comments on specific passages:
				
	
							Make sure you are viewing the documentation in the Multi-page HTML format. In addition, ensure you see the Feedback button in the upper right corner of the document.
						
	
							Use your mouse cursor to highlight the part of text that you want to comment on.
						
	
							Click the Add Feedback pop-up that appears below the highlighted text.
						
	
							Follow the displayed instructions.
						

	
					For submitting more complex feedback, create a Bugzilla ticket:
				
	
							Go to the Bugzilla website.
						
	
							As the Component, use Documentation.
						
	
							Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
						
	
							Click Submit Bug.
						

Chapter 1. About the Multicloud Object Gateway

			The Multicloud Object Gateway (MCG) is a lightweight object storage service for OpenShift, allowing users to start small and then scale as needed on-premise, in multiple clusters, and with cloud-native storage.
		

Chapter 2. Accessing the Multicloud Object Gateway with your applications

			You can access the object service with any application targeting AWS S3 or code that uses AWS S3 Software Development Kit (SDK). Applications need to specify the MCG endpoint, an access key, and a secret access key. You can use your terminal or the MCG CLI to retrieve this information.
		

			For information on accessing the RADOS Object Gateway S3 endpoint, see Chapter 12, Accessing the RADOS Object Gateway S3 endpoint.
		
Prerequisites
	
					A running OpenShift Container Storage Platform
				
	
					Download the MCG command-line interface for easier management:
				
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

	
					Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs found at Download RedHat OpenShift Container Storage page.
				

			You can access the relevant endpoint, access key, and secret access key two ways:
		
	
					the section called “Accessing the Multicloud Object Gateway from the terminal”
				
	
					the section called “Accessing the Multicloud Object Gateway from the MCG command-line interface”
				
	Accessing the MCG bucket(s) using the virtual-hosted style
	Example 2.1. Example

									If the client application tries to access https://<bucket-name>.s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
								

									where <bucket-name> is the name of the MCG bucket
								

									For example, https://mcg-test-bucket.s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
								

									A DNS entry is needed for mcg-test-bucket.s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com to point to the S3 Service.
								

Important

				Ensure that you have a DNS entry in order to point the client application to the MCG bucket(s) using the virtual-hosted style.
			

Accessing the Multicloud Object Gateway from the terminal

Procedure

					Run the describe command to view information about the MCG endpoint, including its access key (AWS_ACCESS_KEY_ID value) and secret access key (AWS_SECRET_ACCESS_KEY value):
				
oc describe noobaa -n openshift-storage

				The output will look similar to the following:
			
Name: noobaa
Namespace: openshift-storage
Labels: <none>
Annotations: <none>
API Version: noobaa.io/v1alpha1
Kind: NooBaa
Metadata:
 Creation Timestamp: 2019-07-29T16:22:06Z
 Generation: 1
 Resource Version: 6718822
 Self Link: /apis/noobaa.io/v1alpha1/namespaces/openshift-storage/noobaas/noobaa
 UID: 019cfb4a-b21d-11e9-9a02-06c8de012f9e
Spec:
Status:
 Accounts:
 Admin:
 Secret Ref:
 Name: noobaa-admin
 Namespace: openshift-storage
 Actual Image: noobaa/noobaa-core:4.0
 Observed Generation: 1
 Phase: Ready
 Readme:

 Welcome to NooBaa!

 Welcome to NooBaa!

 NooBaa Core Version:
 NooBaa Operator Version:

 Lets get started:

 1. Connect to Management console:

 Read your mgmt console login information (email & password) from secret: "noobaa-admin".

 kubectl get secret noobaa-admin -n openshift-storage -o json | jq '.data|map_values(@base64d)'

 Open the management console service - take External IP/DNS or Node Port or use port forwarding:

 kubectl port-forward -n openshift-storage service/noobaa-mgmt 11443:443 &
 open https://localhost:11443

 2. Test S3 client:

 kubectl port-forward -n openshift-storage service/s3 10443:443 &
[image: 1]
 NOOBAA_ACCESS_KEY=$(kubectl get secret noobaa-admin -n openshift-storage -o json | jq -r '.data.AWS_ACCESS_KEY_ID|@base64d')
[image: 2]
 NOOBAA_SECRET_KEY=$(kubectl get secret noobaa-admin -n openshift-storage -o json | jq -r '.data.AWS_SECRET_ACCESS_KEY|@base64d')
 alias s3='AWS_ACCESS_KEY_ID=$NOOBAA_ACCESS_KEY AWS_SECRET_ACCESS_KEY=$NOOBAA_SECRET_KEY aws --endpoint https://localhost:10443 --no-verify-ssl s3'
 s3 ls

 Services:
 Service Mgmt:
 External DNS:
 https://noobaa-mgmt-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
 https://a3406079515be11eaa3b70683061451e-1194613580.us-east-2.elb.amazonaws.com:443
 Internal DNS:
 https://noobaa-mgmt.openshift-storage.svc:443
 Internal IP:
 https://172.30.235.12:443
 Node Ports:
 https://10.0.142.103:31385
 Pod Ports:
 https://10.131.0.19:8443
 serviceS3:
 External DNS: [image: 3]
 https://s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
 https://a340f4e1315be11eaa3b70683061451e-943168195.us-east-2.elb.amazonaws.com:443
 Internal DNS:
 https://s3.openshift-storage.svc:443
 Internal IP:
 https://172.30.86.41:443
 Node Ports:
 https://10.0.142.103:31011
 Pod Ports:
 https://10.131.0.19:6443
	[image: 1]
	
						access key (AWS_ACCESS_KEY_ID value)
					

	[image: 2]
	
						secret access key (AWS_SECRET_ACCESS_KEY value)
					

	[image: 3]
	
						MCG endpoint
					

Note

					The output from the oc describe noobaa command lists the internal and external DNS names that are available. When using the internal DNS, the traffic is free. The external DNS uses Load Balancing to process the traffic, and therefore has a cost per hour.
				

Accessing the Multicloud Object Gateway from the MCG command-line interface

Prerequisites
	
						Download the MCG command-line interface:
					
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

Procedure

					Run the status command to access the endpoint, access key, and secret access key:
				
noobaa status -n openshift-storage

				The output will look similar to the following:
			
INFO[0000] Namespace: openshift-storage
INFO[0000]
INFO[0000] CRD Status:
INFO[0003] ✅ Exists: CustomResourceDefinition "noobaas.noobaa.io"
INFO[0003] ✅ Exists: CustomResourceDefinition "backingstores.noobaa.io"
INFO[0003] ✅ Exists: CustomResourceDefinition "bucketclasses.noobaa.io"
INFO[0004] ✅ Exists: CustomResourceDefinition "objectbucketclaims.objectbucket.io"
INFO[0004] ✅ Exists: CustomResourceDefinition "objectbuckets.objectbucket.io"
INFO[0004]
INFO[0004] Operator Status:
INFO[0004] ✅ Exists: Namespace "openshift-storage"
INFO[0004] ✅ Exists: ServiceAccount "noobaa"
INFO[0005] ✅ Exists: Role "ocs-operator.v0.0.271-6g45f"
INFO[0005] ✅ Exists: RoleBinding "ocs-operator.v0.0.271-6g45f-noobaa-f9vpj"
INFO[0006] ✅ Exists: ClusterRole "ocs-operator.v0.0.271-fjhgh"
INFO[0006] ✅ Exists: ClusterRoleBinding "ocs-operator.v0.0.271-fjhgh-noobaa-pdxn5"
INFO[0006] ✅ Exists: Deployment "noobaa-operator"
INFO[0006]
INFO[0006] System Status:
INFO[0007] ✅ Exists: NooBaa "noobaa"
INFO[0007] ✅ Exists: StatefulSet "noobaa-core"
INFO[0007] ✅ Exists: Service "noobaa-mgmt"
INFO[0008] ✅ Exists: Service "s3"
INFO[0008] ✅ Exists: Secret "noobaa-server"
INFO[0008] ✅ Exists: Secret "noobaa-operator"
INFO[0008] ✅ Exists: Secret "noobaa-admin"
INFO[0009] ✅ Exists: StorageClass "openshift-storage.noobaa.io"
INFO[0009] ✅ Exists: BucketClass "noobaa-default-bucket-class"
INFO[0009] ✅ (Optional) Exists: BackingStore "noobaa-default-backing-store"
INFO[0010] ✅ (Optional) Exists: CredentialsRequest "noobaa-cloud-creds"
INFO[0010] ✅ (Optional) Exists: PrometheusRule "noobaa-prometheus-rules"
INFO[0010] ✅ (Optional) Exists: ServiceMonitor "noobaa-service-monitor"
INFO[0011] ✅ (Optional) Exists: Route "noobaa-mgmt"
INFO[0011] ✅ (Optional) Exists: Route "s3"
INFO[0011] ✅ Exists: PersistentVolumeClaim "db-noobaa-core-0"
INFO[0011] ✅ System Phase is "Ready"
INFO[0011] ✅ Exists: "noobaa-admin"

#------------------#
#- Mgmt Addresses -#
#------------------#

ExternalDNS : [https://noobaa-mgmt-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com https://a3406079515be11eaa3b70683061451e-1194613580.us-east-2.elb.amazonaws.com:443]
ExternalIP : []
NodePorts : [https://10.0.142.103:31385]
InternalDNS : [https://noobaa-mgmt.openshift-storage.svc:443]
InternalIP : [https://172.30.235.12:443]
PodPorts : [https://10.131.0.19:8443]

#--------------------#
#- Mgmt Credentials -#
#--------------------#

email : admin@noobaa.io
password : HKLbH1rSuVU0I/souIkSiA==

#----------------#
#- S3 Addresses -#
#----------------#

[image: 1]
ExternalDNS : [https://s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com https://a340f4e1315be11eaa3b70683061451e-943168195.us-east-2.elb.amazonaws.com:443]
ExternalIP : []
NodePorts : [https://10.0.142.103:31011]
InternalDNS : [https://s3.openshift-storage.svc:443]
InternalIP : [https://172.30.86.41:443]
PodPorts : [https://10.131.0.19:6443]

#------------------#
#- S3 Credentials -#
#------------------#

[image: 2]
AWS_ACCESS_KEY_ID : jVmAsu9FsvRHYmfjTiHV
[image: 3]
AWS_SECRET_ACCESS_KEY : E//420VNedJfATvVSmDz6FMtsSAzuBv6z180PT5c

#------------------#
#- Backing Stores -#
#------------------#

NAME TYPE TARGET-BUCKET PHASE AGE
noobaa-default-backing-store aws-s3 noobaa-backing-store-15dc896d-7fe0-4bed-9349-5942211b93c9 Ready 141h35m32s

#------------------#
#- Bucket Classes -#
#------------------#

NAME PLACEMENT PHASE AGE
noobaa-default-bucket-class {Tiers:[{Placement: BackingStores:[noobaa-default-backing-store]}]} Ready 141h35m33s

#-----------------#
#- Bucket Claims -#
#-----------------#

No OBC's found.
	[image: 1]
	
						endpoint
					

	[image: 2]
	
						access key
					

	[image: 3]
	
						secret access key
					

				You now have the relevant endpoint, access key, and secret access key in order to connect to your applications.
			
Example 2.2. Example

					If AWS S3 CLI is the application, the following command will list buckets in OpenShift Container Storage:
				
AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY_ID>
AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY>
aws --endpoint <ENDPOINT> --no-verify-ssl s3 ls

Chapter 3. Allowing user access to the Multicloud Object Gateway Console

			To allow access to the Multicloud Object Gateway Console to a user, ensure that the user meets the following conditions:
		
	
					User is in cluster-admins group.
				
	
					User is in system:cluster-admins virtual group.
				

Prerequisites
	
					A running OpenShift Container Storage Platform.
				

Procedure
	
					Enable access to the Multicloud Object Gateway console.
				

					Perform the following steps once on the cluster :
				
	
							Create a cluster-admins group.
						
oc adm groups new cluster-admins

	
							Bind the group to the cluster-admin role.
						
oc adm policy add-cluster-role-to-group cluster-admin cluster-admins

	
					Add or remove users from the cluster-admins group to control access to the Multicloud Object Gateway console.
				
	
							To add a set of users to the cluster-admins group :
						
oc adm groups add-users cluster-admins <user-name> <user-name> <user-name>...

							where <user-name> is the name of the user to be added.
						
Note

								If you are adding a set of users to the cluster-admins group, you do not need to bind the newly added users to the cluster-admin role to allow access to the OpenShift Container Storage dashboard.
							

	
							To remove a set of users from the cluster-admins group :
						
oc adm groups remove-users cluster-admins <user-name> <user-name> <user-name>...

							where <user-name> is the name of the user to be removed.
						

Verification steps
	
					On the OpenShift Web Console, login as a user with access permission to Multicloud Object Gateway Console.
				
	
					Navigate to Home → Overview → Object Service tab → select the Multicloud Object Gateway link .
				
	
					On the Multicloud Object Gateway Console, login as the same user with access permission.
				
	
					Click Allow selected permissions.
				

Chapter 4. Adding storage resources for hybrid or Multicloud

Creating a new backing store

				Use this procedure to create a new backing store in OpenShift Container Storage.
			
Prerequisites
	
						Administrator access to OpenShift.
					

Procedure
	
						Click Operators → Installed Operators from the left pane of the OpenShift Web Console to view the installed operators.
					
	
						Click OpenShift Container Storage Operator.
					
	
						On the OpenShift Container Storage Operator page, scroll right and click the Backing Store tab.
					
	
						Click Create Backing Store.
					
Figure 4.1. Create Backing Store page
[image: Screenshot of create new backing store page.]

	
						On the Create New Backing Store page, perform the following:
					
	
								Enter a Backing Store Name.
							
	
								Select a Provider.
							
	
								Select a Region.
							
	
								Enter an Endpoint. This is optional.
							
	
								Select a Secret from drop down list, or create your own secret. Optionally, you can Switch to Credentials view which lets you fill in the required secrets.
							

								For more information on creating an OCP secret, see the section Creating the secret in the Openshift Container Platform documentation.
							

								Each backingstore requires a different secret. For more information on creating the secret for a particular backingstore, see the the section called “Adding storage resources for hybrid or Multicloud using the MCG command line interface” and follow the procedure for the addition of storage resources using a YAML.
							
Note

									This menu is relevant for all providers except Google Cloud and local PVC.
								

	
								Enter Target bucket. The target bucket is a container storage that is hosted on the remote cloud service. It allows you to create a connection that tells MCG that it can use this bucket for the system.
							

	
						Click Create Backing Store.
					

Verification steps
	
						Click Operators → Installed Operators.
					
	
						Click OpenShift Container Storage Operator.
					
	
						Search for the new backing store or click Backing Store tab to view all the backing stores.
					

Adding storage resources for hybrid or Multicloud using the MCG command line interface

				The Multicloud Object Gateway (MCG) simplifies the process of spanning data across cloud provider and clusters.
			

				You must add a backing storage that can be used by the MCG.
			

				Depending on the type of your deployment, you can choose one of the following procedures to create a backing storage:
			
	
						For creating an AWS-backed backingstore, see the section called “Creating an AWS-backed backingstore”
					
	
						For creating an IBM COS-backed backingstore, see the section called “Creating an IBM COS-backed backingstore”
					
	
						For creating an Azure-backed backingstore, see the section called “Creating an Azure-backed backingstore”
					
	
						For creating a GCP-backed backingstore, see the section called “Creating a GCP-backed backingstore”
					
	
						For creating a local Persistent Volume-backed backingstore, see the section called “Creating a local Persistent Volume-backed backingstore”
					

				For VMware deployments, skip to the section called “Creating an s3 compatible Multicloud Object Gateway backingstore” for further instructions.
			
Creating an AWS-backed backingstore

Prerequisites
	
							Download the Multicloud Object Gateway (MCG) command-line interface:
						
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

	
							Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs found here https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages
						

Procedure
	
							From the MCG command-line interface, run the following command:
						
noobaa backingstore create aws-s3 <backingstore_name> --access-key=<AWS ACCESS KEY> --secret-key=<AWS SECRET ACCESS KEY> --target-bucket <bucket-name> -n openshift-storage

	
							Replace <backingstore_name> with the name of the backingstore.
						
	
							Replace <AWS ACCESS KEY> and <AWS SECRET ACCESS KEY> with an AWS access key ID and secret access key you created for this purpose.
						
	
							Replace <bucket-name> with an existing AWS bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
						

							The output will be similar to the following:
						
INFO[0001] ✅ Exists: NooBaa "noobaa"
INFO[0002] ✅ Created: BackingStore "aws-resource"
INFO[0002] ✅ Created: Secret "backing-store-secret-aws-resource"

					You can also add storage resources using a YAML:
				
	
							Create a secret with the credentials:
						
apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
 namespace: openshift-storage
type: Opaque
data:
 AWS_ACCESS_KEY_ID: <AWS ACCESS KEY ID ENCODED IN BASE64>
 AWS_SECRET_ACCESS_KEY: <AWS SECRET ACCESS KEY ENCODED IN BASE64>
	
									You must supply and encode your own AWS access key ID and secret access key using Base64, and use the results in place of <AWS ACCESS KEY ID ENCODED IN BASE64> and <AWS SECRET ACCESS KEY ENCODED IN BASE64>.
								
	
									Replace <backingstore-secret-name> with a unique name.
								

	
							Apply the following YAML for a specific backing store:
						
apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 awsS3:
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBucket: <bucket-name>
 type: aws-s3
	
									Replace <bucket-name> with an existing AWS bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
								
	
									Replace <backingstore-secret-name> with the name of the secret created in the previous step.
								

Creating an IBM COS-backed backingstore

Prerequisites
	
							Download the Multicloud Object Gateway (MCG) command-line interface:
						
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

	
							Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs found here https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages
						

Procedure
	
							From the MCG command-line interface, run the following command:
						
noobaa backingstore create ibm-cos <backingstore_name> --access-key=<IBM ACCESS KEY> --secret-key=<IBM SECRET ACCESS KEY> --endpoint=<IBM COS ENDPOINT> --target-bucket <bucket-name> -n openshift-storage
	
									Replace <backingstore_name> with the name of the backingstore.
								
	
									Replace <IBM ACCESS KEY>, <IBM SECRET ACCESS KEY>, <IBM COS ENDPOINT> with an IBM access key ID, secret access key and the appropriate regional endpoint that corresponds to the location of the existing IBM bucket.
								

									To generate the above keys on IBM cloud, you must include HMAC credentials while creating the service credentials for your target bucket.
								

	
									Replace <bucket-name> with an existing IBM bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
								

									The output will be similar to the following:
								
INFO[0001] ✅ Exists: NooBaa "noobaa"
INFO[0002] ✅ Created: BackingStore "ibm-resource"
INFO[0002] ✅ Created: Secret "backing-store-secret-ibm-resource"

					You can also add storage resources using a YAML:
				
	
							Create a secret with the credentials:
						
apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
type: Opaque
data:
 IBM_COS_ACCESS_KEY_ID: <IBM COS ACCESS KEY ID ENCODED IN BASE64>
 IBM_COS_SECRET_ACCESS_KEY: <IBM COS SECRET ACCESS KEY ENCODED IN BASE64>
	
									You must supply and encode your own IBM COS access key ID and secret access key using Base64, and use the results in place of <IBM COS ACCESS KEY ID ENCODED IN BASE64> and <IBM COS SECRET ACCESS KEY ENCODED IN BASE64>.
								
	
									Replace <backingstore-secret-name> with a unique name.
								

	
							Apply the following YAML for a specific backing store:
						
apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 ibmCos:
 endpoint: <endpoint>
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBucket: <bucket-name>
 type: ibm-cos
	
									Replace <bucket-name> with an existing IBM COS bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
								
	
									Replace <endpoint> with a regional endpoint that corresponds to the location of the existing IBM bucket name. This argument tells Multicloud Object Gateway which endpoint to use for its backing store, and subsequently, data storage and administration.
								
	
									Replace <backingstore-secret-name> with the name of the secret created in the previous step.
								

Creating an Azure-backed backingstore

Prerequisites
	
							Download the Multicloud Object Gateway (MCG) command-line interface:
						
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

	
							Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs found here https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages
						

Procedure
	
							From the MCG command-line interface, run the following command:
						
noobaa backingstore create azure-blob <backingstore_name> --account-key=<AZURE ACCOUNT KEY> --account-name=<AZURE ACCOUNT NAME> --target-blob-container <blob container name>
	
									Replace <backingstore_name> with the name of the backingstore.
								
	
									Replace <AZURE ACCOUNT KEY> and <AZURE ACCOUNT NAME> with an AZURE account key and account name you created for this purpose.
								
	
									Replace <blob container name> with an existing Azure blob container name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
								

									The output will be similar to the following:
								
INFO[0001] ✅ Exists: NooBaa "noobaa"
INFO[0002] ✅ Created: BackingStore "azure-resource"
INFO[0002] ✅ Created: Secret "backing-store-secret-azure-resource"

					You can also add storage resources using a YAML:
				
	
							Create a secret with the credentials:
						
apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
type: Opaque
data:
 AccountName: <AZURE ACCOUNT NAME ENCODED IN BASE64>
 AccountKey: <AZURE ACCOUNT KEY ENCODED IN BASE64>
	
									You must supply and encode your own Azure Account Name and Account Key using Base64, and use the results in place of <AZURE ACCOUNT NAME ENCODED IN BASE64> and <AZURE ACCOUNT KEY ENCODED IN BASE64>.
								
	
									Replace <backingstore-secret-name> with a unique name.
								

	
							Apply the following YAML for a specific backing store:
						
apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 azureBlob:
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBlobContainer: <blob-container-name>
 type: azure-blob
	
									Replace <blob-container-name> with an existing Azure blob container name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
								
	
									Replace <backingstore-secret-name> with the name of the secret created in the previous step.
								

Creating a GCP-backed backingstore

Prerequisites
	
							Download the Multicloud Object Gateway (MCG) command-line interface:
						
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

	
							Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs found here https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages
						

Procedure
	
							From the MCG command-line interface, run the following command:
						
noobaa backingstore create google-cloud-storage <backingstore_name> --private-key-json-file=<PATH TO GCP PRIVATE KEY JSON FILE> --target-bucket <GCP bucket name>
	
									Replace <backingstore_name> with the name of the backingstore.
								
	
									Replace <PATH TO GCP PRIVATE KEY JSON FILE> with a path to your GCP private key created for this purpose.
								
	
									Replace <GCP bucket name> with an existing GCP object storage bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
								

									The output will be similar to the following:
								
INFO[0001] ✅ Exists: NooBaa "noobaa"
INFO[0002] ✅ Created: BackingStore "google-gcp"
INFO[0002] ✅ Created: Secret "backing-store-google-cloud-storage-gcp"

					You can also add storage resources using a YAML:
				
	
							Create a secret with the credentials:
						
apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
type: Opaque
data:
 GoogleServiceAccountPrivateKeyJson: <GCP PRIVATE KEY ENCODED IN BASE64>
	
									You must supply and encode your own GCP service account private key using Base64, and use the results in place of <GCP PRIVATE KEY ENCODED IN BASE64>.
								
	
									Replace <backingstore-secret-name> with a unique name.
								

	
							Apply the following YAML for a specific backing store:
						
apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 googleCloudStorage:
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBucket: <target bucket>
 type: google-cloud-storage
	
									Replace <target bucket> with an existing Google storage bucket. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
								
	
									Replace <backingstore-secret-name> with the name of the secret created in the previous step.
								

Creating a local Persistent Volume-backed backingstore

Prerequisites
	
							Download the Multicloud Object Gateway (MCG) command-line interface:
						
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

	
							Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs found here https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages
						

Procedure
	
							From the MCG command-line interface, run the following command:
						
noobaa backingstore create pv-pool <backingstore_name> --num-volumes=<NUMBER OF VOLUMES> --pv-size-gb=<VOLUME SIZE> --storage-class=<LOCAL STORAGE CLASS>
	
									Replace <backingstore_name> with the name of the backingstore.
								
	
									Replace <NUMBER OF VOLUMES> with the number of volumes you would like to create. Note that increasing the number of volumes scales up the storage.
								
	
									Replace <VOLUME SIZE> with the required size, in GB, of each volume
								
	
									Replace <LOCAL STORAGE CLASS> with the local storage class, recommended to use ocs-storagecluster-ceph-rbd
								

									The output will be similar to the following:
								
INFO[0001] ✅ Exists: NooBaa "noobaa"
INFO[0002] ✅ Exists: BackingStore "local-mcg-storage"

					You can also add storage resources using a YAML:
				
	
							Apply the following YAML for a specific backing store:
						
apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <backingstore_name>
 namespace: openshift-storage
spec:
 pvPool:
 numVolumes: <NUMBER OF VOLUMES>
 resources:
 requests:
 storage: <VOLUME SIZE>
 storageClass: <LOCAL STORAGE CLASS>
 type: pv-pool
	
									Replace <backingstore_name> with the name of the backingstore.
								
	
									Replace <NUMBER OF VOLUMES> with the number of volumes you would like to create. Note that increasing the number of volumes scales up the storage.
								
	
									Replace <VOLUME SIZE> with the required size, in GB, of each volume. Note that the letter G should remain.
								
	
									Replace <LOCAL STORAGE CLASS> with the local storage class, recommended to use ocs-storagecluster-ceph-rbd
								

Creating an s3 compatible Multicloud Object Gateway backingstore

				The Multicloud Object Gateway can use any S3 compatible object storage as a backing store, for example, Red Hat Ceph Storage’s RADOS Gateway (RGW). The following procedure shows how to create an S3 compatible Multicloud Object Gateway backing store for Red Hat Ceph Storage’s RADOS Gateway. Note that when RGW is deployed, Openshift Container Storage operator creates an S3 compatible backingstore for Multicloud Object Gateway automatically.
			
Procedure
	
						From the Multicloud Object Gateway (MCG) command-line interface, run the following NooBaa command:
					
noobaa backingstore create s3-compatible rgw-resource --access-key=<RGW ACCESS KEY> --secret-key=<RGW SECRET KEY> --target-bucket=<bucket-name> --endpoint=<RGW endpoint>
	
								To get the <RGW ACCESS KEY> and <RGW SECRET KEY>, run the following command using your RGW user secret name:
							
oc get secret <RGW USER SECRET NAME> -o yaml -n openshift-storage

	
								Decode the access key ID and the access key from Base64 and keep them.
							
	
								Replace <RGW USER ACCESS KEY> and <RGW USER SECRET ACCESS KEY> with the appropriate, decoded data from the previous step.
							
	
								Replace <bucket-name> with an existing RGW bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
							
	
								To get the <RGW endpoint>, see Accessing the RADOS Object Gateway S3 endpoint.
							

								The output will be similar to the following:
							
INFO[0001] ✅ Exists: NooBaa "noobaa"
INFO[0002] ✅ Created: BackingStore "rgw-resource"
INFO[0002] ✅ Created: Secret "backing-store-secret-rgw-resource"

				You can also create the backingstore using a YAML:
			
	
						Create a CephObjectStore user. This also creates a secret containing the RGW credentials:
					
apiVersion: ceph.rook.io/v1
kind: CephObjectStoreUser
metadata:
 name: <RGW-Username>
 namespace: openshift-storage
spec:
 store: ocs-storagecluster-cephobjectstore
 displayName: "<Display-name>"
	
								Replace <RGW-Username> and <Display-name> with a unique username and display name.
							

	
						Apply the following YAML for an S3-Compatible backing store:
					
apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <backingstore-name>
 namespace: openshift-storage
spec:
 s3Compatible:
 endpoint: <RGW endpoint>
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 signatureVersion: v4
 targetBucket: <RGW-bucket-name>
 type: s3-compatible
	
								Replace <backingstore-secret-name> with the name of the secret that was created with CephObjectStore in the previous step.
							
	
								Replace <bucket-name> with an existing RGW bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
							
	
								To get the <RGW endpoint>, see Accessing the RADOS Object Gateway S3 endpoint.
							

Adding storage resources for hybrid and Multicloud using the user interface

Procedure
	
						In your OpenShift Storage console, click Overview → Object Service → Multicloud Object Gateway link.
					
	
						Select the Resources tab in the left, highlighted below. From the list that populates, select Add Cloud Resource.
					
[image: MCG add cloud resource]

	
						Select Add new connection.
					
[image: MCG add new connection]

	
						Select the relevant native cloud provider or S3 compatible option and fill in the details.
					
[image: MCG add cloud connection]

	
						Select the newly created connection and map it to the existing bucket.
					
[image: MCG map to existing bucket]

	
						Repeat these steps to create as many backing stores as needed.
					

Note

					Resources created in NooBaa UI cannot be used by OpenShift UI or MCG CLI.
				

Creating a new bucket class

				Bucket class is a CRD representing a class of buckets that defines tiering policies and data placements for an Object Bucket Class (OBC).
			

				Use this procedure to create a bucket class in OpenShift Container Storage.
			
Procedure
	
						Click Operators → Installed Operators from the left pane of the OpenShift Web Console to view the installed operators.
					
	
						Click OpenShift Container Storage Operator.
					
	
						On the OpenShift Container Storage Operator page, scroll right and click the Bucket Class tab.
					
	
						Click Create Bucket Class.
					
	
						On the Create new Bucket Class page, perform the following:
					
	
								Enter a Bucket Class Name and click Next.
							
	
								In Placement Policy, select Tier 1 - Policy Type and click Next. You can choose either one of the options as per your requirements.
							
	
										Spread allows spreading of the data across the chosen resources.
									
	
										Mirror allows full duplication of the data across the chosen resources.
									
	
										Click Add Tier to add another policy tier.
									

	
								Select at least one Backing Store resource from the available list if you have selected Tier 1 - Policy Type as Spread and click Next. Alternatively, you can also create a new backing store.
							
Note

									You need to select atleast 2 backing stores when you select Policy Type as Mirror in previous step.
								

	
								Review and confirm Bucket Class settings.
							
	
								Click Create Bucket Class.
							

Verification steps
	
						Click Operators → Installed Operators.
					
	
						Click OpenShift Container Storage Operator.
					
	
						Search for the new Bucket Class or click Bucket Class tab to view all the Bucket Classes.
					

Editing a bucket class

				Use the following procedure to edit the bucket class components through the YAML file by clicking the edit button on the Openshift web console.
			
Prerequisites
	
						Administrator access to OpenShift.
					

Procedure
	
						Log into the OpenShift Web Console.
					
	
						Click Operators → Installed Operators.
					
	
						Click OpenShift Container Storage Operator.
					
	
						On the OpenShift Container Storage Operator page, scroll right and click the Bucket Class tab.
					
	
						Click on the action menu (⋮) next to the Bucket class you want to edit.
					
	
						Click Edit Bucket Class.
					
	
						You are redirected to the YAML file, make the required changes in this file and click Save.
					

Editing backing stores for bucket class

				Use the following procedure to edit an existing Multicloud Object Gateway bucket class to change the underlying backing stores used in a bucket class.
			
Prerequisites
	
						Administrator access to OpenShift Web Console.
					
	
						A bucket class.
					
	
						Backing stores.
					

Procedure
	
						Click Operators → Installed Operators to view the installed operators.
					
	
						Click OpenShift Container Storage Operator.
					
	
						Click the Bucket Class tab.
					
	
						Click on the action menu (⋮) next to the Bucket class you want to edit.
					
[image: Edit bucket class resources]

	
						Click Edit Bucket Class Resources.
					
	
						On the Edit Bucket Class Resources page, edit the bucket class resources either by adding a backing store to the bucket class or by removing a backing store from the bucket class. You can also edit bucket class resources created with one or two tiers and different placement policies.
					
	
								To add a backing store to the bucket class, select the name of the backing store.
							
	
								To remove a backing store from the bucket class, clear the name of the backing store.
							
[image: Editing backing stores for the bucket class]

	
						Click Save.
					

Chapter 5. Managing namespace buckets

			Namespace buckets let you connect data repositories on different providers together, so you can interact with all of your data through a single unified view. Add the object bucket associated with each provider to the namespace bucket, and access your data through the namespace bucket to see all of your object buckets at once. This lets you write to your preferred storage provider while reading from multiple other storage providers, greatly reducing the cost of migrating to a new storage provider.
		
	
					Connect your providers to the Multicloud Object Gateway.
				
	
					Create a namespace resource for each of your providers so they can be added to a namespace bucket.
				
	
					Add your namespace resources to a namespace bucket and configure the bucket to read from and write to the appropriate namespace resources.
				

			You can interact with objects in a namespace bucket using the S3 API. See S3 API endpoints for objects in namespace buckets for more information.
		
Note

				A namespace bucket can only be used if its write target is available and functional.
			

Adding provider connections to the Multicloud Object Gateway

				You need to add connections for each of your providers so that the Multicloud Object Gateway has access to the provider.
			
Prerequisites
	
						Administrative access to the OpenShift Console.
					

Procedure
	
						In the OpenShift Console, click Home → Overview and click the Object Service tab.
					
	
						Click Multicloud Object Gateway and log in if prompted.
					
	
						Click Accounts and select an account to add the connection to.
					
	
						Click My Connections.
					
	
						Click Add Connection.
					
	
								Enter a Connection Name.
							
	
								Your cloud provider is shown in the Service dropdown by default. Change the selection to use a different provider.
							
	
								Your cloud provider’s default endpoint is shown in the Endpoint field by default. Enter an alternative endpoint if required.
							
	
								Enter your Access Key for this cloud provider.
							
	
								Enter your Secret Key for this cloud provider.
							
	
								Click Save.
							

Adding namespace resources using the Multicloud Object Gateway

				Add existing storage to Multicloud Storage Gateway as namespace resources so that they can be included in namespace buckets for a unified view of existing storage targets, such as Amazon Web Services S3 buckets, Microsoft Azure blobs, and IBM Cloud Object Storage buckets.
			
Prerequisites
	
						Administrative access to the OpenShift Console.
					
	
						Target connections (providers) are already added to the Multicloud Object Gateway. See the section called “Adding provider connections to the Multicloud Object Gateway” for details.
					

Procedure
	
						In the OpenShift Console, click Home → Overview and click on the Object Service tab.
					
	
						Click Multicloud Storage Gateway and log in if prompted.
					
	
						Click Resources, and click the Namespace Resources tab.
					
	
						Click Create Namespace Resource.
					
	
								In Target Connection, select the connection to be used for this namespace’s storage provider.
							

								If you need to add a new connection, click Add New Connection and enter your provider details; see the section called “Adding provider connections to the Multicloud Object Gateway” for more information.
							

	
								In Target Bucket, select the name of the bucket to use as a target.
							
	
								Enter a Resource Name for your namespace resource.
							
	
								Click Create.
							

Verification
	
						Verify that the new resource is listed with a green check mark in the State column, and 0 buckets in the Connected Namespace Buckets column.
					

Adding resources to namespace buckets using the Multicloud Object Gateway

				Add namespace resources to namespace buckets for a unified view of your storage across various providers. You can also configure read and write behaviour so that only one provider accepts new data, while all providers allow existing data to be read.
			
Prerequisites
	
						Ensure that all namespace resources you want to handle in a bucket have been added to the Multicloud Object Gateway: Adding namespace resources using the Multicloud Object Gateway.
					

Procedure
	
						In the OpenShift Console, click Home → Overview and click the Object Service tab.
					
	
						Click Multicloud Object Gateway and log in if prompted.
					
	
						Click Buckets, and click on the Namespace Buckets tab.
					
	
						Click Create Namespace Bucket.
					
	
								On the Choose Name tab, specify a Name for the namespace bucket and click Next.
							
	
								On the Set Placement tab:
							
	
										Under Read Policy, select the checkbox for each namespace resource that the namespace bucket should read data from.
									
	
										Under Write Policy, specify which namespace resource the namespace bucket should write data to.
									
	
										Click Next.
									

	
								Do not make changes on the Set Caching Policy tab in a production environment. This tab is provided as a Development Preview and is subject to support limitations.
							
	
								Click Create.
							

Verification
	
						Verify that the namespace bucket is listed with a green check mark in the State column, the expected number of read resources, and the expected write resource name.
					

Amazon S3 API endpoints for objects in namespace buckets

				You can interact with objects in namespace buckets using the Amazon Simple Storage Service (S3) API.
			

				Red Hat OpenShift Container Storage 4.6 onwards supports the following namespace bucket operations:
			
	
						ListObjectVersions
					
	
						ListObjects
					
	
						PutObject
					
	
						CopyObject
					
	
						ListParts
					
	
						CreateMultipartUpload
					
	
						CompleteMultipartUpload
					
	
						UploadPart
					
	
						UploadPartCopy
					
	
						AbortMultipartUpload
					
	
						GetObjectAcl
					
	
						GetObject
					
	
						HeadObject
					
	
						DeleteObject
					
	
						DeleteObjects
					

				See the Amazon S3 API reference documentation for the most up-to-date information about these operations and how to use them.
			
Additional resources
	
						Amazon S3 REST API Reference
					
	
						Amazon S3 CLI Reference
					

Adding a namespace bucket using the Multicloud Object Gateway CLI and YAML

				For more information about namespace buckets, see Managing namespace buckets.
			

				Depending on the type of your deployment and whether you want to use YAML or the Multicloud Object Gateway CLI, choose one of the following procedures to add a namespace bucket:
			
	
						Adding an AWS S3 namespace bucket using YAML
					
	
						Adding an IBM COS namespace bucket using YAML
					
	
						Adding an AWS S3 namespace bucket using the Multicloud Object Gateway CLI
					
	
						Adding an IBM COS namespace bucket using the Multicloud Object Gateway CLI
					

Adding an AWS S3 namespace bucket using YAML

Prerequisites
	
							A running OpenShift Container Storage Platform
						
	
							Access to the Multicloud Object Gateway, see Chapter 2, Accessing the Multicloud Object Gateway with your applications
						

Procedure
	
							Create a secret with the credentials:
						
apiVersion: v1
kind: Secret
metadata:
name: <namespacestore-secret-name>
type: Opaque
data:
AWS_ACCESS_KEY_ID: <AWS ACCESS KEY ID ENCODED IN BASE64>
AWS_SECRET_ACCESS_KEY: <AWS SECRET ACCESS KEY ENCODED IN BASE64>
	
									You must supply and encode your own AWS access key ID and secret access key using Base64, and use the results in place of <AWS ACCESS KEY ID ENCODED IN BASE64> and <AWS SECRET ACCESS KEY ENCODED IN BASE64>. ii. Replace <namespacestore-secret-name> with a unique name.
								

	
							Create a NamespaceStore resource using OpenShift Custom Resource Definitions (CRDs). A NamespaceStore represents underlying storage to be used as a read or write target for the data in the Multicloud Object Gateway namespace buckets. To create a NamespaceStore resource, apply the following YAML:
						
apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: mybucketnamespace
 namespace: k8snamespace
spec:
 awsS3:
 secret:
 name: <namespacestore-secret-name>
 namespace: k8snamespace
 targetBucket: awsdatalake
 type: aws-s3
	
									Replace <namespacestore-secret-name> with with the secret created in step 1.
								

	
							Create a namespace bucket class that defines a namespace policy for the namespace buckets. The namespace policy requires a type of either single or multi.
						
	
									A namespace policy of type single requires the following configuration:
								
apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <my-bucket-class>
 namespace: openshift-storage
spec:
 namespacePolicy:
 type:
 single:
 resource: <resource>

									Replace <my-bucket-class> with a unique namespace bucket class name.
								

									Replace <resource> with a single namespace-store that will define the read and write target of the namespace bucket.
								

	
									A namespace policy of type multi requires the following configuration:
								
apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <my-bucket-class>
 namespace: openshift-storage
spec:
 namespacePolicy:
 type: Multi
 multi:
 writeResource: <write-resource>
 readResources:
 - <read-resources>
 - <read-resources>

									Replace <my-bucket-class> with a unique bucket class name.
								

									Replace write-resource with a single namespace-store that will define the write target of the namespace bucket.
								

									Replace <read-resources with a list of namespace-stores that will define the read targets of the namespace bucket.
								

	
							Apply the following YAML to create a bucket using an Object Bucket Class (OBC) resource that uses the bucket class defined in step 2.
						
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: my-bucket-claim
 namespace: my-app
spec:
 generateBucketName: my-bucket
 storageClassName: noobaa.noobaa.io
 additionalConfig:
 bucketclass: <my-bucket-class>
	
									Replace <my-bucket-class> with the bucket class created in the previous step.
								

					Once the OBC is provisioned by the operator, a bucket is created in the Multicloud Object Gateway, and the operator creates a Secret and ConfigMap with the same name of the OBC on the same namespace of the OBC.
				

Adding an IBM COS namespace bucket using YAML

Prerequisites
	
							A running OpenShift Container Storage Platform
						
	
							Access to the Multicloud Object Gateway, see Chapter 2, Accessing the Multicloud Object Gateway with your applications
						

Procedure
	
							Create a secret with the credentials:
						
apiVersion: v1
kind: Secret
metadata:
name: <namespacestore-secret-name>
type: Opaque
data:
IBM_COS_ACCESS_KEY_ID: <IBM COS ACCESS KEY ID ENCODED IN BASE64>
IBM_COS_SECRET_ACCESS_KEY: <IBM COS SECRET ACCESS KEY ENCODED IN BASE64>
	
									You must supply and encode your own IBM COS access key ID and secret access key using Base64, and use the results in place of <IBM COS ACCESS KEY ID ENCODED IN BASE64> and `<IBM COS SECRET ACCESS KEY ENCODED IN BASE64>.
								
	
									Replace <namespacestore-secret-name> with a unique name.
								

	
							Create a NamespaceStore resource using OpenShift Custom Resource Definitions (CRDs). A NamespaceStore represents underlying storage to be used as a read or write target for the data in the Multicloud Object Gateway namespace buckets. To create a NamespaceStore resource, apply the following YAML:
						
apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: k8snamespace
spec:
 s3Compatible:
 endpoint: <IBM COS ENDPOINT>
 secret:
 name: <namespacestore-secret-name>
 namespace: openshift-storage
 signatureVersion: v2
 targetBucket: BUCKET
 type: ibm-cos
	
									Replace <IBM COS ENDPOINT> with the appropriate IBM COS endpoint.
								
	
									Replace <namespacestore-secret-name> with the secret created in step 1.
								

	
							Create a namespace bucket class that defines a namespace policy for the namespace buckets. The namespace policy requires a type of either single or multi.
						
	
									A namespace policy of type single requires the following configuration:
								
apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <my-bucket-class>
 namespace: openshift-storage
spec:
 namespacePolicy:
 type:
 single:
 resource: <resource>

									Replace <my-bucket-class> with a unique namespace bucket class name.
								

									Replace <resource> with a single namespace-store that will define the read and write target of the namespace bucket.
								

	
									A namespace policy of type multi requires the following configuration:
								
apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <my-bucket-class>
 namespace: openshift-storage
spec:
 namespacePolicy:
 type: Multi
 multi:
 writeResource: <write-resource>
 readResources:
 - <read-resources>
 - <read-resources>

									Replace <my-bucket-class> with a unique bucket class name.
								

									Replace write-resource with a single namespace-store that will define the write target of the namespace bucket.
								

									Replace <read-resources with a list of namespace-stores that will define the read targets of the namespace bucket.
								

	
							Apply the following YAML to create a bucket using an Object Bucket Class (OBC) resource that uses the bucket class defined in step 2.
						
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: my-bucket-claim
 namespace: my-app
spec:
 generateBucketName: my-bucket
 storageClassName: noobaa.noobaa.io
 additionalConfig:
 bucketclass: <my-bucket-class>
	
									Replace <my-bucket-class> with the bucket class created in the previous step.
								

					Once the OBC is provisioned by the operator, a bucket is created in the Multicloud Object Gateway, and the operator creates a Secret and ConfigMap with the same name of the OBC on the same namespace of the OBC.
				

Adding an AWS S3 namespace bucket using the Multicloud Object Gateway CLI

Prerequisites
	
							A running OpenShift Container Storage Platform
						
	
							Access to the Multicloud Object Gateway, see Chapter 2, Accessing the Multicloud Object Gateway with your applications
						
	
							Download the Multicloud Object Gateway command-line interface:
						
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

							Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs found here https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package.
						

Procedure
	
							Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be used as a read or write target for the data in Multicloud Object Gateway namespace buckets. From the MCG command-line interface, run the following command:
						
noobaa namespacestore create aws-s3 <namespacestore> --access-key <AWS ACCESS KEY> --secret-key <AWS SECRET ACCESS KEY> --target-bucket <bucket-name> -n openshift-storage
	
									Replace <namespacestore> with the name of the NamespaceStore.
								
	
									Replace <AWS ACCESS KEY> and <AWS SECRET ACCESS KEY> with an AWS access key ID and secret access key you created for this purpose.
								
	
									Replace <bucket-name> with an existing AWS bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
								

	
							Create a namespace bucket class that defines a namespace policy for the namespace buckets. The namespace policy requires a type of either single or multi.
						
	
									Run the following command to create a namespace bucket class with a namespace policy of type single:
								
noobaa bucketclass create namespace-bucketclass single <my-bucket-class> --resource <resource> -n openshift-storage

									Replace <my-bucket-class> with a unique bucket class name.
								

									Replace <resource> with a single namespace-store that will define the read and write target of the namespace bucket.
								

	
									Run the following command to create a namespace bucket class with a namespace policy of type multi:
								
noobaa bucketclass create namespace-bucketclass multi <my-bucket-class> --write-resource <write-resource> --read-resources <read-resources> -n openshift-storage

									Replace <my-bucket-class> with a unique bucket class name.
								

									Replace write-resource with a single namespace-store that will define the write target of the namespace bucket.
								

									Replace <read-resources with a list of namespace-stores separated by commas that will define the read targets of the namespace bucket.
								

	
							Run the following command to create a bucket using an Object Bucket Class (OBC) resource that uses the bucket class defined in step 2.
						
noobaa obc create my-bucket-claim -n openshift-storage --app-namespace my-app --bucketclass <custom-bucket-class>
	
									Replace <custom-bucket-class> with the name of the bucket class created in step 2.
								

					Once the OBC is provisioned by the operator, a bucket is created in the Multicloud Object Gateway, and the operator creates a Secret and ConfigMap with the same name of the OBC on the same namespace of the OBC.
				

Adding an IBM COS namespace bucket using the Multicloud Object Gateway CLI

Prerequisites
	
							A running OpenShift Container Storage Platform
						
	
							Access to the Multicloud Object Gateway, see Chapter 2, Accessing the Multicloud Object Gateway with your applications
						
	
							Download the Multicloud Object Gateway command-line interface:
						
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

							Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs found here https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package.
						

Procedure
	
							Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be used as a read or write target for the data in Multicloud Object Gateway namespace buckets. From the MCG command-line interface, run the following command:
						
noobaa namespacestore create ibm-cos <namespacestore> --endpoint <IBM COS ENDPOINT> --access-key <IBM ACCESS KEY> --secret-key <IBM SECRET ACCESS KEY> --target-bucket <bucket-name> -n openshift-storage
	
									Replace <namespacestore> with the name of the NamespaceStore.
								
	
									Replace <IBM ACCESS KEY>, <IBM SECRET ACCESS KEY>, <IBM COS ENDPOINT> with an IBM access key ID, secret access key and the appropriate regional endpoint that corresponds to the location of the existing IBM bucket.
								
	
									Replace <bucket-name> with an existing IBM bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
								

	
							Create a namespace bucket class that defines a namespace policy for the namespace buckets. The namespace policy requires a type of either single or multi.
						
	
									Run the following command to create a namespace bucket class with a namespace policy of type single:
								
noobaa bucketclass create namespace-bucketclass single <my-bucket-class> --resource <resource> -n openshift-storage

									Replace <my-bucket-class> with a unique bucket class name.
								

									Replace <resource> with a single namespace-store that will define the read and write target of the namespace bucket.
								

	
									Run the following command to create a namespace bucket class with a namespace policy of type multi:
								
noobaa bucketclass create namespace-bucketclass multi <my-bucket-class> --write-resource <write-resource> --read-resources <read-resources> -n openshift-storage

									Replace <my-bucket-class> with a unique bucket class name.
								

									Replace write-resource with a single namespace-store that will define the write target of the namespace bucket.
								

									Replace <read-resources with a list of namespace-stores separated by commas that will define the read targets of the namespace bucket.
								

	
							Run the following command to create a bucket using an Object Bucket Class (OBC) resource that uses the bucket class defined in step 2.
						
noobaa obc create my-bucket-claim -n openshift-storage --app-namespace my-app --bucketclass <custom-bucket-class>
	
									Replace <custom-bucket-class> with the name of the bucket class created in step 2.
								

					Once the OBC is provisioned by the operator, a bucket is created in the Multicloud Object Gateway, and the operator creates a Secret and ConfigMap with the same name of the OBC on the same namespace of the OBC.
				

Chapter 6. Mirroring data for hybrid and Multicloud buckets

			The Multicloud Object Gateway (MCG) simplifies the process of spanning data across cloud provider and clusters.
		
Prerequisites
	
					You must first add a backing storage that can be used by the MCG, see Chapter 4, Adding storage resources for hybrid or Multicloud.
				

			Then you create a bucket class that reflects the data management policy, mirroring.
		
Procedure

				You can set up mirroring data three ways:
			
	
					the section called “Creating bucket classes to mirror data using the MCG command-line-interface”
				
	
					the section called “Creating bucket classes to mirror data using a YAML”
				
	
					the section called “Configuring buckets to mirror data using the user interface”
				

Creating bucket classes to mirror data using the MCG command-line-interface

	
						From the MCG command-line interface, run the following command to create a bucket class with a mirroring policy:
					
$ noobaa bucketclass create placement-bucketclass mirror-to-aws --backingstores=azure-resource,aws-resource --placement Mirror

	
						Set the newly created bucket class to a new bucket claim, generating a new bucket that will be mirrored between two locations:
					
$ noobaa obc create mirrored-bucket --bucketclass=mirror-to-aws

Creating bucket classes to mirror data using a YAML

	
						Apply the following YAML.
					
apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <bucket-class-name>
 namespace: openshift-storage
spec:
 placementPolicy:
 tiers:
 - backingStores:
 - <backing-store-1>
 - <backing-store-2>
 placement: Mirror

	
						Add the following lines to your standard Object Bucket Claim (OBC):
					
additionalConfig:
 bucketclass: mirror-to-aws

						For more information about OBCs, see Chapter 8, Object Bucket Claim.
					

Configuring buckets to mirror data using the user interface

	
						In your OpenShift Storage console, Click Overview → Object Service → Multicloud Object Gateway link.
					
	
						On the NooBaa page, click the buckets icon on the left side. You will see a list of your buckets:
					
[image: MCG noobaa bucket icon]

	
						Click the bucket you want to update.
					
	
						Click Edit Tier 1 Resources:
					
[image: MCG edit tier 1 resources]

	
						Select Mirror and check the relevant resources you want to use for this bucket. In the following example, the data between noobaa-default-backing-store which is on RGW and AWS-backingstore which is on AWS is mirrored:
					
[image: MCG mirror relevant resources]

	
						Click Save.
					

Note

					Resources created in NooBaa UI cannot be used by OpenShift UI or MCG CLI.
				

Chapter 7. Bucket policies in the Multicloud Object Gateway

			OpenShift Container Storage supports AWS S3 bucket policies. Bucket policies allow you to grant users access permissions for buckets and the objects in them.
		
About bucket policies

				Bucket policies are an access policy option available for you to grant permission to your AWS S3 buckets and objects. Bucket policies use JSON-based access policy language. For more information about access policy language, see AWS Access Policy Language Overview.
			

Using bucket policies

Prerequisites
	
						A running OpenShift Container Storage Platform
					
	
						Access to the Multicloud Object Gateway, see Chapter 2, Accessing the Multicloud Object Gateway with your applications
					

Procedure

					To use bucket policies in the Multicloud Object Gateway:
				
	
						Create the bucket policy in JSON format. See the following example:
					
{
 "Version": "NewVersion",
 "Statement": [
 {
 "Sid": "Example",
 "Effect": "Allow",
 "Principal": [
 "john.doe@example.com"
],
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::john_bucket"
]
 }
]
}

						There are many available elements for bucket policies with regard to access permissions.
					

						For details on these elements and examples of how they can be used to control the access permissions, see AWS Access Policy Language Overview.
					

						For more examples of bucket policies, see AWS Bucket Policy Examples.
					

						Instructions for creating S3 users can be found in the section called “Creating an AWS S3 user in the Multicloud Object Gateway”.
					

	
						Using AWS S3 client, use the put-bucket-policy command to apply the bucket policy to your S3 bucket:
					
aws --endpoint ENDPOINT --no-verify-ssl s3api put-bucket-policy --bucket MyBucket --policy BucketPolicy

						Replace ENDPOINT with the S3 endpoint
					

						Replace MyBucket with the bucket to set the policy on
					

						Replace BucketPolicy with the bucket policy JSON file
					

						Add --no-verify-ssl if you are using the default self signed certificates
					

						For example:
					
aws --endpoint https://s3-openshift-storage.apps.gogo44.noobaa.org --no-verify-ssl s3api put-bucket-policy -bucket MyBucket --policy file://BucketPolicy

						For more information on the put-bucket-policy command, see the AWS CLI Command Reference for put-bucket-policy.
					

Note

					The principal element specifies the user that is allowed or denied access to a resource, such as a bucket. Currently, Only NooBaa accounts can be used as principals. In the case of object bucket claims, NooBaa automatically create an account obc-account.<generated bucket name>@noobaa.io.
				

Note

					Bucket policy conditions are not supported.
				

Creating an AWS S3 user in the Multicloud Object Gateway

Prerequisites
	
						A running OpenShift Container Storage Platform
					
	
						Access to the Multicloud Object Gateway, see Chapter 2, Accessing the Multicloud Object Gateway with your applications
					

Procedure
	
						In your OpenShift Storage console, navigate to Overview → Object Service → select the Multicloud Object Gateway link:
					
[image: MCG object service noobaa link]

	
						Under the Accounts tab, click Create Account:
					
[image: MCG accounts create account button]

	
						Select S3 Access Only, provide the Account Name, for example, john.doe@example.com. Click Next:
					
[image: MCG create account s3 user]

	
						Select S3 default placement, for example, noobaa-default-backing-store. Select Buckets Permissions. A specific bucket or all buckets can be selected. Click Create:
					
[image: MCG create account s3 user2]

Chapter 8. Object Bucket Claim

			An Object Bucket Claim can be used to request an S3 compatible bucket backend for your workloads.
		

			You can create an Object Bucket Claim three ways:
		
	
					the section called “Dynamic Object Bucket Claim”
				
	
					the section called “Creating an Object Bucket Claim using the command line interface”
				
	
					the section called “Creating an Object Bucket Claim using the OpenShift Web Console”
				

			An object bucket claim creates a new bucket and an application account in NooBaa with permissions to the bucket, including a new access key and secret access key. The application account is allowed to access only a single bucket and can’t create new buckets by default.
		
Dynamic Object Bucket Claim

				Similar to Persistent Volumes, you can add the details of the Object Bucket claim to your application’s YAML, and get the object service endpoint, access key, and secret access key available in a configuration map and secret. It is easy to read this information dynamically into environment variables of your application.
			
Procedure
	
						Add the following lines to your application YAML:
					
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: <obc-name>
spec:
 generateBucketName: <obc-bucket-name>
 storageClassName: openshift-storage.noobaa.io

						These lines are the Object Bucket Claim itself.
					
	
								Replace <obc-name> with the a unique Object Bucket Claim name.
							
	
								Replace <obc-bucket-name> with a unique bucket name for your Object Bucket Claim.
							

	
						You can add more lines to the YAML file to automate the use of the Object Bucket Claim. The example below is the mapping between the bucket claim result, which is a configuration map with data and a secret with the credentials. This specific job will claim the Object Bucket from NooBaa, which will create a bucket and an account.
					
apiVersion: batch/v1
kind: Job
metadata:
 name: testjob
spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - image: <your application image>
 name: test
 env:
 - name: BUCKET_NAME
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_NAME
 - name: BUCKET_HOST
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_HOST
 - name: BUCKET_PORT
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_PORT
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: <obc-name>
 key: AWS_ACCESS_KEY_ID
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: <obc-name>
 key: AWS_SECRET_ACCESS_KEY
	
								Replace all instances of <obc-name> with your Object Bucket Claim name.
							
	
								Replace <your application image> with your application image.
							

	
						Apply the updated YAML file:
					
oc apply -f <yaml.file>
	
								Replace <yaml.file> with the name of your YAML file.
							

	
						To view the new configuration map, run the following:
					
oc get cm <obc-name>
	
								Replace obc-name with the name of your Object Bucket Claim.
							

								You can expect the following environment variables in the output:
							
	
										BUCKET_HOST - Endpoint to use in the application
									
	
										BUCKET_PORT - The port available for the application
									
	
												The port is related to the BUCKET_HOST. For example, if the BUCKET_HOST is https://my.example.com, and the BUCKET_PORT is 443, the endpoint for the object service would be https://my.example.com:443.
											

	
										BUCKET_NAME - Requested or generated bucket name
									
	
										AWS_ACCESS_KEY_ID - Access key that is part of the credentials
									
	
										AWS_SECRET_ACCESS_KEY - Secret access key that is part of the credentials
									

Important

					Retrieve the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY. The names are used so that it is compatible with the AWS S3 API. You need to specify the keys while performing S3 operations, especially when you read, write or list from the Multicloud Object Gateway (MCG) bucket. The keys are encoded in Base64. Decode the keys before using them.
				
oc get secret <obc_name> -o yaml
	<obc_name>
	
								Specify the name of the object bucket claim.
							

Creating an Object Bucket Claim using the command line interface

				When creating an Object Bucket Claim using the command-line interface, you get a configuration map and a Secret that together contain all the information your application needs to use the object storage service.
			
Prerequisites
	
						Download the MCG command-line interface:
					
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

Procedure
	
						Use the command-line interface to generate the details of a new bucket and credentials. Run the following command:
					
noobaa obc create <obc-name> -n openshift-storage

						Replace <obc-name> with a unique Object Bucket Claim name, for example, myappobc.
					

						Additionally, you can use the --app-namespace option to specify the namespace where the Object Bucket Claim configuration map and secret will be created, for example, myapp-namespace.
					

						Example output:
					
INFO[0001] ✅ Created: ObjectBucketClaim "test21obc"

						The MCG command-line-interface has created the necessary configuration and has informed OpenShift about the new OBC.
					

	
						Run the following command to view the Object Bucket Claim:
					
oc get obc -n openshift-storage

						Example output:
					
NAME STORAGE-CLASS PHASE AGE
test21obc openshift-storage.noobaa.io Bound 38s

	
						Run the following command to view the YAML file for the new Object Bucket Claim:
					
oc get obc test21obc -o yaml -n openshift-storage

						Example output:
					
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"
 finalizers:
 - objectbucket.io/finalizer
 generation: 2
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 resourceVersion: "40756"
 selfLink: /apis/objectbucket.io/v1alpha1/namespaces/openshift-storage/objectbucketclaims/test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
spec:
 ObjectBucketName: obc-openshift-storage-test21obc
 bucketName: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
 generateBucketName: test21obc
 storageClassName: openshift-storage.noobaa.io
status:
 phase: Bound

	
						Inside of your openshift-storage namespace, you can find the configuration map and the secret to use this Object Bucket Claim. The CM and the secret have the same name as the Object Bucket Claim. To view the secret:
					
oc get -n openshift-storage secret test21obc -o yaml

						Example output:
					
Example output:
apiVersion: v1
data:
 AWS_ACCESS_KEY_ID: c0M0R2xVanF3ODR3bHBkVW94cmY=
 AWS_SECRET_ACCESS_KEY: Wi9kcFluSWxHRzlWaFlzNk1hc0xma2JXcjM1MVhqa051SlBleXpmOQ==
kind: Secret
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"
 finalizers:
 - objectbucket.io/finalizer
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 ownerReferences:
 - apiVersion: objectbucket.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ObjectBucketClaim
 name: test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
 resourceVersion: "40751"
 selfLink: /api/v1/namespaces/openshift-storage/secrets/test21obc
 uid: 65117c1c-f662-11e9-9094-0a5305de57bb
type: Opaque

						The secret gives you the S3 access credentials.
					

	
						To view the configuration map:
					
oc get -n openshift-storage cm test21obc -o yaml

						Example output:
					
apiVersion: v1
data:
 BUCKET_HOST: 10.0.171.35
 BUCKET_NAME: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
 BUCKET_PORT: "31242"
 BUCKET_REGION: ""
 BUCKET_SUBREGION: ""
kind: ConfigMap
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"
 finalizers:
 - objectbucket.io/finalizer
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 ownerReferences:
 - apiVersion: objectbucket.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ObjectBucketClaim
 name: test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
 resourceVersion: "40752"
 selfLink: /api/v1/namespaces/openshift-storage/configmaps/test21obc
 uid: 651c6501-f662-11e9-9094-0a5305de57bb

						The configuration map contains the S3 endpoint information for your application.
					

Creating an Object Bucket Claim using the OpenShift Web Console

				You can create an Object Bucket Claim (OBC) using the OpenShift Web Console.
			
Prerequisites
	
						Administrative access to the OpenShift Web Console.
					
	
						In order for your applications to communicate with the OBC, you need to use the configmap and secret. For more information about this, see the section called “Dynamic Object Bucket Claim”.
					

Procedure
	
						Log into the OpenShift Web Console.
					
	
						On the left navigation bar, click Storage → Object Bucket Claims.
					
	
						Click Create Object Bucket Claim:
					
[image: Create Object Bucket Claims page]

	
						Enter a name for your object bucket claim and select the appropriate storage class based on your deployment, internal or external, from the dropdown menu:
					

						Internal mode
					
[image: Create Object Bucket Claim wizard]

						The following storage classes, which were created after deployment, are available for use:
					
	
								ocs-storagecluster-ceph-rgw uses the Ceph Object Gateway (RGW)
							
	
								openshift-storage.noobaa.io uses the Multicloud Object Gateway
							

						External mode
					
[image: Create Object Bucket Claim wizard]

						The following storage classes, which were created after deployment, are available for use:
					
	
								ocs-external-storagecluster-ceph-rgw uses the Ceph Object Gateway (RGW)
							
	
								openshift-storage.noobaa.io uses the Multicloud Object Gateway
							
Note

									The RGW OBC storage class is only available with fresh installations of OpenShift Container Storage version 4.5. It does not apply to clusters upgraded from previous OpenShift Container Storage releases.
								

	
						Click Create.
					

						Once you create the OBC, you are redirected to its detail page:
					
[image: Object Bucket Claim Details page]

Additional Resources
	
						Chapter 8, Object Bucket Claim
					

Attaching an Object Bucket Claim to a deployment

				Once created, Object Bucket Claims (OBCs) can be attached to specific deployments.
			
Prerequisites
	
						Administrative access to the OpenShift Web Console.
					

Procedure
	
						On the left navigation bar, click Storage → Object Bucket Claims.
					
	
						Click the action menu (⋮) next to the OBC you created.
					
	
						From the drop down menu, select Attach to Deployment.
					
[image: Attach Object Bucket Claim to deployment]

	
						Select the desired deployment from the Deployment Name list, then click Attach:
					
[image: Deployment Name list]

Additional Resources
	
						Chapter 8, Object Bucket Claim
					

Viewing object buckets using the OpenShift Web Console

				You can view the details of object buckets created for Object Bucket Claims (OBCs) using the OpenShift Web Console.
			
Prerequisites
	
						Administrative access to the OpenShift Web Console.
					

Procedure

					To view the object bucket details:
				
	
						Log into the OpenShift Web Console.
					
	
						On the left navigation bar, click Storage → Object Buckets:
					
[image: Object Buckets page]

						You can also navigate to the details page of a specific OBC and click the Resource link to view the object buckets for that OBC.
					

	
						Select the object bucket you want to see details for. You are navigated to the object bucket’s details page:
					
[image: Object Bucket Details page]

Additional Resources
	
						Chapter 8, Object Bucket Claim
					

Deleting Object Bucket Claims

Prerequisites
	
						Administrative access to the OpenShift Web Console.
					

Procedure
	
						On the left navigation bar, click Storage → Object Bucket Claims.
					
	
						click on the action menu (⋮) next to the Object Bucket Claim you want to delete.
					
[image: MCG OBC action menu attach to deployment]

	
						Select Delete Object Bucket Claim from menu.
					
[image: MCG delete object bucket claim]

	
						Click Delete.
					

Additional Resources
	
						Chapter 8, Object Bucket Claim
					

Chapter 9. Caching policy for object buckets

			A cache bucket is a namespace bucket with a hub target and a cache target. The hub target is an S3 compatible large object storage bucket. The cache bucket is the local Multicloud Object Gateway bucket. You can create a cache bucket that caches an AWS bucket or an IBM COS bucket.
		
Important

				Cache buckets are a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
			

				For more information, see Technology Preview Features Support Scope.
			

	
					AWS S3
				
	
					IBM COS
				

Creating an AWS cache bucket

Prerequisites
	
						Download the Multicloud Object Gateway (MCG) command-line interface:
					
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

						Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs found here https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package.
					

Procedure
	
						Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be used as a read or write target for the data in Multicloud Object Gateway namespace buckets. From the MCG command-line interface, run the following command:
					
noobaa namespacestore create aws-s3 <namespacestore> --access-key <AWS ACCESS KEY> --secret-key <AWS SECRET ACCESS KEY> --target-bucket <bucket-name>
	
								Replace <namespacestore> with the name of the namespacestore.
							
	
								Replace <AWS ACCESS KEY> and <AWS SECRET ACCESS KEY> with an AWS access key ID and secret access key you created for this purpose.
							
	
								Replace <bucket-name> with an existing AWS bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
							

								You can also add storage resources by applying a YAML. First create a secret with credentials:
							
apiVersion: v1
kind: Secret
metadata:
 name: <namespacestore-secret-name>
type: Opaque
data:
 AWS_ACCESS_KEY_ID: <AWS ACCESS KEY ID ENCODED IN BASE64>
 AWS_SECRET_ACCESS_KEY: <AWS SECRET ACCESS KEY ENCODED IN BASE64>

								You must supply and encode your own AWS access key ID and secret access key using Base64, and use the results in place of <AWS ACCESS KEY ID ENCODED IN BASE64> and <AWS SECRET ACCESS KEY ENCODED IN BASE64>.
							

								Replace <namespacestore-secret-name> with a unique name.
							

								Then apply the following YAML:
							
apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <namespacestore>
 namespace: openshift-storage
spec:
 awsS3:
 secret:
 name: <namespacestore-secret-name>
 namespace: <namespace-secret>
 targetBucket: <target-bucket>
 type: aws-s3

	
								Replace <namespacestore> with a unique name.
							
	
								Replace <namespacestore-secret-name> with the secret created in the previous step.
							
	
								Replace <namespace-secret> with the namespace used to create the secret in the previous step.
							
	
								Replace <target-bucket> with the AWS S3 bucket you created for the namespacestore.
							

	
						Run the following command to create a bucket class:
					
noobaa bucketclass create namespace-bucketclass cache <my-cache-bucket-class> --backingstores <backing-store> --hub-resource <namespacestore>
	
								Replace <my-cache-bucket-class> with a unique bucket class name.
							
	
								Replace <backing-store> with the relevant backing store. You can list one or more backingstores separated by commas in this field.
							
	
								Replace <namespacestore> with the namespacestore created in the previous step.
							

	
						Run the following command to create a bucket using an Object Bucket Claim resource that uses the bucket class defined in step 2.
					
noobaa obc create <my-bucket-claim> my-app --bucketclass <custom-bucket-class>
	
								Replace <my-bucket-claim> with a unique name.
							
	
								Replace <custom-bucket-class> with the name of the bucket class created in step 2.
							

Creating an IBM COS cache bucket

Prerequisites
	
						Download the Multicloud Object Gateway (MCG) command-line interface:
					
subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

						Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs found here https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package.
					

Procedure
	
						Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be used as a read or write target for the data in Multicloud Object Gateway namespace buckets. From the MCG command-line interface, run the following command:
					
noobaa namespacestore create ibm-cos <namespacestore> --endpoint <IBM COS ENDPOINT> --access-key <IBM ACCESS KEY> --secret-key <IBM SECRET ACCESS KEY> --target-bucket <bucket-name>
	
								Replace <namespacestore> with the name of the NamespaceStore.
							
	
								Replace <IBM ACCESS KEY>, <IBM SECRET ACCESS KEY>, <IBM COS ENDPOINT> with an IBM access key ID, secret access key and the appropriate regional endpoint that corresponds to the location of the existing IBM bucket.
							
	
								Replace <bucket-name> with an existing IBM bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.
							

								You can also add storage resources by applying a YAML. First, Create a secret with the credentials:
							
apiVersion: v1
kind: Secret
metadata:
 name: <namespacestore-secret-name>
type: Opaque
data:
 IBM_COS_ACCESS_KEY_ID: <IBM COS ACCESS KEY ID ENCODED IN BASE64>
 IBM_COS_SECRET_ACCESS_KEY: <IBM COS SECRET ACCESS KEY ENCODED IN BASE64>

								You must supply and encode your own IBM COS access key ID and secret access key using Base64, and use the results in place of <IBM COS ACCESS KEY ID ENCODED IN BASE64> and <IBM COS SECRET ACCESS KEY ENCODED IN BASE64>`.
							

								Replace <namespacestore-secret-name> with a unique name.
							

								Then apply the following YAML:
							
apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <namespacestore>
 namespace: openshift-storage
spec:
 s3Compatible:
 endpoint: <IBM COS ENDPOINT>
 secret:
 name: <backingstore-secret-name>
 namespace: <namespace-secret>
 signatureVersion: v2
 targetBucket: <target-bucket>
 type: ibm-cos

	
								Replace <namespacestore> with a unique name.
							
	
								Replace <IBM COS ENDPOINT> with the appropriate IBM COS endpoint.
							
	
								Replace <backingstore-secret-name> with the secret created in the previous step.
							
	
								Replace <namespace-secret> with the namespace used to create the secret in the previous step.
							
	
								Replace <target-bucket> with the AWS S3 bucket you created for the namespacestore.
							

	
						Run the following command to create a bucket class:
					
noobaa bucketclass create namespace-bucketclass cache <my-bucket-class> --backingstores <backing-store> --hubResource <namespacestore>
	
								Replace <my-bucket-class> with a unique bucket class name.
							
	
								Replace <backing-store> with the relevant backing store. You can list one or more backingstores separated by commas in this field.
							
	
								Replace <namespacestore> with the namespacestore created in the previous step.
							

	
						Run the following command to create a bucket using an Object Bucket Claim resource that uses the bucket class defined in step 2.
					
noobaa obc create <my-bucket-claim> my-app --bucketclass <custom-bucket-class>
	
								Replace <my-bucket-claim> with a unique name.
							
	
								Replace <custom-bucket-class> with the name of the bucket class created in step 2.
							

Chapter 10. Scaling Multicloud Object Gateway performance by adding endpoints

			The Multicloud Object Gateway performance may vary from one environment to another. In some cases, specific applications require faster performance which can be easily addressed by scaling S3 endpoints, which is a Technology Preview feature.
		

			The Multicloud Object Gateway resource pool is a group of NooBaa daemon containers that provide two types of services enabled by default:
		
	
					Storage service
				
	
					S3 endpoint service
				

Important

				Scaling Multicloud Object Gateway performance by adding endpoints is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
			

				For more information, see Technology Preview Features Support Scope.
			

S3 endpoints in the Multicloud Object Gateway

				The S3 endpoint is a service that every Multicloud Object Gateway provides by default that handles the heavy lifting data digestion in the Multicloud Object Gateway. The endpoint service handles the inline data chunking, deduplication, compression, and encryption, and it accepts data placement instructions from the Multicloud Object Gateway.
			

Scaling with storage nodes

Prerequisites
	
						A running OpenShift Container Storage cluster on OpenShift Container Platform with access to the Multicloud Object Gateway.
					

				A storage node in the Multicloud Object Gateway is a NooBaa daemon container attached to one or more Persistent Volumes and used for local object service data storage. NooBaa daemons can be deployed on Kubernetes nodes. This can be done by creating a Kubernetes pool consisting of StatefulSet pods.
			
Procedure
	
						In the Multicloud Object Gateway user interface, from the Overview page, click Add Storage Resources:
					
[image: MCG add storage resources button]

	
						In the window, click Deploy Kubernetes Pool:
					
[image: MCG deploy kubernetes pool]

	
						In the Create Pool step create the target pool for the future installed nodes.
					
[image: MCG deploy kubernetes pool create pool]

	
						In the Configure step, configure the number of requested pods and the size of each PV. For each new pod, one PV is be created.
					
[image: MCG deploy kubernetes pool configure]

	
						In the Review step, you can find the details of the new pool and select the deployment method you wish to use: local or external deployment. If local deployment is selected, the Kubernetes nodes will deploy within the cluster. If external deployment is selected, you will be provided with a YAML file to run externally.
					
	
						All nodes will be assigned to the pool you chose in the first step, and can be found under Resources → Storage resources → Resource name:
					
[image: MCG storage resources overview]

Chapter 11. Automatic scaling of MultiCloud Object Gateway endpoints

			The number of MultiCloud Object Gateway (MCG) endpoints scale automatically when the load on the MCG S3 service increases or decreases. {product-name-short} clusters are deployed with one active MCG endpoint. Each MCG endpoint pod is configured by default with 1 CPU and 2Gi memory request, with limits matching the request. When the CPU load on the endpoint crosses over an 80% usage threshold for a consistent period of time, a second endpoint is deployed lowering the load on the first endpoint. When the average CPU load on both endpoints falls below the 80% threshold for a consistent period of time, one of the endpoints is deleted. This feature improves performance and serviceability of the MCG.
		

Chapter 12. Accessing the RADOS Object Gateway S3 endpoint

			Users can access the RADOS Object Gateway (RGW) endpoint directly.
		
Prerequisites
	
					A running OpenShift Container Storage Platform
				

Procedure
	
					Run oc get service command to get the RGW service name.
				
$ oc get service

NAME TYPE
rook-ceph-rgw-ocs-storagecluster-cephobjectstore ClusterIP

CLUSTER-IP EXTERNAL-IP PORT(S) AGE
172.30.99.207 <none> 80/TCP 4d15h

	
					Run oc expose command to expose the RGW service.
				
$ oc expose svc/<RGW service name> --hostname=<route name>

					Replace <RGW-service name> with the RGW service name from the previous step.
				

					Replace <route name> with a route you want to create for the RGW service.
				

					For example:
				
$ oc expose svc/rook-ceph-rgw-ocs-storagecluster-cephobjectstore --hostname=rook-ceph-rgw-ocs.ocp.host.example.com

	
					Run oc get route command to confirm oc expose is successful and there is an RGW route.
				
$ oc get route

NAME HOST/PORT PATH
rook-ceph-rgw-ocs-storagecluster-cephobjectstore rook-ceph-rgw-ocsocp.host.example.com

SERVICES PORT TERMINATION WILDCARD
rook-ceph-rgw-ocs-storagecluster-cephobjectstore http <none>

Verify
	
					To verify the ENDPOINT, run the following command:
				
aws s3 --no-verify-ssl --endpoint <ENDPOINT> ls

					Replace <ENDPOINT> with the route that you get from the command in the above step 3.
				

					For example:
				
$ aws s3 --no-verify-ssl --endpoint http://rook-ceph-rgw-ocs.ocp.host.example.com ls

Note

				To get the access key and secret of the default user ocs-storagecluster-cephobjectstoreuser, run the following commands:
			
	
						Access key:
					
$ oc get secret rook-ceph-object-user-ocs-storagecluster-cephobjectstore-ocs-storagecluster-cephobjectstoreuser -n openshift-storage -o yaml | grep -w "AccessKey:" | head -n1 | awk '{print $2}' | base64 --decode

	
						Secret key:
					
$ oc get secret rook-ceph-object-user-ocs-storagecluster-cephobjectstore-ocs-storagecluster-cephobjectstoreuser -n openshift-storage -o yaml | grep -w "SecretKey:" | head -n1 | awk '{print $2}' | base64 --decode

OEBPS/images/ocs/MCG-add-new-connection.png

OEBPS/images/ocs/MCG-add-cloud-connection.png

OEBPS/content.opf
 4.7_idm140372935252496 Managing hybrid and multicloud resources 2022-04-11 This document explains how to manage storage resources across a hybrid cloud or multicloud environment. en

OEBPS/images/ocs/edit_bucket_class_resources.png

OEBPS/images/ocs/ocs_create_new_backing_store.png
— RedHat
= OpenShift
Container

% Administrator

He

Operators

OperatorHub

Installed Operators.

Project: openshift-storage v

> Create Backing Store

Create new Backing Store

orage targets that are used to store chunks of data on |

kets

Backing Store Name *

Aunique name f

scking Store within the proj

Provider *

AWS S3

Region *

us-east-1

Endpoint

Secret *

Select Secret

Target Bucket *

'Y

OEBPS/images/ocs/MCG-add-cloud-resource.png
;EC‘J’SQ'AA Resources admin@noobaaio (@Y

Pools Cloud Storage Namespace Resources
No resources 2 resources | 2 services No resources

name o regio All Resource Types v Add Cloud Resource

Type © Resource Name = Region Connected Buckets Cloud Target Bucket Used Capacity By Noobaa

noobaa-test-bucket-for-0cp201907201921-11247_resource buckets noobaa test bucket fo oM

@ rgwnoot Not sel ucke nooba 860M:

OEBPS/images/ocs/manage_bucket_UI.png
terlileee Details YAML Subscription Events Allinstances Storage Cluster ~ Backing Store Bucket Class

Networking
Bucket Classes
Storage
Name w Search by name
Persistent Volumes
Persistent Volume Glaims Name 1 Kind Status Labels Last updated
Storage Classes noobaa-default-bucket-class BucketClass Phase:@ Ready app=noobaa @ Jan 27,118 pm :
Volume Snapshots NE® test BucketClass Phase:@ Ready app=noobaa @ Jan 27,119 pm H
Volume Snapshot Classes Edit Bucket Class Resources
VolumeSnapshotContents Edit Bucket Class
Object Buckets Delete Bucket Class

Object Bucket Claims

Builds

Monitoring

Compute

User Management

OEBPS/images/ocs/MCG-map-to-existing-bucket.png

