Replacing nodes

Red Hat OpenShift Container Storage 4.6

How to prepare replacement nodes and replace failed nodes

Red Hat Storage Documentation Team

Abstract

This document explains how to safely replace a node in a Red Hat OpenShift Container Storage cluster.

Preface

For OpenShift Container Storage, node replacement can be performed proactively for an operational node and reactively for a failed node for the following deployments:

  • For Amazon Web Services (AWS)

    • User-provisioned infrastructure
    • Installer-provisioned infrastructure
  • For VMware

    • User-provisioned infrastructure
  • For Microsoft Azure

    • Installer-provisioned infrastructure
  • For local storage devices

    • Bare metal
    • Amazon EC2 I3
    • VMware
    • IBM Power Systems
    • IBM Z or LinuxONE
  • For replacing your storage nodes in external mode, see Red Hat Ceph Storage documentation.

Chapter 1. OpenShift Container Storage deployed on AWS

1.1. Replacing an operational AWS node on user-provisioned infrastructure

Perform this procedure to replace an operational node on AWS user-provisioned infrastructure.

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.

Procedure

  1. Identify the node that needs to be replaced.
  2. Mark the node as unschedulable using the following command:

    $ oc adm cordon <node_name>
  3. Drain the node using the following command:

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
    Important

    This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

  4. Delete the node using the following command:

    $ oc delete nodes <node_name>
  5. Create a new AWS machine instance with the required infrastructure. See Platform requirements.
  6. Create a new OpenShift Container Platform node using the new AWS machine instance.
  7. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr
  8. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>
  9. Click ComputeNodes, confirm if the new node is in Ready state.
  10. Apply the OpenShift Container Storage label to the new node.

    From the web user interface
    1. For the new node, click Action Menu (⋮)Edit Labels
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From the command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click WorkloadsPods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.
  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

1.2. Replacing an operational AWS node on installer-provisioned infrastructure

Use this procedure to replace an operational node on AWS installer-provisioned infrastructure (IPI).

Procedure

  1. Log in to OpenShift Web Console and click ComputeNodes.
  2. Identify the node that needs to be replaced. Take a note of its Machine Name.
  3. Mark the node as unschedulable using the following command:

    $ oc adm cordon <node_name>
  4. Drain the node using the following command:

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
    Important

    This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

  5. Click ComputeMachines. Search for the required machine.
  6. Besides the required machine, click the Action menu (⋮)Delete Machine.
  7. Click Delete to confirm the machine deletion. A new machine is automatically created.
  8. Wait for new machine to start and transition into Running state.

    Important

    This activity may take at least 5-10 minutes or more.

  9. Click ComputeNodes, confirm if the new node is in Ready state.
  10. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮)Edit Labels
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click WorkloadsPods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.
  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

1.3. Replacing a failed AWS node on user-provisioned infrastructure

Perform this procedure to replace a failed node which is not operational on AWS user-provisioned infrastructure (UPI) for OpenShift Container Storage.

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.

Procedure

  1. Identify the AWS machine instance of the node that needs to be replaced.
  2. Log in to AWS and terminate the identified AWS machine instance.
  3. Create a new AWS machine instance with the required infrastructure. See platform requirements.
  4. Create a new OpenShift Container Platform node using the new AWS machine instance.
  5. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr
  6. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>
  7. Click ComputeNodes, confirm if the new node is in Ready state.
  8. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮)Edit Labels
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click WorkloadsPods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.
  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

1.4. Replacing a failed AWS node on installer-provisioned infrastructure

Perform this procedure to replace a failed node which is not operational on AWS installer-provisioned infrastructure (IPI) for OpenShift Container Storage.

Procedure

  1. Log in to OpenShift Web Console and click ComputeNodes.
  2. Identify the faulty node and click on its Machine Name.
  3. Click ActionsEdit Annotations, and click Add More.
  4. Add machine.openshift.io/exclude-node-draining and click Save.
  5. Click ActionsDelete Machine, and click Delete.
  6. A new machine is automatically created, wait for new machine to start.

    Important

    This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

  7. Click ComputeNodes, confirm if the new node is in Ready state.
  8. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮)Edit Labels
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  9. [Optional]: If the failed AWS instance is not removed automatically, terminate the instance from AWS console.

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click WorkloadsPods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.
  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

Chapter 2. OpenShift Container Storage deployed on VMware

2.1. Replacing an operational VMware node on user-provisioned infrastructure

Perform this procedure to replace an operational node on VMware user-provisioned infrastructure (UPI).

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.

Procedure

  1. Identify the node and its VM that needs to be replaced.
  2. Mark the node as unschedulable using the following command:

    $ oc adm cordon <node_name>
  3. Drain the node using the following command:

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
    Important

    This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

  4. Delete the node using the following command:

    $ oc delete nodes <node_name>
  5. Log in to vSphere and terminate the identified VM.

    Important

    VM should be deleted only from the inventory and not from the disk.

  6. Create a new VM on vSphere with the required infrastructure. See Platform requirements.
  7. Create a new OpenShift Container Platform worker node using the new VM.
  8. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr
  9. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>
  10. Click ComputeNodes, confirm if the new node is in Ready state.
  11. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮)Edit Labels
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click WorkloadsPods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.
  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

2.2. Replacing a failed VMware node on user-provisioned infrastructure

Perform this procedure to replace a failed node on VMware user-provisioned infrastructure (UPI).

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.

Procedure

  1. Identify the node and its VM that needs to be replaced.
  2. Delete the node using the following command:

    $ oc delete nodes <node_name>
  3. Log in to vSphere and terminate the identified VM.

    Important

    VM should be deleted only from the inventory and not from the disk.

  4. Create a new VM on vSphere with the required infrastructure. See Platform requirements.
  5. Create a new OpenShift Container Platform worker node using the new VM.
  6. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr
  7. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>
  8. Click ComputeNodes, confirm if the new node is in Ready state.
  9. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮)Edit Labels
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click WorkloadsPods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.
  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

Chapter 3. OpenShift Container Storage deployed on Microsoft Azure

3.1. Replacing operational nodes on Azure installer-provisioned infrastructure

Use this procedure to replace an operational node on Azure installer-provisioned infrastructure (IPI).

Procedure

  1. Log in to OpenShift Web Console and click ComputeNodes.
  2. Identify the node that needs to be replaced. Take a note of its Machine Name.
  3. Mark the node as unschedulable using the following command:

    $ oc adm cordon <node_name>
  4. Drain the node using the following command:

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
    Important

    This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

  5. Click ComputeMachines. Search for the required machine.
  6. Besides the required machine, click the Action menu (⋮)Delete Machine.
  7. Click Delete to confirm the machine deletion. A new machine is automatically created.
  8. Wait for new machine to start and transition into Running state.

    Important

    This activity may take at least 5-10 minutes or more.

  9. Click ComputeNodes, confirm if the new node is in Ready state.
  10. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮)Edit Labels
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click WorkloadsPods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.
  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

3.2. Replacing failed nodes on Azure installer-provisioned infrastructure

Perform this procedure to replace a failed node which is not operational on Azure installer-provisioned infrastructure (IPI) for OpenShift Container Storage.

Procedure

  1. Log in to OpenShift Web Console and click ComputeNodes.
  2. Identify the faulty node and click on its Machine Name.
  3. Click ActionsEdit Annotations, and click Add More.
  4. Add machine.openshift.io/exclude-node-draining and click Save.
  5. Click ActionsDelete Machine, and click Delete.
  6. A new machine is automatically created, wait for new machine to start.

    Important

    This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

  7. Click ComputeNodes, confirm if the new node is in Ready state.
  8. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮)Edit Labels
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  9. [Optional]: If the failed Azure instance is not removed automatically, terminate the instance from Azure console.

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click WorkloadsPods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.
  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

Chapter 4. OpenShift Container Storage deployed using local storage devices

4.1. Replacing storage nodes on bare metal infrastructure

4.1.1. Replacing an operational node on bare metal user-provisioned infrastructure

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.
  • If you upgraded to OpenShift Container Storage 4.6 from a previous version instead of performing a fresh installation, ensure that you have completed Post-update configuration changes.

Procedure

  1. Identify the node and get labels on the node to be replaced.

    $ oc get nodes --show-labels | grep <node_name>
  2. Identify the mon (if any) and OSDs that are running in the node to be replaced.

    $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
  3. Scale down the deployments of the pods identified in the previous step.

    For example:

    $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
    $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
    $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>  --replicas=0 -n openshift-storage
  4. Mark the node as unschedulable.

    $ oc adm cordon <node_name>
  5. Drain the node.

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
  6. Delete the node.

    $ oc delete node <node_name>
  7. Get a new bare metal machine with required infrastructure. See Installing a cluster on bare metal.
  8. Create a new OpenShift Container Platform node using the new bare metal machine.
  9. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr
  10. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>
  11. Click Compute → Nodes in OpenShift Web Console, confirm if the new node is in Ready state.
  12. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮) → Edit Labels.
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  13. Add a new worker node to localVolumeDiscovery and localVolumeSet.

    1. Update the localVolumeDiscovery definition to include the new node and remove the failed node.

      # oc edit -n local-storage-project localvolumediscovery auto-discover-devices
      [...]
         nodeSelector:
          nodeSelectorTerms:
            - matchExpressions:
                - key: kubernetes.io/hostname
                  operator: In
                  values:
                  - server1.example.com
                  - server2.example.com
                  #- server3.example.com
                  - newnode.example.com
      [...]

      Remember to save before exiting the editor.

      In the above example, server3.example.com was removed and newnode.example.com is the new node.

    2. Determine which localVolumeSet to edit.

      Replace local-storage-project in the following commands with the name of your local storage project. The default project name is openshift-local-storage in OpenShift Container Storage 4.6 and later. Previous versions use local-storage by default.

      # oc get -n local-storage-project localvolumeset
      NAME          AGE
      localblock   25h
    3. Update the localVolumeSet definition to include the new node and remove the failed node.

      # oc edit -n local-storage-project localvolumeset localblock
      [...]
         nodeSelector:
          nodeSelectorTerms:
            - matchExpressions:
                - key: kubernetes.io/hostname
                  operator: In
                  values:
                  - server1.example.com
                  - server2.example.com
                  #- server3.example.com
                  - newnode.example.com
      [...]

      Remember to save before exiting the editor.

      In the above example, server3.example.com was removed and newnode.example.com is the new node.

  14. Verify that the new localblock PV is available.

    $ oc get pv | grep localblock
              CAPA- ACCESS RECLAIM                                STORAGE
    NAME      CITY  MODES  POLICY  STATUS     CLAIM               CLASS       AGE
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    3e8964d3                                  ocs-deviceset-2-0
                                              -79j94
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    414755e0                                  ocs-deviceset-1-0
                                              -959rp
    local-pv- 931Gi RWO Delete Available localblock 3m24s b481410
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    d9c5cbd6                                  ocs-deviceset-0-0
                                              -nvs68
  15. Change to the openshift-storage project.

    $ oc project openshift-storage
  16. Remove the failed OSD from the cluster.

    $ oc process -n openshift-storage ocs-osd-removal \
    -p FAILED_OSD_IDS=failed-osd-id1,failed-osd-id2 | oc create -f -
  17. Verify that the OSD was removed successfully by checking the status of the ocs-osd-removal pod.

    A status of Completed confirms that the OSD removal job succeeded.

    # oc get pod -l job-name=ocs-osd-removal-failed-osd-id -n openshift-storage
    Note

    If ocs-osd-removal fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

    # oc logs -l job-name=ocs-osd-removal-failed-osd_id -n openshift-storage --tail=-1
  18. Delete the PV associated with the failed node.

    1. Identify the PV associated with the PVC.

      # oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
      local-pv-d6bf175b  1490Gi  RWO  Delete  Released  openshift-storage/ocs-deviceset-0-data-0-6c5pw  localblock  2d22h  compute-1
    2. Delete the PV.

      # oc delete pv <persistent-volume>

      For example:

      # oc delete pv local-pv-d6bf175b
      persistentvolume "local-pv-d9c5cbd6" deleted
  19. Delete the crashcollector pod deployment.

    $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
  20. Delete the ocs-osd-removal job.

    # oc delete job ocs-osd-removal-${osd_id_to_remove}

    Example output:

    job.batch "ocs-osd-removal-0" deleted

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.

    Ensure that the new incremental mon is created and is in the Running state.

    $ oc get pod -n openshift-storage | grep mon

    Example output:

    rook-ceph-mon-c-64556f7659-c2ngc                                  1/1     Running     0          6h14m
    rook-ceph-mon-d-7c8b74dc4d-tt6hd                                  1/1     Running     0          4h24m
    rook-ceph-mon-e-57fb8c657-wg5f2                                   1/1     Running     0          162m

    OSD and Mon might take several minutes to get to the Running state.

  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

4.1.2. Replacing a failed node on bare metal user-provisioned infrastructure

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.
  • If you upgraded to OpenShift Container Storage 4.6 from a previous version instead of performing a fresh installation, ensure that you have completed Post-update configuration changes.

Procedure

  1. Identify the node and get labels on the node to be replaced.

    $ oc get nodes --show-labels | grep <node_name>
  2. Identify the mon (if any) and OSDs that are running in the node to be replaced.

    $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
  3. Scale down the deployments of the pods identified in the previous step.

    For example:

    $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
    $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
    $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>  --replicas=0 -n openshift-storage
  4. Mark the node as unschedulable.

    $ oc adm cordon <node_name>
  5. Remove the pods which are in Terminating state.

    $ oc get pods -A -o wide | grep -i <node_name> |  awk '{if ($4 == "Terminating") system ("oc -n " $1 " delete pods " $2  " --grace-period=0 " " --force ")}'
  6. Drain the node.

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
  7. Delete the node.

    $ oc delete node <node_name>
  8. Get a new bare metal machine with required infrastructure. See Installing a cluster on bare metal.
  9. Create a new OpenShift Container Platform node using the new bare metal machine.
  10. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr
  11. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>
  12. Click Compute → Nodes in OpenShift Web Console, confirm if the new node is in Ready state.
  13. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮) → Edit Labels.
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  14. Add a new worker node to localVolumeDiscovery and localVolumeSet.

    1. Update the localVolumeDiscovery definition to include the new node and remove the failed node.

      # oc edit -n local-storage-project localvolumediscovery auto-discover-devices
      [...]
         nodeSelector:
          nodeSelectorTerms:
            - matchExpressions:
                - key: kubernetes.io/hostname
                  operator: In
                  values:
                  - server1.example.com
                  - server2.example.com
                  #- server3.example.com
                  - newnode.example.com
      [...]

      Remember to save before exiting the editor.

      In the above example, server3.example.com was removed and newnode.example.com is the new node.

    2. Determine which localVolumeSet to edit.

      Replace local-storage-project in the following commands with the name of your local storage project. The default project name is openshift-local-storage in OpenShift Container Storage 4.6 and later. Previous versions use local-storage by default.

      # oc get -n local-storage-project localvolumeset
      NAME          AGE
      localblock   25h
    3. Update the localVolumeSet definition to include the new node and remove the failed node.

      # oc edit -n local-storage-project localvolumeset localblock
      [...]
         nodeSelector:
          nodeSelectorTerms:
            - matchExpressions:
                - key: kubernetes.io/hostname
                  operator: In
                  values:
                  - server1.example.com
                  - server2.example.com
                  #- server3.example.com
                  - newnode.example.com
      [...]

      Remember to save before exiting the editor.

      In the above example, server3.example.com was removed and newnode.example.com is the new node.

  15. Verify that the new localblock PV is available.

    $ oc get pv | grep localblock
              CAPA- ACCESS RECLAIM                                STORAGE
    NAME      CITY  MODES  POLICY  STATUS     CLAIM               CLASS       AGE
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    3e8964d3                                  ocs-deviceset-2-0
                                              -79j94
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    414755e0                                  ocs-deviceset-1-0
                                              -959rp
    local-pv- 931Gi RWO Delete Available localblock 3m24s b481410
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    d9c5cbd6                                  ocs-deviceset-0-0
                                              -nvs68
  16. Change to the openshift-storage project.

    $ oc project openshift-storage
  17. Remove the failed OSD from the cluster.

    $ oc process -n openshift-storage ocs-osd-removal \
    -p FAILED_OSD_IDS=failed-osd-id1,failed-osd-id2 | oc create -f -
  18. Verify that the OSD was removed successfully by checking the status of the ocs-osd-removal pod.

    A status of Completed confirms that the OSD removal job succeeded.

    # oc get pod -l job-name=ocs-osd-removal-failed-osd-id -n openshift-storage
    Note

    If ocs-osd-removal fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

    # oc logs -l job-name=ocs-osd-removal-failed-osd_id -n openshift-storage --tail=-1
  19. Delete the PV associated with the failed node.

    1. Identify the PV associated with the PVC.

      # oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
      local-pv-d6bf175b  1490Gi  RWO  Delete  Released  openshift-storage/ocs-deviceset-0-data-0-6c5pw  localblock  2d22h  compute-1
    2. Delete the PV.

      # oc delete pv <persistent-volume>

      For example:

      # oc delete pv local-pv-d6bf175b
      persistentvolume "local-pv-d9c5cbd6" deleted
  20. Delete the crashcollector pod deployment.

    $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
  21. Delete the ocs-osd-removal job.

    # oc delete job ocs-osd-removal-${osd_id_to_remove}

    Example output:

    job.batch "ocs-osd-removal-0" deleted

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.

    Ensure that the new incremental mon is created and is in the Running state.

    $ oc get pod -n openshift-storage | grep mon

    Example output:

    rook-ceph-mon-c-64556f7659-c2ngc                                  1/1     Running     0          6h14m
    rook-ceph-mon-d-7c8b74dc4d-tt6hd                                  1/1     Running     0          4h24m
    rook-ceph-mon-e-57fb8c657-wg5f2                                   1/1     Running     0          162m

    OSD and Mon might take several minutes to get to the Running state.

  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

4.2. Replacing storage nodes on IBM Z or LinuxONE infrastructure

You can choose one of the following procedures to replace storage nodes:

4.2.1. Replacing operational nodes on IBM Z or LinuxONE infrastructure

Use this procedure to replace an operational node on IBM Z or LinuxONE infrastructure.

Procedure

  1. Log in to OpenShift Web Console.
  2. Click ComputeNodes.
  3. Identify the node that needs to be replaced. Take a note of its Machine Name.
  4. Mark the node as unschedulable using the following command:

    $ oc adm cordon <node_name>
  5. Drain the node using the following command:

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
    Important

    This activity may take at least 5-10 minutes. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

  6. Click ComputeMachines. Search for the required machine.
  7. Besides the required machine, click the Action menu (⋮)Delete Machine.
  8. Click Delete to confirm the machine deletion. A new machine is automatically created.
  9. Wait for the new machine to start and transition into Running state.

    Important

    This activity may take at least 5-10 minutes.

  10. Click ComputeNodes, confirm if the new node is in Ready state.
  11. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮)Edit Labels
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click WorkloadsPods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.
  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

4.2.2. Replacing failed nodes on IBM Z or LinuxONE infrastructure

Perform this procedure to replace a failed node which is not operational on IBM Z or LinuxONE infrastructure for OpenShift Container Storage.

Procedure

  1. Log in to OpenShift Web Console and click ComputeNodes.
  2. Identify the faulty node and click on its Machine Name.
  3. Click ActionsEdit Annotations, and click Add More.
  4. Add machine.openshift.io/exclude-node-draining and click Save.
  5. Click ActionsDelete Machine, and click Delete.
  6. A new machine is automatically created, wait for new machine to start.

    Important

    This activity may take at least 5-10 minutes. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

  7. Click ComputeNodes, confirm if the new node is in Ready state.
  8. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From the web user interface
    1. For the new node, click Action Menu (⋮)Edit Labels
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From the command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  9. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1
  10. Click WorkloadsPods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  11. Verify that all other required OpenShift Container Storage pods are in Running state.
  12. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  13. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  14. If verification steps fail, contact Red Hat Support.

4.3. Replacing storage nodes on Amazon EC2 infrastructure

4.3.1. Replacing an operational Amazon EC2 node on user-provisioned infrastructure

Perform this procedure to replace an operational node on Amazon EC2 I3 user-provisioned infrastructure (UPI).

Important

Replacing storage nodes in Amazon EC2 I3 infrastructure is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.

Procedure

  1. Identify the node and get labels on the node to be replaced.

    $ oc get nodes --show-labels | grep <node_name>
  2. Identify the mon (if any) and OSDs that are running in the node to be replaced.

    $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
  3. Scale down the deployments of the pods identified in the previous step.

    For example:

    $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
    $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
    $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>  --replicas=0 -n openshift-storage
  4. Mark the nodes as unschedulable.

    $ oc adm cordon <node_name>
  5. Drain the node.

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
  6. Delete the node.

    $ oc delete node <node_name>
  7. Create a new Amazon EC2 I3 machine instance with the required infrastructure. See Supported Infrastructure and Platforms.
  8. Create a new OpenShift Container Platform node using the new Amazon EC2 I3 machine instance.
  9. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr
  10. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>
  11. Click Compute → Nodes in the OpenShift web console. Confirm if the new node is in Ready state.
  12. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮)Edit Labels.
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:
    $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  13. Add the local storage devices available in the new worker node to the OpenShift Container Storage StorageCluster.

    1. Add the new disk entries to LocalVolume CR.

      Edit LocalVolume CR. You can either remove or comment out the failed device /dev/disk/by-id/{id} and add the new /dev/disk/by-id/{id}.

      $ oc get -n local-storage localvolume

      Example output:

      NAME          AGE
      local-block   25h
      $ oc edit -n local-storage localvolume local-block

      Example output:

      [...]
          storageClassDevices:
          - devicePaths:
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441494EC
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84FE3E9
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE4
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441464EP
        #   - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84F43E7
        #   - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE8
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4
            storageClassName: localblock
            volumeMode: Block
      [...]

      Make sure to save the changes after editing the CR.

      You can see that in this CR the below two new devices using by-id have been added.

      • nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
      • nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4
    2. Display PVs with localblock.

      $ oc get pv | grep localblock

      Example output:

      local-pv-3646185e   2328Gi  RWO     Delete      Available                                               localblock  9s
      local-pv-3933e86    2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-1-v9jp4   localblock  5h1m
      local-pv-8176b2bf   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-0-nvs68   localblock  5h1m
      local-pv-ab7cabb3   2328Gi  RWO     Delete      Available                                               localblock  9s
      local-pv-ac52e8a    2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-0-knrgr   localblock  5h1m
      local-pv-b7e6fd37   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-0-rdm7m   localblock  5h1m
      local-pv-cb454338   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-1-h9hfm   localblock  5h1m
      local-pv-da5e3175   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-1-g97lq   localblock  5h
      ...
  14. Delete the storage resources associated with the failed node.

    1. Identify the DeviceSet associated with the OSD to be replaced.

      $ osd_id_to_remove=0
      $ oc get -n openshift-storage -o yaml deployment rook-ceph-osd-${osd_id_to_remove} | grep ceph.rook.io/pvc

      where, osd_id_to_remove is the integer in the pod name immediately after the rook-ceph-osd prefix. In this example, the deployment name is rook-ceph-osd-0.

      Example output:

      ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
      ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
    2. Identify the PV associated with the PVC.

      $ oc get -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>

      where, x, y, and pvc-suffix are the values in the DeviceSet identified in an earlier step.

      Example output:

      NAME                      STATUS        VOLUME        CAPACITY   ACCESS MODES   STORAGECLASS   AGE
      ocs-deviceset-0-0-nvs68   Bound   local-pv-8176b2bf   2328Gi      RWO            localblock     4h49m

      In this example, the associated PV is local-pv-8176b2bf.

    3. Change to the openshift-storage project.

      $ oc project openshift-storage
    4. Remove the failed OSD from the cluster.

      $ oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=${osd_id_to_remove} | oc create -f -
    5. Verify that the OSD is removed successfully by checking the status of the ocs-osd-removal pod. A status of Completed confirms that the OSD removal job succeeded.

      # oc get pod -l job-name=ocs-osd-removal-${osd_id_to_remove} -n openshift-storage
      Note

      If ocs-osd-removal fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

      # oc logs -l job-name=ocs-osd-removal-${osd_id_to_remove} -n openshift-storage --tail=-1
    6. Delete the PV which was identified in earlier steps. In this example, the PV name is local-pv-8176b2bf.

      $ oc delete pv local-pv-8176b2bf

      Example output:

      persistentvolume "local-pv-8176b2bf" deleted
  15. Delete crashcollector pod deployment identified in an earlier step.

    $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=<old_node_name> -n openshift-storage
  16. Delete the ocs-osd-removal job(s).

    $ oc delete job ocs-osd-removal-${osd_id_to_remove}

    Example output:

    job.batch "ocs-osd-removal-0" deleted

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.

    Also, ensure that the new incremental mon is created and is in the Running state.

    $ oc get pod -n openshift-storage | grep mon

    Example output:

    rook-ceph-mon-a-64556f7659-c2ngc    1/1     Running     0   5h1m
    rook-ceph-mon-b-7c8b74dc4d-tt6hd    1/1     Running     0   5h1m
    rook-ceph-mon-d-57fb8c657-wg5f2     1/1     Running     0   27m

    OSDs and mon’s might take several minutes to get to the Running state.

  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

4.3.2. Replacing an operational Amazon EC2 node on installer-provisioned infrastructure

Use this procedure to replace an operational node on Amazon EC2 I3 installer-provisioned infrastructure (IPI).

Important

Replacing storage nodes in Amazon EC2 I3 infrastructure is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.

Procedure

  1. Log in to OpenShift Web Console and click Compute → Nodes.
  2. Identify the node that needs to be replaced. Take a note of its Machine Name.
  3. Get labels on the node to be replaced.

    $ oc get nodes --show-labels | grep <node_name>
  4. Identify the mon (if any) and OSDs that are running in the node to be replaced.

    $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
  5. Scale down the deployments of the pods identified in the previous step.

    For example:

    $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
    $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
    $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>  --replicas=0 -n openshift-storage
  6. Mark the nodes as unschedulable.

    $ oc adm cordon <node_name>
  7. Drain the node.

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
  8. Click Compute → Machines. Search for the required machine.
  9. Besides the required machine, click the Action menu (⋮) → Delete Machine.
  10. Click Delete to confirm the machine deletion. A new machine is automatically created.
  11. Wait for the new machine to start and transition into Running state.

    Important

    This activity may take at least 5-10 minutes or more.

  12. Click Compute → Nodes in the OpenShift web console. Confirm if the new node is in Ready state.
  13. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮) → Edit Labels.
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:
    $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  14. Add the local storage devices available in the new worker node to the OpenShift Container Storage StorageCluster.

    1. Add the new disk entries to LocalVolume CR.

      Edit LocalVolume CR. You can either remove or comment out the failed device /dev/disk/by-id/{id} and add the new /dev/disk/by-id/{id}.

      $ oc get -n local-storage localvolume

      Example output:

      NAME          AGE
      local-block   25h
      $ oc edit -n local-storage localvolume local-block

      Example output:

      [...]
          storageClassDevices:
          - devicePaths:
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441494EC
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84FE3E9
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE4
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441464EP
        #   - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84F43E7
        #   - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE8
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4
            storageClassName: localblock
            volumeMode: Block
      [...]

      Make sure to save the changes after editing the CR.

      You can see that in this CR the below two new devices using by-id have been added.

      • nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
      • nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4
    2. Display PVs with localblock.

      $ oc get pv | grep localblock

      Example output:

      local-pv-3646185e   2328Gi  RWO     Delete      Available                                               localblock  9s
      local-pv-3933e86    2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-1-v9jp4   localblock  5h1m
      local-pv-8176b2bf   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-0-nvs68   localblock  5h1m
      local-pv-ab7cabb3   2328Gi  RWO     Delete      Available                                               localblock  9s
      local-pv-ac52e8a    2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-0-knrgr   localblock  5h1m
      local-pv-b7e6fd37   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-0-rdm7m   localblock  5h1m
      local-pv-cb454338   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-1-h9hfm   localblock  5h1m
      local-pv-da5e3175   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-1-g97lq   localblock  5h
      ...
  15. Delete the storage resources associated with the failed node.

    1. Identify the DeviceSet associated with the OSD to be replaced.

      $ osd_id_to_remove=0
      $ oc get -n openshift-storage -o yaml deployment rook-ceph-osd-${osd_id_to_remove} | grep ceph.rook.io/pvc

      where, osd_id_to_remove is the integer in the pod name immediately after the rook-ceph-osd prefix. In this example, the deployment name is rook-ceph-osd-0.

      Example output:

      ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
      ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
    2. Identify the PV associated with the PVC.

      $ oc get -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>

      where, x, y, and pvc-suffix are the values in the DeviceSet identified in an earlier step.

      Example output:

      NAME                      STATUS        VOLUME        CAPACITY   ACCESS MODES   STORAGECLASS   AGE
      ocs-deviceset-0-0-nvs68   Bound   local-pv-8176b2bf   2328Gi      RWO            localblock     4h49m

      In this example, the associated PV is local-pv-8176b2bf.

    3. Change to the openshift-storage project.

      $ oc project openshift-storage
    4. Remove the failed OSD from the cluster.

      $ oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=${osd_id_to_remove} | oc create -f -
    5. Verify that the OSD is removed successfully by checking the status of the ocs-osd-removal pod. A status of Completed confirms that the OSD removal job succeeded.

      # oc get pod -l job-name=ocs-osd-removal-${osd_id_to_remove} -n openshift-storage
      Note

      If ocs-osd-removal fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

      # oc logs -l job-name=ocs-osd-removal-${osd_id_to_remove} -n openshift-storage --tail=-1
    6. Delete the PV which was identified in earlier steps. In this example, the PV name is local-pv-8176b2bf.

      $ oc delete pv local-pv-8176b2bf

      Example output:

      persistentvolume "local-pv-8176b2bf" deleted
  16. Delete crashcollector pod deployment identified in an earlier step.

    $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=<old_node_name> -n openshift-storage
    1. Delete the rook-ceph-operator.

      $ oc delete -n openshift-storage pod rook-ceph-operator-6f74fb5bff-2d982

      Example output:

      pod "rook-ceph-operator-6f74fb5bff-2d982" deleted
    2. Verify that the rook-ceph-operator pod is restarted.

      $ oc get -n openshift-storage pod -l app=rook-ceph-operator

      Example output:

      NAME                                  READY   STATUS    RESTARTS   AGE
      rook-ceph-operator-6f74fb5bff-7mvrq   1/1     Running   0          66s

      Creation of the new OSD may take several minutes after the operator starts.

  17. Delete the ocs-osd-removal job(s).

    $ oc delete job ocs-osd-removal-${osd_id_to_remove}

    Example output:

    job.batch "ocs-osd-removal-0" deleted

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.

    Also, ensure that the new incremental mon is created and is in the Running state.

    $ oc get pod -n openshift-storage | grep mon

    Example output:

    rook-ceph-mon-a-64556f7659-c2ngc    1/1     Running     0   5h1m
    rook-ceph-mon-b-7c8b74dc4d-tt6hd    1/1     Running     0   5h1m
    rook-ceph-mon-d-57fb8c657-wg5f2     1/1     Running     0   27m

    OSDs and mon’s might take several minutes to get to the Running state.

  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

4.3.3. Replacing a failed Amazon EC2 node on user-provisioned infrastructure

The ephemeral storage of Amazon EC2 I3 for OpenShift Container Storage might cause data loss when there is an instance power off. Use this procedure to recover from such an instance power off on Amazon EC2 infrastructure.

Important

Replacing storage nodes in Amazon EC2 I3 infrastructure is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.

Procedure

  1. Identify the node and get labels on the node to be replaced.

    $ oc get nodes --show-labels | grep <node_name>
  2. Identify the mon (if any) and OSDs that are running in the node to be replaced.

    $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
  3. Scale down the deployments of the pods identified in the previous step.

    For example:

    $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
    $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
    $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>  --replicas=0 -n openshift-storage
  4. Mark the nodes as unschedulable.

    $ oc adm cordon <node_name>
  5. Remove the pods which are in Terminating state.

    $ oc get pods -A -o wide | grep -i <node_name> |  awk '{if ($4 == "Terminating") system ("oc -n " $1 " delete pods " $2  " --grace-period=0 " " --force ")}'
  6. Drain the node.

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
  7. Delete the node.

    $ oc delete node <node_name>
  8. Create a new Amazon EC2 I3 machine instance with the required infrastructure. See Supported Infrastructure and Platforms.
  9. Create a new OpenShift Container Platform node using the new Amazon EC2 I3 machine instance.
  10. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr
  11. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>
  12. Click Compute → Nodes in the OpenShift web console. Confirm if the new node is in Ready state.
  13. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮) → Edit Labels.
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:
    $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  14. Add the local storage devices available in the new worker node to the OpenShift Container Storage StorageCluster.

    1. Add the new disk entries to LocalVolume CR.

      Edit LocalVolume CR. You can either remove or comment out the failed device /dev/disk/by-id/{id} and add the new /dev/disk/by-id/{id}.

      $ oc get -n local-storage localvolume

      Example output:

      NAME          AGE
      local-block   25h
      $ oc edit -n local-storage localvolume local-block

      Example output:

      [...]
          storageClassDevices:
          - devicePaths:
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441494EC
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84FE3E9
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE4
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441464EP
        #   - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84F43E7
        #   - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE8
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4
            storageClassName: localblock
            volumeMode: Block
      [...]

      Make sure to save the changes after editing the CR.

      You can see that in this CR the below two new devices using by-id have been added.

      • nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
      • nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4
    2. Display PVs with localblock.

      $ oc get pv | grep localblock

      Example output:

      local-pv-3646185e   2328Gi  RWO     Delete      Available                                               localblock  9s
      local-pv-3933e86    2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-1-v9jp4   localblock  5h1m
      local-pv-8176b2bf   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-0-nvs68   localblock  5h1m
      local-pv-ab7cabb3   2328Gi  RWO     Delete      Available                                               localblock  9s
      local-pv-ac52e8a    2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-0-knrgr   localblock  5h1m
      local-pv-b7e6fd37   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-0-rdm7m   localblock  5h1m
      local-pv-cb454338   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-1-h9hfm   localblock  5h1m
      local-pv-da5e3175   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-1-g97lq   localblock  5h
      ...
  15. Delete the storage resources associated with the failed node.

    1. Identify the DeviceSet associated with the OSD to be replaced.

      $ osd_id_to_remove=0
      $ oc get -n openshift-storage -o yaml deployment rook-ceph-osd-${osd_id_to_remove} | grep ceph.rook.io/pvc

      where, osd_id_to_remove is the integer in the pod name immediately after the rook-ceph-osd prefix. In this example, the deployment name is rook-ceph-osd-0.

      Example output:

      ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
      ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
    2. Identify the PV associated with the PVC.

      $ oc get -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>

      where, x, y, and pvc-suffix are the values in the DeviceSet identified in an earlier step.

      Example output:

      NAME                      STATUS        VOLUME        CAPACITY   ACCESS MODES   STORAGECLASS   AGE
      ocs-deviceset-0-0-nvs68   Bound   local-pv-8176b2bf   2328Gi      RWO            localblock     4h49m

      In this example, the associated PV is local-pv-8176b2bf.

    3. Change into the openshift-storage project.

      $ oc project openshift-storage
    4. Remove the failed OSD from the cluster.

      $ oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=${osd_ids_to_remove} | oc create -f -
    5. Verify that the OSD is removed successfully by checking the status of the ocs-osd-removal pod. A status of Completed confirms that the OSD removal job succeeded.

      # oc get pod -l job-name=ocs-osd-removal-${osd_id_to_remove} -n openshift-storage
      Note

      If ocs-osd-removal fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

      # oc logs -l job-name=ocs-osd-removal-${osd_id_to_remove} -n openshift-storage --tail=-1
    6. Delete the PV which was identified in earlier steps. In this example, the PV name is local-pv-8176b2bf.

      $ oc delete pv local-pv-8176b2bf

      Example output:

      persistentvolume "local-pv-8176b2bf" deleted
  16. Delete crashcollector pod deployment identified in an earlier step.

    $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=<old_node_name> -n openshift-storage
  17. Delete the ocs-osd-removal job(s).

    $ oc delete job ocs-osd-removal-${osd_id_to_remove}

    Example output:

    job.batch "ocs-osd-removal-0" deleted

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.

    Also, ensure that the new incremental mon is created and is in the Running state.

    $ oc get pod -n openshift-storage | grep mon

    Example output:

    rook-ceph-mon-a-64556f7659-c2ngc    1/1     Running     0   5h1m
    rook-ceph-mon-b-7c8b74dc4d-tt6hd    1/1     Running     0   5h1m
    rook-ceph-mon-d-57fb8c657-wg5f2     1/1     Running     0   27m

    OSDs and mon’s might take several minutes to get to the Running state.

  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

4.3.4. Replacing a failed Amazon EC2 node on installer-provisioned infrastructure

The ephemeral storage of Amazon EC2 I3 for OpenShift Container Storage might cause data loss when there is an instance power off. Use this procedure to recover from such an instance power off on Amazon EC2 infrastructure.

Important

Replacing storage nodes in Amazon EC2 I3 infrastructure is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.

Procedure

  1. Log in to OpenShift Web Console and click Compute → Nodes.
  2. Identify the node that needs to be replaced. Take a note of its Machine Name.
  3. Get the labels on the node to be replaced.

    $ oc get nodes --show-labels | grep <node_name>
  4. Identify the mon (if any) and OSDs that are running in the node to be replaced.

    $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
  5. Scale down the deployments of the pods identified in the previous step.

    For example:

    $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
    $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
    $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>  --replicas=0 -n openshift-storage
  6. Mark the node as unschedulable.

    $ oc adm cordon <node_name>
  7. Remove the pods which are in Terminating state.

    $ oc get pods -A -o wide | grep -i <node_name> |  awk '{if ($4 == "Terminating") system ("oc -n " $1 " delete pods " $2  " --grace-period=0 " " --force ")}'
  8. Drain the node.

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
  9. Click Compute → Machines. Search for the required machine.
  10. Besides the required machine, click the Action menu (⋮) → Delete Machine.
  11. Click Delete to confirm the machine deletion. A new machine is automatically created.
  12. Wait for the new machine to start and transition into Running state.

    Important

    This activity may take at least 5-10 minutes or more.

  13. Click Compute → Nodes in the OpenShift web console. Confirm if the new node is in Ready state.
  14. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮) → Edit Labels.
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:
    $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  15. Add the local storage devices available in the new worker node to the OpenShift Container Storage StorageCluster.

    1. Add the new disk entries to LocalVolume CR.

      Edit LocalVolume CR. You can either remove or comment out the failed device /dev/disk/by-id/{id} and add the new /dev/disk/by-id/{id}.

      $ oc get -n local-storage localvolume

      Example output:

      NAME          AGE
      local-block   25h
      $ oc edit -n local-storage localvolume local-block

      Example output:

      [...]
          storageClassDevices:
          - devicePaths:
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441494EC
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84FE3E9
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE4
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS10382E5D7441464EP
        #   - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS1F45C01D7E84F43E7
        #   - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS136BC945B4ECB9AE8
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
            - /dev/disk/by-id/nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4
            storageClassName: localblock
            volumeMode: Block
      [...]

      Make sure to save the changes after editing the CR.

      You can see that in this CR the below two new devices using by-id have been added.

      • nvme-Amazon_EC2_NVMe_Instance_Storage_AWS6F45C01D7E84FE3E9
      • nvme-Amazon_EC2_NVMe_Instance_Storage_AWS636BC945B4ECB9AE4
    2. Display PVs with localblock.

      $ oc get pv | grep localblock

      Example output:

      local-pv-3646185e   2328Gi  RWO     Delete      Available                                               localblock  9s
      local-pv-3933e86    2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-1-v9jp4   localblock  5h1m
      local-pv-8176b2bf   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-0-nvs68   localblock  5h1m
      local-pv-ab7cabb3   2328Gi  RWO     Delete      Available                                               localblock  9s
      local-pv-ac52e8a    2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-0-knrgr   localblock  5h1m
      local-pv-b7e6fd37   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-2-0-rdm7m   localblock  5h1m
      local-pv-cb454338   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-0-1-h9hfm   localblock  5h1m
      local-pv-da5e3175   2328Gi  RWO     Delete      Bound       openshift-storage/ocs-deviceset-1-1-g97lq   localblock  5h
      ...
  16. Delete the storage resources associated with the failed node.

    1. Identify the DeviceSet associated with the OSD to be replaced.

      $ osd_id_to_remove=0
      $ oc get -n openshift-storage -o yaml deployment rook-ceph-osd-${osd_id_to_remove} | grep ceph.rook.io/pvc

      where, osd_id_to_remove is the integer in the pod name immediately after the rook-ceph-osd prefix. In this example, the deployment name is rook-ceph-osd-0.

      Example output:

      ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
      ceph.rook.io/pvc: ocs-deviceset-0-0-nvs68
    2. Identify the PV associated with the PVC.

      $ oc get -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>

      where, x, y, and pvc-suffix are the values in the DeviceSet identified in an earlier step.

      Example output:

      NAME                      STATUS        VOLUME        CAPACITY   ACCESS MODES   STORAGECLASS   AGE
      ocs-deviceset-0-0-nvs68   Bound   local-pv-8176b2bf   2328Gi      RWO            localblock     4h49m

      In this example, the associated PV is local-pv-8176b2bf.

    3. Change into the openshift-storage project.

      $ oc project openshift-storage
    4. Remove the failed OSD from the cluster.

      $ oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=${osd_ids_to_remove} | oc create -f -
    5. Verify that the OSD is removed successfully by checking the status of the ocs-osd-removal pod. A status of Completed confirms that the OSD removal job succeeded.

      # oc get pod -l job-name=ocs-osd-removal-${osd_id_to_remove} -n openshift-storage
      Note

      If ocs-osd-removal fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

      # oc logs -l job-name=ocs-osd-removal-${osd_id_to_remove} -n openshift-storage --tail=-1
    6. Delete the PV which was identified in earlier steps. In this example, the PV name is local-pv-8176b2bf.

      $ oc delete pv local-pv-8176b2bf

      Example output:

      persistentvolume "local-pv-8176b2bf" deleted
  17. Delete crashcollector pod deployment identified in an earlier step.

    $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=<old_node_name> -n openshift-storage
  18. Delete the ocs-osd-removal job(s).

    $ oc delete job ocs-osd-removal-${osd_id_to_remove}

    Example output:

    job.batch "ocs-osd-removal-0" deleted

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.

    Also, ensure that the new incremental mon is created and is in the Running state.

    $ oc get pod -n openshift-storage | grep mon

    Example output:

    rook-ceph-mon-a-64556f7659-c2ngc    1/1     Running     0   5h1m
    rook-ceph-mon-b-7c8b74dc4d-tt6hd    1/1     Running     0   5h1m
    rook-ceph-mon-d-57fb8c657-wg5f2     1/1     Running     0   27m

    OSDs and mon’s might take several minutes to get to the Running state.

  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

4.4. Replacing storage nodes on VMware infrastructure

4.4.1. Replacing an operational node on VMware user-provisioned infrastructure

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.
  • If you upgraded to OpenShift Container Storage 4.6 from a previous version instead of performing a fresh installation, ensure that you have completed Post-update configuration changes.

Procedure

  1. Identify the node and get labels on the node to be replaced.

    $ oc get nodes --show-labels | grep <node_name>
  2. Identify the mon (if any) and OSDs that are running in the node to be replaced.

    $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
  3. Scale down the deployments of the pods identified in the previous step.

    For example:

    $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
    $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
    $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>  --replicas=0 -n openshift-storage
  4. Mark the node as unschedulable.

    $ oc adm cordon <node_name>
  5. Drain the node.

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
  6. Delete the node.

    $ oc delete node <node_name>
  7. Log in to vSphere and terminate the identified VM.
  8. Create a new VM on VMware with the required infrastructure. See Supported Infrastructure and Platforms.
  9. Create a new OpenShift Container Platform worker node using the new VM.
  10. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr
  11. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>
  12. Click Compute → Nodes in OpenShift Web Console, confirm if the new node is in Ready state.
  13. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮) → Edit Labels.
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  14. Add a new worker node to localVolumeDiscovery and localVolumeSet.

    1. Update the localVolumeDiscovery definition to include the new node and remove the failed node.

      # oc edit -n local-storage-project localvolumediscovery auto-discover-devices
      [...]
         nodeSelector:
          nodeSelectorTerms:
            - matchExpressions:
                - key: kubernetes.io/hostname
                  operator: In
                  values:
                  - server1.example.com
                  - server2.example.com
                  #- server3.example.com
                  - newnode.example.com
      [...]

      Remember to save before exiting the editor.

      In the above example, server3.example.com was removed and newnode.example.com is the new node.

    2. Determine which localVolumeSet to edit.

      Replace local-storage-project in the following commands with the name of your local storage project. The default project name is openshift-local-storage in OpenShift Container Storage 4.6 and later. Previous versions use local-storage by default.

      # oc get -n local-storage-project localvolumeset
      NAME          AGE
      localblock   25h
    3. Update the localVolumeSet definition to include the new node and remove the failed node.

      # oc edit -n local-storage-project localvolumeset localblock
      [...]
         nodeSelector:
          nodeSelectorTerms:
            - matchExpressions:
                - key: kubernetes.io/hostname
                  operator: In
                  values:
                  - server1.example.com
                  - server2.example.com
                  #- server3.example.com
                  - newnode.example.com
      [...]

      Remember to save before exiting the editor.

      In the above example, server3.example.com was removed and newnode.example.com is the new node.

  15. Verify that the new localblock PV is available.

    $ oc get pv | grep localblock
              CAPA- ACCESS RECLAIM                                STORAGE
    NAME      CITY  MODES  POLICY  STATUS     CLAIM               CLASS       AGE
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    3e8964d3                                  ocs-deviceset-2-0
                                              -79j94
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    414755e0                                  ocs-deviceset-1-0
                                              -959rp
    local-pv- 931Gi RWO Delete Available localblock 3m24s b481410
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    d9c5cbd6                                  ocs-deviceset-0-0
                                              -nvs68
  16. Change to the openshift-storage project.

    $ oc project openshift-storage
  17. Remove the failed OSD from the cluster.

    $ oc process -n openshift-storage ocs-osd-removal \
    -p FAILED_OSD_IDS=failed-osd-id1,failed-osd-id2 | oc create -f -
  18. Verify that the OSD was removed successfully by checking the status of the ocs-osd-removal pod.

    A status of Completed confirms that the OSD removal job succeeded.

    # oc get pod -l job-name=ocs-osd-removal-failed-osd-id -n openshift-storage
    Note

    If ocs-osd-removal fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

    # oc logs -l job-name=ocs-osd-removal-failed-osd_id -n openshift-storage --tail=-1
  19. Delete the PV associated with the failed node.

    1. Identify the PV associated with the PVC.

      # oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
      local-pv-d6bf175b  1490Gi  RWO  Delete  Released  openshift-storage/ocs-deviceset-0-data-0-6c5pw  localblock  2d22h  compute-1
    2. Delete the PV.

      # oc delete pv <persistent-volume>

      For example:

      # oc delete pv local-pv-d6bf175b
      persistentvolume "local-pv-d9c5cbd6" deleted
  20. Delete the crashcollector pod deployment.

    $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
  21. Delete the ocs-osd-removal job.

    # oc delete job ocs-osd-removal-${osd_id_to_remove}

    Example output:

    job.batch "ocs-osd-removal-0" deleted

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.

    Ensure that the new incremental mon is created and is in the Running state.

    $ oc get pod -n openshift-storage | grep mon

    Example output:

    rook-ceph-mon-c-64556f7659-c2ngc                                  1/1     Running     0          6h14m
    rook-ceph-mon-d-7c8b74dc4d-tt6hd                                  1/1     Running     0          4h24m
    rook-ceph-mon-e-57fb8c657-wg5f2                                   1/1     Running     0          162m

    OSD and Mon might take several minutes to get to the Running state.

  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

4.4.2. Replacing a failed node on VMware user-provisioned infrastructure

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure, resources, and disks to the node being replaced.
  • You must be logged into the OpenShift Container Platform (RHOCP) cluster.
  • If you upgraded to OpenShift Container Storage 4.6 from a previous version instead of performing a fresh installation, ensure that you have completed Post-update configuration changes.

Procedure

  1. Identify the node and get labels on the node to be replaced.

    $ oc get nodes --show-labels | grep <node_name>
  2. Identify the mon (if any) and OSDs that are running in the node to be replaced.

    $ oc get pods -n openshift-storage -o wide | grep -i <node_name>
  3. Scale down the deployments of the pods identified in the previous step.

    For example:

    $ oc scale deployment rook-ceph-mon-c --replicas=0 -n openshift-storage
    $ oc scale deployment rook-ceph-osd-0 --replicas=0 -n openshift-storage
    $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=<node_name>  --replicas=0 -n openshift-storage
  4. Mark the node as unschedulable.

    $ oc adm cordon <node_name>
  5. Remove the pods which are in Terminating state.

    $ oc get pods -A -o wide | grep -i <node_name> |  awk '{if ($4 == "Terminating") system ("oc -n " $1 " delete pods " $2  " --grace-period=0 " " --force ")}'
  6. Drain the node.

    $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
  7. Delete the node.

    $ oc delete node <node_name>
  8. Log in to vSphere and terminate the identified VM.
  9. Create a new VM on VMware with the required infrastructure. See Supported Infrastructure and Platforms.
  10. Create a new OpenShift Container Platform worker node using the new VM.
  11. Check for certificate signing requests (CSRs) related to OpenShift Container Platform that are in Pending state:

    $ oc get csr
  12. Approve all required OpenShift Container Platform CSRs for the new node:

    $ oc adm certificate approve <Certificate_Name>
  13. Click Compute → Nodes in OpenShift Web Console, confirm if the new node is in Ready state.
  14. Apply the OpenShift Container Storage label to the new node using any one of the following:

    From User interface
    1. For the new node, click Action Menu (⋮) → Edit Labels.
    2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    From Command line interface
    • Execute the following command to apply the OpenShift Container Storage label to the new node:

      $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  15. Add a new worker node to localVolumeDiscovery and localVolumeSet.

    1. Update the localVolumeDiscovery definition to include the new node and remove the failed node.

      # oc edit -n local-storage-project localvolumediscovery auto-discover-devices
      [...]
         nodeSelector:
          nodeSelectorTerms:
            - matchExpressions:
                - key: kubernetes.io/hostname
                  operator: In
                  values:
                  - server1.example.com
                  - server2.example.com
                  #- server3.example.com
                  - newnode.example.com
      [...]

      Remember to save before exiting the editor.

      In the above example, server3.example.com was removed and newnode.example.com is the new node.

    2. Determine which localVolumeSet to edit.

      Replace local-storage-project in the following commands with the name of your local storage project. The default project name is openshift-local-storage in OpenShift Container Storage 4.6 and later. Previous versions use local-storage by default.

      # oc get -n local-storage-project localvolumeset
      NAME          AGE
      localblock   25h
    3. Update the localVolumeSet definition to include the new node and remove the failed node.

      # oc edit -n local-storage-project localvolumeset localblock
      [...]
         nodeSelector:
          nodeSelectorTerms:
            - matchExpressions:
                - key: kubernetes.io/hostname
                  operator: In
                  values:
                  - server1.example.com
                  - server2.example.com
                  #- server3.example.com
                  - newnode.example.com
      [...]

      Remember to save before exiting the editor.

      In the above example, server3.example.com was removed and newnode.example.com is the new node.

  16. Verify that the new localblock PV is available.

    $ oc get pv | grep localblock
              CAPA- ACCESS RECLAIM                                STORAGE
    NAME      CITY  MODES  POLICY  STATUS     CLAIM               CLASS       AGE
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    3e8964d3                                  ocs-deviceset-2-0
                                              -79j94
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    414755e0                                  ocs-deviceset-1-0
                                              -959rp
    local-pv- 931Gi RWO Delete Available localblock 3m24s b481410
    local-pv- 931Gi  RWO   Delete  Bound      openshift-storage/  localblock  25h
    d9c5cbd6                                  ocs-deviceset-0-0
                                              -nvs68
  17. Change to the openshift-storage project.

    $ oc project openshift-storage
  18. Remove the failed OSD from the cluster.

    $ oc process -n openshift-storage ocs-osd-removal \
    -p FAILED_OSD_IDS=failed-osd-id1,failed-osd-id2 | oc create -f -
  19. Verify that the OSD was removed successfully by checking the status of the ocs-osd-removal pod.

    A status of Completed confirms that the OSD removal job succeeded.

    # oc get pod -l job-name=ocs-osd-removal-failed-osd-id -n openshift-storage
    Note

    If ocs-osd-removal fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

    # oc logs -l job-name=ocs-osd-removal-failed-osd_id -n openshift-storage --tail=-1
  20. Delete the PV associated with the failed node.

    1. Identify the PV associated with the PVC.

      # oc get pv -L kubernetes.io/hostname | grep localblock | grep Released
      local-pv-d6bf175b  1490Gi  RWO  Delete  Released  openshift-storage/ocs-deviceset-0-data-0-6c5pw  localblock  2d22h  compute-1
    2. Delete the PV.

      # oc delete pv <persistent-volume>

      For example:

      # oc delete pv local-pv-d6bf175b
      persistentvolume "local-pv-d9c5cbd6" deleted
  21. Delete the crashcollector pod deployment.

    $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
  22. Delete the ocs-osd-removal job.

    # oc delete job ocs-osd-removal-${osd_id_to_remove}

    Example output:

    job.batch "ocs-osd-removal-0" deleted

Verification steps

  1. Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  2. Click Workloads → Pods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  3. Verify that all other required OpenShift Container Storage pods are in Running state.

    Ensure that the new incremental mon is created and is in the Running state.

    $ oc get pod -n openshift-storage | grep mon

    Example output:

    rook-ceph-mon-c-64556f7659-c2ngc                                  1/1     Running     0          6h14m
    rook-ceph-mon-d-7c8b74dc4d-tt6hd                                  1/1     Running     0          4h24m
    rook-ceph-mon-e-57fb8c657-wg5f2                                   1/1     Running     0          162m

    OSD and Mon might take several minutes to get to the Running state.

  4. Verify that new OSD pods are running on the replacement node.

    $ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd
  5. (Optional) If data encryption is enabled on the cluster, verify that the new OSD devices are encrypted.

    For each of the new nodes identified in previous step, do the following:

    1. Create a debug pod and open a chroot environment for the selected host(s).

      $ oc debug node/<node name>
      $ chroot /host
    2. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

      $ lsblk
  6. If verification steps fail, contact Red Hat Support.

4.5. Replacing storage nodes on IBM Power Systems infrastructure

For OpenShift Container Storage, node replacement can be performed proactively for an operational node and reactively for a failed node for the IBM Power Systems related deployments.

4.5.1. Replacing an operational or failed storage node on IBM Power Systems

Prerequisites

  • Red Hat recommends that replacement nodes are configured with similar infrastructure and resources to the node being replaced.
  • You must be logged into OpenShift Container Platform (RHOCP) cluster.

Procedure

  1. Check the labels on the failed node and make note of the rack label.

    $ oc get nodes --show-labels | grep failed-node-name
  2. Identify the mon (if any) and object storage device (OSD) pods that are running in the failed node.

    $ oc get pods -n openshift-storage -o wide | grep -i failed-node-name
  3. Scale down the deployments of the pods identified in the previous step.

    For example:

    $ oc scale deployment rook-ceph-mon-a --replicas=0 -n openshift-storage
    $ oc scale deployment rook-ceph-osd-1 --replicas=0 -n openshift-storage
    $ oc scale deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name  --replicas=0 -n openshift-storage
  4. Mark the failed node so that it cannot be scheduled for work.

    $ oc adm cordon failed-node-name
  5. Drain the failed node of existing work.

    $ oc adm drain failed-node-name --force --delete-local-data --ignore-daemonsets
    Note

    If the failed node is not connected to the network, remove the pods running on it by using the command:

    $ oc get pods -A -o wide | grep -i failed-node-name |  awk '{if ($4 == "Terminating") system ("oc -n " $1 " delete pods " $2  " --grace-period=0 " " --force ")}'
    $ oc adm drain failed-node-name --force --delete-local-data --ignore-daemonsets
  6. Delete the failed node.

    $ oc delete node failed-node-name
  7. Get a new IBM Power machine with required infrastructure. See Installing a cluster on IBM Power Systems.
  8. Create a new OpenShift Container Platform node using the new IBM Power Systems machine.
  9. Check for certificate signing requests (CSRs) related to OpenShift Container Storage that are in Pending state:

    $ oc get csr
  10. Approve all required OpenShift Container Storage CSRs for the new node:

    $ oc adm certificate approve certificate-name
  11. Click ComputeNodes in OpenShift Web Console, confirm if the new node is in Ready state.
  12. Apply the OpenShift Container Storage label to the new node using your preferred interface:

    • From OpenShift web console

      1. For the new node, click Action Menu (⋮)Edit Labels.
      2. Add cluster.ocs.openshift.io/openshift-storage and click Save.
    • From the command line interface

      1. Execute the following command to apply the OpenShift Container Storage label to the new node:

        $ oc label node new-node-name cluster.ocs.openshift.io/openshift-storage=""
  13. Add a newly added worker node to localVolumeSet.

    1. Determine which localVolumeSet to edit.

      Replace local-storage-project in the following commands with the name of your local storage project. The default project name is openshift-local-storage in OpenShift Container Storage 4.6 and later. Previous versions use local-storage by default.

      # oc get -n local-storage-project localvolumeset
      NAME           AGE
      localblock    25h
    2. Update the localVolumeSet definition to include the new node and remove the failed node.

      # oc edit -n local-storage-project localvolumeset localblock
      [...]
          nodeSelector:
          nodeSelectorTerms:
            - matchExpressions:
                - key: kubernetes.io/hostname
                  operator: In
                  values:
                  #- worker-0
                  - worker-1
                  - worker-2
                  - worker-3
      [...]

      Remember to save before exiting the editor.

  14. Verify that the new localblock PV is available.

    $ oc get pv | grep localblock
    NAME              CAPACITY   ACCESSMODES RECLAIMPOLICY STATUS     CLAIM             STORAGECLASS                 AGE
    local-pv-3e8964d3    500Gi    RWO         Delete       Bound      ocs-deviceset-localblock-2-data-0-mdbg9  localblock     25h
    local-pv-414755e0    500Gi    RWO         Delete       Bound      ocs-deviceset-localblock-1-data-0-4cslf  localblock     25h
    local-pv-b481410   500Gi     RWO        Delete       Available                                            localblock     3m24s
    local-pv-5c9b8982    500Gi    RWO         Delete       Bound      ocs-deviceset-localblock-0-data-0-g2mmc  localblock     25h
  15. Change to the openshift-storage project.

    $ oc project openshift-storage
  16. Remove the failed OSD from the cluster.

    1. Identify the PVC as afterwards we need to delete PV associated with that specific PVC.

      # osd_id_to_remove=1
      # oc get -n openshift-storage -o yaml deployment rook-ceph-osd-${osd_id_to_remove} | grep ceph.rook.io/pvc

      where, osd_id_to_remove is the integer in the pod name immediately after the rook-ceph-osd prefix. In this example, the deployment name is rook-ceph-osd-1.

      Example output:

      ceph.rook.io/pvc: ocs-deviceset-localblock-0-data-0-g2mmc
          ceph.rook.io/pvc: ocs-deviceset-localblock-0-data-0-g2mmc

      In this example, the PVC name is ocs-deviceset-localblock-0-data-0-g2mmc.

    2. Remove the failed OSD from the cluster.

      # oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=${osd_id_to_remove},{osd_id_to_remove2} | oc create -f -
  17. Verify that the OSD is removed successfully by checking the status of the ocs-osd-removal pod.

    A status of Completed confirms that the OSD removal job succeeded.

    # oc get pod -l job-name=ocs-osd-removal-${osd_id_to_remove} -n openshift-storage
    Note

    If ocs-osd-removal fails and the pod is not in the expected Completed state, check the pod logs for further debugging. For example:

    # oc logs -l job-name=ocs-osd-removal-${osd_id_to_remove} -n openshift-storage --tail=-1
  18. Delete the PV associated with the failed node.

    1. Identify the PV associated with the PVC.

      # oc get -n openshift-storage pvc ocs-deviceset-<x>-<y>-<pvc-suffix>

      where, x, y, and pvc-suffix are the values in the DeviceSet identified in the previous step.

      For example:

      # oc get -n openshift-storage pvc ocs-deviceset-localblock-0-data-0-g2mmc
      NAME                      STATUS        VOLUME        CAPACITY   ACCESS MODES   STORAGECLASS   AGE
      ocs-deviceset-localblock-0-data-0-g2mmc   Bound   local-pv-5c9b8982   500Gi      RWO            localblock     24h

      In this example, the associated PV is local-pv-5c9b8982.

    2. Delete the PV.

      # oc delete pv <persistent-volume>

      For example:

      # oc delete pv local-pv-5c9b8982
      persistentvolume "local-pv-5c9b8982" deleted
  19. Delete the crashcollector pod deployment.

    $ oc delete deployment --selector=app=rook-ceph-crashcollector,node_name=failed-node-name -n openshift-storage
  20. Deploy the new OSD by restarting the rook-ceph-operator to force operator reconciliation.

    # oc get -n openshift-storage pod -l app=rook-ceph-operator

    Example output:

    NAME                                  READY   STATUS    RESTARTS   AGE
    rook-ceph-operator-77758ddc74-dlwn2   1/1     Running   0          1d20h
    1. Delete the rook-ceph-operator.

      # oc delete -n openshift-storage pod rook-ceph-operator-77758ddc74-dlwn2

      Example output:

      pod "rook-ceph-operator-77758ddc74-dlwn2" deleted
  21. Verify that the rook-ceph-operator pod is restarted.

    # oc get -n openshift-storage pod -l app=rook-ceph-operator

    Example output:

    NAME                                  READY   STATUS    RESTARTS   AGE
    rook-ceph-operator-77758ddc74-wqf25   1/1     Running   0          66s

    Creation of the new OSD and mon might take several minutes after the operator restarts.

  22. Delete the ocs-osd-removal job.

    # oc delete job ocs-osd-removal-${osd_id_to_remove}

    For example:

    # oc delete job ocs-osd-removal-1
    job.batch "ocs-osd-removal-1" deleted

Verification steps

  • Execute the following command and verify that the new node is present in the output:

    $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
  • Click WorkloadsPods, confirm that at least the following pods on the new node are in Running state:

    • csi-cephfsplugin-*
    • csi-rbdplugin-*
  • Verify that all other required OpenShift Container Storage pods are in Running state.

    • Make sure that the new incremental mon is created and is in the Running state.

      $ oc get pod -n openshift-storage | grep mon

      Example output:

      rook-ceph-mon-b-74f6dc9dd6-4llzq                                   1/1     Running     0          6h14m
      rook-ceph-mon-c-74948755c-h7wtx                                  1/1     Running     0          4h24m
      rook-ceph-mon-d-598f69869b-4bv49                                   1/1     Running     0          162m

      OSD and Mon might take several minutes to get to the Running state.

  • If verification steps fail, contact Red Hat Support.