
Red Hat JBoss Fuse 6.2

Apache CXF Security Guide

Protecting your services and their consumers

Last Updated: 2017-09-26

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

Protecting your services and their consumers

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to use the Apache CXF security features.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS
OVERVIEW
GENERATING X.509 CERTIFICATES
CERTIFICATE FORMAT
ENABLING HTTPS
HTTPS CLIENT WITH NO CERTIFICATE
HTTPS CLIENT WITH CERTIFICATE
HTTPS SERVER CONFIGURATION

CHAPTER 2. MANAGING CERTIFICATES
2.1. WHAT IS AN X.509 CERTIFICATE?
2.2. CERTIFICATION AUTHORITIES
2.3. CERTIFICATE CHAINING
2.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES
2.5. CREATING YOUR OWN CERTIFICATES

CHAPTER 3. CONFIGURING HTTPS
3.1. AUTHENTICATION ALTERNATIVES
3.2. SPECIFYING TRUSTED CA CERTIFICATES
3.3. SPECIFYING AN APPLICATION'S OWN CERTIFICATE

CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES
4.1. SUPPORTED CIPHER SUITES
4.2. CIPHER SUITE FILTERS
4.3. SSL/TLS PROTOCOL VERSION

CHAPTER 5. THE WS-POLICY FRAMEWORK
5.1. INTRODUCTION TO WS-POLICY
5.2. POLICY EXPRESSIONS

CHAPTER 6. MESSAGE PROTECTION
6.1. TRANSPORT LAYER MESSAGE PROTECTION
6.2. SOAP MESSAGE PROTECTION

CHAPTER 7. AUTHENTICATION
7.1. INTRODUCTION TO AUTHENTICATION
7.2. SPECIFYING AN AUTHENTICATION POLICY
7.3. PROVIDING CLIENT CREDENTIALS
7.4. AUTHENTICATING RECEIVED CREDENTIALS

CHAPTER 8. WS-TRUST
8.1. INTRODUCTION TO WS-TRUST
8.2. BASIC SCENARIOS
8.3. DEFINING AN ISSUEDTOKEN POLICY
8.4. CREATING AN STSCLIENT INSTANCE

CHAPTER 9. THE SECURITY TOKEN SERVICE
9.1. STS ARCHITECTURE
9.2. STS DEMONSTRATION
9.3. ENABLING CLAIMS IN THE STS
9.4. ENABLING APPLIESTO IN THE STS
9.5. ENABLING REALMS IN THE STS

APPENDIX A. ASN.1 AND DISTINGUISHED NAMES

4
4
4
5
5
6
7
8

11
11
12
13
14
16

27
27
30
32

35
35
36
39

42
42
45

49
49
53

78
78
78
85
88

90
90
92
95

100

102
102
124
151
163
166

189

Table of Contents

1

. .

A.1. ASN.1
A.2. DISTINGUISHED NAMES

INDEX

189
189

192

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

2

Table of Contents

3

CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS

Abstract

This chapter describes the security features supported by the Apache CXF HTTP transport. These
security features are available to any Apache CXF binding that can be layered on top of the HTTP
transport.

OVERVIEW

This section describes how to configure the HTTP transport to use SSL/TLS security, a combination
usually referred to as HTTPS. In Apache CXF, HTTPS security is configured by specifying settings in
XML configuration files.

WARNING

If you enable SSL/TLS security, you must ensure that you explicitly disable the
SSLv3 protocol, in order to safeguard against the Poodle vulnerability (CVE-2014-
3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and JBoss A-MQ
6.x.

The following topics are discussed in this chapter:

Generating X.509 certificates

Enabling HTTPS

HTTPS client with no certificate

HTTPS client with certificate

HTTPS server configuration

GENERATING X.509 CERTIFICATES

A basic prerequisite for using SSL/TLS security is to have a collection of X.509 certificates available to
identify your server applications and, optionally, to identify your client applications. You can generate
X.509 certificates in one of the following ways:

Use a commercial third-party to tool to generate and manage your X.509 certificates.

Use the free openssl utility (which can be downloaded from http://www.openssl.org) and the
Java keystore utility to generate certificates (see Section 2.5.3, “Use the CA to Create Signed
Certificates in a Java Keystore”).

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

4

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613
http://www.openssl.org

NOTE

The HTTPS protocol mandates a URL integrity check, which requires a certificate’s
identity to match the hostname on which the server is deployed. See Section 2.4, “Special
Requirements on HTTPS Certificates” for details.

CERTIFICATE FORMAT

In the Java runtime, you must deploy X.509 certificate chains and trusted CA certificates in the form of
Java keystores. See Chapter 3, Configuring HTTPS for details.

ENABLING HTTPS

A prerequisite for enabling HTTPS on a WSDL endpoint is that the endpoint address must be specified
as a HTTPS URL. There are two different locations where the endpoint address is set and both must be
modified to use a HTTPS URL:

HTTPS specified in the WSDL contract—you must specify the endpoint address in the WSDL
contract to be a URL with the https: prefix, as shown in Example 1.1, “Specifying HTTPS in the
WSDL”.

Example 1.1. Specifying HTTPS in the WSDL

Where the location attribute of the soap:address element is configured to use a HTTPS
URL. For bindings other than SOAP, you edit the URL appearing in the location attribute of
the http:address element.

HTTPS specified in the server code—you must ensure that the URL published in the server
code by calling Endpoint.publish() is defined with a https: prefix, as shown in Example 1.2,
“Specifying HTTPS in the Server Code”.

Example 1.2. Specifying HTTPS in the Server Code

<wsdl:definitions name="HelloWorld"

targetNamespace="http://apache.org/hello_world_soap_http"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ...
>
 ...
 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding"
 name="SoapPort">
 <soap:address
location="https://localhost:9001/SoapContext/SoapPort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

// Java
package demo.hw_https.server;
import javax.xml.ws.Endpoint;

CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS

5

1

2

HTTPS CLIENT WITH NO CERTIFICATE

For example, consider the configuration for a secure HTTPS client with no certificate, as shown in
Example 1.3, “Sample HTTPS Client with No Certificate”.

Example 1.3. Sample HTTPS Client with No Certificate

The preceding client configuration is described as follows:

The TLS security settings are defined on a specific WSDL port. In this example, the WSDL port
being configured has the QName,
{http://apache.org/hello_world_soap_http}SoapPort.

The http:tlsClientParameters element contains all of the client’s TLS configuration details.

public class Server {
 protected Server() throws Exception {
 Object implementor = new GreeterImpl();
 String address =
"https://localhost:9001/SoapContext/SoapPort";
 Endpoint.publish(address, implementor);
 }
 ...
 }

1
2

3

4

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
 xsi:schemaLocation="...">

 <http:conduit name="

{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">
 <http:tlsClientParameters>

 <sec:trustManagers>
 <sec:keyStore type="JKS" password="password"

 file="certs/truststore.jks"/>
 </sec:trustManagers>

 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>

 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>
 </http:tlsClientParameters>
 </http:conduit>

</beans>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

6

3

4

The sec:trustManagers element is used to specify a list of trusted CA certificates (the client
uses this list to decide whether or not to trust certificates received from the server side).

The file attribute of the sec:keyStore element specifies a Java keystore file,
truststore.jks, containing one or more trusted CA certificates. The password attribute
specifies the password required to access the keystore, truststore.jks. See Section 3.2.2,
“Specifying Trusted CA Certificates for HTTPS”.

NOTE

Instead of the file attribute, you can specify the location of the keystore using
either the resource attribute (where the keystore file is provided on the classpath)
or the url attribute. In particular, the resource attribute must be used with
applications that are deployed into an OSGi container. You must be extremely
careful not to load the truststore from an untrustworthy source.

The sec:cipherSuitesFilter element can be used to narrow the choice of cipher suites that
the client is willing to use for a TLS connection. See Chapter 4, Configuring HTTPS Cipher Suites
for details.

HTTPS CLIENT WITH CERTIFICATE

Consider a secure HTTPS client that is configured to have its own certificate. Example 1.4, “Sample
HTTPS Client with Certificate” shows how to configure such a sample client.

Example 1.4. Sample HTTPS Client with Certificate

1
2

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
 xsi:schemaLocation="...">

 <http:conduit name="
{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">
 <http:tlsClientParameters>
 <sec:trustManagers>
 <sec:keyStore type="JKS" password="password"
 file="certs/truststore.jks"/>
 </sec:trustManagers>

 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="JKS" password="password"
 file="certs/wibble.jks"/>

 </sec:keyManagers>
 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>
 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>
 </http:tlsClientParameters>

CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS

7

1

2

The preceding client configuration is described as follows:

The sec:keyManagers element is used to attach an X.509 certificate and a private key to the
client. The password specified by the keyPasswod attribute is used to decrypt the certificate’s
private key.

The sec:keyStore element is used to specify an X.509 certificate and a private key that are
stored in a Java keystore. This sample declares that the keystore is in Java Keystore format (JKS).

The file attribute specifies the location of the keystore file, wibble.jks, that contains the client’s
X.509 certificate chain and private key in a key entry. The password attribute specifies the
keystore password which is required to access the contents of the keystore.

It is expected that the keystore file contains just one key entry, so it is not necessary to specify a
key alias to identify the entry. If you are deploying a keystore file with multiple key entries, however,
it is possible to specify the key in this case by adding the sec:certAlias element as a child of the
http:tlsClientParameters element, as follows:

For details of how to create a keystore file, see Section 2.5.3, “Use the CA to Create Signed
Certificates in a Java Keystore”.

NOTE

Instead of the file attribute, you can specify the location of the keystore using
either the resource attribute (where the keystore file is provided on the classpath)
or the url attribute. In particular, the resource attribute must be used with
applications that are deployed into an OSGi container. You must be extremely
careful not to load the truststore from an untrustworthy source.

HTTPS SERVER CONFIGURATION

Consider a secure HTTPS server that requires clients to present an X.509 certificate. Example 1.5,
“Sample HTTPS Server Configuration” shows how to configure such a server.

Example 1.5. Sample HTTPS Server Configuration

 </http:conduit>

 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

<http:tlsClientParameters>
 ...
 <sec:certAlias>CertAlias</sec:certAlias>
 ...
</http:tlsClientParameters>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

8

1

2

3

4

5

The preceding server configuration is described as follows:

The bus attribute references the relevant CXF Bus instance. By default, a CXF Bus instance with
the ID, cxf, is automatically created by the Apache CXF runtime.

On the server side, TLS is not configured for each WSDL port. Instead of configuring each WSDL
port, the TLS security settings are applied to a specific IP port, which is 9001 in this example. All of
the WSDL ports that share this IP port are therefore configured with the same TLS security settings.

The http:tlsServerParameters element contains all of the server’s TLS configuration details.

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to
protect against the Poodle vulnerability (CVE-2014-3566)

The sec:keyManagers element is used to attach an X.509 certificate and a private key to the
server. The password specified by the keyPasswod attribute is used to decrypt the certificate’s
private key.

The sec:keyStore element is used to specify an X.509 certificate and a private key that are
stored in a Java keystore. This sample declares that the keystore is in Java Keystore format (JKS).

1
2

3
4

5

6

7

8

xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="...">

 <httpj:engine-factory bus="cxf">
 <httpj:engine port="9001">

 <httpj:tlsServerParameters secureSocketProtocol="TLSv1">
 <sec:keyManagers keyPassword="password">

 <sec:keyStore type="JKS" password="password"
 file="certs/cherry.jks"/>

 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore type="JKS" password="password"

 file="certs/truststore.jks"/>
 </sec:trustManagers>

 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>

 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>

 <sec:clientAuthentication want="true" required="true"/>
 </httpj:tlsServerParameters>

 </httpj:engine>
 </httpj:engine-factory>

</beans>

CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS

9

https://access.redhat.com/articles/1232123

6

7

8

The file attribute specifies the location of the keystore file, cherry.jks, that contains the client’s
X.509 certificate chain and private key in a key entry. The password attribute specifies the
keystore password, which is needed to access the contents of the keystore.

It is expected that the keystore file contains just one key entry, so it is not necessary to specify a
key alias to identify the entry. If you are deploying a keystore file with multiple key entries, however,
it is possible to specify the key in this case by adding the sec:certAlias element as a child of the
http:tlsClientParameters element, as follows:

NOTE

Instead of the file attribute, you can specify the location of the keystore using
either the resource attribute or the url attribute. You must be extremely careful
not to load the truststore from an untrustworthy source.

For details of how to create such a keystore file, see Section 2.5.3, “Use the CA to Create Signed
Certificates in a Java Keystore”.

The sec:trustManagers element is used to specify a list of trusted CA certificates (the server
uses this list to decide whether or not to trust certificates presented by clients).

The file attribute of the sec:keyStore element specifies a Java keystore file,
truststore.jks, containing one or more trusted CA certificates. The password attribute
specifies the password required to access the keystore, truststore.jks. See Section 3.2.2,
“Specifying Trusted CA Certificates for HTTPS”.

NOTE

Instead of the file attribute, you can specify the location of the keystore using
either the resource attribute or the url attribute.

The sec:cipherSuitesFilter element can be used to narrow the choice of cipher suites that
the server is willing to use for a TLS connection. See Chapter 4, Configuring HTTPS Cipher Suites
for details.

The sec:clientAuthentication element determines the server’s disposition towards the
presentation of client certificates. The element has the following attributes:

want attribute—If true (the default), the server requests the client to present an X.509
certificate during the TLS handshake; if false, the server does not request the client to
present an X.509 certificate.

required attribute—If true, the server raises an exception if a client fails to present an
X.509 certificate during the TLS handshake; if false (the default), the server does not
raise an exception if the client fails to present an X.509 certificate.

<http:tlsClientParameters>
 ...
 <sec:certAlias>CertAlias</sec:certAlias>
 ...
</http:tlsClientParameters>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

10

CHAPTER 2. MANAGING CERTIFICATES

Abstract

TLS authentication uses X.509 certificates—a common, secure and reliable method of authenticating
your application objects. You can create X.509 certificates that identify your Red Hat JBoss Fuse
applications.

2.1. WHAT IS AN X.509 CERTIFICATE?

Role of certificates

An X.509 certificate binds a name to a public key value. The role of the certificate is to associate a public
key with the identity contained in the X.509 certificate.

Integrity of the public key

Authentication of a secure application depends on the integrity of the public key value in the application's
certificate. If an impostor replaces the public key with its own public key, it can impersonate the true
application and gain access to secure data.

To prevent this type of attack, all certificates must be signed by a certification authority (CA). A CA is a
trusted node that confirms the integrity of the public key value in a certificate.

Digital signatures

A CA signs a certificate by adding its digital signature to the certificate. A digital signature is a message
encoded with the CA’s private key. The CA’s public key is made available to applications by distributing a
certificate for the CA. Applications verify that certificates are validly signed by decoding the CA’s digital
signature with the CA’s public key.

WARNING

The supplied demonstration certificates are self-signed certificates. These
certificates are insecure because anyone can access their private key. To secure
your system, you must create new certificates signed by a trusted CA.

Contents of an X.509 certificate

An X.509 certificate contains information about the certificate subject and the certificate issuer (the CA
that issued the certificate). A certificate is encoded in Abstract Syntax Notation One (ASN.1), a standard
syntax for describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In more detail, a certificate
includes:

A subject distinguished name (DN) that identifies the certificate owner.

CHAPTER 2. MANAGING CERTIFICATES

11

The public key associated with the subject.

X.509 version information.

A serial number that uniquely identifies the certificate.

An issuer DN that identifies the CA that issued the certificate.

The digital signature of the issuer.

Information about the algorithm used to sign the certificate.

Some optional X.509 v.3 extensions; for example, an extension exists that distinguishes
between CA certificates and end-entity certificates.

Distinguished names

A DN is a general purpose X.500 identifier that is often used in the context of security.

See Appendix A, ASN.1 and Distinguished Names for more details about DNs.

2.2. CERTIFICATION AUTHORITIES

2.2.1. Introduction to Certificate Authorities

A CA consists of a set of tools for generating and managing certificates and a database that contains all
of the generated certificates. When setting up a system, it is important to choose a suitable CA that is
sufficiently secure for your requirements.

There are two types of CA you can use:

commercial CAs are companies that sign certificates for many systems.

private CAs are trusted nodes that you set up and use to sign certificates for your system only.

2.2.2. Commercial Certification Authorities

Signing certificates

There are several commercial CAs available. The mechanism for signing a certificate using a commercial
CA depends on which CA you choose.

Advantages of commercial CAs

An advantage of commercial CAs is that they are often trusted by a large number of people. If your
applications are designed to be available to systems external to your organization, use a commercial CA
to sign your certificates. If your applications are for use within an internal network, a private CA might be
appropriate.

Criteria for choosing a CA

Before choosing a commercial CA, consider the following criteria:

What are the certificate-signing policies of the commercial CAs?

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

12

Are your applications designed to be available on an internal network only?

What are the potential costs of setting up a private CA compared to the costs of subscribing to a
commercial CA?

2.2.3. Private Certification Authorities

Choosing a CA software package

If you want to take responsibility for signing certificates for your system, set up a private CA. To set up a
private CA, you require access to a software package that provides utilities for creating and signing
certificates. Several packages of this type are available.

OpenSSL software package

One software package that allows you to set up a private CA is OpenSSL, http://www.openssl.org. The
OpenSSL package includes basic command line utilities for generating and signing certificates.
Complete documentation for the OpenSSL command line utilities is available at
http://www.openssl.org/docs.

Setting up a private CA using OpenSSL

To set up a private CA, see the instructions in Section 2.5, “Creating Your Own Certificates”.

Choosing a host for a private certification authority

Choosing a host is an important step in setting up a private CA. The level of security associated with the
CA host determines the level of trust associated with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Red Hat JBoss Fuse applications,
use any host that the application developers can access. However, when you create the CA certificate
and private key, do not make the CA private key available on any hosts where security-critical
applications run.

Security precautions

If you are setting up a CA to sign certificates for applications that you are going to deploy, make the CA
host as secure as possible. For example, take the following precautions to secure your CA:

Do not connect the CA to a network.

Restrict all access to the CA to a limited set of trusted users.

Use an RF-shield to protect the CA from radio-frequency surveillance.

2.3. CERTIFICATE CHAINING

Certificate chain

A certificate chain is a sequence of certificates, where each certificate in the chain is signed by the
subsequent certificate.

Figure 2.1, “A Certificate Chain of Depth 2” shows an example of a simple certificate chain.

CHAPTER 2. MANAGING CERTIFICATES

13

http://www.openssl.org
http://www.openssl.org/docs

Figure 2.1. A Certificate Chain of Depth 2

Self-signed certificate

The last certificate in the chain is normally a self-signed certificate—a certificate that signs itself.

Chain of trust

The purpose of a certificate chain is to establish a chain of trust from a peer certificate to a trusted CA
certificate. The CA vouches for the identity in the peer certificate by signing it. If the CA is one that you
trust (indicated by the presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

Certificates signed by multiple CAs

A CA certificate can be signed by another CA. For example, an application certificate could be signed by
the CA for the finance department of Progress Software, which in turn is signed by a self-signed
commercial CA.

Figure 2.2, “A Certificate Chain of Depth 3” shows what this certificate chain looks like.

Figure 2.2. A Certificate Chain of Depth 3

Trusted CAs

An application can accept a peer certificate, provided it trusts at least one of the CA certificates in the
signing chain.

2.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES

Overview

The HTTPS specification mandates that HTTPS clients must be capable of verifying the identity of the
server. This can potentially affect how you generate your X.509 certificates. The mechanism for verifying
the server identity depends on the type of client. Some clients might verify the server identity by
accepting only those server certificates signed by a particular trusted CA. In addition, clients can inspect
the contents of a server certificate and accept only the certificates that satisfy specific constraints.

In the absence of an application-specific mechanism, the HTTPS specification defines a generic
mechanism, known as the HTTPS URL integrity check, for verifying the server identity. This is the
standard mechanism used by Web browsers.

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

14

HTTPS URL integrity check

The basic idea of the URL integrity check is that the server certificate's identity must match the server
host name. This integrity check has an important impact on how you generate X.509 certificates for
HTTPS: the certificate identity (usually the certificate subject DN’s common name) must match the host
name on which the HTTPS server is deployed.

The URL integrity check is designed to prevent man-in-the-middle attacks.

Reference

The HTTPS URL integrity check is specified by RFC 2818, published by the Internet Engineering Task
Force (IETF) at http://www.ietf.org/rfc/rfc2818.txt.

How to specify the certificate identity

The certificate identity used in the URL integrity check can be specified in one of the following ways:

Using commonName

Using subectAltName

Using commonName

The usual way to specify the certificate identity (for the purpose of the URL integrity check) is through the
Common Name (CN) in the subject DN of the certificate.

For example, if a server supports secure TLS connections at the following URL:

The corresponding server certificate would have the following subject DN:

Where the CN has been set to the host name, www.redhat.com.

For details of how to set the subject DN in a new certificate, see Section 2.5, “Creating Your Own
Certificates”.

Using subjectAltName (multi-homed hosts)

Using the subject DN’s Common Name for the certificate identity has the disadvantage that only one host
name can be specified at a time. If you deploy a certificate on a multi-homed host, however, you might
find it is practical to allow the certificate to be used with any of the multi-homed host names. In this case,
it is necessary to define a certificate with multiple, alternative identities, and this is only possible using the
subjectAltName certificate extension.

For example, if you have a multi-homed host that supports connections to either of the following host
names:

https://www.redhat.com/secure

C=IE,ST=Co. Dublin,L=Dublin,O=RedHat,
OU=System,CN=www.redhat.com

www.redhat.com
www.jboss.org

CHAPTER 2. MANAGING CERTIFICATES

15

http://www.ietf.org/rfc/rfc2818.txt

Then you can define a subjectAltName that explicitly lists both of these DNS host names. If you
generate your certificates using the openssl utility, edit the relevant line of your openssl.cnf
configuration file to specify the value of the subjectAltName extension, as follows:

Where the HTTPS protocol matches the server host name against either of the DNS host names listed in
the subjectAltName (the subjectAltName takes precedence over the Common Name).

The HTTPS protocol also supports the wildcard character, *, in host names. For example, you can
define the subjectAltName as follows:

This certificate identity matches any three-component host name in the domain jboss.org.

WARNING

You must never use the wildcard character in the domain name (and you must take
care never to do this accidentally by forgetting to type the dot, ., delimiter in front of
the domain name). For example, if you specified *jboss.org, your certificate could
be used on any domain that ends in the letters jboss.

2.5. CREATING YOUR OWN CERTIFICATES

2.5.1. Prerequisites

OpenSSL utilities

The steps described in this section are based on the OpenSSL command-line utilities from the OpenSSL
project. Further documentation of the OpenSSL command-line utilities can be obtained at
http://www.openssl.org/docs/.

Sample CA directory structure

For the purposes of illustration, the CA database is assumed to have the following directory structure:

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl

subjectAltName=DNS:www.redhat.com,DNS:www.jboss.org

subjectAltName=DNS:*.jboss.org

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

16

http://www.openssl.org/docs/

Where X509CA is the parent directory of the CA database.

2.5.2. Set Up Your Own CA

Substeps to perform

This section describes how to set up your own private CA. Before setting up a CA for a real deployment,
read the additional notes in Section 2.2.3, “Private Certification Authorities” .

To set up your own CA, perform the following steps:

1. Add the bin directory to your PATH

2. Create the CA directory hierarchy

3. Copy and edit the openssl.cnf file

4. Initialize the CA database

5. Create a self-signed CA certificate and private key

Add the bin directory to your PATH

On the secure CA host, add the OpenSSL bin directory to your path:

Windows

UNIX

This step makes the openssl utility available from the command line.

Create the CA directory hierarchy

Create a new directory, X509CA, to hold the new CA. This directory is used to hold all of the files
associated with the CA. Under the X509CA directory, create the following hierarchy of directories:

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl

Copy and edit the openssl.cnf file

Copy the sample openssl.cnf from your OpenSSL installation to the X509CA directory.

> set PATH=OpenSSLDir\bin;%PATH%

% PATH=OpenSSLDir/bin:$PATH; export PATH

CHAPTER 2. MANAGING CERTIFICATES

17

Edit the openssl.cnf to reflect the directory structure of the X509CA directory, and to identify the files
used by the new CA.

Edit the [CA_default] section of the openssl.cnf file to look like the following:

You might decide to edit other details of the OpenSSL configuration at this point—for more details, see
http://www.openssl.org/docs/.

Initialize the CA database

In the X509CA directory, initialize two files, serial and index.txt.

Windows

To initialize the serial file in Windows, enter the following command:

To create an empty file, index.txt, in Windows start Windows Notepad at the command line in the
X509CA directory, as follows:

In response to the dialog box with the text, Cannot find the text.txt file. Do you want to
create a new file?, click Yes, and close Notepad.

UNIX

To initialize the serial file and the index.txt file in UNIX, enter the following command:

These files are used by the CA to maintain its database of certificate files.

###
[CA_default]

dir = X509CA # Where CA files are kept
certs = $dir/certs # Where issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file
new_certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new_ca.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/new_ca_pk.pem # The private key
RANDFILE = $dir/ca/.rand
Private random number file

x509_extensions = usr_cert # The extensions to add to the cert
...

> echo 01 > serial

> notepad index.txt

% echo "01" > serial
% touch index.txt

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

18

http://www.openssl.org/docs/

NOTE

The index.txt file must initially be completely empty, not even containing white space.

Create a self-signed CA certificate and private key

Create a new self-signed CA certificate and private key with the following command:

openssl req -x509 -new -config X509CA/openssl.cnf -days 365 -out
X509CA/ca/new_ca.pem -keyout X509CA/ca/new_ca_pk.pem

The command prompts you for a pass phrase for the CA private key and details of the CA distinguished
name. For example:

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
....+++++
.+++++
writing new private key to 'new_ca_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:Red Hat
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown
Email Address []:gbrown@redhat.com

NOTE

The security of the CA depends on the security of the private key file and the private key
pass phrase used in this step.

You must ensure that the file names and location of the CA certificate and private key, new_ca.pem and
new_ca_pk.pem, are the same as the values specified in openssl.cnf (see the preceding step).

You are now ready to sign certificates with your CA.

2.5.3. Use the CA to Create Signed Certificates in a Java Keystore

Substeps to perform

To create and sign a certificate in a Java keystore (JKS), CertName.jks, perform the following
substeps:

CHAPTER 2. MANAGING CERTIFICATES

19

1. Add the Java bin directory to your PATH

2. Generate a certificate and private key pair

3. Create a certificate signing request

4. Sign the CSR

5. Convert to PEM format

6. Concatenate the files

7. Update keystore with the full certificate chain

8. Repeat steps as required

Add the Java bin directory to your PATH

If you have not already done so, add the Java bin directory to your path:

Windows

UNIX

This step makes the keytool utility available from the command line.

Generate a certificate and private key pair

Open a command prompt and change directory to the directory where you store your keystore files,
KeystoreDir. Enter the following command:

This keytool command, invoked with the -genkey option, generates an X.509 certificate and a
matching private key. The certificate and the key are both placed in a key entry in a newly created
keystore, CertName.jks. Because the specified keystore, CertName.jks, did not exist prior to issuing
the command, keytool implicitly creates a new keystore.

The -dname and -validity flags define the contents of the newly created X.509 certificate, specifying
the subject DN and the days before expiration respectively. For more details about DN format, see
Appendix A, ASN.1 and Distinguished Names.

Some parts of the subject DN must match the values in the CA certificate (specified in the CA Policy
section of the openssl.cnf file). The default openssl.cnf file requires the following entries to match:

Country Name (C)

State or Province Name (ST)

> set PATH=JAVA_HOME\bin;%PATH%

% PATH=JAVA_HOME/bin:$PATH; export PATH

keytool -genkey -dname "CN=Alice, OU=Engineering, O=Progress, ST=Co.
Dublin, C=IE" -validity 365 -alias CertAlias -keypass CertPassword -
keystore CertName.jks -storepass CertPassword

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

20

Organization Name (O)

NOTE

If you do not observe the constraints, the OpenSSL CA will refuse to sign the certificate
(see the section called “Sign the CSR”).

Create a certificate signing request

Create a new certificate signing request (CSR) for the CertName.jks certificate, as follows:

This command exports a CSR to the file, CertName_csr.pem.

Sign the CSR

Sign the CSR using your CA, as follows:

To sign the certificate successfully, you must enter the CA private key pass phrase (see Section 2.5.2,
“Set Up Your Own CA”).

NOTE

If you want to sign the CSR using a CA certificate other than the default CA, use the -
cert and -keyfile options to specify the CA certificate and its private key file,
respectively.

Convert to PEM format

Convert the signed certificate, CertName.pem, to PEM only format, as follows:

Concatenate the files

Concatenate the CA certificate file and CertName.pem certificate file, as follows:

Windows

UNIX

Update keystore with the full certificate chain

keytool -certreq -alias CertAlias -file CertName_csr.pem -keypass
CertPassword -keystore CertName.jks -storepass CertPassword

openssl ca -config X509CA/openssl.cnf -days 365 -in CertName_csr.pem -out
CertName.pem

openssl x509 -in CertName.pem -out CertName.pem -outform PEM

copy CertName.pem + X509CA\ca\new_ca.pem CertName.chain

cat CertName.pem X509CA/ca/new_ca.pem > CertName.chain

CHAPTER 2. MANAGING CERTIFICATES

21

Update the keystore, CertName.jks, by importing the full certificate chain for the certificate, as follows:

Repeat steps as required

Repeat steps 2 through 7, to create a complete set of certificates for your system.

2.5.4. Use the CA to Create Signed PKCS#12 Certificates

Substeps to perform

If you have set up a private CA, as described in Section 2.5.2, “Set Up Your Own CA” , you are now
ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, CertName.p12, perform the following substeps:

1. Add the bin directory to your PATH .

2. Configure the subjectAltName extension (Optional) .

3. Create a certificate signing request .

4. Sign the CSR .

5. Concatenate the files .

6. Create a PKCS#12 file .

7. Repeat steps as required .

8. (Optional) Clear the subjectAltName extension .

Add the bin directory to your PATH

If you have not already done so, add the OpenSSL bin directory to your path, as follows:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Configure the subjectAltName extension (Optional)

Perform this step, if the certificate is intended for a HTTPS server whose clients enforce URL integrity
check, and if you plan to deploy the server on a multi-homed host or a host with several DNS name
aliases (for example, if you are deploying the certificate on a multi-homed Web server). In this case, the

keytool -import -file CertName.chain -keypass CertPassword -keystore
CertName.jks -storepass CertPassword

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

22

certificate identity must match multiple host names and this can be done only by adding a
subjectAltName certificate extension (see Section 2.4, “Special Requirements on HTTPS
Certificates”).

To configure the subjectAltName extension, edit your CA’s openssl.cnf file as follows:

1. Add the following req_extensions setting to the [req] section (if not already present in your
openssl.cnf file):

2. Add the [v3_req] section header (if not already present in your openssl.cnf file). Under the
[v3_req] section, add or modify the subjectAltName setting, setting it to the list of your DNS
host names. For example, if the server host supports the alternative DNS names,
www.redhat.com and jboss.org, set the subjectAltName as follows:

3. Add a copy_extensions setting to the appropriate CA configuration section. The CA
configuration section used for signing certificates is one of the following:

The section specified by the -name option of the openssl ca command,

The section specified by the default_ca setting under the [ca] section (usually
[CA_default]).

For example, if the appropriate CA configuration section is [CA_default], set the
copy_extensions property as follows:

This setting ensures that certificate extensions present in the certificate signing request are
copied into the signed certificate.

Create a certificate signing request

Create a new certificate signing request (CSR) for the CertName.p12 certificate, as shown:

This command prompts you for a pass phrase for the certificate’s private key, and for information about
the certificate’s distinguished name.

openssl Configuration File
...
[req]
req_extensions=v3_req

openssl Configuration File
...
[v3_req]
subjectAltName=DNS:www.redhat.com,DNS:jboss.org

openssl Configuration File
...
[CA_default]
copy_extensions=copy

openssl req -new -config X509CA/openssl.cnf -days 365 -out
X509CA/certs/CertName_csr.pem -keyout X509CA/certs/CertName_pk.pem

CHAPTER 2. MANAGING CERTIFICATES

23

Some of the entries in the CSR distinguished name must match the values in the CA certificate
(specified in the CA Policy section of the openssl.cnf file). The default openssl.cnf file requires
that the following entries match:

Country Name

State or Province Name

Organization Name

The certificate subject DN’s Common Name is the field that is usually used to represent the certificate
owner’s identity. The Common Name must comply with the following conditions:

The Common Name must be distinct for every certificate generated by the OpenSSL certificate
authority.

If your HTTPS clients implement the URL integrity check, you must ensure that the Common
Name is identical to the DNS name of the host where the certificate is to be deployed (see
Section 2.4, “Special Requirements on HTTPS Certificates”).

NOTE

For the purpose of the HTTPS URL integrity check, the subjectAltName extension
takes precedence over the Common Name.

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
.+++++
.+++++
writing new private key to
 'X509CA/certs/CertName_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:Red Hat
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Artix
Email Address []:info@redhat.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:password
An optional company name []:Red Hat

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

24

Sign the CSR

Sign the CSR using your CA, as follows:

This command requires the pass phrase for the private key associated with the new_ca.pem CA
certificate. For example:

Using configuration from X509CA/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
organizationName :PRINTABLE:'Red Hat'
organizationalUnitName:PRINTABLE:'Systems'
commonName :PRINTABLE:'Bank Server Certificate'
emailAddress :IA5STRING:'info@redhat.com'
Certificate is to be certified until May 24 13:06:57 2000 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

To sign the certificate successfully, you must enter the CA private key pass phrase (see Section 2.5.2,
“Set Up Your Own CA”).

NOTE

If you did not set copy_extensions=copy under the [CA_default] section in the
openssl.cnf file, the signed certificate will not include any of the certificate extensions
that were in the original CSR.

Concatenate the files

Concatenate the CA certificate file, CertName.pem certificate file, and CertName_pk.pem private key
file as follows:

Windows

UNIX

Create a PKCS#12 file

openssl ca -config X509CA/openssl.cnf -days 365 -in
X509CA/certs/CertName_csr.pem -out X509CA/certs/CertName.pem

copy X509CA\ca\new_ca.pem + X509CA\certs\CertName.pem +
X509CA\certs\CertName_pk.pem X509CA\certs\CertName_list.pem

cat X509CA/ca/new_ca.pem X509CA/certs/CertName.pem
X509CA/certs/CertName_pk.pem > X509CA/certs/CertName_list.pem

CHAPTER 2. MANAGING CERTIFICATES

25

Create a PKCS#12 file from the CertName_list.pem file as follows:

You are prompted to enter a password to encrypt the PKCS#12 certificate. Usually this password is the
same as the CSR password (this is required by many certificate repositories).

Repeat steps as required

Repeat steps 3 through 6, to create a complete set of certificates for your system.

(Optional) Clear the subjectAltName extension

After generating certificates for a particular host machine, it is advisable to clear the subjectAltName
setting in the openssl.cnf file to avoid accidentally assigning the wrong DNS names to another set of
certificates.

In the openssl.cnf file, comment out the subjectAltName setting (by adding a # character at the
start of the line), and also comment out the copy_extensions setting.

openssl pkcs12 -export -in X509CA/certs/CertName_list.pem -out
X509CA/certs/CertName.p12 -name "New cert"

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

26

CHAPTER 3. CONFIGURING HTTPS

Abstract

This chapter describes how to configure HTTPS endpoints.

3.1. AUTHENTICATION ALTERNATIVES

3.1.1. Target-Only Authentication

Overview

When an application is configured for target-only authentication, the target authenticates itself to the
client but the client is not authentic to the target object, as shown in Figure 3.1, “Target Authentication
Only”.

Figure 3.1. Target Authentication Only

Security handshake

Prior to running the application, the client and server should be set up as follows:

A certificate chain is associated with the server. The certificate chain is provided in the form of a
Java keystore (ee Section 3.3, “Specifying an Application's Own Certificate”).

One or more lists of trusted certification authorities (CA) are made available to the client. (see
Section 3.2, “Specifying Trusted CA Certificates”).

During the security handshake, the server sends its certificate chain to the client (see Figure 3.1, “Target
Authentication Only”). The client then searches its trusted CA lists to find a CA certificate that matches
one of the CA certificates in the server's certificate chain.

CHAPTER 3. CONFIGURING HTTPS

27

HTTPS example

On the client side, there are no policy settings required for target-only authentication. Simply configure
your client without associating an X.509 certificate with the HTTPS port. You must provide the client with
a list of trusted CA certificates, however (see Section 3.2, “Specifying Trusted CA Certificates”).

On the server side, in the server's XML configuration file, make sure that the
sec:clientAuthentication element does not require client authentication. This element can be
omitted, in which case the default policy is to not require client authentication. However, if the
sec:clientAuthentication element is present, it should be configured as follows:

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to protect
against the Poodle vulnerability (CVE-2014-3566)

Where the want attribute is set to false (the default), specifying that the server does not request an
X.509 certificate from the client during a TLS handshake. The required attribute is also set to false
(the default), specifying that the absence of a client certificate does not trigger an exception during the
TLS handshake.

NOTE

The want attribute can be set either to true or to false. If set to true, the want setting
causes the server to request a client certificate during the TLS handshake, but no
exception is raised for clients lacking a certificate, so long as the required attribute is
set to false.

It is also necessary to associate an X.509 certificate with the server's HTTPS port (see Section 3.3,
“Specifying an Application's Own Certificate”) and to provide the server with a list of trusted CA
certificates (see Section 3.2, “Specifying Trusted CA Certificates”).

NOTE

The choice of cipher suite can potentially affect whether or not target-only authentication
is supported (see Chapter 4, Configuring HTTPS Cipher Suites).

3.1.2. Mutual Authentication

Overview

When an application is configured for mutual authentication, the target authenticates itself to the client
and the client authenticates itself to the target. This scenario is illustrated in Figure 3.2, “Mutual
Authentication” . In this case, the server and the client each require an X.509 certificate for the security

<http:destination id="{Namespace}PortName.http-destination">
 <http:tlsServerParameters secureSocketProtocol="TLSv1">
 ...

 <sec:clientAuthentication want="false" required="false"/>
 </http:tlsServerParameters>
</http:destination>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

28

https://access.redhat.com/articles/1232123

handshake.

Figure 3.2. Mutual Authentication

Security handshake

Prior to running the application, the client and server must be set up as follows:

Both client and server have an associated certificate chain (see Section 3.3, “Specifying an
Application's Own Certificate”).

Both client and server are configured with lists of trusted certification authorities (CA) (see
Section 3.2, “Specifying Trusted CA Certificates”).

During the TLS handshake, the server sends its certificate chain to the client, and the client sends its
certificate chain to the server—see Figure 3.1, “Target Authentication Only” .

HTTPS example

On the client side, there are no policy settings required for mutual authentication. Simply associate an
X.509 certificate with the client’s HTTPS port (see Section 3.3, “Specifying an Application's Own
Certificate”). You also need to provide the client with a list of trusted CA certificates (see Section 3.2,
“Specifying Trusted CA Certificates”).

On the server side, in the server’s XML configuration file, make sure that the
sec:clientAuthentication element is configured to require client authentication. For example:

<http:destination id="{Namespace}PortName.http-destination">
 <http:tlsServerParameters secureSocketProtocol="TLSv1">

CHAPTER 3. CONFIGURING HTTPS

29

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to protect
against the Poodle vulnerability (CVE-2014-3566)

Where the want attribute is set to true, specifying that the server requests an X.509 certificate from the
client during a TLS handshake. The required attribute is also set to true, specifying that the absence
of a client certificate triggers an exception during the TLS handshake.

It is also necessary to associate an X.509 certificate with the server’s HTTPS port (see Section 3.3,
“Specifying an Application's Own Certificate”) and to provide the server with a list of trusted CA
certificates (see Section 3.2, “Specifying Trusted CA Certificates”).

NOTE

The choice of cipher suite can potentially affect whether or not mutual authentication is
supported (see Chapter 4, Configuring HTTPS Cipher Suites).

3.2. SPECIFYING TRUSTED CA CERTIFICATES

3.2.1. When to Deploy Trusted CA Certificates

Overview

When an application receives an X.509 certificate during an SSL/TLS handshake, the application
decides whether or not to trust the received certificate by checking whether the issuer CA is one of a pre-
defined set of trusted CA certificates. If the received X.509 certificate is validly signed by one of the
application’s trusted CA certificates, the certificate is deemed trustworthy; otherwise, it is rejected.

Which applications need to specify trusted CA certificates?

Any application that is likely to receive an X.509 certificate as part of an HTTPS handshake must specify
a list of trusted CA certificates. For example, this includes the following types of application:

All HTTPS clients.

Any HTTPS servers that support mutual authentication.

3.2.2. Specifying Trusted CA Certificates for HTTPS

CA certificate format

CA certificates must be provided in Java keystore format.

CA certificate deployment in the Apache CXF configuration file

To deploy one or more trusted root CAs for the HTTPS transport, perform the following steps:

 ...
 <sec:clientAuthentication want="true" required="true"/>
 </http:tlsServerParameters>
</http:destination>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

30

https://access.redhat.com/articles/1232123

1. Assemble the collection of trusted CA certificates that you want to deploy. The trusted CA
certificates can be obtained from public CAs or private CAs (for details of how to generate your
own CA certificates, see Section 2.5, “Creating Your Own Certificates”). The trusted CA
certificates can be in any format that is compatible with the Java keystore utility; for example,
PEM format. All you need are the certificates themselves—the private keys and passwords are
not required.

2. Given a CA certificate, cacert.pem, in PEM format, you can add the certificate to a JKS
truststore (or create a new truststore) by entering the following command:

Where CAAlias is a convenient tag that enables you to access this particular CA certificate using
the keytool utility. The file, truststore.jks, is a keystore file containing CA certificates—if
this file does not already exist, the keytool utility creates one. The StorePass password
provides access to the keystore file, truststore.jks.

3. Repeat step 2 as necessary, to add all of the CA certificates to the truststore file,
truststore.jks.

4. Edit the relevant XML configuration files to specify the location of the truststore file. You must
include the sec:trustManagers element in the configuration of the relevant HTTPS ports.

For example, you can configure a client port as follows:

Where the type attribute specifes that the truststore uses the JKS keystore implementation and
StorePass is the password needed to access the truststore.jks keystore.

Configure a server port as follows:

keytool -import -file cacert.pem -alias CAAlias -keystore
truststore.jks -storepass StorePass

<!-- Client port configuration -->
<http:conduit id="{Namespace}PortName.http-conduit">
 <http:tlsClientParameters>
 ...
 <sec:trustManagers>
 <sec:keyStore type="JKS"
 password="StorePass"
 file="certs/truststore.jks"/>
 </sec:trustManagers>
 ...
 </http:tlsClientParameters>
</http:conduit>

<!-- Server port configuration -->
<http:destination id="{Namespace}PortName.http-destination">
 <http:tlsServerParameters secureSocketProtocol="TLSv1">
 ...
 <sec:trustManagers>
 <sec:keyStore type="JKS"
 password="StorePass"
 file="certs/truststore.jks"/>
 </sec:trustManagers>

CHAPTER 3. CONFIGURING HTTPS

31

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to
protect against the Poodle vulnerability (CVE-2014-3566)

WARNING

The directory containing the truststores (for example,
X509Deploy/truststores/) should be a secure directory (that is, writable
only by the administrator).

3.3. SPECIFYING AN APPLICATION'S OWN CERTIFICATE

3.3.1. Deploying Own Certificate for HTTPS

Overview

When working with the HTTPS transport the application's certificate is deployed using the XML
configuration file.

Procedure

To deploy an application's own certificate for the HTTPS transport, perform the following steps:

1. Obtain an application certificate in Java keystore format, CertName.jks. For instructions on
how to create a certificate in Java keystore format, see Section 2.5.3, “Use the CA to Create
Signed Certificates in a Java Keystore”.

NOTE

Some HTTPS clients (for example, Web browsers) perform a URL integrity
check, which requires a certificate's identity to match the hostname on which the
server is deployed. See Section 2.4, “Special Requirements on HTTPS
Certificates” for details.

2. Copy the certificate's keystore, CertName.jks, to the certificates directory on the deployment
host; for example, X509Deploy/certs.

The certificates directory should be a secure directory that is writable only by administrators and
other privileged users.

3. Edit the relevant XML configuration file to specify the location of the certificate keystore,
CertName.jks. You must include the sec:keyManagers element in the configuration of the
relevant HTTPS ports.

 ...
 </http:tlsServerParameters>
</http:destination>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

32

https://access.redhat.com/articles/1232123

For example, you can configure a client port as follows:

Where the keyPassword attribute specifies the password needed to decrypt the certificate's
private key (that is, CertPassword), the type attribute specifes that the truststore uses the JKS
keystore implementation, and the password attribute specifies the password required to access
the CertName.jks keystore (that is, KeystorePassword).

Configure a server port as follows:

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to
protect against the Poodle vulnerability (CVE-2014-3566)

WARNING

The directory containing the application certificates (for example,
X509Deploy/certs/) should be a secure directory (that is, readable and
writable only by the administrator).

<http:conduit id="{Namespace}PortName.http-conduit">
 <http:tlsClientParameters>
 ...
 <sec:keyManagers keyPassword="CertPassword">
 <sec:keyStore type="JKS"
 password="KeystorePassword"
 file="certs/CertName.jks"/>
 </sec:keyManagers>
 ...
 </http:tlsClientParameters>
</http:conduit>

<http:destination id="{Namespace}PortName.http-destination">
 <http:tlsServerParameters secureSocketProtocol="TLSv1">
 ...
 <sec:keyManagers keyPassword="CertPassword">
 <sec:keyStore type="JKS"
 password="KeystorePassword"
 file="certs/CertName.jks"/>
 </sec:keyManagers>
 ...
 </http:tlsServerParameters>
</http:destination>

CHAPTER 3. CONFIGURING HTTPS

33

https://access.redhat.com/articles/1232123

WARNING

The directory containing the XML configuration file should be a secure
directory (that is, readable and writable only by the administrator), because
the configuration file contains passwords in plain text.

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

34

CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES

Abstract

This chapter explains how to specify the list of cipher suites that are made available to clients and
servers for the purpose of establishing HTTPS connections. During a security handshake, the client
chooses a cipher suite that matches one of the cipher suites available to the server.

4.1. SUPPORTED CIPHER SUITES

Overview

A cipher suite is a collection of security algorithms that determine precisely how an SSL/TLS connection
is implemented.

For example, the SSL/TLS protocol mandates that messages be signed using a message digest
algorithm. The choice of digest algorithm, however, is determined by the particular cipher suite being
used for the connection. Typically, an application can choose either the MD5 or the SHA digest
algorithm.

The cipher suites available for SSL/TLS security in Apache CXF depend on the particular JSSE provider
that is specified on the endpoint.

JCE/JSSE and security providers

The Java Cryptography Extension (JCE) and the Java Secure Socket Extension (JSSE) constitute a
pluggable framework that allows you to replace the Java security implementation with arbitrary third-
party toolkits, known as security providers.

SunJSSE provider

In practice, the security features of Apache CXF have been tested only with SUN’s JSSE provider, which
is named SunJSSE.

Hence, the SSL/TLS implementation and the list of available cipher suites in Apache CXF are effectively
determined by what is available from SUN’s JSSE provider.

Cipher suites supported by SunJSSE

The following cipher suites are supported by SUN’s JSSE provider in the J2SE 1.5.0 Java development
kit (see also Appendix A of SUN’s JSSE Reference Guide):

Standard ciphers:

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5

CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES

35

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA

Null encryption, integrity-only ciphers:

Anonymous Diffie-Hellman ciphers (no authentication):

JSSE reference guide

For more information about SUN’s JSSE framework, please consult the JSSE Reference Guide at the
following location:

http://download.oracle.com/javase/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

4.2. CIPHER SUITE FILTERS

Overview

In a typical application, you usually want to restrict the list of available cipher suites to a subset of the
ciphers supported by the JSSE provider.

SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
TLS_DHE_DSS_WITH_AES_128_CBC_SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
TLS_KRB5_EXPORT_WITH_RC4_40_MD5
TLS_KRB5_EXPORT_WITH_RC4_40_SHA
TLS_KRB5_WITH_3DES_EDE_CBC_MD5
TLS_KRB5_WITH_3DES_EDE_CBC_SHA
TLS_KRB5_WITH_DES_CBC_MD5
TLS_KRB5_WITH_DES_CBC_SHA
TLS_KRB5_WITH_RC4_128_MD5
TLS_KRB5_WITH_RC4_128_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA

SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_RC4_128_MD5
TLS_DH_anon_WITH_AES_128_CBC_SHA
TLS_DH_anon_WITH_AES_256_CBC_SHA

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

36

http://download.oracle.com/javase/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

CAUTION

Generally, you should use the sec:cipherSuitesFilter element, instead of the
sec:cipherSuites element to select the cipher suites you want to use.

The sec:cipherSuites element is not recommended for general use, because it has rather non-
intuitive semantics: you can use it to require that the loaded security provider supports at least the listed
cipher suites. But the security provider that is loaded might support many more cipher suites than the
ones that are specified. Hence, when you use the sec:cipherSuites element, it is not clear exactly
which cipher suites are supported at run time.

Namespaces

Table 4.1, “Namespaces Used for Configuring Cipher Suite Filters” shows the XML namespaces that are
referenced in this section:

Table 4.1. Namespaces Used for Configuring Cipher Suite Filters

Prefix Namespace URI

http http://cxf.apache.org/transports/http/configuration

httpj http://cxf.apache.org/transports/http-
jetty/configuration

sec http://cxf.apache.org/configuration/security

sec:cipherSuitesFilter element

You define a cipher suite filter using the sec:cipherSuitesFilter element, which can be a child of
either a http:tlsClientParameters element or a httpj:tlsServerParameters element. A
typical sec:cipherSuitesFilter element has the outline structure shown in Example 4.1, “Structure
of a sec:cipherSuitesFilter Element” .

Example 4.1. Structure of a sec:cipherSuitesFilter Element

Semantics

The following semantic rules apply to the sec:cipherSuitesFilter element:

<sec:cipherSuitesFilter>
 <sec:include>RegularExpression</sec:include>
 <sec:include>RegularExpression</sec:include>
 ...
 <sec:exclude>RegularExpression</sec:exclude>
 <sec:exclude>RegularExpression</sec:exclude>
 ...
</sec:cipherSuitesFilter>

CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES

37

1. If a sec:cipherSuitesFilter element does not appear in an endpoint’s configuration (that
is, it is absent from the relevant http:conduit or httpj:engine-factory element), the
following default filter is used:

2. If the sec:cipherSuitesFilter element does appear in an endpoint’s configuration, all
cipher suites are excluded by default.

3. To include cipher suites, add a sec:include child element to the
sec:cipherSuitesFilter element. The content of the sec:include element is a regular
expression that matches one or more cipher suite names (for example, see the cipher suite
names in the section called “Cipher suites supported by SunJSSE”).

4. To refine the selected set of cipher suites further, you can add a sec:exclude element to the
sec:cipherSuitesFilter element. The content of the sec:exclude element is a regular
expression that matches zero or more cipher suite names from the currently included set.

NOTE

Sometimes it makes sense to explicitly exclude cipher suites that are currently not
included, in order to future-proof against accidental inclusion of undesired cipher
suites.

Regular expression matching

The grammar for the regular expressions that appear in the sec:include and sec:exclude elements
is defined by the Java regular expression utility, java.util.regex.Pattern. For a detailed
description of the grammar, please consult the Java reference guide,
http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html.

Client conduit example

The following XML configuration shows an example of a client that applies a cipher suite filter to the
remote endpoint, {WSDLPortNamespace}PortName. Whenever the client attempts to open an SSL/TLS
connection to this endpoint, it restricts the available cipher suites to the set selected by the
sec:cipherSuitesFilter element.

<sec:cipherSuitesFilter>
 <sec:include>.*_EXPORT_.*</sec:include>
 <sec:include>.*_EXPORT1024.*</sec:include>
 <sec:include>.*_DES_.*</sec:include>
 <sec:include>.*_WITH_NULL_.*</sec:include>
</sec:cipherSuitesFilter>

<beans ... >
 <http:conduit name="{WSDLPortNamespace}PortName.http-conduit">
 <http:tlsClientParameters>
 ...
 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>
 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>
 </http:tlsClientParameters>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

38

http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html

4.3. SSL/TLS PROTOCOL VERSION

Overview

The versions of the SSL/TLS protocol that are supported by Apache CXF depend on the particular JSSE
provider configured. By default, the JSSE provider is configured to be SUN’s JSSE provider
implementation.

WARNING

If you enable SSL/TLS security, you must ensure that you explicitly disable the
SSLv3 protocol, in order to safeguard against the Poodle vulnerability (CVE-2014-
3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and JBoss A-MQ
6.x.

SSL/TLS protocol versions supported by SunJSSE

Table 4.2, “SSL/TLS Protocols Supported by SUN’s JSSE Provider” shows the SSL/TLS protocol
versions supported by SUN’s JSSE provider.

Table 4.2. SSL/TLS Protocols Supported by SUN’s JSSE Provider

Protocol Description

SSLv2Hello Do not use! (POODLE security vulnerability)

SSLv3 Do not use! (POODLE security vulnerability)

TLSv1 Supports TLS version 1

TLSv1.1 Supports TLS version 1.1 (JDK 7 or later)

TLSv1.2 Supports TLS version 1.2 (JDK 7 or later)

Excluding specific SSL/TLS protocol versions

By default, all of the SSL/TLS protocols provided by the JSSE provider are available to the CXF
endpoints (except for the SSLv2Hello and SSLv3 protocols, which have been specifically excluded by
the CXF runtime since JBoss Fuse version 6.2.0, because of the Poodle vulnerability (CVE-2014-3566)).

To exclude specific SSL/TLS protocols, use the sec:excludeProtocols element in the endpoint
configuration. You can configure the sec:excludeProtocols element as a child of the

 </http:conduit>

 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES

39

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613
https://access.redhat.com/articles/1232123

http:tlsClientParameters element (client side) or as a child of the
httpj:tlsServerParameters element (server side).

Client side SSL/TLS protocol version

To exclude all protocols except for TLS version 1.2 on the client side, configure the
sec:excludeProtocols element as follows (assuming you are using JDK 7 or later):

IMPORTANT

It is recommended that you always exclude the SSLv2Hello and SSLv3 protocols, to
protect against the Poodle vulnerability (CVE-2014-3566).

Server side SSL/TLS protocol version

To exclude all protocols except for TLS version 1.2 on the server side, configure the
sec:excludeProtocols element as follows (assuming you are using JDK 7 or later):

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
 ...
 <http:conduit name="{Namespace}PortName.http-conduit">
 ...
 <http:tlsClientParameters>
 ...
 <sec:excludeProtocols>
 <sec:excludeProtocol>SSLv2Hello</sec:excludeProtocol>
 <sec:excludeProtocol>SSLv3</sec:excludeProtocol>
 <sec:excludeProtocol>TLSv1</sec:excludeProtocol>
 <sec:excludeProtocol>TLSv1.1</sec:excludeProtocol>
 </sec:excludeProtocols>
 </http:tlsClientParameters>
 </http:conduit>
 ...
</beans>

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
 ...
 <httpj:engine-factory bus="cxf">
 <httpj:engine port="9001">
 ...
 <httpj:tlsServerParameters>
 ...
 <sec:excludeProtocols>
 <sec:excludeProtocol>SSLv2Hello</sec:excludeProtocol>
 <sec:excludeProtocol>SSLv3</sec:excludeProtocol>
 <sec:excludeProtocol>TLSv1</sec:excludeProtocol>
 <sec:excludeProtocol>TLSv1.1</sec:excludeProtocol>
 </sec:excludeProtocols>
 </httpj:tlsClientParameters>
 </httpj:engine>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

40

https://access.redhat.com/articles/1232123

IMPORTANT

It is recommended that you always exclude the SSLv2Hello and SSLv3 protocols, to
protect against the Poodle vulnerability (CVE-2014-3566).

secureSocketProtocol attribute

Both the http:tlsClientParameters element and the httpj:tlsServerParameters element
support the secureSocketProtocol attribute, which enables you to specify a particular protocol.

The semantics of this attribute are confusing, however: this attribute forces CXF to pick an SSL provider
that supports the specified protocol, but it does not restrict the provider to use only the specified protocol.
Hence, the endpoint could end up using a protocol that is different from the one specified. For this
reason, we recommend that you do not use the secureSocketProtocol attribute in your code.

 </httpj:engine-factory>
 ...
</beans>

CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES

41

https://access.redhat.com/articles/1232123

CHAPTER 5. THE WS-POLICY FRAMEWORK

Abstract

This chapter provides an introduction to the basic concepts of the WS-Policy framework, defining policy
subjects and policy assertions, and explaining how policy assertions can be combined to make policy
expressions.

5.1. INTRODUCTION TO WS-POLICY

Overview

The WS-Policy specification provides a general framework for applying policies that modify the semantics
of connections and communications at runtime in a Web services application. Apache CXF security uses
the WS-Policy framework to configure message protection and authentication requirements.

Policies and policy references

The simplest way to specify a policy is to embed it directly where you want to apply it. For example, to
associate a policy with a specific port in the WSDL contract, you can specify it as follows:

An alternative way to specify a policy is to insert a policy reference element, wsp:PolicyReference, at
the point where you want to apply the policy and then insert the policy element, wsp:Policy, at some
other point in the XML file. For example, to associate a policy with a specific port using a policy
reference, you could use a configuration like the following:

<wsdl:definitions targetNamespace="http://tempuri.org/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" ... >
 ...
 <wsdl:service name="PingService10">
 <wsdl:port name="UserNameOverTransport_IPingService"
binding="BindingName">
 <wsp:Policy>
 <!-- Policy expression comes here! -->
 </wsp:Policy>
 <soap:address location="SOAPAddress"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

<wsdl:definitions targetNamespace="http://tempuri.org/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" ... >
 ...
 <wsdl:service name="PingService10">

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

42

http://www.w3.org/TR/ws-policy/

Where the policy reference, wsp:PolicyReference, locates the referenced policy using the ID,
PolicyID (note the addition of the # prefix character in the URI attribute). The policy itself, wsp:Policy,
must be identified by adding the attribute, wsu:Id="PolicyID".

Policy subjects

The entities with which policies are associated are called policy subjects. For example, you can
associate a policy with an endpoint, in which case the endpoint is the policy subject. It is possible to
associate multiple policies with any given policy subject. The WS-Policy framework supports the
following kinds of policy subject:

the section called “Service policy subject”.

the section called “Endpoint policy subject”.

the section called “Operation policy subject”.

the section called “Message policy subject”.

Service policy subject

To associate a policy with a service, insert either a <wsp:Policy> element or a
<wsp:PolicyReference> element as a sub-element of the following WSDL 1.1 element:

wsdl:service—apply the policy to all of the ports (endpoints) offered by this service.

Endpoint policy subject

To associate a policy with an endpoint, insert either a <wsp:Policy> element or a
<wsp:PolicyReference> element as a sub-element of any of the following WSDL 1.1 elements:

wsdl:portType—apply the policy to all of the ports (endpoints) that use this port type.

wsdl:binding—apply the policy to all of the ports that use this binding.

wsdl:port—apply the policy to this endpoint only.

For example, you can associate a policy with an endpoint binding as follows (using a policy reference):

 <wsdl:port name="UserNameOverTransport_IPingService"
binding="BindingName">
 <wsp:PolicyReference URI="#PolicyID"/>
 <soap:address location="SOAPAddress"/>
 </wsdl:port>
 </wsdl:service>
 ...
 <wsp:Policy wsu:Id="PolicyID">
 <!-- Policy expression comes here ... -->
 </wsp:Policy>
</wsdl:definitions>

<wsdl:definitions targetNamespace="http://tempuri.org/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"

CHAPTER 5. THE WS-POLICY FRAMEWORK

43

Operation policy subject

To associate a policy with an operation, insert either a <wsp:Policy> element or a
<wsp:PolicyReference> element as a sub-element of any of the following WSDL 1.1 elements:

wsdl:portType/wsdl:operation

wsdl:binding/wsdl:operation

For example, you can associate a policy with an operation in a binding as follows (using a policy
reference):

Message policy subject

To associate a policy with a message, insert either a <wsp:Policy> element or a
<wsp:PolicyReference> element as a sub-element of any of the following WSDL 1.1 elements:

wsdl:message

wsdl:portType/wsdl:operation/wsdl:input

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" ... >
 ...
 <wsdl:binding name="EndpointBinding" type="i0:IPingService">
 <wsp:PolicyReference URI="#PolicyID"/>
 ...
 </wsdl:binding>
 ...
 <wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>
 ...
</wsdl:definitions>

<wsdl:definitions targetNamespace="http://tempuri.org/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" ... >
 ...
 <wsdl:binding name="EndpointBinding" type="i0:IPingService">
 <wsdl:operation name="Ping">
 <wsp:PolicyReference URI="#PolicyID"/>
 <soap:operation soapAction="http://xmlsoap.org/Ping"
style="document"/>
 <wsdl:input name="PingRequest"> ... </wsdl:input>
 <wsdl:output name="PingResponse"> ... </wsdl:output>
 </wsdl:operation>
 ...
 </wsdl:binding>
 ...
 <wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>
 ...
</wsdl:definitions>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

44

wsdl:portType/wsdl:operation/wsdl:output

wsdl:portType/wsdl:operation/wsdl:fault

wsdl:binding/wsdl:operation/wsdl:input

wsdl:binding/wsdl:operation/wsdl:output

wsdl:binding/wsdl:operation/wsdl:fault

For example, you can associate a policy with a message in a binding as follows (using a policy
reference):

5.2. POLICY EXPRESSIONS

Overview

In general, a wsp:Policy element is composed of multiple different policy settings (where individual
policy settings are specified as policy assertions). Hence, the policy defined by a wsp:Policy element
is really a composite object. The content of the wsp:Policy element is called a policy expression,
where the policy expression consists of various logical combinations of the basic policy assertions. By
tailoring the syntax of the policy expression, you can determine what combinations of policy assertions
must be satisfied at runtime in order to satisfy the policy overall.

This section describes the syntax and semantics of policy expressions in detail.

Policy assertions

Policy assertions are the basic building blocks that can be combined in various ways to produce a policy.
A policy assertion has two key characteristics: it adds a basic unit of functionality to the policy subject

<wsdl:definitions targetNamespace="http://tempuri.org/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" ... >
 ...
 <wsdl:binding name="EndpointBinding" type="i0:IPingService">
 <wsdl:operation name="Ping">
 <soap:operation soapAction="http://xmlsoap.org/Ping"
style="document"/>
 <wsdl:input name="PingRequest">
 <wsp:PolicyReference URI="#PolicyID"/>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="PingResponse"> ... </wsdl:output>
 </wsdl:operation>
 ...
 </wsdl:binding>
 ...
 <wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>
 ...
</wsdl:definitions>

CHAPTER 5. THE WS-POLICY FRAMEWORK

45

and it represents a boolean assertion to be evaluated at runtime. For example, consider the following
policy assertion that requires a WS-Security username token to be propagated with request messages:

When associated with an endpoint policy subject, this policy assertion has the following effects:

The Web service endpoint marshales/unmarshals the UsernameToken credentials.

At runtime, the policy assertion returns true, if UsernameToken credentials are provided (on the
client side) or received in the incoming message (on the server side); otherwise the policy
assertion returns false.

Note that if a policy assertion returns false, this does not necessarily result in an error. The net effect of
a particular policy assertion depends on how it is inserted into a policy and on how it is combined with
other policy assertions.

Policy alternatives

A policy is built up using policy assertions, which can additionally be qualified using the wsp:Optional
attribute, and various nested combinations of the wsp:All and wsp:ExactlyOne elements. The net
effect of composing these elements is to produce a range of acceptable policy alternatives. As long as
one of these acceptable policy alternatives is satisfied, the overall policy is also satisified (evaluates to
true).

wsp:All element

When a list of policy assertions is wrapped by the wsp:All element, all of the policy assertions in the list
must evaluate to true. For example, consider the following combination of authentication and
authorization policy assertions:

The preceding policy will be satisfied for a particular incoming request, if the following conditions both
hold:

<sp:SupportingTokens
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:UsernameToken/>
 </wsp:Policy>
</sp:SupportingTokens>

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameTokenPolicy">
 <wsp:All>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 </wsp:All>
</wsp:Policy>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

46

WS-Security UsernameToken credentials must be present; and

A SAML token must be present.

NOTE

The wsp:Policy element is semantically equivalent to wsp:All. Hence, if you removed
the wsp:All element from the preceding example, you would obtain a semantically
equivalent example

wsp:ExactlyOne element

When a list of policy assertions is wrapped by the wsp:ExactlyOne element, at least one of the policy
assertions in the list must evaluate to true. The runtime goes through the list, evaluating policy
assertions until it finds a policy assertion that returns true. At that point, the wsp:ExactlyOne
expression is satisfied (returns true) and any remaining policy assertions from the list will not be
evaluated. For example, consider the following combination of authentication policy assertions:

The preceding policy will be satisfied for a particular incoming request, if either of the following conditions
hold:

WS-Security UsernameToken credentials are present; or

A SAML token is present.

Note, in particular, that if both credential types are present, the policy would be satisfied after evaluating
one of the assertions, but no guarantees can be given as to which of the policy assertions actually gets
evaluated.

The empty policy

A special case is the empty policy, an example of which is shown in Example 5.1, “The Empty Policy”.

Example 5.1. The Empty Policy

<wsp:Policy wsu:Id="AuthenticateUsernamePasswordPolicy">
 <wsp:ExactlyOne>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy ... >
 <wsp:ExactlyOne>
 <wsp:All/>

CHAPTER 5. THE WS-POLICY FRAMEWORK

47

Where the empty policy alternative, <wsp:All/>, represents an alternative for which no policy
assertions need be satisfied. In other words, it always returns true. When <wsp:All/> is available as
an alternative, the overall policy can be satisified even when no policy assertions are true.

The null policy

A special case is the null policy, an example of which is shown in Example 5.2, “The Null Policy”.

Example 5.2. The Null Policy

Where the null policy alternative, <wsp:ExactlyOne/>, represents an alternative that is never satisfied.
In other words, it always returns false.

Normal form

In practice, by nesting the <wsp:All> and <wsp:ExactlyOne> elements, you can produce fairly
complex policy expressions, whose policy alternatives might be difficult to work out. To facilitate the
comparison of policy expressions, the WS-Policy specification defines a canonical or normal form for
policy expressions, such that you can read off the list of policy alternatives unambiguously. Every valid
policy expression can be reduced to the normal form.

In general, a normal form policy expression conforms to the syntax shown in Example 5.3, “Normal Form
Syntax”.

Example 5.3. Normal Form Syntax

Where each line of the form, <wsp:All>...</wsp:All>, represents a valid policy alternative. If one of
these policy alternatives is satisfied, the policy is satisfied overall.

 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy ... >
 <wsp:ExactlyOne/>
</wsp:Policy>

<wsp:Policy ... >
 <wsp:ExactlyOne>
 <wsp:All> <Assertion .../> ... <Assertion .../> </wsp:All>
 <wsp:All> <Assertion .../> ... <Assertion .../> </wsp:All>
 ...
 </wsp:ExactlyOne>
</wsp:Policy>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

48

CHAPTER 6. MESSAGE PROTECTION

Abstract

The following message protection mechanisms are described in this chapter: protection against
eavesdropping (by employing encryption algorithms) and protection against message tampering (by
employing message digest algorithms). The protection can be applied at various levels of granularity and
to different protocol layers. At the transport layer, you have the option of applying protection to the entire
contents of the message; while at the SOAP layer, you have the option of applying protection to various
parts of the message (bodies, headers, or attachments).

6.1. TRANSPORT LAYER MESSAGE PROTECTION

Overview

Transport layer message protection refers to the message protection (encryption and signing) that is
provided by the transport layer. For example, HTTPS provides encryption and message signing features
using SSL/TLS. In fact, WS-SecurityPolicy does not add much to the HTTPS feature set, because
HTTPS is already fully configurable using Spring XML configuration (see Chapter 3, Configuring
HTTPS). An advantage of specifying a transport binding policy for HTTPS, however, is that it enables
you to embed security requirements in the WSDL contract. Hence, any client that obtains a copy of the
WSDL contract can discover what the transport layer security requirements are for the endpoints in the
WSDL contract.

WARNING

If you enable SSL/TLS security in the transport layer, you must ensure that you
explicitly disable the SSLv3 protocol, in order to safeguard against the Poodle
vulnerability (CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss
Fuse 6.x and JBoss A-MQ 6.x.

Prerequisites

If you use WS-SecurityPolicy to configure the HTTPS transport, you must also configure HTTPS security
appropriately in the Spring configuration.

Example 6.1, “Client HTTPS Configuration in Spring” shows how to configure a client to use the HTTPS
transport protocol. The sec:keyManagers element specifies the client's own certificate, alice.pfx,
and the sec:trustManagers element specifies the trusted CA list. Note how the http:conduit
element's name attribute uses wildcards to match the endpoint address. For details of how to configure
HTTPS on the client side, see Chapter 3, Configuring HTTPS.

Example 6.1. Client HTTPS Configuration in Spring

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:sec="http://cxf.apache.org/configuration/security" ... >

CHAPTER 6. MESSAGE PROTECTION

49

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

Example 6.2, “Server HTTPS Configuration in Spring” shows how to configure a server to use the
HTTPS transport protocol. The sec:keyManagers element specifies the server's own certificate,
bob.pfx, and the sec:trustManagers element specifies the trusted CA list. For details of how to
configure HTTPS on the server side, see Chapter 3, Configuring HTTPS.

Example 6.2. Server HTTPS Configuration in Spring

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to protect
against the Poodle vulnerability (CVE-2014-3566)

Policy subject

A transport binding policy must be applied to an endpoint policy subject (see the section called “Endpoint

 <http:conduit name="https://.*/UserNameOverTransport.*">
 <http:tlsClientParameters disableCNCheck="true">
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="pkcs12" password="password"
resource="certs/alice.pfx"/>
 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore type="pkcs12" password="password"
resource="certs/bob.pfx"/>
 </sec:trustManagers>
 </http:tlsClientParameters>
 </http:conduit>
 ...
</beans>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
 xmlns:sec="http://cxf.apache.org/configuration/security" ... >

 <httpj:engine-factory id="tls-settings">
 <httpj:engine port="9001">
 <httpj:tlsServerParameters secureSocketProtocol="TLSv1">
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="pkcs12" password="password"
resource="certs/bob.pfx"/>
 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore type="pkcs12" password="password"
resource="certs/alice.pfx"/>
 </sec:trustManagers>
 </httpj:tlsServerParameters>
 </httpj:engine>
 </httpj:engine-factory>
 ...
</beans>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

50

https://access.redhat.com/articles/1232123

policy subject”). For example, given the transport binding policy with ID,
UserNameOverTransport_IPingService_policy, you could apply the policy to an endpoint
binding as follows:

Syntax

The TransportBinding element has the following syntax:

Sample policy

Example 6.3, “Example of a Transport Binding” shows an example of a transport binding that requires
confidentiality and integrity using the HTTPS transport (specified by the sp:HttpsToken element) and a
256-bit algorithm suite (specified by the sp:Basic256 element).

Example 6.3. Example of a Transport Binding

<wsdl:binding name="UserNameOverTransport_IPingService"
type="i0:IPingService">
 <wsp:PolicyReference URI="#UserNameOverTransport_IPingService_policy"/>
 ...
</wsdl:binding>

<sp:TransportBinding xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 <sp:TransportToken ... >
 <wsp:Policy> ... </wsp:Policy>
 ...
 </sp:TransportToken>
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>
 <sp:Layout ... > ... </sp:Layout> ?
 <sp:IncludeTimestamp ... /> ?
 ...
 </wsp:Policy>
 ...
</sp:TransportBinding>

<wsp:Policy wsu:Id="UserNameOverTransport_IPingService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:TransportBinding
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken RequireClientCertificate="false"/>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>

CHAPTER 6. MESSAGE PROTECTION

51

sp:TransportToken

This element has a two-fold effect: it requires a particular type of security token and it indicates how the
transport is secured. For example, by specifying the sp:HttpsToken, you indicate that the connection
is secured by the HTTPS protocol and the security tokens are X.509 certificates.

sp:AlgorithmSuite

This element specifies the suite of cryptographic algorithms to use for signing and encryption. For details
of the available algorithm suites, see Section 6.2.7, “Specifying the Algorithm Suite”.

sp:Layout

This element specifies whether to impose any conditions on the order in which security headers are
added to the SOAP message. The sp:Lax element specifies that no conditions are imposed on the
order of security headers. The alternatives to sp:Lax are sp:Strict, sp:LaxTimestampFirst, or
sp:LaxTimestampLast.

sp:IncludeTimestamp

If this element is included in the policy, the runtime adds a wsu:Timestamp element to the
wsse:Security header. By default, the timestamp is not included.

sp:MustSupportRefKeyIdentifier

This element specifies that the security runtime must be able to process Key Identifier token references,
as specified in the WS-Security 1.0 specification. A key identifier is a mechanism for identifying a key
token, which may be used inside signature or encryption elements. Apache CXF requires this feature.

sp:MustSupportRefIssuerSerial

This element specifies that the security runtime must be able to process Issuer and Serial Number token
references, as specified in the WS-Security 1.0 specification. An issuer and serial number is a
mechanism for identifying a key token, which may be used inside signature or encryption elements.

 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 </wsp:Policy>
 </sp:TransportBinding>
 ...
 <sp:Wss10
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

52

Apache CXF requires this feature.

6.2. SOAP MESSAGE PROTECTION

6.2.1. Introduction to SOAP Message Protection

Overview

By applying message protection at the SOAP encoding layer, instead of at the transport layer, you have
access to a more flexible range of protection policies. In particular, because the SOAP layer is aware of
the message structure, you can apply protection at a finer level of granularity—for example, by
encrypting and signing only those headers that actually require protection. This feature enables you to
support more sophisticated multi-tier architectures. For example, one plaintext header might be aimed at
an intermediate tier (located within a secure intranet), while an encrypted header might be aimed at the
final destination (reached through an insecure public network).

Security bindings

As described in the WS-SecurityPolicy specification, one of the following binding types can be used to
protect SOAP messages:

sp:TransportBinding—the transport binding refers to message protection provided at the
transport level (for example, through HTTPS). This binding can be used to secure any message
type, not just SOAP, and it is described in detail in the preceding section, Section 6.1, “Transport
Layer Message Protection”.

sp:AsymmetricBinding—the asymmetric binding refers to message protection provided at
the SOAP message encoding layer, where the protection features are implemented using
asymmetric cryptography (also known as public key cryptography).

sp:SymmetricBinding—the symmetric binding refers to message protection provided at the
SOAP message encoding layer, where the protection features are implemented using symmetric
cryptography. Examples of symmetric cryptography are the tokens provided by WS-
SecureConversation and Kerberos tokens.

Message protection

The following qualities of protection can be applied to part or all of a message:

Encryption.

Signing.

Signing+encryption (sign before encrypting).

Encryption+signing (encrypt before signing).

These qualities of protection can be arbitrarily combined in a single message. Thus, some parts of a
message can be just encrypted, while other parts of the message are just signed, and other parts of the
message can be both signed and encrypted. It is also possible to leave parts of the message
unprotected.

CHAPTER 6. MESSAGE PROTECTION

53

The most flexible options for applying message protection are available at the SOAP layer
(sp:AsymmetricBinding or sp:SymmetricBinding). The transport layer
(sp:TransportBinding) only gives you the option of applying protection to the whole message.

Specifying parts of the message to protect

Currently, Apache CXF enables you to sign or encrypt the following parts of a SOAP message:

Body—sign and/or encrypt the whole of the soap:BODY element in a SOAP message.

Header(s)—sign and/or encrypt one or more SOAP message headers. You can specify the
quality of protection for each header individually.

Attachments—sign and/or encrypt all of the attachments in a SOAP message.

The WS-SecurityPolicy specification also defines policies for applying protection to individual XML
elements, but this is currently not supported in Apache CXF.

Role of configuration

Not all of the details required for message protection are specified using policies. The policies are
primarily intended to provide a way of specifying the quality of protection required for a service.
Supporting details, such as security tokens, passwords, and so on, must be provided using a separate,
product-specific mechanism. In practice, this means that in Apache CXF, some supporting configuration
details must be provided in Spring XML configuration files. For details, see Section 6.2.6, “Providing
Encryption Keys and Signing Keys”.

6.2.2. Basic Signing and Encryption Scenario

Overview

The scenario described here is a client-server application, where an asymmetric binding policy is set up
to encrypt and sign the SOAP body of messages that pass back and forth between the client and the
server.

Example scenario

Figure 6.1, “Basic Signing and Encryption Scenario” shows an overview of the basic signing and
encryption scenario, which is specified by associating an asymmetric binding policy with an endpoint in
the WSDL contract.

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

54

Figure 6.1. Basic Signing and Encryption Scenario

Scenario steps

When the client in Figure 6.1, “Basic Signing and Encryption Scenario” invokes a synchronous operation
on the recipient's endpoint, the request and reply message are processed as follows:

1. As the outgoing request message passes through the WS-SecurityPolicy handler, the handler
processes the message in accordance with the policies specified in the client’s asymmetric
binding policy. In this example, the handler performs the following processing:

a. Encrypt the SOAP body of the message using Bob’s public key.

b. Sign the encrypted SOAP body using Alice’s private key.

2. As the incoming request message passes through the server's WS-SecurityPolicy handler, the
handler processes the message in accordance with the policies specified in the server’s
asymmetric binding policy. In this example, the handler performs the following processing:

a. Verify the signature using Alice’s public key.

b. Decrypt the SOAP body using Bob’s private key.

3. As the outgoing reply message passes back through the server's WS-SecurityPolicy handler, the
handler performs the following processing:

a. Encrypt the SOAP body of the message using Alice’s public key.

b. Sign the encrypted SOAP body using Bob’s private key.

4. As the incoming reply message passes back through the client's WS-SecurityPolicy handler, the
handler performs the following processing:

a. Verify the signature using Bob’s public key.

b. Decrypt the SOAP body using Alice’s private key.

6.2.3. Specifying an AsymmetricBinding Policy

CHAPTER 6. MESSAGE PROTECTION

55

Overview

The asymmetric binding policy implements SOAP message protection using asymmetric key algorithms
(public/private key combinations) and does so at the SOAP layer. The encryption and signing algorithms
used by the asymmetric binding are similar to the encryption and signing algorithms used by SSL/TLS. A
crucial difference, however, is that SOAP message protection enables you to select particular parts of a
message to protect (for example, individual headers, body, or attachments), whereas transport layer
security can operate only on the whole message.

Policy subject

An asymmetric binding policy must be applied to an endpoint policy subject (see the section called
“Endpoint policy subject”). For example, given the asymmetric binding policy with ID,
MutualCertificate10SignEncrypt_IPingService_policy, you could apply the policy to an
endpoint binding as follows:

Syntax

The AsymmetricBinding element has the following syntax:

<wsdl:binding name="MutualCertificate10SignEncrypt_IPingService"
type="i0:IPingService">
 <wsp:PolicyReference
URI="#MutualCertificate10SignEncrypt_IPingService_policy"/>
 ...
</wsdl:binding>

<sp:AsymmetricBinding xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 (
 <sp:InitiatorToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:InitiatorToken>
) | (
 <sp:InitiatorSignatureToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:InitiatorSignatureToken>
 <sp:InitiatorEncryptionToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:InitiatorEncryptionToken>
)
 (
 <sp:RecipientToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:RecipientToken>
) | (
 <sp:RecipientSignatureToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:RecipientSignatureToken>
 <sp:RecipientEncryptionToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:RecipientEncryptionToken>
)
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>
 <sp:Layout ... > ... </sp:Layout> ?

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

56

Sample policy

Example 6.4, “Example of an Asymmetric Binding” shows an example of an asymmetric binding that
supports message protection with signatures and encryption, where the signing and encryption is done
using pairs of public/private keys (that is, using asymmetric cryptography). This example does not
specify which parts of the message should be signed and encrypted, however. For details of how to do
that, see Section 6.2.5, “Specifying Parts of Message to Encrypt and Sign”.

Example 6.4. Example of an Asymmetric Binding

 <sp:IncludeTimestamp ... /> ?
 <sp:EncryptBeforeSigning ... /> ?
 <sp:EncryptSignature ... /> ?
 <sp:ProtectTokens ... /> ?
 <sp:OnlySignEntireHeadersAndBody ... /> ?
 ...
 </wsp:Policy>
 ...
</sp:AsymmetricBinding>

<wsp:Policy wsu:Id="MutualCertificate10SignEncrypt_IPingService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/In
cludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/In
cludeToken/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>

CHAPTER 6. MESSAGE PROTECTION

57

sp:InitiatorToken

The initiator token refers to the public/private key-pair owned by the initiator. This token is used as
follows:

The token's private key signs messages sent from initiator to recipient.

The token's public key verifies signatures received by the recipient.

The token's public key encrypts messages sent from recipient to initiator.

The token's private key decrypts messages received by the initiator.

Confusingly, this token is used both by the initiator and by the recipient. However, only the initiator has
access to the private key so, in this sense, the token can be said to belong to the initiator. In
Section 6.2.2, “Basic Signing and Encryption Scenario”, the initiator token is the certificate, Alice.

This element should contain a nested wsp:Policy element and sp:X509Token element as shown.
The sp:IncludeToken attribute is set to AlwaysToRecipient, which instructs the runtime to include
Alice's public key with every message sent to the recipient. This option is useful, in case the recipient
wants to use the initiator's certificate to perform authentication. The most deeply nested element,
WssX509V3Token10 is optional. It specifies what specification version the X.509 certificate should
conform to. The following alternatives (or none) can be specified here:

sp:WssX509V3Token10

This optional element is a policy assertion that indicates that an X509 Version 3 token should be
used.

sp:WssX509Pkcs7Token10

This optional element is a policy assertion that indicates that an X509 PKCS7 token should be used.

 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:EncryptSignature/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

58

sp:WssX509PkiPathV1Token10

This optional element is a policy assertion that indicates that an X509 PKI Path Version 1 token
should be used.

sp:WssX509V1Token11

This optional element is a policy assertion that indicates that an X509 Version 1 token should be
used.

sp:WssX509V3Token11

This optional element is a policy assertion that indicates that an X509 Version 3 token should be
used.

sp:WssX509Pkcs7Token11

This optional element is a policy assertion that indicates that an X509 PKCS7 token should be used.

sp:WssX509PkiPathV1Token11

This optional element is a policy assertion that indicates that an X509 PKI Path Version 1 token
should be used.

sp:RecipientToken

The recipient token refers to the public/private key-pair owned by the recipient. This token is used as
follows:

The token's public key encrypts messages sent from initiator to recipient.

The token's private key decrypts messages received by the recipient.

The token's private key signs messages sent from recipient to initiator.

The token's public key verifies signatures received by the initiator.

Confusingly, this token is used both by the recipient and by the initiator. However, only the recipient has
access to the private key so, in this sense, the token can be said to belong to the recipient. In
Section 6.2.2, “Basic Signing and Encryption Scenario”, the recipient token is the certificate, Bob.

This element should contain a nested wsp:Policy element and sp:X509Token element as shown.
The sp:IncludeToken attribute is set to Never, because there is no need to include Bob's public key
in the reply messages.

NOTE

In Apache CXF, there is never a need to send Bob's or Alice's token in a message,
because both Bob's certificate and Alice's certificate are provided at both ends of the
connection—see Section 6.2.6, “Providing Encryption Keys and Signing Keys”.

sp:AlgorithmSuite

This element specifies the suite of cryptographic algorithms to use for signing and encryption. For details
of the available algorithm suites, see Section 6.2.7, “Specifying the Algorithm Suite”.

CHAPTER 6. MESSAGE PROTECTION

59

sp:Layout

This element specifies whether to impose any conditions on the order in which security headers are
added to the SOAP message. The sp:Lax element specifies that no conditions are imposed on the
order of security headers. The alternatives to sp:Lax are sp:Strict, sp:LaxTimestampFirst, or
sp:LaxTimestampLast.

sp:IncludeTimestamp

If this element is included in the policy, the runtime adds a wsu:Timestamp element to the
wsse:Security header. By default, the timestamp is not included.

sp:EncryptBeforeSigning

If a message part is subject to both encryption and signing, it is necessary to specify the order in which
these operations are performed. The default order is to sign before encrypting. But if you include this
element in your asymmetric policy, the order is changed to encrypt before signing.

NOTE

Implicitly, this element also affects the order of the decryption and signature verification
operations. For example, if the sender of a message signs before encrypting, the receiver
of the message must decrypt before verifying the signature.

sp:EncryptSignature

This element specifies that the message signature must be encrypted (by the encryption token, specified
as described in Section 6.2.6, “Providing Encryption Keys and Signing Keys”). Default is false.

NOTE

The message signature is the signature obtained directly by signing various parts of the
message, such as message body, message headers, or individual elements (see
Section 6.2.5, “Specifying Parts of Message to Encrypt and Sign”). Sometimes the
message signature is referred to as the primary signature, because the WS-
SecurityPolicy specification also supports the concept of an endorsing supporting token,
which is used to sign the primary signature. Hence, if an
sp:EndorsingSupportingTokens element is applied to an endpoint, you can have a
chain of signatures: the primary signature, which signs the message itself, and the
secondary signature, which signs the primary signature.

For more details about the various kinds of endorsing supporting token, see the section
called “SupportingTokens assertions”.

sp:ProtectTokens

This element specifies that signatures must cover the token used to generate that signature. Default is
false.

sp:OnlySignEntireHeadersAndBody

This element specifies that signatures can be applied only to an entire body or to entire headers, not to
sub-elements of the body or sub-elements of a header. When this option is enabled, you are effectively
prevented from using the sp:SignedElements assertion (see Section 6.2.5, “Specifying Parts of

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

60

Message to Encrypt and Sign”).

6.2.4. Specifying a SymmetricBinding Policy

Overview

The symmetric binding policy implements SOAP message protection using symmetric key algorithms
(shared secret key) and does so at the SOAP layer. Examples of a symmetric binding are the Kerberos
protocol and the WS-SecureConversation protocol.

NOTE

Currently, Apache CXF supports only WS-SecureConversation tokens in a symmetric
binding.

Policy subject

A symmetric binding policy must be applied to an endpoint policy subject (see the section called
“Endpoint policy subject”). For example, given the symmetric binding policy with ID,
SecureConversation_MutualCertificate10SignEncrypt_IPingService_policy, you could
apply the policy to an endpoint binding as follows:

Syntax

The SymmetricBinding element has the following syntax:

<wsdl:binding
name="SecureConversation_MutualCertificate10SignEncrypt_IPingService"
type="i0:IPingService">
 <wsp:PolicyReference
URI="#SecureConversation_MutualCertificate10SignEncrypt_IPingService_polic
y"/>
 ...
</wsdl:binding>

<sp:SymmetricBinding xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 (
 <sp:EncryptionToken ... >
 <wsp:Policy> ... </wsp:Policy>
 </sp:EncryptionToken>
 <sp:SignatureToken ... >
 <wsp:Policy> ... </wsp:Policy>
 </sp:SignatureToken>
) | (
 <sp:ProtectionToken ... >
 <wsp:Policy> ... </wsp:Policy>
 </sp:ProtectionToken>
)
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>
 <sp:Layout ... > ... </sp:Layout> ?
 <sp:IncludeTimestamp ... /> ?
 <sp:EncryptBeforeSigning ... /> ?

CHAPTER 6. MESSAGE PROTECTION

61

Sample policy

Example 6.5, “Example of a Symmetric Binding” shows an example of a symmetric binding that supports
message protection with signatures and encryption, where the signing and encryption is done using a
single symmetric key (that is, using symmetric cryptography). This example does not specify which parts
of the message should be signed and encrypted, however. For details of how to do that, see
Section 6.2.5, “Specifying Parts of Message to Encrypt and Sign”.

Example 6.5. Example of a Symmetric Binding

 <sp:EncryptSignature ... /> ?
 <sp:ProtectTokens ... /> ?
 <sp:OnlySignEntireHeadersAndBody ... /> ?
 ...
 </wsp:Policy>
 ...
</sp:SymmetricBinding>

<wsp:Policy
wsu:Id="SecureConversation_MutualCertificate10SignEncrypt_IPingService_p
olicy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:SecureConversationToken>
 ...
 </sp:SecureConversationToken>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:EncryptSignature/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss10
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

62

sp:ProtectionToken

This element specifies a symmetric token to use for both signing and encrypting messages. For
example, you could specify a WS-SecureConversation token here.

If you want to use distinct tokens for signing and encrypting operations, use the sp:SignatureToken
element and the sp:EncryptionToken element in place of this element.

sp:SignatureToken

This element specifies a symmetric token to use for signing messages. It should be used in combination
with the sp:EncryptionToken element.

sp:EncryptionToken

This element specifies a symmetric token to use for encrypting messages. It should be used in
combination with the sp:SignatureToken element.

sp:AlgorithmSuite

This element specifies the suite of cryptographic algorithms to use for signing and encryption. For details
of the available algorithm suites, see Section 6.2.7, “Specifying the Algorithm Suite”.

sp:Layout

This element specifies whether to impose any conditions on the order in which security headers are
added to the SOAP message. The sp:Lax element specifies that no conditions are imposed on the
order of security headers. The alternatives to sp:Lax are sp:Strict, sp:LaxTimestampFirst, or
sp:LaxTimestampLast.

sp:IncludeTimestamp

If this element is included in the policy, the runtime adds a wsu:Timestamp element to the
wsse:Security header. By default, the timestamp is not included.

sp:EncryptBeforeSigning

When a message part is subject to both encryption and signing, it is necessary to specify the order in
which these operations are performed. The default order is to sign before encrypting. But if you include
this element in your symmetric policy, the order is changed to encrypt before signing.

NOTE

Implicitly, this element also affects the order of the decryption and signature verification
operations. For example, if the sender of a message signs before encrypting, the receiver
of the message must decrypt before verifying the signature.

 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

CHAPTER 6. MESSAGE PROTECTION

63

sp:EncryptSignature

This element specifies that the message signature must be encrypted. Default is false.

sp:ProtectTokens

This element specifies that signatures must cover the token used to generate that signature. Default is
false.

sp:OnlySignEntireHeadersAndBody

This element specifies that signatures can be applied only to an entire body or to entire headers, not to
sub-elements of the body or sub-elements of a header. When this option is enabled, you are effectively
prevented from using the sp:SignedElements assertion (see Section 6.2.5, “Specifying Parts of
Message to Encrypt and Sign”).

6.2.5. Specifying Parts of Message to Encrypt and Sign

Overview

Encryption and signing provide two kinds of protection: confidentiality and integrity, respectively. The
WS-SecurityPolicy protection assertions are used to specify which parts of a message are subject to
protection. Details of the protection mechanisms, on the other hand, are specified separately in the
relevant binding policy (see xSection 6.2.3, “Specifying an AsymmetricBinding Policy”, Section 6.2.4,
“Specifying a SymmetricBinding Policy”, and Section 6.1, “Transport Layer Message Protection”).

The protection assertions described here are really intended to be used in combination with SOAP
security, because they apply to features of a SOAP message. Nonetheless, these policies can also be
satisfied by a transport binding (such as HTTPS), which applies protection to the entire message, rather
than to specific parts.

Policy subject

A protection assertion must be applied to a message policy subject (see the section called “Message
policy subject”). In other words, it must be placed inside a wsdl:input, wsdl:output, or
wsdl:fault element in a WSDL binding. For example, given the protection policy with ID,
MutualCertificate10SignEncrypt_IPingService_header_Input_policy, you could apply
the policy to a wsdl:input message part as follows:

<wsdl:operation name="header">
 <soap:operation soapAction="http://InteropBaseAddress/interop/header"
style="document"/>
 <wsdl:input name="headerRequest">
 <wsp:PolicyReference

URI="#MutualCertificate10SignEncrypt_IPingService_header_Input_policy"/>
 <soap:header message="i0:headerRequest_Headers" part="CustomHeader"
use="literal"/>
 <soap:body use="literal"/>
 </wsdl:input>
 ...
</wsdl:operation>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

64

Protection assertions

The following WS-SecurityPolicy protection assertions are currently supported by Apache CXF:

SignedParts

EncryptedParts

The following WS-SecurityPolicy protection assertions are not supported by Apache CXF:

SignedElements

EncryptedElements

ContentEncryptedElements

RequiredElements

RequiredParts

Syntax

The SignedParts element has the following syntax:

The EncryptedParts element has the following syntax:

Sample policy

Example 6.6, “Integrity and Encryption Policy Assertions” shows a policy that combines two protection
assertions: a signed parts assertion and an encrypted parts assertion. When this policy is applied to a
message part, the affected message bodies are signed and encrypted. In addition, the message header
named CustomHeader is signed.

Example 6.6. Integrity and Encryption Policy Assertions

<sp:SignedParts xmlns:sp="..." ... >
 <sp:Body />?
 <sp:Header Name="xs:NCName"? Namespace="xs:anyURI" ... />*
 <sp:Attachments />?
 ...
</sp:SignedParts>

<sp:EncryptedParts xmlns:sp="..." ... >
 <sp:Body/>?
 <sp:Header Name="xs:NCName"? Namespace="xs:anyURI" ... />*
 <sp:Attachments />?
 ...
</sp:EncryptedParts>

<wsp:Policy
wsu:Id="MutualCertificate10SignEncrypt_IPingService_header_Input_policy"
>
 <wsp:ExactlyOne>
 <wsp:All>

CHAPTER 6. MESSAGE PROTECTION

65

sp:Body

This element specifies that protection (encryption or signing) is applied to the body of the message. The
protection is applied to the entire message body: that is, the soap:Body element, its attributes, and its
content.

sp:Header

This element specifies that protection is applied to the SOAP header specified by the header's local
name, using the Name attribute, and namespace, using the Namespace attribute. The protection is
applied to the entire message header, including its attributes and its content.

sp:Attachments

This element specifies that all SOAP with Attachments (SwA) attachments are protected.

6.2.6. Providing Encryption Keys and Signing Keys

Overview

The standard WS-SecurityPolicy policies are designed to specify security requirements in some detail:
for example, security protocols, security algorithms, token types, authentication requirements, and so on,
are all described. But the standard policy assertions do not provide any mechanism for specifying
associated security data, such as keys and credentials. WS-SecurityPolicy expects that the requisite
security data is provided through a proprietary mechanism. In Apache CXF, the associated security data
is provided through Spring XML configuration.

Configuring encryption keys and signing keys

You can specify an application's encryption keys and signing keys by setting properties on a client's
request context or on an endpoint context (see the section called “Add encryption and signing properties
to Spring configuration”). The properties you can set are shown in Table 6.1, “Encryption and Signing
Properties”.

Table 6.1. Encryption and Signing Properties

 <sp:SignedParts
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:Body/>
 <sp:Header Name="CustomHeader"
Namespace="http://InteropBaseAddress/interop"/>
 </sp:SignedParts>
 <sp:EncryptedParts
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

66

Property Description

ws-security.signature.properties The WSS4J properties file/object that contains the
WSS4J properties for configuring the signature
keystore (which is also used for decrypting) and
Crypto objects.

ws-security.signature.username (Optional) The username or alias of the key in the
signature keystore to use. If not specified, the alias
set in the properties file is used. If that is also not set,
and the keystore only contains a single key, that key
will be used.

ws-security.encryption.properties The WSS4J properties file/object that contains the
WSS4J properties for configuring the encryption
keystore (which is also used for validating signatures)
and Crypto objects.

ws-security.encryption.username (Optional) The username or alias of the key in the
encryption keystore to use. If not specified, the alias
set in the properties file is used. If that is also not set,
and the keystore only contains a single key, that key
will be used.

TIP

The names of the preceding properties are not so well chosen, because they do not accurately reflect
what they are used for. The key specified by ws-security.signature.properties is actually used
both for signing and decrypting. The key specified by ws-security.encryption.properties is
actually used both for encrypting and for validating signatures.

Add encryption and signing properties to Spring configuration

Before you can use any WS-Policy policies in a Apache CXF application, you must add the policies
feature to the default CXF bus. Add the p:policies element to the CXF bus, as shown in the following
Spring configuration fragment:

The following example shows how to add signature and encryption properties to proxies of the specified

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:cxf="http://cxf.apache.org/core"
 xmlns:p="http://cxf.apache.org/policy" ... >

 <cxf:bus>
 <cxf:features>
 <p:policies/>
 <cxf:logging/>
 </cxf:features>
 </cxf:bus>
 ...
</beans>

CHAPTER 6. MESSAGE PROTECTION

67

service type (where the service name is specified by the name attribute of the jaxws:client element).
The properties are stored in WSS4J property files, where alice.properties contains the properties
for the signature key and bob.properties contains the properties for the encryption key.

In fact, although it is not obvious from the property names, each of these keys is used for two distinct
purposes on the client side:

alice.properties (that is, the key specified by ws-security.signature.properties)
is used on the client side as follows:

For signing outgoing messages.

For decrypting incoming messages.

bob.properties (that is, the key specified by ws-security.encryption.properties) is
used on the client side as follows:

For encrypting outgoing messages.

For verifying signatures on incoming messages.

If you find this confusing, see Section 6.2.2, “Basic Signing and Encryption Scenario” for a more detailed
explanation.

The following example shows how to add signature and encryption properties to a JAX-WS endpoint.
The properties file, bob.properties, contains the properties for the signature key and the properties
file, alice.properties, contains the properties for the encryption key (this is the inverse of the client
configuration).

<beans ... >
 <jaxws:client name="
{http://InteropBaseAddress/interop}MutualCertificate10SignEncrypt_IPingSer
vice"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="ws-security.signature.properties"
value="etc/alice.properties"/>
 <entry key="ws-security.encryption.properties"
value="etc/bob.properties"/>
 </jaxws:properties>
 </jaxws:client>
 ...
</beans>

<beans ... >
 <jaxws:endpoint
 name="
{http://InteropBaseAddress/interop}MutualCertificate10SignEncrypt_IPingSer
vice"
 id="MutualCertificate10SignEncrypt"
 address="http://localhost:9002/MutualCertificate10SignEncrypt"
 serviceName="interop:PingService10"
 endpointName="interop:MutualCertificate10SignEncrypt_IPingService"
 implementor="interop.server.MutualCertificate10SignEncrypt">

 <jaxws:properties>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

68

Each of these keys is used for two distinct purposes on the server side:

bob.properties (that is, the key specified by ws-security.signature.properties) is
used on the server side as follows:

For signing outgoing messages.

For decrypting incoming messages.

alice.properties (that is, the key specified by ws-security.encryption.properties)
is used on the server side as follows:

For encrypting outgoing messages.

For verifying signatures on incoming messages.

Define the WSS4J property files

Apache CXF uses WSS4J property files to load the public keys and the private keys needed for
encryption and signing. Table 6.2, “WSS4J Keystore Properties” describes the properties that you can
set in these files.

Table 6.2. WSS4J Keystore Properties

Property Description

org.apache.ws.security.
crypto.provider

Specifies an implementation of the Crypto interface
(see the section called “WSS4J Crypto interface”).
Normally, you specify the default WSS4J
implementation of Crypto,
org.apache.ws.security.components.cr
ypto.Merlin.

The rest of the properties in this table are specific to
the Merlin implementation of the Crypto interface.

org.apache.ws.security.
crypto.merlin.keystore.provider

(Optional) The name of the JSSE keystore provider
to use. The default keystore provider is Bouncy
Castle. You can switch provider to Sun's JSSE
keystore provider by setting this property to
SunJSSE.

org.apache.ws.security.
crypto.merlin.keystore.type

The Bouncy Castle keystore provider supports the
following types of keystore: JKS and PKCS12. In
addition, Bouncy Castle supports the following
proprietary keystore types: BKS and UBER.

 <entry key="ws-security.signature.properties"
value="etc/bob.properties"/>
 <entry key="ws-security.encryption.properties"
value="etc/alice.properties"/>
 </jaxws:properties>

 </jaxws:endpoint>
 ...
</beans>

CHAPTER 6. MESSAGE PROTECTION

69

http://www.bouncycastle.org/specifications.html

org.apache.ws.security.
crypto.merlin.keystore.file

Specifies the location of the keystore file to load,
where the location is specified relative to the
Classpath.

org.apache.ws.security.
crypto.merlin.keystore.alias

(Optional) If the keystore type is JKS (Java
keystore), you can select a specific key from the
keystore by specifying its alias. If the keystore
contains only one key, there is no need to specify an
alias.

org.apache.ws.security.
crypto.merlin.keystore.password

The password specified by this property is used for
two purposes: to unlock the keystore (keystore
password) and to decrypt a private key that is stored
in the keystore (private key password). Hence, the
keystore password must be same as the private key
password.

Property Description

For example, the etc/alice.properties file contains property settings to load the PKCS#12 file,
certs/alice.pfx, as follows:

The etc/bob.properties file contains property settings to load the PKCS#12 file, certs/bob.pfx,
as follows:

Programming encryption keys and signing keys

An alternative approach to loading encryption keys and signing keys is to use the properties shown in
Table 6.3, “Properties for Specifying Crypto Objects” to specify Crypto objects that load the relevant
keys. This requires you to provide your own implementation of the WSS4J Crypto interface,
org.apache.ws.security.components.crypto.Crypto.

Table 6.3. Properties for Specifying Crypto Objects

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.c
rypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=PKCS12
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.keystore.file=certs/alice.pfx

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.c
rypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.password=password

for some reason, bouncycastle has issues with bob.pfx
org.apache.ws.security.crypto.merlin.keystore.provider=SunJSSE
org.apache.ws.security.crypto.merlin.keystore.type=PKCS12
org.apache.ws.security.crypto.merlin.keystore.file=certs/bob.pfx

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

70

Property Description

ws-security.signature.crypto Specifies an instance of a Crypto object that is
responsible for loading the keys for signing and
decrypting messages.

ws-security.encryption.crypto Specifies an instance of a Crypto object that is
responsible for loading the keys for encrypting
messages and verifying signatures.

WSS4J Crypto interface

Example 6.7, “WSS4J Crypto Interface” shows the definition of the Crypto interface that you can
implement, if you want to provide encryption keys and signing keys by programming. For more
information, see the WSS4J home page.

Example 6.7. WSS4J Crypto Interface

// Java
package org.apache.ws.security.components.crypto;

import org.apache.ws.security.WSSecurityException;

import java.io.InputStream;
import java.math.BigInteger;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.cert.Certificate;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;

public interface Crypto {
 X509Certificate loadCertificate(InputStream in)
 throws WSSecurityException;

 X509Certificate[] getX509Certificates(byte[] data, boolean reverse)
 throws WSSecurityException;

 byte[] getCertificateData(boolean reverse, X509Certificate[] certs)
 throws WSSecurityException;

 public PrivateKey getPrivateKey(String alias, String password)
 throws Exception;

 public X509Certificate[] getCertificates(String alias)
 throws WSSecurityException;

 public String getAliasForX509Cert(Certificate cert)
 throws WSSecurityException;

 public String getAliasForX509Cert(String issuer)
 throws WSSecurityException;

CHAPTER 6. MESSAGE PROTECTION

71

http://ws.apache.org/wss4j/

6.2.7. Specifying the Algorithm Suite

Overview

An algorithm suite is a coherent collection of cryptographic algorithms for performing operations such as
signing, encryption, generating message digests, and so on.

For reference purposes, this section describes the algorithm suites defined by the WS-SecurityPolicy
specification. Whether or not a particular algorithm suite is available, however, depends on the
underlying security provider. Apache CXF security is based on the pluggable Java Cryptography
Extension (JCE) and Java Secure Socket Extension (JSSE) layers. By default, Apache CXF is
configured with Sun's JSSE provider, which supports the cipher suites described in Appendix A of Sun's
JSSE Reference Guide.

Syntax

The AlgorithmSuite element has the following syntax:

 public String getAliasForX509Cert(String issuer, BigInteger
serialNumber)
 throws WSSecurityException;

 public String getAliasForX509Cert(byte[] skiBytes)
 throws WSSecurityException;

 public String getDefaultX509Alias();

 public byte[] getSKIBytesFromCert(X509Certificate cert)
 throws WSSecurityException;

 public String getAliasForX509CertThumb(byte[] thumb)
 throws WSSecurityException;

 public KeyStore getKeyStore();

 public CertificateFactory getCertificateFactory()
 throws WSSecurityException;

 public boolean validateCertPath(X509Certificate[] certs)
 throws WSSecurityException;

 public String[] getAliasesForDN(String subjectDN)
 throws WSSecurityException;
}

<sp:AlgorithmSuite xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 (<sp:Basic256 ... /> |
 <sp:Basic192 ... /> |
 <sp:Basic128 ... /> |
 <sp:TripleDes ... /> |
 <sp:Basic256Rsa15 ... /> |
 <sp:Basic192Rsa15 ... /> |

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

72

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA

The algorithm suite assertion supports a large number of alternative algorithms (for example,
Basic256). For a detailed description of the algorithm suite alternatives, see Table 6.4, “Algorithm
Suites”.

Algorithm suites

Table 6.4, “Algorithm Suites” provides a summary of the algorithm suites supported by WS-
SecurityPolicy. The column headings refer to different types of cryptographic algorithm, as follows: [Dig]
is the digest algorithm; [Enc] is the encryption algorithm; [Sym KW] is the symmetric key-wrap algorithm;
[Asym KW] is the asymmetric key-wrap algorithm; [Enc KD] is the encryption key derivation algorithm;
[Sig KD] is the signature key derivation algorithm.

Table 6.4. Algorithm Suites

Algorithm
Suite

[Dig] [Enc] [Sym KW] [Asym KW] [Enc KD] [Sig KD]

Basic256 Sha1 Aes256 KwAes256 KwRsaOae
p

PSha1L25
6

PSha1L19
2

Basic192 Sha1 Aes192 KwAes192 KwRsaOae
p

PSha1L19
2

PSha1L19
2

Basic128 Sha1 Aes128 KwAes128 KwRsaOae
p

PSha1L12
8

PSha1L12
8

TripleDe
s

Sha1 TripleDe
s

KwTriple
Des

KwRsaOae
p

PSha1L19
2

PSha1L19
2

 <sp:Basic128Rsa15 ... /> |
 <sp:TripleDesRsa15 ... /> |
 <sp:Basic256Sha256 ... /> |
 <sp:Basic192Sha256 ... /> |
 <sp:Basic128Sha256 ... /> |
 <sp:TripleDesSha256 ... /> |
 <sp:Basic256Sha256Rsa15 ... /> |
 <sp:Basic192Sha256Rsa15 ... /> |
 <sp:Basic128Sha256Rsa15 ... /> |
 <sp:TripleDesSha256Rsa15 ... /> |
 ...)
 <sp:InclusiveC14N ... /> ?
 <sp:SOAPNormalization10 ... /> ?
 <sp:STRTransform10 ... /> ?
 (<sp:XPath10 ... /> |
 <sp:XPathFilter20 ... /> |
 <sp:AbsXPath ... /> |
 ...)?
 ...
 </wsp:Policy>
 ...
</sp:AlgorithmSuite>

CHAPTER 6. MESSAGE PROTECTION

73

Basic256
Rsa15

Sha1 Aes256 KwAes256 KwRsa15 PSha1L25
6

PSha1L19
2

Basic192
Rsa15

Sha1 Aes192 KwAes192 KwRsa15 PSha1L19
2

PSha1L19
2

Basic128
Rsa15

Sha1 Aes128 KwAes128 KwRsa15 PSha1L12
8

PSha1L12
8

TripleDe
sRsa15

Sha1 TripleDe
s

KwTriple
Des

KwRsa15 PSha1L19
2

PSha1L19
2

Basic256
Sha256

Sha256 Aes256 KwAes256 KwRsaOae
p

PSha1L25
6

PSha1L19
2

Basic192
Sha256

Sha256 Aes192 KwAes192 KwRsaOae
p

PSha1L19
2

PSha1L19
2

Basic128
Sha256

Sha256 Aes128 KwAes128 KwRsaOae
p

PSha1L12
8

PSha1L12
8

TripleDe
sSha256

Sha256 TripleDe
s

KwTriple
Des

KwRsaOae
p

PSha1L19
2

PSha1L19
2

Basic256
Sha256Rs
a15

Sha256 Aes256 KwAes256 KwRsa15 PSha1L25
6

PSha1L19
2

Basic192
Sha256Rs
a15

Sha256 Aes192 KwAes192 KwRsa15 PSha1L19
2

PSha1L19
2

Basic128
Sha256Rs
a15

Sha256 Aes128 KwAes128 KwRsa15 PSha1L12
8

PSha1L12
8

TripleDe
sSha256R
sa15

Sha256 TripleDe
s

KwTriple
Des

KwRsa15 PSha1L19
2

PSha1L19
2

Algorithm
Suite

[Dig] [Enc] [Sym KW] [Asym KW] [Enc KD] [Sig KD]

Types of cryptographic algorithm

The following types of cryptographic algorithm are supported by WS-SecurityPolicy:

the section called “Symmetric key signature”

the section called “Asymmetric key signature”

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

74

the section called “Digest”

the section called “Encryption”

the section called “Symmetric key wrap”

the section called “Asymmetric key wrap”

the section called “Computed key”

the section called “Encryption key derivation”

the section called “Signature key derivation”

Symmetric key signature

The symmetric key signature property, [Sym Sig], specifies the algorithm for generating a signature using
a symmetric key. WS-SecurityPolicy specifies that the HmacSha1 algorithm is always used.

The HmacSha1 algorithm is identified by the following URI:

Asymmetric key signature

The asymmetric key signature property, [Asym Sig], specifies the algorithm for generating a signature
using an asymmetric key. WS-SecurityPolicy specifies that the RsaSha1 algorithm is always used.

The RsaSha1 algorithm is identified by the following URI:

Digest

The digest property, [Dig], specifies the algorithm used for generating a message digest value. WS-
SecurityPolicy supports two alternative digest algorithms: Sha1 and Sha256.

The Sha1 algorithm is identified by the following URI:

The Sha256 algorithm is identified by the following URI:

Encryption

The encryption property, [Enc], specifies the algorithm used for encrypting data. WS-SecurityPolicy
supports the following encryption algorithms: Aes256, Aes192, Aes128, TripleDes.

The Aes256 algorithm is identified by the following URI:

http://www.w3.org/2000/09/xmldsig#hmac-sha1

http://www.w3.org/2000/09/xmldsig#rsa-sha1

http://www.w3.org/2000/09/xmldsig#sha1

http://www.w3.org/2001/04/xmlenc#sha256

http://www.w3.org/2001/04/xmlenc#aes256-cbc

CHAPTER 6. MESSAGE PROTECTION

75

The Aes192 algorithm is identified by the following URI:

The Aes128 algorithm is identified by the following URI:

The TripleDes algorithm is identified by the following URI:

Symmetric key wrap

The symmetric key wrap property, [Sym KW], specifies the algorithm used for signing and encrypting
symmetric keys. WS-SecurityPolicy supports the following symmetric key wrap algorithms: KwAes256,
KwAes192, KwAes128, KwTripleDes.

The KwAes256 algorithm is identified by the following URI:

The KwAes192 algorithm is identified by the following URI:

The KwAes128 algorithm is identified by the following URI:

The KwTripleDes algorithm is identified by the following URI:

Asymmetric key wrap

The asymmetric key wrap property, [Asym KW], specifies the algorithm used for signing and encrypting
asymmetric keys. WS-SecurityPolicy supports the following asymmetric key wrap algorithms:
KwRsaOaep, KwRsa15.

The KwRsaOaep algorithm is identified by the following URI:

The KwRsa15 algorithm is identified by the following URI:

Computed key

http://www.w3.org/2001/04/xmlenc#aes192-cbc

http://www.w3.org/2001/04/xmlenc#aes128-cbc

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

http://www.w3.org/2001/04/xmlenc#kw-aes256

http://www.w3.org/2001/04/xmlenc#kw-aes192

http://www.w3.org/2001/04/xmlenc#kw-aes128

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

http://www.w3.org/2001/04/xmlenc#rsa-1_5

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

76

The computed key property, [Comp Key], specifies the algorithm used to compute a derived key. When
secure parties communicate with the aid of a shared secret key (for example, when using WS-
SecureConversation), it is recommended that a derived key is used instead of the original shared key, in
order to avoid exposing too much data for analysis by hostile third parties. WS-SecurityPolicy specifies
that the PSha1 algorithm is always used.

The PSha1 algorithm is identified by the following URI:

Encryption key derivation

The encryption key derivation property, [Enc KD], specifies the algorithm used to compute a derived
encryption key. WS-SecurityPolicy supports the following encryption key derivation algorithms:
PSha1L256, PSha1L192, PSha1L128.

The PSha1 algorithm is identified by the following URI (the same algorithm is used for PSha1L256,
PSha1L192, and PSha1L128; just the key lengths differ):

Signature key derivation

The signature key derivation property, [Sig KD], specifies the algorithm used to compute a derived
signature key. WS-SecurityPolicy supports the following signature key derivation algorithms:
PSha1L192, PSha1L128.

Key length properties

Table 6.5, “Key Length Properties” shows the minimum and maximum key lengths supported in WS-
SecurityPolicy.

Table 6.5. Key Length Properties

Property Key Length

Minimum symmetric key length [Min SKL] 128, 192, 256

Maximum symmetric key length [Max SKL] 256

Minimum asymmetric key length [Min AKL] 1024

Maximum asymmetric key length [Max AKL] 4096

The value of the minimum symmetric key length, [Min SKL], depends on which algorithm suite is
selected.

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/dk/p_sha1

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/dk/p_sha1

CHAPTER 6. MESSAGE PROTECTION

77

CHAPTER 7. AUTHENTICATION

Abstract

This chapter describes how to use policies to configure authentication in a Apache CXF application.
Currently, the only credentials type supported in the SOAP layer is the WS-Security UsernameToken.

7.1. INTRODUCTION TO AUTHENTICATION

Overview

In Apache CXF, an application can be set up to use authentication through a combination of policy
assertions in the WSDL contract and configuration settings in Spring XML.

NOTE

Remember, you can also use the HTTPS protocol as the basis for authentication and, in
some cases, this might be easier to configure. See Section 3.1, “Authentication
Alternatives”.

Steps to set up authentication

In outline, you need to perform the following steps to set up an application to use authentication:

1. Add a supporting tokens policy to an endpoint in the WSDL contract. This has the effect of
requiring the endpoint to include a particular type of token (client credentials) in its request
messages.

2. On the client side, provide credentials to send by configuring the relevant endpoint in Spring
XML.

3. (Optional) On the client side, if you decide to provide passwords using a callback handler,
implement the callback handler in Java.

4. On the server side, associate a callback handler class with the endpoint in Spring XML. The
callback handler is then responsible for authenticating the credentials received from remote
clients.

7.2. SPECIFYING AN AUTHENTICATION POLICY

Overview

If you want an endpoint to support authentication, associate a supporting tokens policy assertion with the
relevant endpoint binding. There are several different kinds of supporting tokens policy assertions,
whose elements all have names of the form *SupportingTokens (for example, SupportingTokens,
SignedSupportingTokens, and so on). For a complete list, see the section called “SupportingTokens
assertions”.

Associating a supporting tokens assertion with an endpoint has the following effects:

Messages to or from the endpoint are required to include the specified token type (where the
token's direction is specified by the sp:IncludeToken attribute).

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

78

Depending on the particular type of supporting tokens element you use, the endpoint might be
required to sign and/or encrypt the token.

The supporting tokens assertion implies that the runtime will check that these requirements are satisified.
But the WS-SecurityPolicy policies do not define the mechanism for providing credentials to the runtime.
You must use Spring XML configuration to specify the credentials (see Section 7.3, “Providing Client
Credentials”).

Syntax

The *SupportingTokens elements (that is, all elements with the SupportingTokens suffix—see the
section called “SupportingTokens assertions”) have the following syntax:

Where SupportingTokensElement stands for one of the supporting token elements,
*SupportingTokens.Typically, if you simply want to include a token (or tokens) in the security header,
you would include one or more token assertions, [Token Assertion], in the policy. In particular, this
is all that is required for authentication.

If the token is of an appropriate type (for example, an X.509 certificate or a symmetric key), you could
theoretically also use it to sign or encrypt specific parts of the current message using the
sp:AlgorithmSuite, sp:SignedParts, sp:SignedElements, sp:EncryptedParts, and
sp:EncryptedElements elements. This functionality is currently not supported by Apache CXF,
however.

Sample policy

Example 7.1, “Example of a Supporting Tokens Policy” shows an example of a policy that requires a WS-
Security UsernameToken token (which contains username/password credentials) to be included in the
security header. In addition, because the token is specified inside an sp:SignedSupportingTokens
element, the policy requires that the token is signed. This example uses a transport binding, so it is the
underlying transport that is responsible for signing the message.

For example, if the underlying transport is HTTPS, the SSL/TLS protocol (configured with an appropriate
algorithm suite) is responsible for signing the entire message, including the security header that contains
the specified token. This is sufficient to satisfy the requirement that the supporting token is signed.

Example 7.1. Example of a Supporting Tokens Policy

<sp:SupportingTokensElement xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 [Token Assertion]+
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite> ?
 (
 <sp:SignedParts ... > ... </sp:SignedParts> |
 <sp:SignedElements ... > ... </sp:SignedElements> |
 <sp:EncryptedParts ... > ... </sp:EncryptedParts> |
 <sp:EncryptedElements ... > ... </sp:EncryptedElements> |
) *
 ...
 </wsp:Policy>
 ...
</sp:SupportingTokensElement>

<wsp:Policy wsu:Id="UserNameOverTransport_IPingService_policy">
 <wsp:ExactlyOne>

CHAPTER 7. AUTHENTICATION

79

Where the presence of the sp:WssUsernameToken10 sub-element indicates that the UsernameToken
header should conform to version 1.0 of the WS-Security UsernameToken specification.

Token types

In principle, you can specify any of the WS-SecurityPolicy token types in a supporting tokens assertion.
For SOAP-level authentication, however, only the sp:UsernameToken token type is relevant.

sp:UsernameToken

In the context of a supporting tokens assertion, this element specifies that a WS-Security
UsernameToken is to be included in the security SOAP header. Essentially, a WS-Security
UsernameToken is used to send username/password credentials in the WS-Security SOAP header. The
sp:UsernameToken element has the following syntax:

 <wsp:All>
 <sp:TransportBinding> ... </sp:TransportBinding>
 <sp:SignedSupportingTokens

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:UsernameToken

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/In
cludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<sp:UsernameToken sp:IncludeToken="xs:anyURI"? xmlns:sp="..." ... >
 (
 <sp:Issuer>wsa:EndpointReferenceType</sp:Issuer> |
 <sp:IssuerName>xs:anyURI</sp:IssuerName>
) ?
 <wst:Claims Dialect="..."> ... </wst:Claims> ?
 <wsp:Policy xmlns:wsp="...">
 (
 <sp:NoPassword ... /> |
 <sp:HashPassword ... />
) ?
 (
 <sp:RequireDerivedKeys /> |
 <sp:RequireImpliedDerivedKeys ... /> |
 <sp:RequireExplicitDerivedKeys ... />
) ?
 (

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

80

The sub-elements of sp:UsernameToken are all optional and are not needed for ordinary
authentication. Normally, the only part of this syntax that is relevant is the sp:IncludeToken attribute.

NOTE

Currently, in the sp:UsernameToken syntax, only the sp:WssUsernameToken10 sub-
element is supported in Apache CXF.

sp:IncludeToken attribute

The value of the sp:IncludeToken must match the WS-SecurityPolicy version from the enclosing
policy. The current version is 1.2, but legacy WSDL might use version 1.1. Valid values of the
sp:IncludeToken attribute are as follows:

Never

The token MUST NOT be included in any messages sent between the initiator and the recipient;
rather, an external reference to the token should be used. Valid URI values are:

1.2 http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/
IncludeToken/Never

1.1 http://schemas.xmlsoap.org/ws/2005
/07/securitypolicy/
IncludeToken/Never

Once

The token MUST be included in only one message sent from the initiator to the recipient. References
to the token MAY use an internal reference mechanism. Subsequent related messages sent between
the recipient and the initiator may refer to the token using an external reference mechanism. Valid URI
values are:

1.2 http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/
IncludeToken/Once

1.1 http://schemas.xmlsoap.org/ws/2005
/07/securitypolicy/
IncludeToken/Once

AlwaysToRecipient

 <sp:WssUsernameToken10 ... /> |
 <sp:WssUsernameToken11 ... />
) ?
 ...
 </wsp:Policy>
 ...
</sp:UsernameToken>

CHAPTER 7. AUTHENTICATION

81

The token MUST be included in all messages sent from initiator to the recipient. The token MUST
NOT be included in messages sent from the recipient to the initiator. Valid URI values are:

1.2 http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient

1.1 http://schemas.xmlsoap.org/ws/2005
/07/securitypolicy/
IncludeToken/AlwaysToRecipient

AlwaysToInitiator

The token MUST be included in all messages sent from the recipient to the initiator. The token MUST
NOT be included in messages sent from the initiator to the recipient. Valid URI values are:

1.2 http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToInitiator

1.1 http://schemas.xmlsoap.org/ws/2005
/07/securitypolicy/
IncludeToken/AlwaysToInitiator

Always

The token MUST be included in all messages sent between the initiator and the recipient. This is the
default behavior. Valid URI values are:

1.2 http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/
IncludeToken/Always

1.1 http://schemas.xmlsoap.org/ws/2005
/07/securitypolicy/
IncludeToken/Always

SupportingTokens assertions

The following kinds of supporting tokens assertions are supported:

the section called “sp:SupportingTokens”.

the section called “sp:SignedSupportingTokens”.

the section called “sp:EncryptedSupportingTokens”.

the section called “sp:SignedEncryptedSupportingTokens”.

the section called “sp:EndorsingSupportingTokens”.

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

82

the section called “sp:SignedEndorsingSupportingTokens”.

the section called “sp:EndorsingEncryptedSupportingTokens”.

the section called “sp:SignedEndorsingEncryptedSupportingTokens”.

sp:SupportingTokens

This element requires a token (or tokens) of the specified type to be included in the wsse:Security
header. No additional requirements are imposed.

WARNING

This policy does not explicitly require the tokens to be signed or encrypted. It is
normally essential, however, to protect tokens by signing and encryption.

sp:SignedSupportingTokens

This element requires a token (or tokens) of the specified type to be included in the wsse:Security
header. In addition, this policy requires that the token is signed, in order to guarantee token integrity.

WARNING

This policy does not explicitly require the tokens to be encrypted. It is normally
essential, however, to protect tokens both by signing and encryption.

sp:EncryptedSupportingTokens

This element requires a token (or tokens) of the specified type to be included in the wsse:Security
header. In addition, this policy requires that the token is encrypted, in order to guarantee token
confidentiality.

WARNING

This policy does not explicitly require the tokens to be signed. It is normally
essential, however, to protect tokens both by signing and encryption.

sp:SignedEncryptedSupportingTokens

CHAPTER 7. AUTHENTICATION

83

This element requires a token (or tokens) of the specified type to be included in the wsse:Security
header. In addition, this policy requires that the token is both signed and encrypted, in order to guarantee
token integrity and confidentiality.

sp:EndorsingSupportingTokens

An endorsing supporting token is used to sign the message signature (primary signature). This signature
is known as an endorsing signature or secondary signature. Hence, by applying an endorsing supporting
tokens policy, you can have a chain of signatures: the primary signature, which signs the message itself,
and the secondary signature, which signs the primary signature.

NOTE

If you are using a transport binding (for example, HTTPS), the message signature is not
actually part of the SOAP message, so it is not possible to sign the message signature in
this case. If you specify this policy with a transport binding, the endorsing token signs the
timestamp instead.

WARNING

This policy does not explicitly require the tokens to be signed or encrypted. It is
normally essential, however, to protect tokens by signing and encryption.

sp:SignedEndorsingSupportingTokens

This policy is the same as the endorsing supporting tokens policy, except that the tokens are required to
be signed, in order to guarantee token integrity.

WARNING

This policy does not explicitly require the tokens to be encrypted. It is normally
essential, however, to protect tokens both by signing and encryption.

sp:EndorsingEncryptedSupportingTokens

This policy is the same as the endorsing supporting tokens policy, except that the tokens are required to
be encrypted, in order to guarantee token confidentiality.

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

84

WARNING

This policy does not explicitly require the tokens to be signed. It is normally
essential, however, to protect tokens both by signing and encryption.

sp:SignedEndorsingEncryptedSupportingTokens

This policy is the same as the endorsing supporting tokens policy, except that the tokens are required to
be signed and encrypted, in order to guarantee token integrity and confidentiality.

7.3. PROVIDING CLIENT CREDENTIALS

Overview

There are essentially two approaches to providing UsernameToken client credentials: you can either
set both the username and the password directly in the client's Spring XML configuration; or you can set
the username in the client's configuration and implement a callback handler to provide passwords
programmatically. The latter approach (by programming) has the advantage that passwords are easier to
hide from view.

Client credentials properties

Table 7.1, “Client Credentials Properties” shows the properties you can use to specify WS-Security
username/password credentials on a client's request context in Spring XML.

Table 7.1. Client Credentials Properties

Properties Description

ws-security.username Specifies the username for UsernameToken policy
assertions.

ws-security.password Specifies the password for UsernameToken policy
assertions. If not specified, the password is obtained
by calling the callback handler.

ws-security.callback-handler Specifies the class name of the WSS4J callback
handler that retrieves passwords for UsernameToken
policy assertions. Note that the callback handler can
also handle other kinds of security events.

Configuring client credentials in Spring XML

To configure username/password credentials in a client's request context in Spring XML, set the ws-
security.username and ws-security.password properties as follows:

<beans ... >
 <jaxws:client name="{NamespaceName}LocalPortName"

CHAPTER 7. AUTHENTICATION

85

If you prefer not to store the password directly in Spring XML (which might potentially be a security
hazard), you can provide passwords using a callback handler instead.

Programming a callback handler for passwords

If you want to use a callback handler to provide passwords for the UsernameToken header, you must
first modify the client configuration in Spring XML, replacing the ws-security.password setting by a
ws-security.callback-handler setting, as follows:

In the preceding example, the callback handler is implemented by the UTPasswordCallback class.
You can write a callback handler by implementing the
javax.security.auth.callback.CallbackHandler interface, as shown in Example 7.2,
“Callback Handler for UsernameToken Passwords”.

Example 7.2. Callback Handler for UsernameToken Passwords

 createdFromAPI="true">
 <jaxws:properties>
 <entry key="ws-security.username" value="Alice"/>
 <entry key="ws-security.password" value="abcd!1234"/>
 </jaxws:properties>
 </jaxws:client>
 ...
</beans>

<beans ... >
 <jaxws:client name="{NamespaceName}LocalPortName"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="ws-security.username" value="Alice"/>
 <entry key="ws-security.callback-handler"
value="interop.client.UTPasswordCallback"/>
 </jaxws:properties>
 </jaxws:client>
 ...
</beans>

package interop.client;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class UTPasswordCallback implements CallbackHandler {

 private Map<String, String> passwords =
 new HashMap<String, String>();

 public UTPasswordCallback() {

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

86

The callback functionality is implemented by the CallbackHandler.handle() method. In this
example, it assumed that the callback objects passed to the handle() method are all of
org.apache.ws.security.WSPasswordCallback type (in a more realistic example, you would check the
type of the callback objects).

A more realistic implementation of a client callback handler would probably consist of prompting the user
to enter their password.

WSPasswordCallback class

When a CallbackHandler is called in a Apache CXF client for the purpose of setting a
UsernameToken password, the corresponding WSPasswordCallback object has the
USERNAME_TOKEN usage code.

For more details about the WSPasswordCallback class, see
org.apache.ws.security.WSPasswordCallback.

The WSPasswordCallback class defines several different usage codes, as follows:

USERNAME_TOKEN

Obtain the password for UsernameToken credentials. This usage code is used both on the client side
(to obtain a password to send to the server) and on the server side (to obtain a password in order to
compare it with the password received from the client).

On the server side, this code is set in the following cases:

Digest password—if the UsernameToken contains a digest password, the callback must

 passwords.put("Alice", "ecilA");
 passwords.put("Frank", "invalid-password");
 //for MS clients
 passwords.put("abcd", "dcba");
 }

 public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
 for (int i = 0; i < callbacks.length; i++) {
 WSPasswordCallback pc = (WSPasswordCallback)callbacks[i];

 String pass = passwords.get(pc.getIdentifier());
 if (pass != null) {
 pc.setPassword(pass);
 return;
 }
 }

 throw new IOException();
 }

 // Add an alias/password pair to the callback mechanism.
 public void setAliasPassword(String alias, String password) {
 passwords.put(alias, password);
 }
}

CHAPTER 7. AUTHENTICATION

87

https://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/ext/WSPasswordCallback.html
https://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/ext/WSPasswordCallback.html

return the corresponding password for the given user name (given by
WSPasswordCallback.getIdentifier()). Verification of the password (by comparing
with the digest password) is done by the WSS4J runtime.

Plaintext password—implemented the same way as the digest password case (since Apache
CXF 2.4.0).

Custom password type—if getHandleCustomPasswordTypes() is true on
org.apache.ws.security.WSSConfig, this case is implemented the same way as the
digest password case (since Apache CXF 2.4.0). Otherwise, an exception is thrown.

If no Password element is included in a received UsernameToken on the server side, the callback
handler is not called (since Apache CXF 2.4.0).

DECRYPT

Need a password to retrieve a private key from a Java keystore, where
WSPasswordCallback.getIdentifier() gives the alias of the keystore entry. WSS4J uses this
private key to decrypt the session (symmetric) key.

SIGNATURE

Need a password to retrieve a private key from a Java keystore, where
WSPasswordCallback.getIdentifier() gives the alias of the keystore entry. WSS4J uses this
private key to produce a signature.

SECRET_KEY

Need a secret key for encryption or signature on the outbound side, or for decryption or verification
on the inbound side. The callback handler must set the key using the setKey(byte[]) method.

SECURITY_CONTEXT_TOKEN

Need the key for a wsc:SecurityContextToken, which you provide by calling the
setKey(byte[]) method.

CUSTOM_TOKEN

Need a token as a DOM element. For example, this is used for the case of a reference to a SAML
Assertion or SecurityContextToken that is not in the message. The callback handler must set the
token using the setCustomToken(Element) method.

KEY_NAME

(Obsolete) Since Apache CXF 2.4.0, this usage code is obsolete.

USERNAME_TOKEN_UNKNOWN

(Obsolete) Since Apache CXF 2.4.0, this usage code is obsolete.

UNKNOWN

Not used by WSS4J.

7.4. AUTHENTICATING RECEIVED CREDENTIALS

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

88

Overview

On the server side, you can verify that received credentials are authentic by registering a callback
handler with the Apache CXF runtime. You can either write your own custom code to perform credentials
verification or you can implement a callback handler that integrates with a third-party enterprise security
system (for example, an LDAP server).

Configuring a server callback handler in Spring XML

To configure a server callback handler that verifies UsernameToken credentials received from clients,
set the ws-security.callback-handler property in the server's Spring XML configuration, as
follows:

In the preceding example, the callback handler is implemented by the UTPasswordCallback class.

Implementing the callback handler to check passwords

To implement a callback handler for checking passwords on the server side, implement the
javax.security.auth.callback.CallbackHandler interface. The general approach to
implementing the CallbackHandler interface for a server is similar to implementing a
CallbackHandler for a client. The interpretation given to the returned password on the server side is
different, however: the password from the callback handler is compared against the received client
password in order to verify the client's credentials.

For example, you could use the sample implementation shown in Example 7.2, “Callback Handler for
UsernameToken Passwords” to obtain passwords on the server side. On the server side, the WSS4J
runtime would compare the password obtained from the callback with the password in the received client
credentials. If the two passwords match, the credentials are successfully verified.

A more realistic implementation of a server callback handler would involve writing an integration with a
third-party database that is used to store security data (for example, integration with an LDAP server).

<beans ... >
 <jaxws:endpoint
 id="UserNameOverTransport"
 address="https://localhost:9001/UserNameOverTransport"
 serviceName="interop:PingService10"
 endpointName="interop:UserNameOverTransport_IPingService"
 implementor="interop.server.UserNameOverTransport"
 depends-on="tls-settings">

 <jaxws:properties>
 <entry key="ws-security.username" value="Alice"/>
 <entry key="ws-security.callback-handler"
value="interop.client.UTPasswordCallback"/>
 </jaxws:properties>

 </jaxws:endpoint>
 ...
</beans>

CHAPTER 7. AUTHENTICATION

89

CHAPTER 8. WS-TRUST

Abstract

WS-Trust provides the necessary security infrastructure for supporting advanced authentication and
authorization requirements. In particular, WS-Trust enables you to store security data in a central
location (in the Security Token Service) and support various single sign-on scenarios.

8.1. INTRODUCTION TO WS-TRUST

Overview

The WS-Trust standard is based around a centralized security server (the Security Token Service),
which is capable of authenticating clients and can issue tokens containing various kinds of authentication
and authorization data.

WS-Trust specification

The WS-Trust features of Apache CXF are based on the WS-Trust standard from Oasis:

Supporting specifications

Apart from the WS-Trust specification itself, several other specifications play an important role in the WS-
Trust architecture, as follows:

WS-SecurityPolicy 1.2

SAML 2.0

Username Token Profile

X.509 Token Profile

SAML Token Profile

Kerberos Token Profile

WS-Trust architecture

Figure 8.1, “WS-Trust Architecture” shows a general overview of the WS-Trust architecture.

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

90

http://www.oasis-open.org
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.html
http://saml.xml.org/saml-specifications
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf

Figure 8.1. WS-Trust Architecture

Requestor

A requestor is an entity that tries to invoke a secure operation over a network connection. In practice, a
requestor is typically a Web service client.

Relying party

A relying party refers to an entity that has some services or resources that must be secured against
unauthorized access. In practice, a relying party is typically a Web service.

NOTE

This is a term defined by the SAML specification, not by WS-Trust.

Security token

A security token is a collection of security data that a requestor sends inside a request (typically
embedded in the message header) in order to invoke a secure operation or to gain access to a secure
resource. In the WS-Trust framework, the notion of a security token is quite general and can be used to
describe any block of security data that might accompany a request.

In principle, WS-Trust can be used with the following kinds of security token:

SAML token.

UsernameToken token.

X.509 certificate token.

Kerberos token.

SAML token

A SAML token is a particularly flexible kind of security token. The SAML specification defines a general-
purpose XML schema that enables you to wrap almost any kind of security data and enables you to sign
and encrypt part or all of the token.

CHAPTER 8. WS-TRUST

91

http://saml.xml.org/saml-specifications

SAML is a popular choice of token to use in the context of WS-Trust, because SAML has all of the
necessary features to support typical WS-Trust authentication scenarios.

Claims

A SAML security token is formally defined to consist of a collection of claims. Each claim typically
contains a particular kind of security data.

Policy

In WS-Trust scenarios, a policy can represent the security configuration of a participant in a secure
application. The requestor, the relying party, and the security token service are all configured by policies.
For example, a policy can be used to configure what kinds of authentication are supported and required.

Security token service

The security token service (STS) lies at the heart of the WS-Trust security architecture. In the WS-Trust
standard, the following bindings are defined (not all of which are supported by Apache CXF):

Issue binding—the specification defines this binding as follows: Based on the credential
provided/proven in the request, a new token is issued, possibly with new proof information.

Validate binding—the specification defines this binding as follows: The validity of the specified
security token is evaluated and a result is returned. The result may be a status, a new token, or
both.

Renew binding—the specification defines this binding as follows: A previously issued token with
expiration is presented (and possibly proven) and the same token is returned with new
expiration semantics.

Cancel binding—the specification defines this binding as follows: When a previously issued
token is no longer needed, the Cancel binding can be used to cancel the token, terminating its
use.

8.2. BASIC SCENARIOS

Overview

This section describes the basic scenarios supported by WS-Trust, which are closely related to some of
the use cases defined in the SAML standard. It is, therefore, worth taking a moment to look at the
relationship between the SAML standard and the WS-Trust standard.

SAML architecture

The SAML standard is specified in four distinct parts, as follows:

Assertions—specifies the format of a SAML token, which is a standardized packet of XML
containing security data. SAML tokens can contain authentication data (such as
username/password, X.509 certificate, and so on), authorization data (such as roles,
permissions, privileges), security attributes (such as issuer identity, name and address of
subject). A SAML token can also optionally be encrypted and/or signed.

Protocol—describes request and response messages for operations such as issuing, validating,
and renewing SAML tokens.

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

92

Bindings—maps the abstract SAML protocol to specific network protocols.

Profiles—describes particular use cases for building a security system based on SAML.

WS-Trust and SAML

There are close parallels between the WS-Trust architecture and the SAML architecture. In particular,
WS-Trust explicitly relies on and uses SAML assertions (that is, SAML tokens). On the other hand, WS-
Trust does not use any of the protocol, bindings, or profiles components of the SAML standard.

The relationship between WS-Trust and SAML can be quite confusing, in fact, because WS-Trust does
define an abstract protocol (for communicating with the STS), a binding (to the SOAP protocol), and
scenarios that are remarkably similar to some of the SAML scenarios. But these aspects of WS-Trust are
defined independently of the SAML standard.

Scenarios

SAML defines the following fundamental types of authentication scenario, which are also supported by
WS-Trust:

the section called “Bearer scenario”.

the section called “Holder-of-key scenario”.

Bearer scenario

In the bearer scenario, the server automatically trusts the SAML token (after verifying its signature).
Thus, in the bearer scenario, any client that presents the token can make use of the claims contained in
the token (roles, permissions, and so on). It follows that the client must be very careful not to expose the
SAML token or to pass it to any untrusted applications. For example, the client/server connection must
use encryption, to protect the SAML token from snooping.

Figure 8.2, “Bearer Scenario” shows a general outline of a typical bearer scenario.

Figure 8.2. Bearer Scenario

Steps in the bearer scenario

The bearer scenario proceeds as follows:

CHAPTER 8. WS-TRUST

93

1. Before invoking an operation on the server, the client sends a RequestSecurityToken (RST)
message to the Issue binding of the STS. The RST specifies a KeyType of Bearer.

The STS generates a SAML token with subject confirmation type bearer, signs the token using
its private key, and then returns the token in a RequestSecurityTokenReply (RSTR) message.

2. The client attempts to invoke an operation on the server, with the SAML token embedded in the
SOAP header of the request message, where either the SOAP header or the transport
connection must be encrypted, to protect the token.

3. The server checks the signature of the SAML token (using a local copy of the STS public key), to
ensure that it has not been tampered with.

Holder-of-key scenario

The holder-of-key scenario is a refinement of the bearer scenario where, instead of accepting the SAML
token when presented by any client, the server attempts to authenticate the client and checks that the
client identity matches the holder-of-key identity embedded in the SAML token.

There are two variations on the Holder-of-Key scenario, depending on the value of the KeyType specified
in the RST, as follows:

PublicKey—the client must prove to the WS server that it possesses a particular private key.

SymmetricKey—the client must prove to the WS server that it possesses a particular
symmetric session key.

Figure 8.3, “Holder-of-Key Scenario” shows a general outline of a typical holder-of-key scenario.

Figure 8.3. Holder-of-Key Scenario

Steps in the holder-of-key scenario

The bearer scenario proceeds as follows:

1. Before invoking an operation on the server, the client sends a RequestSecurityToken (RST)
message to the Issue binding of the STS. The STS generates a SAML token with subject
confirmation type holder-of-key, embeds the client identity in the token (the holder-of-key
identity), signs the token using its private key, and then returns the token in a
RequestSecurityTokenReply (RSTR) message.

2. The client attempts to invoke an operation on the server, with the SAML token embedded in the
SOAP header of the request message.

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

94

3. The server checks the signature of the SAML token (using a local copy of the STS public key), to
ensure that it has not been tampered with.

4. The server attempts to authenticate the client (for example, by requiring a client X.509 certificate
or by checking WS-Security UsernameToken credentials) and checks that the client's identity
matches the holder-of-key identity.

8.3. DEFINING AN ISSUEDTOKEN POLICY

Overview

In general, an IssuedToken policy can appear in any context where a regular token can appear. When
an sp:IssuedToken element appears in a policy, it indicates that the application must call out to the
STS to obtain a token (as specified in the sp:IssuedToken element) and then use the token in the
current context.

Fundamentally, an IssuedToken policy consists of two parts: one part is aimed at the client, specifying
how the client must use the IssuedToken; and another part is aimed at the STS, specifying what type of
token to issue and how the token should be constructed. The part that is aimed at the STS is put inside
the special element, sp:RequestSecurityTokenTemplate. All of the children of this element will be
copied directly into the body of the RequestSecurityToken (RST) message that is sent to the STS when
the client asks the STS to issue a token, as shown in Figure 8.4, “Injecting Parameters into the Outgoing
RequestSecurityToken Message”.

Figure 8.4. Injecting Parameters into the Outgoing RequestSecurityToken Message

Namespaces

A typical IssuedToken policy is defined using elements from the following schema namespaces:

Table 8.1. XML Namespaces used with IssuedToken

Prefix XML Namespace

wsp: http://schemas.xmlsoap.org/ws/2004/0
9/policy

sp: http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702

wst: http://docs.oasis-open.org/ws-
sx/ws-trust/200512

CHAPTER 8. WS-TRUST

95

Sample policy

The following example shows a minimal IssuedToken policy, where the client requests the STS to issue
a SAML 2.0 token (specified by the value of the trust:TokenType element). The issued token will be
included in the client's request header (indicated by setting the sp:IncludeToken attribute to
AlwaysToRecipient).

In an example such as this, where the IssuedToken policy contains few settings, it is assumed that the
STS is already configured with sensible default properties.

Syntax

The IssuedToken element is defined with the following syntax:

<sp:IssuedToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <sp:RequestSecurityTokenTemplate>
 <trust:TokenType
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
 >urn:oasis:names:tc:SAML:2.0:assertion</trust:TokenType>
 </sp:RequestSecurityTokenTemplate>
 <wsp:Policy>
 <!-- No extra policies needed in this demo. -->
 </wsp:Policy>
</sp:IssuedToken>

<sp:IssuedToken
 sp:IncludeToken="xs:anyURI"?
 xmlns:sp="..." ... >
 (
 <sp:Issuer>wsa:EndpointReferenceType</sp:Issuer> |
 <sp:IssuerName>xs:anyURI</sp:IssuerName>
) ?
 <sp:RequestSecurityTokenTemplate TrustVersion="xs:anyURI"? >
 <wst:TokenType>...</wst:TokenType> ?
 <wst:KeyType>...</wst:KeyType> ?
 <wsp:AppliesTo>...</wsp:AppliesTo> ?
 <wst:Claims Dialect="..."> ... </wst:Claims> ?
 <!-- Many other WS-Trust elements allowed here -->
 ...
 </sp:RequestSecurityTokenTemplate>
 <wsp:Policy xmlns:wsp="...">
 (
 <sp:RequireDerivedKeys ... /> |
 <sp:RequireImpliedDerivedKeys ... /> |
 <sp:RequireExplicitDerivedKeys ... />
) ?
 <sp:RequireExternalReference ... /> ?
 <sp:RequireInternalReference ... /> ?
 ...
 </wsp:Policy>
 ...
</sp:IssuedToken>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

96

XML elements

An IssuedToken policy is specified using the following XML elements:

sp:IssuedToken

The element containing the IssuedToken policy assertion. The IncludeToken attribute specifies
whether the issued token is meant to be included in the security header of the client's request
messages. The allowed values of this attribute are given in the section called “sp:IncludeToken
attribute”.

On the client side, the presence of this assertion signals that the client should attempt to obtain a
token by contacting a remote STS.

sp:IssuedToken/sp:Issuer

(Optional) Contains a reference to the issuer of the token, of wsa:EndpointReferenceType type.

There is no need to specify the issuer's endpoint reference using sp:Issuer in Apache CXF,
because the issuer endpoint (that is, the STS address) is taken directly from the STS WSDL file
instead.

sp:IssuedToken/sp:IssuerName

(Optional) The name of the issuing service (that is, the STS), in the format of a URI.

sp:IssuedToken/sp:RequestSecurityTokenTemplate

(Required) This element contains a list of WS-Trust policy assertions to be included in the outgoing
RequestSecurityToken (RST) message that is sent to the STS. In other words, this element enables
you to modify the Issue query that is sent to the STS to obtain the issued token. Thie element can
contain any of the WS-Trust assertions that are valid children of the sp:RequestSecurityToken
element, as specified by WS-Trust.

sp:IssuedToken/sp:RequestSecurityTokenTemplate/wst:TokenType

(Optional) The type of security token to issue, specified as a URI string. This element is usually
specified together with a wst:KeyType element. Table 8.2, “Token Type URIs” shows the list of
standard token type URIs for the following token types: SAML 1.1, SAML 2.0, UsernameToken,
X.509v3 single certificate, X509v1 single certificate, X.509 PKI certificate chain, X.509 PKCS7, and
Kerberos.

Table 8.2. Token Type URIs

Token Type URI

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#UsernameToken

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509v3

CHAPTER 8. WS-TRUST

97

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509v1

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509PKIPathv1

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#PKCS7

http://docs.oasisopen.org/wss/oasiswss-kerberos-
tokenprofile-1.1#Kerberosv5APREQSHA1

Token Type URI

Consult the documentation for your third-party STS to find out what token types it supports. An STS
can also support custom token types not listed in the preceding table.

sp:IssuedToken/sp:RequestSecurityTokenTemplate/wst:KeyType

(Optional) The type of key that the client will use to establish its identity to the WS server. The key
type indirectly determines the subject confirmation type as either Holder-of-Key or bearer (see
Section 8.2, “Basic Scenarios”). Table 8.3, “Key Type URIs” shows the list of standard key type URIs.

Table 8.3. Key Type URIs

Key Type URI

http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey

http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer

sp:IssuedToken/sp:RequestSecurityTokenTemplate/wsp:AppliesTo

(Optional) This WS-PolicyAttachment assertion can be specified as an alternative to or in addition to
the wst:TokenType assertion (in the latter case, it takes precedence over the wst:TokenType
assertion). It is used to specify the policy scope for which this token is required. In practice, this
enables you to refer to a service or group of services for which this token is issued. The STS can then
be configured to specify what kind of token to issue for that service (or services).

For more details, see Enabling AppliesTo in the STS.

sp:IssuedToken/sp:RequestSecurityTokenTemplate/wst:Claims

(Optional) Specifies the required claims that the issued token must contain in order to satisfy the
IssuedToken policy assertion. Claims are used to provide additional data about the token subject—
for example, e-mail address, first name, surname, and so on.

For more details, see Enabling Claims in the STS.

sp:IssuedToken/sp:RequestSecurityTokenTemplate/wst:OtherElements

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

98

(Optional) You can optionally include many other WS-Trust assertions in the RST template. The
purpose of these assertions is to specify exactly what the content of the issued token should be and
whether it is signed, encrypted, and so on. In practice, however, the details of the issued token are
often configured in the STS, which makes it unnecessary to include all of these details in the RST
template.

For a full list of of WS-Trust assertions that can be included in the RST template, see the OASIS WS-
Trust 1.4 Specification.

sp:IssuedToken/sp:Policy

(Required) This element must be included in the IssuedToken, even if it is empty.

sp:IssuedToken/sp:Policy/sp:RequireDerivedKeys

(Optional) Only applicable when using WS-SecureConversation. The WS-SecureConversation
specification enables you to establish a security context (analogous to a session), which is used for
sending multiple secured messages to a given service. Normally, if you use the straightforward
approach of authenticating every message sent to a particular service, the authentication adds a
considerable overhead to secure communications. If you know in advance that a client will be
sending multiple messages to a Web service, however, it makes sense to establish a security context
between the client and the server, in order to cut the overheads of secure communication. This is the
basic idea of WS-SecureConversation.

When a security context is established, the client and the server normally establish a shared secret.
In order to prevent the shared secret being discovered, it is better to avoid using the shared secret
directly and use it instead to generate the keys needed for encryption, signing, and so on—that is, to
generate derived keys.

When the sp:RequireDerivedKeys policy assertion is included, the use of derived keys is
enabled in WS-SecureConversation and both implied derived keys and explicit derived keys are
allowed.

NOTE

Only one of sp:RequireDerivedKeys, sp:RequireImpliedDerivedKeys, or
sp:RequireExplicitDerivedKeys, can be included in sp:IssuedToken.

sp:IssuedToken/sp:Policy/sp:RequireImpliedDerivedKeys

(Optional) When the sp:RequireImpliedDerivedKeys policy assertion is included, the use of
derived keys is enabled in WS-SecureConversation, but only implied derived keys are allowed.

sp:IssuedToken/sp:Policy/sp:RequireExplicitDerivedKeys

(Optional) When the sp:RequireExplicitDerivedKeys policy assertion is included, the use of
derived keys is enabled in WS-SecureConversation, but only explicit derived keys are allowed.

sp:IssuedToken/sp:Policy/sp:RequireExternalReference

(Optional) When included, requires that external references to the issued token must be enabled.

sp:IssuedToken/sp:Policy/sp:RequireInternalReference

(Optional) When included, requires that internal references to the issued token must be enabled,
where an internal reference uses one of the elements, wsse:Reference, wsse:KeyIdentifier,
or wsse:Embedded.

CHAPTER 8. WS-TRUST

99

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html

8.4. CREATING AN STSCLIENT INSTANCE

Overview

Whenever an IssuedToken policy is configured on a WSDL port, you must also configure the client to
connect to an STS server to obtain a token. The code for connecting to the STS and obtaining a token is
implemented by the following class:

The client must explicitly create an STSClient instance to manage the client-STS connection. You can
do this in either of the following ways:

Direct configuration—the client proxy is configured with the ws-security.sts.client
property, which contains a reference to an STSClient instance.

Indirect configuration—no change is made to the client proxy definition, but if the Apache CXF
runtime finds an appropriately named STSClient bean in the bean registry, it will automatically
inject that STSClient bean into the client proxy.

In addition to creating an STSClient instance, it is usually also necessary to enable SSL/TLS security
on the STS proxy.

Direct configuration

In the case of direct configuration, your JAX-WS client proxy references an STSClient instance directly,
by setting the ws-security.sts.client property on the client proxy. The value of ws-
security.sts.client must be a reference to an STSClient instance.

For example, the following XML configuration shows how to instantiate a JAX-WS client proxy that
references the STSClient with bean ID equal to default.sts-client (the bean ID is the same as
the value of the name attribute):

org.apache.cxf.ws.security.trust.STSClient

<beans ...>
 ...
 <jaxws:client
 id="helloWorldProxy"
 serviceClass="org.apache.hello_world_soap_http.Greeter"
 address="https://localhost:9001/SoapContext/SoapPort">
 <jaxws:properties>
 <entry key="ws-security.sts.client"
 value-ref="default.sts-client" />
 </jaxws:properties>
 </jaxws:client>
 ...
 <bean name="default.sts-client"
 class="org.apache.cxf.ws.security.trust.STSClient">
 <constructor-arg ref="cxf"/>
 <property name="wsdlLocation" value="sts/wsdl/ws-trust-1.4-
service.wsdl"/>
 <property name="serviceName"
 value="{http://docs.oasis-open.org/ws-sx/ws-
trust/200512/wsdl}SecurityTokenServiceProvider"/>
 <property name="endpointName"

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

100

Indirect configuration

In the case of indirect configuration, there is no need to set any property on the JAX-WS client proxy.
Implicitly, if the IssuedToken policy assertion is applied to the relevant WSDL port, the runtime
automatically searches for an STSClient bean named, WSDLPortQName.sts-client. To configure
the STSClient bean indrectly, perform the following steps:

1. Define an STSClient bean, whose name attribute has the value, WSDLPortQName.sts-
client.

2. Set abstract="true" on the bean element. This prevents Spring from instantiating the bean.
The reason for this is that the runtime is responsible for the lifecycle of the STSClient object.

3. Set the relevant properties of the STSClient bean (typically, the wsdlLocation,
serviceName, and endpointName properties). After the STSClient is instantiated in Java,
the properties specified in XML will be injected into the STSClient instance.

For example, the following XML configuration creates a JAX-WS client proxy, which is associated with
the {http://apache.org/hello_world_soap_http}SoapPort port (this is specified in an
annotation on the service class, Greeter). When the client proxy needs to fetch an issued token for the
first time, the runtime automatically creates an STSClient instance, searches for the bean named
WSDLPortQName.sts-client, and injects the properties from that bean into the STSClient instance.

 value="{http://docs.oasis-open.org/ws-sx/ws-
trust/200512/wsdl}SecurityTokenServiceSOAP"/>
 </bean>
 ...
</beans>

<beans ...>
 ...
 <jaxws:client
 id="helloWorldProxy"
 serviceClass="org.apache.hello_world_soap_http.Greeter"
 address="https://localhost:9001/SoapContext/SoapPort"
 />
 ...
 <bean name="{http://apache.org/hello_world_soap_http}SoapPort.sts-
client"
 class="org.apache.cxf.ws.security.trust.STSClient"
 abstract="true">
 <constructor-arg ref="cxf"/>
 <property name="wsdlLocation" value="sts/wsdl/ws-trust-1.4-
service.wsdl"/>
 <property name="serviceName"
 value="{http://docs.oasis-open.org/ws-sx/ws-
trust/200512/wsdl}SecurityTokenServiceProvider"/>
 <property name="endpointName"
 value="{http://docs.oasis-open.org/ws-sx/ws-
trust/200512/wsdl}SecurityTokenServiceSOAP"/>
 </bean>
 ...
</beans>

CHAPTER 8. WS-TRUST

101

CHAPTER 9. THE SECURITY TOKEN SERVICE

Abstract

The Security Token Service (STS) is the core component of the WS-Trust single-sign on framework. This
chapter explains the modular architecture of the STS and takes you step-by-step through the
demonstration included in the Apache CXF distribution.

9.1. STS ARCHITECTURE

9.1.1. Overview of the STS

Architecture

The Apache CXF STS has a modular architecture, with many components that are configurable or
replaceable. Many of the optional features are enabled by implementing and configuring plug-ins that are
injected into the STS runtime. Figure 9.1, “STS Architecture” gives a broad overview of the core
components and optional components of the STS.

Figure 9.1. STS Architecture

STS WSDL

Issue / Va l ida t e/ Renew /C ance l

STS WSDL

The STS is accessed through a standard WSDL contract. As with any WSDL contract, you can think of
the STS WSDL as consisting of two main parts, as follows:

Logical part of the WSDL—consists of WSDL type definitions and the STS WSDL port type. In
other words, this part of the WSDL provides an abstract definition of the STS interface.

The logical part is defined exactly in the WSDL appendix of the WS-Trust specification.

Physical part of the WSDL—consists of the WSDL binding and WSDL service definitions. In
other words, this part of the WSDL specifies the details of the message encoding and the
transport protocol used to access the STS.

In contrast to the logical part, the physical part of the WSDL can be customized, enabling you to
choose what kind of protocol to use when accessing the STS. The most common choice is
SOAP/HTTP, but in principle you could use other SOAP-compatible transports supported by
Apache CXF—for example, SOAP/JMS.

STS operations

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

102

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html#_Toc212615506

The STS WSDL defines the following standard operations (from the WS-Trust specification):

Issue binding—the specification defines this binding as follows: Based on the credential
provided/proven in the request, a new token is issued, possibly with new proof information.

Validate binding—the specification defines this binding as follows: The validity of the specified
security token is evaluated and a result is returned. The result may be a status, a new token, or
both.

Renew binding—the specification defines this binding as follows: A previously issued token with
expiration is presented (and possibly proven) and the same token is returned with new
expiration semantics.

Cancel binding—the specification defines this binding as follows: When a previously issued
token is no longer needed, the Cancel binding can be used to cancel the token, terminating its
use.

Key Exchange Token binding (not supported)—in the context of the WS-Trust negotiation and
challenge extensions, this binding is used for requesting a new Key Exchange Token.

RequestCollection binding (not supported)—similar to the Issue binding, except that it allows you
to request multiple tokens in a single operation (the request message is a
wst:RequestSecurityTokenCollection element, which consists of a list of
wst:RequestSecurityToken elements).

STS policies

When a secure application connects to the STS, this connection is also subject to security policies. For
example, the STS might require STS clients to authenticate themselves using a WS-Security
UsernameToken or by presenting an X.509 certificate, and so on.

For more details, see the section called “Choosing policies”.

Abstract STS provider framework

The Apache CXF implementation of the STS is designed as a pluggable framework. The core class in
this framework is the SecurityTokenServiceProvider class from the
org.apache.cxf.ws.security.sts.provider package, which provides the Java implementation
of the STS WSDL interface.

For each of the standard STS operations, the STS provider defines the following abstract interfaces:

IssueOperation

IssueSingleOperation

ValidateOperation

RenewOperation

CancelOperation

By implementing each of these interfaces and injecting the corresponding instances into the
SecurityTokenServiceProvider instance, you can customize the implementation of each STS
operation.

CHAPTER 9. THE SECURITY TOKEN SERVICE

103

In practice, however, you would normally use the default implementations of these operations which are,
as follows:

TokenIssueOperation class

TokenValidateOperation class

TokenCancelOperation class

TokenIssueOperation class

The TokenIssueOperation class from the org.apache.cxf.ws.security.sts.operation
package is the default implementation of the Issue operation.

To configure a TokenIssueOperation instance, you would normally just provide it with a reference to
a SAMLTokenProvider instance (which enables it to issue SAML tokens). For details, see
Section 9.1.3, “Customizing the Issue Operation”.

TokenValidateOperation class

The TokenValidateOperation class from the org.apache.cxf.ws.security.sts.operation
package is the default implementation of the Validate operation.

To configure a TokenValidateOperation instance, you need to provide it with a list of token
validators. For details, see Section 9.1.4, “Customizing the Validate Operation”.

TokenCancelOperation class

The TokenCancelOperation class from the org.apache.cxf.ws.security.sts.operation
package is the default implementation of the Cancel operation.

To configure a TokenCancelOperation instance, you need to provide it with a list of cancellers. At the
moment, only the SCTCanceller canceller is available, which is used for cancelling Security Context
Tokens in the context of secure conversations (WS-SecureConversation specification). For details, see
Section 9.1.4, “Customizing the Validate Operation”.

9.1.2. Customizing the STS WSDL

Overview

The STS itself is a Web service and thus, like any Web service, it has a WSDL contract that defines how
other applications and processes can interact with it. Although some core features of the STS WSDL are
fixed by the WS-Trust specification (for example, the core data types and the WSDL port type), there are
several important aspects of the STS WSDL contract that can be customized.

In particular, the following aspects of the STS WSDL can be customized:

Address of the STS WSDL port—the host, IP port, and context path of the STS Web service
endpoint can be customized by editing the address attribute of the WSDL port.

NOTE

Moreover, it is possible to define multiple Web service ports for a single STS,
where each port can specify a different address and different WS policies.

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

104

WS security policies—you can customize the WS security policies that apply to the STS WSDL
binding. For example, you can choose between a symmetric, asymmetric, or transport binding
and you can choose how clients authenticate themselves to the STS.

WSDL types and portType

The WSDL types and WSDL port type for the STS are defined exactly by the WS-Trust specification. In
outline, the WSDL port type is defined as follows:

For each of the STS operations, the following message types are sent or received:

Request message types—are either:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 targetNamespace="http://docs.oasis-open.org/ws-sx/ws-
trust/200512/"
 xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"
 xmlns:wstrust="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsap10="http://www.w3.org/2006/05/addressing/wsdl"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://www.w3.org/ns/ws-policy"
 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">
 >

 <wsdl:types>
 ...
 </wsdl:types>
 ...
 <!-- This portType is an example of an STS supporting full protocol -->
 <wsdl:portType name="STS">
 <wsdl:operation name="Cancel">
 <wsdl:input
 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-
trust/200512/RST/Cancel"
 message="tns:RequestSecurityTokenMsg"/>
 <wsdl:output
 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-
trust/200512/RSTR/CancelFinal"
 message="tns:RequestSecurityTokenResponseMsg"/>
 </wsdl:operation>
 <wsdl:operation name="Issue"> ... </wsdl:operation>
 <wsdl:operation name="Renew"> ... </wsdl:operation>
 <wsdl:operation name="Validate"> ... </wsdl:operation>
 <wsdl:operation name="KeyExchangeToken"> ... </wsdl:operation>
 <wsdl:operation name="RequestCollection"> ... </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

CHAPTER 9. THE SECURITY TOKEN SERVICE

105

RequestSecurityToken (RST) type, for the Issue, Renew, Validate, Cancel, and
KeyExchangeToken operations; or

RequestSecurityTokenCollection type, for the RequestCollection operation.

Response message types—are either:

RequestSecurityTokenResponse (RSTR) type, for the Renew, Validate, Cancel,
and KeyExchangeToken operations; or

RequestSecurityTokenResponseCollection type, for the Issue and
RequestCollection operations.

For a full listing of the STS WSDL port type and WSDL types, see the sample WS-Trust 1.4 WSDL file in
the Apache CXF samples:

Choosing a WSDL binding

Because the STS is accessed through a standard WSDL contract, you can customize the WSDL binding
just the same way as you can for any other Web service. You should use a SOAP binding, but you can
in principle use a transport other than HTTP. The main choices are:

SOAP/HTTP (either SOAP 1.1 or SOAP 1.2)

SOAP/JMS

In practice, however, SOAP/HTTP is the normal use case.

SOAP/HTTP binding

The following extract from the STS WSDL shows the physical part of the WSDL contract, consisting of a
SOAP/HTTP binding (defined by the wsdl:binding element) and a HTTP port (defined by the
wsdl:service element):

CXFInstallDir/samples/sts/wsdl/ws-trust-1.4-service.wsdl

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 ...
 <wsdl:binding name="UT_Binding" type="wstrust:STS">
 ...
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="Issue"> ... </wsdl:operation>
 <wsdl:operation name="Validate"> ... </wsdl:operation>
 <wsdl:operation name="Cancel"> ... </wsdl:operation>
 <wsdl:operation name="Renew"> ... </wsdl:operation>
 <wsdl:operation name="KeyExchangeToken"> ... </wsdl:operation>
 <wsdl:operation name="RequestCollection"> ... </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="SecurityTokenService">
 <wsdl:port name="UT_Port" binding="tns:UT_Binding">
 <soap:address
location="http://localhost:8080/SecurityTokenService/UT" />

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

106

The soap:binding element is used to specify that this is a SOAP binding and the transport attribute
identifies the transport type as HTTP. Inside the wsdl:port element, the location attribute of the
soap:address element specifies the URL that is used to access the STS.

In a real deployment of the STS, you would edit the location URL to specify the host and IP port where
the STS is actually running.

Choosing policies

Access to the STS itself must be made secure. Hence, you must apply WS-Security policies to the STS
endpoint to define the relevant security policies. Although the requisite policy definitions themselves are
fairly complex, it really boils down to a choice between three main alternatives, as follows:

Transport binding—security is provided by the HTTPS transport (that is, in the SSL/TLS layer).
In this case, an initiator (for example, a WS client) authenticates itself by providing either of the
following credentials:

X.509 certificate (sent through the SSL/TLS layer, during the TLS security handshake), or

WSS UsernameToken (sent through the SOAP layer, in a SOAP security header)

Symmetric binding—security is provided at the SOAP layer. An initiator must authenticate itself
by providing WSS UsernameToken credentials.

Asymmetric binding—security is provided at the SOAP layer. An initiator must authenticate itself
by providing an X.509 certificate.

Inserting policy references

After defining a policy for connecting to the STS, you must then apply it to the STS endpoints. The
easiest way to apply a policy is to use the wsp:PolicyReference element, which references the
relevant WS policy (see Policies and policy references). The following extract from the STS WSDL
shows how to apply policies to the SOAP/HTTP binding:

 </wsdl:port>
 </wsdl:service>
 ...
</wsdl:definitions>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 ...
 <wsdl:binding name="UT_Binding" type="wstrust:STS">
 <wsp:PolicyReference URI="#UT_policy" />
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="Issue">
 <soap:operation
 soapAction="http://docs.oasis-open.org/ws-sx/ws-
trust/200512/RST/Issue" />
 <wsdl:input>
 <wsp:PolicyReference URI="#Input_policy" />
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>

CHAPTER 9. THE SECURITY TOKEN SERVICE

107

The first wsp:PolicyReference element applies the UT_Policy policy (in the sample/sts
demonstration, this is a symmetric binding policy) to the SOAP binding. This implies that the policy
applies to all endpoints that use this SOAP binding.

The second wsp:PolicyReference element applies the Input_policy policy to the Issue
operation's request message, and the third wsp:PolicyReference element applies the
Output_policy policy to the Issue operation's response message. The Input_policy policy and the
Output_policy policy are used to specify which parts of the SOAP messages to protect (see Specifying
Parts of Message to Encrypt and Sign).

Example of SymmetricBinding and UsernameToken policy

For example, the following sample policy is used to specify that clients must connect to the STS using the
symmetric key binding and the clients must also include UsernameToken credentials, to authenticate
themselves to the STS:

 <wsp:PolicyReference URI="#Output_policy" />
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="Validate"> ... </wsdl:operation>
 <wsdl:operation name="Cancel"> ... </wsdl:operation>
 <wsdl:operation name="Renew"> ... </wsdl:operation>
 <wsdl:operation name="KeyExchangeToken"> ... </wsdl:operation>
 <wsdl:operation name="RequestCollection"> ... </wsdl:operation>
 </wsdl:binding>
 ...
</wsdl:definitions>

 <wsp:Policy wsu:Id="UT_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsap10:UsingAddressing/>
 <sp:SymmetricBinding
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token
 sp:IncludeToken="http://docs.oasis-
open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">
 <wsp:Policy>
 <sp:RequireDerivedKeys />
 <sp:RequireThumbprintReference />
 <sp:WssX509V3Token10 />
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic128 />
 </wsp:Policy>
 </sp:AlgorithmSuite>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

108

9.1.3. Customizing the Issue Operation

TokenIssueOperation

For the Issue operation, the TokenIssueOperation class provides the overall coordination of the
token issuing process. There are some important aspects of a TokenIssueOperation instance that
can be customized. In particular, because the TokenIssueOperation instance delegates token
generation to token providers—where each token provider is capable of generating a particular kind of
token—the token provider beans play a particularly important role in issuing tokens.

 <sp:Layout>
 <wsp:Policy>
 <sp:Lax />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 <sp:EncryptSignature />
 <sp:OnlySignEntireHeadersAndBody />
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedSupportingTokens
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <wsp:Policy>
 <sp:UsernameToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10 />
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <sp:Wss11
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier />
 <sp:MustSupportRefIssuerSerial />
 <sp:MustSupportRefThumbprint />
 <sp:MustSupportRefEncryptedKey />
 </wsp:Policy>
 </sp:Wss11>
 <sp:Trust13
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <wsp:Policy>
 <sp:MustSupportIssuedTokens />
 <sp:RequireClientEntropy />
 <sp:RequireServerEntropy />
 </wsp:Policy>
 </sp:Trust13>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

CHAPTER 9. THE SECURITY TOKEN SERVICE

109

Figure 9.2, “Configuring TokenIssueOperation” shows an overview of the major components that are
involved in token issuing.

Figure 9.2. Configuring TokenIssueOperation

TokenIssueOperation

StaticSTSProperties

StaticService

List of Services

Plug-in framework

The implementation of TokenIssueOperation has a modular structure. You can inject various plug-
ins into the TokenIssueOperation instance in order to customize the behavior of the Issue operation.
The following properties can be set on the TokenIssueOperation class:

tokenProviders

Specifies a list of token providers, where each token provider is capable of generating tokens of a
specific type. Whenever an STS client asks the Issue operation to issue a token of a specific type, the
TokenIssueOperation class iterates over all of the token providers specified by this property,
asking each of them whether they can handle the required token type (by invoking the canHandle()
method on each token provider).

The available token providers are described in the section called “Token providers”.

stsProperties

References a bean that encapsulates generic configuration properties for the STS (normally an
instance of StaticSTSProperties). This configuration data mainly consists of the details needed
to access a signing certificate and an encrypting certificate.

services

Specifies a list of known services and their corresponding token requirements. This property must be
set, if you want to support the AppliesTo policy in a token request. For details, see Section 9.4,
“Enabling AppliesTo in the STS”.

encryptIssuedToken

Specifies whether or not to encrypt an issued token. Default is false.

If you enable this option, you must also associate an encryption key with the
TokenIssueOperation, through the properties defined on the StaticSTSProperties instance—
see the section called “Encrypting key”

Token providers

The Apache CXF STS currently provides the following token provider implementations:

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

110

the section called “SAMLTokenProvider”

the section called “SCTProvider”

SAMLTokenProvider

The SAMLTokenProvider token provider is used to generate SAML tokens. This is the most commonly
used token provider.

A registered SAMLTokenProvider instance is triggered to issue a token, if the token type specified by
the requesting STS client is one of the following:

Token Type URIs handled by the SAMLTokenProvider

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1

urn:oasis:names:tc:SAML:1.0:assertion

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0

urn:oasis:names:tc:SAML:2.0:assertion

The SAMLTokenProvider class comes pre-configured with sensible default behaviors, so it is normally
acceptable to instantiate it without setting any of its properties. If you want to customize its behavior,
however, you can set some or all of the following properties:

attributeStatementProviders

You can optionally use this property to add attribute statement providers, if you want to define your
own custom attribute statements in the generated SAML token. If this property is not set, the
DefaultAttributeStatementProvider class is automatically invoked, which generates the
following attribute statements:

An attribute statement that confirms the SAML token has been authenticated.

An attribute statements containing a username, if an OnBehalfOf element or an ActAs
element containing a UsernameToken was present in the Issue request.

An attribute statements containing a subject name, if an OnBehalfOf element or an ActAs
element containing a SAML token was present in the Issue request.

authenticationStatementProviders

You can optionally add authentication statement providers, if you want to define your own custom
authentication statements in the generated SAML token. No authentication statements are added by
default.

authDecisionStatementProviders

You can optionally add authorization decision statement providers, if you want to define your own
custom authorization decision statements in the generated SAML token. No authorization decision
statements are added by default.

subjectProvider

CHAPTER 9. THE SECURITY TOKEN SERVICE

111

You can optionally set this property to define a custom SAML subject provider.

If this property is not set, the DefaultSubjectProvider class is automatically invoked. The default
implementation automatically populates the SAML subject with all of the fields needed to support the
standard scenarios: Holder-of-Key with SymmetricKey; Holder-of-Key with PublicKey algorithm;
and Bearer.

conditionsProvider

You can optionally set this property to define a custom conditions provider.

If this property is not set, the DefaultConditionsProvider class is automatically invoked. The
default implementation applies a default lifetime of five minutes to the token and sets the audience
restriction URI to the value of the received AppliesTo address (if any).

signToken

Specifies whether or not to sign the SAML token. Default is true.

realmMap

Specifies a map that associates realm names with SAMLRealm objects. Only required, if you want to
enable support for realms. For details, see Section 9.5, “Enabling Realms in the STS”.

SCTProvider

The SCTProvider token provider is used to generate security context tokens, which you only need if
you are using the WS-SecureConversation protocol.

A registered SCTProvider instance is triggered to issue a token, if the token type specified by the
requesting STS client is one of the following:

Token Type URIs handled by the SCTProvider

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct

http://schemas.xmlsoap.org/ws/2005/02/sc/sct

You can optionally set the following properties on an SCTProvider instance:

lifetime

Specifies the lifetime of the generated security context token. Default is five minutes.

returnEntropy

Specifies whether to return entropy to the STS client. Default is true.

Sample configuration of SAMLTokenProvider

Example 9.1, “Configuring the STS Issue Operation” shows an example of how to configure the STS
Issue operation. In this example, the TokenIssueOperation class is configured to use a
SAMLTokenProvider token provider.

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

112

Example 9.1. Configuring the STS Issue Operation

9.1.4. Customizing the Validate Operation

TokenValidateOperation

For the Validate operation, the TokenValidateOperation class provides the overall coordination of
the token validation process. The TokenValidateOperation instance delegates token validation to
token validators—where each token validator is capable of validating a particular kind of token.

The TokenValidateOperation class can also support token transformation and this capability is
discussed in detail in the context of realms, Section 9.5.3, “Token Transformation across Realms”.

Figure 9.3, “Configuring TokenValidateOperation” shows an overview of the major components that are
involved in token validation.

<beans ... >
 ...
 <bean id="utSTSProviderBean"

class="org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvi
der">
 <property name="issueOperation" ref="utIssueDelegate"/>
 ...
 </bean>

 <bean id="utIssueDelegate"
 class="org.apache.cxf.sts.operation.TokenIssueOperation">
 <property name="tokenProviders" ref="utSamlTokenProvider"/>
 ...
 <property name="stsProperties" ref="utSTSProperties"/>
 </bean>
 ...
 <bean id="utSamlTokenProvider"
 class="org.apache.cxf.sts.token.provider.SAMLTokenProvider">
 </bean>
 ...
 <bean id="utSTSProperties"
 class="org.apache.cxf.sts.StaticSTSProperties">
 <property name="signaturePropertiesFile"
value="stsKeystore.properties"/>
 <property name="signatureUsername" value="mystskey"/>
 <property name="callbackHandlerClass"
value="demo.wssec.sts.STSCallbackHandler"/>
 <property name="issuer" value="DoubleItSTSIssuer"/>
 </bean>
 ...
</beans>

CHAPTER 9. THE SECURITY TOKEN SERVICE

113

Figure 9.3. Configuring TokenValidateOperation

TokenValidateOperation

Token Providers Token Validators

Plug-in framework

You can inject various plug-ins into the TokenValidateOperation instance in order to customize the
behavior of the Validate operation. The following properties can be set on the
TokenValidateOperation class:

tokenValidators

Specifies a list of token validators, where each token validator is capable of validating tokens of a
specific type. Whenever an STS client asks the Validate operation to validate a token of a specific
type, the TokenValidateOperation class iterates over all of the token validators specified by this
property, asking each of them whether they can handle the required token type (by invoking the
canHandle() method on each token validator).

The available token validators are described in the section called “Token validators”.

stsProperties

References a bean that encapsulates generic configuration properties for the STS (normally an
instance of StaticSTSProperties). This configuration data mainly consists of the details needed
to access a signing certificate and an encrypting certificate.

services

(Only relevant, if token transformation is requested) Specifies a list of known services and their
corresponding token requirements. This property must be set, if you want to support the AppliesTo
policy in a token request. For details, see Section 9.4, “Enabling AppliesTo in the STS”.

tokenProviders

(Only relevant, if token transformation is requested) Specifies a list of token providers, where each
token provider is capable of generating tokens of a specific type.

For details of token transformation, see Section 9.5.3, “Token Transformation across Realms”.

Token validators

The Apache CXF STS currently provides the following token validator implementations:

the section called “SAMLTokenValidator”

the section called “UsernameTokenValidator”

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

114

the section called “X509TokenValidator”

the section called “SCTValidator”

SAMLTokenValidator

A registered SAMLTokenValidator instance is triggered to validate a token, if the received token is a
SAML assertion and its token type is one of the following:

Token Type URIs handled by the SAMLTokenValidator

urn:oasis:names:tc:SAML:1.0:assertion

urn:oasis:names:tc:SAML:2.0:assertion

Validating a SAML token consists, essentially, of verifying the signature on the SAML token and checking
that the signer is trusted (the SAML token must be signed, otherwise it cannot be validated). In outline, a
typical signed SAML 2.0 token has a structure like the following:

The SAMLTokenValidator class uses the following algorithm to validate the received SAML token:

1. The SAML assertion is first checked, to ensure that it is well-formed.

2. If the assertion is not signed, it is rejected.

<saml2:Assertion xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"
 ID="_181835fb981efecaf71d80ecd5fc3c74"
 IssueInstant="2011-05-09T09:36:37.359Z" Version="2.0">
 <saml2:Issuer> ... </saml2:Issuer>
 <saml2:Subject> ... </saml2:Subject>
 <saml2:Conditions NotBefore=" ... " NotOnOrAfter=" ... "/>
 ...
 <Signature:Signature
xmlns:Signature="http://www.w3.org/2000/09/xmldsig#"
 xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <!-- Details of the signing algorithm used -->
 </SignedInfo>
 <SignatureValue>
 <!-- The signature value -->
 </SignatureValue>
 <KeyInfo>
 <X509Data>
 <X509SubjectName> ... </X509SubjectName>
 <X509Certificate>
 <!-- The certificate that can decrypt the signature
value -->
 </X509Certificate>
 </X509Data>
 </KeyInfo>
 </Signature:Signature>
</saml2:Assertion>

CHAPTER 9. THE SECURITY TOKEN SERVICE

115

3. The signature is checked, using the X.509 certificate embedded in the assertion's signature. If
the signature is verified, this proves that whoever signed the SAML token is in possession of the
private key corresponding to the embedded X.509 certificate.

4. The embedded X.509 certificate is checked to make sure that it is trusted. The validator looks up
the trusted certificates stored in the STS properties signature trust store (as configured by the
signaturePropertiesFile property or the signatureCrypto property on the
StaticSTSProperties object—see Section 9.1.6, “Configuring STS Properties”) and checks
that the certificate is either present in the trust store or is signed by a private key corresponding
to one of the certificates in the trust store (certificate chaining).

5. If the subjectConstraints property is set on the SAMLTokenValidator instance, the
validator checks that the Subject DN string from the embedded X.509 certificate matches one of
the specified regular expressions. If there is no match, the SAML assertion is rejected.

This optional feature gives you more fine-grained control over which signing certificates to trust.

One of the most important configuration settings for SAMLTokenValidator is made indirectly, by
specifying the signature trust store for the parent TokenValidateOperation instance. The signature
trust store is usually configured by setting the signaturePropertiesFile property on the
StaticSTSProperties bean, and then injecting the StaticSTSProperties bean into the
TokenValidateOperation instance. For example, see Example 9.2, “Configuring the STS Validate
Operation”.

To configure and customize the SAMLTokenValidator class, you can set some or all of the following
properties:

subjectConstraints

Specifies a list of regular expression strings. If this property is set, the subject DN extracted from the
X.509 embedded in the SAML assertion must match one of the specified regular expressions. If this
property is not set, no test is applied to the subject DN.

validator

You can optionally set this property to customize the step that checks whether or not the embedded
X.509 certificate is trusted or not. By default, the WSS4J SignatureTrustValidator class is
used.

samlRealmCodec

If you want to use realms with SAML tokens, you must implement the SAMLRealmCodec interface
and inject an instance into this property. The purpose of the SAML realm codec is to assign a realm
to the SAML token, based on the contents of the SAML assertion. No SAML realm codec is set by
default.

For more details about using realms with the STS, see Section 9.5, “Enabling Realms in the STS”.

UsernameTokenValidator

A registered UsernameTokenValidator instance is triggered to validate a token, if the received token
can be parsed as a UsernameToken.

Validating a WSS UsernameToken consists, essentially, of checking that the client has supplied the
correct password for the username. This implies that the STS server must be configured with a database
of usernames and passwords, so that it can check the UsernameToken credentials.

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

116

The WSS4J library provides two alternative validator implementations for validating UsernameToken
credentials, as follows:

UsernameTokenValidator

(Default) This WSS4J validator implementation uses a CallbackHandler object to look up
passwords, where the callback handler, is specified by setting the callbackHandler property on
the StaticSTSProperties object—see Section 9.1.6, “Configuring STS Properties”.

To use this validator, you must provide your own CallbackHandler implementation. For example,
see the section called “STS callback handler ”

JAASUsernameTokenValidator

This WSS4J validator implementation integrates password lookup with JAAS, so that the
UsernameToken credentials are checked using a JAAS login module. In particular, by configuring an
appropriate JAAS login module, you could integrate the UsernameToken validator with an LDAP
database.

To use this token validator, create an instance of JAASUsernameTokenValidator and inject it into
the validator property of the UsernameTokenValidator bean.

It is also possible to add support for realms, by implementing the UsernameTokenRealmCodec
interface and registering it with the UsernameTokenValidator bean—for details, see Section 9.5,
“Enabling Realms in the STS”.

X509TokenValidator

A registered X509TokenValidator instance is triggered to validate a token, if the received token can
be parsed as a BinarySecurityToken type.

Validating an X.509 token (encoded as a BinarySecurityToken in Base-64 encoding) consists of
checking that the received certificate is trusted.

The default validator used by the X509TokenValidator class is the WSS4J
SignatureTrustValidator, which checks that the X.509 certificate is either present in the trust store
or is signed by a private key corresponding to one of the certificates in the trust store (certificate
chaining). The trust store that is used for this purpose is the signature trust store on the
StaticSTSProperties object—see Section 9.1.6, “Configuring STS Properties”.

SCTValidator

A registered SCTValidator instance is triggered to validate a token, if the received token can be
parsed as a SecurityContextToken type and belongs to one of the following namespaces:

Namespaces handled by SCTValidator

http://schemas.xmlsoap.org/ws/2005/02/sc

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512

CHAPTER 9. THE SECURITY TOKEN SERVICE

117

The SCTValidator is used to validate security context tokens in the context of WS-
SecureConversation sessions, which is currently not covered by this documentation.

Sample configuration

Example 9.2, “Configuring the STS Validate Operation” shows an example of how to configure the STS
Validate operation. In this example, the TokenValidateOperation class is configured to use a
SAMLTokenValidator token validator.

Example 9.2. Configuring the STS Validate Operation

9.1.5. Customizing the Cancel Operation

TokenCancelOperation

Figure 9.4, “Configuring TokenCancelOperation” shows an overview of the components that are involved
in the Cancel operation.

<beans ... >
 ...
 <bean id="utSTSProviderBean"

class="org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvi
der">
 ...
 <property name="validateOperation" ref="utValidateDelegate"/>
 </bean>
 ...
 <bean id="utValidateDelegate"
 class="org.apache.cxf.sts.operation.TokenValidateOperation">
 <property name="tokenValidators" ref="utSamlTokenValidator"/>
 <property name="stsProperties" ref="utSTSProperties"/>
 </bean>
 ...
 <bean id="utSamlTokenValidator"
 class="org.apache.cxf.sts.token.validator.SAMLTokenValidator">
 </bean>
 ...
 <bean id="utSTSProperties"
 class="org.apache.cxf.sts.StaticSTSProperties">
 <property name="signaturePropertiesFile"
value="stsKeystore.properties"/>
 <property name="signatureUsername" value="mystskey"/>
 <property name="callbackHandlerClass"
value="demo.wssec.sts.STSCallbackHandler"/>
 <property name="issuer" value="DoubleItSTSIssuer"/>
 </bean>
 ...
</beans>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

118

Figure 9.4. Configuring TokenCancelOperation

TokenCancelOperation

StaticSTSProperties

Token Cancellers
Plug-in framework

The following property can be set on the TokenCancelOperation class:

tokencancellers

Specifies a list of token cancellers, where each token canceller is capable of canceling tokens of a
particular type. Currently, the only token canceller implementation provided is the SCTCanceller,
for canceling WS-SecureConversation tokens.

SCTCanceller

The SCTCanceller token canceller is used in the context of WS-SecureConversation to cancel security
context tokens.

A registered SCTCanceller instance is triggered to cancel a token, if the token namespace specified by
the requesting STS client is one of the following:

Namespaces handled by the SCTCanceller

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512

http://schemas.xmlsoap.org/ws/2005/02/sc

You can optionally set the following property on an SCTCanceller instance:

verifyProofOfPossession

When the verifyProofOfPossession flag is enabled, only the owner of the security context token
is allowed to cancel the token. To prove possession of the token, the client must demonstrate that it
knows the secret key associated with the security context token. The client demonstrates knowledge
of the key by signing some part of the SOAP message using the secret key.

Default is true.

Sample configuration of SCTCanceller

CHAPTER 9. THE SECURITY TOKEN SERVICE

119

Example 9.3, “Configuring the STS Cancel Operation” shows an example of how to configure the STS
Cancel operation. In this example, the TokenCancelOperation class is configured to use an
SCTCanceller token canceller.

Example 9.3. Configuring the STS Cancel Operation

9.1.6. Configuring STS Properties

Overview

The STS properties are a general collection of properties, used for various purposes in the STS. In
particular, some of the properties are used to load resources for the STS, such as a signing key and an
encryption key.

The STS properties are encapsulated in a StaticSTSProperties instance (which implements the
STSPropertiesMBean interface) and can be injected into the various operation implementations
(TokenIssueOperation, TokenValidateOperation, and so on).

<beans ... >
 ...
 <bean id="utSTSProviderBean"

class="org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvi
der">
 <property name="cancelOperation" ref="utCancelDelegate"/>
 ...
 </bean>

 <bean id="utCancelDelegate"
 class="org.apache.cxf.sts.operation.TokenCancelOperation">
 <property name="tokencancellers" ref="utSctCanceller"/>
 ...
 <property name="stsProperties" ref="utSTSProperties"/>
 </bean>
 ...
 <bean id="utSctCanceller"
 class="org.apache.cxf.sts.token.canceller.SCTCanceller">
 <property name="verifyProofOfPossession" value="false"/>
 </bean>
 ...
 <bean id="utSTSProperties"
 class="org.apache.cxf.sts.StaticSTSProperties">
 <property name="signaturePropertiesFile"
value="stsKeystore.properties"/>
 <property name="signatureUsername" value="mystskey"/>
 <property name="callbackHandlerClass"
value="demo.wssec.sts.STSCallbackHandler"/>
 <property name="issuer" value="DoubleItSTSIssuer"/>
 </bean>
 ...
</beans>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

120

What you can configure with STS properties

You can use the STS properties to configure the following aspects of the STS:

the section called “Issuer”

the section called “Callback handler”

the section called “Signing key”

the section called “Encrypting key”

the section called “Realm settings”

Issuer

The issuer is a string that uniquely identifies the issuing STS. The issuer string is normally embedded in
issued tokens and, when validating tokens, the STS normally checks the issuer string value.
Consequently, it is important to use the issuer string in a consistent way, so that the STS can recognize
the tokens that it has issued.

The issuer string is also important in the context of using realms. See Section 9.5, “Enabling Realms in
the STS”.

For example, you can set the issuer string as follows:

Callback handler

The callback handler is a Java class that implements the
javax.security.auth.callback.CallbackHandler interface. The purpose of the callback
handler is to provide any passwords required by the STS. In particular, the callback handler is normally
used to provide the password to access the STS signing key.

For an example of an STS callback handler implementation, see the section called “STS callback
handler ”.

<beans ... >
 ...
 <bean id="utSTSProperties"
 class="org.apache.cxf.sts.StaticSTSProperties">
 ...
 <property name="issuer" value="DoubleItSTSIssuer"/>
 </bean>
 ...
</beans>

<beans ... >
 ...
 <bean id="utSTSProperties"
 class="org.apache.cxf.sts.StaticSTSProperties">
 ...
 <property name="callbackHandlerClass"
value="demo.wssec.sts.STSCallbackHandler"/>
 ...

CHAPTER 9. THE SECURITY TOKEN SERVICE

121

Signing key

The must important use of the STS signing key is for signing SAML tokens, so that WS servers can
establish trust in the issued SAML token. There are several properties available for specifying the signing
key, which allow you to specify the signing key in a variety of different ways and to customize the signing
algorithm. The properties are as follows:

signatureCrypto

Specifies the signing key directly as an
org.apache.ws.security.components.crypto.Crypto instance. This is the most flexible
way of configuring the signing key, but also the most complicated. The
signaturePropertiesFile property offers an easier alternative for specifying the signing key.

signaturePropertiesFile

Specifies the location of a file containing WSS4J keystore properties, that provide access to the
signing key in a Java keystore file. For details of the WSS4J keystore properties that you can set in
this file, see Table 6.2.

signatureUsername

Specifies the alias of the signing key in the specified Java keystore.

signatureProperties

(Optional) By injecting an org.apache.cxf.sts.SignatureProperties instance into this
property, you can fine-tune the signing algorithm used by the STS.

For example, the following example shows how to specify the signing key using the
signaturePropertiesFile property, where the private key with the alias, mystskey, is selected
from the specified Java keystore.

The stsKeystore.properties file typically contains WSS4J keystore properties like the following:

 </bean>
 ...
</beans>

<beans ... >
 ...
 <bean id="utSTSProperties"
 class="org.apache.cxf.sts.StaticSTSProperties">
 <property name="signaturePropertiesFile"
value="stsKeystore.properties"/>
 <property name="signatureUsername" value="mystskey"/>
 ...
 </bean>
 ...
</beans>

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.c
rypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

122

Where the signing key is stored in the stsstore.jks Java keystore file and the stsspass password
unlocks the keystore file.

Encrypting key

The encrypting key is (optionally) used for encrypting issued tokens. It is only necessary to configure the
encrypting key, if the encryptIssuedToken option is set to true on the TokenIssueOperation
instance—see Section 9.1.3, “Customizing the Issue Operation”.

There are several properties available for specifying the encrypting key, which allow you to specify the
encrypting key in a variety of different ways and to customize the encryption algorithm. The properties
are as follows:

encryptionCrypto

Specifies the encryption key directly as an
org.apache.ws.security.components.crypto.Crypto instance. This is the most flexible
way of configuring the encryption key, but also the most complicated. The
encryptionPropertiesFile property offers an easier alternative for specifying the encryption
key.

encryptionPropertiesFile

Specifies the location of a file containing WSS4J keystore properties, that provide access to the
encryption key in a Java keystore file. For details of the WSS4J keystore properties that you can set
in this file, see Table 6.2.

encryptionUsername

Specifies the alias of the encryption key in the specified Java keystore.

encryptionProperties

(Optional) By injecting an org.apache.cxf.sts.service.EncryptionProperties instance
into this property, you can fine-tune the encryption algorithm used by the STS.

Realm settings

The following properties are relevant only when realm support is enabled in the STS (as described in
Section 9.5, “Enabling Realms in the STS”)L

realmParser

(Optional) In the context of enabling realms in the STS, you would inject an
org.apache.cxf.sts.RealmParser instance into this property, to give STS the ability to decide
which realm the current token should be issued in. For more details, see Section 9.5.1, “Issuing
Tokens in Multiple Realms”.

identityMapper

(Optional) In the context of token transformation in the STS, you would inject an
org.apache.cxf.sts.IdentityMapper instance into this property, which has the capability to
map a principal in the context of one realm to the corresponding principal in the context of another
realm. For more details, see Section 9.5.3, “Token Transformation across Realms”.

org.apache.ws.security.crypto.merlin.keystore.password=stsspass
org.apache.ws.security.crypto.merlin.keystore.file=keys/stsstore.jks

CHAPTER 9. THE SECURITY TOKEN SERVICE

123

9.2. STS DEMONSTRATION

9.2.1. Overview of the Demonstration

Overview

The standalone Apache CXF distribution includes an STS demonstration in the following location:

This demonstration illustrates a complete Holder-of-Key scenario, including all of the code for the client,
server, and standalone STS.

The demonstration scenario

Figure 9.5, “STS Demonstration Scenario” shows an overview of the STS demonstration scenario and
the steps required to implement single-sign on in the context of WS-Trust and the STS.

Figure 9.5. STS Demonstration Scenario

STSClient

Client

1

In this Holder-of-Key scenario, there are two main stages involved in invoking an operation on the server:
first the client obtains a single-sign on token (SAML token) from the STS; then the client invokes the
WSDL operation on the server, embedding the SAML token in the SOAP security header.

The client-STS connection

The client-STS connection is used to obtain the single-sign on token (SAML token) from the STS. This
connection is secured by a symmetric binding (for message protection) and messages must include a
UsernameToken (for client authentication).

The symmetric binding is characterized by the fact that only one key pair is required (the STS X.509
certificate and private key) and the symmetric session key is derived from this key pair. To support the
symmetric binding, the client must be configured with the STS X.509 certificate (public key) and the STS
must be configured with the corresponding STS private key.

The UsernameToken credentials, which must accompany the Issue request sent to the STS, are used to
authenticate the client.

The client-server connection

CXFInstallDir/samples/sts

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

124

The client-server connection is established after the client has obtained the single-sign on token from the
STS and is used to invoke the greetMe WSDL operation. This connection is secured by an asymmetric
binding (for message protection and authentication).

The asymmetric binding is characterized by the fact that two key pairs are required: the Initiator token (a
SAML token containing the client X.509 certificate); and the Recipient token (server X.509 certificate and
private key). Both the client key pair and the server key pair are used for message protection.

The SAML token sent by the client contains a copy of the client's X.509 certificate and is used to
authenticate the client (in a Holder-of-Key scenario).

Invocation steps

In the STS demonstration scenario shown in Figure 9.5, “STS Demonstration Scenario”, the client makes
a secure invocation on the server as follows:

1. The secure invocation is initiated when the client calls the greetMe() method.

2. Before sending a request message to the server, the client must ask the STS to issue the token
that will be used for single sign-on. The client delegates this task to the STSClient bean, which
is itself a fully-fledged WS client that can communicate with the STS.

To establish the connection to the STS, the STSClient bean must initialize a symmetric
binding, as follows:

a. The STSClient generates an ephemeral key (the symmetric session key).

b. The STSClient encrypts the ephemeral key using the STS public key (X.509 certificate).

c. The ephemeral key is then used for signing and encrypting the SOAP message parts sent
between the STSClient bean and the STS.

3. The STSClient bean now constructs the RequestSecurityToken (RST) message, which it
sends to the STS. The STSClient embeds the client's X.509 certificate (to be used as the
client's identity in the Holder-of-Key scenario) and the client's UsernameToken credentials (UT)
into the RST message.

The STSClient bean now uses the RST message to invoke the STS Issue operation.

4. When the RST message arrives in the STS, the STS endpoint immediately tries to authenticate
the embedded UsernameToken credentials. If the UsernameToken credentials could not be
authenticated, the message would be rejected.

5. The STS now processes the issue token request. The RST asks the STS to generate a SAML
token, using the client's X.509 certificate as the Holder-of-Key identity. The STS constructs a
RequestSecurityTokenResponse (RSTR) message containing a SAML token, taking care to sign
the generated SAML token using the STS signing key.

6. The STS returns the RSTR message containing the signed SAML token.

7. The client is now ready to send the greetMe request to the server. The signed SAML token that
was issued by the STS is embedded in the SOAP security header of the request message.

8. The first thing that the server does is to check that the SAML token is signed by the STS public
key. To be more precise, what the server actually does is to check whether the SAML token is
signed by any trusted key—that is, any of the public keys that can be found in the

CHAPTER 9. THE SECURITY TOKEN SERVICE

125

servicestore.jks keystore file.

If the SAML token is not signed by a trusted key, the message is rejected, because it is then
impossible to establish trust in the SAML token.

9. The server now performs the Holder-of-Key check, to establish the client's identity (effectively,
authenticating the client).

The X.509 certificate embedded in the SAML token is meant to be the client identity, but the
client must also prove that it possesses the corresponding private key for the certificate, in order
to be authentic. It turns out that, as part of the natural configuration of the asymmetric binding
policy, the client is configured to sign various parts of the SOAP message using the
myclientkey private key. The server therefore checks all of the message's signing keys and if
it finds one that matches the X.509 certificate in the SAML token, it knows that the client is in
possession of the private key.

10. If all of the security checks have been successful, the server now invokes the implementation of
the greetMe WSDL operation.

Single-sign on and scalability

Notice that the client in this scenario is required to hold a copy of the server's X.509 certificate
(myservicekey certificate). The server's certificate must be distributed to the clients using some out-of-
band approach, which creates some extra work when scaling up to a large system.

On the other hand, the server requires absolutely no knowledge whatsoever about the client. It relies
entirely on the STS to establish trust with a client. This is a great advantage for scalability of the system.

9.2.2. STS WSDL Contract

Overview

The STS WSDL contract specifies the address used to contact the STS and the STS WSDL also
specifies the kind of security that applies to incoming connections. In the current demonstration, the STS
requires clients to support the symmetric binding and to authenticate by providing UsernameToken
credentials.

Location of the STS WSDL contract

The STS WSDL contract can be found in the following location:

Parts of the contract

The most important parts of the STS WSDL contract are, as follows:

STS port type—the standard WSDL port type for the STS, as defined the WS-Trust specification.

NOTE

There are some other standard WSDL port types defined in the WSDL file, but
these port types are not used in this demonstration.

CXFInstallDir/samples/sts/wsdl/ws-trust-1.4-service.wsdl

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

126

WSDL binding—the SOAP binding for the STS port type. Policies are enabled by applying them
to various parts of the WSDL binding.

WSDL service and port—the WSDL port element specifies the address of the STS Web service
endpoint.

Binding policy—a WS-Policy element that specifies how connections to the STS must be
secured.

Signed/encrypted parts policies—a WS-Policy element for input messages and a WS-Policy
element for output messages, specifying which parts of the incoming SOAP messages and the
outgoing SOAP messages must be signed and encrypted.

STS port type

The STS port type provides an abstract description of all the WSDL operations supported by the STS.
The STS port type appearing the STS WSDL file is taken directly from the WS-Trust specification. Only
the Issue operation is actually implemented in this demonstration, however.

WSDL binding

The WSDL binding for the STS is a regular SOAP binding (as could be generated using the Apache CXF
wsdl2soap utility), except for the wsp:PolicyReference elements, which are used to apply the
relevant security policies to the binding. Hence, the policy identified by UT_policy is applied to the
whole binding and the Input_policy and the Output_policy are applied respectively to the input
messages and the output messages of each operation.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 targetNamespace="http://docs.oasis-open.org/ws-sx/ws-
trust/200512/"
 xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"
 xmlns:wstrust="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsap10="http://www.w3.org/2006/05/addressing/wsdl"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://www.w3.org/ns/ws-policy"
 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 >
 ...
 <!-- This portType is an example of an STS supporting full protocol -->
 <wsdl:portType name="STS">
 <wsdl:operation name="Cancel"> ... </wsdl:operation>
 <wsdl:operation name="Issue"> ... </wsdl:operation>
 <wsdl:operation name="Renew"> ... </wsdl:operation>
 <wsdl:operation name="Validate"> ... </wsdl:operation>
 <wsdl:operation name="KeyExchangeToken"> ... </wsdl:operation>
 <wsdl:operation name="RequestCollection"> ... </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

CHAPTER 9. THE SECURITY TOKEN SERVICE

127

For full details of how policy references work, see Policies and policy references.

WSDL service and port

The WSDL service and WSDL port elements are used to define the address of the STS endpoint
(specified by the location attribute of soap:address).

Binding policy

The binding policy, UT_policy, defines what kind of security is applied to incoming STS connections.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 ...
 <wsdl:binding name="UT_Binding" type="wstrust:STS">
 <wsp:PolicyReference URI="#UT_policy" />
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="Issue">
 <soap:operation
 soapAction="http://docs.oasis-open.org/ws-sx/ws-
trust/200512/RST/Issue" />
 <wsdl:input>
 <wsp:PolicyReference URI="#Input_policy" />
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <wsp:PolicyReference URI="#Output_policy" />
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="Validate"> ... </wsdl:operation>
 <wsdl:operation name="Cancel"> ... </wsdl:operation>
 <wsdl:operation name="Renew"> ... </wsdl:operation>
 <wsdl:operation name="KeyExchangeToken"> ... </wsdl:operation>
 <wsdl:operation name="RequestCollection"> ... </wsdl:operation>
 </wsdl:binding>
 ...
</wsdl:definitions>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 ...
 <wsdl:service name="SecurityTokenService">
 <wsdl:port name="UT_Port" binding="tns:UT_Binding">
 <soap:address
location="http://localhost:8080/SecurityTokenService/UT" />
 </wsdl:port>
 </wsdl:service>
 ...
</wsdl:definitions>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

128

 ...
 <wsp:Policy wsu:Id="UT_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsap10:UsingAddressing/>
 <sp:SymmetricBinding
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token
 sp:IncludeToken="http://docs.oasis-
open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">
 <wsp:Policy>
 <sp:RequireDerivedKeys />
 <sp:RequireThumbprintReference />
 <sp:WssX509V3Token10 />
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic128 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 <sp:EncryptSignature />
 <sp:OnlySignEntireHeadersAndBody />
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedSupportingTokens
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <wsp:Policy>
 <sp:UsernameToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10 />
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <sp:Wss11
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier />
 <sp:MustSupportRefIssuerSerial />

CHAPTER 9. THE SECURITY TOKEN SERVICE

129

The binding policy defines the STS security policy to be a symmetric binding. This implies that security is
applied at the SOAP message level, where parts of the SOAP payload are liable to be encrypted and/or
signed. Because this is a symmetric binding, the keys used for encrypting and signing in both directions
are derived from a single key, specified by the sp:ProtectionToken element (which is ultimately
configured to be the mystskey private key and X.509 certificate on the STS server). The client is
required to include a WSS UsernameToken in the SOAP security header, which is used by the STS to
authenticate the client.

For a more detailed discussion of the symmetric binding policy, see .

Signed parts and encrypted parts policies

The Input_policy policy is used to specify exactly which parts of an input message should be
encrypted and/or signed by the symmetric session keys. In addition to signing and encrypting the SOAP
body, the standard WS-Addressing SOAP headers are also signed (which protects them from tampering
by third-parties).

 <sp:MustSupportRefThumbprint />
 <sp:MustSupportRefEncryptedKey />
 </wsp:Policy>
 </sp:Wss11>
 <sp:Trust13
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <wsp:Policy>
 <sp:MustSupportIssuedTokens />
 <sp:RequireClientEntropy />
 <sp:RequireServerEntropy />
 </wsp:Policy>
 </sp:Trust13>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 ...
</wsdl:definitions>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 ...
 <wsp:Policy wsu:Id="Input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <sp:Body />
 <sp:Header Name="To"
 Namespace="http://www.w3.org/2005/08/addressing" />
 ...
 </sp:SignedParts>
 <sp:EncryptedParts
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <sp:Body />
 </sp:EncryptedParts>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

130

The Output_policy policy is used to specify exactly which parts of an output message should be
encrypted and/or signed by the symmetric session keys.

9.2.3. Security Token Service Configuration

Overview

Figure 9.6, “Demonstration STS Configuration” shows an overview of how the STS is configured for the
current demonstration.

Figure 9.6. Demonstration STS Configuration

STS

ja xws: end poi nt

Aspects of configuration

 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 ...
</wsdl:definitions>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 ...
 <wsp:Policy wsu:Id="Output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <sp:Body />
 <sp:Header ... />
 ...
 </sp:SignedParts>
 <sp:EncryptedParts
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <sp:Body />
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 ...
</wsdl:definitions>

CHAPTER 9. THE SECURITY TOKEN SERVICE

131

The current demonstration configures the following aspects of the STS:

WSDL contract and security policies—as already discussed in Section 9.2.2, “STS WSDL
Contract”, the policies in the WSDL contract are used to define the type of security that protects
incoming connections to the STS. In particular, it is important that some form of client
authentication is required by these security policies.

STS plug-in configuration—as described in Section 9.1.1, “Overview of the STS”, the STS has a
plug-in architecture. In order to instantiate an STS server, you must assemble and configure the
STS plug-ins that you want to use.

STS signing key—you must configure the STS with its own signing key, which effectively
provides the stamp of authenticity for any tokens issued by the STS.

List of known Web service endpoints—you can optionally install a service plug-in into the STS,
which is used to define a list of known Web service endpoints that can use the STS (see
Section 9.4, “Enabling AppliesTo in the STS”).

JAX-WS endpoint configuration—you must define a Web service endpoint for the STS, which
clients use to connect to the STS. In the JAX-WS endpoint you specify the X.509 certificate and
private key that are used as the protection token in the symmetric binding and you also specify a
callback handler, that accesses the database of UsernameToken credentials for authenticating
clients.

Location of the STS Spring configuration

The STS Spring configuration file can be found in the following location:

STS plug-in configuration

The first part of the wssec-sts.xml Spring configuration file is concerned with instantiating the STS
implementation and specifying the relevant STS plug-ins to use:

CXFInstallDir/samples/sts/src/main/resources/wssec-sts.xml

<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:cxf="http://cxf.apache.org/core"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:test="http://apache.org/hello_world_soap_http"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="
 http://cxf.apache.org/core
 http://cxf.apache.org/schemas/core.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.0.xsd">
 ...
 <bean id="utSTSProviderBean"

class="org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvide

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

132

In the demonstration STS instance, only two STS operations are supported: Issue, implemented by the
utIssueDelegate bean, and Validate, implemented by the utValidateDelegate bean. The
Validate operation is not used in the current demonstration.

The utIssueDelegate bean is configured with the following properties:

tokenProviders

A list of plug-ins that can generate various kinds of token. In this demonstration, this list is initialized
with a single provider, SAMLTokenProvider, which is capable of generating SAML tokens.

services

(Optional) The services property enables you to specify the Web services that are secured by the
STS, by specifying a list of regular expressions that must match the Web service URLs.

stsProperties

The stsProperties specifies some generic configuration settings that are common to many of the
plug-ins in the STS.

STS signing key

The STS signing key—which is used to sign all of the tokens issued by the STS—is specified by setting
the following properties on the StaticSTSProperties class:

signaturePropertiesFile

r">
 <property name="issueOperation" ref="utIssueDelegate"/>
 <property name="validateOperation" ref="utValidateDelegate"/>
 </bean>

 <bean id="utIssueDelegate"
 class="org.apache.cxf.sts.operation.TokenIssueOperation">
 <property name="tokenProviders" ref="utSamlTokenProvider"/>
 <property name="services" ref="utService"/>
 <property name="stsProperties" ref="utSTSProperties"/>
 </bean>

 <bean id="utValidateDelegate"
 class="org.apache.cxf.sts.operation.TokenValidateOperation">
 <property name="tokenValidators" ref="utSamlTokenValidator"/>
 <property name="stsProperties" ref="utSTSProperties"/>
 </bean>

 <bean id="utSamlTokenProvider"
 class="org.apache.cxf.sts.token.provider.SAMLTokenProvider">
 </bean>

 <bean id="utSamlTokenValidator"
 class="org.apache.cxf.sts.token.validator.SAMLTokenValidator">
 </bean>
 ...
</beans>

CHAPTER 9. THE SECURITY TOKEN SERVICE

133

A WSS4J properties file that defines the properties for accessing the keys/stsstore.jks Java
keystore file.

signatureUsername

The alias of the STS signing key in the Java keystore file.

callbackHandlerClass

A callback handler class that returns the password for accessing the STS signing key.

The StaticSTSProperties class is instantiated as the utSTSProperties bean in the wssec-
sts.xml configuration file:

List of known Web service endpoints

The utService bean enables you to specify the Web service endpoints that are known to the STS, as
follows:

The utEndpoints bean instantiates a java.util.List object containing a list of regular expressions
that must match the server's endpoint URL. When a client requests a new token from the STS, it includes
the server's endpoint URL in the request, so that the STS can check whether or not the target endpoint is
a known endpoint.

For more details about how to configure this, see Section 9.4, “Enabling AppliesTo in the STS”.

JAX-WS endpoint configuration

<beans ... >
 ...
 <bean id="utSTSProperties"
 class="org.apache.cxf.sts.StaticSTSProperties">
 <property name="signaturePropertiesFile"
value="stsKeystore.properties"/>
 <property name="signatureUsername" value="mystskey"/>
 <property name="callbackHandlerClass"
value="demo.wssec.sts.STSCallbackHandler"/>
 <property name="issuer" value="DoubleItSTSIssuer"/>
 </bean>
 ...
</beans>

<beans ... >
 ...
 <bean id="utService"
 class="org.apache.cxf.sts.service.StaticService">
 <property name="endpoints" ref="utEndpoints"/>
 </bean>

 <util:list id="utEndpoints">
 <value>http://localhost:(\d)*/SoapContext/SoapPort</value>
 </util:list>
 ...
</beans>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

134

To create a HTTP/SOAP endpoint that listens for incoming connections to the STS, define a
jaxws:element, as follows:

In addition to the usual attributes required for a JAX-WS endpoint, the jaxws:endpoint element
defines properties for accessing the protection token and a reference to a callback handler instance.

Protection token for the symmetric binding

The protection token provides the fundamental basis for the symmetric binding. It is used to generate all
of the sessions keys for the connection. Although you might expect the corresponding properties to be
called something like protection.token, the following properties of jaxws:endpoint are, in fact, used to
specify the protection token:

ws-security.signature.properties

A WSS4J properties file that defines the properties for accessing the keys/stsstore.jks Java
keystore file.

ws-security.signature.username

The alias of the protection token (X.509 certificate and private key pair) in the Java keystore file.

ws-security.callback-handler

A callback handler class that returns the password for accessing the protection token.

It so happens that in this demonstration, the protection token uses the same X.509 certificate and private
key as the STS signing key.

STS callback handler

The jaxws:endpoint element is also configured with a callback handler (through the ws-
security.callback-handler property), as follows:

<beans ... >
 ...
 <jaxws:endpoint id="UTSTS"
 implementor="#utSTSProviderBean"
 address="http://localhost:8080/SecurityTokenService/UT"
 wsdlLocation="wsdl/ws-trust-1.4-service.wsdl"
 xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"
 serviceName="ns1:SecurityTokenService"
 endpointName="ns1:UT_Port">
 <jaxws:properties>
 <entry key="ws-security.callback-handler"
value="demo.wssec.sts.STSCallbackHandler"/>
 <entry key="ws-security.signature.properties"
value="stsKeystore.properties"/>
 <entry key="ws-security.signature.username" value="mystskey"/>
 </jaxws:properties>
 </jaxws:endpoint>
 ...
</beans>

// Java

CHAPTER 9. THE SECURITY TOKEN SERVICE

135

The security callback handler can be used for multiple purposes (for example, see Providing Client
Credentials). In particular, in this demonstration the callback handler on the jaxws:element is used for
the following purposes:

Retrieving the password for the protection tokenthe protection token consists of a private
key/public key pair and a password is needed to access the private key (which is stored in a
Java keystore file).

Retrieving the password for a client's UsernameToken credentialsthe symmetric binding policy in
this demonstration requires the client to send UsernameToken credentials to the STS, for the
purpose of authenticating the client. The callback handler must therefore have access to a
database of UsernameToken credentials, in order to authenticate the incoming UsernameToken
credentials. In this example, just a single UsernameToken credential is supported, with
username, alice, and password, clarinet.

NOTE

In an enterprise security system, it is more likely that you would use an LDAP
server to store the client UsernameToken credentials.

9.2.4. Server WSDL Contract

Overview

The server WSDL contract determines the kind of security policies that are applied to the client-server
connection. In the current demonstration, this connection is secured by an asymmetric binding policy.

package demo.wssec.sts;

import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

public class STSCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException {
 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof WSPasswordCallback) {
 WSPasswordCallback pc = (WSPasswordCallback) callbacks[i];
 if ("mystskey".equals(pc.getIdentifier())) {
 pc.setPassword("stskpass");
 break;
 } else if ("alice".equals(pc.getIdentifier())) {
 pc.setPassword("clarinet");
 break;
 }
 }
 }
 }
}

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

136

A particularly important aspect of this policy is that the InitiatorToken is specified by an
IssuedToken policy element. It is the presence of the IssuedToken element in the policy which
triggers the client to call out to the STS, requesting the STS to issue a SAML token for single sign-on.

Location of the server WSDL contract

The server WSDL contract can be found in the following location:

Parts of the contract

The most important parts of the server WSDL contract are, as follows:

Greeter port type—a simple hello world interface consisting of a single WSDL operation,
greetMe.

WSDL binding—the SOAP binding for the Greeter port type. Policies are enabled by applying
them to various parts of the WSDL binding.

WSDL service and port—the WSDL port element specifies the address of the Greeter Web
service endpoint.

Binding policy—a WS-Policy element that specifies how connections to the server must be
secured.

Signed/encrypted parts policies—a WS-Policy element for input messages and a WS-Policy
element for output messages, specifying which parts of the incoming SOAP messages and the
outgoing SOAP messages must be signed and encrypted.

Greeter port type

The Greeter port type defines the logical interface to the Web service provided by the server, as
follows:

CXFInstallDir/samples/sts/wsdl/hello_world.wsdl

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorld"
targetNamespace="http://apache.org/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://apache.org/hello_world_soap_http"
 xmlns:x1="http://apache.org/hello_world_soap_http/types"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://www.w3.org/ns/ws-policy"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
 xmlns:t="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
 xmlns:wsaw="http://www.w3.org/2005/08/addressing"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 ...
 <wsdl:portType name="Greeter">

CHAPTER 9. THE SECURITY TOKEN SERVICE

137

Binding

The WSDL binding for the Greeter port type is a regular SOAP binding, except for the
wsp:PolicyReference elements, which are used to apply the relevant security policies to the binding.
Hence, the policy identified by AsymmetricSAML2Policy is applied to the whole binding and the
Input_policy and the Output_policy are applied respectively to the input messages and the output
messages of each operation.

For full details of how policy references work, see Policies and policy references.

Service and port

The WSDL service and WSDL port elements are used to define the address of the Greeter WS
endpoint (specified by the location attribute of soap:address).

 <wsdl:operation name="greetMe">
 <wsdl:input message="tns:greetMeRequest"
name="greetMeRequest"/>
 <wsdl:output message="tns:greetMeResponse"
name="greetMeResponse"/>
 </wsdl:operation>

 </wsdl:portType>
 ...
</wsdl:definitions>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 ...
 <wsdl:binding name="Greeter_SOAPBinding" type="tns:Greeter">
 <wsp:PolicyReference URI="#AsymmetricSAML2Policy" />
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="greetMe">
 <soap:operation soapAction="" style="document"/>
 <wsdl:input name="greetMeRequest">
 <soap:body use="literal"/>
 <wsp:PolicyReference URI="#Input_Policy" />
 </wsdl:input>
 <wsdl:output name="greetMeResponse">
 <soap:body use="literal"/>
 <wsp:PolicyReference URI="#Output_Policy" />
 </wsdl:output>
 </wsdl:operation>

 </wsdl:binding>
 ...
</wsdl:definitions>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 ...
 <wsdl:service name="SOAPService">

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

138

Binding policy

The binding policy, AsymmetricSAML2Policy, defines what kind of security is applied to incoming
server connections.

 <wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address
location="http://localhost:9001/SoapContext/SoapPort"/>
 </wsdl:port>
 </wsdl:service>
 ...
</wsdl:definitions>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 ...
 <wsp:Policy wsu:Id="AsymmetricSAML2Policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsam:Addressing wsp:Optional="false">
 <wsp:Policy />
 </wsam:Addressing>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:IssuedToken
 sp:IncludeToken="http://docs.oasis-
open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <sp:RequestSecurityTokenTemplate>
 <t:TokenType>http://docs.oasis-
open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0</t:TokenType>
 <t:KeyType>http://docs.oasis-
open.org/ws-sx/ws-trust/200512/PublicKey</t:KeyType>
 </sp:RequestSecurityTokenTemplate>
 <wsp:Policy>
 <sp:RequireInternalReference />
 </wsp:Policy>
 <sp:Issuer>

<wsaw:Address>http://localhost:8080/SecurityTokenService/
 </wsaw:Address>
 </sp:Issuer>
 </sp:IssuedToken>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token
 sp:IncludeToken="http://docs.oasis-
open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10 />
 <sp:RequireIssuerSerialReference
/>

CHAPTER 9. THE SECURITY TOKEN SERVICE

139

The binding policy defines the Greeter server security policy to be an asymmetric binding. This implies
that security is applied at the SOAP message level, where parts of the SOAP payload are liable to be
encrypted and/or signed. Because this is an asymmetric binding, two keys must be provided:

Initiator token—a SAML token, which has the client's X.509 certificate embedded inside it.
Because the initiator token is defined to be an IssuedToken token, it is actually obtained by the
querying the STS (using an STSClient object).

Recipient token—an X.509 certificate (public key) and private key pair, which is provided by the
server side.

For a more detailed discussion of the asymmetric binding policy, see .

IssuedToken policy

Take a closer look at the IssuedToken policy, which is the IntiatorToken in the server's asymmetric
binding. It is defined as follows:

 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 <sp:OnlySignEntireHeadersAndBody />
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic128 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefIssuerSerial />
 <sp:MustSupportRefThumbprint />
 <sp:MustSupportRefEncryptedKey />
 </wsp:Policy>
 </sp:Wss11>
 <sp:Trust13>
 <wsp:Policy>
 <sp:MustSupportIssuedTokens />
 <sp:RequireClientEntropy />
 <sp:RequireServerEntropy />
 </wsp:Policy>
 </sp:Trust13>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 ...
</wsdl:definitions>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

140

The IssuedToken policy is the key component of WS-Trust. It triggers the client to request an issued
token from the STS. The sp:RequestSecurityTokenTemplate element specifies some elements
that are to be included in the request that is sent to the STS. It includes the following elements:

<t:TokenType>...#SAMLV2.0</t:TokenType>

Indicates that the client wishes the STS to issue a SAML 2.0 token.

<t:KeyType>.../PublicKey</t:KeyType>

Indicates that the client wants the STS to support the Holder-of-Key scenario, where an X.509
certificate (public key) is used to verify the client identity. This implies that the client's X.509 certificate
will be included in the request sent to the STS.

Signed parts and encrypted parts policies

The Input_policy policy is used to specify exactly which parts of an input message should be
encrypted and/or signed by the asymmetric session keys (initiator token and recipient token). In addition
to signing and encrypting the SOAP body, the standard WS-Addressing SOAP headers are also signed
(which protects them from tampering by third-parties).

<sp:IssuedToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <sp:RequestSecurityTokenTemplate>
 <t:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLV2.0</t:TokenType>
 <t:KeyType>http://docs.oasis-open.org/ws-sx/ws-
trust/200512/PublicKey</t:KeyType>
 </sp:RequestSecurityTokenTemplate>
 <wsp:Policy>
 <sp:RequireInternalReference />
 </wsp:Policy>
 <sp:Issuer>

<wsaw:Address>http://localhost:8080/SecurityTokenService/</wsaw:Address>
 </sp:Issuer>
</sp:IssuedToken>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 ...
 <wsp:Policy wsu:Id="Input_Policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:EncryptedParts>
 <sp:Body />
 </sp:EncryptedParts>
 <sp:SignedParts>
 <sp:Body />
 <sp:Header ... />
 ...
 </sp:SignedParts>
 </wsp:All>
 </wsp:ExactlyOne>

CHAPTER 9. THE SECURITY TOKEN SERVICE

141

The Output_policy policy is used to specify exactly which parts of an output message should be
encrypted and/or signed by the asymmetric session keys (initiator token and recipient token).

9.2.5. Server Configuration

Overview

Figure 9.7, “Demonstration Server Configuration” shows an overview of the configuration for the
demonstration server.

Figure 9.7. Demonstration Server Configuration

Server

WSDL

Aspects of configuration

The most important aspects of the server configuration are, as follows:

WSDL contract and security policies—as already discussed in Section 9.2.4, “Server WSDL
Contract”, the policies in the WSDL contract are used to define the type of security that protects
incoming connections to the Greeter server.

 </wsp:Policy>
 ...
</wsdl:definitions>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 ...
 <wsp:Policy wsu:Id="Output_Policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:EncryptedParts>
 <sp:Body />
 </sp:EncryptedParts>
 <sp:SignedParts>
 <sp:Body />
 <sp:Header ... />
 ...
 </sp:SignedParts>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 ...
</wsdl:definitions>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

142

JAX-WS endpoint configuration—in the JAX-WS endpoint you specify the X.509 certificate and
private key that are used as the recipient token in the asymmetric binding and you also specify
the certificate (or certificates) for checking the signature of a SAML token.

Recipient token—is specified by setting the relevant properties in the JAX-WS endpoint
configuration.

Server-side SAML token interceptor—the SAML token interceptor checks the signature of the
SAML token, using the X.509 certificates (public keys) stored in the keystore file referenced by
the ws-security.encryption.properties property.

Server callback handler—is used to provide the passwords for private keys.

Related STS configuration—when setting up a new server, you must remember to add an
appropriate regular expression to the list of known Web service endpoints in the STS, or the STS
will refuse to perform any operations for this server.

JAX-WS endpoint configuration

To create a HTTP/SOAP endpoint that listens for incoming connections to the server, define a
jaxws:element, as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:cxf="http://cxf.apache.org/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
 http://cxf.apache.org/core
 http://cxf.apache.org/schemas/core.xsd
 http://cxf.apache.org/configuration/security
 http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://cxf.apache.org/transports/http-jetty/configuration
 http://cxf.apache.org/schemas/configuration/http-jetty.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 ...
 <jaxws:endpoint id="server"
 implementor="demo.wssec.server.GreeterImpl"
 endpointName="s:SoapPort"
 serviceName="s:SOAPService"
 address="http://localhost:9001/SoapContext/SoapPort"
 wsdlLocation="wsdl/hello_world.wsdl"
 xmlns:s="http://apache.org/hello_world_soap_http">

 <jaxws:properties>
 <entry key="ws-security.signature.username"
value="myservicekey"/>
 <entry key="ws-security.callback-handler"
 value="demo.wssec.server.ServerCallbackHandler"/>

CHAPTER 9. THE SECURITY TOKEN SERVICE

143

In addition to the usual attributes required for a JAX-WS endpoint, the jaxws:endpoint element
defines properties for accessing the recipient token, properties for accessing SAML signature-checking
tokens, and a reference to a callback handler instance.

Recipient token

The recipient token for the asymmetric binding has both a public key part (used for encrypting outgoing
messages) and a private key part (used for signing outgoing messages). These parts of the recipient
token are specified by the following properties on the server's jaxws:endpoint element:

ws-security.signature.properties

A WSS4J properties file that defines the properties for accessing the private key part of the recipient
token.

ws-security.signature.username

The alias of the recipient token (X.509 certificate and private key pair) in the Java keystore file.

ws-security.callback-handler

A callback handler class that returns the password for accessing the private key part of the recipient
token.

ws-security.encryption.properties

A WSS4J properties file that defines the properties for accessing the public key part of the recipient
token.

Server-side SAML token interceptor

The SAML token interceptor is automatically installed in the server, whenever the corresponding security
policy is configured to use the IssuedToken policy. The SAML token interceptor is responsible for
verifying the signature of the SAML token received from the client (initiator token).

Hence, it is necessary to configure one or more trusted certificates that can be used to check the
signature of the SAML token. The SAML token will be rejected unless it is signed by one of the specified
trusted certificates.

As it happens, there is not a dedicated property for specifying these trusted certificates. Instead, the
SAML token interceptor re-uses the ws-security.encryption.properties property. Any trusted
certificates found in the Java keystore file specified by ws-security.encryption.properties will
be used for checking the signature of the SAML token. The configuration of the SAML token interceptor
is thus the very same configuration that was used to specify the public key part of the recipient token:

 <entry key="ws-security.signature.properties"
value="serviceKeystore.properties"/>
 <entry key="ws-security.encryption.properties"
value="serviceKeystore.properties"/>
 </jaxws:properties>
 </jaxws:endpoint>
 ...
</beans>

<jaxws:endpoint ... >

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

144

In practice, configuring the SAML token interceptor consists of using a Java keystore utility to add the
trusted STS X.509 certificate to the Java keystore file that is referenced by ws-
security.encryption.properties.

Server callback handler

The jaxws:endpoint element is also configured with a callback handler (through the ws-
security.callback-handler property), as follows:

In this case, the security callback handler is used solely for the purpose of retrieving the password for
accessing the private key part of the recipient token (which has the alias, myservicekey).

Related STS configuration

When setting up a server, you must remember to add an appropriate regular expression to the list of
known Web service endpoints in the STS. For example, as discussed in the context of configuring the
STS, you need to include a regular expression that matches the server's endpoint URL, which is set in
the wssec-sts.xml file as follows:

 <jaxws:properties>
 ...
 <entry key="ws-security.encryption.properties"
value="serviceKeystore.properties"/>
 </jaxws:properties>
</jaxws:endpoint>

// Java
package demo.wssec.server;

import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

public class ServerCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException {
 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof WSPasswordCallback) { // CXF
 WSPasswordCallback pc = (WSPasswordCallback) callbacks[i];
 if ("myservicekey".equals(pc.getIdentifier())) {
 pc.setPassword("skpass");
 break;
 }
 }
 }
 }
}

<beans ... >
 ...
 <bean id="utService"

CHAPTER 9. THE SECURITY TOKEN SERVICE

145

9.2.6. Client Configuration

Overview

Figure 9.8, “Demonstration Client Configuration” shows an overview of the configuration for the
demonstration client.

Figure 9.8. Demonstration Client Configuration

STSClient

Client

WSDL

WSDL

Aspects of configuration

The most important aspects of the client configuration are, as follows:

Configure the connection to the STS (STSClient)—the client uses an STSClient instance to
connect to the STS. The STSClient instance is a complete client in itself, requiring you to
specify the STS Web service address and to specify the relevant security properties for the
connection.

Configure the connection to the server—the client must also be configured to connect to the
server, including the relevant security properties for the connection and a reference to the
STSClient instance.

Client callback handler—is used to provide the passwords for private keys and to provide the
passwords for UsernameToken credentials.

Related STS configuration—you must ensure that the client's UsernameToken credentials are
made available to the STS, so that the client can be authenticated.

Configure the connection to the STS

You must configure the client so that it is capable of contacting the STS to retrieve an issued SAML
token. To enable the STS connection, initialize the client's ws-security.sts.client property with an
STSClient instance, as follows:

 class="org.apache.cxf.sts.service.StaticService">
 <property name="endpoints" ref="utEndpoints"/>
 </bean>

 <util:list id="utEndpoints">
 <value>http://localhost:(\d)*/SoapContext/SoapPort</value>
 </util:list>
 ...
</beans>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

146

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:cxf="http://cxf.apache.org/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
 http://cxf.apache.org/core
 http://cxf.apache.org/schemas/core.xsd
 http://cxf.apache.org/configuration/security
 http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 ...
 <jaxws:client name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">
 <jaxws:properties>
 ...
 <entry key="ws-security.sts.client">
 <bean class="org.apache.cxf.ws.security.trust.STSClient">
 <constructor-arg ref="cxf"/>
 <property name="wsdlLocation"

value="http://localhost:8080/SecurityTokenService/UT?wsdl"/>
 <property name="serviceName"
 value="{http://docs.oasis-open.org/ws-sx/ws-
trust/200512/}SecurityTokenService"/>
 <property name="endpointName"
 value="{http://docs.oasis-open.org/ws-sx/ws-
trust/200512/}UT_Port"/>
 <property name="properties">
 <map>
 <entry key="ws-security.username"
value="alice"/>
 <entry key="ws-security.callback-handler"

value="demo.wssec.client.ClientCallbackHandler"/>
 <entry key="ws-security.encryption.properties"
 value="clientKeystore.properties"/>
 <entry key="ws-security.encryption.username"
value="mystskey"/>
 <entry key="ws-security.sts.token.username"
value="myclientkey"/>
 <entry key="ws-security.sts.token.properties"
 value="clientKeystore.properties"/>
 <entry key="ws-security.sts.token.usecert"
value="true"/>
 </map>
 </property>
 </bean>
 </entry>

CHAPTER 9. THE SECURITY TOKEN SERVICE

147

Besides the usual properties required for connecting to a Web service endpoint (specified by the
wsdlLocation, serviceName, and endpointName properties), you must set the following security-
related properties:

ws-security.username

In this demonstration, the STS is configured to authenticate the client using UsernameToken
credentials. This property specifies the username part of the UsernameToken credentials.

ws-security.callback-handler

The callback handler class provides both private key passwords and UsernameToken passwords.

ws-security.encryption.properties

A WSS4J properties file that defines the properties for accessing the STS X.509 certificate. This
certificate is needed by the symmetric binding protocol, which uses it to generate a symmetric session
key.

ws-security.encryption.username

The alias of the X.509 certificate referenced by ws-security.encryption.properties.

ws-security.sts.token.properties

A WSS4J properties file that defines the properties for accessing the client's X.509 certificate. This is
the certificate that is used to identify the client to the server in the Holder-of-Key scenario. This token
gets embedded in the request that is sent to the STS (and is also embedded in the SAML token
returned from the STS).

ws-security.sts.token.username

The alias of the STS X.509 certificate referenced by ws-security.sts.token.properties.

ws-security.sts.token.usecert

Setting this boolean property to true indicates that the specified token should be included in the
request sent to the STS (the RequestSecurityToken message).

Configure the connection to the server

To configure the connection to the server, set the relevant properties directly on the JAX-WS client bean,
as follows:

 </jaxws:properties>
 </jaxws:client>
 ...
</beans>

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
 ...
 <jaxws:client name="{http://apache.org/hello_world_soap_http}SoapPort"
createdFromAPI="true">
 <jaxws:properties>
 <entry key="ws-security.signature.properties"
value="clientKeystore.properties"/>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

148

Because the client-server connection uses an asymmetric binding (with an issued token), the following
aspects of security need to be configured.

Configure the client's signing key (also used for decrypting message parts received from the server),
using the following properties:

ws-security.signature.properties

A WSS4J properties file that defines the properties for accessing the client's signing key.

ws-security.signature.username

The alias of the client's signing key in the corresponding Java keystore file.

ws-security.callback-handler

The callback handler instance that can return the password for accessing the client's signing key.

Configure the client's encryption key (also used for verifying signatures on message parts received from
the server), using the following properties:

ws-security.encryption.properties

A WSS4J properties file that defines the properties for accessing the client's encryption key (X.509
certificate).

ws-security.encryption.username

The alias of the client's encryption key in the corresponding Java keystore file.

Configure the client to support the IssuedToken policy by setting the ws-security.sts.client
property, as already described in the section called “Configure the connection to the STS”.

Client callback handler

The client callback handler class is multi-purpose. It is capable of returning both passwords for private
keys and the password part of UsernameToken credentials. In this demonstration, the client callback
handler class is defined as follows:

 <entry key="ws-security.signature.username"
value="myclientkey"/>
 <entry key="ws-security.callback-handler"
 value="demo.wssec.client.ClientCallbackHandler"/>
 <entry key="ws-security.encryption.properties"
value="clientKeystore.properties"/>
 <entry key="ws-security.encryption.username"
value="myservicekey"/>
 <entry key="ws-security.sts.client">
 <bean class="org.apache.cxf.ws.security.trust.STSClient">
 ...
 </bean>
 </entry>
 </jaxws:properties>
 </jaxws:client>
 ...
</beans>

CHAPTER 9. THE SECURITY TOKEN SERVICE

149

Related STS configuration

In this demonstration, the STS authenticates the client by checking the client's UsernameToken
credentials. Hence, you must ensure that the client's UsernameToken credentials are known to the STS.
In this demonstration, the known UsernameToken credentials are embedded in the code of the STS
callback handler class, the section called “STS callback handler ” .

9.2.7. Build and Run the Demonstration

Steps to run the demonstration

To build and run the STS demonstration, perform the following steps:

1. Open a command prompt and change directory to the CXFInstallDir/samples/sts
directory. Enter the following command to build the demonstration:

2. To start the STS process, enter the following command:

// Java
package demo.wssec.client;

import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

public class ClientCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException {
 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof WSPasswordCallback) {
 WSPasswordCallback pc = (WSPasswordCallback) callbacks[i];
 if ("myclientkey".equals(pc.getIdentifier())) {
 pc.setPassword("ckpass");
 break;
 } else if ("alice".equals(pc.getIdentifier())) {
 pc.setPassword("clarinet");
 break;
 } else if ("bob".equals(pc.getIdentifier())) {
 pc.setPassword("trombone");
 break;
 } else if ("eve".equals(pc.getIdentifier())) {
 pc.setPassword("evekpass");
 break;
 }
 }
 }
 }
}

mvn clean install

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

150

3. To start the WS server process, open a new command prompt, change directory to the
CXFInstallDir/samples/sts directory, and enter the following command:

4. To run the WS client, open a new command prompt, change directory to the
CXFInstallDir/samples/sts directory, and enter the following command:

Because CXF logging has been enabled, you should see the SOAP messages being logged to
each of the command windows. If the client runs successfully, you should see the following
message in the client command window:

9.3. ENABLING CLAIMS IN THE STS

Demonstration location

The sample code in this section is taken from an STS system test. If you download and install the source
distribution of Apache CXF, you can find the system test Java code under the following directory:

And the system test resource files under the following directory:

What is a claim?

A claim is an additional piece of data (for example, e-mail address, telephone number, and so on) about
a principal, which can be included in a token along with the basic token data. Because this additional
data is subject to signing, verification, and authentication, along with the rest of the token, the recipient
can be confident that this data is true and accurate.

Requesting claims in an IssuedToken policy

If you want to issue a token with claims embedded, you can add a WS-Trust Claims element to the
RequestSecurityTokenTemplate part of the issued token policy, as follows:

mvn -Psts

mvn -Pserver

mvn -Pclient

...

Server responded with: Hello YourName

CXFInstallDir/services/sts/systests/advanced/src/test/java/org/apache/cxf/
systest/sts

CXFInstallDir/services/sts/systests/advanced/src/test/resources/org/apache
/cxf/systest/sts

<sp:IssuedToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <sp:RequestSecurityTokenTemplate>

CHAPTER 9. THE SECURITY TOKEN SERVICE

151

By adding the Claims element to the RequestSecurityTokenTemplate element, you ensure that
the STS client includes the specified claims in the token issue request that is sent to the STS. The STS
responds to this request by retrieving the relevant claim data for the principal and embedding it into the
issued token.

Processing claims

Figure 9.9, “Processing Claims” shows an overview of the steps that the STS performs to process claims
received in an issue token request.

Figure 9.9. Processing Claims

g et Cl a imPa rse rs ()

TokenIssueOperation

ClaimsManager

canHandleT oken()

r e t r i ev e C la i m V al u es ()

1

4

Steps to process claims

The STS processes claims as follows:

1. One of the first things the TokenIssueOperation must do is to prepare for parsing the
incoming request message.

 <t:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLV1.1</t:TokenType>
 <t:KeyType>http://docs.oasis-open.org/ws-sx/ws-
trust/200512/PublicKey</t:KeyType>
 <t:Claims Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity"

xmlns:ic="http://schemas.xmlsoap.org/ws/2005/05/identity">
 <ic:ClaimType
Uri="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/email"/>
 <ic:ClaimType
Uri="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname"/>
 <ic:ClaimType
Uri="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/phone"
 Optional="true"/>
 </t:Claims>
 </sp:RequestSecurityTokenTemplate>
 <wsp:Policy>
 <sp:RequireInternalReference />
 </wsp:Policy>
 <sp:Issuer>

<wsaw:Address>http://localhost:8080/SecurityTokenService/UT</wsaw:Address>
 </sp:Issuer>
</sp:IssuedToken>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

152

If a ClaimsManager object is registered with the TokenIssueOperation, the
TokenIssueOperation invokes getClaimsParsers on the ClaimsManager instance, to
obtain the list of available claims parsers.

2. The TokenIssueOperation initiates parsing of the request message by invoking the
parseRequest method on the RequestParser object, passing the list of ClaimsParser
objects as one of the arguments to parseRequest. This ensures that the RequestParser is
capable of parsing any Claims elements that might appear in the request message.

3. If no claims parsers are configured on the claims manager (so that list of claims parsers is null),
the RequestParser tries the IdentityClaimsParser claims parser by default. But the
IdentityClaimsParser is applied to the Claims element, only if the Dialect attribute of
the Claims element is equal to the identity claims dialect URI.

4. After parsing the request message, the TokenIssueOperation tries to find the appropriate
token provider, by calling canHandleToken on each of the registered token providers.

5. In the current scenario, we assume that the client has requested the STS to issue a SAML
token, so that the SAMLTokenProvider is selected to issue the token. The
TokenIssueOperation invokes createToken on the SAMLTokenProvider.

6. Before proceeding to issue the token, the SAMLTokenProvider checks whether handlers are
available to process all of the non-optional claims. If the required claim handlers are not
available, an exception is raised and the SAML token is not issued.

For example, in the identity claims dialect, a claim can be tagged as non-optional by setting the
Optional attribute to false on a ClaimsType element in the IssuedToken policy, as
follows:

IMPORTANT

In the identity claims dialect, all claims are required (that is, non-optional) by
default.

7. When specifying the list of SAML attribute statement providers explicitly, it is good practice to
include the DefaultAttributeStatementProvider instance in the list, so that the default
token issuing behavior of the SAMLTokenProvider is preserved.

8. In this example, the CustomAttributeStatementProvider encapsulates the code that
embeds the requisite claim values into the issued SAML token. The SAMLTokenProvider
invokes the getStatement method to obtain the SAML attribute statements containing the
required claim values.

9. The CustomAttributeStatementProvider obtains the claim values for the current
principal, by invoking the retrieveClaimValues method on the ClaimsManager object.

<t:Claims Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity"
 xmlns:ic="http://schemas.xmlsoap.org/ws/2005/05/identity">
 <ic:ClaimType
Uri="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/email"
 Optional="false"/>
 ...
</t:Claims>

CHAPTER 9. THE SECURITY TOKEN SERVICE

153

For example, if the request message included claims for the principal's e-mail address and
phone number, it is at this point that the STS actually retrieves the principal's e-mail address and
phone number.

10. The ClaimsManager retrieves the claim values by iterating over all of the claims handlers,
where each claims handler returns data for as many claims as it can.

A claims handler implementation is effectively an intermediate layer between the
ClaimsManager and a database. The database stores secure data about each user—such as,
address, e-mail, telephone number, department, and so on—which can be used to populate
claim values. For example, the database could be an LDAP server and Apache CXF provides an
LdapClaimsHandler class for this scenario—see the section called “The
LdapClaimsHandler”.

11. After retrieving all of the claim values, the CustomAttributeStatementProvider proceeds
to repackage the claim values as attribute statements, so that they can be embedded in the
issued SAML token.

Claim dialects

In order to be as extensible and flexible as possible, the WS-Trust claims mechanism is designed to be
pluggable and does not define the syntax of claims. That is, the contents of a WS-Trust Claims element
is left unspecified by WS-Trust.

The detailed syntax of claims can be defined in third-party specifications, by defining a claim dialect. The
Claim element allows you to specify the claim dialect in the Dialect attribute, as follows:

You can then use the specified dialect to specify claims inside the Claims element.

For example, some of the claim dialects defined by the Oasis open standards foundation are as follows:

Identity claim dialect—defines the kind of data that is typically associated with a user account
(for example, address, e-mail, telephone number) and is specified by the Identity Metasystem
Interoperability Specification.

Common claim dialect—(not supported) defines data that is used in WS-Federation and is
specified by the WS-Federation Specification. Apache CXF does not provide an implementation
of this claims dialect, but you could plug in a custom implementation to the STS, if you wish.

XSPA claim dialect—(not supported) defines a claim dialect that is used in Cross-Enterprise
Security and Privacy Authorization XSPA Specification, which is a security standard used in the
context of healthcare organizations. Apache CXF does not provide an implementation of this
claims dialect, but you could plug in a custom implementation to the STS, if you wish.

Identity claim dialect

The identity claim dialect is supported by default in Apache CXF. It enables you to request the kind of
data fields that are typically stored under a user's LDAP account—for example, address details,
telephone number, department, role, and so on. The identity claim dialect is associated with the following
dialect URI:

<t:Claims Dialect="DialectURI" xmlns:DialectPrefix="DialectURI">
 ...
</t:Claims>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

154

https://www.oasis-open.org/
http://docs.oasis-open.org/imi/identity/v1.0/os/identity-1.0-spec-os.html#_Toc229451870
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html#_Toc223174992
http://docs.oasis-open.org/xspa/ws-trust-v1.0/xspa-ws-trust-profile-os.html#_Toc269126282

You can specify identity claims using the following syntax:

The identity claim dialect defines a single element, ic:ClaimType, which has the following attributes:

Uri

Specifies the type of claim value that you want to include in the issued token. For example, the
ClaimTypeURI might identify an e-mail address claim value, a phone number claim value, and so on.

Optional

Specifies whether or not this particular claim is optional or not. Setting to true means that the STS
must be capable of populating the issued token with the claim value for the principal, otherwise the
token cannot be issued. Default is true.

Claim type URIs for the identity claim dialect

The identity claim dialect supports the following claim type URIs:

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname

The subject's first name.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname

The subject's surname.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

The subject's e-mail address.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/streetaddress

The subject's street address.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/locality

The subject's locality, which could be a city, county, or other geographic region.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/stateorprovince

The subject's state or province.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/postalcode

The subject's postal code.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/country

http://schemas.xmlsoap.org/ws/2005/05/identity

<t:Claims Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity"
 xmlns:ic="http://schemas.xmlsoap.org/ws/2005/05/identity">
 <ic:ClaimType Uri="ClaimTypeURI" Optional="[true|false]"/>
 ...
</t:Claims>

CHAPTER 9. THE SECURITY TOKEN SERVICE

155

The subject's country.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/homephone

The subject's home phone number.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/otherphone

The subject's secondary phone number (for example, at work).

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/mobilephone

The subject's mobile phone number.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dateofbirth

The subject's date of birth.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/gender

The subject's gender.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/privatepersonalidentifi
er

The subject's Private Personal Identifier (PPID). The PPID is described in detail in the Identity
Metasystem Interoperability Oasis standard.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/webpage

The subject's Web page.

Claims parsers

Because WS-Trust claims have a pluggable architecture, you need a pluggable architecture for parsing
claims. The STS allows you to configure a list of claims parsers to customize support for claims.
Typically, you register a claims parser for each claim dialect you want to support.

The IdentityClaimsParser

By default, the STS provides a single claims parser implementation: the identity claims parser,
org.apache.cxf.sts.claims.IdentityClaimsParser, which can parse the identity claim
dialect.

You can optionally configure the identity claims parser explicitly, by registering it with the
ClaimsManager instance. But this is not strictly necessary, because the request parser automatically
defaults to the identity claims parser, even if you have not explicitly configured it.

Implementing a custom claims parser

You can extend the claims parsing capability of the STS by implementing a custom claims parser. For
this, you would define a custom Java class that implements the following Java interface:

// Java
package org.apache.cxf.sts.claims;

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

156

Claims handlers

The purpose of a claims handler is to retrieve the requested claim values for the specified principal.
Typically, a claims handler is an intermediate layer that looks up claim values in persistent storage.

For example, suppose that an incoming request includes claims for an e-mail address and a phone
number (the request claims). When the STS is ready to start populating the issued token with claim
values, it calls on the registered claims handlers to retrieve the required claim values for the specified
principal. If the principal is the user, Alice, for example, the claims handler would contact a database to
retrieve Alice's e-mail address and phone number.

The LdapClaimsHandler

Apache CXF provides the claims handler, org.apache.cxf.sts.claims.LdapClaimsHandler,
which is capable of retrieving claim values from an LDAP server.

Implementing a custom claims handler

You can provide a custom claims handler by defining a class that implements the following Java
interface:

import org.w3c.dom.Element;

public interface ClaimsParser {

 /**
 * @param claim Element to parse claim request from
 * @return RequestClaim parsed from claim
 */
 RequestClaim parse(Element claim);

 /**
 * This method indicates the claims dialect this Parser can handle.
 *
 * @return Name of supported Dialect
 */
 String getSupportedDialect();

}

// Java
package org.apache.cxf.sts.claims;

import java.net.URI;
import java.security.Principal;
import java.util.List;

import javax.xml.ws.WebServiceContext;

/**
 * This interface provides a pluggable way to handle Claims.
 */
public interface ClaimsHandler {

 List<URI> getSupportedClaimTypes();

CHAPTER 9. THE SECURITY TOKEN SERVICE

157

Configuring the ClaimsManager

The ClaimsManager class encapsulates most of the functionality required to support claims and you
must configure it if you want to support claims in the STS. In particular, the claims manager encapsulates
a list of claims parsers and a list of claims handlers. In practice, if you are using just the identity claims
dialect, there is no need to configure the list of claims parsers explicitly; it is sufficient to configure just the
list of claims handlers.

For example, the following Spring XML fragment shows how to register a ClaimsManager instance with
the TokenIssueOperation bean, where the claims manager is initialized with a claims handler list
containing one claims handler, CustomClaimsHandler.

 ClaimCollection retrieveClaimValues(
 RequestClaimCollection claims,
 ClaimsParameters parameters);

 @Deprecated
 ClaimCollection retrieveClaimValues(
 Principal principal,
 RequestClaimCollection claims,
 WebServiceContext context,
 String realm);
}

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:cxf="http://cxf.apache.org/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="
 http://cxf.apache.org/core
 http://cxf.apache.org/schemas/core.xsd
 http://cxf.apache.org/configuration/security
 http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://cxf.apache.org/transports/http-jetty/configuration
 http://cxf.apache.org/schemas/configuration/http-jetty.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-
2.0.xsd">
 ...
 <bean id="transportSTSProviderBean"

class="org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvide
r">
 <property name="issueOperation" ref="transportIssueDelegate" />

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

158

The CustomClaimsHandler class is a trivial implementation of a claims handler that appears in one of
the STS system tests. For the purposes of the test, it returns a few fixed claim values for a couple of
different principals.

Embedding claim values in a SAML token

The key step in processing claims is the point where the STS attempts to issue the token. Whichever
token provider is selected to issue the token, it must be capable of inserting the retrieved claim values
into the issued token. The token provider must therefore be customized or extended, so that it is capable
of embedding the claims in the issued token.

In the case of issuing SAML tokens, the appropriate mechanism for embedding claim values is to
generate SAML attribute statements containing the claim values. The appropriate way to extend the
SAML token provider, therefore, is to implement a custom AttributeStatementProvider class and
to register this class with the SAMLTokenProvider instance (see the section called
“SAMLTokenProvider”).

Sample AttributeStatementProvider

Example 9.4, “The CustomAttributeStatementProvider Class” shows a sample implementation of an
AttributeStatementProvider class, which is capable of embedding claim values in a SAML token.
This sample implementation, CustomAttributeStatementProvider, is taken from the STS system
tests, but it is generally quite useful as a starting point for a custom attribute statement provider
implementation.

Example 9.4. The CustomAttributeStatementProvider Class

 <property name="validateOperation" ref="transportValidateDelegate"
/>
 </bean>

 <bean id="transportIssueDelegate"
class="org.apache.cxf.sts.operation.TokenIssueOperation">
 ...
 <property name="claimsManager" ref="claimsManager" />
 ...
 </bean>
 ...
 <bean id="claimsManager"
class="org.apache.cxf.sts.claims.ClaimsManager">
 <property name="claimHandlers" ref="claimHandlerList" />
 </bean>

 <util:list id="claimHandlerList"> <ref bean="customClaimsHandler" />
</util:list> <bean id="customClaimsHandler"
class="org.apache.cxf.systest.sts.deployment.CustomClaimsHandler"> </bean>
 ...
</beans>

package org.apache.cxf.systest.sts.deployment;

import java.net.URI;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;

CHAPTER 9. THE SECURITY TOKEN SERVICE

159

1

2

import java.util.List;

import org.apache.cxf.sts.claims.Claim;
import org.apache.cxf.sts.claims.ClaimCollection;
import org.apache.cxf.sts.claims.ClaimsManager;
import org.apache.cxf.sts.claims.ClaimsParameters;
import org.apache.cxf.sts.token.provider.AttributeStatementProvider;
import org.apache.cxf.sts.token.provider.TokenProviderParameters;
import org.apache.ws.security.WSConstants;
import org.apache.ws.security.saml.ext.bean.AttributeBean;
import org.apache.ws.security.saml.ext.bean.AttributeStatementBean;

public class CustomAttributeStatementProvider implements
AttributeStatementProvider {

 public AttributeStatementBean getStatement(TokenProviderParameters
providerParameters) {

 // Handle Claims
 ClaimsManager claimsManager =
providerParameters.getClaimsManager();
 ClaimCollection retrievedClaims = new ClaimCollection();
 if (claimsManager != null) {

 ClaimsParameters params = new ClaimsParameters();

params.setAdditionalProperties(providerParameters.getAdditionalPropertie
s());

params.setAppliesToAddress(providerParameters.getAppliesToAddress());

params.setEncryptionProperties(providerParameters.getEncryptionPropertie
s());

params.setKeyRequirements(providerParameters.getKeyRequirements());
 params.setPrincipal(providerParameters.getPrincipal());
 params.setRealm(providerParameters.getRealm());

params.setStsProperties(providerParameters.getStsProperties());

params.setTokenRequirements(providerParameters.getTokenRequirements());
 params.setTokenStore(providerParameters.getTokenStore());

params.setWebServiceContext(providerParameters.getWebServiceContext());
 retrievedClaims =

 claimsManager.retrieveClaimValues(
 providerParameters.getRequestedClaims(),

 params
);
 }
 if (retrievedClaims == null) {
 return null;
 }

 Iterator<Claim> claimIterator = retrievedClaims.iterator();
 if (!claimIterator.hasNext()) {
 return null;

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

160

1

2

3

4

5

The first part of the getStatement method implementation is centered around the invocation of
the ClaimsManager.retrieveClaimValues method.

In preparation for invoking the retrieveClaimValues method, you populate the
ClaimsParameters object, which encapsulates most of the parameters needed to invoke
retrieveClaimValues. The ClaimsParameters object is initialized simply by copying the
relevant parameters from the TokenProviderParameters object.

Invoke the retrieveClaimValues method on the claims manager instance. This has the effect of
retrieving the requested claim values from persistent storage, with the help of the claims handlers
plug-ins (see Figure 9.9, “Processing Claims”).

The AttributeStatementBean class is a WSS4J class that is used to encapsulate a SAML
attribute statement.

The WSS4J AttributeBean class encapsulates a single SAML attribute.

Each claim value is inserted into an AttributeBean instance.

3

4

5

 }

 List<AttributeBean> attributeList = new ArrayList<AttributeBean>
();
 String tokenType =
providerParameters.getTokenRequirements().getTokenType();

 AttributeStatementBean attrBean = new AttributeStatementBean();
 while (claimIterator.hasNext()) {
 Claim claim = claimIterator.next();
 AttributeBean attributeBean = new AttributeBean();
 URI name =

claim.getNamespace().relativize(claim.getClaimType());
 if (WSConstants.WSS_SAML2_TOKEN_TYPE.equals(tokenType)
 || WSConstants.SAML2_NS.equals(tokenType)) {
 attributeBean.setQualifiedName(name.toString());

attributeBean.setNameFormat(claim.getNamespace().toString());
 } else {
 attributeBean.setSimpleName(name.toString());

attributeBean.setQualifiedName(claim.getNamespace().toString());
 }

attributeBean.setAttributeValues(Collections.singletonList(claim.getValu

e()));
 attributeList.add(attributeBean);

 }
 attrBean.setSamlAttributes(attributeList);

 return attrBean;
 }

}

CHAPTER 9. THE SECURITY TOKEN SERVICE

161

Configuring the custom AttributeStatementProvider

The custom attribute statement provider can be installed into the SAMLTokenProvider instance, as
follows:

<beans ...>
 ...
 <bean id="transportSTSProviderBean"

class="org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvide
r">
 <property name="issueOperation" ref="transportIssueDelegate" />
 <property name="validateOperation" ref="transportValidateDelegate"
/>
 </bean>

 <bean id="transportIssueDelegate"
class="org.apache.cxf.sts.operation.TokenIssueOperation">
 ...
 <property name="tokenProviders" ref="transportTokenProviders" />
 <property name="claimsManager" ref="claimsManager" />
 ...
 </bean>

 <util:list id="transportTokenProviders">
 <ref bean="transportSamlTokenProvider" />
 ...
 </util:list>
 ...
 <bean id="transportSamlTokenProvider"
 class="org.apache.cxf.sts.token.provider.SAMLTokenProvider">
 <property name="attributeStatementProviders"
ref="attributeStatementProvidersList" />
 </bean>

 <util:list id="attributeStatementProvidersList">
 <ref bean="defaultAttributeProvider" />
 <ref bean="customAttributeProvider" />
 </util:list>

 <bean id="defaultAttributeProvider"

class="org.apache.cxf.sts.token.provider.DefaultAttributeStatementProvider
">
 </bean>

 <bean id="customAttributeProvider"

class="org.apache.cxf.systest.sts.deployment.CustomAttributeStatementProvi
der">
 </bean>
 ...
</beans>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

162

Note that a DefaultAttributeStatementProvider instance should also be included in the list
of attribute statement providers, so that the issued SAML token also includes the default
attribute statement.

9.4. ENABLING APPLIESTO IN THE STS

Overview

When you specify an IssuedToken policy, you can replace both of the TokenType and KeyType
elements by a single AppliesTo element, which specifies the identity of the server that the client
wants to communicate with. The idea behind this approach is that the STS already knows what
type of token the server wants and what kind of single sign-on scenario the server supports. In
other words, this information is centralized in the STS (and the STS must be configured with this
information).

Figure 9.10, “Processing the AppliesTo Policy” shows an overview of the steps that the STS
follows to process the AppliesTo policy.

Figure 9.10. Processing the AppliesTo Policy

STSClient

Client

4
1

<Request Securi tyToken>
 < A pp l ie s T o >
 . . .
 F o o A d d r e s s
 . . .
< / A p p l i e s T o >
</RequestSecur i tyT oken>

Steps to process the AppliesTo policy

When the IssuedToken policy includes the AppliesTo policy, the STS processes the client's
issue token request as follows:

1. The trigger that enables the AppliesTo policy is when the client encounters an
IssuedToken policy with a RequestSecurityTokenTemplate that contains the
AppliesTo policy element. In this case, the STSClient constructs a
RequestSecurityToken request message containing the specified AppliesTo element
and uses this message to invoke the Issue operation on the STS.

In the example shown in Figure 9.10, “Processing the AppliesTo Policy”, the AppliesTo
element references the FooAddress endpoint URL, which is the URL of the WS endpoint
in the server that the client wants to invoke.

2. After detecting the presence of the AppliesTo element in the incoming request, the
TokenIssueOperation instance iterates over the list of registered StaticService
objects, trying to find a regular expression that matches the target address, FooAddress,
that was specified by the AppliesTo element.

CHAPTER 9. THE SECURITY TOKEN SERVICE

163

If a match is found, the TokenIssueOperation checks whether the tokenType and
keyType properties are set on the StaticService object. If these properties are set,
they override the values (if any) that were specified in the incoming request.

If a match is not found, the TokenIssueOperation raises an error.

NOTE

If a list of services is registered with the TokenIssueOperation instance,
one of the registered services must match the address specified by
AppliesTo.

3. Now that the requested token type and key type have been determined, the
TokenIssueOperation object proceeds as usual to issue the requested token (for
example, see Section 9.1.3, “Customizing the Issue Operation”).

4. The STS returns the issued token to the client.

5. The client can now send a secure invocation to the FooAddress endpoint on the server,
including the issued token in the SOAP security header.

IssuedToken policy without AppliesTo enabled

Before looking at how to enable the AppliesTo policy, it is worth reminding ourselves what a
typical IssuedToken policy looks like without the AppliesTo policy enabled. For example, the
following IssuedToken policy requests a SAML 2.0 token that embeds a key of type public key
(an X.509 certificate) for the purpose of identifying the client (Holder-of-Key scenario):

In the ordinary case, without AppliesTo enabled, the IssuedToken policy specifies the required
token type and key type explicitly.

IssuedToken policy with AppliesTo enabled

When the AppliesTo policy is enabled, it is no longer necessary to specify the required token
type and key type in the message that is sent to the STS. You use the AppliesTo policy to

<sp:IssuedToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <sp:RequestSecurityTokenTemplate>
 <t:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLV2.0</t:TokenType>
 <t:KeyType>http://docs.oasis-open.org/ws-sx/ws-
trust/200512/PublicKey</t:KeyType>
 </sp:RequestSecurityTokenTemplate>
 <wsp:Policy>
 <sp:RequireInternalReference />
 </wsp:Policy>
 <sp:Issuer>

<wsaw:Address>http://localhost:8080/SecurityTokenService/</wsaw:Address>
 </sp:Issuer>
</sp:IssuedToken>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

164

specify which target endpoint the issued token is needed for and the STS looks up the target
endpoint to discover the policies that apply to the issued token.

Therefore, in the RequestSecurityTokenTemplate element in the IssuedToken policy, you
need only specify the AppliesTo element, as shown in the following example:

In this example, the AppliesTo policy specifies that the token is issued for the server endpoint,
http://localhost:9001/SoapContext/SoapPort.

Configuring the list of services

When using the AppliesTo policy, you must configure the STS to recognize the relevant target
endpoint and provide the appropriate policies for issuing tokens (in particular, the TokenType
and KeyType policies).

The following sample STS configuration shows how to configure the TokenIssueOperation
with a list of services (in this example, the list is just a singleton).

<sp:IssuedToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <sp:RequestSecurityTokenTemplate>
 <wsp:AppliesTo>
 <wsa:EndpointReference>

<wsa:Address>http://localhost:9001/SoapContext/SoapPort</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 </sp:RequestSecurityTokenTemplate>
 <wsp:Policy>
 <sp:RequireInternalReference />
 </wsp:Policy>
 <sp:Issuer>

<wsaw:Address>http://localhost:8080/SecurityTokenService/</wsaw:Address>
 </sp:Issuer>
</sp:IssuedToken>

<beans ... >
 <bean id="utIssueDelegate"
class="org.apache.cxf.sts.operation.TokenIssueOperation">
 <property name="tokenProviders" ref="utTokenProviders" />
 <property name="services" ref="utService" />
 <property name="stsProperties" ref="utSTSProperties" />
 </bean>
 ...
 <bean id="utService"
 class="org.apache.cxf.sts.service.StaticService">
 <property name="endpoints" ref="utEndpoints"/>
 <property name="tokenType"
 value="http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLV2.0"/>
 <property name="keyType"
 value="http://docs.oasis-open.org/ws-sx/ws-
trust/200512/PublicKey"/>

CHAPTER 9. THE SECURITY TOKEN SERVICE

165

Services are represented by one or more StaticService instances. Each StaticService
instance holds a list of regular expressions, which are matched against the AppliesTo address
URL. If a match is found, the specified properties of the StaticService instance are then used
for issuing the token.

9.5. ENABLING REALMS IN THE STS

9.5.1. Issuing Tokens in Multiple Realms

Overview

Apache CXF optionally supports the concept of security realms in the STS. The WS-Trust
specification does not explicitly discuss the concept of security realms, but one fairly natural
approach you can use is to identify an STS issuer identity with a security realm. Enabling security
realms requires you to implement and configure a variety of custom components in the STS.

Figure 9.11, “Realm-Aware SAML Token Issuer” shows an overview of how SAML tokens are
issued in a realm-aware STS.

Figure 9.11. Realm-Aware SAML Token Issuer

TokenIssueOperation

RealmParser

canHandleT oken()

1

2

SAMLTokenProvider

parseRea lm()

Realm aware token issuing steps

A realm-aware STS can issue SAML tokens in the following manner:

1. When a realm-aware STS receives an issue token request, it tries to find out what realm to
issue the token in, by calling out to the realm parser instance.

WS-Trust does not define a standard way to associate a token with a realm. Hence, you
must work out your own approach for indicating the realm and codify this approach by
providing a custom implementation of the RealmParser interface. The realm parser's
parseRealm method returns a string, which is the name of the realm to issue the token
in.

 </bean>

 <util:list id="utEndpoints">
 <value>http://localhost:(\d)*/SoapContext/SoapPort</value>
 </util:list>
 ...
</beans>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

166

For example, you could identify the realm, by inspecting the URL of the STS Web service
endpoint that was invoked. The pathname of the URL could include a segment that
identifies the realm.

2. The TokenIssueOperation instance then calls the canHandleToken method on each of
the registered token providers. In this example, only the SAMLTokenProvider token
provider is registered. The canHandleToken method parameters include the token type
and the realm name.

3. Assuming that the token type matches (for example, the client is requesting a SAML
token), the SAMLTokenProvider looks up the realm name in its realm map to make sure
that it can handle this realm. If the SAMLTokenProvider finds the realm name in its map,
it returns true from the canHandleToken method.

4. The TokenIssueOperation instance now calls the createToken method on the
SAMLTokenProvider instance, in order to issue the token in the specified realm.

5. The SAMLTokenProvider looks up the specified realm in the realm map and retrieves the
corresponding SAMLRealm instance. The SAMLRealm instance encapsulates the data that
is specific to this realm.

For example, if the specified realm is A, the SAMLRealm instance records that the
corresponding issuer name is A-Issuer and the alias of the signing key to use for this
realm is StsKeyA.

6. The SAMLTokenProvider now uses the realm-specific data in combination with the
generic data from the STS properties instance to issue the SAML token in the specified
realm.

For example, if the specified realm is A, the SAMLTokenProvider embeds the A-Issuer
string in the SAML token's issuer element and the SAML token is signed using the
StsKeyA private key from the stsstore.jks Java keystore file.

Configuring the realm parser

Because there is no standard way to associate a realm with an issue token request, you must
decide yourself how to identify a realm. Codify the approach by implementing the RealmParser
interface and then register your custom realm parser by injecting it into the realmParser
property of the STS properties bean.

For example, you could register the custom URLRealmParser instance with the
StaticSTSProperties bean as follows:

<beans ... >
 ...
 <bean id="transportSTSProperties"
class="org.apache.cxf.sts.StaticSTSProperties">
 ...
 <property name="realmParser" ref="customRealmParser" />
 ...
 </bean>

 <bean id="customRealmParser"

CHAPTER 9. THE SECURITY TOKEN SERVICE

167

Sample URL realm parser

To implement a custom realm parser, you must override and implement the following method
from the RealmParser interface:

The parseRealm passes an instance of javax.xml.ws.WebServiceContext, which provides access
to message context and security information about the current request message (issue token
request). You can use this message context information to identify the current realm.

For example, the URLRealmParser used in the previous example works by examining the URL of
the invoked STS Web service endpoint and checking whether any known realm names are
embedded in the URL. The realm name embedded in the URL is then taken to be the realm to
issue the token in and the realm is then returned from the parseRealm method.

A null return value indicates that the STS should use the default realm (as defined by the
issuer and signatureUsername properties of the STS properties bean).

 class="org.apache.cxf.systest.sts.realms.URLRealmParser" />
 ...
</beans>

public String parseRealm(WebServiceContext context) throws STSException;

// Java
package org.apache.cxf.systest.sts.realms;

import javax.xml.ws.WebServiceContext;

import org.apache.cxf.sts.RealmParser;
import org.apache.cxf.ws.security.sts.provider.STSException;

/**
 * A test implementation of RealmParser which returns a realm depending on
a String contained
 * in the URL of the service request.
 */
public class URLRealmParser implements RealmParser {

 public String parseRealm(WebServiceContext context) throws
STSException {
 String url =
(String)context.getMessageContext().get("org.apache.cxf.request.url");
 if (url.contains("realmA")) {
 return "A";
 } else if (url.contains("realmB")) {
 return "B";
 } else if (url.contains("realmC")) {
 return "C";
 }

 return null;
 }

}

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

168

http://docs.oracle.com/javase/6/docs/api/javax/xml/ws/WebServiceContext.html

Configuring the realm map

In a realm-aware STS, the SAMLTokenProvider token provider must be initialized with a realm
map, which provides the requisite data about each realm. For example, the scenario shown in
Figure 9.11, “Realm-Aware SAML Token Issuer” uses a realm map like the following:

9.5.2. Validating Tokens in Multiple Realms

Overview

Figure 9.12, “Realm-Aware SAML Token Validation” shows an overview of how SAML tokens are
validated in a realm-aware STS.

<beans ... >
 ...
 <bean id="transportIssueDelegate"
class="org.apache.cxf.sts.operation.TokenIssueOperation">
 <property name="tokenProviders" ref="transportTokenProviders" />
 <property name="services" ref="transportService" />
 <property name="stsProperties" ref="transportSTSProperties" />
 </bean>

 <util:list id="transportTokenProviders">
 <ref bean="transportSAMLProvider" />
 </util:list>

 <bean id="transportSAMLProvider"
class="org.apache.cxf.sts.token.provider.SAMLTokenProvider">
 <property name="realmMap" ref="realms" />
 </bean>

 <util:map id="realms">
 <entry key="A" value-ref="realmA" />
 <entry key="B" value-ref="realmB" />
 <entry key="C" value-ref="realmC" />
 </util:map>

 <bean id="realmA" class="org.apache.cxf.sts.token.realm.SAMLRealm">
 <property name="issuer" value="A-Issuer" />
 <property name="signatureAlias" value="StsKeyA" />
 </bean>

 <bean id="realmB" class="org.apache.cxf.sts.token.realm.SAMLRealm">
 <property name="issuer" value="B-Issuer" />
 <property name="signatureAlias" value="StsKeyB" />
 </bean>

 <bean id="realmC" class="org.apache.cxf.sts.token.realm.SAMLRealm">
 <property name="issuer" value="C-Issuer" />
 <property name="signatureAlias" value="StsKeyC" />
 </bean>
 ...
</beans>

CHAPTER 9. THE SECURITY TOKEN SERVICE

169

Figure 9.12. Realm-Aware SAML Token Validation

TokenValidateOperation

SAMLTokenProvider

RealmParser

canHandleT oken()

1

2

parseRea lm()

Realm aware token validating steps

A realm-aware STS can validate SAML tokens in the following manner:

1. When a realm-aware STS receives a validate token request, it tries to find out what realm
to issue the token in, by calling out to the realm parser instance.

NOTE

The realm identified by the realm parser in this step is not necessarily the
same realm that the token was originally issued in. See the section called
“Validating tokens across realms”.

2. The TokenValidateOperation instance then calls the canHandleToken method on
each of the registered token validators. In this example, only the SAMLTokenValidator
token validator is registered. The canHandleToken method parameters include the token
type and the realm name.

NOTE

The default SAMLTokenValidator class ignores the realm parameter in the
canHandleToken method, so it will attempt to validate the token in any
realm. If you need to implement realm-specific validation steps, however,
you have the option of implementing a custom SAML token validator that
pays attention to the realm parameter.

3. The TokenValidateOperation instance then calls the validateToken method on the
SAMLTokenValidator, in order to validate the token in the specified realm.

4. The SAMLTokenValidator attempts to validate the received SAML token by checking
whether it has been signed by a trusted key. The public part of the signing key pair must
match one of the trusted certificates stored in the signature trust store (as configured by
the signaturePropertiesFile property in the STS properties instance).

Hence, for each of the supported realms, the public part of the realm's signing key must
be present in the signature trust store (or at least one of the certificate's in that realm's
trust chain). Otherwise, the SAMLTokenValidator will not be able to validate tokens that
were issued in that realm.

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

170

For example, if you want to be able to validate tokens in the realms, A, B, and C, you must
store the corresponding certificates (public part of the signature keys), StsKeyA,
StsKeyB, and StsKeyC, in the stsstore.jks Java keystore file.

5. In case the client needs the information, the SAMLTokenValidator also embeds the
name of the realm where the token was originally issued into the Validate response
message. This is not necessarily the same realm as the realm that the token has just
been validated in.

To find the original realm that the token was issued in, the SAMLTokenValidator calls
out to the custom SAMLRealmCodec instance. The SAMLRealmCodec instance tries to
figure out the issuing realm by examining the token contents. If the issuing realm can be
established, this information is included in the Validate response message.

Configuring the realm parser

The realm-aware SAML token validator requires a realm parser, just like the realm-aware SAML
token provider. Generally, both validator and provider can share the same realm parser instance
—see Section 9.5.1, “Issuing Tokens in Multiple Realms”.

Validating tokens across realms

It can happen that a token needs to be validated in a realm that is not the same realm as the realm
where the token was issued. When you consider that the main purpose of the WS-Trust standard
is to enable single-sign on, you can understand why it is desirable to support this feature. If a WS
client needs to send requests to servers that are in different security realms, it would be a
serious drawback, if the client was forced to obtain separate tokens for each of the realms.
Hence, the STS Validate operation must be prepared to validate a token issued in a realm that is
different from the realm it is being validated in.

Response from Validate operation

For the convenience of the client, which might need to know the realm that a token was originally
issued in, the SAMLTokenValidator can be configured to discover the token's issuing realm
and embed this information in the Validate operation's response. To give the
SAMLTokenValidator the ability to discover the token's issuing realm, you must implement and
register a SAMLRealmCodec instance.

Configuring the SAMLRealmCodec

The following Spring XML fragment shows how to instantiate and register the custom
IssuerSAMLRealmCodec instance, which implements the SAMLRealmCodec interface:

<beans ... >
 ...
 <bean id="transportValidateDelegate"
class="org.apache.cxf.sts.operation.TokenValidateOperation">
 <property name="tokenProviders" ref="transportTokenProviders" />
 <property name="tokenValidators" ref="transportTokenValidators" />
 <property name="stsProperties" ref="transportSTSProperties" />
 </bean>
 ...
 <util:list id="transportTokenValidators">
 <ref bean="transportSAMLValidator" />

CHAPTER 9. THE SECURITY TOKEN SERVICE

171

Sample implementation of SAMLRealmCodec

To implement a SAMLRealmCodec, you need to override and implement the following method:

Where the assertion parameter holds the contents of the SAML token. The assumption made
here is that the realm name is either embedded in the SAML token somehow or the identity of the
realm can somehow be inferred from the SAML token contents. For example, the SAML issuer
name can typically be identified with a security realm.

The following examples shows a sample implementation, IssuerSAMLRealmCodec, which infers
the realm name from the value of the issuer string:

 </util:list>

 <bean id="transportSAMLValidator"
 class="org.apache.cxf.sts.token.validator.SAMLTokenValidator">
 ...
 <property name="samlRealmCodec" ref="customSAMLRealmCodec" />
 </bean>

 <bean id="customSAMLRealmCodec"
 class="org.apache.cxf.systest.sts.realms.IssuerSAMLRealmCodec"
/>
 ...
</beans>

public String getRealmFromToken(AssertionWrapper assertion)

// Java
package org.apache.cxf.systest.sts.realms;

import org.apache.cxf.sts.token.realm.SAMLRealmCodec;
import org.apache.ws.security.saml.ext.AssertionWrapper;

/**
 * This class returns a realm associated with a SAML Assertion depending
on the issuer.
 */
public class IssuerSAMLRealmCodec implements SAMLRealmCodec {

 /**
 * Get the realm associated with the AssertionWrapper parameter
 * @param assertion a SAML Assertion wrapper object
 * @return the realm associated with the AssertionWrapper parameter
 */
 public String getRealmFromToken(AssertionWrapper assertion) {
 if ("A-Issuer".equals(assertion.getIssuerString())) {
 return "A";
 } else if ("B-Issuer".equals(assertion.getIssuerString())) {
 return "B";
 }
 return null;

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

172

9.5.3. Token Transformation across Realms

Overview

Token transformation is a special case of token validation across realms. As explained in
Section 9.5.2, “Validating Tokens in Multiple Realms”, it is possible to configure the STS to
recognize and validate tokens that were issued in a different realm. But this is usually not
sufficient for cross-realm interoperability. The foreign token might not have the right format for
the target realm and the token's principal might not be recognized.

The solution to this interoperability problem is to re-issue the foreign token in the format required
by the target realm and, if necessary, to map the token's principal to its equivalent in the target
realm (assuming, of course, that the principal has an account in both realms). This is what is
meant by token transformation.

Because the need for token transformation is usually recognized during token validation, the
token transformation process is implemented as an extension of the Validate operation.

Triggering token transformation

Token transformation gets triggered when you configure the WS endpoint of the relying party to
validate incoming tokens, as follows:

 }

}

<beans ... >
 ...
 <jaxws:endpoint id="doubleitrealmtransform"
 implementor="org.apache.cxf.systest.sts.common.DoubleItPortTypeImpl"
 endpointName="s:DoubleItRealmTransformPort"
 serviceName="s:DoubleItService"
 depends-on="ClientAuthHttpsSettings"

address="https://localhost:${testutil.ports.Server}/doubleit/services/doub
leitrealmtransform"
 wsdlLocation="org/apache/cxf/systest/sts/realms/DoubleIt.wsdl"
 xmlns:s="http://www.example.org/contract/DoubleIt">

 <jaxws:properties>
 <entry key="ws-security.saml2.validator">
 <bean
class="org.apache.cxf.ws.security.trust.STSTokenValidator"/>
 </entry>
 <entry key="ws-security.sts.client">
 <bean class="org.apache.cxf.ws.security.trust.STSClient">
 <constructor-arg ref="cxf"/>
 <property name="wsdlLocation"

value="https://localhost:${testutil.ports.STSServer}/SecurityTokenService/
realmB?wsdl"/>
 <property name="serviceName"
 value="{http://docs.oasis-open.org/ws-sx/ws-
trust/200512/}SecurityTokenService"/>

CHAPTER 9. THE SECURITY TOKEN SERVICE

173

The following properties set on jaxws:endpoint element are of key importance in configuring
token transformation:

ws-security.saml2.validator

By initializing this property with an instance of the STSTokenValidator class, you are
instructing the JAX-WS endpoint to validate incoming tokens by contacting the STS and
invoking the Validate operation.

ws-security.sts.client

When validation is enabled on the JAX-WS endpoint, you must also configure an STSClient
instance, which encapsulates all of the settings required to connect to the STS. The properties
you can set on the STSClient instance are discussed in detail in Creating an STSClient
Instance.

tokenType

In order to enable a token transformation request (as distinct from a simple validation
request), you must also set the tokenType property on the STSClient instance. This is the
key setting that triggers token transformation. When this setting is present, the Validate
operation will perform token transformation and return a newly issued token of the specified
type in the Validate response message.

For the list of possible token type URIs you can specify here, see Table 8.2.

Relying party as a gateway service

 <property name="endpointName"
 value="{http://docs.oasis-open.org/ws-sx/ws-
trust/200512/}Transport_Port"/>
 <property name="properties">
 <map>
 <entry key="ws-security.username"
value="alice"/>
 <entry key="ws-security.callback-handler"

value="org.apache.cxf.systest.sts.common.CommonCallbackHandler"/>
 <entry key="ws-security.sts.token.username"
value="myclientkey"/>
 <entry key="ws-security.sts.token.properties"
value="clientKeystore.properties"/>
 <entry key="ws-security.sts.token.usecert"
value="true"/>
 </map>
 </property>
 <property name="tokenType"
 value="http://docs.oasis-open.org/wss/oasis-wss-
saml-token-profile-1.1#SAMLV2.0"/>
 </bean>
 </entry>
 </jaxws:properties>
 </jaxws:endpoint>
 ...
</beans>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

174

The relying party in the token transformation scenario typically acts as a gateway service. That
is, having obtained a transformed token from the STS, it can then make invocations in the target
realm on behalf of the client, using the newly-issued transformed token.

Transformation algorithm

When the STS receives a token transformation request (through the Validate operation), it
processes the request as follows:

1. When the STS receives the Validate request message, it performs all of the usual tests to
validate the received token (see Section 9.1.4, “Customizing the Validate Operation”).

2. After validating the token successfully, the STS checks whether the TokenType has been
explicitly set in the Validate request message (that is, whether the token type has some
value other than the default dummy value).

3. If the token type was explicitly set, the STS proceeds to transform the token, which
means that it issues a new token to replace the validated token.

4. The STS now checks whether the current realm (as determined by the realm parser—see
the section called “Configuring the realm parser”) is the same as the realm that issued
the received token (as determined by the configured SAMLRealmCodec—see the section
called “Configuring the SAMLRealmCodec”). If the realms are different, the STS checks
whether an IdentityMapper instance is configured on the STS properties object.

5. If an IdentityMapper is configured, the STS transforms the validated token's principal
by calling the mapPrincipal method on the IdentityMapper. The mapped identity will
now be used as the transformed token's principal.

NOTE

In the context of SAML tokens, the principal corresponds to the value of the
Subject/NameID element in the SAML token.

6. The STS now proceeds to issue a new token in the current realm using the (possibly
transformed) principal, based on the data in the validated token. The STS iterates over all
of the registered token providers, until it finds a token provider that can handle the
requested token type in the current realm.

7. The STS then issues a new token by calling out to the token provider and returns the
newly issued token in the Validate response message.

Configuring the TokenValidateOperation

The following Spring XML fragment shows an example of how the TokenValidateOperation
instance is configured in an STS that supports token transformation:

<beans ... >
 ...
 <bean id="transportValidateDelegate"
class="org.apache.cxf.sts.operation.TokenValidateOperation">
 <property name="tokenProviders" ref="transportTokenProviders" />
 <property name="tokenValidators" ref="transportTokenValidators" />
 <property name="stsProperties" ref="transportSTSProperties" />
 </bean>

CHAPTER 9. THE SECURITY TOKEN SERVICE

175

As you might expect, you are required to provide a list of token validators to the
tokenValidators property (as is usual for the Valdate operation—for example, see
Section 9.1.4, “Customizing the Validate Operation”). What you might not expect, however, is that
you are also required to provide a list of token providers to the tokenProviders property: this is
because the Validate operation is also responsible for issuing new tokens, in the token
transformation scenario.

Implementing an IdentityMapper

In the context of token transformation, it is frequently necessary to implement an identity
mapper, because the principal in the source realm is typically not the same as the principal in
the target realm. To implement an identity mapper class, you inherit from the IdentityMapper
interface and implement the mapPrincipal method, as shown in the following example:

The CustomTokenPrincipal class is just a simple implementation of the
java.security.Principal interface, which holds the string value of the returned principal.

Configuring the IdentityMapper

 ...
</beans>

// Java
package org.apache.cxf.systest.sts.realms;

import java.security.Principal;

import org.apache.cxf.sts.IdentityMapper;
import org.apache.ws.security.CustomTokenPrincipal;

/**
 * A test implementation of RealmParser.
 */
public class CustomIdentityMapper implements IdentityMapper {

 /**
 * Map a principal in the source realm to the target realm
 * @param sourceRealm the source realm of the Principal
 * @param sourcePrincipal the principal in the source realm
 * @param targetRealm the target realm of the Principal
 * @return the principal in the target realm
 */
 public Principal mapPrincipal(String sourceRealm, Principal
sourcePrincipal, String targetRealm) {
 if ("A".equals(sourceRealm) && "B".equals(targetRealm)) {
 return new CustomTokenPrincipal("B-Principal");
 } else if ("B".equals(sourceRealm) && "A".equals(targetRealm)) {
 return new CustomTokenPrincipal("A-Principal");
 }
 return null;
 }

}

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

176

The IdentityMapper instance is configured by setting the identityMapper property on the
STS properties instance, as follows:

9.5.4. Realms Demonstration

Overview

The sample code in this section is taken from the STS system tests in the source distribution of
Apache CXF. The test illustrates several different aspects of STS realms, including realm-aware
token issuing, validation across realms, and token transformation.

Demonstration location

You can find the Java code under the following directory:

And the associated resource files under the following directory:

First STS server for A and C realms

Figure 9.13, “STS Server for A and C realms” shows how the first STS server is configured for
realms A, C and default.

<beans ... >
 ...
 <bean id="transportSTSProperties"
class="org.apache.cxf.sts.StaticSTSProperties">
 ...
 <property name="identityMapper" ref="customIdentityMapper" />
 <property name="realmParser" ref="customRealmParser" />
 </bean>

 <bean id="customIdentityMapper"
 class="org.apache.cxf.systest.sts.realms.CustomIdentityMapper"
/>

 <bean id="customRealmParser"
 class="org.apache.cxf.systest.sts.realms.URLRealmParser" />
 ...
</beans>

CXFInstallDir/services/sts/systests/advanced/src/test/java/org/apache/cxf/
systest/sts/realms

CXFInstallDir/services/sts/systests/advanced/src/test/resources/org/apache
/cxf/systest/sts/realms

CHAPTER 9. THE SECURITY TOKEN SERVICE

177

Figure 9.13. STS Server for A and C realms

. . . / r e a lm A

TokenIssueOperationRealmMap

The first STS server supports the realms A, C, and default and opens distinct Web service ports
for each of these three realms.

STS for realms A and C

The STS for realms A and C is configured as follows:

the section called “STS endpoint configuration for realms A and C”

the section called “Issue configuration for realms A and C”

the section called “Validate configuration for realms A and C”

the section called “STS properties for realms A and C”

STS endpoint configuration for realms A and C

The WS endpoints of the STS for realms A and C are configured as follows in the STS's Spring
XML file:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:cxf="http://cxf.apache.org/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="
 http://cxf.apache.org/core
 http://cxf.apache.org/schemas/core.xsd
 http://cxf.apache.org/configuration/security
 http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://cxf.apache.org/transports/http-jetty/configuration
 http://cxf.apache.org/schemas/configuration/http-jetty.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/util

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

178

 http://www.springframework.org/schema/util/spring-util-
2.0.xsd">

 <bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigu
rer"/>

 <cxf:bus>
 <cxf:features>
 <cxf:logging/>
 </cxf:features>
 </cxf:bus>

 <bean id="transportSTSProviderBean"

class="org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvide
r">
 <property name="issueOperation" ref="transportIssueDelegate" />
 <property name="validateOperation" ref="transportValidateDelegate"
/>
 </bean>
 ...
 <jaxws:endpoint id="RealmASTS" implementor="#transportSTSProviderBean"

address="https://localhost:${testutil.ports.STSServer.2}/SecurityTokenServ
ice/realmA"
 ...
 </jaxws:endpoint>

 <jaxws:endpoint id="RealmCSTS" implementor="#transportSTSProviderBean"

address="https://localhost:${testutil.ports.STSServer.2}/SecurityTokenServ
ice/realmC"
 ...
 </jaxws:endpoint>

 <jaxws:endpoint id="DefaultRealmSTS"
implementor="#transportSTSProviderBean"

address="https://localhost:${testutil.ports.STSServer.2}/SecurityTokenServ
ice/realmdefault"
 ...
 </jaxws:endpoint>

 <httpj:engine-factory id="ClientAuthHttpsSettings"
 bus="cxf">
 <httpj:engine port="${testutil.ports.STSServer.2}">
 <httpj:tlsServerParameters>
 ...
 <sec:clientAuthentication want="true" required="true" />
 </httpj:tlsServerParameters>
 </httpj:engine>
 </httpj:engine-factory>

</beans>

CHAPTER 9. THE SECURITY TOKEN SERVICE

179

Note, in particular that the STS defines three different endpoints: for realm A, for realm C, and for
the default realm. The endpoint URL that the client connects to, determines the realm in which
the token is issued (see Example 9.5, “Demonstration RealmParser Implementation”).

Issue configuration for realms A and C

For realms A and C, the TokenIssueOperation instance is configured as follows:

As usual, the TokenIssueOperation is configured with a SAML token provider, but this SAML

<beans ... >
 ...
 <bean id="transportIssueDelegate"
class="org.apache.cxf.sts.operation.TokenIssueOperation">
 <property name="tokenProviders" ref="transportTokenProviders" />
 <property name="services" ref="transportService" />
 <property name="stsProperties" ref="transportSTSProperties" />
 </bean>

 <util:list id="transportTokenProviders">
 <ref bean="transportSAMLProvider" />
 </util:list>

 <bean id="transportSAMLProvider"
class="org.apache.cxf.sts.token.provider.SAMLTokenProvider">
 <property name="realmMap" ref="realms" />
 </bean>

 <util:map id="realms">
 <entry key="A" value-ref="realmA" />
 <entry key="C" value-ref="realmC" />
 </util:map>

 <bean id="realmA" class="org.apache.cxf.sts.token.realm.SAMLRealm">
 <property name="issuer" value="A-Issuer" />
 <property name="signatureAlias" value="myclientkey" />
 </bean>

 <bean id="realmC" class="org.apache.cxf.sts.token.realm.SAMLRealm">
 <property name="issuer" value="C-Issuer" />
 <property name="signatureAlias" value="myservicekey" />
 </bean>

 <!-- List of Web service endpoints that can use this STS -->
 <bean id="transportService"
class="org.apache.cxf.sts.service.StaticService">
 <property name="endpoints" ref="transportEndpoints" />
 </bean>

 <util:list id="transportEndpoints">
 <value>https://localhost:(\d)*/doubleit/services/doubleitrealm.*
 </value>
 </util:list>
 ...
</beans>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

180

token provider is also configured with a realm map (through the realmMap property). The SAML
token provider uses the realm map to retrieve the extra data that it needs to generate and sign a
SAML token in each of the supported realms (see Section 9.5.1, “Issuing Tokens in Multiple
Realms”).

Validate configuration for realms A and C

For realms A and C, the TokenValidateOperation instance is configured as follows:

Notice how both a list of token validators and token providers is set on the
TokenValidateOperation instance. The token provider list is needed in case the STS is asked
to issue a new token, in the context of token transformation (see Section 9.5.3, “Token
Transformation across Realms”).

STS properties for realms A and C

The STS properties instance encapsulates some general-purpose configuration settings that are
used by various components of the STS. The STS properties instance for realms A and C is
configured as follows:

<beans ... >
 ...
 <bean id="transportValidateDelegate"
class="org.apache.cxf.sts.operation.TokenValidateOperation">
 <property name="tokenProviders" ref="transportTokenProviders" />
 <property name="tokenValidators" ref="transportTokenValidators" />
 <property name="stsProperties" ref="transportSTSProperties" />
 </bean>

 <util:list id="transportTokenProviders">
 <ref bean="transportSAMLProvider" />
 </util:list>
 ...
 <util:list id="transportTokenValidators">
 <ref bean="transportSAMLValidator" />
 </util:list>

 <bean id="transportSAMLValidator"
 class="org.apache.cxf.sts.token.validator.SAMLTokenValidator">
 </bean>
 ...
</beans>

<beans ... >
 ...
 <bean id="transportSTSProperties"
class="org.apache.cxf.sts.StaticSTSProperties">
 <property name="signaturePropertiesFile"

value="org/apache/cxf/systest/sts/realms/stsKeystoreRealms.properties" />
 <property name="signatureUsername" value="mystskey" />
 <property name="callbackHandlerClass"

value="org.apache.cxf.systest.sts.common.CommonCallbackHandler" />
 <property name="realmParser" ref="customRealmParser" />

CHAPTER 9. THE SECURITY TOKEN SERVICE

181

Note in particular that the realmParser property is initialized with an instance of the
URLRealmParser class, whose implementation is shown in Example 9.5, “Demonstration
RealmParser Implementation”. The realm parser figures out the current realm by examining the
message context.

Second STS server for B realm

Figure 9.14, “STS Server for B realm” shows how the second STS server is configured for the B
realm.

Figure 9.14. STS Server for B realm

TokenIssueOperationRealmMap

The second STS server supports just realm B, and is configured to support a token
transformation scenario.

STS for realm B

The STS for realm B is configured as follows:

the section called “STS configuration for realm B”

the section called “Issue configuration for realm B”

the section called “Validate configuration for realm B”

the section called “STS properties for realm B”

STS configuration for realm B

The WS endpoint of the STS for realm B is configured as follows in the STS's Spring XML file:

 <property name="issuer" value="saml1-issuer" />
 </bean>

 <bean id="customRealmParser"
 class="org.apache.cxf.systest.sts.realms.URLRealmParser" />
 ...
</beans>

<beans ... >

 <bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigu
rer"/>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

182

Note, in particular that the STS embeds the name of the realm, realmB, in the WS endpoint
address URL. The endpoint URL that the client connects to, determines the realm in which the
token is issued (see Example 9.5, “Demonstration RealmParser Implementation”).

Issue configuration for realm B

For realm B, the TokenIssueOperation instance is configured as follows:

 <cxf:bus>
 <cxf:features>
 <cxf:logging/>
 </cxf:features>
 </cxf:bus>

 <bean id="transportSTSProviderBean"

class="org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvide
r">
 <property name="issueOperation" ref="transportIssueDelegate" />
 <property name="validateOperation" ref="transportValidateDelegate"
/>
 </bean>
 ...
 <jaxws:endpoint id="RealmBSTS" implementor="#transportSTSProviderBean"

address="https://localhost:${testutil.ports.STSServer}/SecurityTokenServic
e/realmB"
 ...
 </jaxws:endpoint>

 <httpj:engine-factory id="ClientAuthHttpsSettings"
 bus="cxf">
 <httpj:engine port="${testutil.ports.STSServer}">
 <httpj:tlsServerParameters>
 ...
 <sec:clientAuthentication want="true"
 required="true" />
 </httpj:tlsServerParameters>
 </httpj:engine>
 </httpj:engine-factory>

</beans>

<beans ... >
 ...
 <bean id="transportIssueDelegate"
class="org.apache.cxf.sts.operation.TokenIssueOperation">
 <property name="tokenProviders" ref="transportTokenProviders" />
 <property name="services" ref="transportService" />
 <property name="stsProperties" ref="transportSTSProperties" />
 </bean>

 <util:list id="transportTokenProviders">
 <ref bean="transportSAMLProvider" />

CHAPTER 9. THE SECURITY TOKEN SERVICE

183

As usual, the TokenIssueOperation is configured with a SAML token provider, but this SAML
token provider is also configured with a realm map (through the realmMap property). The SAML
token provider uses the realm map to retrieve the extra data that it needs to generate and sign a
SAML token in each of the supported realms (see Section 9.5.1, “Issuing Tokens in Multiple
Realms”).

Validate configuration for realm B

For realm B, the TokenValidateOperation instance is configured as follows:

 </util:list>

 <bean id="transportSAMLProvider"
 class="org.apache.cxf.sts.token.provider.SAMLTokenProvider">
 <property name="realmMap" ref="realms" />
 </bean>

 <util:map id="realms">
 <entry key="B" value-ref="realmB" />
 </util:map>

 <bean id="realmB" class="org.apache.cxf.sts.token.realm.SAMLRealm">
 <property name="issuer" value="B-Issuer" />
 </bean>

 <!-- List of Web service endpoints that can use this STS -->
 <bean id="transportService"
class="org.apache.cxf.sts.service.StaticService">
 <property name="endpoints" ref="transportEndpoints" />
 </bean>

 <util:list id="transportEndpoints">
 <value>https://localhost:(\d)*/doubleit/services/doubleitrealm.*
 </value>
 </util:list>
 ...
</beans>

<beans ... >
 ...
 <bean id="transportValidateDelegate"
class="org.apache.cxf.sts.operation.TokenValidateOperation">
 <property name="tokenProviders" ref="transportTokenProviders" />
 <property name="tokenValidators" ref="transportTokenValidators" />
 <property name="stsProperties" ref="transportSTSProperties" />
 </bean>

 <util:list id="transportTokenProviders">
 <ref bean="transportSAMLProvider" />
 </util:list>
 ...
 <util:list id="transportTokenValidators">
 <ref bean="transportSAMLValidator" />
 </util:list>

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

184

In one of the test scenarios, the STS for realm B is expected to validate a token that was issued
in a different realm. For this reason, the SAML token validator initializes the samlRealmCodec
property with a reference to the SAML realm codec implementation, IssuerSAMLRealmCodec.
The SAML realm codec parses the received token in order to discover what realm it was
originally issued in. See Example 9.6, “Demonstration SAMLRealmCodec Implementation”.

STS properties for realm B

The STS properties instance encapsulates some general-purpose configuration settings that are
used by various components of the STS. The STS properties instance for realm B is configured
as follows:

In particular, the STS properties are configured with a realm parser (whose implementation is
shown in Example 9.5, “Demonstration RealmParser Implementation”) and an identity mapper

 <bean id="transportSAMLValidator"
class="org.apache.cxf.sts.token.validator.SAMLTokenValidator">
 <property name="subjectConstraints" ref="subjectConstraintList" />
 <property name="samlRealmCodec" ref="customSAMLRealmCodec" />
 </bean>

 <util:list id="subjectConstraintList">
 <value>.*CN=www.client.com.*</value>
 <value>.*CN=www.sts.com.*</value>
 </util:list>

 <bean id="customSAMLRealmCodec"
 class="org.apache.cxf.systest.sts.realms.IssuerSAMLRealmCodec"
/>
 ...
</beans>

<beans ... >
 ...
 <bean id="transportSTSProperties"
class="org.apache.cxf.sts.StaticSTSProperties">
 <property name="signaturePropertiesFile"
value="stsKeystore.properties" />
 <property name="signatureUsername" value="mystskey" />
 <property name="callbackHandlerClass"

value="org.apache.cxf.systest.sts.common.CommonCallbackHandler" />
 <property name="issuer" value="saml2-issuer" />
 <property name="identityMapper" ref="customIdentityMapper" />
 <property name="realmParser" ref="customRealmParser" />
 </bean>

 <bean id="customIdentityMapper"
 class="org.apache.cxf.systest.sts.realms.CustomIdentityMapper"
/>

 <bean id="customRealmParser"
 class="org.apache.cxf.systest.sts.realms.URLRealmParser" />
 ...
</beans>

CHAPTER 9. THE SECURITY TOKEN SERVICE

185

(whose implementation is shown in Example 9.7, “Demonstration IdentityMapper
Implementation”).

The identity mapper is needed to support the token transformation scenario—see Section 9.5.3,
“Token Transformation across Realms”.

Realm parser implementation

Example 9.5, “Demonstration RealmParser Implementation” shows the sample implementation of
the realm parser. This implementation of the realm parser examines the address URL of the STS
endpoint that the client sent its request to. The tail of the URL path determines the realm name. If
no realm name is recognized, the parseRealm method returns null, to select the default realm
(that is, the realm configured by default, by the STS properties instance).

Example 9.5. Demonstration RealmParser Implementation

SAMLRealmCodec implementation

Example 9.6, “Demonstration SAMLRealmCodec Implementation” shows the sample
implementation of the SAMLRealmCodec. The purpose of the codec is to determine the realm that
originally issued the received token, by inspecting the contents of the token. In this

// Java
package org.apache.cxf.systest.sts.realms;

import javax.xml.ws.WebServiceContext;

import org.apache.cxf.sts.RealmParser;
import org.apache.cxf.ws.security.sts.provider.STSException;

/**
 * A test implementation of RealmParser which returns a realm depending
on a String contained
 * in the URL of the service request.
 */
public class URLRealmParser implements RealmParser {

 public String parseRealm(WebServiceContext context) throws
STSException {
 String url =
(String)context.getMessageContext().get("org.apache.cxf.request.url");
 if (url.contains("realmA")) {
 return "A";
 } else if (url.contains("realmB")) {
 return "B";
 } else if (url.contains("realmC")) {
 return "C";
 }

 return null;
 }

}

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

186

implementation, it is assumed the SAML assertion's Issuer string uniquely identifies the
issuing realm.

Example 9.6. Demonstration SAMLRealmCodec Implementation

IdentityMapper implementation

Example 9.7, “Demonstration IdentityMapper Implementation” shows the sample implementation
of the identity mapper. The purpose of the identity mapper is to map the principal name from the
source realm to the corresponding principal name in the target realm, in the context of a token
transformation scenario.

Example 9.7. Demonstration IdentityMapper Implementation

// Java
package org.apache.cxf.systest.sts.realms;

import org.apache.cxf.sts.token.realm.SAMLRealmCodec;
import org.apache.ws.security.saml.ext.AssertionWrapper;

/**
 * This class returns a realm associated with a SAML Assertion depending
on the issuer.
 */
public class IssuerSAMLRealmCodec implements SAMLRealmCodec {

 /**
 * Get the realm associated with the AssertionWrapper parameter
 * @param assertion a SAML Assertion wrapper object
 * @return the realm associated with the AssertionWrapper parameter
 */
 public String getRealmFromToken(AssertionWrapper assertion) {
 if ("A-Issuer".equals(assertion.getIssuerString())) {
 return "A";
 } else if ("B-Issuer".equals(assertion.getIssuerString())) {
 return "B";
 }
 return null;
 }

}

// Java
package org.apache.cxf.systest.sts.realms;

import java.security.Principal;

import org.apache.cxf.sts.IdentityMapper;
import org.apache.ws.security.CustomTokenPrincipal;

/**
 * A test implementation of RealmParser.

CHAPTER 9. THE SECURITY TOKEN SERVICE

187

 */
public class CustomIdentityMapper implements IdentityMapper {

 /**
 * Map a principal in the source realm to the target realm
 * @param sourceRealm the source realm of the Principal
 * @param sourcePrincipal the principal in the source realm
 * @param targetRealm the target realm of the Principal
 * @return the principal in the target realm
 */
 public Principal mapPrincipal(String sourceRealm, Principal
sourcePrincipal, String targetRealm) {
 if ("A".equals(sourceRealm) && "B".equals(targetRealm)) {
 return new CustomTokenPrincipal("B-Principal");
 } else if ("B".equals(sourceRealm) && "A".equals(targetRealm))
{
 return new CustomTokenPrincipal("A-Principal");
 }
 return null;
 }

}

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

188

APPENDIX A. ASN.1 AND DISTINGUISHED NAMES

Abstract

The OSI Abstract Syntax Notation One (ASN.1) and X.500 Distinguished Names play an important
role in the security standards that define X.509 certificates and LDAP directories.

A.1. ASN.1

Overview

The Abstract Syntax Notation One (ASN.1) was defined by the OSI standards body in the early
1980s to provide a way of defining data types and structures that are independent of any
particular machine hardware or programming language. In many ways, ASN.1 can be considered
a forerunner of modern interface definition languages, such as the OMG's IDL and WSDL, which
are concerned with defining platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards (for example, SNMP,
X.509, and LDAP). In particular, ASN.1 is ubiquitous in the field of security standards. The formal
definitions of X.509 certificates and distinguished names are described using ASN.1 syntax. You
do not require detailed knowledge of ASN.1 syntax to use these security standards, but you need
to be aware that ASN.1 is used for the basic definitions of most security-related data types.

BER

The OSI's Basic Encoding Rules (BER) define how to translate an ASN.1 data type into a
sequence of octets (binary representation). The role played by BER with respect to ASN.1 is,
therefore, similar to the role played by GIOP with respect to the OMG IDL.

DER

The OSI's Distinguished Encoding Rules (DER) are a specialization of the BER. The DER
consists of the BER plus some additional rules to ensure that the encoding is unique (BER
encodings are not).

References

You can read more about ASN.1 in the following standards documents:

ASN.1 is defined in X.208.

BER is defined in X.209.

A.2. DISTINGUISHED NAMES

Overview

Historically, distinguished names (DN) are defined as the primary keys in an X.500 directory
structure. However, DNs have come to be used in many other contexts as general purpose
identifiers. In Apache CXF, DNs occur in the following contexts:

APPENDIX A. ASN.1 AND DISTINGUISHED NAMES

189

X.509 certificates—for example, one of the DNs in a certificate identifies the owner of the
certificate (the security principal).

LDAP—DNs are used to locate objects in an LDAP directory tree.

String representation of DN

Although a DN is formally defined in ASN.1, there is also an LDAP standard that defines a UTF-8
string representation of a DN (see RFC 2253). The string representation provides a convenient
basis for describing the structure of a DN.

NOTE

The string representation of a DN does not provide a unique representation of DER-
encoded DN. Hence, a DN that is converted from string format back to DER format
does not always recover the original DER encoding.

DN string example

The following string is a typical example of a DN:

Structure of a DN string

A DN string is built up from the following basic elements:

OID .

Attribute Types .

AVA .

RDN .

OID

An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely identifies a grammatical
construct in ASN.1.

Attribute types

The variety of attribute types that can appear in a DN is theoretically open-ended, but in practice
only a small subset of attribute types are used. Table A.1, “Commonly Used Attribute Types”
shows a selection of the attribute types that you are most likely to encounter:

Table A.1. Commonly Used Attribute Types

String Representation X.500 Attribute Type Size of Data Equivalent OID

C countryName 2 2.5.4.6

O organizationName 1...64 2.5.4.10

C=US,O=IONA Technologies,OU=Engineering,CN=A. N. Other

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

190

OU organizationalUnitNam
e

1...64 2.5.4.11

CN commonName 1...64 2.5.4.3

ST stateOrProvinceName 1...64 2.5.4.8

L localityName 1...64 2.5.4.7

STREET streetAddress

DC domainComponent

UID userid

String Representation X.500 Attribute Type Size of Data Equivalent OID

AVA

An attribute value assertion (AVA) assigns an attribute value to an attribute type. In the string
representation, it has the following syntax:

For example:

Alternatively, you can use the equivalent OID to identify the attribute type in the string
representation (see Table A.1, “Commonly Used Attribute Types”). For example:

RDN

A relative distinguished name (RDN) represents a single node of a DN (the bit that appears
between the commas in the string representation). Technically, an RDN might contain more than
one AVA (it is formally defined as a set of AVAs). However, this almost never occurs in practice.
In the string representation, an RDN has the following syntax:

Here is an example of a (very unlikely) multiple-value RDN:

Here is an example of a single-value RDN:

<attr-type>=<attr-value>

CN=A. N. Other

2.5.4.3=A. N. Other

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

OU=Eng1+OU=Eng2+OU=Eng3

APPENDIX A. ASN.1 AND DISTINGUISHED NAMES

191

INDEX
A

Abstract Syntax Notation One (see ASN.1)

administration

OpenSSL command-line utilities, OpenSSL utilities

ASN.1, Contents of an X.509 certificate, ASN.1 and Distinguished Names

attribute types, Attribute types

AVA, AVA

OID, OID

RDN, RDN

attribute value assertion (see AVA)

authentication

own certificate, specifying, Specifying an Application's Own Certificate

SSL/TLS, Overview

mutual, Overview

trusted CA list, Overview

AVA, AVA

B

Basic Encoding Rules (see BER)

BER, BER

C

CA, Integrity of the public key

choosing a host, Choosing a host for a private certification authority

commercial CAs, Commercial Certification Authorities

index file, Initialize the CA database

list of trusted, Trusted CAs

multiple CAs, Certificates signed by multiple CAs

private CAs, Private Certification Authorities

private key, creating, Create a self-signed CA certificate and private key

OU=Engineering

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

192

security precautions, Security precautions

self-signed, Create a self-signed CA certificate and private key

serial file, Initialize the CA database

trusted list, Overview

CA, setting up, Substeps to perform

CAs, Substeps to perform

certificate signing request, Create a certificate signing request, Create a certificate signing
request

signing, Sign the CSR, Sign the CSR

certificates

chaining, Certificate chain

creating and signing, Substeps to perform

own, specifying, Specifying an Application's Own Certificate

peer, Chain of trust

public key, Contents of an X.509 certificate

security handshake, Security handshake, Security handshake

self-signed, Self-signed certificate, Create a self-signed CA certificate and private key

signing, Integrity of the public key, Sign the CSR, Sign the CSR

signing request, Create a certificate signing request, Create a certificate signing request

trusted CA list, Overview

X.509, Role of certificates

chaining of certificates, Certificate chain

CSR, Create a certificate signing request, Create a certificate signing request

D

DER, DER

Distinguished Encoding Rules (see DER)

distinguished names

definition, Overview

DN

definition, Overview

string representation, String representation of DN

INDEX

193

I

index file, Initialize the CA database

M

multiple CAs, Certificates signed by multiple CAs

mutual authentication, Overview

O

OpenSSL, OpenSSL software package

OpenSSL command-line utilities, OpenSSL utilities

P

peer certificate, Chain of trust

PKCS#12 files

creating, Substeps to perform

private key, Create a self-signed CA certificate and private key

public keys, Contents of an X.509 certificate

R

RDN, RDN

relative distinguished name (see RDN)

root certificate directory, Trusted CAs

S

security handshake

SSL/TLS, Security handshake, Security handshake

self-signed CA, Create a self-signed CA certificate and private key

self-signed certificate, Self-signed certificate

serial file, Initialize the CA database

signing certificates, Integrity of the public key

SSL/TLS

security handshake, Security handshake, Security handshake

SSLeay, OpenSSL software package

T

Red Hat JBoss Fuse 6.2 Apache CXF Security Guide

194

target authentication, Overview

target only, Overview

trusted CA list policy, Overview

trusted CAs, Trusted CAs

X

X.500, ASN.1 and Distinguished Names

X.509 certificate

definition, Role of certificates

INDEX

195

	Table of Contents
	CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS
	OVERVIEW
	GENERATING X.509 CERTIFICATES
	CERTIFICATE FORMAT
	ENABLING HTTPS
	HTTPS CLIENT WITH NO CERTIFICATE
	HTTPS CLIENT WITH CERTIFICATE
	HTTPS SERVER CONFIGURATION

	CHAPTER 2. MANAGING CERTIFICATES
	2.1. WHAT IS AN X.509 CERTIFICATE?
	Role of certificates
	Integrity of the public key
	Digital signatures
	Contents of an X.509 certificate
	Distinguished names

	2.2. CERTIFICATION AUTHORITIES
	2.2.1. Introduction to Certificate Authorities
	2.2.2. Commercial Certification Authorities
	Signing certificates
	Advantages of commercial CAs
	Criteria for choosing a CA

	2.2.3. Private Certification Authorities
	Choosing a CA software package
	OpenSSL software package
	Setting up a private CA using OpenSSL
	Choosing a host for a private certification authority
	Security precautions

	2.3. CERTIFICATE CHAINING
	Certificate chain
	Self-signed certificate
	Chain of trust
	Certificates signed by multiple CAs
	Trusted CAs

	2.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES
	Overview
	HTTPS URL integrity check
	Reference
	How to specify the certificate identity
	Using commonName
	Using subjectAltName (multi-homed hosts)

	2.5. CREATING YOUR OWN CERTIFICATES
	2.5.1. Prerequisites
	OpenSSL utilities
	Sample CA directory structure

	2.5.2. Set Up Your Own CA
	Substeps to perform
	Add the bin directory to your PATH
	Create the CA directory hierarchy
	Copy and edit the openssl.cnf file
	Initialize the CA database
	Create a self-signed CA certificate and private key

	2.5.3. Use the CA to Create Signed Certificates in a Java Keystore
	Substeps to perform
	Add the Java bin directory to your PATH
	Generate a certificate and private key pair
	Create a certificate signing request
	Sign the CSR
	Convert to PEM format
	Concatenate the files
	Update keystore with the full certificate chain
	Repeat steps as required

	2.5.4. Use the CA to Create Signed PKCS#12 Certificates
	Substeps to perform
	Add the bin directory to your PATH
	Configure the subjectAltName extension (Optional)
	Create a certificate signing request
	Sign the CSR
	Concatenate the files
	Create a PKCS#12 file
	Repeat steps as required
	(Optional) Clear the subjectAltName extension

	CHAPTER 3. CONFIGURING HTTPS
	3.1. AUTHENTICATION ALTERNATIVES
	3.1.1. Target-Only Authentication
	Overview
	Security handshake
	HTTPS example

	3.1.2. Mutual Authentication
	Overview
	Security handshake
	HTTPS example

	3.2. SPECIFYING TRUSTED CA CERTIFICATES
	3.2.1. When to Deploy Trusted CA Certificates
	Overview
	Which applications need to specify trusted CA certificates?

	3.2.2. Specifying Trusted CA Certificates for HTTPS
	CA certificate format
	CA certificate deployment in the Apache CXF configuration file

	3.3. SPECIFYING AN APPLICATION'S OWN CERTIFICATE
	3.3.1. Deploying Own Certificate for HTTPS
	Overview
	Procedure

	CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES
	4.1. SUPPORTED CIPHER SUITES
	Overview
	JCE/JSSE and security providers
	SunJSSE provider
	Cipher suites supported by SunJSSE
	JSSE reference guide

	4.2. CIPHER SUITE FILTERS
	Overview
	Namespaces
	sec:cipherSuitesFilter element
	Semantics
	Regular expression matching
	Client conduit example

	4.3. SSL/TLS PROTOCOL VERSION
	Overview
	SSL/TLS protocol versions supported by SunJSSE
	Excluding specific SSL/TLS protocol versions
	Client side SSL/TLS protocol version
	Server side SSL/TLS protocol version
	secureSocketProtocol attribute

	CHAPTER 5. THE WS-POLICY FRAMEWORK
	5.1. INTRODUCTION TO WS-POLICY
	Overview
	Policies and policy references
	Policy subjects
	Service policy subject
	Endpoint policy subject
	Operation policy subject
	Message policy subject

	5.2. POLICY EXPRESSIONS
	Overview
	Policy assertions
	Policy alternatives
	wsp:All element
	wsp:ExactlyOne element
	The empty policy
	The null policy
	Normal form

	CHAPTER 6. MESSAGE PROTECTION
	6.1. TRANSPORT LAYER MESSAGE PROTECTION
	Overview
	Prerequisites
	Policy subject
	Syntax
	Sample policy
	sp:TransportToken
	sp:AlgorithmSuite
	sp:Layout
	sp:IncludeTimestamp
	sp:MustSupportRefKeyIdentifier
	sp:MustSupportRefIssuerSerial

	6.2. SOAP MESSAGE PROTECTION
	6.2.1. Introduction to SOAP Message Protection
	Overview
	Security bindings
	Message protection
	Specifying parts of the message to protect
	Role of configuration

	6.2.2. Basic Signing and Encryption Scenario
	Overview
	Example scenario
	Scenario steps

	6.2.3. Specifying an AsymmetricBinding Policy
	Overview
	Policy subject
	Syntax
	Sample policy
	sp:InitiatorToken
	sp:RecipientToken
	sp:AlgorithmSuite
	sp:Layout
	sp:IncludeTimestamp
	sp:EncryptBeforeSigning
	sp:EncryptSignature
	sp:ProtectTokens
	sp:OnlySignEntireHeadersAndBody

	6.2.4. Specifying a SymmetricBinding Policy
	Overview
	Policy subject
	Syntax
	Sample policy
	sp:ProtectionToken
	sp:SignatureToken
	sp:EncryptionToken
	sp:AlgorithmSuite
	sp:Layout
	sp:IncludeTimestamp
	sp:EncryptBeforeSigning
	sp:EncryptSignature
	sp:ProtectTokens
	sp:OnlySignEntireHeadersAndBody

	6.2.5. Specifying Parts of Message to Encrypt and Sign
	Overview
	Policy subject
	Protection assertions
	Syntax
	Sample policy
	sp:Body
	sp:Header
	sp:Attachments

	6.2.6. Providing Encryption Keys and Signing Keys
	Overview
	Configuring encryption keys and signing keys
	Add encryption and signing properties to Spring configuration
	Define the WSS4J property files
	Programming encryption keys and signing keys
	WSS4J Crypto interface

	6.2.7. Specifying the Algorithm Suite
	Overview
	Syntax
	Algorithm suites
	Types of cryptographic algorithm
	Symmetric key signature
	Asymmetric key signature
	Digest
	Encryption
	Symmetric key wrap
	Asymmetric key wrap
	Computed key
	Encryption key derivation
	Signature key derivation
	Key length properties

	CHAPTER 7. AUTHENTICATION
	7.1. INTRODUCTION TO AUTHENTICATION
	Overview
	Steps to set up authentication

	7.2. SPECIFYING AN AUTHENTICATION POLICY
	Overview
	Syntax
	Sample policy
	Token types
	sp:UsernameToken
	sp:IncludeToken attribute
	SupportingTokens assertions
	sp:SupportingTokens
	sp:SignedSupportingTokens
	sp:EncryptedSupportingTokens
	sp:SignedEncryptedSupportingTokens
	sp:EndorsingSupportingTokens
	sp:SignedEndorsingSupportingTokens
	sp:EndorsingEncryptedSupportingTokens
	sp:SignedEndorsingEncryptedSupportingTokens

	7.3. PROVIDING CLIENT CREDENTIALS
	Overview
	Client credentials properties
	Configuring client credentials in Spring XML
	Programming a callback handler for passwords
	WSPasswordCallback class

	7.4. AUTHENTICATING RECEIVED CREDENTIALS
	Overview
	Configuring a server callback handler in Spring XML
	Implementing the callback handler to check passwords

	CHAPTER 8. WS-TRUST
	8.1. INTRODUCTION TO WS-TRUST
	Overview
	WS-Trust specification
	Supporting specifications
	WS-Trust architecture
	Requestor
	Relying party
	Security token
	SAML token
	Claims
	Policy
	Security token service

	8.2. BASIC SCENARIOS
	Overview
	SAML architecture
	WS-Trust and SAML
	Scenarios
	Bearer scenario
	Steps in the bearer scenario
	Holder-of-key scenario
	Steps in the holder-of-key scenario

	8.3. DEFINING AN ISSUEDTOKEN POLICY
	Overview
	Namespaces
	Sample policy
	Syntax
	XML elements

	8.4. CREATING AN STSCLIENT INSTANCE
	Overview
	Direct configuration
	Indirect configuration

	CHAPTER 9. THE SECURITY TOKEN SERVICE
	9.1. STS ARCHITECTURE
	9.1.1. Overview of the STS
	Architecture
	STS WSDL
	STS operations
	STS policies
	Abstract STS provider framework
	TokenIssueOperation class
	TokenValidateOperation class
	TokenCancelOperation class

	9.1.2. Customizing the STS WSDL
	Overview
	WSDL types and portType
	Choosing a WSDL binding
	SOAP/HTTP binding
	Choosing policies
	Inserting policy references
	Example of SymmetricBinding and UsernameToken policy

	9.1.3. Customizing the Issue Operation
	TokenIssueOperation
	Plug-in framework
	Token providers
	SAMLTokenProvider
	SCTProvider
	Sample configuration of SAMLTokenProvider

	9.1.4. Customizing the Validate Operation
	TokenValidateOperation
	Plug-in framework
	Token validators
	SAMLTokenValidator
	UsernameTokenValidator
	X509TokenValidator
	SCTValidator
	Sample configuration

	9.1.5. Customizing the Cancel Operation
	TokenCancelOperation
	Plug-in framework
	SCTCanceller
	Sample configuration of SCTCanceller

	9.1.6. Configuring STS Properties
	Overview
	What you can configure with STS properties
	Issuer
	Callback handler
	Signing key
	Encrypting key
	Realm settings

	9.2. STS DEMONSTRATION
	9.2.1. Overview of the Demonstration
	Overview
	The demonstration scenario
	The client-STS connection
	The client-server connection
	Invocation steps
	Single-sign on and scalability

	9.2.2. STS WSDL Contract
	Overview
	Location of the STS WSDL contract
	Parts of the contract
	STS port type
	WSDL binding
	WSDL service and port
	Binding policy
	Signed parts and encrypted parts policies

	9.2.3. Security Token Service Configuration
	Overview
	Aspects of configuration
	Location of the STS Spring configuration
	STS plug-in configuration
	STS signing key
	List of known Web service endpoints
	JAX-WS endpoint configuration
	Protection token for the symmetric binding
	STS callback handler

	9.2.4. Server WSDL Contract
	Overview
	Location of the server WSDL contract
	Parts of the contract
	Greeter port type
	Binding
	Service and port
	Binding policy
	IssuedToken policy
	Signed parts and encrypted parts policies

	9.2.5. Server Configuration
	Overview
	Aspects of configuration
	JAX-WS endpoint configuration
	Recipient token
	Server-side SAML token interceptor
	Server callback handler
	Related STS configuration

	9.2.6. Client Configuration
	Overview
	Aspects of configuration
	Configure the connection to the STS
	Configure the connection to the server
	Client callback handler
	Related STS configuration

	9.2.7. Build and Run the Demonstration
	Steps to run the demonstration

	9.3. ENABLING CLAIMS IN THE STS
	Demonstration location
	What is a claim?
	Requesting claims in an IssuedToken policy
	Processing claims
	Steps to process claims
	Claim dialects
	Identity claim dialect
	Claim type URIs for the identity claim dialect
	Claims parsers
	The IdentityClaimsParser
	Implementing a custom claims parser
	Claims handlers
	The LdapClaimsHandler
	Implementing a custom claims handler
	Configuring the ClaimsManager
	Embedding claim values in a SAML token
	Sample AttributeStatementProvider
	Configuring the custom AttributeStatementProvider

	9.4. ENABLING APPLIESTO IN THE STS
	Overview
	Steps to process the AppliesTo policy
	IssuedToken policy without AppliesTo enabled
	IssuedToken policy with AppliesTo enabled
	Configuring the list of services

	9.5. ENABLING REALMS IN THE STS
	9.5.1. Issuing Tokens in Multiple Realms
	Overview
	Realm aware token issuing steps
	Configuring the realm parser
	Sample URL realm parser
	Configuring the realm map

	9.5.2. Validating Tokens in Multiple Realms
	Overview
	Realm aware token validating steps
	Configuring the realm parser
	Validating tokens across realms
	Response from Validate operation
	Configuring the SAMLRealmCodec
	Sample implementation of SAMLRealmCodec

	9.5.3. Token Transformation across Realms
	Overview
	Triggering token transformation
	Relying party as a gateway service
	Transformation algorithm
	Configuring the TokenValidateOperation
	Implementing an IdentityMapper
	Configuring the IdentityMapper

	9.5.4. Realms Demonstration
	Overview
	Demonstration location
	First STS server for A and C realms
	STS for realms A and C
	STS endpoint configuration for realms A and C
	Issue configuration for realms A and C
	Validate configuration for realms A and C
	STS properties for realms A and C
	Second STS server for B realm
	STS for realm B
	STS configuration for realm B
	Issue configuration for realm B
	Validate configuration for realm B
	STS properties for realm B
	Realm parser implementation
	SAMLRealmCodec implementation
	IdentityMapper implementation

	APPENDIX A. ASN.1 AND DISTINGUISHED NAMES
	A.1. ASN.1
	Overview
	BER
	DER
	References

	A.2. DISTINGUISHED NAMES
	Overview
	String representation of DN
	DN string example
	Structure of a DN string
	OID
	Attribute types
	AVA
	RDN

	INDEX

