
Red Hat JBoss Fuse 6.2.1

Deploying into a Web Server

Deploying Apache CXF and Apache Camel applications into a JBoss Web Server or a

JBoss Enterprise Application Platform container

Last Updated: 2017-09-20

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

Deploying Apache CXF and Apache Camel applications into a JBoss Web Server or a JBoss
Enterprise Application Platform container

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The guide describes the options for deploying applications into a Red Hat JBoss Fuse container.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF JBOSS FUSE DEPLOYMENT
1.1. SUPPORTED WEB SERVER PLATFORMS
1.2. CAMEL ON EAP SUBSYSTEM
1.3. WAR BUILD AND DEPLOYMENT MODEL

CHAPTER 2. APACHE CAMEL ON RED HAT JBOSS EAP
2.1. OVERVIEW OF CAMEL ON EAP SUBSYSTEM
2.2. GETTING STARTED WITH CAMEL ON EAP SUBSYSTEM
2.3. WORKING WITH CAMEL ON EAP SUBSYSTEM
2.4. INTEGRATION WITH JMS

CHAPTER 3. BUILDING A WAR
3.1. PREPARING TO USE MAVEN
3.2. MODIFYING AN EXISTING MAVEN PROJECT
3.3. BOOTSTRAPPING A CXF SERVLET IN A WAR
3.4. BOOTSTRAPPING A SPRING CONTEXT IN A WAR

CHAPTER 4. DEPLOYING AN APACHE CXF WEB SERVICE
4.1. APACHE CXF EXAMPLE
4.2. DEPLOY THE APACHE CXF EXAMPLE

CHAPTER 5. DEPLOYING AN APACHE CAMEL SERVLET ENDPOINT
5.1. APACHE CAMEL SERVLET EXAMPLE
5.2. DEPLOY THE APACHE CAMEL SERVLET

CHAPTER 6. DEPLOYING AN APACHE CAMEL WS ENDPOINT
6.1. APACHE CAMEL CXF EXAMPLE
6.2. DEPLOY THE APACHE CAMEL CXF EXAMPLE

3
3
3
3

5
5
5
6

10

14
14
18
21
22

24
24
27

31
31

34

37
37
42

Table of Contents

1

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

2

CHAPTER 1. OVERVIEW OF JBOSS FUSE DEPLOYMENT

Abstract

You have the option of deploying JBoss Fuse applications into various Web server products, such as
Red Hat JBoss Web Server and Red Hat JBoss Enterprise Application Platform. There are two
deployment models available: the Camel on EAP subsystem (specifically for Apache Camel
applications on JBoss EAP); and WAR files.

1.1. SUPPORTED WEB SERVER PLATFORMS

Overview

The following Web server platforms are supported by JBoss Fuse 6.2.1:

JBoss Web Server (JBoss WS)

JBoss Enterprise Application Platform (JBoss EAP)

Supported product versions

To see which versions of JBoss WS and JBoss EAP are supported with JBoss Fuse 6.2.1, please consult
the Supported Configurations page.

1.2. CAMEL ON EAP SUBSYSTEM

Overview

The Camel on EAP subsystem integrates Apache Camel directly into the JBoss EAP container. This
subsystem is available after you install the Fuse on EAP package into the JBoss EAP container. This
subsystem offers many advantages for Camel deployment, including simplified deployment of Camel
components and tighter integration with the underlying JBoss EAP container. For deployment of
Apache Camel applications on JBoss EAP, this deployment model is recommended over the WAR
deployment model.

For details of this approach, see Chapter 2, Apache Camel on Red Hat JBoss EAP.

1.3. WAR BUILD AND DEPLOYMENT MODEL

How to install Fuse libraries

There is no need to install the JBoss Fuse libraries directly into a Web server installation. Under the
WAR deployment model, all of the requisite JBoss Fuse libraries are packaged into your application's
WAR file.

Before you can build a WAR file, however, you need to install and configure Apache Maven as
described in Section 3.1, “Preparing to use Maven” .

Build model

Figure 1.1, “Building the WAR with Maven” shows an overview of the model for building WAR files for

CHAPTER 1. OVERVIEW OF JBOSS FUSE DEPLOYMENT

3

https://access.redhat.com/articles/310603
https://maven.apache.org/

JBoss Fuse applications. The WAR file is generated using a Maven project, which compiles the Java
source code belonging to the project and also downloads any required dependencies from remote
Maven repositories. The WAR configuration, compiled classes, and downloaded (or locally cached)
dependencies are then packaged into the WAR file.

Figure 1.1. Building the WAR with Maven

Remote Maven Repositories

Maven POM file

The normal approach to building JBoss Fuse applications is to use the Apache Maven build system.
The Maven build system is configured by a POM file, pom.xml, which is typically used to configure the
following aspects of the build:

The packaging type to be war (which instructs Maven to build a WAR file).

Dependent JAR files, which will be bundled with the WAR (including the requisite JBoss Fuse
libraries).

The name of the WAR file.

Build process

Apache Maven is fundamentally a distributed build system. In its normal mode of operation (online),
any dependencies it cannot find in its own cache (or local repository) will be downloaded from remote
repositories on the Internet. Assuming that you have configured Maven with the Maven repository
URLs for JBoss Fuse, Maven will download all of the required JBoss Fuse dependencies and transitive
dependencies (that is, dependencies of dependencies), and embed these JBoss Fuse JAR libraries into
the generated WAR file.

Deployment

The generated WAR file encapsulates all of the code and resources required to deploy your JBoss Fuse
application to a Web server. After building the WAR, you can deploy it into your Web server in the usual
way (for example, by manually copying it into a particular hot deploy directory for your Web server).

For more details, see the tutorials.

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

4

https://maven.apache.org/

CHAPTER 2. APACHE CAMEL ON RED HAT JBOSS EAP

Abstract

Apache Camel in JBoss Fuse enables you to select your own way to develop an integrated application.
Also, It allows you to select the container to run. This chapter describes how to integrate Apache
Camel with Red Hat JBoss Enterprise Application Server.

2.1. OVERVIEW OF CAMEL ON EAP SUBSYSTEM

Camel on EAP subsystem enables you to add camel routes as a part of the JBoss EAP configuration.
You can deploy routes as a part of JavaEE applications.

The main goal of this subsystem is to provide camel features as a direct usable option within JBoss
EAP. You do not need to configure or deploy anything. The other advantages of packaging Camel on
EAP as a global library are:

Less bloated war deployments

Patch the application server instead of individual deployments

No need to ship camel dependencies with applications

Use supported versions of component libraries

2.2. GETTING STARTED WITH CAMEL ON EAP SUBSYSTEM

Camel on EAP Subsystem provides you the capability to add Camel routes to your Java EE
applications.

2.2.1. Running Camel on EAP Subsystem

Before running the subsystem, you need to check your system to make sure that you have a working
Java 1.7 version and Maven 3.2.3 version or higher.

Standalone Server: Run the following command in your JBoss EAP home directory.

Domain Mode: Run the following command in your JBoss EAP home directory.

2.2.2. Enabling Camel on EAP Subsystem

The Camel on EAP distribution patch does not modify the existing JBoss EAP configuration files.
However, it comes with a number of additional configuration files.

Run the following command to add the Camel subsystem to an existing configuration.

$ bin/standalone.sh -c standalone-camel.xml

$ bin/domain.sh -c domain-camel.xml

$ bin/fuseconfig.sh --configs=camel --enable

CHAPTER 2. APACHE CAMEL ON RED HAT JBOSS EAP

5

2.2.3. Disabling the Camel Subsystem

If you do not want to add camel subsystem into your deployment, set the attribute enabled to false.
For example, In jboss-all.xml file, set the attribute enabled to false in jboss-camel XML
element

2.3. WORKING WITH CAMEL ON EAP SUBSYSTEM

Here are some basic examples that describe how the camel subsystem interacts with JBoss EAP
configuration files.

2.3.1. Using a Camel Context

The CamelContext represents a single Camel routing rulebase. It contains all the routes of your
application. You can have as many CamelContexts as necessary, provided they have different names.

Camel on EAP allows you to:

define a CamelContext as a part of the subsystem definition in the standalone.xml and
domain.xml files

deploy them in a supported deployment artifact that includes the -camel-context.xml
suffixed file

provide CamelContexts along with their routes via a RouteBuilder and the CDI integration

You can configure a CamelContext as a part of the subsystem definition this way:

Also, you can consume a defined CamelContext two ways:

@injected via Camel-CDI

via JNDI tree

2.3.1.1. Example of a Context and a Route

The following example, describes a context along with an associated route provided via CDI and a
RouteBuilder. It displays an application scoped bean that starts automatically, when you start an
application. The @ContextName annotation provides a specific name to the CamelContext.

<jboss umlns="urn:jboss:1.0">
<jboss-camel xmlns="urn:jboss:jboss-camel:1.0" enabled="false"/>
</jboss>

<route>
 <from uri="direct:start"/>
 <transform>
 <simple>Hello #{body}</simple>
 </transform>
 </route>

@ApplicationScoped

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

6

2.3.1.2. Configuring Camel Context using CDI Mechanism

Camel CDI automatically deploys and configures a CamelContext bean. After you initialise the CDI
container, a CamelContext bean starts and instantiates automatically.

You can inject a CamelContext bean into the application as:

2.3.1.3. Configuring Camel Routes using CDI Mechanism

After you initialise the CDI container, Apache Camel CDI automatically collects all the RouteBuilder
beans in the application, instantiates and add them to the CamelContext bean instance.

For example, you can add a camel route and declare a class in the following way:

2.3.1.4. Customizing Camel Context

Apache Camel CDI provides @ContextName qualifier that allows you to change the name of the default
CamelContext bean. For example,

@Startup
@ContextName("cdi-context")
public class HelloRouteBuilder extends RouteBuilder {

 @Inject
 HelloBean helloBean;

 @Override
 public void configure() throws Exception {

from("direct:start").transform(body().prepend(helloBean.sayHello()).append
(" user."));
 }
}

@Inject
 @ContextName(cdi-context)
 private CamelContext context;

class MyRouteBean extends RouteBuilder {

 @Override
 public void configure() {
 from("jms:invoices").to("file:/invoices");
 }
 }

@ApplicationScoped
class CustomCamelContext extends DefaultCamelContext {

 @PostConstruct
 void customize() {

CHAPTER 2. APACHE CAMEL ON RED HAT JBOSS EAP

7

NOTE

You can use any CamelContext class to declare a custom camel context bean.

2.3.1.5. Supporting Multiple CamelContexts

You can declare any number of CamelContext beans in your application. The CDI qualifiers declared on
these CamelContext beans are used to bind the Camel routes and other Camel primitives to the
corresponding Camel contexts.

The CDI qualifiers declared on the CamelContext beans are also used to bind the corresponding Camel
primitives. For example:

2.3.2. Camel Context Deployment

You can deploy a camel context to JBoss EAP two ways:

Use the -camel-context.xml suffix as a part of another supported deployment, such as a
JAR, WAR, or EAR deployment

This deployment may contain multiple -camel-context.xml files.

Use the -camel-context.xml suffix in a standalone XML file deployment by dropping the
file into the EAP deployment directory

A deployed camel context is CDI injectable as:

 // Set the Camel context name
 setName("custom");
 // Disable JMX
 disableJMX();
 }

 @PreDestroy
 void cleanUp() {
 // ...
 }
}

@Inject
@ContextName("foo")
@Uri("direct:inbound")
ProducerTemplate producerTemplate;

@Inject
@BarContextQualifier
MockEndpoint outbound; // URI defaults to the member name, i.e.
mock:outbound

@Inject
@ContextName("baz")
@Uri("direct:inbound")
Endpoint endpoint;

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

8

2.3.3. Hawtio Web Console

HawtIO is a web application that runs in a JVM. You can start Hawtio on your machine:

deploy HawtIO as a WAR file

add some users to your management and application realms by using the following command:
$ bin/add-user.sh

navigate to the http://localhost:8080/hawtio, the HawtIO login page appears

Click Camelin the top navigation bar to view all the running Camel Contexts

Apache Camel plugin allows you to browse all the running Camel applications in the current JVM. You
can also view the following details:

list of all the running camel applications

detail information of each Camel Context such as Camel version number, runtime statics

list of all the routes and their runtime statistics in each camel application

manage the lifecycle of all camel applications and their routes

graphical representation of the running routes along with real time metrics

live tracing and debugging of running routes

profile the running routes with real time runtime statics

browse and send messages to camel endpoint

2.3.4. Selecting Components

If you add nested component or component-module XML elements, then instead of the default list of
Camel components, only the specified elements will be added to your deployment.

For example,

2.3.5. Configuring Camel Subsystem

The Camel subsystem configuration may contain static system routes. However, these routes are
started automatically.

@Resource(name = "java:jboss/camel/context/mycontext")
 CamelContext camelContext;

<jboss umlns="urn:jboss:1.0">
<jboss-camel xmlns="urn:jboss:jboss-camel:1.0">
<component name="camel-ftp"/>
<component-module name="org.apache.camel.component.rss"/>
</jboss-camel>
</jboss>

CHAPTER 2. APACHE CAMEL ON RED HAT JBOSS EAP

9

2.3.6. Configuring Camel Deployment

To make changes in the default configuration of your Camel deployment, you can edit either WEB-
INF/jboss-all.xml or META-INF/jboss-all.xml configuration file.

Use a jboss-camel XML element within the jboss-all.xml file, to control the camel configuration.

2.4. INTEGRATION WITH JMS

The camel-jms component provides messaging support. It integrates with the EAP Messaging
(HornetQ) subsystem. Integration with other JMS implementations is possible by using the JBoss
generic JMS Resource Adapter.

2.4.1. Configuring EAP JMS

With the help of standard EAP XML configuration files, you can configure the EAP messaging
subsystem. The following example displays the configuration of a new JMS queue on the messaging
subsystem, by adding the XML configuration to the jms-destinations section.

However, you can also use a CLI script to add the queue.

2.4.2. Configuring Camel Route

The following examples of JMS producer and consumer illustrates the use of EAP embedded HornetQ
server to publish and consume messages, to and from destinations.

However, it also displays the use of CDI in conjunction with the camel-cdi component. You can inject
the JMS ConnectionFactory instances into the Camel RouteBuilder via JNDI lookups.

2.4.2.1. JMS Producer

You can start the RouteBuilder by injecting the DefaultJMSConnectionFactory connection
factory from JNDI. However, the connection factory is defined within the messaging subsystem. Also, a
timer endpoint runs after every 10 seconds to share an XML payload to the EAPCamelQueue
destination.

<route>
 <from uri="direct:start"/>
 <transform>
 <simple>Hello #{body}</simple>
 </transform>
 </route>

<jms-queue name="WildFlyCamelQueue">
 <entry name="java:/jms/queue/WildFlyCamelQueue"/>
</jms-queue>

jms-queue add --queue-address=WildFlyCamelQueue --
entries=queue/WildFlyCamelQueue,java:/jms/queue/WildFlyCamelQueue

@Startup

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

10

When you add a JMS message to the EAPCamelQueue destination, a log message appears. Use the
EAP Administration console to verify that the messages are placed onto the queue.

2.4.2.2. JMS Consumer

To consume JMS messages, inject and set the connection factory from JNDI on the JMSComponent
instance. When the JMS endpoint consumes messages from the EAPCamelQueue destination, the
content is logged to the console.

2.4.2.3. JMS Transactions

To enable the Apache Camel JMS routes to participate in JMS transactions, you need to configure
some spring classes to enable them to work with the EAP transaction manager and connection factory.
The following example illustrates how to use CDI to configure a transactional JMS Camel route.

The camel-jms component requires a transaction manager of type
org.springframework.transaction.PlatformTransactionManager. Therefore, you can
create a bean extending JtaTransactionManager.

@ApplicationScoped
@ContextName("jms-camel-context")
public class JmsRouteBuilder extends RouteBuilder {

 @Resource(mappedName = "java:jboss/DefaultJMSConnectionFactory")
 private ConnectionFactory connectionFactory;

 @Override
 public void configure() throws Exception {
 JmsComponent component = new JmsComponent();
 component.setConnectionFactory(connectionFactory);

 getContext().addComponent("jms", component);

 from("timer://sendJMSMessage?fixedRate=true&period=10000")
 .transform(constant("<?xml version='1.0><message><greeting>hello
world</greeting></message>"))
 .to("jms:queue:WildFlyCamelQueue")
 .log("JMS Message sent");
 }
}

@Override
public void configure() throws Exception {
 JmsComponent component = new JmsComponent();
 component.setConnectionFactory(connectionFactory);

 getContext().addComponent("jms", component);

 from("jms:queue:WildFlyCamelQueue")
 .to("log:jms?showAll=true");
}

CHAPTER 2. APACHE CAMEL ON RED HAT JBOSS EAP

11

NOTE

Use the annotation @Named to make the bean available to Camel. It enables you to
register the bean within the camel bean registry. Also, inject the EAP transaction
manager and user transaction instances by using CDI.

Declare the transaction policy that you want to implement. Use the annotation to make the bean
available to Camel. Inject the transaction manager, so that you can create a Transactionaltemplate
using the desired transaction policy. For example, PROPAGATION_REQUIRED in this instance.

Also, you can configure the Camel RouteBuilder class and inject the dependencies you need for the
Camel JMS component as shown in the given example:

@Named("transactionManager")
public class CdiTransactionManager extends JtaTransactionManager {

 @Resource(mappedName = "java:/TransactionManager")
 private TransactionManager transactionManager;

 @Resource
 private UserTransaction userTransaction;

 @PostConstruct
 public void initTransactionManager() {
 setTransactionManager(transactionManager);
 setUserTransaction(userTransaction);
 }
}

@Named("PROPAGATION_REQUIRED")
public class CdiRequiredPolicy extends SpringTransactionPolicy {
 @Inject
 public CdiRequiredPolicy(CdiTransactionManager cdiTransactionManager) {
 super(new TransactionTemplate(cdiTransactionManager,
 new
DefaultTransactionDefinition(TransactionDefinition.PROPAGATION_REQUIRED)))
;
 }
}

@Startup
@ApplicationScoped
@ContextName("jms-camel-context")
public class JMSRouteBuilder extends RouteBuilder {

 @Resource(mappedName = "java:/JmsXA")
 private ConnectionFactory connectionFactory;

 @Inject
 CdiTransactionManager transactionManager;

 @Override
 public void configure() throws Exception {
 // Creates a JMS component which supports transactions
 JmsComponent jmsComponent =

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

12

2.4.2.4. Remote JMS destinations

You can send messages from one EAP instance to HornetQ destinations configured on an other EAP
instance, through remote JNDI. To send messages, you need to configure an exported JMS queue.
Only JNDI names bound in the java:jboss/export namespace are appropriate for remote clients.

NOTE

Configure the queue on the EAP client application server and EAP remote server.

JmsComponent.jmsComponentTransacted(connectionFactory,
transactionManager);
 getContext().addComponent("jms", jmsComponent);

 from("jms:queue:queue1")
 .transacted("PROPAGATION_REQUIRED")
 .to("jms:queue:queue2");

 from("jms:queue:queue2")
 .to("log:end")
 .rollback();
 }

<jms-queue name="RemoteQueue">
 <entry name="java:jboss/exported/jms/queues/RemoteQueue"/>
</jms-queue>

CHAPTER 2. APACHE CAMEL ON RED HAT JBOSS EAP

13

CHAPTER 3. BUILDING A WAR

Abstract

This chapter describes how to build and package a WAR using Maven.

3.1. PREPARING TO USE MAVEN

Overview

This section gives a brief overview of how to prepare Maven for building Red Hat JBoss Fuse projects
and introduces the concept of Maven coordinates, which are used to locate Maven artifacts.

Prerequisites

In order to build a project using Maven, you must have the following prerequisites:

Maven installation—Maven is a free, open source build tool from Apache. You can download the
latest version from the Maven download page .

Network connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. By default, Maven looks for
repositories that are accessed over the Internet. You can change this behavior so that Maven
will prefer searching repositories that are on a local network.

NOTE

Maven can run in an offline mode. In offline mode Maven will only look for
artifacts in its local repository.

Adding the Red Hat JBoss Fuse repository

In order to access artifacts from the Red Hat JBoss Fuse Maven repository, you need to add it to
Maven's settings.xml file. Maven looks for your settings.xml file in the .m2 directory of the
user's home directory. If there is not a user specified settings.xml file, Maven will use the system-
level settings.xml file at M2_HOME/conf/settings.xml.

To add the JBoss Fuse repository to Maven's list of repositories, you can either create a new
.m2/settings.xml file or modify the system-level settings. In the settings.xml file, add the
repository element for the JBoss Fuse repository as shown in bold text in Example 3.1, “Adding the
Red Hat JBoss Fuse Repositories to Maven”.

Example 3.1. Adding the Red Hat JBoss Fuse Repositories to Maven

<settings>
 <profiles>
 <profile>
 <id>my-profile</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

14

http://maven.apache.org/download.html

 <repository>
 <id>fusesource</id>

<url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository> <repository>
 <id>fusesource.snapshot</id>

<url>http://repo.fusesource.com/nexus/content/groups/public-
snapshots/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
 <repository>
 <id>apache-public</id>

<url>https://repository.apache.org/content/groups/public/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 ...
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>fusesource</id>

<url>https://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </pluginRepository>
 <pluginRepository>
 <id>fusesource.snapshot</id>

<url>http://repo.fusesource.com/nexus/content/groups/public-
snapshots/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>

CHAPTER 3. BUILDING A WAR

15

The preceding example also shows repository element for the following repositories:

fusesource-snapshot repository—if you want to experiment with building your application
using an Red Hat JBoss Fuse snapshot kit, you can include this repository.

apache-public repository—you might not always need this repository, but it is often useful to
include it, because JBoss Fuse depends on many of the artifacts from Apache.

Artifacts

The basic building block in the Maven build system is an artifact. The output of an artifact, after
performing a Maven build, is typically an archive, such as a JAR or a WAR.

Maven coordinates

A key aspect of Maven functionality is the ability to locate artifacts and manage the dependencies
between them. Maven defines the location of an artifact using the system of Maven coordinates, which
uniquely define the location of a particular artifact. A basic coordinate tuple has the form, {groupId,
artifactId, version}. Sometimes Maven augments the basic set of coordinates with the
additional coordinates, packaging and classifier. A tuple can be written with the basic coordinates, or
with the additional packaging coordinate, or with the addition of both the packaging and classifier
coordinates, as follows:

Each coordinate can be explained as follows:

groupdId

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID—for example, org.fusesource.example.

 <enabled>false</enabled>
 </releases>
 </pluginRepository>
 <pluginRepository>
 <id>apache-public</id>

<url>https://repository.apache.org/content/groups/public/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </pluginRepository>
 ...
 </pluginRepositories>
 </profile>
 </profiles>
 ...
</settings>

groupdId:artifactId:version
groupdId:artifactId:packaging:version
groupdId:artifactId:packaging:classifier:version

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

16

artifactId

Defines the artifact name (relative to the group ID).

version

Specifies the artifact's version. A version number can have up to four parts: n.n.n.n, where the
last part of the version number can contain non-numeric characters (for example, the last part of
1.0-SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT).

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier

Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

The group ID, artifact ID, packaging, and version are defined by the corresponding elements in an
artifact's POM file. For example:

For example, to define a dependency on the preceding artifact, you could add the following
dependency element to a POM:

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,
because a bundle is just a particular kind of JAR file and jar is the default Maven
package type. If you do need to specify the packaging type explicitly in a dependency,
however, you can use the type element.

<project ... >
 ...
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <packaging>bundle</packaging>
 <version>1.0-SNAPSHOT</version>
 ...
</project>

<project ... >
 ...
 <dependencies>
 <dependency>
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 ...
</project>

CHAPTER 3. BUILDING A WAR

17

3.2. MODIFYING AN EXISTING MAVEN PROJECT

Overview

If you already have a Maven project and you want to modify it so that it generates a WAR, perform the
following steps:

1. the section called “Change the package type to WAR” .

2. the section called “Customize the JDK compiler version” .

3. the section called “Store resources under webapp/WEB-INF” .

4. the section called “Customize the Maven WAR plug-in” .

Change the package type to WAR

Configure Maven to generate a WAR by changing the package type to war in your project's pom.xml
file. Change the contents of the packaging element to war, as shown in the following example:

The effect of this setting is to select the Maven WAR plug-in, maven-war-plugin, to perform
packaging for this project.

Customize the JDK compiler version

It is almost always necessary to specify the JDK version in your POM file. If your code uses any modern
features of the Java language—such as generics, static imports, and so on—and you have not
customized the JDK version in the POM, Maven will fail to compile your source code. It is not sufficient
to set the JAVA_HOME and the PATH environment variables to the correct values for your JDK, you
must also modify the POM file.

To configure your POM file, so that it accepts the Java language features introduced in JDK 1.7, add
the following maven-compiler-plugin plug-in settings to your POM (if they are not already
present):

<project ... >
 ...
 <packaging>war</packaging>
 ...
</project>

<project ... >
 ...
 <build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

18

Store resources under webapp/WEB-INF

Resource files for the Web application are stored under the /WEB-INF directory in the standard WAR
directory layout. In order to ensure that these resources are copied into the root of the generated
WAR package, store the WEB-INF directory under ProjectDir/src/main/webapp in the Maven
directory tree, as follows:

In particular, note that the web.xml file is stored at ProjectDir/src/main/webapp/WEB-
INF/web.xml.

Customize the Maven WAR plug-in

It is possible to customize the Maven WAR plug-in by adding an entry to the plugins section of the
pom.xml file. Most of the configuration options are concerned with adding additonal resources to the
WAR package. For example, to include all of the resources under the src/main/resources directory
(specified relative to the location of pom.xml) in the WAR package, you could add the following WAR
plug-in configuration to your POM:

 </plugin>
 </plugins>
 </build>
 ...
</project>

ProjectDir/
 pom.xml
 src/
 main/
 webapp/
 WEB-INF/
 web.xml
 classes/
 lib/

<project ...>
 ...
 <build>
 ...
 <plugins>
 <plugin>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1.1</version>
 <configuration>
 <!-- Optionally specify where the web.xml file comes from -->
 <webXml>src/main/webapp/WEB-INF/web.xml</webXml>
 <!-- Optionally specify extra resources to include -->
 <webResources>
 <resource>
 <directory>src/main/resources</directory>
 <targetPath>WEB-INF</targetPath>
 <includes>
 <include>**/*</include>
 </includes>
 </resource>

CHAPTER 3. BUILDING A WAR

19

The preceding plug-in configuration customizes the following settings:

webXml

Specifies where to find the web.xml file in the current Maven project, relative to the location of
pom.xml. The default is src/main/webapp/WEB-INF/web.xml.

webResources

Specifies additional resource files that are to be included in the generated WAR package. It can
contain the following sub-elements:

webResources/resource—each resource elements specifies a set of resource files to
include in the WAR.

webResources/resource/directory—specifies the base directory from which to copy
resource files, where this directory is specified relative to the location of pom.xml.

webResources/resource/targetPath—specifies where to put the resource files in the
generated WAR package.

webResources/resource/includes—uses an Ant-style wildcard pattern to specify
explicitly which resources should be included in the WAR.

webResources/resource/excludes—uses an Ant-style wildcard pattern to specify
explicitly which resources should be excluded from the WAR (exclusions have priority over
inclusions).

For complete details of how to configure the Maven WAR plug-in, see
http://maven.apache.org/plugins/maven-war-plugin/index.html.

NOTE

Do not use version 2.1 of the maven-war-plugin plug-in, which has a bug that causes
two copies of the web.xml file to be inserted into the generated .war file.

Building the WAR

To build the WAR defined by the Maven project, open a command prompt, go to the project directory
(that is, the directory containing the pom.xml file), and enter the following Maven command:

The effect of this command is to compile all of the Java source files, to generate a WAR under the
ProjectDir/target directory, and then to install the generated WAR in the local Maven repository.

 </webResources>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
</project>

mvn install

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

20

http://maven.apache.org/plugins/maven-war-plugin/index.html

3.3. BOOTSTRAPPING A CXF SERVLET IN A WAR

Overview

A simple way to bootstrap Apache CXF in a WAR is to configure web.xml to use the standard CXF
servlet, org.apache.cxf.transport.servlet.CXFServlet.

Example

For example, the following web.xml file shows how to configure the CXF servlet, where all Web service
addresses accessed through this servlet would be prefixed by /services/ (as specified by the value
of servlet-mapping/url-pattern):

cxf-servlet.xml file

In addition to configuring the web.xml file, it is also necessary to configure your Web services by
defining a cxf-servlet.xml file, which must be copied into the root of the generated WAR.

Alternatively, if you do not want to put cxf-servlet.xml in the default location, you can customize
its name and location, by setting the contextConfigLocation context parameter in the web.xml
file. For example, to specify that Apache CXF configuration is located in WEB-INF/cxf-
servlet.xml, set the following context parameter in web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>cxf</display-name>
 <description>cxf</description>

 <servlet>
 <servlet-name>cxf</servlet-name>
 <display-name>cxf</display-name>
 <description>Apache CXF Endpoint</description>
 <servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-
class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>cxf</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>

 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>

</web-app>

<?xml version="1.0" encoding="UTF-8"?>

CHAPTER 3. BUILDING A WAR

21

Reference

For full details of how to configure the CXF servlet, see .

3.4. BOOTSTRAPPING A SPRING CONTEXT IN A WAR

Overview

You can bootstrap a Spring context in a WAR using Spring's ContextLoaderListener class.

Bootstrapping a Spring context in a WAR

For example, the following web.xml file shows how to boot up a Spring application context that is
initialized by the XML file, /WEB-INF/applicationContext.xml (which is the location of the
context file in the generated WAR package):

Maven dependency

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 ...
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>WEB-INF/cxf-servlet.xml</param-value>
 </context-param>
 ...
</web-app>

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>Camel Routes</display-name>

 <!-- location of spring xml files -->
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/applicationContext.xml</param-value>
 </context-param>

 <!-- the listener that kick-starts Spring -->
 <listener>
 <listener-
class>org.springframework.web.context.ContextLoaderListener</listener-
class>
 </listener>

</web-app>

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

22

http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/web-integration.html

In order to access the ContextLoaderListener class from the Spring framework, you must add the
following dependency to your project's pom.xml file:

Where the spring-version property specifies the version of the Spring framework you are using.

 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>${spring-version}</version>
 </dependency>

CHAPTER 3. BUILDING A WAR

23

CHAPTER 4. DEPLOYING AN APACHE CXF WEB SERVICE

Abstract

This tutorial describes how to deploy an Apache CXF Web services endpoint in a WAR file, where the
Web service endpoint is implemented by binding directly to a Java class with the JAX-WS mapping.

4.1. APACHE CXF EXAMPLE

Overview

Figure 4.1, “Example Web Service Deployed in a Web Server” gives an overview of the Apache CXF
example deployed in a Web server, which lets you see how the Web service's URL is constructed from
settings at different configuration layers. The Web server's host and port, the WAR file name, the url-
pattern setting from web.xml, and the address attribute of the Web services endpoint are
combined to give the URL,
http://localhost:8080/wsdl_first/services/CustomerServicePort.

Figure 4.1. Example Web Service Deployed in a Web Server

we b.xml

c x f - s e r v l e t . x m l

w s d l _ f i r s t WAR

Web Server

h t t p : / /
l o c a l ho s t : 8 08 0

wsdl_first sample

The code for this example is available from the standard Apache CXF distribution, under the
samples/wsdl_first directory. For details of how to install the Apache CXF distribution, see the
section called “Install Apache CXF”.

web.xml file

To deploy the example Web service as a servlet, you must provide a properly configured web.xml file.
In the wsdl_first project, the web.xml file is stored at the following location:

Example 4.1, “web.xml File for the wsdl_first Example” shows the contents of the web.xml file.

Example 4.1. web.xml File for the wsdl_first Example

wsdl_first/src/main/webapp/WEB-INF/web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

24

The key settings in the preceding web.xml file are:

Servlet class—specifies the org.apache.cxf.transport.servlet.CXFServlet class,
which implements a special servlet that integrates with Web services.

URL pattern—determines which URLs are routed to this servlet. In general, the servlet URL has
the following form:

Where the base URL, http://Host:Port, is determined by the configuration of the Web
server, the WARFileName is the root of the WARFileName.war WAR file, and the
URLPattern is specified by the contents of the url-pattern element.

Assuming that the Web server port is set to 8080, the wsdl_first example servlet will
match URLs of the following form:

Implied Spring container

The CXFServlet automatically creates and starts up a Spring container, which you can then use for
defining Web service endpoints. By default, this Spring container automatically loads the following XML
file in the WAR:

In the wsdl_first example project, this file is stored at the following location:

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>cxf</display-name>

 <servlet>
 <servlet-name>cxf</servlet-name>
 <display-name>cxf</display-name>
 <description>Apache CXF Endpoint</description>
 <servlet-
class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>cxf</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>

 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>

</web-app>

http://Host:Port/WARFileName/URLPattern

http://localhost:8080/wsdl_first/services/*

WEB-INF/cxf-servlet.xml

CHAPTER 4. DEPLOYING AN APACHE CXF WEB SERVICE

25

cxf-servlet.xml file

The cxf-servlet.xml file is primarily used to create Web service endpoints, which represent the
Web services exposed through the Web server. Apache CXF provides a convenient and flexible syntax
for defining Web service endpoints in XML and you can use this flexible syntax to define endpoints in
cxf-servlet.xml.

Example 4.2, “Spring Configuration for the wsdl_first Example” shows the contents of the cxf-
servlet.xml file, which creates a single CustomerService endpoint, using the jaxws:endpoint
element.

Example 4.2. Spring Configuration for the wsdl_first Example

Note that the address attribute of the jaxws:endpoint specifies the final segment of the Web
service's URL. When you put together all of the settings from the Web server, the web.xml file, and the
cxf-server.xml file, you obtain the following URL for this Web service endpoint:

WSDL address configuration

wsdl_first/src/main/webapp/WEB-INF/cxf-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:soap="http://cxf.apache.org/bindings/soap"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/bindings/soap
http://cxf.apache.org/schemas/configuration/soap.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

 <jaxws:endpoint
 xmlns:customer="http://customerservice.example.com/"
 id="CustomerServiceHTTP"
 address="/CustomerServicePort"
 serviceName="customer:CustomerServiceService"
 endpointName="customer:CustomerServicePort"

implementor="com.example.customerservice.server.CustomerServiceImpl">
 <!--jaxws:properties>
 <entry key="schema-validation-enabled" value="true" />
 </jaxws:properties-->
 </jaxws:endpoint>

</beans>

http://localhost:8080/wsdl_first/services/CustomerServicePort

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

26

In addition to defining the servlet descriptor, web.xml, and the Spring configuration, cxf-
servlet.xml, it is also necessary to ensure that the SOAP address in the WSDL contract is correctly
specified, so that it matches the URL for this Web service.

In the wsdl_first example, the WSDL contract is located in the following file:

In the WSDL contract, the location attribute of the soap:address element must be set to the
correct Web service URL, as shown in Example 4.3, “Address in the WSDL CustomerService Contract” .

Example 4.3. Address in the WSDL CustomerService Contract

4.2. DEPLOY THE APACHE CXF EXAMPLE

Overview

This tutorial takes a standard Apache CXF example (the wsdl_first example) and shows you how to
deploy it into a Web server, by packaging the application as a WAR. In this example, the Web service is
implemented by binding the service to a Java class with the JAX-WS mapping.

Prerequisites

The following prerequisites are needed to build and run this example:

Either of the following Web servers are installed:

JBoss Web Server, or

wsdl_first/src/main/resources/CustomerService.wsdl

<?xml version="1.0" encoding="UTF-8"?>
...
<wsdl:definitions name="CustomerServiceService"
targetNamespace="http://customerservice.example.com/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://customerservice.example.com/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 ...
 <wsdl:service name="CustomerServiceService">
 <wsdl:port name="CustomerServicePort"
binding="tns:CustomerServiceServiceSoapBinding">
 <!-- embedded deployment -->
 <!--soap:address
location="http://localhost:9090/CustomerServicePort"/-->
 <!-- standalone Tomcat deployment -->
 <soap:address
location="http://localhost:8080/wsdl_first/services/CustomerServicePort"
/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

CHAPTER 4. DEPLOYING AN APACHE CXF WEB SERVICE

27

JBoss Enterprise Application Platform

Java version 1.7 or later is installed.

Apache Maven 3.0.0 or later is installed.

Maven is configured to access the JBoss Fuse repositories, as described in Section 3.1,
“Preparing to use Maven”.

You have access to the Internet, so that Maven can download dependencies from remote
repositories.

Install Apache CXF

To obtain the code for the wsdl_first example, you need to install the Apache CXF kit, apache-
cxf-3.0.4.redhat-621084.zip, provided in the extras/ directory of the JBoss Fuse installation.

Install the Apache CXF kit as follows:

1. Find the Apache CXF kit at the following location:

2. Using a suitable archive utility on your platform, unzip the apache-cxf-3.0.4.redhat-
621084.zip file and extract it to a convenient location, CXFInstallDir.

The wsdl_first example

The wsdl_first example is located under the following sub-directory of the Apache CXF installation:

Build and run the example

To build and run the wsdl_first example, perform the following steps:

1. Using your favorite text editor, open the CustomerService.wsdl file, which can be found in
the following location in the wsdl_first project:

Edit the soap:address element in the WSDL contract, removing comments around the
element labeled standalone Tomcat deployment and inserting comments around the
element labeled embedded deployment. When you are finished editing, the soap:address
element should be look as follows:

InstallDir/extras/apache-cxf-3.0.4.redhat-621084.zip

CXFInstallDir/samples/wsdl_first/

wsdl_first/src/main/resources/CustomerService.wsdl

<?xml version="1.0" encoding="UTF-8"?>
...
<wsdl:definitions name="CustomerServiceService"
targetNamespace="http://customerservice.example.com/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://customerservice.example.com/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

28

2. Build the wsdl_first example using Maven. Change directory to the
CXFInstallDir/samples/wsdl_first directory, open a command prompt, and enter the
following command at the command line:

If this command executes successfully, you should be able to find the WAR file,
wsdl_first.war, under the wsdl_first/target sub-directory.

3. Make sure that the Web server is already running (a simple way to test this is to enter the URL,
http://localhost:8080, into your browser). If you need to start the Web server, you can
typically do this from the command line. The command to start the Web server depends on the
particular product you are using, as follows:

JBoss Web Server (WS)—open a new command prompt and execute the startup.sh script
from the tomcat8/bin/ directory (or the tomcat7/bin/ directory, as appropriate). For
more details about how to configure and launch the Web server, see the Installation Guide
from the JBoss Web Server library.

JBoss Enterprise Application Platform (EAP)—for a standalone instance, open a new
command prompt and execute the bin/standalone.sh script. For more details about
how to configure and launch the EAP, see the Administration and Configuration Guide from
the JBoss Enterprise Application Platform library.

4. Deploy the wsdl_first example to the running Web server. Manually copy the
wsdl_first.war WAR file from the wsdl_first/target directory to the Web server's
deployment directory, as follows:

JBoss Web Server (WS)—copy the wsdl_first.war WAR file to the tomcat8/webapps
directory (or tomcat7/webapps directory, as appropriate).

JBoss Enterprise Application Platform (EAP)—copy the wsdl_first.war WAR file to the
standalone/deployments directory.

5. Use a Web browser to query the WSDL contract from the newly deployed Web service.
Navigate to the following URL in your browser:

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 ...
 <wsdl:service name="CustomerServiceService">
 <wsdl:port name="CustomerServicePort"
binding="tns:CustomerServiceServiceSoapBinding">
 <!-- embedded deployment -->
 <!--soap:address
location="http://localhost:9090/CustomerServicePort"/-->
 <!-- standalone Tomcat deployment -->
 <soap:address
location="http://localhost:8080/wsdl_first/services/CustomerServiceP
ort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

mvn clean package

http://localhost:8080/wsdl_first/services/CustomerServicePort?wsdl

CHAPTER 4. DEPLOYING AN APACHE CXF WEB SERVICE

29

NOTE

This step might not work in the Safari browser.

6. Run the test client against the deployed Web service. Change directory to the
CXFInstallDir/samples/wsdl_first directory, open a command prompt, and enter the
following command at the command line:

If the client runs successfully, you should see some output like the following in your command
window:

mvn -Pclient

...
Sending request for customers named Smith
Response received
Did not find any matching customer for name=None
NoSuchCustomer exception was received as expected
All calls were successful

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

30

CHAPTER 5. DEPLOYING AN APACHE CAMEL SERVLET
ENDPOINT

Abstract

This tutorial describes how to deploy a Camel application, which is implemented using the Camel
servlet component. The Camel application gets installed into the Web server as a servlet, receiving
messages through the servlet endpoint which are then processed in a Camel route.

5.1. APACHE CAMEL SERVLET EXAMPLE

Overview

IMPORTANT

For deploying Apache Camel applications in JBoss EAP, consider using the Camel on
EAP subsystem instead. The Camel on EAP subsystem is easier to use and provides
tighter integration with the JBoss EAP container. For details, see Chapter 2, Apache
Camel on Red Hat JBoss EAP.

Figure 5.1, “Camel Servlet Example Deployed in a Web Server” gives an overview of the Camel servlet
example deployed in a Web server, which lets you see how the servlet's URL is constructed from
settings at different configuration layers. The Web server's host and port, the WAR file name, the url-
pattern setting from web.xml, and the endpoint URI of the Camel servlet endpoint are combined to
give the URL, http://localhost:8080/camel-example-servlet-tomcat-2.15.1.redhat-
621084/camel/hello.

Figure 5.1. Camel Servlet Example Deployed in a Web Server

we b.xml

c am e l -co n f ig .x m l

c am el -ex am pl e-s erv l e t - t om cat -< V ers io n> WAR

Web Server

h t t p : / /
l o c a l ho s t : 8 08 0

camel-example-servlet-tomcat example

The code for this example is available from the standard Apache Camel distribution, under the
examples/camel-example-servlet-tomcat directory. For details of how to install the Apache
Camel distribution, see the section called “Install Apache Camel” .

Camel servlet component

The Camel servlet component is used to process incoming HTTP requests, where the HTTP endpoint is
bound to a published servlet. The servlet component is implemented by the following servlet class:

CHAPTER 5. DEPLOYING AN APACHE CAMEL SERVLET ENDPOINT

31

To create a Camel servlet endpoint in a Camel route, define a servlet endpoint URI with the following
syntax:

Where RelativePath specifies the tail segment of the HTTP URL path for this servlet.

web.xml file

To deploy the Apache Camel servlet example, you must provide a properly configured web.xml file. In
the camel-example-servlet-tomcat project, the web.xml file is stored at the following location:

Example 5.1, “web.xml File for the camel-example-servlet-tomcat Example” shows the contents of the
web.xml file.

Example 5.1. web.xml File for the camel-example-servlet-tomcat Example

org.apache.camel.component.servlet.CamelHttpTransportServlet

servlet://RelativePath[?Options]

camel-example-servlet-tomcat/src/main/webapp/WEB-INF/web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>My Web Application</display-name>

 <!-- location of spring xml files -->
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>classpath:camel-config.xml</param-value>
 </context-param>

 <!-- the listener that kick-starts Spring -->
 <listener>
 <listener-
class>org.springframework.web.context.ContextLoaderListener</listener-
class>
 </listener>

 <!-- Camel servlet -->
 <servlet>
 <servlet-name>CamelServlet</servlet-name>
 <servlet-
class>org.apache.camel.component.servlet.CamelHttpTransportServlet</serv
let-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <!-- Camel servlet mapping -->
 <servlet-mapping>
 <servlet-name>CamelServlet</servlet-name>

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

32

The key settings in the preceding web.xml file are:

servlet/servlet-class

Specifies the org.apache.camel.component.servlet.CamelHttpTransportServlet class,
which implements the Camel servlet component.

servlet-mapping/url-pattern

Determines which URLs are routed to this servlet. In general, the servlet URL has the following
form:

Where the base URL, http://Host:Port, is determined by the configuration of the Web server,
the WARFileName is the root of the WARFileName.war WAR file, and the URLPattern is specified
by the contents of the url-pattern element.

Assuming that the Web server port is set to 8080, the camel-example-servlet-tomcat
example servlet will match URLs of the following form:

listener/listener-class

This element launches the Spring container.

context-param

This element specifies the location of the Spring XML file, camel-config.xml, in the WAR. The
Spring container will read this parameter and load the specified Spring XML file, which contains the
definition of the Camel route.

Example Camel route

Example 5.2, “Route Definition for the Camel Servlet Example” shows the Camel route for this
example, defined in a Spring XML file, using Camel's XML DSL syntax.

Example 5.2. Route Definition for the Camel Servlet Example

 <url-pattern>/camel/*</url-pattern>
 </servlet-mapping>

</web-app>

http://Host:Port/WARFileName/URLPattern

http://localhost:8080/camel-example-servlet-tomcat-2.15.1.redhat-
621084/camel/*

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

CHAPTER 5. DEPLOYING AN APACHE CAMEL SERVLET ENDPOINT

33

Because the servlet URL, servlet:///hello, specifies the relative path, /hello, the complete URL
to access this servlet is the following:

5.2. DEPLOY THE APACHE CAMEL SERVLET

Overview

This tutorial takes a standard Apache Camel example (the camel-example-servlet-tomcat
example) and shows you how to deploy it into a Web server, by packaging the application as a WAR.

Prerequisites

The following prerequisites are needed to build and run this example:

Either of the following Web servers are installed:

JBoss Web Server, or

 http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/spring">

 <route>
 <!-- incoming requests from the servlet is routed -->
 <from uri="servlet:///hello"/>
 <choice>
 <when>
 <!-- is there a header with the key name? -->
 <header>name</header>
 <!-- yes so return back a message to the user -->
 <transform>
 <simple>Hello ${header.name} how are you?</simple>
 </transform>
 </when>
 <otherwise>
 <!-- if no name parameter then output a syntax to the user --
>
 <transform>
 <constant>Add a name parameter to uri, eg ?
name=foo</constant>
 </transform>
 </otherwise>
 </choice>
 </route>

 </camelContext>

</beans>

http://localhost:8080/camel-example-servlet-tomcat-2.15.1.redhat-
621084/camel/hello

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

34

JBoss Enterprise Application Platform

Java version 1.7 or later is installed.

Apache Maven 3.0.0 or later is installed.

Maven is configured to access the JBoss Fuse repositories, as described in Section 3.1,
“Preparing to use Maven”.

You have access to the Internet, so that Maven can download dependencies from remote
repositories.

Install Apache Camel

To obtain the code for the camel-example-servlet-tomcat example, you need to install the
Apache Camel kit, apache-camel-2.15.1.redhat-621084.zip, provided in the extras/
directory of the JBoss Fuse installation.

Install the Apache Camel kit as follows:

1. Find the Apache Camel kit at the following location:

2. Using a suitable archive utility on your platform, unzip the apache-camel-2.15.1.redhat-
621084.zip file and extract it to a convenient location, CamelInstallDir.

The camel-example-servlet-tomcat example

The camel-example-servlet-tomcat example is located under the following sub-directory of the
Apache Camel installation:

Build and run the example

To build and run the camel-example-servlet-tomcat example, perform the following steps:

1. Build the camel-example-servlet-tomcat example using Maven. Change directory to the
CamelInstallDir/examples/camel-example-servlet-tomcat/ directory, open a
command prompt, and enter the following command at the command line:

If this command executes successfully, you should be able to find the WAR file, camel-
example-servlet-tomcat-2.15.1.redhat-621084.war, under the camel-example-
servlet-tomcat/target sub-directory.

2. Make sure that the Web server is already running (a simple way to test this is to enter the URL,
http://localhost:8080, into your browser). If you need to start the Web server, you can
typically do this from the command line. The command to start the Web server depends on the
particular product you are using, as follows:

InstallDir/extras/apache-camel-2.15.1.redhat-621084.zip

CamelInstallDir/examples/camel-example-servlet-tomcat/

mvn package

CHAPTER 5. DEPLOYING AN APACHE CAMEL SERVLET ENDPOINT

35

JBoss Web Server (WS)—open a new command prompt and execute the startup.sh script
from the tomcat8/bin/ directory (or the tomcat7/bin/ directory, as appropriate). For
more details about how to configure and launch the WS, see the Installation Guide from the
JBoss Web Server library.

JBoss Enterprise Application Platform (EAP)—for a standalone instance, open a new
command prompt and execute the bin/standalone.sh script. For more details about
how to configure and launch the EAP, see the Administration and Configuration Guide from
the JBoss Enterprise Application Platform library.

3. Deploy the camel-example-servlet-tomcat example to the running Web server. Manually
copy the camel-example-servlet-tomcat-2.15.1.redhat-621084.war WAR file from
the camel-example-servlet-tomcat/target directory to the Web server's deployment
directory, as follows:

JBoss Web Server (WS)—copy the camel-example-servlet-tomcat-2.15.1.redhat-
621084.war WAR file to the tomcat8/webapps directory (or tomcat7/webapps
directory, as appropriate).

JBoss Enterprise Application Platform (EAP)—copy the camel-example-servlet-
tomcat-2.15.1.redhat-621084.war WAR file to the standalone/deployments
directory.

4. Navigate to the following URL in your browser:

When the page loads, you should see the following text in your browser window:

5. Click the highlighted link in the line To get started click this link. and follow the
on-screen instructions to test the servlet.

http://localhost:8080/camel-example-servlet-tomcat-2.15.1.redhat-
621084/

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

36

CHAPTER 6. DEPLOYING AN APACHE CAMEL WS ENDPOINT

Abstract

This tutorial describes how to deploy an Apache CXF Web services endpoint in a WAR file, where the
Web service endpoint is implemented by binding to an Apache Camel route using the Camel CXF
component.

6.1. APACHE CAMEL CXF EXAMPLE

Overview

Figure 6.1, “Camel CXF Example Deployed in a Web Server” gives an overview of the Camel CXF
example deployed in a Web server, which lets you see how the Web service's URL is constructed from
settings at different configuration layers. The Web server's host and port, the WAR file name, the url-
pattern setting from web.xml, and the URI of the Camel CXF endpoint are combined to give the URL,
http://localhost:8080/camel-example-cxf-tomcat/webservices/incident.

Figure 6.1. Camel CXF Example Deployed in a Web Server

we b.xml

c am e l -co n f ig .x m l

c am el -ex am pl e-c xf - t om ca t WAR

Web Server

h t t p : / /
l o c a l h o s t : 8 0 8 0

camel-example-cxf-tomcat example

The code for this example is available from the standard Apache Camel distribution, under the
examples/camel-example-cxf-tomcat directory. For details of how to install the Apache Camel
distribution, see the section called “Install Apache Camel” .

Camel CXF component

The Camel CXF component binds an Apache CXF endpoint to a Camel route. That is, the Camel CXF
endpoint itself is a fully-fledged Apache CXF Web service with all of the (potentially very complex)
configuration options that are available from Apache CXF (including SSL security, WS-Security, and
other WS-* standards). In contrast to the usual case, where you would bind the WS endpoint to a Java
class (for example, using the JAX-WS binding), the Camel CXF component binds the WS endpoint to a
Camel route, so that incoming SOAP message are encapsulated in a Camel Exchange object, and can
then propagate through the route.

To create a Camel CXF endpoint in a Camel route, define a CXF endpoint URI with either of the
following syntaxes:

cxf:Address[?Options]

CHAPTER 6. DEPLOYING AN APACHE CAMEL WS ENDPOINT

37

Specifies the WSDL endpoint address and a (potentially large) number of options to configure the
endpoint.

cxf:bean:BeanID[?Options]

References a bean with the ID, BeanID, defined using the cxf:cxfEndpoint element (where the
cxf prefix is bound to the http://camel.apache.org/schema/cxf namespace). The
advantage of this approach is that all of the configuration complexity is encapsulated in the bean.
Typically, this means that very few options (or none) need to be specified on the endpoint URI.

NOTE

The cxf:cxfEndpoint element, which binds a WS endpoint to a Camel route,
should not be confused with the jaxws:endpoint element, which binds a WS
endpoint directly to a Java class.

More about the Camel CXF component

For more details about the Camel CXF component, please consult the following documents from the
JBoss Fuse library:

Web Services and Routing with Camel CXF

The CXF chapter from the EIP Component Reference.

web.xml file

To deploy the Apache Camel CXF example, you must provide a properly configured web.xml file. In the
camel-example-cxf-tomcat project, the web.xml file is stored at the following location:

Example 6.1, “web.xml File for the camel-example-cxf-tomcat Example” shows the contents of the
web.xml file.

Example 6.1. web.xml File for the camel-example-cxf-tomcat Example

camel-example-cxf-tomcat/src/main/webapp/WEB-INF/web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>My Web Application</display-name>

 <!-- location of spring xml files -->
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>classpath:camel-config.xml</param-value>
 </context-param>

 <!-- the listener that kick-starts Spring -->
 <listener>

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

38

The key settings in the preceding web.xml file are:

servlet/servlet-class

Specifies the org.apache.cxf.transport.servlet.CXFServlet class, which implements a
special servlet that enables you to deploy Apache CXF WS endpoints.

servlet-mapping/url-pattern

Determines which URLs are routed to this servlet. In general, the servlet URL has the following
form:

Where the base URL, http://Host:Port, is determined by the configuration of the Web server,
the WARFileName is the root of the WARFileName.war WAR file, and the URLPattern is specified
by the contents of the url-pattern element.

Assuming that the Web server port is set to 8080, the camel-example-cxf-tomcat example
servlet will match URLs of the following form:

listener/listener-class

This element launches a Spring container.

context-param

 <listener-
class>org.springframework.web.context.ContextLoaderListener</listener-
class>
 </listener>

 <!-- CXF servlet -->
 <servlet>
 <servlet-name>CXFServlet</servlet-name>
 <servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-
class>
 <load-on-startup>1</load-on-startup>
 <!-- If you want to leverage the Servlet3's async feature in Tomcat,
 please enable this feature
 <async-supported>true</async-supported>
 -->
 </servlet>

 <!-- all our webservices are mapped under this URI pattern -->
 <servlet-mapping>
 <servlet-name>CXFServlet</servlet-name>
 <url-pattern>/webservices/*</url-pattern>
 </servlet-mapping>

</web-app>

http://Host:Port/WARFileName/URLPattern

http://localhost:8080/camel-example-cxf-tomcat/webservices/*

CHAPTER 6. DEPLOYING AN APACHE CAMEL WS ENDPOINT

39

This element specifies the location of the Spring XML file, camel-config.xml, in the WAR. The
Spring container will read this parameter and load the specified Spring XML file, which contains the
definition of the Camel route.

NOTE

Strictly speaking, it is not absolutely necessary to create a Spring container explicitly
using the listener-class element here, because the CXFServlet class already
creates its own Spring container. If you put the Spring XML file in the location expected
by the CXFServlet class (that is, WEB-INF/cxf-servlet.xml) instead of the
location used by this example (that is, WEB-INF/classes/camel-config.xml), you
could remove the Spring container settings from this web.xml file.

Spring XML file

The Spring XML file for this example, camel-config.xml, contains the following XML code:

In this example, the Spring XML file is used just as a convenient mechanism to bootstrap the Camel
context. The XML syntax is used to create the Camel context, but the code for the RouteBuilder
class is defined in the Java class, org.apache.camel.example.cxf.CamelRoute.

NOTE

The resource import in this file was required in earlier versions of Apache CXF, in order
to import some standard, boilerplate definitions. But in recent versions of Apache CXF,
this import is not required, and you can safely remove it from the Spring XML file.

Camel route class

Example 6.2, “Route Definitions in the CamelRoute Class” shows the Camel routes for this example,
defined using the Java DSL.

Example 6.2. Route Definitions in the CamelRoute Class

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <import resource="classpath:META-INF/cxf/cxf.xml"/>

 <bean id="myRoutes" class="org.apache.camel.example.cxf.CamelRoute"/>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <routeBuilder ref="myRoutes"/>
 </camelContext>

</beans>

// Java
package org.apache.camel.example.cxf;

import org.apache.camel.Exchange;
import org.apache.camel.Processor;

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

40

import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.example.cxf.incident.IncidentService;
import org.apache.camel.example.cxf.incident.InputReportIncident;
import org.apache.camel.example.cxf.incident.OutputReportIncident;
import org.apache.camel.example.cxf.incident.OutputStatusIncident;

// this static import is needed for older versions of Camel than 2.5
// import static org.apache.camel.language.simple.SimpleLanguage.simple;

public class CamelRoute extends RouteBuilder {

 // CXF webservice using code first approach
 private String uri = "cxf:/incident?serviceClass=" +
IncidentService.class.getName();

 @Override
 public void configure() throws Exception {
 from(uri)
 .to("log:input")
 // send the request to the route to handle the operation
 // the name of the operation is in that header
 .recipientList(simple("direct:${header.operationName}"));

 // report incident
 from("direct:reportIncident")
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception
{
 // get the id of the input
 String id =
exchange.getIn().getBody(InputReportIncident.class).getIncidentId();

 // set reply including the id
 OutputReportIncident output = new
OutputReportIncident();
 output.setCode("OK;" + id);
 exchange.getOut().setBody(output);
 }
 })
 .to("log:output");

 // status incident
 from("direct:statusIncident")
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception
{
 // set reply
 OutputStatusIncident output = new
OutputStatusIncident();
 output.setStatus("IN PROGRESS");
 exchange.getOut().setBody(output);
 }
 })
 .to("log:output");
 }
}

CHAPTER 6. DEPLOYING AN APACHE CAMEL WS ENDPOINT

41

The most important feature of this class is the Camel CXF endpoint URI, which appears at the start of
the first route (in the from(uri) DSL command). The Camel CXF endpoint is defined using the
following endpoint URI:

Where we have substituted the literal name of the IncidentService class in this URI. The relative
path, /incident, defines the tail of the servlet URL for this Web service. Hence, the full servlet URL
for the Web service is the following:

The serviceClass option specifies the name of the Service Endpoint Interface (SEI) for this Web
service. By default, the CXF endpoint is set up to use the POJO mode, using the SEI to check the
syntax of incoming messages.

6.2. DEPLOY THE APACHE CAMEL CXF EXAMPLE

Overview

This tutorial takes a standard Camel CXF example (the camel-example-cxf-tomcat example) and
shows you how to deploy it into a Web server, by packaging the application as a WAR. In this example,
the Web service is implemented by binding the service to a Camel route using the Camel CXF
component.

Prerequisites

The following prerequisites are needed to build and run this example:

Either of the following Web servers are installed:

JBoss Web Server, or

JBoss Enterprise Application Platform

Java version 1.7 or later is installed.

Apache Maven 3.0.0 or later is installed.

Maven is configured to access the JBoss Fuse repositories, as described in Section 3.1,
“Preparing to use Maven”.

You have access to the Internet, so that Maven can download dependencies from remote
repositories.

Install Apache Camel

To obtain the code for the camel-example-cxf-tomcat example, you need to install the Apache
Camel kit, apache-camel-2.15.1.redhat-621084.zip, provided in the extras/ directory of the
JBoss Fuse installation.

cxf:/incident?
serviceClass=org.apache.camel.example.cxf.incident.IncidentService

http://localhost:8080/camel-example-cxf-tomcat/webservices/incident

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

42

Install the Apache Camel kit as follows:

1. Find the Apache Camel kit at the following location:

2. Using a suitable archive utility on your platform, unzip the apache-camel-2.15.1.redhat-
621084.zip file and extract it to a convenient location, CamelInstallDir.

The camel-example-cxf-tomcat example

The camel-example-cxf-tomcat example is located under the following sub-directory of the
Apache Camel installation:

Build and run the example

To build and run the camel-example-cxf-tomcat example, perform the following steps:

1. Build the camel-example-cxf-tomcat example using Maven. Change directory to the
CamelInstallDir/examples/camel-example-cxf-tomcat/ directory, open a command
prompt, and enter the following command at the command line:

If this command executes successfully, you should be able to find the WAR file, camel-
example-cxf-tomcat.war, under the camel-example-cxf-tomcat/target sub-
directory.

2. Make sure that the Web server is already running (a simple way to test this is to enter the URL,
http://localhost:8080, into your browser). If you need to start the Web server, you can
typically do this from the command line. The command to start the Web server depends on the
particular product you are using, as follows:

JBoss Web Server (WS)—open a new command prompt and execute the startup.sh script
from the tomcat8/bin/ directory (or the tomcat7/bin/ directory, as appropriate). For
more details about how to configure and launch the Web server, see the Installation Guide
from the JBoss Web Server library.

JBoss Enterprise Application Platform (EAP)—for a standalone instance, open a new
command prompt and execute the bin/standalone.sh script. For more details about
how to configure and launch the EAP, see the Administration and Configuration Guide from
the JBoss Enterprise Application Platform library.

3. Deploy the camel-example-cxf-tomcat example to the running Web server. Manually copy
the camel-example-cxf-tomcat.war WAR file from the camel-example-cxf-
tomcat/target directory to the Web server's deployment directory, as follows:

JBoss Web Server (WS)—copy the camel-example-cxf-tomcat.war WAR file to the
tomcat8/webapps directory (or tomcat7/webapps directory, as appropriate).

InstallDir/extras/apache-camel-2.15.1.redhat-621084.zip

CamelInstallDir/examples/camel-example-cxf-tomcat/

mvn clean package

CHAPTER 6. DEPLOYING AN APACHE CAMEL WS ENDPOINT

43

JBoss Enterprise Application Platform (EAP)—copy the camel-example-cxf-tomcat.war
WAR file to the standalone/deployments directory.

4. Use a Web browser to query the WSDL contract from the newly deployed Web service.
Navigate to the following URL in your browser:

NOTE

This step might not work in the Safari browser.

5. Run the test client against the deployed Web service. Change directory to the
CamelInstallDir/examples/camel-example-cxf-tomcat/ directory, open a command
prompt, and enter the following command at the command line:

If the client runs successfully, you should see some output like the following in your command
window:

http://localhost:8080/camel-example-cxf-tomcat/webservices/incident?
wsdl

mvn exec:java

...
[INFO] --- exec-maven-plugin:1.1.1:java (default-cli) @ camel-
example-cxf-tomcat ---
2013-07-24 13:59:16,829 [teClient.main()] INFO
ReflectionServiceFactoryBean
- Creating Service
{http://incident.cxf.example.camel.apache.org/}IncidentService
from class org.apache.camel.example.cxf.incident.IncidentService
OK;123
IN PROGRESS
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 7.445s
[INFO] Finished at: Wed Jul 24 13:59:17 CEST 2013
[INFO] Final Memory: 10M/81M
[INFO] --

Red Hat JBoss Fuse 6.2.1 Deploying into a Web Server

44

	Table of Contents
	CHAPTER 1. OVERVIEW OF JBOSS FUSE DEPLOYMENT
	1.1. SUPPORTED WEB SERVER PLATFORMS
	Overview
	Supported product versions

	1.2. CAMEL ON EAP SUBSYSTEM
	Overview

	1.3. WAR BUILD AND DEPLOYMENT MODEL
	How to install Fuse libraries
	Build model
	Maven POM file
	Build process
	Deployment

	CHAPTER 2. APACHE CAMEL ON RED HAT JBOSS EAP
	2.1. OVERVIEW OF CAMEL ON EAP SUBSYSTEM
	2.2. GETTING STARTED WITH CAMEL ON EAP SUBSYSTEM
	2.2.1. Running Camel on EAP Subsystem
	2.2.2. Enabling Camel on EAP Subsystem
	2.2.3. Disabling the Camel Subsystem

	2.3. WORKING WITH CAMEL ON EAP SUBSYSTEM
	2.3.1. Using a Camel Context
	2.3.1.1. Example of a Context and a Route
	2.3.1.2. Configuring Camel Context using CDI Mechanism
	2.3.1.3. Configuring Camel Routes using CDI Mechanism
	2.3.1.4. Customizing Camel Context
	2.3.1.5. Supporting Multiple CamelContexts

	2.3.2. Camel Context Deployment
	2.3.3. Hawtio Web Console
	2.3.4. Selecting Components
	2.3.5. Configuring Camel Subsystem
	2.3.6. Configuring Camel Deployment

	2.4. INTEGRATION WITH JMS
	2.4.1. Configuring EAP JMS
	2.4.2. Configuring Camel Route
	2.4.2.1. JMS Producer
	2.4.2.2. JMS Consumer
	2.4.2.3. JMS Transactions
	2.4.2.4. Remote JMS destinations

	CHAPTER 3. BUILDING A WAR
	3.1. PREPARING TO USE MAVEN
	Overview
	Prerequisites
	Adding the Red Hat JBoss Fuse repository
	Artifacts
	Maven coordinates

	3.2. MODIFYING AN EXISTING MAVEN PROJECT
	Overview
	Change the package type to WAR
	Customize the JDK compiler version
	Store resources under webapp/WEB-INF
	Customize the Maven WAR plug-in
	Building the WAR

	3.3. BOOTSTRAPPING A CXF SERVLET IN A WAR
	Overview
	Example
	cxf-servlet.xml file
	Reference

	3.4. BOOTSTRAPPING A SPRING CONTEXT IN A WAR
	Overview
	Bootstrapping a Spring context in a WAR
	Maven dependency

	CHAPTER 4. DEPLOYING AN APACHE CXF WEB SERVICE
	4.1. APACHE CXF EXAMPLE
	Overview
	wsdl_first sample
	web.xml file
	Implied Spring container
	cxf-servlet.xml file
	WSDL address configuration

	4.2. DEPLOY THE APACHE CXF EXAMPLE
	Overview
	Prerequisites
	Install Apache CXF
	The wsdl_first example
	Build and run the example

	CHAPTER 5. DEPLOYING AN APACHE CAMEL SERVLET ENDPOINT
	5.1. APACHE CAMEL SERVLET EXAMPLE
	Overview
	camel-example-servlet-tomcat example
	Camel servlet component
	web.xml file
	Example Camel route

	5.2. DEPLOY THE APACHE CAMEL SERVLET
	Overview
	Prerequisites
	Install Apache Camel
	The camel-example-servlet-tomcat example
	Build and run the example

	CHAPTER 6. DEPLOYING AN APACHE CAMEL WS ENDPOINT
	6.1. APACHE CAMEL CXF EXAMPLE
	Overview
	camel-example-cxf-tomcat example
	Camel CXF component
	More about the Camel CXF component
	web.xml file
	Spring XML file
	Camel route class

	6.2. DEPLOY THE APACHE CAMEL CXF EXAMPLE
	Overview
	Prerequisites
	Install Apache Camel
	The camel-example-cxf-tomcat example
	Build and run the example

