Red Hat OpenShift Container Storage
4.5

Deploying and managing OpenShift Container Storage using Red Hat OpenStack Platform

How to install and manage
How to install and manage
Abstract

Read this document for instructions on installing and managing Red Hat OpenShift Container Storage on Red Hat OpenStack Platform (RHOSP). Deploying and managing OpenShift Container Storage on Red Hat OpenStack Platform is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
Table of Contents

PREFACE ... 4

CHAPTER 1. DEPLOYING OPENSOURCE CONTAINER STORAGE ON RED HAT OPENSTACK PLATFORM ... 5
 1.1. INSTALLING RED HAT OPENSOURCE CONTAINER STORAGE OPERATOR .. 5
 1.2. CREATING AN OPENSOURCE CONTAINER STORAGE CLUSTER SERVICE IN INTERNAL MODE .. 7

CHAPTER 2. VERIFYING OPENSOURCE CONTAINER STORAGE DEPLOYMENT .. 11
 2.1. VERIFYING THE STATE OF THE PODS .. 11
 2.2. VERIFYING THE OPENSOURCE CONTAINER STORAGE CLUSTER IS HEALTHY ... 12
 2.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY .. 13
 2.4. VERIFYING THAT THE OPENSOURCE CONTAINER STORAGE SPECIFIC STORAGE CLASSES EXIST 14

CHAPTER 3. UNINSTALLING OPENSOURCE CONTAINER STORAGE .. 15
 3.1. UNINSTALLING OPENSOURCE CONTAINER STORAGE ON INTERNAL MODE .. 15
 3.2. REMOVING MONITORING STACK FROM OPENSOURCE CONTAINER STORAGE ... 18
 3.3. REMOVING OPENSOURCE CONTAINER PLATFORM REGISTRY FROM OPENSOURCE CONTAINER STORAGE .. 21
 3.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSOURCE CONTAINER STORAGE 22

CHAPTER 4. CONFIGURE STORAGE FOR OPENSOURCE CONTAINER PLATFORM SERVICES .. 24
 4.1. CONFIGURING IMAGE REGISTRY TO USE OPENSOURCE CONTAINER STORAGE .. 24
 4.2. CONFIGURING MONITORING TO USE OPENSOURCE CONTAINER STORAGE ... 26
 4.3. CLUSTER LOGGING FOR OPENSOURCE CONTAINER STORAGE .. 28
 4.3.1. Configuring persistent storage .. 29
 4.3.2. Configuring cluster logging to use OpenShift Container Storage .. 30

CHAPTER 5. BACKING OPENSOURCE CONTAINER PLATFORM APPLICATIONS WITH OPENSOURCE CONTAINER STORAGE .. 33

CHAPTER 6. SCALING STORAGE NODES .. 35
 6.1. REQUIREMENTS FOR SCALING STORAGE NODES .. 35
 6.2. SCALING UP STORAGE BY ADDING CAPACITY TO YOUR OPENSOURCE CONTAINER STORAGE NODES ON RED HAT OPENSTACK PLATFORM INFRASTRUCTURE .. 35
 6.3. SCALING OUT STORAGE CAPACITY BY ADDING NEW NODES .. 37
 6.3.1. Verifying the addition of a new node .. 38
 6.3.2. Scaling up storage capacity .. 38

CHAPTER 7. MULTICLOUD OBJECT GATEWAY .. 39
 7.1. ABOUT THE MULTICLOUD OBJECT GATEWAY ... 39
 7.2. ACCESSING THE MULTICLOUD OBJECT GATEWAY WITH YOUR APPLICATIONS ... 39
 7.2.1. Accessing the Multicloud Object Gateway from the terminal .. 39
 7.2.2. Accessing the Multicloud Object Gateway from the MCG command-line interface 41
 7.3. ADDING STORAGE RESOURCES FOR HYBRID OR MULTICLOUD .. 44
 7.3.1. Adding storage resources for hybrid or Multicloud using the MCG command line interface 44
 7.3.2. Creating an s3 compatible Multicloud Object Gateway backingstore .. 45
 7.3.3. Adding storage resources for hybrid and Multicloud using the user interface ... 47
 7.4. MIRRORING DATA FOR HYBRID AND MULTICLOUD BUCKETS .. 49
 7.4.1. Creating bucket classes to mirror data using the MCG command-line-interface 49
 7.4.2. Creating bucket classes to mirror data using a YAML .. 51
 7.4.3. Configuring buckets to mirror data using the user interface ... 54
 7.5. BUCKET POLICIES IN THE MULTICLOUD OBJECT GATEWAY ... 56
 7.5.1. About bucket policies .. 56
7.5.2. Using bucket policies
7.5.3. Creating an AWS S3 user in the Multicloud Object Gateway

7.6. OBJECT BUCKET CLAIM
7.6.1. Dynamic Object Bucket Claim
7.6.2. Creating an Object Bucket Claim using the command line interface
7.6.3. Creating an Object Bucket Claim using the OpenShift Web Console

7.7. SCALING MULTICLOUD OBJECT GATEWAY PERFORMANCE BY ADDING ENDPOINTS
7.7.1. S3 endpoints in the Multicloud Object Gateway
7.7.2. Scaling with storage nodes

CHAPTER 8. MANAGING PERSISTENT VOLUME CLAIMS ... 71
8.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT CONTAINER STORAGE 71
8.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS 72
8.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS 73
8.4. EXPANDING PERSISTENT VOLUME CLAIMS 73
8.5. DYNAMIC PROVISIONING
8.5.1. About dynamic provisioning 75
8.5.2. Dynamic provisioning in OpenShift Container Storage 75
8.5.3. Available dynamic provisioning plug-ins 76

CHAPTER 9. REPLACING STORAGE NODES ... 78
9.1. REPLACING OPERATIONAL NODES ON RED HAT OPENSTACK PLATFORM INSTALLER-PROVISIONED INFRASTRUCTURE 78
9.2. REPLACING FAILED NODES ON RED HAT OPENSTACK PLATFORM INSTALLER-PROVISIONED INFRASTRUCTURE 79

CHAPTER 10. REPLACING STORAGE DEVICES ... 81
10.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON RED HAT OPENSTACK PLATFORM INSTALLER-PROVISIONED INFRASTRUCTURE 81
Red Hat OpenShift Container Storage 4.5 supports deployment on existing Red Hat OpenShift Container Platform (OCP) using Red Hat OpenStack Platform clusters.

NOTE

Internal Openshift Container Storage clusters are supported on Red Hat OpenStack Platform. See Planning your deployment for more information about deployment requirements.

To deploy OpenShift Container Storage in internal mode, follow the deployment process Deploying OpenShift Container Storage on Red Hat OpenStack Platform.
Deploying OpenShift Container Storage on OpenShift Container Platform using dynamic storage devices provided by Red Hat OpenStack Platform installer-provisioned infrastructure (IPI) enables you to create internal cluster resources. This results in internal provisioning of the base services, which helps to make additional storage classes available to applications.

1. For Red Hat Enterprise Linux based hosts for worker nodes, enable the container access to the underlying file system. Follow the instructions on enabling file system access for containers on Red Hat Enterprise Linux based nodes.

 NOTE

 Skip this step for Red Hat Enterprise Linux CoreOS (RHCOS).

2. Install the Red Hat OpenShift Container Storage Operator.

3. Create the OpenShift Container Storage Cluster Service

1.1. INSTALLING RED HAT OPENSFHT CONTAINER STORAGE OPERATOR

You can install Red Hat OpenShift Container Storage Operator using the Red Hat OpenShift Container Platform Operator Hub. For information about the hardware and software requirements, see Planning your deployment.

Prerequisites

- You must be logged into the OpenShift Container Platform cluster.
- You must have at least three worker nodes in the OpenShift Container Platform cluster.

 NOTE

 When you need to override the cluster-wide default node selector for OpenShift Container Storage, you can use the following command in command line interface to specify a blank node selector for the `openshift-storage` namespace:

   ```bash
   $ oc annotate namespace openshift-storage openshift.io/node-selector=
   ```

Procedure

1. Click **Operators** → **OperatorHub** in the left pane of the OpenShift Web Console.
2. Click on OpenShift Container Storage. You can use the Filter by keyword text box or the filter list to search for OpenShift Container Storage from the list of operators.

3. On the OpenShift Container Storage operator page, click Install.

4. On the Install Operator page, ensure the following options are selected:

 a. Update Channel as stable-4.5

 b. Installation Mode as A specific namespace on the cluster

 c. Installed Namespace as Operator recommended namespace PR openshift-storage. If Namespace openshift-storage does not exist, it will be created during the operator installation.

 d. Select Approval Strategy as Automatic or Manual. Approval Strategy is set to Automatic by default.

 - Approval Strategy as Automatic.

 NOTE

 When you select the Approval Strategy as Automatic, approval is not required either during fresh installation or when updating to the latest version of OpenShift Container Storage.

 i. Click Install

 ii. Wait for the install to initiate. This may take up to 20 minutes.

 iii. Click Operators → Installed Operators

 iv. Ensure the Project is openshift-storage. By default, the Project is openshift-storage.

 v. Wait for the Status of OpenShift Container Storage to change to Succeeded.
• Approval Strategy as Manual.

NOTE

When you select the Approval Strategy as Manual, approval is required during fresh installation or when updating to the latest version of OpenShift Container Storage.

i. Click Install.

ii. On the Installed Operators page, click ocs-operator.

iii. On the Subscription Details page, click the Install Plan link.

iv. On the InstallPlan Details page, click Preview Install Plan.

v. Review the install plan and click Approve.

vi. Wait for the Status of the Components to change from Unknown to either Created or Present.

vii. Click Operators → Installed Operators

viii. Ensure the Project is openshift-storage. By default, the Project is openshift-storage.

ix. Wait for the Status of OpenShift Container Storage to change to Succeeded.

Verification steps

• Verify that OpenShift Container Storage Operator shows the Status as Succeeded on the Installed Operators dashboard.

1.2. CREATING AN OPENSIFT CONTAINER STORAGE CLUSTER SERVICE IN INTERNAL MODE

Use this procedure to create an OpenShift Container Storage Cluster Service after you install the OpenShift Container Storage operator.

Prerequisites

• The OpenShift Container Storage operator must be installed from the Operator Hub. For more information, see Installing OpenShift Container Storage Operator using the Operator Hub.

Procedure

1. Click Operators → Installed Operators from the OpenShift Web Console to view the installed operators. Ensure that the Project selected is openshift-storage.

On the Installed Operators → Operator Details page, perform either of the following to create a Storage Cluster Service.

a. On the Details tab → Provided APIs → OCS Storage Cluster click Create Instance.

b. Alternatively, select the Storage cluster tab and click Create OCS Cluster Service.

On the Create Storage Cluster page, ensure that the following options are selected:
Figure 1.5. Create Storage Cluster page

a. By default, Select Mode has **Internal** selected.

b. In the **Nodes** section, for the use of OpenShift Container Storage service, select a minimum of three or a multiple of three worker nodes from the available list. For cloud platforms with multiple availability zones, ensure that the Nodes are spread across different Locations/availability zones.

 NOTE

 To find specific worker nodes in the cluster, you can filter nodes on the basis of Name or Label.

 - Name allows you to search by name of the node
 - Label allows you to search by selecting the predefined label

 For minimum starting node requirements, see **Resource requirements** section in Planning guide.

c. **Storage Class** is set by default to **standard** for Red Hat OpenStack Platform.

d. Select **OCS Service Capacity** from drop down list.

 NOTE

 Once you select the initial storage capacity, cluster expansion will only be performed using the selected usable capacity (times 3 of raw storage).

5. Click **Create**.
NOTE

The **Create** button is enabled only after selecting a minimum of three worker nodes.

Upon successful deployment, a storage cluster with three storage devices gets created. These devices get distributed across three of the selected nodes. The configuration uses a replication factor of 3. To scale the initial cluster, see Scaling storage nodes.

Verification steps

- To verify that OpenShift Container Storage is successfully installed, see Verifying your OpenShift Container Storage installation.
CHAPTER 2. VERIFYING OPENSHIFT CONTAINER STORAGE DEPLOYMENT

Use this section to verify that OpenShift Container Storage is deployed correctly.

2.1. VERIFYING THE STATE OF THE PODS

To determine if OpenShift Container storage is deployed successfully, you can verify that the pods are in Running state.

Procedure

1. Click Workloads → Pods from the left pane of the OpenShift Web Console.

2. Select openshift-storage from the Project drop down list.
 For more information on the expected number of pods for each component and how it varies depending on the number of nodes, see Table 2.1, "Pods corresponding to OpenShift Container storage cluster".

3. Verify that the following pods are in running and completed state by clicking on the Running and the Completed tabs:

Table 2.1. Pods corresponding to OpenShift Container storage cluster

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenShift Container Storage Operator</td>
<td>ocs-operator-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any worker node)</td>
</tr>
<tr>
<td>Rook-ceph Operator</td>
<td>rook-ceph-operator-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any worker node)</td>
</tr>
<tr>
<td>Multicloud Object Gateway</td>
<td>● noobaa-operator-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any worker node)</td>
</tr>
<tr>
<td></td>
<td>● noobaa-core-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>● nooba-db-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td></td>
<td>● noobaa-endpoint-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
<tr>
<td>MON</td>
<td>rook-ceph-mon-*</td>
</tr>
<tr>
<td></td>
<td>(3 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>MGR</td>
<td>rook-ceph-mgr-*</td>
</tr>
<tr>
<td></td>
<td>(1 pod on any storage node)</td>
</tr>
</tbody>
</table>
2.2. VERIFYING THE OPENS SHIFT CONTAINER STORAGE CLUSTER IS HEALTHY

You can verify health of OpenShift Container Storage cluster using the persistent storage dashboard. For more information, see [Monitoring OpenShift Container Storage](#).

- Click **Home → Overview** from the left pane of the OpenShift Web Console and click **Persistent Storage** tab.

- In the **Status card**, verify that **OCS Cluster** has a green tick mark as shown in the following image:

Table: Corresponding pods

<table>
<thead>
<tr>
<th>Component</th>
<th>Corresponding pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS</td>
<td>rook-ceph-mds-ocs-storagecluster-cephfilesystem-<sup>*</sup></td>
</tr>
<tr>
<td></td>
<td>(2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>CSI</td>
<td>cephfs</td>
</tr>
<tr>
<td></td>
<td>- csi-cephfsplugin-<sup>*</sup> (1 pod on each worker node)</td>
</tr>
<tr>
<td></td>
<td>- csi-cephfsplugin-provisioner-<sup>*</sup> (2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td></td>
<td>rbd</td>
</tr>
<tr>
<td></td>
<td>- csi-rbdplugin-<sup>*</sup> (1 pod on each worker node)</td>
</tr>
<tr>
<td></td>
<td>- csi-rbdplugin-provisioner-<sup>*</sup> (2 pods distributed across storage nodes)</td>
</tr>
<tr>
<td>rook-ceph-drain-canary</td>
<td>rook-ceph-drain-canary-<sup>*</sup></td>
</tr>
<tr>
<td></td>
<td>(1 pod on each storage node)</td>
</tr>
<tr>
<td>rook-ceph-crashcollector</td>
<td>rook-ceph-crashcollector-<sup>*</sup></td>
</tr>
<tr>
<td></td>
<td>(1 pod on each storage node)</td>
</tr>
<tr>
<td>OSD</td>
<td>rook-ceph-osd-<sup>*</sup> (1 pod for each device)</td>
</tr>
<tr>
<td></td>
<td>rook-ceph-osd-prepare-ocs-deviceset-<sup>*</sup> (1 pod for each device)</td>
</tr>
</tbody>
</table>
2.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY

You can verify the health of the OpenShift Container Storage cluster using the object service dashboard. For more information, see Monitoring OpenShift Container Storage.

- Click Home → Overview from the left pane of the OpenShift Web Console and click the Object Service tab.

- In the Status card, verify that the Multicloud Object Gateway (MCG) storage displays a green tick icon as shown in following image:
2.4. VERIFYING THAT THE OPENSHIFT CONTAINER STORAGE SPECIFIC STORAGE CLASSES EXIST

To verify the storage classes exists in the cluster:

- Click **Storage → Storage Classes** from the left pane of the OpenShift Web Console.
- Verify that the following storage classes are created with the OpenShift Container Storage cluster creation:
 - `ocs-storagecluster-ceph-rbd`
 - `ocs-storagecluster-cephfs`
 - `openshift-storage.noobaa.io`
CHAPTER 3. UNINSTALLING OPENSHIFT CONTAINER STORAGE

3.1. UNINSTALLING OPENSHIFT CONTAINER STORAGE ON INTERNAL MODE

Use the steps in this section to uninstall OpenShift Container Storage instead of the Uninstall option from the user interface.

Prerequisites

- Make sure that the OpenShift Container Storage cluster is in a healthy state. The deletion might fail if some of the pods are not terminated successfully due to insufficient resources or nodes. In case the cluster is in an unhealthy state, you should contact Red Hat Customer Support before uninstalling OpenShift Container Storage.

- Make sure that applications are not consuming persistent volume claims (PVCs) or object bucket claims (OBCs) using the storage classes provided by OpenShift Container Storage. PVCs and OBCs will be deleted during the uninstall process.

Procedure

1. Query for PVCs and OBCs that use the OpenShift Container Storage based storage class provisioners.

 For example:

   ```bash
   $ oc get pvc -o=jsonpath='{range .items?[(@.spec.storageClassName=="ocs-storagecluster-ceph-rbd")]}{"Name: "}{@.metadata.name}{" Namespace: "}{@.metadata.namespace}{" Labels: "}{@.metadata.labels}{\"\n\"}{end} --all-namespaces  
   
   $ oc get pvc -o=jsonpath='{range .items?[(@.spec.storageClassName=="ocs-storagecluster-ceph-rbd")]}{"Name: "}{@.metadata.name}{" Namespace: "}{@.metadata.namespace}{" Labels: "}{@.metadata.labels}{\"\n\"}{end}' --all-namespaces | awk 'l (/Namespace: openshift-storage/ && /app:noobaa/ )' | grep -v noobaa-default-backing-store-noobaa-pvc 
   
   $ oc get pvc -o=jsonpath='{range .items?[(@.spec.storageClassName=="standard")]}{"Name: "}{@.metadata.name}{" Namespace: "}{@.metadata.namespace}{" Labels: "}{@.metadata.labels}{\"\n\"}{end} --all-namespaces 
   
   $ oc get pvc -o=jsonpath='{range .items?[(@.spec.storageClassName=="ocs-storagecluster-cephfs")]}{"Name: "}{@.metadata.name}{" Namespace: "}{@.metadata.namespace}{" Labels: "}{@.metadata.labels}{\"\n\"}{end}' --all-namespaces 
   
   $ oc get obc -o=jsonpath='{range .items?[(@.spec.storageClassName=="ocs-storagecluster-ceph-rgw")]}{"Name: "}{@.metadata.name}{" Namespace: "}{@.metadata.namespace}{" Labels: "}{@.metadata.labels}{\"\n\"}{end}' --all-namespaces 
   
   $ oc get obc -o=jsonpath='{range .items?[(@.spec.storageClassName=="openshift-storage.noobaa.io")]}{"Name: "}{@.metadata.name}{" Namespace: "}{@.metadata.namespace}{" Labels: "}{@.metadata.labels}{\"\n\"}{end}' --all-namespaces 
   ```
2. Follow these instructions to ensure that the PVCs and OBCs listed in the previous step are deleted.

If you have created PVCs as a part of configuring the monitoring stack, cluster logging operator, or image registry, then you must perform the clean up steps provided in the following sections as required:

- Section 3.2, "Removing monitoring stack from OpenShift Container Storage"
- Section 3.3, "Removing OpenShift Container Platform registry from OpenShift Container Storage"
- Section 3.4, "Removing the cluster logging operator from OpenShift Container Storage"

For each of the remaining PVCs or OBCs, follow the steps mentioned below:

a. Determine the pod that is consuming the PVC or OBC.

b. Identify the controlling API object such as a Deployment, StatefulSet, DaemonSet, Job, or a custom controller.

 Each API object has a metadata field known as OwnerReference. This is a list of associated objects. The OwnerReference with the controller field set to true will point to controlling objects such as ReplicaSet, StatefulSet, DaemonSet and so on.

c. Ensure that the API object is not consuming PVC or OBC provided by OpenShift Container Storage. Either the object should be deleted or the storage should be replaced. Ask the owner of the project to make sure that it is safe to delete or modify the object.

 NOTE

 You can ignore the noobaa pods.

d. Delete the OBCs.

 `$ oc delete obc <obc name> -n <project name>`

e. Delete any custom Bucket Class you have created.

 `$ oc get bucketclass -A | grep -v noobaa-default-bucket-class`
 `$ oc delete bucketclass <bucketclass name> -n <project-name>`

f. If you have created any custom Multi Cloud Gateway backingstores, delete them.

 o List and note the backingstores.

   ```bash
   for bs in $(oc get backingstore -o name -n openshift-storage | grep -v noobaa-default-backing-store); do echo "Found backingstore $bs"; echo "Its has the following pods running ":"; echo "$\{oc get pods -o name -n openshift-storage | grep $(echo ${bs} | cut -f2 -d/)\}"; done
   ```

 o Delete each of the backingstores listed above and confirm that the dependent resources also get deleted.
for bs in $(oc get backingstore -o name -n openshift-storage | grep -v noobaa-default-backing-store); do echo "Deleting Backingstore $bs"; oc delete -n openshift-storage $bs; done

- If any of the backingstores listed above were based on the pv-pool, ensure that the corresponding pod and PVC are also deleted.

$ oc get pods -n openshift-storage | grep noobaa-pod | grep -v noobaa-default-backing-store-noobaa-pod

$ oc get pvc -n openshift-storage --no-headers | grep -v noobaa-db | grep noobaa-pvc | grep -v noobaa-default-backing-store-noobaa-pvc

g. Delete the remaining PVCs listed in Step 1.

$ oc delete pvc <pvc name> -n <project-name>

3. Delete the **StorageCluster** object and wait for the removal of the associated resources.

$ oc delete -n openshift-storage storagecluster --all --wait=true

4. Delete the namespace and wait till the deletion is complete. You will need to switch to another project if openshift-storage is the active project.

a. Switch to another namespace if openshift-storage is the active namespace. For example:

$ oc project default

b. Delete the openshift-storage namespace.

$ oc delete project openshift-storage --wait=true --timeout=5m

c. Wait for approximately five minutes and confirm if the project is deleted successfully.

$ oc get project openshift-storage

Output:

Error from server (NotFound): namespaces "openshift-storage" not found

NOTE

While uninstalling OpenShift Container Storage, if namespace is not deleted completely and remains in Terminating state, perform the steps in the article *Troubleshooting and deleting remaining resources during Uninstall* to identify objects that are blocking the namespace from being terminated.

5. Clean up the storage operator artifacts on each node.
$ for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{{.items[*].metadata.name }}'); do oc debug node/${i} -- chroot /host rm -rfv /var/lib/rook; done

Ensure you can see removed directory /var/lib/rook in the output.

Confirm that the directory no longer exists

$ for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{{.items[*].metadata.name }}'); do oc debug node/${i} -- chroot /host ls -l /var/lib/rook; done

6. Delete the openshift-storage.noobaa.io storage class.

$ oc delete storageclass openshift-storage.noobaa.io --wait=true --timeout=5m

7. Unlabel the storage nodes.

$ oc label nodes --all cluster.ocs.openshift.io/openshift-storage-

$ oc label nodes --all topology.rook.io/rack-

NOTE

You can ignore the warnings displayed for the unlabeled nodes such as label <label> not found.

8. Confirm all PVs are deleted. If there is any PV left in the Released state, delete it.

oc get pv | egrep 'ocs-storagecluster-ceph-rbd|ocs-storagecluster-cephfs'

oc delete pv <pv name>

$ oc delete crd backingstores.noobaa.io bucketclasses.noobaa.io cephblockpools.ceph.rook.io cephclusters.ceph.rook.io cephfilesystems.ceph.rook.io cephnfses.ceph.rook.io cephobjectstores.ceph.rook.io cephobjectstoreusers.ceph.rook.io noobaas.noobaa.io ocsinitializations.ocs.openshift.io storageclusterialinitializations.ocs.openshift.io storageclusters.ocs.openshift.io cephclients.ceph.rook.io --wait=true --timeout=5m

10. To ensure that OpenShift Container Storage is uninstalled completely, on the OpenShift Container Platform Web Console,

 a. Click Home → Overview to access the dashboard.

 b. Verify that the Persistent Storage and Object Service tabs no longer appear next to the Cluster tab.

3.2. REMOVING MONITORING STACK FROM OPENSHIFT CONTAINER STORAGE
Use this section to clean up monitoring stack from OpenShift Container Storage.

The PVCs that are created as a part of configuring the monitoring stack are in the `openshift-monitoring` namespace.

Prerequisites

- PVCs are configured to use OpenShift Container Platform monitoring stack.
 For information, see `configuring monitoring stack`.

Procedure

1. List the pods and PVCs that are currently running in the `openshift-monitoring` namespace.

   ```bash
   $ oc get pod,pvc -n openshift-monitoring
   NAME                           READY   STATUS    RESTARTS   AGE
   pod/alertmanager-main-0         3/3     Running   0          8d
   pod/alertmanager-main-1         3/3     Running   0          8d
   pod/alertmanager-main-2         3/3     Running   0          8d
   pod/cluster-monitoring-operator-84457656d-pkrixm 1/1     Running   0          8d
   pod/grafana-79ccf6689f-2ll28    2/2     Running   0          8d
   pod/kube-state-metrics-7d86fb966-rvd9w 3/3     Running   0          8d
   pod/node-exporter-25894         2/2     Running   0          8d
   pod/node-exporter-4dsd7         2/2     Running   0          8d
   pod/node-exporter-6p4zc         2/2     Running   0          8d
   pod/node-exporter-jbjvg         2/2     Running   0          8d
   pod/node-exporter-jj4t5         2/2     Running   0          6d18h
   pod/node-exporter-k856s         2/2     Running   0          6d18h
   pod/node-exporter-rf8gn         2/2     Running   0          8d
   pod/node-exporter-rmb5m         2/2     Running   0          6d18h
   pod/node-exporter-zj7kx         2/2     Running   0          8d
   pod/openshift-state-metrics-59dbd4f654-4clng 3/3     Running   0          8d
   pod/prometheus-adapter-5df5865596-k8dzn 1/1     Running   0          7d23h
   pod/prometheus-adapter-5df5865596-n2gj9 1/1     Running   0          7d23h
   pod/prometheus-k8s-0             6/6     Running   1          8d
   pod/prometheus-k8s-1             6/6     Running   1          8d
   pod/prometheus-operator-55cfb858c9-c4zd9 1/1     Running   0          6d21h
   pod/telemeter-client-78fc8fc97d-2rgfp 3/3     Running   0          8d
   ```

   ```plaintext
   NAME                                      CAPACITY   ACCESS MODES   STORAGECLASS                   AGE
   persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-0 Bound pvc-0d519c4f-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
   persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-1 Bound pvc-0d5a9825-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
   persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-2 Bound pvc-0d6413dc-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
   ```
2. Edit the monitoring **configmap**.

   ```bash
   $ oc -n openshift-monitoring edit configmap cluster-monitoring-config
   ```

3. Remove any **config** sections that reference the OpenShift Container Storage storage classes as shown in the following example and save it.

 Before editing

   ```yaml
   apiVersion: v1
data:
    config.yaml: |
    alertmanagerMain:
      volumeClaimTemplate:
        metadata:
          name: my-alertmanager-claim
        spec:
          resources:
            requests:
              storage: 40Gi
        storageClassName: ocs-storagecluster-ceph-rbd
    prometheusK8s:
      volumeClaimTemplate:
        metadata:
          name: my-prometheus-claim
        spec:
          resources:
            requests:
              storage: 40Gi
        storageClassName: ocs-storagecluster-ceph-rbd
kind: ConfigMap
metadata:
  creationTimestamp: "2019-12-02T07:47:29Z"
  name: cluster-monitoring-config
  namespace: openshift-monitoring
  resourceVersion: "22110"
  selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config
  uid: fd6d988b-14d7-11ea-84ff-066035b9efa8
```

 After editing

   ```yaml
   apiVersion: v1
data:
    config.yaml: |
    alertmanagerMain:
      volumeClaimTemplate:
        metadata:
          name: my-alertmanager-claim
        spec:
          resources:
            requests:
              storage: 40Gi
        storageClassName: ocs-storagecluster-ceph-rbd
    prometheusK8s:
      volumeClaimTemplate:
        metadata:
          name: my-prometheus-claim
        spec:
          resources:
            requests:
              storage: 40Gi
        storageClassName: ocs-storagecluster-ceph-rbd
kind: ConfigMap
metadata:
  creationTimestamp: "2019-12-02T07:47:29Z"
  name: cluster-monitoring-config
  namespace: openshift-monitoring
  resourceVersion: "22110"
  selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config
  uid: fd6d988b-14d7-11ea-84ff-066035b9efa8
```
In this example, `alertmanagerMain` and `prometheusK8s` monitoring components are using the OpenShift Container Storage PVCs.

4. Delete relevant PVCs. Make sure you delete all the PVCs that are consuming the storage classes.

   ```
   $ oc delete -n openshift-monitoring pvc <pvc-name> --wait=true --timeout=5m
   ```

3.3. REMOVING OPENSHIFT CONTAINER PLATFORM REGISTRY FROM OPENSHIFT CONTAINER STORAGE

Use this section to clean up OpenShift Container Platform registry from OpenShift Container Storage. If you want to configure an alternative storage, see image registry

The PVCs that are created as a part of configuring OpenShift Container Platform registry are in the `openshift-image-registry` namespace.

Prerequisites

- The image registry should have been configured to use an OpenShift Container Storage PVC.

Procedure

1. Edit the `configs.imageregistry.operator.openshift.io` object and remove the content in the `storage` section.

   ```
   $ oc edit configs.imageregistry.operator.openshift.io
   ```

 Before editing
In this example, the PVC is called `registry-cephfs-rwx-pvc`, which is now safe to delete.

2. Delete the PVC.

   ```bash
   $ oc delete pvc <pvc-name> -n openshift-image-registry --wait=true --timeout=5m
   ```

3.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSHIFT CONTAINER STORAGE

Use this section to clean up the cluster logging operator from OpenShift Container Storage.

The PVCs that are created as a part of configuring cluster logging operator are in `openshift-logging` namespace.

Prerequisites

- The cluster logging instance should have been configured to use OpenShift Container Storage PVCs.

Procedure

1. Remove the `ClusterLogging` instance in the namespace.

   ```bash
   $ oc delete clusterlogging instance -n openshift-logging --wait=true --timeout=5m
   ```

 The PVCs in the `openshift-logging` namespace are now safe to delete.
2. Delete PVCs.

$ oc delete pvc <pvc-name> -n openshift-logging --wait=true --timeout=5m
CHAPTER 4. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

You can use OpenShift Container Storage to provide storage for OpenShift Container Platform services such as image registry, monitoring, and logging.

The process for configuring storage for these services depends on the infrastructure used in your OpenShift Container Storage deployment.

WARNING

Always ensure that you have plenty of storage capacity for these services. If the storage for these critical services runs out of space, the cluster becomes inoperable and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these services. See Configuring the Curator schedule and the Modifying retention time for Prometheus metrics data sub section of Configuring persistent storage in the OpenShift Container Platform documentation for details.

If you do run out of storage space for these services, contact Red Hat Customer Support.

4.1. CONFIGURING IMAGE REGISTRY TO USE OPENSHIFT CONTAINER STORAGE

OpenShift Container Platform provides a built in Container Image Registry which runs as a standard workload on the cluster. A registry is typically used as a publication target for images built on the cluster as well as a source of images for workloads running on the cluster.

WARNING

This process does not migrate data from an existing image registry to the new image registry. If you already have container images in your existing registry, back up your registry before you complete this process, and re-register your images when this process is complete.

Prerequisites

- You have administrative access to OpenShift Web Console.
- OpenShift Container Storage Operator is installed and running in the openshift-storage namespace. In OpenShift Web Console, click Operators → Installed Operators to view installed operators.
Image Registry Operator is installed and running in the `openshift-image-registry` namespace. In OpenShift Web Console, click **Administration → Cluster Settings → Cluster Operators** to view cluster operators.

A storage class with provisioner `openshift-storage.cephfs.csi.ceph.com` is available. In OpenShift Web Console, click **Storage → Storage Classes** to view available storage classes.

Procedure

1. **Create a Persistent Volume Claim for the Image Registry to use.**

a. In OpenShift Web Console, click **Storage → Persistent Volume Claims**.

b. Set the **Project** to `openshift-image-registry`.

c. Click **Create Persistent Volume Claim**

 i. From the list of available storage classes retrieved above, specify the **Storage Class** with the provisioner `openshift-storage.cephfs.csi.ceph.com`.

 ii. Specify the Persistent Volume Claim **Name**, for example, `ocs4registry`.

 iii. Specify an **Access Mode** of **Shared Access (RWX)**.

 iv. Specify a **Size** of at least 100 GB.

 v. Click **Create**.

 Wait until the status of the new Persistent Volume Claim is listed as **Bound**.

2. **Configure the cluster’s Image Registry to use the new Persistent Volume Claim.**

a. Click **Administration → Custom Resource Definitions**

b. Click the **Config** custom resource definition associated with the `imageregistry.operator.openshift.io` group.

c. Click the **Instances** tab.

d. Beside the cluster instance, click the **Action Menu (⋮) → Edit Config**.

e. Add the new Persistent Volume Claim as persistent storage for the Image Registry.

 i. Add the following under **spec:**, replacing the existing **storage:** section if necessary.

```
storage:
pvc:
  claim: <new-pvc-name>
```

For example:

```
storage:
pvc:
  claim: ocs4registry
```

ii. Click **Save**.

3. **Verify that the new configuration is being used.**
a. Click Workloads → Pods.

b. Set the Project to openshift-image-registry.

c. Verify that the new image-registry-* pod appears with a status of Running, and that the previous image-registry-* pod terminates.

d. Click the new image-registry-* pod to view pod details.

e. Scroll down to Volumes and verify that the registry-storage volume has a Type that matches your new Persistent Volume Claim, for example, ocs4registry.

4.2. CONFIGURING MONITORING TO USE OPENSSHIFT CONTAINER STORAGE

OpenShift Container Storage provides a monitoring stack that is comprised of Prometheus and AlertManager.

Follow the instructions in this section to configure OpenShift Container Storage as storage for the monitoring stack.

IMPORTANT

Monitoring will not function if it runs out of storage space. Always ensure that you have plenty of storage capacity for monitoring.

Red Hat recommends configuring a short retention intervals for this service. See the Modifying retention time for Prometheus metrics data sub section of Configuring persistent storage in the OpenShift Container Platform documentation for details.

Prerequisites

- You have administrative access to OpenShift Web Console.

- OpenShift Container Storage Operator is installed and running in the openshift-storage namespace. In OpenShift Web Console, click Operators → Installed Operators to view installed operators.

- Monitoring Operator is installed and running in the openshift-monitoring namespace. In OpenShift Web Console, click Administration → Cluster Settings → Cluster Operators to view cluster operators.

- A storage class with provisioner openshift-storage.rbd.csi.ceph.com is available. In OpenShift Web Console, click Storage → Storage Classes to view available storage classes.

Procedure

1. In OpenShift Web Console, go to Workloads → Config Maps.

2. Set the Project dropdown to openshift-monitoring.

3. Click Create Config Map.

4. Define a new cluster-monitoring-config Config Map using the following example.
Replace the content in angle brackets (<, >) with your own values, for example, **retention: 24h** or **storage: 40Gi**.

Replace the `storageClassName` with the **storageclass** that uses the provisioner **openshift-storage.rbd.csi.ceph.com**. In the example given below the name of the **storageclass** is **ocs-storagecluster-ceph-rbd**.

Example cluster-monitoring-config **Config Map**

```yaml
apiVersion: v1
type: ConfigMap
metadata:
  name: cluster-monitoring-config
  namespace: openshift-monitoring
data:
  config.yaml: |
    prometheusK8s:
      retention: <time to retain monitoring files, e.g. 24h>
      volumeClaimTemplate:
        metadata:
          name: ocs-prometheus-claim
        spec:
          storageClassName: ocs-storagecluster-ceph-rbd
          resources:
            requests:
              storage: <size of claim, e.g. 40Gi>
    alertmanagerMain:
      volumeClaimTemplate:
        metadata:
          name: ocs-alertmanager-claim
        spec:
          storageClassName: ocs-storagecluster-ceph-rbd
          resources:
            requests:
              storage: <size of claim, e.g. 40Gi>
```

5. Click **Create** to save and create the Config Map.

Verification steps

1. Verify that the Persistent Volume Claims are bound to the pods.
 a. Go to **Storage → Persistent Volume Claims**
 b. Set the **Project** dropdown to **openshift-monitoring**.
 c. Verify that 5 Persistent Volume Claims are visible with a state of **Bound**, attached to three **alertmanager-main-*** pods, and two **prometheus-k8s-*** pods.

Monitoring storage created and bound
2. Verify that the new alertmanager-main-* pods appear with a state of Running.
 a. Click the new alertmanager-main-* pods to view the pod details.
 b. Scroll down to Volumes and verify that the volume has a Type, ocs-alertmanager-claim that matches one of your new Persistent Volume Claims, for example, ocs-alertmanager-claim-alertmanager-main-0.

3. Verify that the new prometheus-k8s-* pods appear with a state of Running.
 a. Click the new prometheus-k8s-* pods to view the pod details.
 b. Scroll down to Volumes and verify that the volume has a Type, ocs-prometheus-claim that matches one of your new Persistent Volume Claims, for example, ocs-prometheus-claim-prometheus-k8s-0.

4.3. CLUSTER LOGGING FOR OPENSIFT CONTAINER STORAGE

You can deploy cluster logging to aggregate logs for a range of OpenShift Container Platform services. For information about how to deploy cluster logging, see Deploying cluster logging.
Upon initial OpenShift Container Platform deployment, OpenShift Container Storage is not configured by default and the OpenShift Container Platform cluster will solely rely on default storage available from the nodes. You can edit the default configuration of OpenShift logging (ElasticSearch) to be backed by OpenShift Container Storage to have OpenShift Container Storage backed logging (Elasticsearch).

IMPORTANT

Always ensure that you have plenty of storage capacity for these services. If you run out of storage space for these critical services, the logging application becomes inoperable and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these services. See Cluster logging curator in the OpenShift Container Platform documentation for details.

If you run out of storage space for these services, contact Red Hat Customer Support.

4.3.1. Configuring persistent storage

You can configure a persistent storage class and size for the Elasticsearch cluster using the storage class name and size parameters. The Cluster Logging Operator creates a Persistent Volume Claim for each data node in the Elasticsearch cluster based on these parameters. For example:

```yaml
spec:
  logStore:
    type: "elasticsearch"
    elasticsearch:
      nodeCount: 3
      storage:
        storageClassName: "ocs-storagecluster-ceph-rbd"
        size: "200G"
```

This example specifies that each data node in the cluster will be bound to a Persistent Volume Claim that requests 200GiB of ocs-storagecluster-ceph-rbd storage. Each primary shard will be backed by a single replica. A copy of the shard is replicated across all the nodes and are always available and the copy can be recovered if at least two nodes exist due to the single redundancy policy. For information about Elasticsearch replication policies, see Elasticsearch replication policy in About deploying and configuring cluster logging.

NOTE

Omission of the storage block will result in a deployment backed by default storage. For example:

```yaml
spec:
  logStore:
    type: "elasticsearch"
    elasticsearch:
      nodeCount: 3
      storage: {}
```

For more information, see Configuring cluster logging.
4.3.2. Configuring cluster logging to use OpenShift Container Storage

Follow the instructions in this section to configure OpenShift Container Storage as storage for the OpenShift cluster logging.

NOTE

You can obtain all the logs when you configure logging for the first time in OpenShift Container Storage. However, after you uninstall and reinstall logging, the old logs are removed and only the new logs are processed.

Prerequisites

- You have administrative access to OpenShift Web Console.
- OpenShift Container Storage Operator is installed and running in the openshift-storage namespace.
- Cluster logging Operator is installed and running in the openshift-logging namespace.

Procedure

1. Click Administration → Custom Resource Definitions from the left pane of the OpenShift Web Console.

3. On the Custom Resource Definition Overview page, select View Instances from the Actions menu or click the Instances Tab.

4. On the Cluster Logging page, click Create Cluster Logging. You might have to refresh the page to load the data.

5. In the YAML, replace the storageClassName with the storageclass that uses the provisioner openshift-storage.rbd.csi.ceph.com. In the example given below the name of the storageclass is ocs-storagecluster-ceph-rbd:

```yaml
apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
  name: "instance"
  namespace: "openshift-logging"
spec:
  managementState: "Managed"
  logStore:
    type: "elasticsearch"
    elasticsearch:
      nodeCount: 3
      storage:
        storageClassName: ocs-storagecluster-ceph-rbd
        size: 200G
        redundancyPolicy: "SingleRedundancy"
  visualization:
    type: "kibana"
    kibana:
      replicas: 1
```
6. Click **Save**.

Verification steps

1. Verify that the Persistent Volume Claims are bound to the **elasticsearch** pods.
 a. Go to **Storage → Persistent Volume Claims**
 b. Set the **Project** dropdown to **openshift-logging**.
 c. Verify that Persistent Volume Claims are visible with a state of **Bound**, attached to **elasticsearch-** pods.

 Figure 4.1. Cluster logging created and bound

2. Verify that the new cluster logging is being used.
 a. Click **Workload → Pods**
 b. Set the Project to **openshift-logging**.
 c. Verify that the new **elasticsearch-** pods appear with a state of **Running**.
 d. Click the new **elasticsearch-** pod to view pod details.
 e. Scroll down to **Volumes** and verify that the elasticsearch volume has a **Type** that matches your new Persistent Volume Claim, for example, **elasticsearch-elasticsearch-cdm-9r624biv-3**.
 f. Click the Persistent Volume Claim name and verify the storage class name in the PersistenVolumeClaim Overview page.
NOTE

Make sure to use a shorter curator time to avoid PV full scenario on PVs attached to Elasticsearch pods.

You can configure Curator to delete Elasticsearch data based on retention settings. It is recommended that you set the following default index data retention of 5 days as a default.

```yaml
config.yaml: |
  openshift-storage:
    delete:
      days: 5
```

For more details, see Curation of Elasticsearch Data.

NOTE

To uninstall the cluster logging backed by Persistent Volume Claim, use the procedure removing the cluster logging operator from OpenShift Container Storage in the uninstall chapter of the respective deployment guide.
CHAPTER 5. BACKING OPENSIFT CONTAINER PLATFORM APPLICATIONS WITH OPENSIFT CONTAINER STORAGE

You cannot directly install OpenShift Container Storage during the OpenShift Container Platform installation. However, you can install OpenShift Container Storage on an existing OpenShift Container Platform by using the Operator Hub and then configure the OpenShift Container Platform applications to be backed by OpenShift Container Storage.

Prerequisites

- OpenShift Container Platform is installed and you have administrative access to OpenShift Web Console.
- OpenShift Container Storage is installed and running in the `openshift-storage` namespace.

Procedure

1. In the OpenShift Web Console, perform one of the following:

 - Click **Workloads ➔ Deployments**.

 In the Deployments page, you can do one of the following:

 - Select any existing deployment and click **Add Storage** option from the **Action** menu (⋮).

 - Create a new deployment and then add storage.

 i. Click **Create Deployment** to create a new deployment.

 ii. Edit the **YAML** based on your requirement to create a deployment.

 iii. Click **Create**.

 iv. Select **Add Storage** from the **Actions** drop down menu on the top right of the page.

 - Click **Workloads ➔ Deployment Configs**

 In the Deployment Configs page, you can do one of the following:

 - Select any existing deployment and click **Add Storage** option from the **Action** menu (⋮).

 - Create a new deployment and then add storage.

 i. Click **Create Deployment Config** to create a new deployment.

 ii. Edit the **YAML** based on your requirement to create a deployment.

 iii. Click **Create**.

 iv. Select **Add Storage** from the **Actions** drop down menu on the top right of the page.

2. In the Add Storage page, you can choose one of the following options:

 - Click the **Use existing claim** option and select a suitable PVC from the drop down list.
• Click the **Create new claim** option.

a. Select the appropriate **CephFS** or **RBD** storage class from the **Storage Class** drop down list.

b. Provide a name for the Persistent Volume Claim.

c. Select ReadWriteOnce (RWO) or ReadWriteMany (RWX) access mode.

 NOTE

 ReadOnlyMany (ROX) is deactivated as it is not supported.

d. Select the size of the desired storage capacity.

 NOTE

 You cannot resize the storage capacity after the creation of Persistent Volume Claim.

3. Specify the mount path and subpath (if required) for the mount path volume inside the container.

4. Click **Save**.

Verification steps

1. Depending on your configuration, perform one of the following:

 • Click **Workloads → Deployments**.

 • Click **Workloads → Deployment Configs**

2. Set the Project as required.

3. Click the deployment for you which you added storage to view the deployment details.

4. Scroll down to **Volumes** and verify that your deployment has a **Type** that matches the Persistent Volume Claim that you assigned.

5. Click the Persistent Volume Claim name and verify the storage class name in the PersistentVolumeClaim Overview page.
CHAPTER 6. SCALING STORAGE NODES

To scale the storage capacity of OpenShift Container Storage, you can do either of the following:

- **Scale up storage nodes** - Add storage capacity to the existing OpenShift Container Storage worker nodes
- **Scale out storage nodes** - Add new worker nodes containing storage capacity

6.1. REQUIREMENTS FOR SCALING STORAGE NODES

Before you proceed to scale the storage nodes, refer to the following sections to understand the node requirements for your specific Red Hat OpenShift Container Storage instance:

- **Platform requirements**
- **Storage device requirements**
 - Dynamic storage devices
 - Capacity planning

![WARNING]

Always ensure that you have plenty of storage capacity.

If storage ever fills completely, it is not possible to add capacity or delete or migrate content away from the storage to free up space. Completely full storage is very difficult to recover.

Capacity alerts are issued when cluster storage capacity reaches 75% (near-full) and 85% (full) of total capacity. Always address capacity warnings promptly, and review your storage regularly to ensure that you do not run out of storage space.

If you do run out of storage space completely, contact Red Hat Customer Support.

6.2. SCALING UP STORAGE BY ADDING CAPACITY TO YOUR OPENSHIFT CONTAINER STORAGE NODES ON RED HAT OPENSTACK PLATFORM INFRASTRUCTURE

Use this procedure to add storage capacity and performance to your configured Red Hat OpenShift Container Storage worker nodes.

Prerequisites

- A running OpenShift Container Storage Platform
- Administrative privileges on the OpenShift Web Console

Procedure
1. Navigate to the OpenShift Web Console.

2. Click on Operators on the left navigation bar.

3. Select Installed Operators.

4. In the window, click OpenShift Container Storage Operator:

5. In the top navigation bar, scroll right and click Storage Cluster tab.

6. The visible list should have only one item. Click (⋮) on the far right to extend the options menu.

7. Select Add Capacity from the options menu.

Add Capacity

Adding capacity for ocs-storagecluster, may increase your expenses.

Storage Class

SC standard

Raw Capacity

2

x 3 replicas = 6 TiB

Currently Used: Not available
From this dialog box, you can set the requested additional capacity and the storage class. **Add capacity** will show the capacity selected at the time of installation and will allow to add the capacity only in this increment. The storage class should be set to **standard**.

NOTE

The effectively provisioned capacity will be three times as much as what you see in the **Raw Capacity** field because OpenShift Container Storage uses a replica count of 3.

8. Once you are done with your setting, click **Add**. You might need to wait a couple of minutes for the storage cluster to reach **Ready** state.

Verification steps

1. Navigate to **Overview → Persistent Storage** tab, then check the **Capacity breakdown** card.

 ![Capacity breakdown](image)

 - 9.44 GiB used
 - 847.7 GiB available
 - openShift... 5.75 GiB
 - openShift... 3.18 GiB
 - openShift... 486 MiB
 - fedora-pods 44.03 MiB

2. Note that the capacity increases based on your selections.

IMPORTANT

As of OpenShift Container Storage 4.2, cluster reduction, whether by reducing OSDs or nodes, is not supported.

6.3. SCALING OUT STORAGE CAPACITY BY ADDING NEW NODES

To scale out storage capacity, you need to perform the following:

- Add a new node to increase the storage capacity when existing worker nodes are already running at their maximum supported OSDs, which is the increment of 3 OSDs of the capacity selected during initial configuration.

- Verify that the new node is added successfully

- Scale up the storage capacity after the node is added

Prerequisites

- You must be logged into OpenShift Container Platform (OCP) cluster.

Procedure

1. Navigate to **Compute → Machine Sets**.
2. On the machine set where you want to add nodes, select **Edit Machine Count**.

3. Add the amount of nodes, and click **Save**.

4. Click **Compute → Nodes** and confirm if the new node is in **Ready** state.

5. Apply the OpenShift Container Storage label to the new node.
 a. For the new node, **Action menu (⋮) → Edit Labels**.
 b. Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.

 NOTE

 It is recommended to add 3 nodes each in different zones. You must add 3 nodes and perform this procedure for all of them.

Verification steps

To verify that the new node is added, see **Section 6.3.1, “Verifying the addition of a new node”**.

6.3.1. Verifying the addition of a new node

1. Execute the following command and verify that the new node is present in the output:

   ```bash
   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= | cut -d' ' -f1
   ```

2. Click **Workloads → Pods**, confirm that at least the following pods on the new node are in **Running** state:
 - `csi-cephfsplugin-*`
 - `csi-rbdplugin-*`

6.3.2. Scaling up storage capacity

After you add a new node to OpenShift Container Storage, you must scale up the storage capacity as described in **Scaling up storage by adding capacity**.
7.1. ABOUT THE MULTICLOUD OBJECT GATEWAY

The Multicloud Object Gateway (MCG) is a lightweight object storage service for OpenShift, allowing users to start small and then scale as needed on-premise, in multiple clusters, and with cloud-native storage.

7.2. ACCESSING THE MULTICLOUD OBJECT GATEWAY WITH YOUR APPLICATIONS

You can access the object service with any application targeting AWS S3 or code that uses AWS S3 Software Development Kit (SDK). Applications need to specify the MCG endpoint, an access key, and a secret access key. You can use your terminal or the MCG CLI to retrieve this information.

Prerequisites

- A running OpenShift Container Storage Platform
- Download the MCG command-line interface for easier management:

```
# subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
# yum install mcg
```
- Alternatively, you can install the `mcg` package from the OpenShift Container Storage RPMs found at Download RedHat OpenShift Container Storage page.

You can access the relevant endpoint, access key, and secret access key two ways:

- Section 7.2.1, “Accessing the Multicloud Object Gateway from the terminal”
- Section 7.2.2, “Accessing the Multicloud Object Gateway from the MCG command-line interface”

7.2.1. Accessing the Multicloud Object Gateway from the terminal

Procedure

Run the `describe` command to view information about the MCG endpoint, including its access key (`AWS_ACCESS_KEY_ID` value) and secret access key (`AWS_SECRET_ACCESS_KEY` value):

```bash
# oc describe noobaa -n openshift-storage
```

The output will look similar to the following:

```
Name: noobaa
Namespace: openshift-storage
Labels: <none>
Annotations: <none>
API Version: noobaa.io/v1alpha1
Kind: NooBaa
Metadata:
```
Welcome to NooBaa!

Welcome to NooBaa!

NooBaa Core Version:
NooBaa Operator Version:

Let's get started:

1. Connect to Management console:

 Read your mgmt console login information (email & password) from secret: "noobaa-admin".

 kubectl get secret noobaa-admin -n openshift-storage -o json | jq '.data|map_values(@base64d)'

 Open the management console service - take External IP/DNS or Node Port or use port forwarding:

 kubectl port-forward -n openshift-storage service/noobaa-mgmt 11443:443 &
 open https://localhost:11443

2. Test S3 client:

 kubectl port-forward -n openshift-storage service/s3 10443:443 &

 NOOBAA_ACCESS_KEY=$(kubectl get secret noobaa-admin -n openshift-storage -o json | jq -r '.data.AWS_ACCESS_KEY_ID|@base64d')
 NOOBAA_SECRET_KEY=$(kubectl get secret noobaa-admin -n openshift-storage -o json | jq -r '.data.AWS_SECRET_ACCESS_KEY|@base64d')

 alias s3='AWS_ACCESS_KEY_ID=$NOOBAA_ACCESS_KEY
 AWS_SECRET_ACCESS_KEY=$NOOBAA_SECRET_KEY
 aws --endpoint https://localhost:10443
 --no-verify-ssl s3'

 s3 ls

Services:
Service Mgmt:
External DNS:
1. access key (AWS_ACCESS_KEY_ID value)
2. secret access key (AWS_SECRET_ACCESS_KEY value)
3. MCG endpoint

NOTE

The output from the `oc describe noobaa` command lists the internal and external DNS names that are available. When using the internal DNS, the traffic is free. The external DNS uses Load Balancing to process the traffic, and therefore has a cost per hour.

7.2.2. Accessing the Multicloud Object Gateway from the MCG command-line interface

Prerequisites

- Download the MCG command-line interface:

```bash
# subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
# yum install mcg
```

Procedure

Run the `status` command to access the endpoint, access key, and secret access key:

```bash
noobaa status -n openshift-storage
```

The output will look similar to the following:
ExternalDNS : [https://noobaa-mgmt-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
https://a3406079515be11eaa3b70683061451e-1194613580.us-east-2.elb.amazonaws.com:443
https://noobaa-mgmt-openshift-storage.svc:443
https://10.131.0.19:8443]

ExternalIP : []
NodePorts : [https://10.0.142.103:31385]
InternalDNS : [https://noobaa-mgmt-openshift-storage.svc:443]
InternalIP : [https://172.30.235.12:443]
PodPorts : [https://10.131.0.19:8443]

email : admin@noobaa.io
password : HKLbH1rSuVU0I/souIkSiA==
You now have the relevant endpoint, access key, and secret access key in order to connect to your applications.

Example 7.1. Example
If AWS S3 CLI is the application, the following command will list buckets in OCS:

```
AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY_ID>
AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY>
aws --endpoint <ENDPOINT> --no-verify-ssl s3 ls
```

7.3. ADDING STORAGE RESOURCES FOR HYBRID OR MULTICLOUD

7.3.1. Adding storage resources for hybrid or Multicloud using the MCG command line interface

The Multicloud Object Gateway (MCG) simplifies the process of spanning data across cloud provider and clusters.

To do so, add a backing storage that can be used by the MCG.

Prerequisites

- Download the MCG command-line interface:
  ```
  # subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
  # yum install mcg
  ```
- Alternatively, you can install the `mcg` package from the OpenShift Container Storage RPMs found here [Download RedHat OpenShift Container Storage page](#).

Procedure

1. From the MCG command-line interface, run the following command:

   ```
   noobaa backingstore create <backing-store-type> <backingstore_name> --access-key=<AWS ACCESS KEY> --secret-key=<AWS SECRET ACCESS KEY> --target-bucket <bucket-name>
   ```

 a. Replace `<backing-store-type>` with your relevant backing store type: `aws-s3`, `google-cloud-store`, `azure-blob`, `s3-compatible`, or `ibm-cos`.

 b. Replace `<backingstore_name>` with the name of the backingstore.

 c. Replace `<AWS ACCESS KEY>` and `<AWS SECRET ACCESS KEY>` with an AWS access key ID and secret access key you created for this purpose.

 d. Replace `<bucket-name>` with an existing AWS bucket name. This argument tells NooBaa which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.

 The output will be similar to the following:

   ```
   INFO[0001]  Exists: NooBaa "noobaa"
   INFO[0002]  Created: BackingStore "aws-resource"
   INFO[0002]  Created: Secret "backing-store-secret-aws-resource"
   ```
You can also add storage resources using a YAML:

1. Create a secret with the credentials:

   ```yaml
   apiVersion: v1
   kind: Secret
   metadata:
     name: <backingstore-secret-name>
     type: Opaque
   data:
     AWS_ACCESS_KEY_ID: <AWS ACCESS KEY ID ENCODED IN BASE64>
     AWS_SECRET_ACCESS_KEY: <AWS SECRET ACCESS KEY ENCODED IN BASE64>
   ```

 a. You must supply and encode your own AWS access key ID and secret access key using Base64, and use the results in place of `<AWS ACCESS KEY ID ENCODED IN BASE64>` and `<AWS SECRET ACCESS KEY ENCODED IN BASE64>`.

 b. Replace `<backingstore-secret-name>` with a unique name.

2. Apply the following YAML for a specific backing store:

   ```yaml
   apiVersion: noobaa.io/v1alpha1
   kind: BackingStore
   metadata:
     - noobaa.io/finalizer
   labels:
     app: noobaa
     name: bs
     namespace: noobaa
   spec:
     awsS3:
       secret:
         name: <backingstore-secret-name>
         namespace: noobaa
       targetBucket: <bucket-name>
       type: <backing-store-type>
   ```

 a. Replace `<bucket-name>` with an existing AWS bucket name. This argument tells NooBaa which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.

 b. Replace `<backingstore-secret-name>` with the name of the secret created in the previous step.

 c. Replace `<backing-store-type>` with your relevant backing store type: `aws-s3`, `google-cloud-store`, `azure-blob`, `s3-compatible`, or `ibm-cos`.

7.3.2. Creating an s3 compatible Multicloud Object Gateway backingstore

The Multicloud Object Gateway can use any S3 compatible object storage as a backing store, for example, Red Hat Ceph Storage’s RADOS Gateway (RGW). The following procedure shows how to create an S3 compatible Multicloud Object Gateway backing store for Red Hat Ceph Storage’s RADOS Gateway. Note that when RGW is deployed, Openshift Container Storage operator creates an S3 compatible backingstore for Multicloud Object Gateway automatically.
Procedure

1. From the Multicloud Object Gateway (MCG) command-line interface, run the following NooBaa command:

   ```
   noobaa backingstore create s3-compatible rgw-resource --access-key=<RGW ACCESS KEY> --secret-key=<RGW SECRET KEY> --target-bucket=<bucket-name> --endpoint=http://rook-ceph-rgw-ocs-storagecluster-cephobjectstore.openshift-storage.svc.cluster.local:80
   ``

   a. To get the `<RGW ACCESS KEY>` and `<RGW SECRET KEY>`, run the following command using your RGW user secret name:

   ```
 oc get secret <RGW USER SECRET NAME> -o yaml
 ``

 b. Decode the access key ID and the access key from Base64 and keep them.

 c. Replace `<RGW USER ACCESS KEY>` and `<RGW USER SECRET ACCESS KEY>` with the appropriate, decoded data from the previous step.

 d. Replace `<bucket-name>` with an existing RGW bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.

 The output will be similar to the following:

   ```
   INFO[0001] Exists: NooBaa "noobaa"
   INFO[0002] Created: BackingStore "rgw-resource"
   INFO[0002] Created: Secret "backing-store-secret-rgw-resource"
   ```

You can also create the backingstore using a YAML:

1. Create a `CephObjectStore` user. This also creates a secret containing the RGW credentials:

   ```
   apiVersion: ceph.rook.io/v1
   kind: CephObjectStoreUser
   metadata:
     name: <RGW-Username>
     namespace: openshift-storage
   spec:
     store: ocs-storagecluster-cephobjectstore
     displayName: "<Display-name>"
   ```

 a. Replace `<RGW-Username>` and `<Display-name>` with a unique username and display name.

2. Apply the following YAML for an S3-Compatible backing store:

   ```
   apiVersion: noobaa.io/v1alpha1
   kind: BackingStore
   metadata:
     finalizers:
     - noobaa.io/finalizer
   labels:
     app: noobaa
   name: <backingstore-name>
   ```
namespace: openshift-storage
spec:
 s3Compatible:
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 signatureVersion: v4
 targetBucket: <RGW-bucket-name>
 type: s3-compatible

a. Replace `<backingstore-secret-name>` with the name of the secret that was created with CephObjectStore in the previous step.

b. Replace `<bucket-name>` with an existing RGW bucket name. This argument tells Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and subsequently, data storage and administration.

7.3.3. Adding storage resources for hybrid and Multicloud using the user interface

Procedure

1. In your OpenShift Storage console, navigate to Overview → Object Service → select the noobaa link:

2. Select the Resources tab in the left, highlighted below. From the list that populates, select Add Cloud Resource:
3. Select **Add new connection**

4. Select the relevant native cloud provider or S3 compatible option and fill in the details:

5. Select the newly created connection and map it to the existing bucket:
6. Repeat these steps to create as many backing stores as needed.

NOTE

Resources created in NooBaa UI cannot be used by OpenShift UI or MCG CLI.

7.3.4. Creating a new bucket class

Bucket class is a CRD representing a class of buckets that defines tiering policies and data placements for an Object Bucket Class (OBC).

Use this procedure to create a bucket class in OpenShift Container Storage.

Procedure

1. Click **Operators → Installed Operators** from the left pane of the OpenShift Web Console to view the installed operators.

2. Click **OpenShift Container Storage** Operator.

3. On the OpenShift Container Storage Operator page, scroll right and click the **Bucket Class** tab.

 Figure 7.1. OpenShift Container Storage Operator page with Bucket Class tab

4. Click **Create Bucket Class**.

5. On the Create new Bucket Class page, perform the following:
 a. Enter a **Bucket Class Name** and click **Next**.
b. In Placement Policy, select **Tier 1 - Policy Type** and click **Next**. You can choose either one of the options as per your requirements.

- **Spread** allows spreading of the data across the chosen resources.
- **Mirror** allows full duplication of the data across the chosen resources.
- **Click Add Tier** to add another policy tier.

Figure 7.3. Tier 1 - Policy Type selection page

c. Select atleast one **Backing Store** resource from the available list if you have selected Tier 1 - Policy Type as Spread and click **Next**. Alternatively, you can also **create a new backing store**.
NOTE

You need to select at least 2 backing stores when you select Policy Type as Mirror in previous step.

a. Review and confirm Bucket Class settings.

b. Click Create Bucket Class.

Verification steps

1. Click Operators → Installed Operators.
2. Click OpenShift Container Storage Operator.
3. Search for the new Bucket Class or click Bucket Class tab to view all the Bucket Classes.

7.3.5. Creating a new backing store

Use this procedure to create a new backing store in OpenShift Container Storage.

Prerequisites

- Administrator access to OpenShift.
Procedure

1. Click **Operators → Installed Operators** from the left pane of the OpenShift Web Console to view the installed operators.

2. Click **OpenShift Container Storage** Operator.

3. On the OpenShift Container Storage Operator page, scroll right and click the **Backing Store** tab.

 Figure 7.6. OpenShift Container Storage Operator page with backing store tab

4. Click **Create Backing Store**

 Figure 7.7. Create Backing Store page

5. On the Create New Backing Store page, perform the following:
 a. Enter a **Backing Store Name**.
 b. Select a **Provider**.
 c. Select a **Region**.
 d. Enter an **Endpoint**. This is optional.
 e. Select a **Secret** from drop down list, or create your own secret. Optionally, you can **Switch to Credentials** view which lets you fill in the required secrets. For more information on creating an OCP secret, see the section **Creating the secret** in the Openshift Container Platform documentation.

Each backingstore requires a different secret. For more information on creating the secret...
for a particular backingstore, see the Section 7.3.1, "Adding storage resources for hybrid or Multicloud using the MCG command line interface" and follow the procedure for the addition of storage resources using a YAML.

NOTE

This menu is relevant for all providers except Google Cloud and local PVC.

f. Enter Target bucket. The target bucket is a container storage that is hosted on the remote cloud service. It allows you to create a connection that tells MCG that it can use this bucket for the system.

6. Click Create Backing Store.

Verification steps

1. Click Operators → Installed Operators.
2. Click OpenShift Container Storage Operator.
3. Search for the new backing store or click Backing Store tab to view all the backing stores.

7.4. MIRRORING DATA FOR HYBRID AND MULTICLOUD BUCKETS

The Multicloud Object Gateway (MCG) simplifies the process of spanning data across cloud provider and clusters.

Prerequisites

- You must first add a backing storage that can be used by the MCG, see Section 7.3, "Adding storage resources for hybrid or Multicloud".

Then you create a bucket class that reflects the data management policy, mirroring.

Procedure

You can set up mirroring data three ways:

- Section 7.4.1, "Creating bucket classes to mirror data using the MCG command-line-interface"
- Section 7.4.2, "Creating bucket classes to mirror data using a YAML"
- Section 7.4.3, "Configuring buckets to mirror data using the user interface"

7.4.1. Creating bucket classes to mirror data using the MCG command-line-interface

1. From the MCG command-line interface, run the following command to create a bucket class with a mirroring policy:

```bash
$ noobaa bucketclass create mirror-to-aws --backingstores=azure-resource,aws-resource --placement Mirror
```

2. Set the newly created bucket class to a new bucket claim, generating a new bucket that will be mirrored between two locations:
7.4.2. Creating bucket classes to mirror data using a YAML

1. Apply the following YAML. This YAML is a hybrid example that mirrors data between local Ceph storage and AWS:

   ```yaml
   apiVersion: noobaa.io/v1alpha1
   kind: BucketClass
   metadata:
     name: hybrid-class
     labels:
       app: noobaa
   spec:
     placementPolicy:
       tiers:
       - tier:
           mirrors:
           - mirror:
               spread:
               - cos-east-us
           - mirror:
               spread:
               - noobaa-test-bucket-for-ocp201907291921-11247_resource
   ```

2. Add the following lines to your standard Object Bucket Claim (OBC):

   ```yaml
   additionalConfig:
     bucketclass: mirror-to-aws
   ```

 For more information about OBCs, see Section 7.6, “Object Bucket Claim”.

7.4.3. Configuring buckets to mirror data using the user interface

1. In your OpenShift Storage console, navigate to `Overview → Object Service` → select the `noobaa` link:
2. Click the **buckets** icon on the left side. You will see a list of your buckets:

3. Click the bucket you want to update.

4. Click **Edit Tier 1 Resources**
5. Select **Mirror** and check the relevant resources you want to use for this bucket. In the following example, we mirror data between on prem Ceph RGW to AWS:

6. Click **Save**.

NOTE

Resources created in NooBaa UI cannot be used by OpenShift UI or MCG CLI.

7.5. BUCKET POLICIES IN THE MULTICLOUD OBJECT GATEWAY

OpenShift Container Storage supports AWS S3 bucket policies. Bucket policies allow you to grant users access permissions for buckets and the objects in them.

7.5.1. About bucket policies

Bucket policies are an access policy option available for you to grant permission to your AWS S3 buckets and objects. Bucket policies use JSON-based access policy language. For more information about access policy language, see [AWS Access Policy Language Overview](#).
7.5.2. Using bucket policies

Prerequisites

- A running OpenShift Container Storage Platform
- Access to the Multicloud Object Gateway, see Section 7.2, "Accessing the Multicloud Object Gateway with your applications"

Procedure

To use bucket policies in the Multicloud Object Gateway:

1. Create the bucket policy in JSON format. See the following example:

```json
{
  "Version": "NewVersion",
  "Statement": [
    {
      "Sid": "Example",
      "Effect": "Allow",
      "Principal": [
        "john.doe@example.com"
      ],
      "Action": [
        "s3:GetObject"
      ],
      "Resource": [
        "arn:aws:s3:::john_bucket"
      ]
    }
  ]
}
```

There are many available elements for bucket policies. For details on these elements and examples of how they can be used, see AWS Access Policy Language Overview.

For more examples of bucket policies, see AWS Bucket Policy Examples.

Instructions for creating S3 users can be found in Section 7.5.3, "Creating an AWS S3 user in the Multicloud Object Gateway".

2. Using AWS S3 client, use the `put-bucket-policy` command to apply the bucket policy to your S3 bucket:

```bash
# aws --endpoint ENDPOINT --no-verify-ssl s3api put-bucket-policy --bucket MyBucket --policy BucketPolicy
```

Replace `ENDPOINT` with the S3 endpoint

Replace `MyBucket` with the bucket to set the policy on

Replace `BucketPolicy` with the bucket policy JSON file

Add `--no-verify-ssl` if you are using the default self signed certificates
For example:

```bash
# aws --endpoint https://s3-openshift-storage.apps.gogo44.noobaa.org --no-verify-ssl s3api put-bucket-policy -bucket MyBucket --policy file://BucketPolicy
```

For more information on the `put-bucket-policy` command, see the AWS CLI Command Reference for `put-bucket-policy`.

NOTE

The principal element specifies the user that is allowed or denied access to a resource, such as a bucket. Currently, Only NooBaa accounts can be used as principals. In the case of object bucket claims, NooBaa automatically create an account `obc-account.<generated bucket name>@noobaa.io`.

NOTE

Bucket policy conditions are not supported.

7.5.3. Creating an AWS S3 user in the Multicloud Object Gateway

Prerequisites

- A running OpenShift Container Storage Platform
- Access to the Multicloud Object Gateway, see Section 7.2, "Accessing the Multicloud Object Gateway with your applications"

Procedure

1. In your OpenShift Storage console, navigate to **Overview → Object Service →** select the `noobaa` link:

2. Under the **Accounts** tab, click **Create Account**
3. Select **S3 Access Only**, provide the **Account Name**, for example, `john.doe@example.com`. Click Next:

![Create Account](image)

- **Access Type:**
 - Administrator
 - S3 Access Only

- **Account Name:**
 - `john.doe@example.com`
 - 3 - 32 characters

4. Select **S3 default placement**, for example, `noobaa-default-backing-store`. Select **Buckets Permissions**. A specific bucket or all buckets can be selected. Click **Create**.
7.6. OBJECT BUCKET CLAIM

An Object Bucket Claim can be used to request an S3 compatible bucket backend for your workloads.

You can create an Object Bucket Claim three ways:

- **Section 7.6.1, “Dynamic Object Bucket Claim”**
- **Section 7.6.2, “Creating an Object Bucket Claim using the command line interface”**
- **Section 7.6.3, “Creating an Object Bucket Claim using the OpenShift Web Console”**

An object bucket claim creates a new bucket and an application account in NooBaa with permissions to the bucket, including a new access key and secret access key. The application account is allowed to access only a single bucket and can’t create new buckets by default.

7.6.1. Dynamic Object Bucket Claim

Similar to Persistent Volumes, you can add the details of the Object Bucket claim to your application’s YAML, and get the object service endpoint, access key, and secret access key available in a configuration map and secret. It is easy to read this information dynamically into environment variables of your application.
Procedure

1. Add the following lines to your application YAML:

```yaml
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
  name: <obc-name>
spec:
  generateBucketName: <obc-bucket-name>
  storageClassName: openshift-storage.noobaa.io
```

These lines are the Object Bucket Claim itself.

 a. Replace `<obc-name>` with the a unique Object Bucket Claim name.

 b. Replace `<obc-bucket-name>` with a unique bucket name for your Object Bucket Claim.

2. You can add more lines to the YAML file to automate the use of the Object Bucket Claim. The example below is the mapping between the bucket claim result, which is a configuration map with data and a secret with the credentials. This specific job will claim the Object Bucket from NooBaa, which will create a bucket and an account.

```yaml
apiVersion: batch/v1
kind: Job
metadata:
  name: testjob
spec:
  template:
    spec:
      restartPolicy: OnFailure
      containers:
      - image: <your application image>
        name: test
        env:
        - name: BUCKET_NAME
          valueFrom:
            configMapKeyRef:
              name: <obc-name>
              key: BUCKET_NAME
        - name: BUCKET_HOST
          valueFrom:
            configMapKeyRef:
              name: <obc-name>
              key: BUCKET_HOST
        - name: BUCKET_PORT
          valueFrom:
            configMapKeyRef:
              name: <obc-name>
              key: BUCKET_PORT
        - name: AWS_ACCESS_KEY_ID
          valueFrom:
            secretKeyRef:
              name: <obc-name>
              key: AWS_ACCESS_KEY_ID
        - name: AWS_SECRET_ACCESS_KEY
          valueFrom:
            secretKeyRef:
              name: <obc-name>
              key: AWS_SECRET_ACCESS_KEY
```
valueFrom:
secretKeyRef:
 name: <obc-name>
 key: AWS_SECRET_ACCESS_KEY

a. Replace all instances of <obc-name> with your Object Bucket Claim name.
b. Replace <your application image> with your application image.

3. Apply the updated YAML file:

 # oc apply -f <yaml.file>

 a. Replace <yaml.file> with the name of your YAML file.

4. To view the new configuration map, run the following:

 # oc get cm <obc-name> -o yaml

 a. Replace obc-name with the name of your Object Bucket Claim.

You can expect the following environment variables in the output:

- **BUCKET_HOST** - Endpoint to use in the application
- **BUCKET_PORT** - The port available for the application
 - The port is related to the BUCKET_HOST. For example, if the BUCKET_HOST is https://my.example.com, and the BUCKET_PORT is 443, the endpoint for the object service would be https://my.example.com:443.
- **BUCKET_NAME** - Requested or generated bucket name
- **AWS_ACCESS_KEY_ID** - Access key that is part of the credentials
- **AWS_SECRET_ACCESS_KEY** - Secret access key that is part of the credentials

7.6.2. Creating an Object Bucket Claim using the command line interface

When creating an Object Bucket Claim using the command-line interface, you get a configuration map and a Secret that together contain all the information your application needs to use the object storage service.

Prerequisites

- Download the MCG command-line interface:

 # subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
 # yum install mcg

Procedure

1. Use the command-line interface to generate the details of a new bucket and credentials. Run the following command:

 # noobaa obc create <obc-name> -n openshift-storage
Replace `<obc-name>` with a unique Object Bucket Claim name, for example, `myappobc`.

Additionally, you can use the `--app-namespace` option to specify the namespace where the Object Bucket Claim configuration map and secret will be created, for example, `myapp-namespace`.

Example output:

```
INFO[0001] Created: ObjectBucketClaim "test21obc"
```

The MCG command-line-interface has created the necessary configuration and has informed OpenShift about the new OBC.

2. Run the following command to view the Object Bucket Claim:

```
# oc get obc -n openshift-storage
```

Example output:

```
NAME        STORAGE-CLASS                 PHASE   AGE
---          ------------------------------- ------ -----
test21obc   openshift-storage.noobaa.io   Bound   38s
```

3. Run the following command to view the YAML file for the new Object Bucket Claim:

```
# oc get obc test21obc -o yaml -n openshift-storage
```

Example output:

```
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
  creationTimestamp: "2019-10-24T13:30:07Z"
  finalizers:
    - objectbucket.io/finalizer
  generation: 2
  labels:
    app: noobaa
    bucket-provisioner: openshift-storage.noobaa.io-obc
    noobaa-domain: openshift-storage.noobaa.io
  name: test21obc
  namespace: openshift-storage
  resourceVersion: "40756"
  selfLink: /apis/objectbucket.io/v1alpha1/namespaces/openshift-storage/objectbucketclaims/test21obc
  uid: 64f04cba-f662-11e9-bc3c-0295250841af
spec:
  ObjectBucketName: obc-openshift-storage-test21obc
  bucketName: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
  generateBucketName: test21obc
  storageClassName: openshift-storage.noobaa.io
status:
  phase: Bound
```
4. Inside of your `openshift-storage` namespace, you can find the configuration map and the secret to use this Object Bucket Claim. The CM and the secret have the same name as the Object Bucket Claim. To view the secret:

```
# oc get -n openshift-storage secret test21obc -o yaml
```

Example output:

```yaml
apiVersion: v1
data:
  AWS_ACCESS_KEY_ID: c0M0R2xVanF3ODR3bHBkVW94cmY=
  AWS_SECRET_ACCESS_KEY: Wi9kcFluSWxHRzlWaFlzNk1hc0xma2JXcjM1MVhra051SiBleXpmOQ==
kind: Secret
metadata:
  creationTimestamp: "2019-10-24T13:30:07Z"
finalizers:
- objectbucket.io/finalizer
labels:
  app: noobaa
  bucket-provisioner: openshift-storage.noobaa.io-obc
  noobaa-domain: openshift-storage.noobaa.io
name: test21obc
namespace: openshift-storage
ownerReferences:
- apiVersion: objectbucket.io/v1alpha1
  blockOwnerDeletion: true
  controller: true
  kind: ObjectBucketClaim
  name: test21obc
  uid: 64f04cba-f662-11e9-bc3c-0295250841af
resourceVersion: "40751"
selfLink: /api/v1/namespaces/openshift-storage/secrets/test21obc
uid: 65117c1c-f662-11e9-9094-0a5305de57bb
type: Opaque
```

The secret gives you the S3 access credentials.

5. To view the configuration map:

```
# oc get -n openshift-storage cm test21obc -o yaml
```

Example output:

```yaml
apiVersion: v1
data:
  BUCKET_HOST: 10.0.171.35
  BUCKET_NAME: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
  BUCKET_PORT: "31242"
  BUCKET_REGION: ""
  BUCKET_SUBREGION: ""
kind: ConfigMap
metadata:
  creationTimestamp: "2019-10-24T13:30:07Z"
```
finalizers:
- objectbucket.io/finalizer
labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 ownerReferences:
- apiVersion: objectbucket.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ObjectBucketClaim
 name: test21obc
 uid: 64f04cfa-f662-11e9-bc3c-0295250841af
 resourceVersion: "40752"
 selfLink: /api/v1/namespaces/openshift-storage/configmaps/test21obc
 uid: 651c6501-f662-11e9-9094-0a5305de57bb

The configuration map contains the S3 endpoint information for your application.

7.6.3. Creating an Object Bucket Claim using the OpenShift Web Console

You can create an Object Bucket Claim (OBC) using the OpenShift Web Console.

Prerequisites

- Administrative access to the OpenShift Web Console.
- In order for your applications to communicate with the OBC, you need to use the configmap and secret. For more information about this, see Section 7.6.1, “Dynamic Object Bucket Claim”.

Procedure

1. Log into the OpenShift Web Console.
2. On the left navigation bar, click Storage → Object Bucket Claims.
3. Click Create Object Bucket Claim
4. Enter a name for your object bucket claim and select the appropriate storage class based on your deployment, internal or external, from the dropdown menu:
 Internal mode
The following storage classes, which were created after deployment, are available for use:

- **ocs-storagecluster-ceph-rgw** uses the Ceph Object Gateway (RGW)
- **openshift-storage.noobaa.io** uses the Multicloud Object Gateway

External mode

The following storage classes, which were created after deployment, are available for use:

- **ocs-external-storagecluster-ceph-rgw** uses the Ceph Object Gateway (RGW)
 ● openshift-storage.noobaa.io uses the Multicloud Object Gateway

NOTE
The RGW OBC storage class is only available with fresh installations of OpenShift Container Storage version 4.5. It does not apply to clusters upgraded from previous OpenShift Container Storage releases.

5. Click Create.
Once you create the OBC, you are redirected to its detail page:

Additional Resources

● Section 7.6, "Object Bucket Claim"

7.7. SCALING MULTICLOUD OBJECT GATEWAY PERFORMANCE BY ADDING ENDPOINTS

The Multicloud Object Gateway performance may vary from one environment to another. In some cases, specific applications require faster performance which can be easily addressed by scaling S3 endpoints.

The Multicloud Object Gateway resource pool is a group of NooBaa daemon containers that provide two types of services enabled by default:

 ● Storage service
 ● S3 endpoint service

7.7.1. S3 endpoints in the Multicloud Object Gateway

The S3 endpoint is a service that every Multicloud Object Gateway provides by default that handles the heavy lifting data digestion in the Multicloud Object Gateway. The endpoint service handles the inline data chunking, deduplication, compression, and encryption, and it accepts data placement instructions from the Multicloud Object Gateway.
7.7.2. Scaling with storage nodes

Prerequisites

- A running OpenShift Container Storage cluster on OpenShift Container Platform with access to the Multicloud Object Gateway.

A storage node in the Multicloud Object Gateway is a NooBaa daemon container attached to one or more Persistent Volumes and used for local object service data storage. NooBaa daemons can be deployed on Kubernetes nodes. This can be done by creating a Kubernetes pool consisting of StatefulSet pods.

Procedure

1. In the Multicloud Object Gateway user interface, from the Overview page, click Add Storage Resources:

2. In the window, click Deploy Kubernetes Pool
3. In the **Create Pool** step create the target pool for the future installed nodes.

4. In the **Configure** step, configure the number of requested pods and the size of each PV. For each new pod, one PV is be created.
5. In the **Review** step, you can find the details of the new pool and select the deployment method you wish to use: local or external deployment. If local deployment is selected, the Kubernetes nodes will deploy within the cluster. If external deployment is selected, you will be provided with a YAML file to run externally.

6. All nodes will be assigned to the pool you chose in the first step, and can be found under **Resources → Storage resources → Resource name**.
CHAPTER 8. MANAGING PERSISTENT VOLUME CLAIMS

IMPORTANT

Expanding PVCs is not supported for PVCs backed by OpenShift Container Storage.

8.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT CONTAINER STORAGE

Follow the instructions in this section to configure OpenShift Container Storage as storage for an application pod.

Prerequisites

- You have administrative access to OpenShift Web Console.
- OpenShift Container Storage Operator is installed and running in the openshift-storage namespace. In OpenShift Web Console, click Operators → Installed Operators to view installed operators.
- The default storage classes provided by OpenShift Container Storage are available. In OpenShift Web Console, click Storage → Storage Classes to view default storage classes.

Procedure

1. Create a Persistent Volume Claim (PVC) for the application to use.
 a. In OpenShift Web Console, click Storage → Persistent Volume Claims.
 b. Set the Project for the application pod.
 c. Click Create Persistent Volume Claim
 i. Specify a Storage Class provided by OpenShift Container Storage.
 ii. Specify the PVC Name, for example, myclaim.
 iii. Select the required Access Mode.
 iv. Specify a Size as per application requirement.
 v. Click Create and wait until the PVC is in Bound status.

2. Configure a new or existing application pod to use the new PVC.
 - For a new application pod, perform the following steps:
 i. Click Workloads → Pods.
 ii. Create a new application pod.
 iii. Under the spec: section, add volume: section to add the new PVC as a volume for the application pod.
For example:

```yaml
volumes:
  - name: mypd
    persistentVolumeClaim:
      claimName: myclaim
```

- For an existing application pod, perform the following steps:

 i. Click Workloads → Deployment Configs.

 ii. Search for the required deployment config associated with the application pod.

 iii. Click on its Action menu (⋮) → Edit Deployment Config.

 iv. Under the spec: section, add volume: section to add the new PVC as a volume for the application pod and click Save.

```yaml
volumes:
  - name: <volume_name>
    persistentVolumeClaim:
      claimName: <pvc_name>
```

3. Verify that the new configuration is being used.

 a. Click Workloads → Pods.

 b. Set the Project for the application pod.

 c. Verify that the application pod appears with a status of Running.

 d. Click the application pod name to view pod details.

 e. Scroll down to Volumes section and verify that the volume has a Type that matches your new Persistent Volume Claim, for example, myclaim.

8.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS

Use this procedure to view the status of a PVC request.

Prerequisites

- Administrator access to OpenShift Container Storage.
Procedure

1. Log in to OpenShift Web Console.
2. Click **Storage → Persistent Volume Claims**
3. Search for the required PVC name by using the **Filter** textbox. You can also filter the list of PVCs by Name or Label to narrow down the list.
4. Check the **Status** column corresponding to the required PVC.
5. Click the required **Name** to view the PVC details.

8.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS

Use this procedure to review and address Persistent Volume Claim (PVC) request events.

Prerequisites

- Administrator access to OpenShift Web Console.

Procedure

1. Log in to OpenShift Web Console.
2. Click **Home → Overview → Persistent Storage**
3. Locate the **Inventory** card to see the number of PVCs with errors.
4. Click **Storage → Persistent Volume Claims**
5. Search for the required PVC using the **Filter** textbox.
6. Click on the PVC name and navigate to **Events**
7. Address the events as required or as directed.

8.4. EXPANDING PERSISTENT VOLUME CLAIMS

OpenShift Container Storage supports expansion of Persistent Volume Claims to provide flexibility to the management of persistent storage resources.

Expansion is supported for the following Persistent Volumes:

- PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on Ceph File System (CephFS) for volume mode **Filesystem**.
- PVC with ReadWriteOnce (RWO) access that is based on Ceph RADOS Block Devices (RBDs) with volume mode **Filesystem**.
- PVC with ReadWriteOnce (RWO) access that is based on Ceph RADOS Block Devices (RBDs) with volume mode **Block**.
IMPORTANT

Expanding Persistent Volumes is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information, see Technology Preview Features Support Scope.

WARNING

OSD and MON PVC expansion is not supported by Red Hat.

NOTE

This Technology Preview feature is only available with fresh installations of OpenShift Container Storage version 4.5. It does not apply to clusters upgraded from previous OpenShift Container Storage releases.

Prerequisites

- Administrator access to OpenShift Web Console.

Procedure

1. In OpenShift Web Console, navigate to Storage → Persistent Volume Claims.

2. Click the Action Menu (⋮) next to the Persistent Volume Claim you want to expand.

3. Click Expand PVC:

4. Select the new size of the Persistent Volume Claim, then click Expand:
Expand Persistent Volume Claim

Increase the capacity of claim `db-noobaa-db-0`. This can be a time-consuming process.

![Size](50 GiB)

5. To verify the expansion, navigate to the PVC’s details page and verify the **Capacity** field has the correct size requested.

NOTE

When expanding PVCs based on Ceph RADOS Block Devices (RBDs), if the PVC is not already attached to a pod the **Condition type** is **FileSystemResizePending** in the PVC’s details page. Once the volume is mounted, Filesystem resize succeeds and the new size is reflected in the **Capacity** field.

8.5. DYNAMIC PROVISIONING

8.5.1. About dynamic provisioning

The StorageClass resource object describes and classifies storage that can be requested, as well as provides a means for passing parameters for dynamically provisioned storage on demand. StorageClass objects can also serve as a management mechanism for controlling different levels of storage and access to the storage. Cluster Administrators (`cluster-admin`) or Storage Administrators (`storage-admin`) define and create the StorageClass objects that users can request without needing any intimate knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows administrators to provision a cluster with persistent storage. The framework also gives users a way to request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While all of them can be statically provisioned by an administrator, some types of storage are created dynamically using the built-in provider and plug-in APIs.

8.5.2. Dynamic provisioning in OpenShift Container Storage

Red Hat OpenShift Container Storage is software-defined storage that is optimised for container environments. It runs as an operator on OpenShift Container Platform to provide highly integrated and simplified persistent storage management for containers.
OpenShift Container Storage supports a variety of storage types, including:

- Block storage for databases
- Shared file storage for continuous integration, messaging, and data aggregation
- Object storage for archival, backup, and media storage

Version 4.5 uses Red Hat Ceph Storage to provide the file, block, and object storage that backs persistent volumes, and Rook.io to manage and orchestrate provisioning of persistent volumes and claims. NooBaa provides object storage, and its Multicloud Gateway allows object federation across multiple cloud environments (available as a Technology Preview).

In OpenShift Container Storage 4.5, the Red Hat Ceph Storage Container Storage Interface (CSI) driver for RADOS Block Device (RBD) and Ceph File System (CephFS) handles the dynamic provisioning requests. When a PVC request comes in dynamically, the CSI driver has the following options:

- Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on Ceph RBDs with volume mode **Block**
- Create a PVC with ReadWriteOnce (RWO) access that is based on Ceph RBDs with volume mode **Filesystem**
- Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on CephFS for volume mode **Filesystem**

The judgement of which driver (RBD or CephFS) to use is based on the entry in the `storageclass.yaml` file.

8.5.3. Available dynamic provisioning plug-ins

OpenShift Container Platform provides the following provisioner plug-ins, which have generic implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new storage resources:

<table>
<thead>
<tr>
<th>Storage type</th>
<th>Provisioner plug-in name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenStack Cinder</td>
<td>Kubernetes.io/cinder</td>
<td></td>
</tr>
<tr>
<td>AWS Elastic Block Store (EBS)</td>
<td>Kubernetes.io/aws-ebs</td>
<td>For dynamic provisioning when using multiple clusters in different zones, tag each node with Key=kubernetes.io/cluster/<cluster_name>,Value=<cluster_id> where <cluster_name> and <cluster_id> are unique per cluster.</td>
</tr>
<tr>
<td>AWS Elastic File System (EFS)</td>
<td></td>
<td>Dynamic provisioning is accomplished through the EFS provisioner pod and not through a provisioner plug-in.</td>
</tr>
</tbody>
</table>
Storage type | Provisioner plug-in name | Notes
---|---|---
Azure Disk | kubernetes.io/azure-disk | The **persistent-volume-binder** ServiceAccount requires permissions to create and get Secrets to store the Azure storage account and keys.
Azure File | kubernetes.io/azure-file |
GCE Persistent Disk (gcePD) | kubernetes.io/gce-pd | In multi-zone configurations, it is advisable to run one OpenShift Container Platform cluster per GCE project to avoid PVs from being created in zones where no node in the current cluster exists.
VMware vSphere | kubernetes.io/vsphere-volume |

IMPORTANT

Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or third-party provider as per the relevant documentation.
CHAPTER 9. REPLACING STORAGE NODES

You can choose one of the following procedures to replace storage nodes:

- Section 9.1, “Replacing operational nodes on Red Hat OpenStack Platform installer-provisioned infrastructure”
- Section 9.2, “Replacing failed nodes on Red Hat OpenStack Platform installer-provisioned infrastructure”

9.1. REPLACING OPERATIONAL NODES ON RED HAT OPENSTACK PLATFORM INSTALLER-PROVISIONED INFRASTRUCTURE

Use this procedure to replace an operational node on Red Hat OpenStack Platform installer-provisioned infrastructure (IPI).

Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.
2. Identify the node that needs to be replaced. Take a note of its Machine Name.
3. Mark the node as unschedulable using the following command:

   ```bash
   $ oc adm cordon <node_name>
   ```

4. Drain the node using the following command:

   ```bash
   $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets
   ```

 IMPORTANT
 This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.

5. Click Compute → Machines. Search for the required machine.
6. Besides the required machine, click the Action menu (⋱) → Delete Machine.
7. Click Delete to confirm the machine deletion. A new machine is automatically created.
8. Wait for new machine to start and transition into Running state.

 IMPORTANT
 This activity may take at least 5-10 minutes or more.

9. Click Compute → Nodes, confirm if the new node is in Ready state.
10. Apply the OpenShift Container Storage label to the new node using any one of the following:

 From User interface
For the new node, click **Action Menu (⋮) → Edit Labels**

Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.

From Command line interface

- Execute the following command to apply the OpenShift Container Storage label to the new node:

  ```bash
  $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""
  ```

Verification steps

1. Execute the following command and verify that the new node is present in the output:

   ```bash
   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage="" | cut -d' ' -f1
   ```

2. Click **Workloads → Pods**, confirm that at least the following pods on the new node are in **Running** state:
 - `csi-cehypfsplugin-*`
 - `csi-rbdplugin-*`

3. Verify that all other required OpenShift Container Storage pods are in **Running** state.

4. If verification steps fail, kindly contact Red Hat Support.

9.2. REPLACING FAILED NODES ON RED HAT OPENSTACK PLATFORM INSTALLER-PROVISIONED INFRASTRUCTURE

Perform this procedure to replace a failed node which is not operational on Red Hat OpenStack Platform installer-provisioned infrastructure (IPI) for OpenShift Container Storage.

Procedure

1. Log in to OpenShift Web Console and click **Compute → Nodes**.

2. Identify the faulty node and click on its **Machine Name**.

3. Click **Actions → Edit Annotations**, and click **Add More**.

4. Add `machine.openshift.io/exclude-node-draining` and click **Save**.

5. Click **Actions → Delete Machine**, and click **Delete**.

6. A new machine is automatically created, wait for new machine to start.

IMPORTANT

This activity may take at least 5-10 minutes or more. Ceph errors generated during this period are temporary and are automatically resolved when the new node is labeled and functional.
7. Click **Compute → Nodes**, confirm if the new node is in **Ready** state.

8. Apply the OpenShift Container Storage label to the new node using any one of the following:

 From User interface

 a. For the new node, click **Action Menu (⋮) → Edit Labels**

 b. Add `cluster.ocs.openshift.io/openshift-storage` and click **Save**.

 From Command line interface

 - Execute the following command to apply the OpenShift Container Storage label to the new node:

     ```
     $ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage="
     ```

9. [Optional]: If the failed Red Hat OpenStack Platform instance is not removed automatically, terminate the instance from Red Hat OpenStack Platform console.

Verification steps

1. Execute the following command and verify that the new node is present in the output:

   ```
   $ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1
   ```

2. Click **Workloads → Pods**, confirm that at least the following pods on the new node are in **Running** state:

 - `csi-cephfsplugin-*`
 - `csi-rbdplugin-*`

3. Verify that all other required OpenShift Container Storage pods are in **Running** state.

4. If verification steps fail, kindly **contact Red Hat Support**.
10.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON RED HAT OPENSTACK PLATFORM INSTALLER-PROVISIONED INFRASTRUCTURE

When you need to replace a device in a dynamically created storage cluster on Red Hat OpenStack Platform installer-provisioned infrastructure, you must replace the storage node. For information about how to replace nodes, see:

- Replacing operational nodes on Red Hat OpenStack Platform installer-provisioned infrastructure.
- Replacing failed nodes on Red Hat OpenStack Platform installer-provisioned infrastructure.