Chapter 2. Configure storage for OpenShift Container Platform services

You can use OpenShift Container Storage to provide storage for OpenShift Container Platform services such as image registry, monitoring, and logging.

The process for configuring storage for these services depends on the infrastructure used in your OpenShift Container Storage deployment.

Warning

Always ensure that you have plenty of storage capacity for these services. If the storage for these critical services runs out of space, the cluster becomes inoperable and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these services. See Configuring Curator and Modifying retention time for Prometheus metrics data in the OpenShift Container Platform documentation for details.

If you do run out of storage space for these services, contact Red Hat Customer Support.

2.1. Configuring Image Registry to use OpenShift Container Storage

OpenShift Container Platform provides a built in Container Image Registry which runs as a standard workload on the cluster. A registry is typically used as a publication target for images built on the cluster as well as a source of images for workloads running on the cluster.

Follow the instructions in this section to configure OpenShift Container Storage as storage for the Container Image Registry. On AWS, it is not required to change the storage for the registry. However, it is recommended to change the storage to OpenShift Container Storage persistent volume for vSphere platform.

Warning

This process does not migrate data from an existing image registry to the new image registry. If you already have container images in your existing registry, back up your registry before you complete this process, and re-register your images when this process is complete.

Prerequisites

  • You have administrative access to OpenShift Web Console.
  • OpenShift Container Storage Operator is installed and running in the openshift-storage namespace. In OpenShift Web Console, click OperatorsInstalled Operators to view installed operators.
  • Image Registry Operator is installed and running in the openshift-image-registry namespace. In OpenShift Web Console, click AdministrationCluster SettingsCluster Operators to view cluster operators.
  • The ocs-storagecluster-cephfs storage class is available. In OpenShift Web Console, click StorageStorage Classes to view available storage classes.

Procedure

  1. Create a Persistent Volume Claim for the Image Registry to use.

    1. In OpenShift Web Console, click StoragePersistent Volume Claims.
    2. Set the Project to openshift-image-registry.
    3. Click Create Persistent Volume Claim.

      1. Specify a Storage Class of ocs-storagecluster-cephfs.
      2. Specify the Persistent Volume Claim Name, for example, ocs4registry.
      3. Specify an Access Mode of Shared Access (RWX).
      4. Specify a Size of at least 100 GB.
      5. Click Create.

        Wait until the status of the new Persistent Volume Claim is listed as Bound.

  2. Configure the cluster’s Image Registry to use the new Persistent Volume Claim.

    1. Click AdministrationCustom Resource Definitions.
    2. Click the Config custom resource definition associated with the imageregistry.operator.openshift.io group.
    3. Click the Instances tab.
    4. Beside the cluster instance, click the Action Menu (⋮)Edit Config.
    5. Add the new Persistent Volume Claim as persistent storage for the Image Registry.

      1. Add the following under spec:, replacing the existing storage: section if necessary.

          storage:
            pvc:
              claim: <new-pvc-name>

        For example:

          storage:
            pvc:
              claim: ocs4registry
      2. Click Save.
  3. Verify that the new configuration is being used.

    1. Click WorkloadsPods.
    2. Set the Project to openshift-image-registry.
    3. Verify that the new image-registry-* pod appears with a status of Running, and that the previous image-registry-* pod terminates.
    4. Click the new image-registry-* pod to view pod details.
    5. Scroll down to Volumes and verify that the registry-storage volume has a Type that matches your new Persistent Volume Claim, for example, ocs4registry.

2.2. Configuring monitoring to use OpenShift Container Storage

OpenShift Container Storage provides a monitoring stack that is comprised of Prometheus and AlertManager.

Follow the instructions in this section to configure OpenShift Container Storage as storage for the monitoring stack.

Important

Monitoring will not function if it runs out of storage space. Always ensure that you have plenty of storage capacity for monitoring.

Red Hat recommends configuring a short retention intervals for this service. See the Modifying retention time for Prometheus metrics data sub section of Configuring persistent storage in the OpenShift Container Platform documentation for details.

Prerequisites

  • You have administrative access to OpenShift Web Console.
  • OpenShift Container Storage Operator is installed and running in the openshift-storage namespace. In OpenShift Web Console, click OperatorsInstalled Operators to view installed operators.
  • Monitoring Operator is installed and running in the openshift-monitoring namespace. In OpenShift Web Console, click AdministrationCluster SettingsCluster Operators to view cluster operators.
  • The ocs-storagecluster-ceph-rbd storage class is available. In OpenShift Web Console, click StorageStorage Classes to view available storage classes.

Procedure

  1. In OpenShift Web Console, go to WorkloadsConfig Maps.
  2. Set the Project dropdown to openshift-monitoring.
  3. Click Create Config Map.
  4. Define a new openshift-monitoring-config Config Map using the following example.

    Replace the content in angle brackets (<, >) with your own values, for example, retention: 24h or storage: 40Gi.

    Example openshift-monitoring-config Config Map

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: cluster-monitoring-config
      namespace: openshift-monitoring
    data:
      config.yaml: |
          prometheusK8s:
            retention: <time to retain monitoring files, e.g. 24h>
            volumeClaimTemplate:
              metadata:
                name: ocs-prometheus-claim
              spec:
                storageClassName: ocs-storagecluster-ceph-rbd
                resources:
                  requests:
                    storage: <size of claim, e.g. 40Gi>
          alertmanagerMain:
            volumeClaimTemplate:
              metadata:
                name: ocs-alertmanager-claim
              spec:
                storageClassName: ocs-storagecluster-ceph-rbd
                resources:
                  requests:
                    storage: <size of claim, e.g. 40Gi>

  5. Click Create to save and create the Config Map.

Verification steps

  1. Verify that the Persistent Volume claims are bound to the pods.

    1. Go to StoragePersistent Volume Claims.
    2. Set the Project dropdown to openshift-monitoring.
    3. Verify that 5 Persistent Volume Claims are visible with a state of Bound, attached to three alertmanager-main-* pods, and two prometheus-k8s-* pods.

      Monitoring storage created and bound

      Screenshot of OpenShift Web Console showing five pods with persistent volume claims bound in the openshift-monitoring project

  2. Verify that the new alertmanager-main-* pods appear with a state of Running.

    1. Click the new alertmanager-main-* pods to view the pod details.
    2. Scroll down to Volumes and verify that the volume has a Type, ocs-alertmanager-claim that matches one of your new Persistent Volume Claims, for example, ocs-alertmanager-claim-alertmanager-main-0.

      Persistent Volume Claims attached to alertmanager-main-* pod

      Screenshot of OpenShift Web Console showing persistent volume claim attached to the altermanager pod

  3. Verify that the new prometheus-k8s-* pods appear with a state of Running.

    1. Click the new prometheus-k8s-* pods to view the pod details.
    2. Scroll down to Volumes and verify that the volume has a Type, ocs-prometheus-claim that matches one of your new Persistent Volume Claims, for example, ocs-prometheus-claim-prometheus-k8s-0.

      Persistent Volume Claims attached to prometheus-k8s-* pod

      Screenshot of OpenShift Web Console showing persistent volume claim attached to the prometheus pod

2.3. Cluster logging for OpenShift Container Storage

You can deploy cluster logging to aggregate logs for a range of OpenShift Container Platform services. For information about how to deploy cluster logging, see Deploying cluster logging.

Upon initial OpenShift Container Platform deployment, OpenShift Container Storage is not configured by default and the OpenShift Container Platform cluster will solely rely on default storage available from the nodes. You can edit the default configuration of OpenShift logging (ElasticSearch) to be backed by OpenShift Container Storage to have OpenShift Container Storage backed logging (Elasticsearch).

Important

Always ensure that you have plenty of storage capacity for these services. If you run out of storage space for these critical services, the logging application becomes inoperable and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these services. See Configuring Curator in the OpenShift Container Platform documentation for details.

If you run out of storage space for these services, contact Red Hat Customer Support.

2.3.1. Configuring persistent storage

You can configure a persistent storage class and size for the Elasticsearch cluster using the storage class name and size parameters. The Cluster Logging Operator creates a Persistent Volume Claim for each data node in the Elasticsearch cluster based on these parameters. For example:

spec:
    logStore:
      type: "elasticsearch"
      elasticsearch:
        nodeCount: 3
        storage:
          storageClassName: "ocs-storagecluster-ceph-rbd”
          size: "200G"

This example specifies that each data node in the cluster will be bound to a Persistent Volume Claim that requests 200GiB of ocs-storagecluster-ceph-rbd storage. Each primary shard will be backed by a single replica. A copy of the shard is replicated across all the nodes and are always available and the copy can be recovered if at least two nodes exist due to the single redundancy policy. For information about Elasticsearch replication policies, see Elasticsearch replication policy in About deploying and configuring cluster logging.

Note

Omission of the storage block will result in a deployment backed by default storage. For example:

spec:
    logStore:
      type: "elasticsearch"
      elasticsearch:
        nodeCount: 3
        storage: {}

For more information, see Configuring cluster logging.

2.3.2. Configuring cluster logging to use OpenShift Container Storage

Follow the instructions in this section to configure OpenShift Container Storage as storage for the OpenShift cluster logging.

Note

You can obtain all the logs when you configure logging for the first time in OpenShift Container Storage. However, after you uninstall and reinstall logging, the old logs are removed and only the new logs are processed.

Prerequisites

  • You have administrative access to OpenShift Web Console.
  • OpenShift Container Storage Operator is installed and running in the openshift-storage namespace.
  • Cluster logging Operator is installed and running in the openshift-logging namespace.

Procedure

  1. Click Administration → Custom Resource Definitions from the left pane of the OpenShift Web Console.
  2. On the Custom Resource Definitions page, click ClusterLogging.
  3. On the Custom Resource Definition Overview page, select View Instances from the Actions menu or click the Instances Tab.
  4. On the Cluster Logging page, click Create Cluster Logging.

    You might have to refresh the page to load the data.

  5. In the YAML, replace the code with the following:

    apiVersion: "logging.openshift.io/v1"
    kind: "ClusterLogging"
    metadata:
      name: "instance"
      namespace: "openshift-logging"
    spec:
      managementState: "Managed"
      logStore:
        type: "elasticsearch"
        elasticsearch:
          nodeCount: 3
          storage:
            storageClassName: ocs-storagecluster-ceph-rbd
            size: 200G
          redundancyPolicy: "SingleRedundancy"
      visualization:
        type: "kibana"
        kibana:
          replicas: 1
      curation:
        type: "curator"
        curator:
          schedule: "30 3 * * *"
      collection:
        logs:
          type: "fluentd"
          fluentd: {}
  6. Click Save.

Verification steps

  1. Verify that the Persistent Volume Claims are bound to the elasticsearch pods.

    1. Go to StoragePersistent Volume Claims.
    2. Set the Project dropdown to openshift-logging.
    3. Verify that Persistent Volume Claims are visible with a state of Bound, attached to elasticsearch-* pods.

      Figure 2.1. Cluster logging created and bound

      Screenshot of Persistent Volume Claims with a bound state attached to elasticsearch pods
  2. Verify that the new cluster logging is being used.

    1. Click Workload → Pods.
    2. Set the Project to openshift-logging.
    3. Verify that the new elasticsearch-* pods appear with a state of Running.
    4. Click the new elasticsearch-* pod to view pod details.
    5. Scroll down to Volumes and verify that the elasticsearch volume has a Type that matches your new Persistent Volume Claim, for example, elasticsearch-elasticsearch-cdm-9r624biv-3.
    6. Click the Persistent Volume Claim name and verify the storage class name in the PersistenVolumeClaim Overview page.
Note

Make sure to use a shorter curator time to avoid PV full scenario on PVs attached to Elasticsearch pods.

You can configure Curator to delete Elasticsearch data based on retention settings. It is recommended that you set the following default index data retention of 5 days as a default.

config.yaml: |
    openshift-storage:
      delete:
        days: 5

For more details, see Curation of Elasticsearch Data.

Note

To uninstall cluster logging backed by Persistent Volume Claim, use the steps in Removing the cluster logging operator from OpenShift Container Storage.

2.4. Object Bucket Claim

OpenShift Container Storage introduces a new concept called Object Bucket Claim. An Object Bucket Claim can be used to request an S3 compatible bucket backend for your workloads.

You can create an Object Bucket Claim two ways:

2.4.1. Dynamic Object Bucket Claim

Similar to persistent volumes, you can add the details of the Object Bucket claim to your application’s YAML, and get the object service endpoint, access key, and secret access key available in a configuration map and secret. It is easy to read this information dynamically into environment variables of your application.

Procedure

  1. Add the following lines to your application YAML:

    apiVersion: objectbucket.io/v1alpha1
    kind: ObjectBucketClaim
    metadata:
      name: <obc-name>
    spec:
      generateBucketName: <obc-bucket-name>
      storageClassName: noobaa

    These lines are the Object Bucket Claim itself.

    1. Replace <obc-name> with the a unique Object Bucket Claim name.
    2. Replace <obc-bucket-name> with a unique bucket name for your Object Bucket Claim.
  2. You can add more lines to the YAML file to automate the use of the Object Bucket Claim. The example below is the mapping between the bucket claim result, which is a configuration map with data and a secret with the credentials. This specific job will claim the Object Bucket from NooBaa, which will create a bucket and an account.

    apiVersion: batch/v1
    kind: Job
    metadata:
      name: testjob
    spec:
      template:
        spec:
          restartPolicy: OnFailure
          containers:
            - image: <your application image>
              name: test
              env:
                - name: BUCKET_NAME
                  valueFrom:
                    configMapKeyRef:
                      name: <obc-name>
                      key: BUCKET_NAME
                - name: BUCKET_HOST
                  valueFrom:
                    configMapKeyRef:
                      name: <obc-name>
                      key: BUCKET_HOST
                - name: BUCKET_PORT
                  valueFrom:
                    configMapKeyRef:
                      name: <obc-name>
                      key: BUCKET_PORT
                - name: AWS_ACCESS_KEY_ID
                  valueFrom:
                    secretKeyRef:
                      name: <obc-name>
                      key: AWS_ACCESS_KEY_ID
                - name: AWS_SECRET_ACCESS_KEY
                  valueFrom:
                    secretKeyRef:
                      name: <obc-name>
                      key: AWS_SECRET_ACCESS_KEY
    1. Replace all instances of <obc-name> with your Object Bucket Claim name.
    2. Replace <your application image> with your application image.
  3. Apply the updated YAML file:

    # oc apply -f <yaml.file>
    1. Replace <yaml.file> with the name of your YAML file.
  4. To view the new configuration map, run the following:

    # oc get cm <obc-name>
    1. Replace obc-name with the name of your Object Bucket Claim.

      You can expect the following environment variables in the output:

      • BUCKET_HOST - Endpoint to use in the application
      • BUCKET_PORT - The port available for the application

      • BUCKET_NAME - Requested or generated bucket name
      • AWS_ACCESS_KEY_ID - Access key that is part of the credentials
      • AWS_SECRET_ACCESS_KEY - Secret access key that is part of the credentials

2.4.2. Creating an Object Bucket Claim using the command line interface

When creating an Object Bucket Claim using the command-line interface, you get a configuration map and a Secret that together contain all the information your application needs to use the object storage service.

Prerequisites

  • Download the MCG command-line interface:

    # subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
    # yum install mcg

Procedure

  1. Use the command-line interface to generate the details of a new bucket and credentials. Run the following command:

    # noobaa obc create <obc-name> -n openshift-storage

    Replace <obc-name> with a unique Object Bucket Claim name, for example, myappobc.

    Additionally, you can use the --app-namespace option to specify the namespace where the Object Bucket Claim configuration map and secret will be created, for example, myapp-namespace.

    Example output:

    INFO[0001] ✅ Created: ObjectBucketClaim "test21obc"

    The MCG command-line-interface has created the necessary configuration and has informed OpenShift about the new OBC.

  2. Run the following command to view the Object Bucket Claim:

    # oc get obc -n openshift-storage

    Example output:

    NAME        STORAGE-CLASS                 PHASE   AGE
    test21obc   openshift-storage.noobaa.io   Bound   38s
  3. Run the following command to view the YAML file for the new Object Bucket Claim:

    # oc get obc test21obc -o yaml -n openshift-storage

    Example output:

    apiVersion: objectbucket.io/v1alpha1
    kind: ObjectBucketClaim
    metadata:
      creationTimestamp: "2019-10-24T13:30:07Z"
      finalizers:
      - objectbucket.io/finalizer
      generation: 2
      labels:
        app: noobaa
        bucket-provisioner: openshift-storage.noobaa.io-obc
        noobaa-domain: openshift-storage.noobaa.io
      name: test21obc
      namespace: openshift-storage
      resourceVersion: "40756"
      selfLink: /apis/objectbucket.io/v1alpha1/namespaces/openshift-storage/objectbucketclaims/test21obc
      uid: 64f04cba-f662-11e9-bc3c-0295250841af
    spec:
      ObjectBucketName: obc-openshift-storage-test21obc
      bucketName: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
      generateBucketName: test21obc
      storageClassName: openshift-storage.noobaa.io
    status:
      phase: Bound
  4. Inside of your openshift-storage namespace, you can find the configuration map and the secret to use this Object Bucket Claim. The CM and the secret have the same name as the Object Bucket Claim. To view the secret:

    # oc get -n openshift-storage secret test21obc -o yaml

    Example output:

    Example output:
    apiVersion: v1
    data:
      AWS_ACCESS_KEY_ID: c0M0R2xVanF3ODR3bHBkVW94cmY=
      AWS_SECRET_ACCESS_KEY: Wi9kcFluSWxHRzlWaFlzNk1hc0xma2JXcjM1MVhqa051SlBleXpmOQ==
    kind: Secret
    metadata:
      creationTimestamp: "2019-10-24T13:30:07Z"
      finalizers:
      - objectbucket.io/finalizer
      labels:
        app: noobaa
        bucket-provisioner: openshift-storage.noobaa.io-obc
        noobaa-domain: openshift-storage.noobaa.io
      name: test21obc
      namespace: openshift-storage
      ownerReferences:
      - apiVersion: objectbucket.io/v1alpha1
        blockOwnerDeletion: true
        controller: true
        kind: ObjectBucketClaim
        name: test21obc
        uid: 64f04cba-f662-11e9-bc3c-0295250841af
      resourceVersion: "40751"
      selfLink: /api/v1/namespaces/openshift-storage/secrets/test21obc
      uid: 65117c1c-f662-11e9-9094-0a5305de57bb
    type: Opaque

    The secret gives you the S3 access credentials.

  5. To view the configuration map:

    # oc get -n openshift-storage cm test21obc -o yaml

    Example output:

    apiVersion: v1
    data:
      BUCKET_HOST: 10.0.171.35
      BUCKET_NAME: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
      BUCKET_PORT: "31242"
      BUCKET_REGION: ""
      BUCKET_SUBREGION: ""
    kind: ConfigMap
    metadata:
      creationTimestamp: "2019-10-24T13:30:07Z"
      finalizers:
      - objectbucket.io/finalizer
      labels:
        app: noobaa
        bucket-provisioner: openshift-storage.noobaa.io-obc
        noobaa-domain: openshift-storage.noobaa.io
      name: test21obc
      namespace: openshift-storage
      ownerReferences:
      - apiVersion: objectbucket.io/v1alpha1
        blockOwnerDeletion: true
        controller: true
        kind: ObjectBucketClaim
        name: test21obc
        uid: 64f04cba-f662-11e9-bc3c-0295250841af
      resourceVersion: "40752"
      selfLink: /api/v1/namespaces/openshift-storage/configmaps/test21obc
      uid: 651c6501-f662-11e9-9094-0a5305de57bb

    The configuration map contains the S3 endpoint information for your application.