
JBoss Operations Network 3.0

Configuring JBoss ON Servers and
Agents

customizing server and agent configuration and providing high availability
performance

Edition 3.0.1

Last Updated: 2017-09-19

JBoss Operations Network 3.0 Configuring JBoss ON Servers and
Agents
customizing server and agent configuration and providing high availability performance
Edition 3.0.1

Ella Deon Lackey
dlackey@redhat.com

Legal Notice
Copyright © 2011 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-
ShareAlike 3.0 Unported License. If you distribute this document, or a modified version
of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If
the document is modified, all Red Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to
assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the
Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the
United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European
Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in
the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
Both servers and agents in JBoss ON can be configured to improve performance within
your specific environment. High availability, affinity, and failover settings all improve
performance large JBoss ON deployments. Other settings related to tasks like discovery
and monitoring can be tuned to provide better performance and quality within your
specific environment. This guide provides information to understand and edit JBoss ON
server and agent configuration.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents
1. ABOUT JBOSS OPERATIONS NETWORK

1.1. About JBoss ON Agents
1.2. About JBoss ON Servers

2. GENERAL MANAGEMENT
2.1. JBoss ON File Locations
2.2. Default Server and Agent Ports
2.3. Starting the JBoss ON Server
2.4. Starting the JBoss ON Agent

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION
3.1. Setting up Encryption
3.2. Setting up Client Authentication Between Servers and Agents
3.3. Troubleshooting SSL Problems

4. CONFIGURING HIGH AVAILABILITY
4.1. Prepping High Availability
4.2. Putting Servers in Maintenance Mode
4.3. Removing Servers from the High Availability Cloud
4.4. Defining Affinity for Agents
4.5. Managing Partition Events

5. CONFIGURING SERVERS
5.1. Enabling Debug Logging for the JBoss ON Server
5.2. Changing the JBoss ON Server URL
5.3. Editing JBoss ON Server Configuration in rhq-server.properties
5.4. Synchronizing Server Configuration

6. CONFIGURING AGENTS
6.1. Registering and Re-registering the Agent
6.2. Working with the Agent Command Prompt
6.3. Running the Agent as a Non-Root User
6.4. Enabling Debug Mode for the Agent
6.5. Changing the Agent IP Address
6.6. Managing the Agent as a Resource
6.7. Configuring Agent Update Settings
6.8. Managing the Agent's Persisted Configuration
6.9. Managing the Agent JVM
6.10. Setting Discovery Scan Intervals
6.11. Viewing the Server Failover Lists for Agents
6.12. Setting the Agent to Detect or Poll the Server
6.13. Throttling the Agent
6.14. Setting Guaranteed Delivery for Commands
6.15. Configuring Agent Communication

7. MANAGING DATABASES ASSOCIATED WITH JBOSS ON
7.1. Running SQL Commands from JBoss ON
7.2. Changing Database Passwords
7.3. Editing the JBoss ON Server's Database Configuration

8. DOCUMENT INFORMATION
8.1. Giving Feedback
8.2. Document History

3
3
3

4
4
7
8

12

17
18
21
25

29
29
31
32
32
36

41
41
43
44
61

68
68
71
75
76
78
79
81
82
86
87
87
89
90
92
93

94
94
95
95

97
97
98

Table of Contents

1

. .INDEX 99

Configuring JBoss ON Servers and Agents

2

1. ABOUT JBOSS OPERATIONS NETWORK
The primary use for JBoss ON is to give administrators a single point of access to view their
systems. Functionally, that means that JBoss ON provides a means to develop and monitor
a system's inventory. Every managed resource – from platforms to applications to services
– is contained and organized in the inventory, no matter how complex the IT environment
is.

JBoss ON centralizes all of its operations in an installed server. The JBoss ON server
communicates with locally installed JBoss ON agents, which interact directly with the
platform and services to carry out local tasks such as monitoring. The types of resources
that can be managed by JBoss ON and the operations that can be carried out are
determined by the server and agent plug-ins which are loaded in JBoss ON.

The relationships between servers, agents, plug-ins, and resources are what define JBoss
ON.

1.1. About JBoss ON Agents
JBoss ON agents are deployed on every machine that JBoss ON manages. The agent is an
intermediary between the resource itself and the central JBoss ON server.

The agents receive updates like configuration changes, updated packages, new settings for
alerts, and operations from the JBoss ON server and then it carries out those tasks on the
resource. The agent also collects information from the resource which it forwards to the
server. This allows the server to process alerts, metrics, and availability information for the
resource.

Because the agent is independent of the server, it can continue with its monitoring tasks
and gather information about the resource even if the server is down or the resource loses
network connectivity.

Each resource is arranged in a hierarchy, showing relationships between platforms, servers,
and services. Only one agent is required per machine; once the platform is managed as a
resource, all or a subset of installed applications or services can be added as resources, all
using the same local agent.

1.2. About JBoss ON Servers
JBoss ON is built around a central server. The server performs two vital functions:

Stores the configuration for both resources and resource groups.

Organizes and responds to the data collect by the agents.

The JBoss ON server is the central location for administrators to manage an operating
environment. The server is used to set baseline configuration and provision applications, to
define alerts and notifications, and to initiate operations. As agents send information back
to the server from the resource, then the server can also perform monitoring tasks (by
providing metrics and reporting) and can also respond to events by sending alerts or
launching operations.

1. ABOUT JBOSS OPERATIONS NETWORK

3

The data used by the JBoss ON server is stored in a backend SQL database. These data
include:

The inventory of resources

The configured groups

Monitoring data

Configuration data

Content available to resources

User and access control information

The JBoss ON server hosts the graphical user interface which is used to interact with JBoss
ON.

One very important aspect of JBoss ON servers is this: they only communicate with the
backend database and the JBoss ON agent. As long as JBoss ON servers use the same
backend database, they are automatically included in a server cloud that allows for failover
and scalability, without additional configuration in the servers or the database. JBoss ON
agents can be configured to use a list of preferred JBoss ON servers, which naturally
distributes the agent load among the servers and provides agent-server failover without
detailed configuration.

2. GENERAL MANAGEMENT
This section covers the configuration, files, and options for the JBoss Operations Network
server and agents.

2.1. JBoss ON File Locations
This section covers the common files and directories by JBoss ON servers and agents. A
basic reference for these files can make managing and troubleshooting JBoss ON easier.

2.1.1. JBoss ON Server File Locations

All JBoss Operations Network servers are installed in a single, user-defined server root
directory. In the documentation and examples, this is called serverRoot. The directory
layout within that server root directory are the same for every server.

 serverRoot
 |
 jon
 |
 --
 | | | | | | | |
alert-scripts/ bin/ etc/ EULA jbossas/ LICENSE logs/ plugins/

The directories and files that are most commonly used to managed JBoss ON servers are
listed in Table 1, “JBoss ON Server Directories and Files”. The server root varies for each
installation and each platform, but the layout of the JBoss ON subdirectories is the same for
every platform.

Configuring JBoss ON Servers and Agents

4

Table 1. JBoss ON Server Directories and Files

Configuration Area Directory or File Location Description

Configuration directory serverRoot/bin/ Contains the server start
scripts, PID files, and
configuration file.

Start scripts serverRoot/bin/rhq-
server{.sh|.bat}

The script to start, stop, and
check the status of the
server.

Configuration file serverRoot/bin/rhq-
server.properties

The configuration file for all
server settings that are not
stored in the JBoss ON
database.

Password hash script serverRoot/bin/generate-db-
password{.sh|.bat}

For a migrated server, it
generates an encoded form of
the database password to use
in the rhq-
server.properties file.

SNMP files serverRoot/etc/RHQ-mib.txt The JBoss ON MIB file to use
for setting SNMP traps.

Log files serverRoot/logs/ The JBoss ON server log files
are automatically created in
this directory. The current log
is named rhq-server-
log4j.log. Older log files
are named rhq-server-
log4j.log.#, and the higher
the number, the older the log
file.

Custom plug-in deployment
directory

serverRoot/plugins/ The directory where custom
plug-in files can be dropped
for them to be automatically
detected and polled by the
JBoss ON server.

JBoss AS directory serverRoot/jbossas/ Contains all of the required
JBoss AS client and server
libraries.[a]

Server JAR files serverRoot/jbossas/default/de
ploy/rhq.ear/

Contains all of the JAR files
used by JBoss ON servers,
web interface, and clients.

2. GENERAL MANAGEMENT

5

Server-side plug-ins directory serverRoot/jbossas/default/de
ploy/rhq.ear/rhq-
serverplugins/

Contains all of the JAR files for
the default JBoss ON server-
side plug-ins.

Agent plug-ins directory serverRoot/jbossas/default/de
ploy/rhq.ear/rhq-
downloads/rhq-plugins/

Contains all of the JAR files for
the default JBoss ON agent
plug-ins.

Server-side plug-ins directory serverRoot/jbossas/default/de
ploy/rhq.ear/rhq-
serverplugins/

Contains all of the JAR files for
the default JBoss ON server-
side plug-ins.

Agent package directory serverRoot/jbossas/default/de
ploy/rhq.ear/rhq-
downloads/rhq-agent/

Contains the snapshot
packages for the JBoss ON
agent.

Web interface directory serverRoot/jbossas/default/wo
rk/jboss.web/localhost/

Contains the directories that
hold the files for rendering
the web interface.

[a] Most of the libraries and files in this directory don't relate directly to JBoss ON.

Configuration Area Directory or File Location Description

2.1.2. JBoss ON Agent File Locations

Like the server, the JBoss ON agent is installed in a single, user-defined root directory. All of
the agent files and directories are under the rhq-agent/ directory in that root directory.

 serverRoot
 |
 rhq-agent/
 |

 | | | | | |
 bin/ conf/ data/ lib/ logs/ plugins/

Table 2. JBoss ON Agent Directories and Files

Configuration Area Directory or File Location Description

Start scripts serverRoot/rhq-agent/bin/ Contains the agent start
scripts.

Configuration file serverRoot/rhq-
agent/conf/agent-
configuration.xml

The configuration file for basic
agent settings.

Configuring JBoss ON Servers and Agents

6

Library files serverRoot/rhq-agent/lib/ Contains the libraries used by
the agent to monitor
resources.

Start scripts serverRoot/rhq-agent/logs/ The JBoss ON agent log files
are automatically created in
this directory. The current log
is named agent.log. Older
log files are named
agent.log.#, and the higher
the number, the older the log
file.

Plug-ins directory serverRoot/rhq-agent/plugins/ Contains the plug-ins used by
the agent for managing
resources (like editing
resource configuration).

Configuration Area Directory or File Location Description

2.2. Default Server and Agent Ports
As with other servers and services, JBoss ON servers and agents communicate with each
other by connecting over system ports. JBoss ON uses ports for three types of connections:

Server to database communication

The server has to be able to connect to its database. The database port number
depends on both the type of database and the specific configuration for the
database.

Server to agent communication

The server connects to an agent over a single port configured for the agent. This
port is used for both standard and SSL communications between the server and
agent.

Agent to server communication

An agent can talk to multiple JBoss ON servers, even if they use the same port (since
each server is on a different host.) The agent will use either a standard port or an
SSL port to connect to the JBoss ON server, depending on the connection (transport)
method that is configured. The agent will only attempt to use a single port.

NOTE

Servers do not talk to one another directly, so there are no ports for server-to-
server links.

The default port numbers for JBoss ON connections are listed in Table 3, “Default JBoss ON
Ports”. The port numbers can be changed for any of the JBoss ON services or different
values can be used at installation.

2. GENERAL MANAGEMENT

7

Table 3. Default JBoss ON Ports

Connection Type Port Number

Server to agent 16163

Agent to server (standard) 7080

Agent to server (secure) 7443

Server to database 5432 (default PostgreSQL port)

2.3. Starting the JBoss ON Server
The JBoss ON server is actually a customized JBoss AS server, included in the JBoss ON
installation, so starting the JBoss ON server means starting that JBoss instance.

The JBoss ON server can be started manually or can be configured to start and run as a
system service.

2.3.1. Starting the JBoss ON Server (Basic)

The JBoss ON server process is started by running a scripting in the serverRoot/bin/
directory. There is an .sh script for Linux and Unix systems and a .bat script for Windows
systems.

The simplest way to start the server is simply to run the script with the start command.
This starts the server process and then exits from the script.

serverRoot/bin/rhq-server.{sh|bat} start
Trying to start the RHQ Server...
RHQ Server (pid 27547) is starting

The rhq-server.{sh|bat} script looks for specific environment variables during its
execution, especially related to the JVM to use with the JBoss AS server instance. A
complete list of environment variables is given in the script itself; defaults based on the
installation information are used, so most environment variables don't need to be reset.

NOTE

The RHQ_SERVER_JAVA_HOME environment variable must be set on Red Hat
Enterprise Linux systems for the server to start. This can be set to a general
value like /usr/.

The server can also be started in console mode, which prints detailed information about the
server process to the terminal and leaves the script open as long as the server is running.

serverRoot/bin/rhq-server.{sh|bat} console

Starting RHQ Server in console...
===

Configuring JBoss ON Servers and Agents

8

 JBoss Bootstrap Environment

 JBOSS_HOME: serverRoot/jon-server-3.0.0.GA1/jbossas

 JAVA: /usr/bin/java

 JAVA_OPTS: -Dprogram.name=run.sh -Dapp.name=rhq-server -Xms1024M -
Xmx1024M -XX:PermSize=256M -XX:MaxPermSize=256M -
Djava.net.preferIPv4Stack=true -Djboss.server.log.dir=serverRoot/jon-
server-3.0.0.GA1/logs -Djava.awt.headless=true -
Djboss.platform.mbeanserver -Dsun.lang.ClassLoader.allowArraySyntax=true -
Djava.util.logging.config.file=serverRoot/jon-server-
3.0.0.GA1/jbossas/server/default/conf/logging.properties -
Djava.net.preferIPv4Stack=true

 CLASSPATH: serverRoot/jon-server-3.0.0.GA1/jbossas/bin/run.jar

===

15:51:45,955 INFO [Server] Starting JBoss (MX MicroKernel)...
15:51:45,956 INFO [Server] Release ID: JBoss [Trinity] 4.2.3.GA (build:
SVNTag=JBoss_4_2_3_GA date=200807181417)
15:51:45,957 INFO [Server] Home Dir: serverRoot/jon-server-
3.0.0.GA1/jbossas
15:51:45,957 INFO [Server] Home URL: file:serverRoot/jon-server-
3.0.0.GA1/jbossas/
15:51:45,957 INFO [Server] Patch URL: null
15:51:45,958 INFO [Server] Server Name: default
15:51:45,958 INFO [Server] Server Home Dir: serverRoot/jon-server-
3.0.0.GA1/jbossas/server/default
15:51:45,958 INFO [Server] Server Home URL: file:serverRoot/jon-server-
3.0.0.GA1/jbossas/server/default/
15:51:45,958 INFO [Server] Server Log Dir: serverRoot/jon-server-
3.0.0.GA1/logs
15:51:45,958 INFO [Server] Server Temp Dir: serverRoot/jon-server-
3.0.0.GA1/jbossas/server/default/tmp
15:51:45,958 INFO [Server] Root Deployment Filename: jboss-service.xml
15:51:46,183 INFO [ServerInfo] Java version: 1.6.0_15,Sun Microsystems
Inc.
15:51:46,183 INFO [ServerInfo] Java VM: Java HotSpot(TM) Server VM 14.1-
b02,Sun Microsystems Inc.
15:51:46,184 INFO [ServerInfo] OS-System: Linux 2.6.18-164.15.1.el5,i386
15:51:46,377 INFO [Server] Core system initialized
....

2.3.2. Running the JBoss ON Server as a Service

The JBoss ON server can be configured to run as a service, managed with systems tools, on
both Red Hat Enterprise Linux and Windows.

2.3.2.1. Configuring the JBoss ON Server as a Service on Red Hat Enterprise Linux

The rhq-server.sh script can be managed by the init process so that the server starts
automatically when the system boots. This also allows the server process to be managed
by services like service and chkconfig.

2. GENERAL MANAGEMENT

9

1. Copy the rhq-server.sh script into the /etc/init.d/ directory.

cp serverRoot/bin/rhq-server.sh /etc/init.d/

2. Edit the /etc/init.d/rhq-server.sh script to set the RHQ_SERVER_HOME variable to
the JBoss ON server install directory and the RHQ_SERVER_JAVA_HOME variable to the
appropriate directory for the JVM. For example:

RHQ_SERVER_HOME=serverRoot/jon-server-3.0.0.GA1/

RHQ_SERVER_JAVA_HOME=/usr/

3. Edit the /etc/init.d/rhq-server.sh script, and add the following lines to the top
of the file, directly under #!/bin/sh.

#!/bin/sh
#chkconfig: 2345 95 20
#description: JBoss Operations Network Server
#processname: run.sh

The last two numbers in the #chkconfig: 2345 95 20 line specify the start and
stop priority, respectively, for the JBoss ON server.

4. Add the service to the chkconfig service management command, and verify that it
was added properly.

chkconfig --add rhq-server.sh
chkconfig rhq-server.sh --list

5. Set the rhq-server.sh service to run at run level 5.

chkconfig --level 5 rhq-server.sh on

Once the init scripts and chkconfig files are updated, then the JBoss ON server can be
started and stopped using the servicecommand. The status of the process can also be
checked.

service rhq-server.sh {start|stop|status}

2.3.2.2. Configuring JBoss ON as a Windows Service

The rhq-server.bat script has an installation option that installs the script as a Windows
service. Once installed, the JBoss ON server can be started, stopped, and managed through
Windows tools (Add and Remove Programs and Services) or through the rhq-server.bat
script.

1. Set the environment variable to run the Windows service as.

Every Windows service has to run as some system user. There are two environment
variables in the rhq-server.bat script that set the user to use:

RHQ_SERVER_RUN_AS sets any Windows user to be the JBoss ON server user. The
username given here must be in the standard Windows format, DOMAIN\user,

Configuring JBoss ON Servers and Agents

10

such as EXAMPLEDOMAIN\jsmith.

RHQ_SERVER_RUN_AS_ME sets the server to run as whoever the current user is.
This overrides the RHQ_SERVER_RUN_AS, if both as set.

If neither environment variable is set, then the JBoss ON server runs as the system
account.

2. Run the rhq-server.bat script with the install option to set up the service. This
prompts for the password of whatever user account is used for the JBoss ON service.

serverRoot\bin\rhq-server.bat install

After the service is set up, the JBoss ON server can be started or stopped using Windows
administrative tools or by using any of the options in Table 4, “rhq-server.bat Options” with
the script.

Table 4. rhq-server.bat Options

Option Description

start Starts the server service.

stop Stops the server service.

status Prints the current status (running or stopped)
of the service.

remove Removes, or uninstalls, the JBoss ON server
service.

The JBoss ON server Windows service can be modified by changing or adding parameters in
the service wrapper configuration file, serverRoot\bin\wrapper\rhq-server-
wrapper.conf. Table 5, “Common Wrapper Properties” lists some of the wrapper properties
that are most commonly edited.

NOTE

Before editing the wrapper file, check out the list of properties in the Java
Service Wrapper documentation at
http://wrapper.tanukisoftware.org/doc/english/properties.html.

Table 5. Common Wrapper Properties

Parameter Description

2. GENERAL MANAGEMENT

11

http://wrapper.tanukisoftware.org/doc/english/properties.html

wrapper.app.parameter.# Passes command-line options to the server
(the JBoss AS container). Each individual option
and its value must be given its own wrapper
configuration property and must be placed in
numerical order.

IMPORTANT

Do not change any of the five
default properties,
wrapper.app.parameter.1.
The number for new properties
must begin at 5.

wrapper.java.additional.# Passes additional options to the virtual
machine, such as -Xmx or -D. Increments the
parameters upward numerically.

IMPORTANT

Do not edit the
wrapper.java.additiona.1
property unless you want to
point to your own log
configuration file. Any other
properties can be added,
removed, or modified.

For example:

wrapper.java.additional.5=-
XX:+DisableExplicitGC

wrapper.ntservice.starttype Sets the start type, either automatically when
the system boots (AUTO_START) or manually
(DEMAND_START).

Parameter Description

Alternatively, the wrapper service can be configured by creating a wrapper include file, in
the serverRoot\bin\wrapper\rhq-server-wrapper.inc. An include file augments the
service wrapper configuration file and is the recommended way to add more Java VM.

2.4. Starting the JBoss ON Agent
The JBoss ON agent can be started manually or can be configured to start and run as a
system service.

Configuring JBoss ON Servers and Agents

12

IMPORTANT

The agent's configuration is determined by what user is running the agent. If
the agent is run as one user and then later run as another user, the agent will
have a different configuration that second time because it will use a different
backing store for its configuration settings.

This means that if one user is used to configure the agent when it is installed,
that same user must be used to run the agent subsequently, or the agent will
apparently lose its configuration and need to be reconfigured under the new
user.

The agent configuration backing store is described in Section 6.8, “Managing
the Agent's Persisted Configuration”.

2.4.1. Starting the JBoss ON Agent (Basic)

The agent is started and runs using a script in the agent's bin/ directory. Unlike the server
start script, which starts the server process and then exits the script, the agent script
remains open, with a prompt to accept further input if necessary. (Usually, the script can
simply be started and left to run in the background.)

/opt/rhq-agent/bin/rhq-agent.sh

RHQ 3.0.0-SNAPSHOT [cda7569] (Tue Apr 13 13:39:16 EDT 2011)
>

Most of the time, the JBoss ON agent can run without any additional options or settings. All
of the available options for the rhq-agent.sh script are listed in Table 13, “Options for the
rhq-agent.sh Script”. Additional configuration options can be set by editing the rhq-agent-
env.sh script file.

NOTE

If there are any errors when starting the JBoss ON agent, run the agent start
script with the --cleanconfig to wipe the previous agent configuration and
start fresh.

2.4.2. Running the Agent as a Windows Service

IMPORTANT

The agent does not prompt for the configuration when it is started as a
service. The agent must either be pre-configured or have already been started
once and the configuration entered. Both options are described in the
Installation Guide.

1. Edit the rhq-agent-wrapper.bat script and set the environment variable to define
the system user as whom the init script will run. There are two options:

RHQ_AGENT_RUN_AS explicitly sets the user account name. This must match the
format of a Windows user account name, DOMAIN\username.

2. GENERAL MANAGEMENT

13

RHQ_AGENT_RUN_AS_ME forces the agent to run as whoever the current user is;
this uses the format . \ %USERNAME %. If both environment variables are
defined, this variable overrides RHQ_AGENT_RUN_AS.

NOTE

Before setting RHQ_AGENT_RUN_AS_ME or RHQ_AGENT_RUN_AS, make sure
that the given user actually has permission to start services. If
necessary, assign the user the appropriate rights. Assigning rights is
covered in the Windows documentation.

If neither variable is set, the agent init script runs as the System user.

Other available environment variables are listed and defined in the comments in the
rhq-agent-wrapper.bat script.

2. Run the rhq-agent-wrapper.bat script to install the init script as a service. Use the
install command to install the init script.

3. When prompted, fill in the password for the system user as whom the service will
run.

The agent service starts automatically when the Windows system boots. The service can be
started or stopped through the Windows Services Administrative Tools.

The agent service can also be started and stopped through the rhq-agent-wrapper.bat
script using the start and stop commands. The status command shows whether the
agent init script is installed as a service and whether it is running. The remove command
removes the agent init script as a service.

The JBoss ON agent Windows scripts use the Java Wrapper Service to control the service. A
configuration file, agentRoot\bin\wrapper\rhq-agent-wrapper.conf, contains the service
configuration properties. These are standard wrapper service properties; more information
is available at http://wrapper.tanukisoftware.org/doc/english/properties.html.

There are some common properties to edit to custom the service:

wrapper.app.parameter.# set command-line options to pass to the agent. These
are the same options listed in Section 6.2, “Working with the Agent Command
Prompt”. Each option requires its own configuration property. Properties must be
placed in numeric order and the first two properties (wrapper.app.parameter.1
and wrapper.app.parameter.2) are reserved. Start with
wrapper.app.parameter.3.

wrapper.java.additional.# set additional JVM options that are passed directly to
the VM, corresponding to the -D and -X options. These also must be incremented
numerically. wrapper.java.additional.1 always specifies the log configuration
file.

wrapper.ntservice.starttype sets when to start the service. The default is
AUTO_START, which starts the service when the system boots. To start the service
manually, the value is DEMAND_START.

2.4.3. Running the Agent as a Daemon or init.d Service

Configuring JBoss ON Servers and Agents

14

http://wrapper.tanukisoftware.org/doc/english/properties.html

IMPORTANT

The agent does not prompt for the configuration when it is started as a
service. The agent must either be pre-configured or have already been started
once and the configuration entered. Both options are described in the
Installation Guide.

The agent's configuration is determined by what user is running the agent. If
the agent is run as one user and then later run as another user, the agent will
have a different configuration that second time because it will use a different
backing store for its configuration settings.

This means that if one user is used to configure the agent when it is installed,
that same user must be used to run the agent subsequently, or the agent will
apparently lose its configuration and need to be reconfigured under the new
user.

The agent configuration backing store is described in Section 6.8, “Managing
the Agent's Persisted Configuration”.

Once the agent is configured (or pre-configured), the agent can be started in two ways. The
rhq-agent.sh script starts the agent and opens the command console. The rhq-agent-
wrapper.sh script simply starts the agent daemon and exits. Both methods can have
additional environment variables configured through the rhq-agent-env.sh script file.

The daemon can be started and run as a system service. On Red Hat Enterprise Linux, this
is done by configuring /etc/init.d and then installing it using chkconfig. For Solaris and
other Unix systems, this is done by configuring /etc/init.d and then using other system
tools to set up the service.

1. Make sure the agent is fully set up.

2. Open the rhq-agent-env.sh file.

3. Uncomment and configure the required environment variables for the agent's bin
directory, the JDK directory, and the PID directory (which must be writable by the
agent user).

NOTE

When setting the PIDFILEDIR on Red Hat Enterprise Linux, edit the
pidfile setting in the rhq-agent-wrapper.sh script file. The wrapper
script value is used by chkconfig.

4. Set any of the optional environment variables.

RHQ_AGENT_DEBUG enables debug logging.

RHQ_AGENT_JAVA_EXE_FILE_PATH specifies a Java executable.

RHQ_AGENT_JAVA_OPTS passes settings to the agent JVM.

RHQ_AGENT_HOME=agentRoot/rhq-agent/bin/
export RHQ_AGENT_JAVA_HOME=/usr
PIDFILEDIR=/var/run

2. GENERAL MANAGEMENT

15

RHQ_AGENT_ADDITIONAL_JAVA_OPTS passes additional Java options to the JVM.

5. Log into the system as root.

IMPORTANT

The rest of this procedure describes how to configure the agent init
script as a service on Red Hat Enterprise Linux. For other Unix systems,
follow a similar procedure that corresponds to the specific platform.

6. Make sure the wrapper script is executable.

[root@server rhq-agent]# chmod a+x agentRoot/rhq-agent/bin/rhq-
agent-wrapper.sh

7. Symlink the rhq-agent-wrapper.sh file to /etc/init.d/. For example:

IMPORTANT

On Solaris, symlinking the agent script file requires invoking readlink
in rhq-agent-wrapper.sh. readlink is not supplied by default in some
Solaris installations. Solaris users must download readlink from a
source such as Sunfreeware.

8. Register rhq-agent-wrapper.sh with chkconfig.

9. Enable the agent service to run at boot time and have it stop gracefully at when the
system shuts down.

If the agent service should not be started when the system boots, turn the script off in
chkconfig:

2.4.4. Restarting the Agent and the JVM

The agent can be restarted without taking down the agent JVM process. It is also possible to
restart both the agent and its JVM.

The agent is managed through a plug-in container managed by the JBoss ON server. The
container loads and manages the lifecycle of all agents. Restarting the plug-in container
restarts the agent and all its components without destroying the JVM.

ln -s agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh
/etc/init.d/rhq-agent-wrapper.sh

/sbin/chkconfig --add rhq-agent-wrapper.sh

/sbin/chkconfig rhq-agent-wrapper.sh on

/sbin/chkconfig rhq-agent-wrapper.sh off

Configuring JBoss ON Servers and Agents

16

1. Select the Resources menu in the top navigation bar, and select the Servers menu
item.

2. Click the agent resource in the list.

3. Click the Operations tab.

4. Select and launch the Restart task.

Alternatively, both the agent and its JVM can be restarted (this can be useful if, for
instance, the launcher script or the JVM options have been edited).

1. Select the Resources menu in the top navigation bar, and select the Servers menu
item.

2. Click the agent resource in the list.

3. Navigate to the launcher script child resource beneath the agent.

4. Click the Operations tab for the launcher script resource.

5. Select and launch the Restart task.

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT
COMMUNICATION
By default, the JBoss ON server and JBoss ON agents talk to each other in the clear,
meaning all communications traffic is unencrypted and no authentication is performed on
either end.

Running servers in the clear, particularly since JBoss ON can perform configuration changes
on some types of resources, can have security considerations for your network. JBoss ON
should only be run without encryption or authentication if JBoss ON is being tested or if all
JBoss ON servers and agents are deployed on a fully secured network, with access limited
by a firewall or VPN and restricted to trusted personnel.

JBoss ON uses SSL/TLS to secure connections between agents and servers in two separate
ways:

Encryption specially encodes the data sent between agents and servers during a
session.

Authentication uses SSL server and client certificates to verify the identity of an
agent before it connects to a server, and vice versa.

NOTE

There is a basic authentication mechanism employed by the server in which it
assigns security tokens to its agents which are used to identify and
"authenticate" registered agents. This token mechanism should not, however,
be considered a strong authentication scheme for the purposes of protecting
your JBoss ON network from infiltration.

Setting up encryption is very simple; it only requires enabling the proper transport
mechanism between servers and agents. This prevents an attacker from intercepting

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

17

communications or data between a legitimate JBoss ON server and a legitimate JBoss ON
agent, by sniffing data or setting up a man-in-the-middle attack.

Authentication adds another layer of protection by preventing an attacker from installing a
"rogue" JBoss ON agent and letting it register itself on the JBoss ON system, so that the
rogue agent has access to the network. Although setting up authentication is more
complicated than using encryption alone, it is worth the effort to implement for the
additional protection, especially if there are vulnerabilities in the network setup.

3.1. Setting up Encryption
All that need to be done to set up encryption is to enable the SSL transport connectors in
the JBoss ON server and agent configuration files. There are two transport options for SSL,
sslservlet and sslsocket.

The JBoss ON server has a default certificate that it can use for encryption and the agent
can generate a self-signed certificate, so it's not necessary to generate or install additional
SSL certificates for encryption alone.

1. First, enable SSL encryption on the JBoss ON server.

1. Shut down the JBoss ON server.

serverRoot/jon-server-3.0.0.GA1/bin/rhq-server.sh stop

2. Open the serverRoot/jon-server-3.0.0.GA1/bin/rhq-server.properties
file for the JBoss ON server.

3. Edit the rhq.communications.connector.* settings to use SSL. To use the
sslsocket transport method, which is recommended for authentication, update
the rhq.communications.connector.transport method, set the port number
to use for the socket, and remove the servlet specified in the transport
parameters setting.

rhq.communications.connector.transport=sslsocket
rhq.communications.connector.bind-address=
rhq.communications.connector.bind-port=55555
rhq.communications.connector.transport-params=

To use the sslservlet transport method, all that's necessary is to change the
rhq.communications.connector.transport method.

rhq.communications.connector.transport=sslservlet
rhq.communications.connector.bind-address=
rhq.communications.connector.bind-port=
rhq.communications.connector.transport-params=/jboss-remoting-
servlet-invoker/ServerInvokerServlet

4. For setting encryption alone, make sure that certificate-based authentication is
disabled:

rhq.server.tomcat.security.client-auth-mode=false
rhq.server.client.security.server-auth-mode-enabled=false

Configuring JBoss ON Servers and Agents

18

5. Optionally, define the secure protocol to use. The default is TLS (which is usually
fine), but you can set it to SSL.

rhq.server.tomcat.security.secure-socket-protocol=TLS
rhq.server.client.security.secure-socket-protocol=TLS

6. Save the changes, and restart the JBoss ON server.

serverRoot/jon-server-3.0.0.GA1/bin/rhq-server.sh start

7. Verify that the end point address and port number given in the configuration are
actually the settings set for the server in JBoss ON.

1. Click the Administration tab in the top menu.

2. In the Topology box on the left, select the Servers item.

3. Check the port number in the Secure Port column.

4. If the value is wrong, click the name of the server to open the edit page.

5. Click the Edit under the server information, and reset the end point address
or port as necessary.

2. Then, enable SSL encryption in the agent.

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

19

NOTE

This shows how to edit the agent configuration by editing the agent
configuration file. The agent configuration can also be edited by going
through the advanced setup mode in the agent start script:

agentRoot/rhq-agent/bin/rhq-agent.sh --cleanconfig --
setup --advanced

1. Open the agent configuration file:

vim agentRoot/rhq-agent/conf/agent-configuration.xml

2. Change the transport protocol to sslsocket.

<entry key="rhq.communications.connector.transport"
value="sslsocket" />

3. Set the server connection information so that it matches the configuration for
the server. The bind address for the server is commented out by default, and the
other parameters are set to the JBoss ON server defaults, including using
sslservlet for the server's transport protocol.

<entry key="rhq.agent.server.transport" value="sslsocket"
/>
<entry key="rhq.agent.server.bind-port" value="55555" />
<entry key="rhq.agent.server.bind-address"
value="server.example.com" />
<entry key="rhq.agent.server.transport-params" value="" />
<entry key="rhq.communications.connector.transport"
value="sslservlet" />

4. For setting encryption alone, make sure that certificate-based authentication is
disabled. These parameters can be left commented out or can be explicitly set to
turn off authentication.

<entry key="rhq.communications.connector.security.client-auth-
mode" value="none" />
<entry key="rhq.agent.client.security.server-auth-mode-enabled"
value="false" />

5. Optionally, define additional protocol settings for the agent. This is necessary if
the server is configured to use transport protocols other than TLS.

<entry key="rhq.communications.connector.security.secure-socket-
protocol" value="TLS" />
<entry key="rhq.agent.client.security.secure-socket-protocol"
value="TLS" />

6. Exit the agent and restart it, using the --cleanconfig option to load the new
configuration.

Configuring JBoss ON Servers and Agents

20

agentRoot/rhq-agent/bin/rhq-agent.sh --cleanconfig

3.2. Setting up Client Authentication Between Servers and Agents
Authenticationis the process of verifying something's identity. With certificate-based
authentication, an entity has to obtain a certificate file from a trusted source and, when
initiating an SSL connection, that certificate is used to identify that entity. This ensures that
the only parties involved in an SSL connection are who they say they are.

To set up certificate-based authentication for JBoss ON, several steps need to be taken.
Encryption has to be enabled, certificates have to be issued and stored for the JBoss ON
server and agents, and the servers and agents have to be configured to reject messages
from untrusted clients.

SSL authentication for JBoss ON is bi-directional. The agents are configured to authenticate
to the server, and then the server is configured to authentication to the agents.

NOTE

It is possible to configure one-way authentication, where only the server or
only the agents have to authenticate. The best security is with bi-directional
authentication, which is the configuration given here.

There are two transport methods in JBoss ON that allow SSL connections, sslservlet and
sslsocket.

The procedure below uses sslsocket, which allows the default given port to be used for
GUI connections while a special port is used for server-agent SSL connections.

Using sslservlet leverages the embedded Tomcat server, but this requires GUI users to
authenticate to the server as well as enabling certificate-based authentication for agents.
To allow GUI users to authenticate using their usernames and passwords, set up SSL more
or less as outlined below (with some difference in the configuration file settings) and edit
the JBoss ON server's Tomcat configuration file (serverRoot/jon-server-
3.0.0.GA1/jbossas/server/default/deploy/jboss-web.deployer/server.xml to
uncomment the <Connector> section which says Provides a secure but un-authenticated
https connector for browsers to use. and set the port for them to use.

1. Enable encryption, as in Section 3.1, “Setting up Encryption”, only make sure that
client authentication is not disabled.

2. SSL socket connections will occur over a user-defined port. If necessary, open the
firewall or VPN to allow access to that port.

3. Generate SSL certificates for each JBoss ON server and agent. For example:

keytool -genkey -dname "CN=server1.example.com" -keystore server1-
keystore.dat -validity 3650 -alias server1 -keyalg DSA -storetype
JKS -keypass secret -storepass secret

This creates a self-signed certificate with the following characteristics:

A common name (CN) value that is the same as the server hostname,
server1.example.com. The -dname value must be the same as the hostname

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

21

because during the initial steps of the SSL connection (the SSL handshake), the
client will verify that the same identity which was issued the certificate is the
same as the one presenting it. Meaning, it will match the hostname in the CN
against the hostname of the server or agent presenting the certificate.

A keystore file called server1-keystore.dat

A validity period of 3650 days

An alias of server1

A key algorithm of DSA

Stored in the JKS format in the keystore

Key and storage passwords of secret

Your organization may have a method already for generating or obtaining
certificates. This example uses keytool; other utilities, like certutil, can be used
as well. The keytool documentation is available through the Oracle-Sun site at
http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html.

4. Put each self-signed certificate in a single truststore file.

1. Export the self-signed certificate from each keystore:

keytool -export -keystore server1-keystore.dat -alias server1 -
storetype JKS -storepass secret -file server1-cert

2. Import every certificate into a single truststore file:

keytool -import -keystore truststore.dat -alias server1 -
storetype JKS -file server1-cert -noprompt -keypass secret -
storepass secret

-alias is the name to give to the imported certificate in the truststore. For
convenience, this is the same as the alias of the original keystore file.

IMPORTANT

Import every exported server and agent certificate into the same
truststore file.

3. Verify that all the certificates were successfully imported by using the keytool
to list the certificates:

keytool -list -keystore truststore.dat -storepass secret -
storetype JKS

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 2 entries

server2, Feb 25, 2011, trustedCertEntry,

Configuring JBoss ON Servers and Agents

22

http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html

Certificate fingerprint (MD5):
24:D9:8A:50:BA:1B:26:08:DC:44:A8:2A:9E:8A:43:D9
server, Feb 25, 2011, trustedCertEntry,
Certificate fingerprint (MD5):
91:F8:78:15:21:E8:0C:73:EC:B6:3B:1D:5A:EC:2B:01

5. Distribute both the keystore and the truststore files to all the JBoss ON and server
and agent machines. Be sure to distribute the keystores only to the machines which
match the hostname in the CN of the certificate; putting the keystore on the wrong
machine will cause SSL connections to fail.

1. For the server, copy the keystore into the serverRoot/jon-server-
3.0.0.GA1/jbossas/server/default/conf/ directory of the JBoss AS server
embedded in the JBoss Operations Network server. Make sure this file is named
keystore.dat.

2. For the server, copy the truststore into the serverRoot/jon-server-
3.0.0.GA1/jbossas/server/default/conf/ directory of the embedded JBoss
AS server. Make sure this file is named truststore.dat.

3. For the agent, copy the keystore into the agentRoot/rhq-agent/conf directory.
Any certificate file in the agentRoot/rhq-agent/conf directory is retained even
after an automatic update.

6. Shut down the JBoss ON server.

serverRoot/jon-server-3.0.0.GA1/bin/rhq-server.sh stop

7. Open the rhq-server.properties file for the JBoss ON server.

vim serverRoot/jon-server-3.0.0.GA1/bin/rhq-server.properties

8. Enable client authentication by setting the
rhq.communications.connector.security.client-auth-mode parameter to need
and the rhq.server.client.security.server-auth-mode-enabled parameter to
true.

Set the information about the keystore and truststore files.

All of the configuration for incoming messages (agent-to-server communications) is
set in rhq.communications.connector.security.* parameters. The configuration
for outgoing messages is set in rhq.server.client.security.* parameters.

Server-side SSL Security Configuration (for incoming messages from
agents)
These are used when secure transports other than sslservlet are
used
rhq.communications.connector.security.secure-socket-protocol=TLS
rhq.communications.connector.security.keystore.file=${jboss.server.h
ome.dir}/conf/keystore.dat
rhq.communications.connector.security.keystore.algorithm=SunX509
rhq.communications.connector.security.keystore.type=JKS
rhq.communications.connector.security.keystore.password=secret
rhq.communications.connector.security.keystore.key-password=secret
rhq.communications.connector.security.keystore.alias=server1

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

23

rhq.communications.connector.security.truststore.file=${jboss.server
.home.dir}/conf/truststore.dat
rhq.communications.connector.security.truststore.algorithm=SunX509
rhq.communications.connector.security.truststore.type=JKS
rhq.communications.connector.security.truststore.password=secret
rhq.communications.connector.security.client-auth-mode=need

...

Client-side SSL Security Configuration (for outgoing messages to
agents)
rhq.server.client.security.secure-socket-protocol=TLS
rhq.server.client.security.keystore.file=${jboss.server.home.dir}/co
nf/keystore.dat
rhq.server.client.security.keystore.algorithm=SunX509
rhq.server.client.security.keystore.type=JKS
rhq.server.client.security.keystore.password=secret
rhq.server.client.security.keystore.key-password=secret
rhq.server.client.security.keystore.alias=myhost
rhq.server.client.security.truststore.file=${jboss.server.home.dir}/
conf/truststore.dat
rhq.server.client.security.truststore.algorithm=SunX509
rhq.server.client.security.truststore.type=JKS
rhq.server.client.security.truststore.password=secret
rhq.server.client.security.server-auth-mode-enabled=true

9. Save the file and restart the server.

serverRoot/jon-server-3.0.0.GA1/bin/rhq-server.sh start

10. In the agent configuration file, uncomment the lines related to secure connections.
These parameters begin with rhq.communications.connector.security.* and
rhq.agent.client.security.* for agent-to-server communications and server-to-
agent connections, respectively.

Fill in the appropriate values.

<entry key="rhq.communications.connector.security.secure-socket-
protocol" value="TLS" />
<entry key="rhq.communications.connector.security.keystore.file"
value="conf/keystore.dat" />
<entry
key="rhq.communications.connector.security.keystore.algorithm"
value="SunX509" />
<entry key="rhq.communications.connector.security.keystore.type"
value="JKS" />
<entry key="rhq.communications.connector.security.keystore.password"
value="rhqpwd" />
<entry key="rhq.communications.connector.security.keystore.key-
password" value="rhqpwd" />
<entry key="rhq.communications.connector.security.keystore.alias"
value="rhq" />
<entry key="rhq.communications.connector.security.truststore.file"
value="conf/truststore.dat" />
<entry

Configuring JBoss ON Servers and Agents

24

key="rhq.communications.connector.security.truststore.algorithm"
value="SunX509" />
<entry key="rhq.communications.connector.security.truststore.type"
value="JKS" />
<entry
key="rhq.communications.connector.security.truststore.password"
value="" />
<entry key="rhq.communications.connector.security.client-auth-mode"
value="none" />

<entry key="rhq.agent.client.security.secure-socket-protocol"
value="TLS" />
<entry key="rhq.agent.client.security.keystore.file"
value="conf/keystore.dat" />
<entry key="rhq.agent.client.security.keystore.algorithm"
value="SunX509" />
<entry key="rhq.agent.client.security.keystore.type"
value="JKS" />
<entry key="rhq.agent.client.security.keystore.password"
value="rhqpwd" />
<entry key="rhq.agent.client.security.keystore.key-password"
value="rhqpwd" />
<entry key="rhq.agent.client.security.keystore.alias"
value="rhq" />
<entry key="rhq.agent.client.security.truststore.file"
value="conf/truststore.dat" />
<entry key="rhq.agent.client.security.truststore.algorithm"
value="SunX509" />
<entry key="rhq.agent.client.security.truststore.type"
value="JKS" />
<entry key="rhq.agent.client.security.truststore.password"
value="" />
<entry key="rhq.agent.client.security.server-auth-mode-enabled"
value="false" />

NOTE

This shows how to edit the agent configuration by editing the agent
configuration file. The agent configuration can also be edited by going
through the advanced setup mode in the agent start script:

agentRoot/rhq-agent/bin/rhq-agent.sh --cleanconfig --
setup --advanced

3.3. Troubleshooting SSL Problems
The most common symptom of an SSL connection problem is that the agent will hang when
it starts up because it is unable to establish a connection to the JBoss ON server. There are
several different areas to check when an SSL problem occurs.

3.3.1. Common SSL Connection Issues

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

25

An SSL problem is simply a connection problem, which indicates that there is a problem
with the agent or server configuration. There are some general areas to check to make sure
that the configuration is all right:

Make sure that both the agent and the server hostnames are resolvable to the
hostnames in their server certificates.

Make sure that port number given for the server's secure port is actually the port
number configured for the server. Check the Administration > High
Availability > Servers page and verify that the public endpoint address and port
are correct. Edit the server definition in the UI so they are the same as the SSL
configuration.

Figure 1. Server Hostname and Port Configuration

If these values do not match the same values configured for the SSL connection, the
agent will not be able to talk to the server.

Make sure that both the agent and the server hostnames are resolvable to the
hostnames in their server certificates.

Make sure that every certificate that is used for agent-server communication is
stored in the requisite keystores with the proper aliases.

Check that the password is properly set to access the keystore.

Make sure that the communication is set to use TLS.

Validate the server and agent configuration, especially the assigned transport
(socket or servlet) options. There are examples of configuration in Section 3.3.3,
“Example SSL Configuration”.

If client authentication is required and the server is using the sslservlet transport
option, make sure that every user who connects to the JBoss ON UI has an installed
user certificate so that they can connect to the server UI using client authentication.
As with the agent certificate, the user certificates must be stored in the server's
keystore, Section 3.2, “Setting up Client Authentication Between Servers and
Agents”.

If users are unable to connect using client authentication, then change the server to
use sslsocket instead of sslservlet.

3.3.2. Enabling SSL Debugging

Enabling verbose logging in the agent can return more details SSL communication
messages in the agent log, which can help diagnose connection problems.

1. Open the agent environment variable file. This defines some settings for the JVM
which the agent runs in, including debug log settings.

Configuring JBoss ON Servers and Agents

26

2. Add a RHQ_AGENT_ADDITIONAL_JAVA_OPTS line to set a debug environment variable.

3. Restart the agent.

agentRoot/rhq-agent/bin/rhq-agent.sh

3.3.3. Example SSL Configuration

These examples show what correct configuration looks like in both the server and the agent
configuration files for the different encryption and authentication configuration scenarios.

Example 1. Encryption Only: Server (sslservlet) and Agent (sslsocket)

Server Configuration Agent Configuration

rhq.communications.connector.tra
nsport=sslservlet
rhq.communications.connector.bin
d-address=
rhq.communications.connector.bin
d-port=
rhq.communications.connector.tra
nsport-params=/jboss-remoting-
servlet-
invoker/ServerInvokerServlet
rhq.server.tomcat.security.clien
t-auth-mode=false
rhq.server.client.security.serve
r-auth-mode-enabled=false

<entry
key="rhq.agent.server.transport"
value="sslservlet" />
<entry
key="rhq.agent.server.bind-port"
value="7443" />

The agent configuration defines the server's connection information, so it can be either
sslservlet or sslsocket. The agent can only receive incoming messages over
sslsocket.

Example 2. Encryption Only: Server (sslsocket) and Agent (sslsocket)

vim agentRoot/rhq-agent/bin/rhq-agent-env.sh

RHQ_AGENT_ADDITIONAL_JAVA_OPTS="-Djavax.net.debug=all"

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

27

Server Configuration Agent Configuration

rhq.communications.connector.tra
nsport=sslsocket
rhq.communications.connector.bin
d-address=
rhq.communications.connector.bin
d-port=7800
rhq.communications.connector.tra
nsport-params=
rhq.server.tomcat.security.clien
t-auth-mode=false
rhq.server.client.security.serve
r-auth-mode-enabled=false

<entry
key="rhq.agent.server.transport"
value="sslsocket" />
<entry
key="rhq.agent.server.bind-port"
value="7800" />
<entry
key="rhq.agent.server.transport-
params" value="" />

Because the agent configuration defines the server's connection information, it must
match the configuration in the server's rhq-server.properties file.

Example 3. Encryption and Client Authentication: Server (sslservlet) and Agent
(sslsocket)

Server Configuration Agent Configuration

rhq.communications.connector.tra
nsport=sslservlet
rhq.communications.connector.bin
d-address=
rhq.communications.connector.bin
d-port=
rhq.communications.connector.tra
nsport-params=/jboss-remoting-
servlet-
invoker/ServerInvokerServlet
rhq.server.tomcat.security.clien
t-auth-mode=true
rhq.server.client.security.serve
r-auth-mode-enabled=true

<entry
key="rhq.agent.server.transport"
value="sslservlet" />
 <entry
key="rhq.agent.server.bind-port"
value="7443" />

Example 4. Encryption and Client Authentication: Server (sslsocket) and Agent
(sslsocket)

Configuring JBoss ON Servers and Agents

28

Server Configuration Agent Configuration

rhq.communications.connector.tra
nsport=sslsocket
rhq.communications.connector.bin
d-address=
rhq.communications.connector.bin
d-port=55555
rhq.communications.connector.tra
nsport-params=

rhq.communications.connector.sec
urity.client-auth-mode=true
rhq.server.client.security.serve
r-auth-mode-enabled=true

<entry
key="rhq.agent.server.transport"
value="sslsocket" />
<entry
key="rhq.agent.server.bind-port"
value="55555" />
<entry
key="rhq.agent.server.transport-
params" value="" />

4. CONFIGURING HIGH AVAILABILITY
High availability with JBoss ON servers means that all JBoss ON servers which use the same,
central database interact together in a cloud. This allows seamless failover between servers
when a server has to be taken offline for maintenance, and it provides a natural method for
load balancing agent and resource operations.

Agents are assigned, or partitioned, among servers in the high availability cloud. Agents
aren't strictly assigned to a server to be managed. Agents are handled by servers first
based on a preference, or affinity, for a server because they belong to to the same affinity
group. After affinity, or if an affinity group isn't configured, then agents are managed by
the server in a round-robin style for availability.

IMPORTANT

Only agents have an affinity preference in high availability. This means that
agents have a preference in which server they attempt to contact. JBoss ON
uses two-way communication, however, so servers also contact agents.
Servers — regardless of the partition or the agent affinity configuration — can
contact any agent in JBoss ON even if the server is not in that agent's affinity
group or if the server does not manage the agent.

4.1. Prepping High Availability
High availability means that JBoss ON servers have natural and transparent failover and
redundancy: if one server fails, both agents and UI access can be seamless switched to
another server. A multi-server high availability configuration provides fault tolerance and
improved scalability.

When multiple JBoss ON servers are installed, they use the same backend database to store
and retrieve data. This approach distributes the load over multiple servers and provides
agent failover.

4. CONFIGURING HIGH AVAILABILITY

29

If an agent's server becomes unavailable, the agent to switch to a different server. Through
the use of affinity groups, agents switch to a preferred alternative server.

4.1.1. Deciding When to Use High Availability

In many circumstances, it may be satisfactory to run a single-server configuration.
However, some environments require a multi-server approach because of the demands on
the system:

Agent report processing is not meeting requirements, for collecting metrics,
generating alerts or events, or reporting resource availability.

You have a geographically distributed environment with multiple data centers or
logical grouping of agents to servers.

The agent load is too high for the server, meaning the server is having trouble
processing the agent load. The optimal load per server will depend on the server,
rather than the number of agents the server is managing.

There are three things to note about high availability server-agent connections:

The JBoss ON server defined in the agent's initial configuration is used only for the
agent registration. It is not necessarily the one that the agent is told to connect to.

High availability servers communicate solely through the database. Therefore,
server endpoints do not need to be visible to each other. No direct server to server
communication is ever made.

Only agents have an affinity preference in high availability. This means that agents
have a preference in which server they attempt to contact. JBoss ON uses two-way
communication, however, so servers also contact agents. Servers — regardless of
the partition or the agent affinity configuration — can contact any agent in JBoss ON
even if the server is not in that agent's affinity group or if the server does not
manage the agent.

4.1.2. High Availability Infrastructure Impact

In general, JBoss ON servers can be added or removed from the high availability cloud at
any time. A single-server environment can be turned into a multi-server environment by
installing a new JBoss ON server on a second machine and configuring it to use.

There are two things to consider when implementing a high availability cloud:

The potential demands on the shared backend database.

The IP addresses or names of the servers.

4.1.2.1. Database Impact

Although JBoss ON servers can be added to the high availability server cloud with relative
ease, it should be done cautiously due to the potential impact on the back-end database.
Each JBoss ON server limits its concurrent database connections, but there is no restriction
on the cloud itself. Adding a second server can double the potential database connections,
even if the number of agents remains the same. The increase is linear as servers are
added.

Configuring JBoss ON Servers and Agents

30

Each JBoss ON server instance has built-in mechanisms for limiting the load it will put on
the database. Each JBoss ON server can use less connections than the maximum limit, but
the limits guarantee that they will each never use more than the maximum allowed
connections to the database.

NOTE

A high availability configuration does not necessarily imply a large number of
JBoss ON agents. It may be the case that a relatively small JBoss ON
implementation may be in place, with only a few JBoss ON agents. Those
agents, however, may need high availability, and, therefore, failover servers
are required. In this case, the backend database will still have a high number
of potential connections but, in reality, will not reach that limit.

4.1.2.2. Server and Agent Endpoints

In a multi-server high availability configuration, it is possible for any agent to try to connect
to any server. It is critical that every JBoss ON agent be able to resolve the endpoint
address set for every server in the high availability server cloud. When defining the server
in the installer, it is important that the endpoint address be public to the degree that the
agent population can reach the server via the defined address and port

An agent connecting to a server must provide an endpoint reachable by the server to allow
for the necessary two-way communication.

4.1.2.3. Summary of Server Requirements

1. All high availability servers must be running the same version of JBoss ON.

2. All high availability servers must be uniquely named. This string is defined during
server installation.

3. Each high availability server must define a unique endpoint that is resolvable by all
JBoss ON agents running against the high availability server cloud. This address/port
is defined during installation. It can be an alias as long as that alias is resolvable by
all JBoss ON agents. Any given JBoss ON agent may be running against any JBoss ON
server at a given time.

4.2. Putting Servers in Maintenance Mode
Putting a JBoss ON server in maintenance mode temporarily removes it from the high
availability cloud so it no longer processes agent operations. This is useful when the server
is offline for upgrades or because of a service interruption.

1. Click the Administration tab in the top menu.

2. In the Topology menu table, select the Servers item.

3. Select the check box next to the name of the JBoss ON server to put into
maintenance mode.

4. CONFIGURING HIGH AVAILABILITY

31

4. Click the SET MAINTENANCE button.

The JBoss ON server can be added back to the high availability cloud by clicking SET NORMAL
button. Agents migrate back to the server incrementally.

4.3. Removing Servers from the High Availability Cloud
A JBoss ON server that is in maintenance mode can be permanently removed from the high
availability cloud.

1. Click the Administration tab in the top menu.

2. In the Topology menu table, select the Servers item.

3. Select the check box next to the name of the JBoss ON server to remove from the
cloud, and click SET MAINTENANCE.

4. When the screen refreshes, select the check box next to the name of the JBoss ON
server again, and click the REMOVE SELECTED button.

4.4. Defining Affinity for Agents
By default, agent load is distributed evenly amongst the servers in the cloud. Balance can
change in failover situations, but agent load is evenly distributed when all agents and all
servers are running.

4.4.1. About Affinity

Affinity groups link agents to servers so that agents in an affinity group first try connecting
to a server in the same affinity group before connecting to a server outside the affinity
group.

Affinity groups provide three distinct advantages:

Physical efficiency. Generally, if certain agent-server connections clearly run more
efficiently than others, then defining affinity to prefer those connections makes
sense. This could include servers and agents co-located in the same data center,

Configuring JBoss ON Servers and Agents

32

geographic grouping, or network topology.

Logical Efficiency. There may be organizational reasons, apart from operating
efficiency, to group specific agents and servers together, such as administrative
responsibilities or business unit assignments.

Warm backup. It may be the case that certain machines should not be assigned
agent load unless specifically needed for failover purposes. In this case, all agents
should be assigned affinity to a subset of available servers, leaving some servers
without any associated agents in normal operation.

Section 4.1, “Prepping High Availability” covers the common considerations and restrictions
when planning availability for servers and this also applies to planning affinity for agents.

Affinity assignments can be added or removed at any time, but it is useful to consider your
initial approach, even if it confirms that affinity assignments are unnecessary.

IMPORTANT

Only agents have an affinity preference in high availability. This means that
agents have a preference in which server they attempt to contact. JBoss ON
uses two-way communication, however, so servers also contact agents.
Servers — regardless of the partition or the agent affinity configuration — can
contact any agent in JBoss ON even if the server is not in that agent's affinity
group or if the server does not manage the agent.

NOTE

Since high availability environments typically involve many agents, it may be
useful to perform pre-configured agent installations to avoid having to answer
initial setup questions interactively.

4.4.2. Creating Affinity Groups

An affinity group sets a preference for which JBoss ON servers manage which JBoss ON
agents. An affinity group only sets a preference or hint for which server will manage the
agent, not an absolute requirement. All agents are still managed within the JBoss ON server
cloud, so any JBoss ON server can, theoretically, manage any JBoss ON agent based on the
current load and performance.

IMPORTANT

Only agents have an affinity preference in high availability. This means that
agents have a preference in which server they attempt to contact. JBoss ON
uses two-way communication, however, so servers also contact agents.
Servers — regardless of the partition or the agent affinity configuration — can
contact any agent in JBoss ON even if the server is not in that agent's affinity
group or if the server does not manage the agent.

The affinity groups page shows the number of agents and servers assigned to each affinity
group.

4. CONFIGURING HIGH AVAILABILITY

33

Figure 2. Listing Affinity Groups

NOTE

An agent and a server can only belong to a single affinity group.

To create a new affinity group:

NOTE

To edit an affinity group, click its name, then manage it the same as creating a
new affinity group.

1. Click the Administration tab in the top menu.

2. In the Topology menu table on the left, select the Affinity Groups item.

Configuring JBoss ON Servers and Agents

34

3. Click the CREATE NEW button.

4. Enter a name for the new affinity group, and click OK.

5. In the new affinity group's details page, click the EDIT GROUP AGENTS button.

4. CONFIGURING HIGH AVAILABILITY

35

6. In the lower section, Agents not part of an affinity group, click the
checkboxes by the agent names to add to the group, and click ADD TO GROUP.

7. Click the Return to Affinity Group Link.

8. As with the agents, click the EDIT GROUP SERVERS button to open the server lists
and look at the list in the lower section of servers which do not currently belong to
the affinity group. Click the checkboxes by the server names to add to the group,
and click ADD TO GROUP.

Once both servers and agents have been added to the affinity group, the group is fully
configured.

4.5. Managing Partition Events
When an agent is assigned to be managed by a server, that is a partition. Partition events
are almost like log messages that occur whenever a change in the partition configuration
occurs.

4.5.1. Viewing Partition Events

The partition events log is accessed in the high availability configuration.

1. Click the Administration tab in the top menu.

Configuring JBoss ON Servers and Agents

36

2. In the Topology menu table on the left, select the Partition Events item.

3. The partition events page lists all of the events that have been recorded. (Table 7,
“Partition Events Entries” describes the different fields.) Click the type name of any
partition event opens up that record with more information about how the partition
assignments were affected.

4. CONFIGURING HIGH AVAILABILITY

37

The partition events log can be filtered to display entries which match the type,
status, or details in the event record.

There are basically four categories of partition events that are recorded.

Affinity group changes

Agent events

Server events

Partition changes

All of the recorded events are listed in Table 6, “Types of Partition Events”.

Table 6. Types of Partition Events

Partition Event Description

Affinity Group Changes

AFFINITY_GROUP_CHANGE Registers a change in the agent or server
assignments for an affinity group or that a
group was added.

AFFINITY_GROUP_DELETE Registers an affinity group was deleted from
the JBoss ON configuration.

AGENT_AFFINITY_GROUP_ASSIGN Registers that an agent was added to an
affinity group.

Configuring JBoss ON Servers and Agents

38

AGENT_AFFINITY_GROUP_REMOVE Registers that an agent was removed from an
affinity group.

SERVER_AFFINITY_GROUP_ASSIGN Registers that a server was added to an
affinity group.

SERVER_AFFINITY_GROUP_REMOVE Registers that a server was removed from an
affinity group.

Agent Events

AGENT_CONNECT Shows that a JBoss ON agent was started.

AGENT_SHUTDOWN Shows that a JBoss ON agent was stopped.

AGENT_LEAVE Shows that a JBoss ON agent was permanently
removed from the JBoss ON configuration.

AGENT_REGISTRATION Shows that a new JBoss ON agent was added
to the JBoss ON configuration.

Server Events

SERVER_DELETION Shows that a JBoss ON server was permanently
removed from the JBoss ON configuration.

SERVER_COMPUTE_POWER_CHANGE

OPERATION_MODE_CHANGE Shows that a server went stopped, was
started, or was newly installed. The type also
shows how the mode transitioned (such as
server.example.com: DOWN -->
NORMAL).

Partition Changes

SYSTEM_INITIATED_PARTITION Shows that JBoss ON initiated a repartition of
the servers.

ADMIN_INITIATED_PARTITION Shows that a JBoss ON user initiated a
repartition of the servers.

Partition Event Description

Table 7. Partition Events Entries

4. CONFIGURING HIGH AVAILABILITY

39

Field Description

Execution Time The time of the partition event.

Type Shows the partition event type. This indicates
what happened in the system affecting agent
partition.

Details Gives detailed information about the partition
event; the type of information given varies
based on the partition event type.

Initiated By Shows the name of the user who initiated the
action generating the partition event. Events
initiated by the JBoss ON server itself show
they were initiated by admin.

Execution Status Shows low for status descriptions. There are
four different status settings:

Audit shows that a change was made,
but not an event that affects the
partition topology.

Immediate shows that a partition
change was made at the time of the
event.

Requested shows that a partition
change was requested and deferred
until the next execution of the JBoss
ON server cloud job (usually once a
minute). Repartition requests usually
have a requested status.

Completed shows that a change has
been completed.

4.5.2. Removing Partition Events

There are two ways to remove partition event records:

By selecting individual records and click REMOVE SELECTED

By clicking the PURGE ALL to remove all events

Configuring JBoss ON Servers and Agents

40

Figure 3. Removing Partition Events

5. CONFIGURING SERVERS
The JBoss ON configuration is edited in one of two areas, depending on the configuration
setting:

In the JBoss ON GUI

NOTE

Settings that can be edited in the JBoss ON UI must be edited in the
JBoss ON UI.

In the rhq-server.properties configuration file

Additional configuration is stored in the database backend used by the JBoss ON server.

5.1. Enabling Debug Logging for the JBoss ON Server
Debug mode records debugging messages caused or encountered by the start scripts to
the server logs.

Debug messages are in the log file, serverRoot/jon-server-3.0.0.GA1/logs/rhq-
server-log4j.log.

In some cases, you will want debug messages from the JBoss ON server launcher scripts. To
do this, you need to set the environment variable RHQ_SERVER_DEBUG to any value. After
setting this variable when you start the launcher, scripts will output debug messages.

5.1.1. Using an Environment Variable

The quickest way to enable debug logging is to set the RHQ_SERVER_DEBUG environment
variable to any value before starting the server.

5.1.2. Setting log4j Priorities

5. CONFIGURING SERVERS

41

log4j categories support priorities for logging levels. This means that different areas of the
agent can be configured for different log levels.

NOTE

Do not set the RHQ_SERVER_DEBUG environment variable if you are setting
priorities in the rhq-server-log4j.xml file. The environment variable
overrides this rhq-server-log4j.xml configuration.

WARNING

Do not modify anything else in the jbossas directory. This could
adversely affect the performance of the JBoss ON server.

To enable debug logging for a category, change the priority value to DEBUG:

1. Open the jboss-log4j.xml file:

vim serverRoot/jon-server-
3.0.0.GA1/jbossas/server/default/conf/jboss-log4j.log

2. Uncomment the org.rhq category to set the priority for all JBoss ON server
subsystems to DEBUG.

Alternatively, set DEBUG priorities for individual subsystems in the server.
Uncomment the specific categories and set the priority element for the category
to DEBUG. Many categories are defined for JBoss ON server subsystems, including
database upgrades, global concurrency settings, inventory reports, authorization,
alerting, and the UI. There are also categories for third-party subsystems like
JBoss/Remoting and Hibernate. For example:

 <category name="org.rhq">
 <priority value="DEBUG"/>
 </category>

 ...
 <!--
 <category name="org.rhq.enterprise.server.alert">
 <priority value="DEBUG"/>
 </category>
 -->

 <!--
 <category name="org.rhq.enterprise.server.authz">
 <priority value="DEBUG"/>
 </category>
 -->

 <!--

Configuring JBoss ON Servers and Agents

42

NOTE

By default, the console window will not display debug messages. This is
because the log4j CONSOLE appender has a threshold at INFO. For debug
messages to appear in the UI, change the CONSOLE appender's
threshold setting to DEBUG.

 <appender name="CONSOLE"
class="org.apache.log4j.ConsoleAppender">
 <errorHandler
class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="Target" value="System.out"/>
 <param name="Threshold" value="DEBUG"/>

3. Restart the server to load the new configuration.

serverRoot/jon-server-3.0.0.GA1/bin/rhq-server.sh stop

The log4j file format is described more in the Apache log4j documentation.

5.2. Changing the JBoss ON Server URL
The server URL is the URL used to identify and connect to the server in two ways:

Connecting to the GUI

Details on alerts, contained in email notifications of alerts

The server URL does not need to be changed unless the JBoss ON connects to the Internet
through a proxy server.

1. Click the Administration tab in the top menu.

2. In the Configuration menu table on the left, select the System Settings item.

 <category name="org.rhq.enterprise.server.event">
 <priority value="DEBUG"/>
 </category>
 -->

 <!--
 <category name="org.rhq.enterprise.server.measurement">
 <priority value="DEBUG"/>
 </category>
 -->

 ...

5. CONFIGURING SERVERS

43

http://wiki.apache.org/logging-log4j/Log4jXmlFormat

3. Scroll to the JON General Configuration Properties section in the main work
area.

4. Change the hostname or IP address in the GUI Console URL field.

5. Click Save.

5.3. Editing JBoss ON Server Configuration in rhq-server.properties
JBoss ON server configuration properties are stored either in the rhq-server.properties
configuration file in the serverRoot/jon-server-3.0.0.GA1/bin directory or in the JBoss

Configuring JBoss ON Servers and Agents

44

ON database. The configuration file contains most of the basic information about the JBoss
ON server, such as the TCP/IP ports it listens on and its hostname or IP address.

The JBoss ON server configuration is loaded from the rhq-server.properties file when the
server starts. The initial configuration is defined by the installer when the JBoss ON program
is set up.

NOTE

Because the configuration properties are loaded from rhq-
server.properties when the JBoss ON server starts up, you have to restart
the JBoss ON server after making any changes to that configuration file so the
new settings are loaded.

5.3.1. Configuring Communication Settings

JBoss ON servers are configured to communicate to agents by defining and identifying ways
that the server and agent can connect, as well as how other clients (like users accessing
the JBoss ON GUI) can connect to the server. These communication endpoints include
identifying the server hostname or IP address, ports that the server listens on for different
types of messages, and protocols used to access the server. All of the server connection
parameters are described in Table 8, “rhq-server.properties Parameters for Server
Connections”.

Connections, or transport methods, for the server are implemented through servlets (HTTP
and HTTPS) or sockets (HTTPS). The servlet (HTTP) and sslservlet (HTTPS) transports
route traffic through the Tomcat server embedded in the JBoss ON server.

IMPORTANT

If the server is using the transport servlet or sslservlet, the agent
communication is over the Tomcat connector. This means
rhq.communications.connector.bind-port is ignored and the Tomcat
connector port is used to send messages from agent to server. By default, the
Tomcat connector port is 7080 (servlet) or 7443 (sslservlet).

NOTE

Servlet-based transports leverage the Tomcat connector infrastructure to
handle both agent and GUI requests. Using servlets, however, limits agents
and GUI clients to use the same connection methods; for certificate-based SSL
connections, servlets require users to authenticate to the GUI using a stored
browser certificate. For SSL, then, it may be preferable to use socket
connections, which allow different authentication methods for agent and GUI
sessions.

See Section 3.2, “Setting up Client Authentication Between Servers and
Agents” for setting up SSL sockets.

The general configuration settings set the port numbers that users can used to access the
server.

5. CONFIGURING SERVERS

45

General Properties
rhq.server.startup.web.http.port=7080
rhq.server.startup.web.https.port=7443

Additional connection settings can be added to configure SSL connections for inbound
connections to the server (messages from the agent to the server) and outbound
connections (messages from the server to the agent). For example:

rhq.server.tomcat.security.client-auth-mode=want
rhq.server.tomcat.security.secure-socket-protocol=TLS
rhq.server.tomcat.security.algorithm=SunX509
rhq.server.tomcat.security.keystore.alias=RHQ
rhq.server.tomcat.security.keystore.file=conf/rhq.keystore
rhq.server.tomcat.security.keystore.password=RHQManagement
rhq.server.tomcat.security.keystore.type=JKS
rhq.server.tomcat.security.truststore.file=conf/rhq.truststore
rhq.server.tomcat.security.truststore.password=RHQManagement
rhq.server.tomcat.security.truststore.type=JKS

The third part of JBoss ON server communications provides more control over information
the connection endpoints for JBoss ON servers and agents to use to talk with each other.
These are transport parameters for the server. Both the JBoss ON agent and port use the
same remoting framework, using invocation strings that are similar to URLs. These
connection strings have the format:

protocol://server:port/transportParm1=value1&transportParam2=value2

IMPORTANT

For most communications, the JBoss ON server must use either servlet or
sslservlet protocols. The only instance where socket can be used is for passing
transport parameters. Otherwise, socket and sslsocket are not supported.

The transport configuration first sets up connectors (called endpoints) that the servers and
agents jointly define and use for communications. This means that the same information
must be in both the server and agent configuration files. Each aspect of the remoting URL is
built using separate server configuration parameters.

The standard server configuration has four parts, for the transport method, server IP
address, agent port, and any parameters to append to the URL. For example:

rhq.communications.connector.transport=servlet
rhq.communications.connector.bind-address=192.168.1.2
rhq.communications.connector.bind-port=16163
rhq.communications.connector.transport-params=/jboss-remoting-servlet-
invoker/ServerInvokerServlet

That standard configuration is merged to create this URL:

servlet://192.168.1.2:16163/jboss-remoting-servlet-
invoker/ServerInvokerServlet

Configuring JBoss ON Servers and Agents

46

A corresponding entry, with the same endpoint definition, is also listed in the agent
configuration so that it knows how to send communications to the server, such as sending
registration and availability reports.

RHQ Server IP Address=192.168.1.2
RHQ Server Port=16163
RHQ Server Transport Protocol=servlet
RHQ Server Transport Parameters=/jboss-remoting-servlet-
invoker/ServerInvokerServlet

Example 5. Basic Server-Agent Transport Example

A server with an IP address of 192.168.0.10 will connect to agents over the standard
agent port of 16163. The server configuration has the following configuration to define
the server address (rhq.communications.connector.bind-address), the agent
communications port (rhq.communications.connector.bind-port), and the
connection protocol (rhq.communications.connector.transport):

rhq.communications.connector.transport=servlet
rhq.communications.connector.bind-address=192.168.0.10
rhq.communications.connector.bind-port=16163
rhq.communications.connector.transport-
params=enableTcpNoDelay=true&backlog=200

The connection URL, then, is:

servlet://192.169.0.10:16163/enableTcpNoDelay=true&backlog=200

The JBoss ON agent configuration will contain corresponding entries which match the
server configuration:

RHQ Server IP Address=192.168.0.10
RHQ Server Port=16163
RHQ Server Transport Protocol=socket
RHQ Server Transport Parameters=enableTcpNoDelay=true&backlog=200

Transport parameters can pass relevant information about both incoming and outgoing
messages (called server and client messages, respectively, because of how the JBoss ON
server handles the messages). These transport parameters are strung together with
ampersands (&), as with a standard web URL parameters.

Both server and client transport parameters are passed in the same URL; the JBoss ON
server only processes whatever parameters are relevant for the current operation. In
Example 5, “Basic Server-Agent Transport Example”, for instance, the configuration sets
two transport parameters, enableTcpNoDelay (client) and backlog (server). When the JBoss
ON server is receiving messages — when it function as a communications server — it uses
the backlog parameter and ignore enableTcpNoDelay because enableTcpNoDelay is only
for outgoing (client) messages.

Table 8. rhq-server.properties Parameters for Server Connections

5. CONFIGURING SERVERS

47

Parameter Description

General Connection Parameters

jboss.bind.address[a][b] Gives the IP address for the JBoss ON GUI
console, among other services, to bind to. This
is the host in the JBoss ON GUI URLs; e.g. the
myhost in http://myhost:7080.

rhq.server.startup.web.http.port[a][b] Gives the port that the JBoss ON GUI listens to
for unsecured HTTP requests. This is the port
number in the JBoss ON GUI URLs, such as the
7080 in http://localhost:7080. This is also the
unsecure port used as the endpoint in high
availability.

rhq.server.startup.web.https.port[a][b] Gives the port that the JBoss ON GUI listens to
for secured HTTPS requests. This is the port
number in the JBoss ON GUI URLs, such as the
7443 in https://localhost:7443. This is also the
secure port used as the endpoint in high
availability.

rhq.server.startup.keystore.filename[b] The JBoss ON GUI can accept browser requests
over HTTPS. If you want to authenticate the
JBoss ON GUI to remote browsers, you need to
put an SSL certificate in a keystore file. This
setting points to the location of the keystore
file. Note that this file name must be a relative
file path relative to the <JBoss ON server
Install
Dir>/jbossas/server/default/conf
directory. The JBoss ON server ships with a
self-signed certificate in a default keystore file.

rhq.server.startup.keystore.password[b] The password of the keystore file. This is so
the JBoss ON GUI can access the keystore file
in order to be able to serve the certificate to
browser clients.

rhq.server.startup.keystore.sslprotocol[b] The protocol that browser clients should use to
communicate with the JBoss ON GUI.

rhq.server.maintenance-mode-at-start Sets whether to start the server in
maintenance mode (true) or whether to start
the server in whatever mode it was in when it
shut down (false). The default is false.

Configuring JBoss ON Servers and Agents

48

rhq.server.startup.webservice.port[a][b]

rhq.server.startup.namingservice.port[
a][b]

rhq.server.startup.namingservice.rmip
ort[a][b]

rhq.server.startup.jrmpinvoker.rmiport[
a][b]

rhq.server.startup.pooledinvoker.rmipo
rt[a][b]

rhq.server.startup.ajp.port[a][b]

rhq.server.startup.unifiedinvoker.port[a
][b]

rhq.server.startup.aspectdeployer.bind
-port[a][b]

Ports used by internal services.

SSL Connection Parameters

rhq.communications.connector.securit
y.secure-socket-protocol (agent to
server)

rhq.server.client.security.secure-
socket-protocol (server to agent)

The secure protocol that agents must use
when communicating with this JBoss ON
server.

rhq.communications.connector.securit
y.keystore.file (agent to server)

rhq.server.client.security.keystore.file
(server to agent)

The keystore file that contains a certificate that
authenticates the JBoss ON server to the
agents.

rhq.communications.connector.securit
y.keystore.algorithm (agent to server)

rhq.server.client.security.keystore.algo
rithm (server to agent)

Parameter Description

5. CONFIGURING SERVERS

49

rhq.communications.connector.securit
y.keystore.type (agent to server)

rhq.server.client.security.keystore.type
(server to agent)

The file format of the keystore.

rhq.communications.connector.securit
y.keystore.password (agent to server)

rhq.server.client.security.keystore.pas
sword (server to agent)

The password that is used to gain access to
the keystore file.

rhq.communications.connector.securit
y.keystore.key-password (agent to
server)

rhq.server.client.security.keystore.key-
password (server to agent)

The password that is used to gain access to
the key inside the keystore.

rhq.communications.connector.securit
y.keystore.alias (agent to server)

rhq.server.client.security.keystore.alia
s (server to agent)

The alias that identifies the JBoss ON server's
key within its keystore.

rhq.communications.connector.securit
y.truststore.file (agent to server)

rhq.server.client.security.truststore.file
(server to agent)

The truststore file that contains certificates
that this JBoss ON server trusts. If you need
the JBoss ON server to authenticate JBoss ON
agents, you must set this; otherwise it is not
needed. This truststore contains certificates
for all JBoss ON agents that need to
communicate with this JBoss ON server. Refer
to the Incoming Client Authentication Mode.

rhq.communications.connector.securit
y.truststore.algorithm (agent to server)

rhq.server.client.security.truststore.alg
orithm (server to agent)

Parameter Description

Configuring JBoss ON Servers and Agents

50

rhq.communications.connector.securit
y.truststore.type (agent to server)

rhq.server.client.security.truststore.typ
e (server to agent)

The file format of the truststore file.

rhq.communications.connector.securit
y.truststore.password (agent to server)

rhq.server.client.security.truststore.pa
ssword (server to agent)

The password that is used to gain access to
the truststore file.

rhq.communications.connector.securit
y.client-auth-mode (agent to server)

rhq.server.client.security.server-auth-
mode-enabled (server to agent)

Indicates if the JBoss ON server must
authenticate the JBoss ON agents that are
sending it messages. If the server is using
secure connections, but does not have trusted
certificates for all of the JBoss ON agents in a
truststore, set this to none. The valid values
are none, want, or need.

Transport Connection Parameters

Parameter Description

5. CONFIGURING SERVERS

51

rhq.communications.connector.transport Defines how the JBoss ON agents need to
transport messages to the JBoss ON server.
The allowed values are either servlet or
sslservlet. The agent requests go through the
JBoss ON server web application layer (i.e. the
secure Tomcat Connector). With sslservlet, not
only do agent requests route through the web
application layer, but they are also secured
through the secure Tomcat Connector. The
keystore used for incoming agent message
authentication is the same as that configured
in
rhq.communications.connector.securi
ty.keystore.file.

NOTE

This transport setting does not
restrict agents from only going
over that particular connection
method. By default, the JBoss
ON server always deploys the
communications connector that
allows for both servlet and
sslservlet traffic. This setting
tells the agent to decide what
transport is used when it sends
messages to the server. If the
server has its transport set to
servlet, but the agent is
configured to talk to the server
via sslservlet, the messages the
agent sends will be via
sslservlet.

rhq.communications.connector.bind-address This is the address that is placed in the
server's JBoss/Remoting locator URL. This
defines the endpoint that the JBoss ON server
will bind its connector to. It also represents the
public endpoint address that all agents can use
to connect to the server.

Parameter Description

Configuring JBoss ON Servers and Agents

52

rhq.communications.connector.bind-port Defines the endpoint that the JBoss ON server
binds to, as well as the public address that all
agents can use to connect to the server. This
is hidden from view in the installer, although it
still appears in the rhq-server.properties
file. This value can be blank; the server sets
this to either the HTTP or HTTPS port,
depending on the transport configured for the
server.

rhq.communications.connector.transport-
params

Defines additional transport parameters the
JBoss ON server will set on its connector that
will accept incoming messages from the JBoss
ON agents. All of the possible transport
parameters are listed in Table 9, “Transport
Parameters”.

rhq.communications.multicast-
detector.enabled

If true, the JBoss ON server will attempt to
auto-detect JBoss ON agents coming online
and going offline using multicast detection.
Your network must support multicast traffic for
this to work.

rhq.communications.multicast-detector.bind-
address

The address that the multicast detector
directly binds to. This is not used, or needed, if
you have not enabled multicast detection.

rhq.communications.multicast-
detector.multicast-address

The address that the multicast detector will
broadcast messages to. This is not used, or
needed, if you have not enabled multicast
detection.

rhq.communications.multicast-detector.port The port that the multicast detector will
broadcast messages to. This is not used, or
needed, if you have not enabled multicast
detection.

[a] These settings configure specific IP addresses and ports for the JBoss ON server instance. If there are
firewall issues the require different settings, then these parameters can be changed.

[b] The JBoss ON server has to be restarted for any changes to this value to take effect.

Parameter Description

Table 9. Transport Parameters

Transport Parameter Description For Incoming Messages or
for Outgoing Messages

5. CONFIGURING SERVERS

53

serverBindAddress The address on which the
server socket binds to listen
for requests. The default is an
empty value which indicates
the server socket should be
bound to the host provided by
the InvokerLocator URL (the
host).

Incoming

serverBindPort The port to listen for requests
on.

Incoming

timeout The socket timeout value.
The default on the server side
is 60000 (one minute). If the
timeout parameter is set, its
value will also be passed to
the client-side (see below).

Incoming

backlog The preferred number of
unaccepted incoming
connections allowed at a
given time. The actual
number may be greater than
the specified backlog. When
the queue is full, further
connection requests are
rejected. Must be a positive
value greater than 0. If the
value passed if equal or less
than 0, then the default value
will be assumed. The default
value is 200.

Incoming

numAcceptThreads The number of threads that
exist for accepting client
connections. The default is 1.

Incoming

maxPoolSize The number of server threads
for processing client requests.
The default is 300.

Incoming

Transport Parameter Description For Incoming Messages or
for Outgoing Messages

Configuring JBoss ON Servers and Agents

54

socket.check_connection Indicates if the invoker should
try to check the connection
before re-using it by sending
a single byte ping from the
client to the server and then
back from the server. This
configuration needs to be set
on both the client and server
to work. The default value is
false.

Incoming

clientConnectAddress The IP address or hostname
the client will use to connect
to the server-side socket. This
would be needed in the case
that the client will be going
through a router that forwards
requests made externally to a
different IP address or
hostname internally. If no
clientConnectAddress or
serverBindAddress is
specified, the local host's
address is used.

Outgoing

clientConnectPort The port the client will use to
connect to the server-side
socket. This would be needed
in the case that the client will
be going through a router that
forwards requests made
externally to a different port
internally.

Outgoing

timeout The socket timeout value.
The default on the client side
is 1800000 (or 30 minutes).

Outgoing

enableTcpNoDelay Indicates if the client socket
should have TCP_NODELAY
turned on or off.
TCP_NODELAY is for a specific
purpose; to disable the Nagle
buffering algorithm. It should
only be set for applications
that send frequent small
bursts of information without
getting an immediate
response. The default is false.

Outgoing

Transport Parameter Description For Incoming Messages or
for Outgoing Messages

5. CONFIGURING SERVERS

55

clientMaxPoolSize The client-side maximum
number of active socket
connections. This basically
equates to the maximum
number of concurrent client
calls that can be made from
the socket client invoker. The
default is 50.

Outgoing

numberOfRetries The number of retries to get a
socket from the pool. This
basically equates to the
number of seconds the client
will wait to get a client socket
connection from the pool
before timing out. If the max
retries is reached, a
CannotConnectException will
be thrown. The default is 30.

Outgoing

numberOfCallRetries The number of retries for
making the invocation. This is
unrelated to numberOfRetries
in that when this comes into
play is after it has already
received a client socket
connection from the pool.
However, it is possible that
the socket connection timed
out while waiting within the
pool. Since a connection
check is not done by default,
the connection is thrown
away and an attempt to get a
new one will be made. This
will happen for however many
numberOfCallRetries is (which
defaults to 3). However, when
(numberOfCallsRetries - 2) is
reached, the entire
connection pool is flushed
under the assumption that all
connections in the pool have
timed out and are invalid and
will start over by creating a
new connection. If this still
fails, a MarshalException is
thrown.

Outgoing

Transport Parameter Description For Incoming Messages or
for Outgoing Messages

Configuring JBoss ON Servers and Agents

56

socket.check_connection Indicates if the invoker should
try to check the connection
before re-using it by sending
a single byte ping from the
client to the server and then
back from the server. This
configuration needs to be set
on both client and server to
work. This if false by default.

Outgoing

Transport Parameter Description For Incoming Messages or
for Outgoing Messages

5.3.2. Setting Concurrency Limits

JBoss ON can handle large numbers of agents, potentially hundreds. The JBoss ON server
can possibly be flooded with messages if many agents attempt to communicate with the
server simultaneously. This can happen if the JBoss ON server is restarted after being down
for a period of time; when JBoss ON agents detect that the JBoss ON server has come back,
they all immediately attempt to send it a backlog of messages.

The JBoss ON server can have a configurable limit on the number of concurrent messages
that can be processed at one time, to mitigate any risk of flooding the server. Any
messages that come in past that limit are dropped and the agent is asked to send them
later.

All of the concurrency-related parameters are listed in Table 10, “rhq-server.properties
Parameters for Concurrency Limits”.

Concurrency limits not only limit the number of agent connections, but also the number of
connections to the GUI and other web connections to the server. There are three primary
parameters that control the concurrency limits:

A global limit on the total number of incoming messages to the server
(rhq.communications.global-concurrency-limit).

This is the total number of allowed agent connections. There are other concurrency
limits for specific message types which can help tune performance for content
downloads, inventory synchronization, and other resource-intensive or recurring
agent operations. Those concurrency limits apply only to those specific message
types, and those limits are evaluated independently of each other. The global
concurrency limit is the total cap for all agent conenctions. This is the effective
concurrency limit, even if the sum of the other concurrency limits is higher.

A limit on the total number of concurrent web connections allowed
(rhq.server.startup.web.max-connections).

This counts any client connection which connects to the JBoss ON server over an
HTTP or HTTPS connection. This includes web GUI connections, of course, but it also
includes all agent connections which use the (default) servlet or ssslservlet
transports.

The limit on web connections is the same for both non-secured HTTP requests and
HTTPS requests, but the limit is additive so HTTP and HTTPS connections count
against different pools. The total maximum connections allowed is actually twice

5. CONFIGURING SERVERS

57

whatever the rhq.server.startup.web.max-connections value is. For example, if
the setting is 300, then 300 HTTP requests are allowed and 300 HTTPS requests are
allowed, for total of 600 concurrent web connections.

Limits on the number of downloads from agents (rhq.server.agent-downloads-
limit) and from other clients (rhq.server.client-downloads-limit).

Example 6. Concurrency Limits

rhq.server.startup.web.max-connections=200
rhq.server.agent-downloads-limit=45
rhq.server.client-downloads-limit=5
rhq.communications.global-concurrency-limit=30

Table 10. rhq-server.properties Parameters for Concurrency Limits

Parameter Description

rhq.server.startup.web.max-connections Sets a limit on the number of web connections
that can be concurrently created, including
both connections to the GUI and connections
by agents.

NOTE

If agent requests are routed
over web connections, make
sure that the
rhq.communications.global
-concurrency-limit value is
slightly lower than the web
connections limit. Otherwise,
GUI users could be blocked from
accessing the JBoss ON UI
whenever there is a high agent
load.

The limit on web connections is the same for
both HTTP and HTTPS (secure) requests, so the
total max connections allowed is actually twice
what this setting is. For example, if the max
web connections is set to 300, then 300 HTTP
requests will be allowed and 300 HTTPS
requests will be allowed, for a total of 600
concurrent web connections.

Configuring JBoss ON Servers and Agents

58

rhq.communications.global-concurrency-limit Sets the total number of agent messages that
come into the server. This only affected
incoming agent messages, not GUI requests. If
this global concurrency limit is set to 300, no
more than 300 total agent messages can be
processed at any one time, regardless of what
kinds of messages are coming in.

Even if the sum of the other concurrency limits
are higher than this global limit, they are
capped at this global limit since there can
never be more messages processed than the
global limit.

This value should be slightly lower than the
number of allowed web connections so that
web connections to the GUI are not blocked
when there is a high agent load.

rhq.server.concurrency-limit.inventory-report Inventory reports are sent from the agent
when the agent starts up, and periodically
thereafter. Inventory reports can be large,
depending on the number of resources on the
agent machine.

rhq.server.concurrency-limit.availability-report Availability reports are regularly sent from the
agent, typically every 60 seconds. Availability
reports are usually very small, but occur in
large numbers due to the high frequency of
their transmission.

rhq.server.concurrency-limit.inventory-sync Inventory synchronizations occur when the
agent needs to synchronize its inventory with
that of the server. Agents typically synchronize
at startup. Traffic that flows as part of
inventory synchronizations is usually large,
depending upon the number of resources
managed by the agent.

rhq.server.concurrency-limit.content-report Content reports are similar to inventory
reports except they contain information about
discovered content (i.e., installed packages of
software). These reports can be large
depending on the number of installed software
the agent has discovered and is managing.

rhq.server.concurrency-limit.content-download Content downloads occur when a resource on
an agent needs to ask for the content of a
package version, usually for the purpose of
installing the package.

Parameter Description

5. CONFIGURING SERVERS

59

rhq.server.concurrency-limit.measurement-
report

Measurement reports are periodically sent to
the server whenever the agent completes
measurement collections. The number and
size of measurement reports can vary,
depending on the number and frequency of
measurements scheduled to be collected. The
greater the number of schedule
measurements the agent needs to collect, the
more frequently measurement reports are
sent, and the larger the reports will be.

rhq.server.concurrency-limit.measurement-
schedule-request

Similar to inventory synchronization,
measurement schedule requests are sent to
the agent asking the server for an up-to-date
set of measurement schedules that have to be
collected.

Parameter Description

5.3.3. Configuring the SMTP Server for Email Notifications

Each JBoss ON server talks to a specific SMTP server. The SMTP server is defined in the rhq-
server.properties file. The default configuration points to the local JBoss ON server hosts.

Email
rhq.server.email.smtp-host=localhost
rhq.server.email.smtp-port=25
rhq.server.email.from-address=rhqadmin@localhost

These settings can be edited to use a different SMTP server or email account.

NOTE

To confirm that the SMTP settings are correct and the server can send emails
successfully, go to the test email page at
http://server/admin/test/email.jsp.

Table 11. rhq-server.properties Parameters for SMTP

Parameter Description

rhq.server.email.smtp-host Sets the hostname of the SMTP server used by
the JBoss ON server.

rhq.server.email.smtp-port Sets the port of the SMTP server used by the
JBoss ON server.

rhq.server.email.from-address Sets the address to use for the From header of
all emails sent by the JBoss ON server.

Configuring JBoss ON Servers and Agents

60

5.3.4. Installing a Server Silently

Some options in the rhq-server.properties file tell the installation process to load the
server configuration from the file rather than the from the web-based installer.

These settings are only used for installation.

Table 12. rhq-server.properties Parameters for Silent Installation

Parameter Description

rhq.autoinstall.enabled Tells the installation process whether to load
the configuration from the rhq-
server.properties file (true) or from the
web-based installer (false).

rhq.autoinstall.database Tells the install process how to load or add
database schema. There are three options:

auto creates a new schema for new
installation or upgrades existing
schema without overwriting the data.

overwrite overwrites the database
and creates a new, empty schema.

skip skips the entire database
process so no database is created or
updated.

rhq.autoinstall.public-endpoint-address Sets the IP address or hostname to use for the
server. If no value is given, then the server
detects and sets its own value when it starts.

5.4. Synchronizing Server Configuration
Even in different environments, JBoss ON servers can share a lot of the same configuration.
For example, different JBoss ON servers may manage a development environment, staging
environment, and production environment, yet on all three, the servers use similar metric
templates and configuration settings.

To simplify managing separate but similar environments, JBoss ON can export the
configuration for a server and then import that configuration into another server.

Any user with permissions to manage settings can export the server configuration. There
are two categories of data:

System settings, which include how long alerts, events, and monitoring metrics are
stored; the baseline calculation schedule; and the LDAP server configuration.

Auto-Install Pre-Configuration Settings
rhq.autoinstall.enabled=false
rhq.autoinstall.database=auto
rhq.autoinstall.public-endpoint-address=

5. CONFIGURING SERVERS

61

Metric collection settings for each resource types.

The information is exported to dumped to a gzipped XML file, which can be easily edited
before being imported into another server.

NOTE

Syncing server configuration is only necessary when servers use different
backend databases. Servers which share a database (in the high availability
cloud) already share their configuration.

Import and export operations are only done through the JBoss ON CLI. This API is available
with the other JBoss ON documentation. Running the CLI is covered more in Running JBoss
ON Command-Line Scripts.

5.4.1. Exporting a Server's Configuration

1. Log into the JBoss ON CLI.

[root@server bin]# installDir/bin/rhq-cli.sh -u rhqadmin -p
rhqadmin

2. Export the data to a database object:

3. Convert that object into an export file. The file extension should be .xml.gz because
the export format is a GZIP'ed XML file.

NOTE

The user must have the manage settings permission to export the server data.

5.4.2. Importing a Server's Configuration

Server configuration is exported into an XML file. Administrators can edit this file to control
what kind of information is imported into the other JBoss ON servers, so there is a lot of
adaptability in the import process. When the file is imported, it first runs through a series of
validation tests to make sure that the configuration data can actually be imported into the
server. Then, two classes or synchronizers, one for system settings and one for metric
templates, are used to import the data.

The import process can be changed by administrators, so there are several common import
scenarios:

The configuration data are imported directly into the server, using all of the default
settings.

rhqadmin@localhost:7080$ var ex =
SynchronizationManager.exportAllSubsystems();

rhqadmin@localhost:7080$ saveBytesToFile(ex.exportFile,
'export.xml.gz');

Configuring JBoss ON Servers and Agents

62

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.1/html/API/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.0/html/Running_JON_Command-Line_Scripts/index.html

The XML file can be edited so that the configuration values are adapted to the target
JBoss ON servers.

The synchronizer behavior is changed, which changes what data elements are
imported.

5.4.2.1. Editing the XML Import File

All of the data are dumped to a single XML file, which contains the system settings, metric
settings for each resource type, and some processing instructions.

The configuration entries all defined in two large <entities> elements.

Metric templates list each metric separately in individual <entity> elements, with the
metric itself identified by its name, resource type, and plug-in as arguments for the
element. The entity ID identifies the template in the JBoss ON database, but is ignored
during import because the IDs do not need to match between servers.

System settings, on the other hand, are all defined in a single <entity> element, and each
configuration parameter is given as a key on the entry. Not all of these keys are imported
into the target server; the keys which are imported depend on the synchronizer
configuration.

5.4.2.2. Changing the Synchronizer Configuration

JBoss ON uses synchronizers to set what elements — like what metric schedules — are

<entities id="org.rhq.enterprise.server.sync.MetricTemplateSynchronizer">
 <entity>
 <data>
 <metricTemplate
 enabled="false"
 defaultInterval="300000"
 perMinute="false"
 metricName="trap_count"
 resourceTypePlugin="snmptrapd"
 resourceTypeName="SnmpTrapd"
 referencedEntityId="10001">
 </metricTemplate>
 </data>
 </entity>

<entities id="org.rhq.enterprise.server.sync.SystemSettingsSynchronizer">
 <entity>
 <data>
 <systemSettings referencedEntityId="0">
 <entry key="CAM_BASE_URL">http://10.16.65.121:7080/</entry>
 <entry key="CAM_DATA_PURGE_6H">2678400000</entry>
 <entry key="CAM_LDAP_BIND_DN"></entry>

 </systemSettings>
 </data>
 </entity>
</entities>

5. CONFIGURING SERVERS

63

imported into the JBoss ON server and how to apply them to the server. The synchronizer
has a default template which applies configuration changes programmatically to every
import operation. There is also synchronizer configuration in the exported XML file, which
are applied to that specific import operation.

NOTE

Custom settings in the XML file override the programmatic template settings.
Programmatic settings passed with the CLI commands override the settings in
the XML file.

To print the configuration for a specific synchronizer, specify the synchronizer name in
SynchronizationManager.getImportConfigurationDefinition(). For example:

To print all of the configuration for both synchronizers:

5.4.2.2.1. Changing the Synchronizer Settings in the XML File

The simplest way to customize the synchronizer configuration is to change the
configuration in the exported XML file. The settings and metrics synhcronizers use XML
elements that are very similar to the resource plug-in configuration. The root element for a
synchronizer is <default-configuration>, and the configuration settings are listed as
properties within that element.

The settings synchronizer has the simplest configuration. It has a single <ci:simple-
property> element, and the list of settings to import is given in the value= flag on the
<ci:simple-property> element.

rhqadmin@localhost:7080$ var configDef =
SynchronizationManager.getImportConfigurationDefinition('org.rhq.enterpris
e.server.sync.SystemSettingsSynchronizer')

rhqadmin@localhost:7080$ var configDefs =
SynchronizationManager.importConfigurationDefinitionOfAllSynchronizers
rhqadmin@localhost:7080$ configDef = configDefs.get(0)

rhqadmin@localhost:7080$
pretty.print(configDef.configurationDefinition.defaultTemplate.configurati
on)

<default-configuration>
 <ci:simple-property value="AGENT_MAX_QUIET_TIME_ALLOWED,
ENABLE_AGENT_AUTO_UPDATE, ENABLE_DEBUG_MODE, ENABLE_EXPERIMENTAL_FEATURES,
CAM_DATA_PURGE_1H, CAM_DATA_PURGE_6H, CAM_DATA_PURGE_1D,
CAM_DATA_MAINTENANCE, DATA_REINDEX_NIGHTLY, RT_DATA_PURGE, ALERT_PURGE,
EVENT_PURGE,
TRAIT_PURGE, AVAILABILITY_PURGE, CAM_BASELINE_FREQUENCY,
CAM_BASELINE_DATASET" type="string" name="propertiesToImport">
 <c:description>The names of the properties that should be
imported. Note that these are the INTERNAL names as used in the RHQ
database</c:description>
 </ci:simple-property>
</default-configuration>

Configuring JBoss ON Servers and Agents

64

NOTE

The values for the settings are the names used in the JBoss ON database for
the server settings.

The metrics schedules settings are much more complex because the potential metrics
schedules are different for each resource. A metric schedule can be defined in any of three
ways (or a combination):

A simple list, which has a <ci:list-property> list members defined by a property
(<ci:simple-property>) and a list of values

A map of values, which is very similar to a simple list in that it uses a list of
properties (<ci:simple-property>) and a corresponding list of values
(<ci:simple-value>), except that each value corresponds to a single, specified
property based on the name

A table, which is a list of maps. Each set of maps specifies one table in the row.

<default-configuration>
 <ci:list-property name="my-list">
 <c:simple-property name="element" type="string"/>
 <ci:values>
 <ci:simple-value value="a"/>
 <ci:simple-value value="b"/>
 <ci:simple-value value="c"/>
 </ci:values>
 </ci:list-property>
</default-configuration>

<default-configuration>
 <ci:map-property name="my-map">
 <c:simple-property name="prop1" type="integer"/>
 <c:simple-property name="prop2" type="string"/>
 <c:simple-property name="prop3" type"boolean"/>
 <ci:values>
 <ci:simple-value property-name="prop1" value="1"/>
 <ci:simple-value property-name="prop2" value="abc"/>
 <ci:simple-value property-name="prop3" value="true"/>
 </ci:values>
 </ci:map-property>
</default-configuration>

<default-configuration>
 <ci:list-property name="table">
 <c:map-property name="row">
 <c:simple-property name="column1" type="integer"/>
 <c:simple-property name="column2" type="boolean"/>
 <c:simple-property name="column3" type="string"/>
 </c:map-property>
 <ci:values>
 <ci:map-value>
 <ci:simple-value property-name="column1" value="1"/>
 <ci:simple-value property-name="column2"

5. CONFIGURING SERVERS

65

For example, this uses a map to import only the metric schedule for the free memory
metric for a JBoss AS 5 server:

To update all metrics schedules, set the <ci:simple-property> element to
name="updateAllSchedules".

To update a single metric schedule, then set the property element's name to
metricUpdateOverride and set the updateSchedules property value to true.

value="true"/>
 <ci:simple-value property-name="column3" value="a"/>
 </ci:map-value>
 <ci:map-value>
 <ci:simple-value property-name="column1" value="2"/>
 <ci:simple-value property-name="column2"
value="true"/>
 <ci:simple-value property-name="column3" value="b"/>
 </ci:map-value>
 <ci:map-value>
 <ci:simple-value property-name="column1" value="3"/>
 <ci:simple-value property-name="column2"
value="false"/>
 <ci:simple-value property-name="column3" value="c"/>
 </ci:map-value>
 </ci:values>
 </ci:list-property>
</default-configuration>

<default-configuration>
 <ci:simple-property value="false" type="boolean"
name="updateAllSchedules" />
 <ci:list-property name="metricUpdateOverrides">
 <c:map-property summary="false" required="true" readOnly="false"
name="metricUpdateOverride">
 <c:simple-property type="string" summary="false"
required="true" readOnly="false" name="metricName" />
 <c:simple-property type="string" summary="false"
required="true" readOnly="false" name="resourceTypeName" />
 <c:simple-property type="string" summary="false"
required="true" readOnly="false" name="resourceTypePlugin" />
 <c:simple-property type="boolean" summary="false"
required="true" readOnly="false" name="updateSchedules" />
 </c:map-property>
 <ci:values>
 <ci:map-value>
 <ci:simple-value name="metricName"
value="MCBean|ServerInfo|*|freeMemory"/>
 <ci:simple-value name="resourceTypeName" value="JBoss AS
Server"/>
 <ci:simple-value name="resourceTypePlugin"
value="JBossAS5"/>
 <ci:simple-value name="updateSchedules" value="true"/>
 </ci:map-value>
 </ci:values>
 </ci:list-property>
</default-configuration>

Configuring JBoss ON Servers and Agents

66

5.4.2.2.2. Changing the Synchronizer Settings Programmatically

To change the configuration, create a new instance of the default and use the setValue
configuration object to add or remove keys from the list. For the settings synchronizer, this
lists the key name to import:

configurationObject.getSimple('propertiesToImport').setValue(defaultSettin
gsToImport + ', keyName')

For metrics schedules, it lists the metric schedule per resource type, based on a properties
list or a properties map:

var update = new PropertyMap('metricUpdateOverrides')
update.put(new PropertySimple('propertyName', 'resourcePluginName'))

1. Get the default definition.

2. Create a new configuration instance.

3. Change the settings in the new instance.

For example, for the server settings synchronizer:

For the metrics template synchronizer:

rhqadmin@localhost:7080$ var
systemSettingsImportConfigurationDefinition =
SynchronizationManager.getImportConfigurationDefinition('org.rhq.ent
erprise.server.sync.SystemSettingsSynchronizer')

rhqadmin@localhost:7080$ var configurationObject =
systemSettingsImportConfigurationDefinition.configurationDefinition.
defaultTemplate.createConfiguration()

rhqadmin@localhost:7080$ var systemSettingsImportConfiguration = new
ImportConfiguration(systemSettingsImportConfigurationDefinition.sync
hronizerClassName, configurationObject)

rhqadmin@localhost:7080$ var defaultSettingsToImport =
configurationObject.getSimple('propertiesToImport').stringValue

rhqadmin@localhost:7080$
configurationObject.getSimple('propertiesToImport').setValue(default
SettingsToImport + ', CAM_BASE_URL')

configurationObject.getSimple('updateAllSchedules').setBooleanValue(
true)
var updateList = new PropertyList('metricUpdateOverrides')
var update = new PropertyMap('metricUpdateOverride')
update.put(new PropertySimple('metricName',
'MCBean|ServerInfo|*|freeMemory'))
update.put(new PropertySimple('resourceTypeName', 'JBossAS Server'))
update.put(new PropertySimple('resourceTypePlugin', 'JBossAS5'))
update.put(new PropertySimple('updateSchedules', 'true'))

5. CONFIGURING SERVERS

67

5.4.2.3. Importing the Configuration

1. Log into the JBoss ON CLI.

[root@server bin]# installDir/bin/rhq-cli.sh -u rhqadmin -p
rhqadmin

2. Import the XML file containing the configuration:

The null parameter means that the import process uses the default settings in the
XML file or, if the defaults are missing from the XML, that it uses the settings
defined on the target server. If alternate settings were constructed in
Section 5.4.2.2, “Changing the Synchronizer Configuration”, then they can be
specified programmatically instead. For example:

6. CONFIGURING AGENTS
The agent can be configured and managed through the agent prompt, which is opened
through the rhq-agent.sh script.

6.1. Registering and Re-registering the Agent
When an agent registers with the JBoss ON server, the agent name is used as a unique
resource key to identify the agent. In addition, the server generates a random string which
it sends to the agent to use as a registration token or security token.

6.1.1. About the Security Token and Agent Registration

When the JBoss ON agent starts up, it registers with the JBoss ON server and sends the
server its information. The JBoss ON server creates an entry based on the given agent
name, IP address, and port number.

The JBoss ON server also creates a randomly-generated string, a security token, which is
also associated with the agent name and with the IP address and port number pair.

updateList.add(update)

configurationObject.put(updateList)

rhqadmin@localhost:7080$ var data = getFileBytes('export.xml.gz');
rhqadmin@localhost:7080$
SynchronizationManager.importAllSubsystems(ex, null);

rhqadmin@localhost:7080$ var configsToImport = new
java.util.ArrayList()
rhqadmin@localhost:7080$
configsToImport.add(systemSettingsImportConfiguration);
rhqadmin@localhost:7080$
configsToImport.add(metricTemplatesImportConfiguration);
rhqadmin@localhost:7080$
SynchronizationManager.importAllSubsystems(ex, configToImport);

Configuring JBoss ON Servers and Agents

68

Figure 4. Agent Registration

The agent sends its security token to the server when it restarts as a form of pseudo-
authentication. The JBoss ON server uses the unique resource key (the agent's name) and
its security token as a way to verify the agent identity.

The JBoss ON server associates the agent name and its security token every time the agent
starts up and registers with the server. If the agent-supplied information does not match
the information that the JBoss ON server has for that agent, then it rejects the agent's
connection attempt.

Figure 5. Different Agent Connection Attempts

6. CONFIGURING AGENTS

69

That means that there are a few rules about when the JBoss ON server will accept changes
to the agent's registration information:

An agent cannot register with an existing agent name without the corresponding
security token.

To register an agent with an existing agent name, you must first install the
corresponding security token, as described in Section 6.1.2, “Re-installing a Lost
Security Token”.

An agent cannot register with an existing IP address/port combination without
having the corresponding security token and using the original agent name.

This essentially means that you cannot rename an agent. If an agent is registered
with an existing IP address/port combination, then both the original security token
and the original name must also be used. This re-establishes the original identity of
the agent and prevents one agent from effectively stealing the identity of another
agent.

An agent can register with an existing name and a new IP address/port combination
if it has the security token which corresponds to that agent name.

While the agent name cannot be changed during re-registration, the agent IP
address, the agent port, or both can be changed. This is a common and useful
scenario in cloud, virtual, or DHCP environments where an existing agent needs to
re-register with a new IP address or port.

NOTE

The security token is stored in the agent's Java preferences. This security
token persists even if the agent is restarted, is uninstalled, or has its
configuration wiped with --cleanconfig. This allows the agent to re-register
easily.

6.1.2. Re-installing a Lost Security Token

1. Stop the agent.

2. Log into the web UI as a user with manage security permissions.

3. Click the Administration tab and select the Agents link under the Topology
section on the left.

4. Select the agent from the list, and click its name to open its details page.

Configuring JBoss ON Servers and Agents

70

5. Copy the security token.

6. Restart the agent, and use the -D option to set the rhq.agent.security-token
property to the security token.

agentRoot/rhq-agent/bin/rhq-agent.sh -Drhq.agent.security-
token=abcd1234

6.2. Working with the Agent Command Prompt
When the agent is started in a terminal, then (along with starting the agent process) the
script starts the agent command prompt. The agent prompt can be used to managed the
agent by checking configuration, executing some tasks, or editing the agent setup.

6.2.1. Opening the Agent Command Prompt

The agent command prompt opens when the agent start script is run. If the agent is already
running, then the command prompt can be opened by itself, without attempting to start
the agent, by using the --nostart option.

$ rhq-agent.sh --nostart

6.2.2. Agent Start Options

Some agent management can be performed by passing options with the rhq-agent.sh
start script; these mainly relate to passing persistent configuration options to the server by
loading external preferences through input files or passed parameters. These options are
listed in Table 13, “Options for the rhq-agent.sh Script”.

Table 13. Options for the rhq-agent.sh Script

Short Argument Long Argument Description

-a --advanced Runs the agent script in setup
mode, rather than basic start
mode.

-c --config=filename Specifies an agent
configuration preferences file
on filesystem or classpath.

-d --daemon Runs the agent in daemon
mode, which means it will not
read additional commands
from stdin.

-Dname[=value] Overrides an agent
configuration preference and
sets a system property.

6. CONFIGURING AGENTS

71

-e --console=type Specifies the implementation
to use when reading console
input. The three available
values are jline, sigar, and
java.

-h --help Opens the help message.

-i --input=filename Specifies a script file to use
for input.

-l --cleanconfig Clears out any existing
configuration and data files so
the agent starts with blank
configuration, with the
exception of the agent
security token, which is
preserved.

-L --fullcleanconfig Clears out any existing
configuration and data files so
the agent starts with a totally
clean slate, including purging
the security token.

-n --nostart Runs the agent script without
starting the agent process.

-o --output=filename Specifies a file to write all
output from the script,
excluding log messages
(which are always written to
the agent logs).

-p --pref=preferences_name Specifies the agent
preferences name used to
identify what configuration to
use.

-s --setup Forces the agent to ask setup
questions.

-t --nonative Forces the agent to disable
the native system.

-u --purgedata Purges persistent inventory
and other data files.

Short Argument Long Argument Description

Configuring JBoss ON Servers and Agents

72

-- Stops the agent from
processing options.

Short Argument Long Argument Description

6.2.3. Agent Prompt Commands

The agent processes prompt commands that are passed to it, either interactively through
the agent prompt or from an input file that can be passed when the start script is launched.
Agent prompt commands (listed in Table 14, “Agent Prompt Commands”) can be used to
manage resource (by checking availability, running discovery, or checking monitoring
information) or to manage the agent itself (such as registering with a server, loading plug-
ins, or viewing or reloading configuration settings).

Table 14. Agent Prompt Commands

Prompt Command Description

avail Provides availability of inventoried resources.

config Manages the agent configuration.

debug Provides features to help debug the agent.

discovery Asks a plug-in to run a server scan discovery.

download Downloads a file from the JBoss ON server.

dumpspool Shows the entries found in the command spool
file.

exit Shuts down the agent's communications
services and kills the agent.

failover Shows or updates the high availability server
failover list.

gc Helps free up memory by invoking the
garbage collector.

getconfig Displays one, several or all agent configuration
preferences.

help Shows help for a given command.

identify Asks to identify a remote server.

inventory Provides information about the current
inventory of resources.

6. CONFIGURING AGENTS

73

log Configures some settings for the log
messages.

metrics Shows the agent metrics.

native Accesses native system information.

pc Starts and stops the plug-in container and all
deployed plug-ins.

ping Pings the JBoss ON server.

piql Executes a PIQL query to search for running
processes.

plugins Updates the agent plug-ins with the latest
versions from the server.

quit Exits the agent prompt (without stopping the
agent).

register Registers this agent with the JBoss ON server.

schedules Retrieves measurement schedule information
for the specified resource.

sender Controls the command sender to start or stop
sending commands.

setconfig Sets an agent configuration preference.

setup Sets up the agent configuration by asking a
series of questions.

shutdown Shuts down all communications services
without killing the agent.

sleep Puts the agent prompt to sleep for a given
amount of seconds.

start Starts the agent comm services so it can
accept remote requests.

timer Times how long it takes to execute another
prompt command.

update Provides agent update functionality.

version Shows the agent version information.

Prompt Command Description

Configuring JBoss ON Servers and Agents

74

6.3. Running the Agent as a Non-Root User
To access some resource information, the agent must have root access to the resource
itself. However, for security, many administrators do not want to run the agent process as
root.

On Red Hat Enterprise Linux, it is possible to grant access to the agent to specific
resources while running the agent as a non-root user. This is done by setting local access
control rules to the local directories or files for the resource.

NOTE

This example sets ACLs for a PostgreSQL database; the directories and files to
specify in the setfacl command will vary depending on the resource type.

1. Log into the system as root.

2. Make sure that the acl package is installed on the system.

rpm -q acl
acl-2.2.39-6.el5

The acl option must be applied to the filesystem. This can be done by editing the
/etc/fstab file or using tune2fs. For example:

vim /etc/fstab

LABEL=/ / ext3 defaults,acl 1 1
...

Then re-mount the filesystem.

mount -o remount /

3. Optionally, create a system user to use for the agent.

useradd jonagent

4. For PostgreSQL, the agent needs to be able to access the postgresql.conf file.
Open the PostgreSQL directory:

cd /var/lib/pgsql

5. Grant read and write access to the postgresql.conf file to the agent user. For
example:

setfacl -m u:jonagent:rw $PGDATA/postgresql.conf

6. Then, grant access to the data/ directory to the agent user. For example:

setfacl -m u:jonagent:x $PGDATA

6. CONFIGURING AGENTS

75

7. Check that the new ACLs were added properly using the getfacl command:

getfacl .
file: .
owner: postgres
group: postgres
user::rwx
user:jonagent:--x
group::---
mask::--x
other::---

6.4. Enabling Debug Mode for the Agent
The JBoss ON agent, like the JBoss ON server, uses log4j for its logging. To troubleshoot
agent performance or server-agent communication, enable debug logging for the agent,
which enables the log4j debug log.

The log files are in the agentRoot/rhq-agent/logs directory.

6.4.1. Using an Environment Variable

The quickest way to enable debug logging is to set the RHQ_AGENT_DEBUG environment
variable to any value before starting the agent. When you start the agent, both the
launcher scripts and the agent itself will output debug messages.

If the JBoss ON agent is running on Microsoft Windows using the service wrapper, set
RHQ_AGENT_DEBUG and then install the service:

rhq-agent-wrapper.bat install

6.4.2. Setting log4j Priorities

log4j categories support priorities for logging levels. This means that different areas of the
agent can be configured for different log levels.

NOTE

Do not set the RHQ_AGENT_DEBUG environment variable if you are setting
priorities in the log4j.xml file. The environment variable overrides this
log4j.xml configuration.

To enable debug logging for a category, change the priority value to DEBUG:

1. Open the agent log4j file:

vim agentRoot/rhq-agent/conf/log4j.xml

2. Reset the priority element for the category. By default, the agent configuration
has logging for both incoming and outgoing server-agent communication and for the
base org.rhq class. Optionally, logging can be enabled for plug-in class loaders and
JBoss remoting communication.

Configuring JBoss ON Servers and Agents

76

3. Restart the agent to load the new configuration.

The log4j file format is described more in the Apache log4j documentation.

6.4.3. Using the Agent debug Prompt Command

Debug logging can be enabled using the debug command in the agent command prompt
(Section 6.2.1, “Opening the Agent Command Prompt”).

Using the --enable option enables the log4j debug log.

> debug --enable
log4j:WARN No appenders could be found for logger
(org.rhq.core.pc.measurement.MeasurementCollectorRunner).
log4j:WARN Please initialize the log4j system properly.
Switched to log file [log4j-debug.xml]. Root log level is [DEBUG]
started>

To enable debug logging specifically for server-agent communication layers, set the --comm
option to true.

> debug --comm=true
Agent-server communications tracing has been enabled.
You may set the following, additional configuration settings
to collect more detailed trace data. You can set these
using the setconfig prompt command. Please refer to the
documentation for more information on these settings. The
values you see here are the current settings:
 rhq.trace-command-config=true
 rhq.trace-command-response-results=256
 rhq.trace-command-size-threshold=99999
 rhq.trace-command-response-size-threshold=99999

The debug command can also be used to check all of the agent threads, to the server and
to the system management handlers, using the --threaddump option. This prints the
information for each thread, whether the thread is running or any errors that the agent is

 <!-- ================ -->
 <!-- Limit categories -->
 <!-- ================ -->

 <!-- RHQ -->
 <category name="org.rhq">
 <priority value="INFO"/>
 </category>

 <!-- RHQ outgoing command tracing - set to TRACE to trace
commands sent by the agent -->
 <category
name="org.rhq.enterprise.communications.command.client.OutgoingComma
ndTrace">
 <priority value="NONE"/>
 <appender-ref ref="COMMANDTRACE"/>
 </category>
 ...

6. CONFIGURING AGENTS

77

http://wiki.apache.org/logging-log4j/Log4jXmlFormat

encountering, per thread. For example:

> debug --threaddump
"DestroyJavaVM" Id=47 RUNNABLE

"RHQ Agent Prompt Input Thread" Id=46 RUNNABLE

"EventManager.sender-2" Id=49 TIMED_WAITING on
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject@17d7
c01
 at sun.misc.Unsafe.park(Native Method)
 - waiting on
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject@17d7
c01
 at
java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:226)
 at
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awai
tNanos(AbstractQueuedSynchronizer.java:2081)
 at java.util.concurrent.DelayQueue.take(DelayQueue.java:193)
 at
java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(Sch
eduledThreadPoolExecutor.java:688)
 at
java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(Sch
eduledThreadPoolExecutor.java:681)
 at
java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:10
43)
 at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:
1103)
 ...

6.5. Changing the Agent IP Address
The agent IP address is set in the rhq.communications.connector.bind-address
configuration preference. This is the IP address the agent binds to when it starts its server
socket, meaning this is the site that the agent uses to listen for incoming messages from
the server.

NOTE

Do not attempt to edit the agent-configuration.xml file. The agent does not
use this file once the initial setup is complete, so any changes to this file
aren't loaded automatically by the agent.

1. Open the agent prompt. For example, if the agent process is already running, the
prompt can be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

Configuring JBoss ON Servers and Agents

78

2. Send the setconfig with the rhq.communications.connector.bind-address
configuration preference and new value.

> setconfig rhq.communications.connector.bind-address=1.2.3.4

3. Restart the agent process to load the new configuration.

agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh stop

agentRoot/rhq-agent/bin/rhq-agent.sh

6.6. Managing the Agent as a Resource
The agent can be added as a resource to the JBoss ON inventory, so its behavior and
metrics can be monitored to ensure that it is working properly and it can have alerts and
operations launched, as with any other resource.

IMPORTANT

If the agent is shut down, the JBoss ON GUI cannot be used to restart it
because there is no active agent available to issue the start command. To
restart the agent, use the restart operation on the agent's child resource of
the launcher script, rather than the agent resource itself.

The shutdown operation kills the agent process if it is running as a daemon. If
the agent is running as a command prompt, the shutdown operation stops the
agent but not the JVM, so that prompt commands can still be run through the
agent command prompt.

When the agent is imported into the inventory, several child resources are automatically
added as well. These are listed in Table 15, “Agent Child Resources”.

Table 15. Agent Child Resources

Child Resource Description

6. CONFIGURING AGENTS

79

The agent itself Provides monitoring, configuration, and control
functionality for the agent and its internal
components. These configuration settings
correspond to the preferences defined in the
agent-configuration.xml file and are
persisted on the agent machine as Java
preferences.

IMPORTANT

The operations for the agent
resource normally do not affect
the agent process directory.
These do not provide control
over the JVM settings or process
or the JRE options. Controlling
the JVM is done through the
agent child resources, not the
agent resource.

Agent measurement subsystem Provides data on the measurement collection
and reporting components in the agent.

Agent JVM Provides fine-grained monitoring and
management of the JVM that is running the
agent and all its plugins, which includes the
classloader, threading and memory
management subsystems, among others. This
is a child server.

Agent environment setup script Configured environment variables that server
set when the agent launcher script is started.

Agent plug-in container Provides a view into the embedded plug-in
container and gives management data related
directly to the plug-in container. The plug-in
container runs within the agent and handles
the deployment of all management plug-ins
and infrastructure necessary to run those
plug-ins.

Child Resource Description

Configuring JBoss ON Servers and Agents

80

Java service wrapper launcher (Windows) Controls the Java service wrapper. This is a
third-party library that installs and runs the
agent as a Windows service. There is one
primary configuration file for the Java service
wrapper, the read-only rhq-agent-
wrapper.conf file. This defines the base set
of configuration settings necessary for the
agent to start and operate properly. Two
additional groups of configuration settings can
customize the agent's environment. The
Environment group defines environment
variables that are used by the main
configuration in addition to the environment
variables defined by the common Environment
Setup Script. The Includes group defines any
of the wrapper configuration settings. These
groups should almost never be edited except
to configure debugging or to pass new JVM
options to the agent JVM.

Agent launcher script (UNIX) Controls the agent. If the agent is running as a
background daemon process that was
spawned by the launcher script, the launcher
script stops or restarts it. There is no
additional configuration. The launcher script is
configured by the Environment Setup Script.

Child Resource Description

6.7. Configuring Agent Update Settings
The JBoss ON server configuration defines two settings for how the server sends updates to
the JBoss ON agents. One setting sets how long the server waits to hear from the agent
before it considers that the agent is down. The second enables automatic updates for agent
configuration.

1. Click the Administration tab in the top menu.

2. In the Configuration menu table on the left, select the System Settings item.

3. Scroll to the JON General Configuration Properties section in the main work
area.

6. CONFIGURING AGENTS

81

4. Change the agent settings:

Agent Max Quiet Time Allowed sets the longest interval that the server waits
for agent availability reports before marking the agent as down.

Enable Agent Auto-Updates sets whether the agent is allowed to check, itself,
for updates to configuration or new agent JAR files.

6.8. Managing the Agent's Persisted Configuration
The agent uses Java preferences in the Java platform to store its configuration. Java
preferences in general are described in the Java documentation at
http://download.oracle.com/javase/1.5.0/docs/guide/preferences/index.html. JBoss ON stores
user preferences in the backing store's root node.

The location of the backing store depends on the system:

On Windows, the backing store is located in the Windows registry.

On Linux and Unix systems, the backing store is in the agent user's home directory,
in ~/.java.

Configuring JBoss ON Servers and Agents

82

http://download.oracle.com/javase/1.5.0/docs/guide/preferences/index.html

IMPORTANT

The agent's configuration is determined by what user is running the
agent. If the agent is run as one user and then later run as another
user, the agent will have a different configuration that second time
because it will use a different backing store for its configuration
settings.

For example, if the agent is configured by a system user named
jsmith, its persisted configuration is in ~jsmith/.java. If the agent is
then configured to run as a background service as the root user, the
agent looks for its configuration in ~root/.java, and it finds different
configuration settings.

This means that if one user is used to configure the agent when it is
installed, that same user must be used to run the agent subsequently,
or the agent will apparently lose its configuration and need to be
reconfigured under the new user.

The agent gets the configuration that it uses to run from its backing store. It only reads
configuration settings from the agent-configuration.xml file when the agent needs to
initialize its backing store, either at its first configuration or if the agent was started with --
cleanconfig and fresh configuration settings should be loaded.

6.8.1. Viewing the Persisted Configuration

Agent configuration is comprised of Java preferences, which are persisted for each JBoss ON
user. The way that the configuration is persisted depends on the operating system;
Windows stores the configuration in the registry, for example, while Unix keeps it in the
user's home directory.

The agent configuration is loaded when it is first set up and then persisted in the database,
with the exception of a few parameters which can be set and loaded through the rhq-
agent-env.sh file. The agent's persisted configuration can be viewed in several different
ways:

1. If the agent is in the JBoss ON inventory, then its complete configuration settings are
visible through the Configuration tab, with collapsible tables that display each
configuration area.

6. CONFIGURING AGENTS

83

2. The configuration can also be returned through the getconfig or config prompt
commands for the agent. These commands can be run through a terminal, if the
agent is running through a command prompt, or through the Execute Command
Prompt operation in the JBoss ON UI for the agent resource.

> getconfig
rhq.agent.agent-update.enabled=true
rhq.agent.client.command-preprocessors=org.rhq.enterprise.agent.
SecurityTokenCommandPreprocessor: org.rhq.enterprise.agent.
ExternalizableStrategyCommandPreprocessor
rhq.agent.client.command-spool-file.compressed=true
rhq.agent.client.command-spool-file.name=command-spool.dat
rhq.agent.client.command-spool-file.params=10000000:75
rhq.agent.client.command-timeout-msecs=600000
rhq.agent.client.max-concurrent=5
rhq.agent.client.max-retries=10
rhq.agent.client.queue-size=50000
rhq.agent.client.queue-throttling=200:2000
rhq.agent.client.retry-interval-msecs=15000
rhq.agent.client.send-throttling=100:1000
rhq.agent.client.server-polling-interval-msecs=60000
rhq.agent.configuration-schema-version=5
rhq.agent.configuration-setup-flag=true
rhq.agent.data-directory=data
rhq.agent.disable-native-system=false
rhq.agent.name=localhost.localdomain
rhq.agent.plugins.directory=plugins
...

Configuring JBoss ON Servers and Agents

84

3. The agent configuration is persisted in Java preferences, so any tool which examines
Java preferences can be used to view the persisted configuration.

WARNING

Do not attempt to change the values of the preferences using third-party
tools. Setting an agent preference to a bad value can completely disable
the agent.

6.8.2. Changing Preferences in the Persisted Configuration (Agent
Preferences)

The agent's configuration is initially read from agent-configuration.xml and overlaid with
the values entered at the setup prompts at start up. After the agent is initially configured,
the agent persists that configuration and never refers to the agent-configuration.xml
again, unless the configuration is purged and reloaded. Most configuration changes are
made to the rhq-agent-env.sh file, which is loaded every time the agent starts.

It is possible to change the persisted configuration (without editing the configuration files)
using the setconfig command at the agent prompt.

1. Open the agent prompt. For example, if the agent process is already running, the
prompt can be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Send the setconfig with the name of the preference to edit and its new value. The
preference name is whatever the entry name is in the agent-configuration.xml
file. For example:

> setconfig rhq.agent.client.max-concurrent=20

3. Restart the agent process to load the new configuration.

agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh stop

agentRoot/rhq-agent/bin/rhq-agent.sh

6.8.3. Overriding Persisted Configuration Settings

The settings in the Java backing store and in the agent-configuration.xml file for the
agent can be overridden using the -D option, the configuration parameter name, and the
new value when the agent is started.

For example, to set a temporary value for how long the agent waits at startup to detect the
JBoss ON server (rhq.agent.wait-for-server-at-startup-msecs), pass this argument
with the start command:

6. CONFIGURING AGENTS

85

agentRoot/rhq-agent/bin/rhq-agent.sh -Drhq.agent.wait-for-server-at-
startup-msecs=90000

6.9. Managing the Agent JVM

6.9.1. Setting Options for the Agent JVM

The agent runs in a Java Virtual Machine, and aspects of its behavior can be defined in the
rhq-agent-env.sh file and passed to the JVM.

There are two arguments that set JVM options:

RHQ_AGENT_JAVA_OPTS resets the any of the default JVM settings.

RHQ_AGENT_ADDITIONAL_JAVA_OPTS adds JVM settings without changing any of the
default settings.

For more information on JVM settings, see
http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp and other Sun JVM
documentation.

NOTE

Restart the agent after making changes to the JVM settings to load the new
settings.

6.9.2. Setting the Agent JVM Memory Size

When an agent manages a large number of resources, it can begin running out of memory
with the default settings of its JVM. This can cause errors like memory has crossed the
threshold and is low to be recorded in the agent log, and the agent is automatically
rebooted. This is usually caused by the agent's heap size begin set too low, but it can also
be related to a low perm gen size.

To change the agent's memory settings, use the RHQ_AGENT_JAVA_OPTS in the rhq-agent-
env.sh file to set the appropriate JVM settings.

1. Stop the agent.

2. Open the rhq-agent-env.sh file.

vim agentRoot/rhq-agent/bin/rhq-agent-env.sh

3. Uncomment the RHQ_AGENT_JAVA_OPTS line, and set the -Xms and -Xmx parameters
to set the minimum and maximum bounds of the heap size for the agent JVM.

RHQ_AGENT_JAVA_OPTS="-Xms1024m -Xmx1024m -XX:PermSize=256M -
XX:MaxPermSize=256M -Djava.net.preferIPv4Stack=true"

4. Optionally, use -XX:PermSize and -XX:MaxPermSize to set the perm gen size.

5. Restart the agent.

Configuring JBoss ON Servers and Agents

86

http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp

agentRoot/rhq-agent/bin/rhq-agent.sh

6.10. Setting Discovery Scan Intervals
The agent scans a platform routinely to look for new servers or services to add to the
discovery queue and, subsequently, to inventory. There are two parameters which set scan
intervals:

The scan interval for servers, set in the rhq.agent.plugins.server-
discovery.period-secs. The default is 900 seconds (15 minutes).

The scan interval for services, set in the rhq.agent.plugins.service-
discovery.period-secs. The default is 86400 seconds (24 hours).

These are set in the agent-configuration.xml file, so the configuration must be cleanly
reloaded before the changes take effect.

1. Stop the agent.

2. Open the agent-configuration.xml file.

vim agentRoot/rhq-agent/conf/agent-configuration.xml

3. Uncomment the scan interval entry keys and set the new values.

<entry key="rhq.agent.plugins.server-discovery.period-secs"
value="600"/>

<entry key="rhq.agent.plugins.service-discovery.period-secs"
value="1440"/>

4. Start the agent with the --cleanconfig option to reload the configuration from the
agent-configuration.xml file.

agentRoot/rhq-agent/bin/rhq-agent.sh --cleanconfig

6.11. Viewing the Server Failover Lists for Agents
JBoss ON agents are automatically included in high availability in order to assign them to
servers for management. Agent-server preferences are assigned through affinity groups
(Section 4.4.2, “Creating Affinity Groups”). The agent high availability settings show its
affinity groups, the server currently managing it, and any servers available for failover.

The first server that an agent contacts is defined in its agent-configuration.xml file, and
that is the server that the agent sends its initial registration request. After registration, the
agent joins the high availability cloud, and it sends its updates — monitoring information,
resource changes — to any server in the cloud. At registration, the agent gets its first
affinity group assignment. If its primary server is different than its registration server, then
the agent switches communication over to the primary server.

The high availability server cloud helps define the relationships between servers and agents
once the agent is running normally.

The group of servers that an agent sends updates to can be loosely restricted by defining

6. CONFIGURING AGENTS

87

an affinity group. The affinity group creates a list of servers that the agent prefers to
access. This list is ordered; the first server entry is the primary server that the agent
connects to. If that primary server is unavailable, then the agent cycles through the other
servers in the list in order. This allows the agent to connect to defined servers in the high
availability cloud gracefully and automatically, without interrupting JBoss ON performance.

If the agent cannot connect to any server in the failover list, then the agent temporarily
stops communication and spools its messages. After a period of time, it will run through the
failover list again, beginning with its primary server.

An agent always try to ensure that it is connected to its primary server. Once an hour, by
default, it checks its connection to verify that the server it is using is its primary server. If it
is not, then the agent tries to reconnect to its primary server.

The actual failover list for an agent is generated by the server and edited in the affinity
group configuration for the server. Any changes to the affinity group, like new servers or
agents, changed server priority, or new group assignments, are sent to the agent hourly
when the agent polls the server for configuration changes.

To view the agent's failover list from the agent command prompt:

To view the failover list from the UI:

1. Click the Administration tab in the top menu.

2. In the High Availability menu, select the Agents item.

3. The agent high availability page shows information about the agents, including three
things that are relevant for high availability:

The JBoss ON server that the agent is currently connected to (or the one it was
most recently connected to).

The time that the last agent availability report was sent to the server.

The affinity group that the agent is assigned to.

4. Click the name of the agent. This opens the agent's server failover list. The first
server listed is the primary server for the agent; all other servers are available in
the high availability cloud. The connected server is usually also the primary server,
unless the primary is offline.

> failover --list localhost.localdomain:7080/7443
server2.example.com:7080/7443 1.2.34.56:7080/7443

Configuring JBoss ON Servers and Agents

88

6.12. Setting the Agent to Detect or Poll the Server
The agent has to stay in contact with a JBoss ON server. This can either be done by using
multicast detection to monitor when its primary JBoss ON server comes online or goes
offline or by simply polling the JBoss ON server at intervals to see if the server is online.

These polling methods aren't exclusive; they can both be set, so that the agent can use
whatever method is convenient or available to poll the server.

Polling the server allows the agent to stop sending commands and data to the server if the
server goes offline and then to resume automatically when the server is back online. If
server polling is not enabled on the agent, then the agent always assumes that the server
is online and sends its information to the server. If the server goes down, then the agent
records repeated connection refused errors, which (if the server is down for a long time)
can make the agent log grow very large.

6.12.1. Settings for Polling the JBoss ON Server

The simplest configuration is to set a polling interval for the agent. With this method, the
agent simply pings the server at the predefined interval.

1. Open the agent prompt. For example, if the agent process is already running, the
prompt can be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Send the setconfig with the rhq.agent.client.server-polling-interval-msecs
setting and a value (in milliseconds). Setting this value to zero (0) or a negative
number disables server polling.

> setconfig rhq.agent.client.server-polling-interval-msecs=500

3. Restart the agent process to load the new configuration.

agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh stop

agentRoot/rhq-agent/bin/rhq-agent.sh

6. CONFIGURING AGENTS

89

6.12.2. Setting up Multicast Detection

Multicast detection uses JBoss's Remoting framework, which allows the agent to detect
whenever a server comes on or goes off line within a few seconds. Using the Remoting
framework requires support for multicast traffic; otherwise, the agent cannot detect the
server. This has more configuration parameters than simple polling:

Setting to enable both server detection and multicast traffic (rhq.agent.server-
auto-detection and rhq.communications.multicast-detector.enabled,
respectively).

A wait interval between server communications (rhq.communications.multicast-
detector.default-time-delay); if the server is silent longer than that interval,
then the server is considered offline.

Await, or heartbeat, interval for the agent's own messages
(rhq.communications.multicast-detector.heartbeat-time-delay). This value
must be shorter than the JBoss ON server's heartbeat interval
(rhq.communications.multicast-detector.default-time-delay), or it results in
unnecessary messages and network traffic.

To enable multicast detection:

1. Open the agent prompt. For example, if the agent process is already running, the
prompt can be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Send the setconfig with the multicast settings. The time-delay values are in
milliseconds.

> setconfig rhq.agent.server-auto-detection=true
> setconfig rhq.communications.multicast-detector.enabled=true
> setconfig rhq.communications.multicast-detector.default-time-
delay=75000
> setconfig rhq.communications.multicast-detector.heartbeat-time-
delay=60000

3. Restart the agent process to load the new configuration.

agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh stop

agentRoot/rhq-agent/bin/rhq-agent.sh

6.13. Throttling the Agent
Some agent settings control how many resources the agent can access and how many tasks
it can perform at one time. Throttling the agent has a twofold purpose: it limits how many
resources on its host it can monopolize (which can improve performance on the host
machine) and it keeps the agent from flooding the server with data and overloading or
monopolizing the server.

Several different settings (listed in Table 16, “Agent Parameters for Throttling Agent
Operations”) can be used to throttle different aspects of the agent performance. These
settings operate independently of each other, but they can be more effective when the

Configuring JBoss ON Servers and Agents

90

settings are made after considering the other values. For example, the queue size should
be set larger then the command timeout period, unless the max-concurrent setting is
increased. Changing one of these values has a different effect than adjusting all of these
values.

Table 16. Agent Parameters for Throttling Agent Operations

Parameter Description

rhq.agent.client.queue-size Sets the maximum number of commands the
agent can queue up for sending to the JBoss
ON server. The larger the number, the more
memory the agent can use, and setting this to
zero (0) means the queue size is unlimited.
Setting this to 0 could allow the agent to
queue up more commands than the machine
has memory for, if the server goes offline for a
long time.

rhq.agent.client.max-concurrent Sets the maximum number of messages the
agent can send to the server at any one time.
A larger number allows the agent to process
its queue more quickly, but this can also set
the agent to use more CPU cycles.

rhq.agent.client.command-timeout-msecs Sets the amount of time the agent waits for a
reply from the JBoss ON server for an agent
command before it aborts the command. A
long interval can give the server the time it
needs to complete some commands, but it also
means that other messages are queued up
waiting to be processed.

rhq.agent.client.retry-interval-msecs Sets the time that the agent waits before
retrying a command. Only commands with the
guaranteed delivery tag are retried.

rhq.agent.client.send-throttling Sets a limit on the number of commands than
an agent can send before it enters a quiet
period, when the agent suspends sending
commands. This setting only affects
commands which can be throttled, which are
commands that are sent to the server
frequently and in large numbers, such as
metric collection. Send-throttling prevents
messages storms to the server.

This parameter sets both the number of
commands and the quiet period, in the form
commands:timeout_milliseconds. For example,
50:10000 sets a limit of 50 commands and a
quiet period of 10000 milliseconds.

6. CONFIGURING AGENTS

91

rhq.agent.client.queue-throttling Limits the amount of commands that can be
dequeued in a given amount of time; this is
the burst period. If more commands are
attempted to be dequeued during the burst
period than allowed, those dequeue requests
are blocked until the next burst period begins.

As with send throttling, this parameter sets
both the number of commands and the quiet
period, in the form
commands:timeout_milliseconds. For example,
50:10000 sets a limit of 50 commands and a
quiet period of 10000 milliseconds.

Queue throttling prevents the agent from
spinning the CPU by trying to process and send
commands as fast as possible. Queue
throttling is one way to reduce the amount of
CPU required by the agent.

When setting the queue throttling value, be
sure to set the queue size to a large enough
value that the agent has room to queue up the
additional commands.

Parameter Description

6.14. Setting Guaranteed Delivery for Commands
Many commands, like pings between the agent and server, are not critical to JBoss ON
functions. These are volatile commands. Volatile commands are sent once; if they fail, the
failure is logged, the agent drops the command, and the next command is processed.

Critical commands, however, must be sent to the JBoss ON server and successfully
processed. The agent must guarantee that these commands are delivered. These are
guaranteed commands. The agent guarantees, as far as possible, that these commands
reach the server (although outside events, such as a JVM crashing, can keep the commands
from being sent). Guaranteed commands persist in a command spool file even if the agent
shuts down, so that the next time the agent starts, it can be loaded and queued to be
delivered to the server.

There are four parameters that are related to guaranteed delivery:

A time interval that sets how frequently the agent should try to resend a failed
command (rhq.agent.client.retry-interval-msecs)

A filename for the spool file (rhq.agent.client.command-spool-file.name)

A setting that configures the spool file (rhq.agent.client.command-spool-
file.params). This settings has the format max_file_size:purge_percentage. The file
size is defined in bytes; once the file hits that file size, then a purge operation trims
the file down to whatever the percentage is. So, if the file is set to be 100 KB
(100000) and the purge percentage is 90, then the file is trimmed back to 90 KB
after a purge operation. The purge operation first tries to compress unused space,
and then begins purging commands, starting with the oldest.

An optional setting that allows the spool file to be compressed

Configuring JBoss ON Servers and Agents

92

(rhq.agent.client.command-spool-file.compressed). Compressing the spool file
can reduce its size 30-40%, but in some corner cases, it can adversely affect agent
performance (such as when the agent shuts down before all of the guaranteed
commands have been sent).

Guaranteed delivery is configured by default, allowing both the agent to resend critical
commands and to compress spool file.

rhq.agent.client.command-spool-file.compressed=true
rhq.agent.client.command-spool-file.name=command-spool.dat
rhq.agent.client.command-spool-file.params=10000000:75
rhq.agent.client.retry-interval-msecs=15000

To change any of the guaranteed delivery settings:

1. Open the agent prompt. For example, if the agent process is already running, the
prompt can be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Send the setconfig with the new guaranteed delivery settings.

> setconfig rhq.agent.client.command-spool-file.compressed=true
rhq.agent.client.command-spool-file.name=my-spool.dat
rhq.agent.client.command-spool-file.params=25000000:67
rhq.agent.client.retry-interval-msecs=25000

3. Restart the agent process to load the new configuration.

agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh stop

agentRoot/rhq-agent/bin/rhq-agent.sh

6.15. Configuring Agent Communication
Both the JBoss ON agent and server use the same underlying communications services. The
types of connections used for agent-server communication are defined through agent
preferences and can be edited by changing those preferences. The agent uses two settings
for communications:

A parameter which defines the protocol that the agent uses to talk to the server
(rhq.agent.server.transport) and any additional transport parameters
(rhq.agent.server.transport-params)

A parameter which defines the protocol that the agent expects for incoming
communications from the server (rhq.communications.connector.transport) and
then any optional transport parameters
(rhq.communications.connector.transport-params)

Both JBoss ON servers and agents use communications layers that are build on the JBoss
Remoting framework. Agents support four different transport types:

servlet (only for agent to server communications)

6. CONFIGURING AGENTS

93

sslservlet

socket (only for server to agent communications)

sslsocket

NOTE

Unlike JBoss ON servers, JBoss ON agents do not host a servlet container. This
means that servlets cannot be used for server-to-agent communications;
these connections use sockets. Only agent-to-server connections use servlets.

The behavior of connections between agents and servers can be controlled by setting
transport parameters. The connections between agents and servers are defined by strings
which look, roughly, like URLs, with this basic format:

protocol://hostname:port/?param1=value¶m2=value

For example:

socket://server.example.com:16163/?
serverBindAddress=127.0.0.1&serverBindPort=16163&numAcceptThreads=3&maxPoo
lSize=303&clientMaxPoolSize=304&socketTimeout=60000&enableTcpNoDelay=true&
backlog=200

Both servers and agents have a rhq.communications.connector.transport-params
configuration settings which allows transport parameters to be set. These parameters are
appended to the end of the URL and can configure both server-side and client-side
behavior. For example, the backlog parameter is used by JBoss ON servers; with this URL,
the server sets its backlog value to 200, but this setting is ignored by agents since they are
clients. Likewise, the enableTcpNoDelay parameter is used by agents when they connect to
servers, but is ignored by the servers themselves.

For more information on all available transport parameters, see the JBoss Remoting
documentation at http://labs.jboss.com/portal/jbossremoting/docs/guide/ch05.html.

7. MANAGING DATABASES ASSOCIATED WITH JBOSS ON
There are several basic tasks that can be done to manage the Oracle or PostgreSQL
databases that are used by the JBoss ON server.

7.1. Running SQL Commands from JBoss ON
SQL commands can be run through the JBoss ON web UI on any database that the JBoss ON
server is using for its data.

NOTE

The database management page is not accessible through the normal JBoss
ON GUI. Administrators must manually navigate to the admin area of the JBoss
ON UI.

Configuring JBoss ON Servers and Agents

94

http://labs.jboss.com/portal/jbossremoting/docs/guide/ch05.html

NOTE

Whatever JBoss ON user you are logged in as must have adequate user rights
on the database to execute the SQL commands.

1. Open the administrative page, with the location admin/test/sql.jsp. For example:

http://server.example.com:7080/admin/test/sql.jsp

2. Enter the SQL commands, as appropriate for the JBoss ON Oracle or PostgreSQL
database instance. If there are multiple commands, make sure the Continue if
statements fail? checkbox is selected. That way, even if one command fails, the
other commands will be submitted. Otherwise, the series will be terminated at the
first failure.

3. Click the Execute SQL button.

7.2. Changing Database Passwords
The JBoss ON server connects to its database instance as a database user. It does this
automatically, using the credentials given in its rhq-server.properties file. The database
password is encoded automatically by the installer before it is stored in the rhq-
server.properties file, to provide some extra protection against unauthorized access to
the database password.

It's possible that the password for that database user account is changed. This change
always occurs at the database, not in JBoss ON, so the password in the rhq-
server.properties file has to be manually encoded and updated for JBoss ON to continue
to function.

1. Change the password for the JBoss ON user (rhqadmin by default) in the database.

2. Use the generate-db-password.sh script to encode the password.

serverRoot/bin/generate-db-password.sh mypassword
Encoded password: 1d31b70b3650168f79edee9e04977e34

JBoss ON stores its database password in an encoded form in the rhq-server-
properties file. Therefore, the new database has to be properly encoded before it's
added to the rhq-server-properties file so that the server reads it correctly.

3. Edit the rhq.server.database.password value in the rhq-server.properties file
so that it has the new encoded password value.

vim serverRoot/bin/rhq-server.properties

rhq.server.database.password=1d31b70b3650168f79edee9e04977e34

7.3. Editing the JBoss ON Server's Database Configuration
The JBoss ON server is always connected to a backend database to store most of its data,
such as agents and resources in its inventory and plug-in configuration. The parameters for
connecting with the database are defined in rhq-server.properties.

7. MANAGING DATABASES ASSOCIATED WITH JBOSS ON

95

Example 7. Default Configuration for a PostgreSQL Database

Database
rhq.server.database.connection-url=jdbc:postgresql://127.0.0.1:5432/rhq
rhq.server.database.driver-class=org.postgresql.Driver
rhq.server.database.xa-datasource-class=org.postgresql.xa.PGXADataSource
rhq.server.database.user-name=rhqadmin
rhq.server.database.password=1eeb2f255e832171df8592078de921bc
rhq.server.database.type-mapping=PostgreSQL
rhq.server.database.server-name=127.0.0.1
rhq.server.database.port=5432
rhq.server.database.db-name=rhq
hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect

Table 17. rhq-server.properties Parameters for Database Configuration

Parameter Description

rhq.server.database.type-mapping Gives the type or vendor of the database that
is used by the JBoss ON server. This is either
PostgreSQL or Oracle.

rhq.server.database.connection-url The JDBC URL that the JBoss ON server uses
when connecting to the database. An example
is jdbc:postgresql://localhost:5432/rhq or
jdbc:oracle:oci:@localhost:1521:orcl.

rhq.server.database.driver-class The fully qualified class name of the JDBC
driver that the JBoss ON server uses to
communicate with the database. An example
is oracle.jdbc.driver.OracleDriver.

rhq.server.database.xa-datasource-class The fully qualified class name of the JDBC
driver that the JBoss ON server uses to
communicate with the database. Examples of
this are org.postgresql.xa.PGXADataSource or
oracle.jdbc.xa.client.OracleXADatasource.

rhq.server.database.user-name The name of the user that the JBoss ON server
uses when logging into the database

rhq.server.database.password The password of the database user that is
used by the JBoss ON server when logging into
the database. This password is stored in a
hash in the rhq-server.properties file.
When the password is changed in the
database, then the password must be
manually hashed and copied into the rhq-
server.properties file. This is described in
Section 7.2, “Changing Database Passwords”.

Configuring JBoss ON Servers and Agents

96

rhq.server.database.server-name The server name where the database is found.
This must match the server in the connection
URL. This is currently only used when
connecting to PostgreSQL.

rhq.server.database.port The port on which the database is listening.
This must match the port in the connection
URL. This is currently only used when
connecting to PostgreSQL.

rhq.server.database.db-name The name of the database. This must match
the name found in the connection URL. This is
currently only used when connecting to
PostgreSQL.

rhq.server.quartz.driverDelegateClass The Quartz driver used for connections
between the server and the database. The
value of this is set by the installer and depends
on the type of database used to store the JBoss
ON information. For PostgreSQL, this is
org.quartz.impl.jdbcjobstore.Postgr
eSQLDelegate, and for Oracle, this is
org.quartz.impl.jdbcjobstore.oracle
.OracleDelegate.

Parameter Description

8. DOCUMENT INFORMATION
This guide is part of the overall set of guides for users and administrators of JBoss ON. Our
goal is clarity, completeness, and ease of use.

8.1. Giving Feedback
If there is any error in this Basic Admin Guide or there is any way to improve the
documentation, please let us know. Bugs can be filed against the documentation for the
community-based RHQ Project in Bugzilla, http://bugzilla.redhat.com/bugzilla. Make the bug
report as specific as possible, so we can be more effective in correcting any issues:

1. Select the Other products group.

2. Select RHQ Project from the list.

3. Set the component to Documentation.

4. Set the version number to 3.0.

5. For errors, give the page number (for the PDF) or URL (for the HTML), and give a
succinct description of the problem, such as incorrect procedure or typo.

For enhancements, put in what information needs to be added and why.

8. DOCUMENT INFORMATION

97

http://bugzilla.redhat.com/bugzilla

6. Give a clear title for the bug. For example, "Incorrect command example for
setup script options" is better than "Bad example".

We appreciate receiving any feedback — requests for new sections, corrections,
improvements, enhancements, even new ways of delivering the documentation or new
styles of docs. You are welcome to contact Red Hat Content Services directly at
docs@redhat.com.

8.2. Document History

Revision 3.0.1-5 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

Revision 3.0.1-1 April 2, 2012 Ella Deon Lackey
Typo in the security token parameter name.

Revision 3.0.1-0 March 18, 2012 Ella Deon Lackey
Updates for JBoss Operations Network 3.0.1.

Revision 3.0-0 December 7, 2011 Ella Deon Lackey
Initial release of JBoss ON 3.0.

Configuring JBoss ON Servers and Agents

98

mailto:docs@redhat.com

INDEX
A
affinity groups

high availability, Creating Affinity Groups

agent
persisted configuration

location, Managing the Agent's Persisted Configuration

update settings, Configuring Agent Update Settings

authentication
between JBoss ON servers and JBoss ON agents, Setting up Client
Authentication Between Servers and Agents

C
communication

settings, Configuring Communication Settings

configuration
high availability, Configuring High Availability
JBoss ON server, Configuring Servers
rhq.server properties, Editing JBoss ON Server Configuration in rhq-
server.properties

D
database

changing passwords, Changing Database Passwords
editing configuration, Editing the JBoss ON Server's Database Configuration
management, Managing Databases Associated with JBoss ON
running SQL commands from JBoss ON, Running SQL Commands from JBoss ON

discovery
scan interval, Setting Discovery Scan Intervals

E
encryption

configuring, Setting up Encryption

events
partitions, Managing Partition Events

INDEX

99

F
failover

JBoss ON server and high availability, Viewing the Server Failover Lists for
Agents

files
JBoss ON files locations, JBoss ON File Locations

G
groups

high availability and affinity, Creating Affinity Groups

guaranteed delivery
JBoss ON agent, Setting Guaranteed Delivery for Commands

H
high availability

and when to use affinity, Defining Affinity for Agents
configuring, Configuring High Availability
creating affinity groups, Creating Affinity Groups
database impact, Database Impact
infrastructural impact, High Availability Infrastructure Impact
JBoss ON agent, Viewing the Server Failover Lists for Agents
listing affinity groups, Creating Affinity Groups
maintenance mode, Putting Servers in Maintenance Mode
removing JBoss ON servers from the cloud, Removing Servers from the High
Availability Cloud
removing partition events, Removing Partition Events
server and agent endpoints, Server and Agent Endpoints
viewing partition events, Managing Partition Events

J
JBoss ON agent

authentication with JBoss ON servers, Setting up Client Authentication
Between Servers and Agents
changing the IP address, Changing the Agent IP Address
configuration, Configuring Agents
default ports, Default Server and Agent Ports
directories and files, JBoss ON Agent File Locations
discovery scan, Setting Discovery Scan Intervals
failover, Viewing the Server Failover Lists for Agents
guaranteed delivery, Setting Guaranteed Delivery for Commands

Configuring JBoss ON Servers and Agents

100

JVM options, Setting Options for the Agent JVM
persistent configuration, Viewing the Persisted Configuration
prompt commands, Agent Prompt Commands
running as a daemon, Running the Agent as a Daemon or init.d Service
starting, Starting the JBoss ON Agent
starting (basic), Starting the JBoss ON Agent (Basic)
starting as a Windows service, Running the Agent as a Windows Service
starting command console, Starting the JBoss ON Agent (Basic)
starting with init.d, Running the Agent as a Daemon or init.d Service
throttling, Throttling the Agent
transport parameters, Configuring Agent Communication
transports, Configuring Agent Communication
Windows service configuration, Running the Agent as a Windows Service

JBoss ON server
authentication with JBoss ON agents, Setting up Client Authentication
Between Servers and Agents
changing the URL, Changing the JBoss ON Server URL
concurrency limits, Setting Concurrency Limits
configuration, Configuring Servers
configuring as a Windows service, Configuring JBoss ON as a Windows Service
configuring as Red Hat Enterprise Linux service, Configuring the JBoss ON
Server as a Service on Red Hat Enterprise Linux
configuring communication settings, Configuring Communication Settings
configuring rhq.server.properties, Editing JBoss ON Server Configuration in
rhq-server.properties
debug logging, Enabling Debug Logging for the JBoss ON Server
default ports, Default Server and Agent Ports
directories and files, JBoss ON Server File Locations
maintenance mode, Putting Servers in Maintenance Mode
removing JBoss ON servers from high availability, Removing Servers from the
High Availability Cloud
starting, Starting the JBoss ON Server , Starting the JBoss ON Server (Basic)
starting as a Windows service, Running the JBoss ON Server as a Service

JVM
options in the JBoss ON agent, Setting Options for the Agent JVM

P
persisted configuration

location, Managing the Agent's Persisted Configuration

ports
defaults for servers and agents, Default Server and Agent Ports

INDEX

101

R
Red Hat Enterprise Linux

JBoss ON running as a service, Configuring the JBoss ON Server as a Service on
Red Hat Enterprise Linux

S
server

configuring SMTP for email notifications, Configuring the SMTP Server for
Email Notifications
detection and polling, Setting the Agent to Detect or Poll the Server
silent install, Installing a Server Silently

SSL
authentication between servers and agents, Setting up Client Authentication
Between Servers and Agents
configuring connections for server-agent communication, Configuring SSL
Connections for Server-Agent Communication
setting up encryption, Setting up Encryption

T
throttling

JBoss ON agent, Throttling the Agent

W
Windows

JBoss ON running as a service, Configuring JBoss ON as a Windows Service

Configuring JBoss ON Servers and Agents

102

	Table of Contents
	1. ABOUT JBOSS OPERATIONS NETWORK
	1.1. About JBoss ON Agents
	1.2. About JBoss ON Servers

	2. GENERAL MANAGEMENT
	2.1. JBoss ON File Locations
	2.1.1. JBoss ON Server File Locations
	2.1.2. JBoss ON Agent File Locations

	2.2. Default Server and Agent Ports
	2.3. Starting the JBoss ON Server
	2.3.1. Starting the JBoss ON Server (Basic)
	2.3.2. Running the JBoss ON Server as a Service
	2.3.2.1. Configuring the JBoss ON Server as a Service on Red Hat Enterprise Linux
	2.3.2.2. Configuring JBoss ON as a Windows Service

	2.4. Starting the JBoss ON Agent
	2.4.1. Starting the JBoss ON Agent (Basic)
	2.4.2. Running the Agent as a Windows Service
	2.4.3. Running the Agent as a Daemon or init.d Service
	2.4.4. Restarting the Agent and the JVM

	3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION
	3.1. Setting up Encryption
	3.2. Setting up Client Authentication Between Servers and Agents
	3.3. Troubleshooting SSL Problems
	3.3.1. Common SSL Connection Issues
	3.3.2. Enabling SSL Debugging
	3.3.3. Example SSL Configuration

	4. CONFIGURING HIGH AVAILABILITY
	4.1. Prepping High Availability
	4.1.1. Deciding When to Use High Availability
	4.1.2. High Availability Infrastructure Impact
	4.1.2.1. Database Impact
	4.1.2.2. Server and Agent Endpoints
	4.1.2.3. Summary of Server Requirements

	4.2. Putting Servers in Maintenance Mode
	4.3. Removing Servers from the High Availability Cloud
	4.4. Defining Affinity for Agents
	4.4.1. About Affinity
	4.4.2. Creating Affinity Groups

	4.5. Managing Partition Events
	4.5.1. Viewing Partition Events
	4.5.2. Removing Partition Events

	5. CONFIGURING SERVERS
	5.1. Enabling Debug Logging for the JBoss ON Server
	5.1.1. Using an Environment Variable
	5.1.2. Setting log4j Priorities

	5.2. Changing the JBoss ON Server URL
	5.3. Editing JBoss ON Server Configuration in rhq-server.properties
	5.3.1. Configuring Communication Settings
	5.3.2. Setting Concurrency Limits
	5.3.3. Configuring the SMTP Server for Email Notifications
	5.3.4. Installing a Server Silently

	5.4. Synchronizing Server Configuration
	5.4.1. Exporting a Server's Configuration
	5.4.2. Importing a Server's Configuration
	5.4.2.1. Editing the XML Import File
	5.4.2.2. Changing the Synchronizer Configuration
	5.4.2.3. Importing the Configuration

	6. CONFIGURING AGENTS
	6.1. Registering and Re-registering the Agent
	6.1.1. About the Security Token and Agent Registration
	6.1.2. Re-installing a Lost Security Token

	6.2. Working with the Agent Command Prompt
	6.2.1. Opening the Agent Command Prompt
	6.2.2. Agent Start Options
	6.2.3. Agent Prompt Commands

	6.3. Running the Agent as a Non-Root User
	6.4. Enabling Debug Mode for the Agent
	6.4.1. Using an Environment Variable
	6.4.2. Setting log4j Priorities
	6.4.3. Using the Agent debug Prompt Command

	6.5. Changing the Agent IP Address
	6.6. Managing the Agent as a Resource
	6.7. Configuring Agent Update Settings
	6.8. Managing the Agent's Persisted Configuration
	6.8.1. Viewing the Persisted Configuration
	6.8.2. Changing Preferences in the Persisted Configuration (Agent Preferences)
	6.8.3. Overriding Persisted Configuration Settings

	6.9. Managing the Agent JVM
	6.9.1. Setting Options for the Agent JVM
	6.9.2. Setting the Agent JVM Memory Size

	6.10. Setting Discovery Scan Intervals
	6.11. Viewing the Server Failover Lists for Agents
	6.12. Setting the Agent to Detect or Poll the Server
	6.12.1. Settings for Polling the JBoss ON Server
	6.12.2. Setting up Multicast Detection

	6.13. Throttling the Agent
	6.14. Setting Guaranteed Delivery for Commands
	6.15. Configuring Agent Communication

	7. MANAGING DATABASES ASSOCIATED WITH JBOSS ON
	7.1. Running SQL Commands from JBoss ON
	7.2. Changing Database Passwords
	7.3. Editing the JBoss ON Server's Database Configuration

	8. DOCUMENT INFORMATION
	8.1. Giving Feedback
	8.2. Document History

	INDEX

