
Red Hat JBoss Fuse 6.1

JBI Development Guide

Using the legacy Java Business Integration framework

Last Updated: 2017-10-12

Red Hat JBoss Fuse 6.1 JBI Development Guide

Using the legacy Java Business Integration framework

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2013 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Java Business Integration is a legacy container framework which uses the Normalized Message
Router (NMR) as a message bus for transferring normalized XML messages between application
components.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. INTRODUCING JAVA BUSINESS INTEGRATION

CHAPTER 1. INTRODUCTION TO JBI

CHAPTER 2. THE COMPONENT FRAMEWORK
OVERVIEW
COMPONENT TYPES
PACKAGING
COMPONENT ROLES

CHAPTER 3. THE NORMALIZED MESSAGE ROUTER
OVERVIEW
MESSAGE EXCHANGE PATTERNS
NORMALIZED MESSAGES

CHAPTER 4. MANAGEMENT STRUCTURE
OVERVIEW
JMX
INSTALLING AND UNINSTALLING ARTIFACTS INTO THE JBI ENVIRONMENT
MANAGING JBI COMPONENTS
MANAGING SERVICE UNITS

CHAPTER 5. CLUSTERING JBI ENDPOINTS
OVERVIEW
FEATURES
STEPS TO SET UP CLUSTERING
INSTALLING THE CLUSTERING FEATURE
DEFAULT CLUSTERING ENGINE CONFIGURATION
CHANGING THE DEFAULT CONFIGURATION
CHANGING THE JMS BROKER
USING CLUSTERING IN AN APPLICATION
ESTABLISHING NETWORK CONNECTIONS BETWEEN CONTAINERS
HIGH AVAILABILITY
CLUSTER CONFIGURATION CONVENTIONS

CHAPTER 6. USING THE JBI ANT TASKS
6.1. USING THE TASKS AS COMMANDS
6.2. USING THE TASKS IN BUILD FILES

CHAPTER 7. BUILDING JBI COMPONENTS USING MAVEN
OVERVIEW
SETTING UP THE MAVEN TOOLS
CREATING A JBI MAVEN PROJECT
JBI COMPONENTS
SHARED LIBRARIES

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN
8.1. SETTING UP A RED HAT JBOSS FUSE JBI PROJECT
8.2. A SERVICE UNIT PROJECT
8.3. A SERVICE ASSEMBLY PROJECT

APPENDIX A. USING THE JBI CONSOLE COMMANDS
ACCESSING THE JBI COMMANDS
COMMANDS

7

8

9
9
9
9

10

11
11
11
11

13
13
13
13
14
15

16
16
16
16
17
17
18
18
18
19
20
20

22
22
27

35
35
35
36
36
38

39
39
43
48

51
51
51

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

PART II. FILE BINDING COMPONENT

CHAPTER 9. INTRODUCTION TO THE FILE BINDING COMPONENT
OVERVIEW
KEY FEATURES
CONTENTS OF A FILE COMPONENT SERVICE UNIT
OSGI PACKAGING
NAMESPACE

CHAPTER 10. USING POLLER ENDPOINTS
10.1. INTRODUCTION TO POLLER ENDPOINTS
10.2. BASIC CONFIGURATION
10.3. CONFIGURING POLLER ENDPOINTS INTERACTIONS WITH THE FILE SYSTEM
10.4. CONFIGURING THE POLLING INTERVAL
10.5. FILE LOCKING
10.6. FILE FILTERING

CHAPTER 11. USING SENDER ENDPOINTS
11.1. INTRODUCTION TO SENDER ENDPOINTS
11.2. BASIC CONFIGURATION
11.3. CONFIGURING A SENDER ENDPOINT'S INTERACTION WITH THE FILE SYSTEM

CHAPTER 12. FILE MARSHALERS
OVERVIEW
PROVIDED FILE MARSHALERS
IMPLEMENTING A FILE MARSHALER
CONFIGURING AN ENDPOINT TO USE A FILE MARSHALER

APPENDIX B. POLLER ENDPOINT PROPERTIES
ATTRIBUTES
BEANS

APPENDIX C. SENDER ENDPOINT PROPERTIES
ATTRIBUTES
BEANS

PART III. JMS BINDING COMPONENT

CHAPTER 13. INTRODUCTION TO THE RED HAT JBOSS FUSE JMS BINDING COMPONENT
OVERVIEW
KEY FEATURES
CONTENTS OF A JMS SERVICE UNIT
USING THE MAVEN JBI TOOLING
OSGI PACKAGING
NAMESPACE

CHAPTER 14. CONFIGURING THE CONNECTION FACTORY
14.1. USING APACHE ACTIVEMQ CONNECTION FACTORIES
14.2. USING JNDI
14.3. USING A SPRING BEAN

CHAPTER 15. CREATING A CONSUMER ENDPOINT
15.1. INTRODUCTION TO CONSUMER ENDPOINTS
15.2. USING THE GENERIC ENDPOINT OR THE SOAP ENDPOINT
15.3. USING THE JCA CONSUMER ENDPOINT
15.4. CONFIGURING HOW REPLIES ARE SENT

52

53
53
53
53
54
54

56
56
57
59
61
63
65

67
67
68
70

72
72
72
73
76

77
77
78

79
79
79

81

82
82
82
83
84
85
85

87
87
91
94

95
95
96

105
107

Red Hat JBoss Fuse 6.1 JBI Development Guide

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 16. CREATING A PROVIDER ENDPOINT
16.1. INTRODUCTION TO PROVIDER ENDPOINTS
16.2. BASIC CONFIGURATION
16.3. CONFIGURING HOW RESPONSES ARE RECEIVED
16.4. ADVANCED PROVIDER CONFIGURATION

CHAPTER 17. MAKING ENDPOINTS STATEFUL
OVERVIEW
ACTIVATING STATEFULLNESS
CONFIGURING THE DATASTORE
EXAMPLE

CHAPTER 18. WORKING WITH MESSAGE MARSHALERS
18.1. CONSUMER MARSHALERS
18.2. PROVIDER MARSHALERS

CHAPTER 19. IMPLEMENTING DESTINATION RESOLVING LOGIC
19.1. USING A CUSTOM DESTINATION CHOOSER
19.2. USING A CUSTOM DESTINATION RESOLVER

APPENDIX D. CONSUMER ENDPOINT PROPERTIES
D.1. COMMON PROPERTIES
D.2. PROPERTIES SPECIFIC TO GENERIC CONSUMERS AND SOAP CONSUMERS
D.3. PROPERTIES SPECIFIC TO A JCA CONSUMER

APPENDIX E. PROVIDER ENDPOINT PROPERTIES
E.1. COMMON PROPERTIES
E.2. PROPERTIES SPECIFIC TO SOAP PROVIDERS

PART IV. CXF BINDING COMPONENT

CHAPTER 20. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT
OVERVIEW
KEY FEATURES
STEPS FOR WORKING WITH THE APACHE CXF BINDING COMPONENT
MORE INFORMATION

CHAPTER 21. INTRODUCING WSDL CONTRACTS
21.1. STRUCTURE OF A WSDL DOCUMENT
21.2. WSDL ELEMENTS
21.3. DESIGNING A CONTRACT

CHAPTER 22. DEFINING LOGICAL DATA UNITS
22.1. MAPPING DATA INTO LOGICAL DATA UNITS
22.2. ADDING DATA UNITS TO A CONTRACT
22.3. XML SCHEMA SIMPLE TYPES
22.4. DEFINING COMPLEX DATA TYPES
22.5. DEFINING ELEMENTS

CHAPTER 23. DEFINING LOGICAL MESSAGES USED BY A SERVICE
MESSAGES AND PARAMETER LISTS
MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS
MESSAGE DESIGN FOR SOAP SERVICES
MESSAGE NAMING
MESSAGE PARTS
EXAMPLE

113
113
114
116
118

122
122
122
122
123

125
125
129

132
132
135

138
138
140
143

145
145
147

149

150
150
150
151
151

152
152
152
153

154
154
155
156
157
165

166
166
166
167
167
167
168

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 24. DEFINING YOUR LOGICAL INTERFACES
PROCESS
PORT TYPES
OPERATIONS
OPERATION MESSAGES
RETURN VALUES
EXAMPLE

CHAPTER 25. USING HTTP
25.1. ADDING A BASIC HTTP ENDPOINT
25.2. CONSUMER CONFIGURATION
25.3. PROVIDER CONFIGURATION
25.4. USING THE HTTP TRANSPORT IN DECOUPLED MODE

CHAPTER 26. USING JMS
26.1. USING SOAP/JMS
26.2. USING WSDL TO CONFIGURE JMS
26.3. USING A NAMED REPLY DESTINATION

CHAPTER 27. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT
CONTENTS OF A FILE COMPONENT SERVICE UNIT
OSGI PACKAGING
NAMESPACE

CHAPTER 28. CONSUMER ENDPOINTS
OVERVIEW
PROCEDURE
SPECIFYING THE WSDL
SPECIFYING THE ENDPOINT DETAILS
SPECIFYING THE TARGET ENDPOINT

CHAPTER 29. PROVIDER ENDPOINTS
OVERVIEW
PROCEDURE
SPECIFYING THE WSDL
SPECIFYING THE ENDPOINT DETAILS

CHAPTER 30. USING MTOM TO PROCESS BINARY CONTENT
OVERVIEW
CONFIGURING AN ENDPOINT TO SUPPORT MTOM

CHAPTER 31. WORKING WITH THE JBI WRAPPER
OVERVIEW
TURNING OF JBI WRAPPER PROCESSING
EXAMPLE

CHAPTER 32. USING MESSAGE INTERCEPTORS
OVERVIEW
CONFIGURING AN ENDPOINT'S INTERCEPTOR CHAIN
IMPLEMENTING AN INTERCEPTOR
MORE INFORMATION

CHAPTER 33. CONFIGURING THE ENDPOINTS TO LOAD APACHE CXF RUNTIME CONFIGURATION
SPECIFYING THE CONFIGURATION TO LOAD
EXAMPLE

170
170
170
170
171
172
172

173
173
174
180
183

188
188
196
201

203
203
203
204

205
205
206
206
207
209

210
210
210
211
212

214
214
214

215
215
215
215

216
216
216
217
217

218
218
218

Red Hat JBoss Fuse 6.1 JBI Development Guide

4

. .

. .

. .

. .

. .

. .

. .

CHAPTER 34. TRANSPORT CONFIGURATION
34.1. USING THE JMS CONFIGURATION BEAN
34.2. CONFIGURING THE JETTY RUNTIME

CHAPTER 35. DEPLOYING WS-ADDRESSING
35.1. INTRODUCTION TO WS-ADDRESSING
35.2. WS-ADDRESSING INTERCEPTORS
35.3. ENABLING WS-ADDRESSING
35.4. CONFIGURING WS-ADDRESSING ATTRIBUTES

CHAPTER 36. ENABLING RELIABLE MESSAGING
36.1. INTRODUCTION TO WS-RM
36.2. WS-RM INTERCEPTORS
36.3. ENABLING WS-RM
36.4. CONFIGURING WS-RM
36.5. CONFIGURING WS-RM PERSISTENCE

APPENDIX F. CONSUMER ENDPOINT PROPERTIES

APPENDIX G. PROVIDER ENDPOINT PROPERTIES

APPENDIX H. USING THE MAVEN OSGI TOOLING
H.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT
H.2. CONFIGURING THE BUNDLE PLUG-IN

INDEX

219
219
224

229
229
229
230
231

233
233
234
235
238
246

249

251

252
252
255

259

Table of Contents

5

Red Hat JBoss Fuse 6.1 JBI Development Guide

6

PART I. INTRODUCING JAVA BUSINESS INTEGRATION

Abstract

Provides an overview of JBI, introducing the JBI framework and management structure; describes how to
deploy JBI artifacts into the Red Hat JBoss Fuse runtime; and how to use the JBI console commands.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

PART I. INTRODUCING JAVA BUSINESS INTEGRATION

7

CHAPTER 1. INTRODUCTION TO JBI

Abstract

Java Business Integration (JBI) defines an architecture for integrating systems through components that
interoperate by exchanging normalized messages through a router.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

The Java Business Integration (JBI) specification defines an integration architecture based on service-
oriented concepts. Applications are divided into decoupled functional units. The functional units are
deployed into JBI components that are hosted within the JBI environment. The JBI environment provides
message normalization and message mediation among the JBI components.

The JBI environment is made up of the following parts, as shown in Figure 1.1, “The JBI architecture”.

Figure 1.1. The JBI architecture

The JBI component framework hosts and manages the JBI components. For more information
see Chapter 2, The Component Framework.

The normalized message router provides message mediation among the JBI components. For
more information see Chapter 3, The Normalized Message Router.

The management structure controls the life-cycle of the JBI components and the functional units
deployed into the JBI components. It also provides mechanisms for monitoring the artifacts that
are deployed into the JBI environment. For more information see Chapter 4, Management
Structure.

Red Hat JBoss Fuse 6.1 JBI Development Guide

8

CHAPTER 2. THE COMPONENT FRAMEWORK

Abstract

The JBI component framework is the structure into which JBI components plug into the ESB.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

The JBI component framework provides a pluggable interface between the functional units installed into
the JBI environment and the infrastructure services offered by the JBI environment. The framework
divides JBI components into two types based on their functionality. The framework also defines a
packaging mechanism for deploying functional units into JBI components.

COMPONENT TYPES

JBI defines two types of components:

Service Engine — Component that provides some of the logic required to provide services
inside of the JBI environment. For example:

message transformation

orchestration

advanced message routing

A service engine can communicate only with other components inside of the JBI environment.
Service engines act as containers for the functional units deployed into the Red Hat JBoss
Fuse.

Binding Component — Provides access to services outside the JBI environment using a
particular protocol. Binding components implement the logic required to connect to a transport,
and consume the messages received over that transport. Binding components are also
responsible for the normalization of messages as they enter the JBI environment.

The distinction between the two types of components is a matter of convention, and this distinction
makes the decoupling of business logic and integration logic more explicit.

PACKAGING

JBI defines a common packaging model for all of the artifacts that can be deployed into the JBI
environment. Each type of package is a ZIP archive that includes a JBI descriptor in the file META-
INF/jbi.xml. The packages differ based on the root element of the JBI descriptor and the contents of
the package. The JBI environment uses four types of packaging to install and deploy functionality. The
two most common types used by an application developer are:

Service Assembly — A collection of service units. The root element of the JBI descriptor is a
service-assembly element. The contents of the package is a collection of ZIP archives

CHAPTER 2. THE COMPONENT FRAMEWORK

9

containing service units. The JBI descriptor specifies the target JBI component for each of the
bundled service units.

Service Unit — A package that contains functionality to be deployed into a JBI component. For
example, a service unit intended for a routing service engine contains the definition for one or
more routes. Note that service units are packaged as a ZIP file. The root element of the JBI
descriptor is a service-unit element. The contents of the package are specific to the service
engine for which the service unit is intended.

IMPORTANT

Service units cannot be installed without being bundled into a service assembly.

COMPONENT ROLES

Once configured by one or more service units, a JBI component implements the functionality described
in the service unit. The JBI component then takes on one of the following roles:

Service Provider — Receives request messages and returns response messages, when
required.

Service Consumer — Initiates message exchanges by sending requests to a service provider.

Depending on both the number and the type of service units deployed into a JBI component, a single
component can play one or both roles. For example, the HTTP binding component could host a service
unit that acts as a proxy to consumers running outside of the Red Hat JBoss Fuse. In this instance, the
HTTP component is playing the role of a service provider because it is receiving requests from the
external consumer, and passing the responses back to the external consumer. If the service unit also
configures the HTTP component to forward the requests to another process running inside of the JBI
environment, then the HTTP component also plays the role of a service consumer because it is making
requests on another service unit.

Red Hat JBoss Fuse 6.1 JBI Development Guide

10

CHAPTER 3. THE NORMALIZED MESSAGE ROUTER

Abstract

The normalized message router is a bus that shuttles messages between the endpoints deployed on the
ESB.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

The normalized message router(NMR) is the part of the JBI environment that is responsible for mediating
messages between JBI components. The JBI components never send messages directly to each other;
instead, they pass messages to the NMR, which is responsible for delivering the messages to the correct
JBI endpoints. This allows the JBI components, and the functionality they expose, to be location
independent. It also frees the application developer from concerns about the connection details between
the different parts of an application.

MESSAGE EXCHANGE PATTERNS

The NMR uses a WSDL-based messaging model to mediate the message exchanges between JBI
components. Using a WSDL-based model provides the necessary level of abstraction to ensure that the
JBI components are fully decoupled. The WSDL-based model defines operations as a message
exchange between a service provider and a service consumer. The message exchanges are defined
from the point of view of the service provider and fit into one of four message exchange patterns:

in-out

A consumer sends a request message to a provider, which then responds to the request with a
response message. The provider might also respond with a fault message if an error occured during
processing.

in-optional-out

A consumer sends a request message to a provider. The provider might send a response message
back to the consumer, but the consumer does not require a response. The provider might also
respond with a fault message if an error occurred during processing. The consumer can also send a
fault message to the provider.

in-only

A consumer sends a message to a provider, but the provider does not send a response, and, if an
error occurs, the provider does not send fault messages back to the consumer.

robust-in-only

A consumer sends a message to a provider. The provider does not respond to the consumer except
to send a fault message back to the consumer to signal an error condition.

NORMALIZED MESSAGES

CHAPTER 3. THE NORMALIZED MESSAGE ROUTER

11

To completely decouple the entities involved in message exchanges, JBI uses normalized messages. A
normalized message is a genericized format used to represent all of the message data passed through
the NMR and consists of the following three parts:

meta-data, properties

Holds information about the message. This information can include transaction contexts, security
information, or other QoS information. The meta-data can also hold transport headers.

payload

An XML document that conforms to the XML Schema definition in the WSDL document that defines
the message exchange. The XML document holds the substance of the message.

attachments

Hold any binary data associated with the message. For example, an attachment can be an image file
sent as an attachment to a SOAP message.

security Subject

Holds security information associated with the message, such as authentication credentials. For more
information about the security Sublect, see Sun's API documentation.

JBI binding components are responsible for normalizing all of the messages placed into the NMR.
Binding components normalize messages received from external sources before passing them to the
NMR. The binding component also denormalizes the message so that it is in the appropriate format for
the external source.

Red Hat JBoss Fuse 6.1 JBI Development Guide

12

http://java.sun.com/j2se/1.5.0/docs/api/javax/security/auth/Subject.html

CHAPTER 4. MANAGEMENT STRUCTURE

Abstract

The JBI specification mandates that most parts of the environment are managed through JMX.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

The JBI environment is managed using JMX (Java Management Extensions). The internal components
of the JBI environment provide a set of MBeans that facilitate the management of the JBI environment
and the deployed components. The JBI environment also supplies a number of Apache Ant tasks to
manage the JBI environment.

The management of the JBI environment largely consists of:

Installing and uninstalling artifacts into the JBI container

Managing the life-cycle of JBI components

Managing the life-cycle of service units

In addition to the JMX interface, all JBI environments provide a number of Ant tasks, which make it
possible to automate many of the common management tasks.

JMX

Java Management Extensions (JMX) is a standard technology for monitoring and managing Java
applications. The foundations for using JMX are provided as part of the standard Java 5 JVM, and can
be used by any Java application. JMX provides a lightweight way of providing monitoring and
management capabilities to any Java application that implements the MBean interface.

JBI implementations provide MBeans that can be used to manage the components installed into the
container and the service units deployed into the components. In addition, application developers can
add MBeans to their service units to add additional management touch points.

The MBeans can be accessed using any management console that uses JMX. JConsole, the JMX
console provided with the Java 5 JRE, is an easy to use, free tool for managing a JBI environment.
JBoss ON (JON), available through the Red Hat Customer Portal at access.redhat.com, provides a more
robust management console.

INSTALLING AND UNINSTALLING ARTIFACTS INTO THE JBI
ENVIRONMENT

There are four basic types of artifacts that can be installed into a JBI environment:

JBI components

Shared libraries

CHAPTER 4. MANAGEMENT STRUCTURE

13

https://access.redhat.com/

Service assemblies

Service units

JBI components and shared libraries are installed using the InstallationService MBean that is
exposed through the JMX console. In addition, the following Ant tasks are provided for installing and
uninstalling JBI components and shared libraries:

InstallComponentTask

UninstallComponentTask

InstallSharedLibraryTask

UninstallSharedLibraryTask

When a service assembly is installed into a JBI environment, all service units contained within the
assembly are deployed to their respective JBI components. Service assemblies and service units are
installed using the DeploymentService MBean that is exposed through the JMX console. In addition
to the MBean, the following Ant tasks are provided for installing service assemblies and service units:

DeployServiceAssemblyTask

UndeployServiceAssemblyTask

MANAGING JBI COMPONENTS

Figure 4.1 shows the life-cycle of a JBI component.

Figure 4.1. JBI component life-cycle

Components begin life in an empty state. The component and the JBI environment have no knowledge of
each other. Once the component is installed into the JBI environment, the component enters the
shutdown state. In this state, the JBI environment initializes any resources required by the component.
From the shutdown state a component can be initialized and moved into the stopped state. In the
stopped state, a component is fully initialized and all of its resources are loaded into the JBI environment.
When a component is ready to process messages, it is moved into the started state. In this state the
component, and any service units deployed into the component, can participate in message exchanges.

Components can be moved back and forth through the shutdown, stopped, and started states without
being uninstalled. You can manage the lifecycle of an installed JBI component using the
InstallationService MBean and the component's ComponentLifeCycle MBean. In addition, you
can manage a component's lifecycle using the following Ant tasks:

Red Hat JBoss Fuse 6.1 JBI Development Guide

14

StartComponentTask

StopComponentTask

ShutDownComponentTask

MANAGING SERVICE UNITS

Figure 4.2 shows the life-cycle of a service unit.

Figure 4.2. Service unit life-cycle

Service units must first be deployed into the appropriate JBI component. The JBI component is the
container that will provide the runtime resources necessary to implement the functionality defined by the
service unit. When a service unit is in the shutdown state, the JBI component has not provisioned any
resources for the service unit. When a service unit is moved into the stopped state, the JBI component
has provisioned the resources for the service unit but the service unit cannot use any of the provisioned
resources. When a service unit is in the started state, it is using the resources provisioned for it by the
JBI container. In the started state, the functionality defined by the service unit is accessible.

A service can be moved through the different states while deployed. You manage the lifecycle of a
service unit using the JBI environment's DeploymentService MBean. In addition, you can manage
service units using the following Ant tasks:

DeployServiceAssemblyTask

 UndeployServiceAssemblyTask

StartServiceAssemblyTask

StopServiceAssemblyTask

ShutDownServiceAssemblyTask

ListServiceAssembliesTask

CHAPTER 4. MANAGEMENT STRUCTURE

15

CHAPTER 5. CLUSTERING JBI ENDPOINTS

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

Red Hat JBoss Fuse provides a clustering engine that enables you to use Apache ActiveMQ, or any
other JMS broker, to specify the endpoints to cluster in a JBI application. The Red Hat JBoss Fuse
clustering engine works in conjunction with the normalized message router (NMR), and uses Apache
ActiveMQ and specifically configured JBI endpoints to build clusters.

A cluster is defined as two or more JBI containers networked together. Implementing clustering between
JBI containers gives you access to features including load balancing and high availability, rollback and
redelivery, and remote container awareness.

FEATURES

Clustering provides the following features that can be implemented in your applications:

Connect JBI containers to form a network, and dynamically add and remove the containers from
the network.

Enable rollback and redelivery when a JBI exchange fails.

Implement load balancing among JBI containers capable of handling a given exchange. For
example:

Install the same component in multiple JBI containers to provide increased capacity and
high availability (if one container fails, the same component in another container can service
the request).

Partition the workload among multiple JBI container instances to enable different containers
to handle different tasks, spreading the workload across multiple containers.

Remote component awareness means each clustered JBI container is aware of the components
in its peer containers. Networked containers listen for remote component
registration/deregistration events and can route requests to those components.

STEPS TO SET UP CLUSTERING

Complete the following steps to set up JBI endpoint clustering:

1. Install the jbi-cluster feature included in Red Hat JBoss Fuse. See the section called “Installing
the clustering feature”.

2. Optionally, configure the clustering engine with a JMS broker other than the Red Hat JBoss A-
MQ. See the section called “Changing the JMS broker”.

3. Optionally, change the default clustering engine configuration to specify different cluster and
destination names. See the section called “Changing the default configuration”.

Red Hat JBoss Fuse 6.1 JBI Development Guide

16

4. Add endpoints and register the endpoint definition in the Spring configuration. See the section
called “Using clustering in an application”.

See the following sections for additional information:

the section called “Establishing network connections between containers”

the section called “High availability”

the section called “Cluster configuration conventions”

INSTALLING THE CLUSTERING FEATURE

To install the jbi-cluster feature, use the install command from the command console:

1. Start Red Hat JBoss Fuse.

2. At the JBossFuse:karaf@root> prompt, type:

features:install jbi-cluster

3. Type featuresL:list to list the existing features and their installation state. Verify that the jbi-
cluster feature is installed.

The cluster configuration bundle is automatically installed when you install the jbi-cluster feature.

DEFAULT CLUSTERING ENGINE CONFIGURATION

Red Hat JBoss Fuse has a pre-installed clustering engine that is configured to use the included Red Hat
JBoss A-MQ. The default configuration for the Red Hat JBoss Fuse cluster engine is defined in the jbi-
cluster.xml file in the org.apache.servicemix.jbi.cluster.config bundle. This bundle is
located in the installation directory in \system\org\apache\servicemix\jbi\cluster.

The default cluster engine configuration, shown in Example 5.1, is designed to meet most basic
requirements.

Example 5.1. Default cluster engine configuration

<bean id="clusterEngine"
class="org.apache.servicemix.jbi.cluster.engine.ClusterEngine">
 <property name="pool">
 <bean
class="org.apache.servicemix.jbi.cluster.requestor.ActiveMQJmsRequestorP
ool">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="destinationName" value="${destinationName}" />
 </bean>
 </property>
 <property name="name" value="${clusterName}" />
</bean>
<osgi:list id="clusterRegistrations"

interface="org.apache.servicemix.jbi.cluster.engine.ClusterRegistration"
 cardinality="0..N">
 <osgi:listener ref="clusterEngine" bind-method="register" unbind-

CHAPTER 5. CLUSTERING JBI ENDPOINTS

17

Red Hat JBoss Fuse has a preconfigured Red Hat JBoss A-MQ instance that automatically starts when
the container is started. This means you do not have to start a broker instance for the clustering engine
to work.

CHANGING THE DEFAULT CONFIGURATION

You can alter the default configuration by adding a configuration file to the bundle
org.apache.servicemix.jbi.cluster.config. This added configuration file enables you to
change both the clusterName and the destinationName.

CHANGING THE JMS BROKER

You can configure the cluster engine with another JMS broker by adding a Spring XML file containing the
full configuration to the InstallDir\deploy directory.

USING CLUSTERING IN AN APPLICATION

When using an OSGi packaged JBI service assembly, you can include the clustered endpoints
definitions directly in the Spring configuration. In addition to the endpoint definition, you must add a bean
that registers the endpoint with the clustering engine.

Example 5.2 shows an OSGi packaged HTTP consumer endpoint that is part of a cluster.

Example 5.2. OSGi packaged JBI endpoint

method="unregister" />
</osgi:list>
<osgi:reference id="connectionFactory"
interface="javax.jms.ConnectionFactory" />
<osgi:service ref="clusterEngine">
 <osgi:interfaces>
 <value>org.apache.servicemix.nmr.api.Endpoint</value>
 <value>org.apache.servicemix.nmr.api.event.Listener</value>
 <value>org.apache.servicemix.nmr.api.event.EndpointListener</value>
 <value>org.apache.servicemix.nmr.api.event.ExchangeListener</value>
 </osgi:interfaces>
 <osgi:service-properties>
 <entry key="NAME" value="${clusterName}" />
 </osgi:service-properties>
</osgi:service>
<osgix:cm-properties id="clusterProps"
 persistent-id="org.apache.servicemix.jbi.cluster.config">
 <prop key="clusterName">${servicemix.name}</prop>
 <prop key="destinationName">org.apache.servicemix.jbi.cluster</prop>
</osgix:cm-properties>
<ctx:property-placeholder properties-ref="clusterProps" />
</beans>

<http:consumer id="myHttpConsumer" service="test:myService"
endpoint="myEndpoint" />
<bean
class="org.apache.servicemix.jbi.cluster.engine.OsgiSimpleClusterRegistr
ation">

Red Hat JBoss Fuse 6.1 JBI Development Guide

18

When using a JBI packaged service assembly, you must create a Spring application to register the
endpoint as a clustered endpoint. This configuration requires that you provide additional information
about the endpoint.

Example 5.3 shows a JBI packaged HTTP consumer endpoint that is part of a cluster.

Example 5.3. JBI packaged endpoint

ESTABLISHING NETWORK CONNECTIONS BETWEEN CONTAINERS

To create a network of JBI containers, you must establish network connections between each of the
containers in the network, and then establish a network connection between the active containers. You
can configure these network connections as either static or multicast connections.

Static network connections — Configure each networkConnector in the cluster in the
broker configuration file install_dir/conf/activemq.xml.

Example 5.4 shows an example of a static networkConnector discovery configuration.

Example 5.4. Static configuration

 <property name="endpoint" ref="myHttpConsumer" />
</bean>

<http:consumer id="myHttpConsumer" service="test:myService"
endpoint="myEndpoint" />
<bean
class="org.apache.servicemix.jbi.cluster.engine.OsgiSimpleClusterRegistr
ation">
 <property name="serviceName" value="test:myService" />
 <property name="endpointName" value="myEndpoint" />
</bean>

<!-- Set the brokerName to be unique for this container -->
<amq:broker id="broker" brokerName="host1_broker1" depends-
on="jmxServer">

 <networkConnectors>
 <networkConnector name="host1_to_host2"
uri="static://(tcp://host2:61616)"/>

 <!-- A three container network would look like this -->
 <!-- (Note it is not necessary to list the hostname in the uri
list) -->
 <!-- networkConnector name="host1_to_host2_host3"
 uri="static://(tcp://host2:61616,tcp://host3:61616)"/ -
->

 </networkConnectors>

CHAPTER 5. CLUSTERING JBI ENDPOINTS

19

Multicast network connections — Enable multicast on your network and configure multicast in
the broker configuration file installation_directory/conf/activemq.xml for each
container in the network. When the containers start they detect each other and transparently
connect to one another.

Example 5.5 shows an example of a multicast networkConnector discovery configuration.

Example 5.5. Multicast configuration

When a network connection is established, each container discovers the other containers' remote
components and can route to them.

HIGH AVAILABILITY

You can cluster JBI containers to implement high availability by configuring two distinct Red Hat JBoss
Fuse container instances in a master-slave configuration. In all cases, the master is in ACTIVE mode
and the slave is in STANDBY mode waiting for a failover event to trigger the slave to take over.

You can configure the master and the slave one of the following ways:

Shared file system master-slave — In a shared database master-slave configuration, two
containers use the same physical data store for the container state. You should ensure that the
file system supports file level locking, as this is the mechanism used to elect the master. If the
master process exits, the database lock is released and the slave acquires it. The slave then
becomes the master.

JDBC master-slave — In a JDBC master-slave configuration, the master locks a table in the
backend database. The failover event in this case is that the lock is released from the database.

Pure master-slave — A pure master-slave configuration can use either a shared database or a
shared file system. The master replicates all state changes to the slave so additional overhead
is incurred. The failover trigger in a pure master-slave configuration is that the slave loses its
network connection to its master. Because of the additional overhead and maintenance involved,
this option is less desirable than the other two options.

CLUSTER CONFIGURATION CONVENTIONS

The following conventions apply to configuring clustering:

Don't use static and multicast networkConnectors at the same time. If you enable static
networkConnectors, then you should disable any multicast networkConnectors, and vice
versa.

</amq:broker>

<networkConnectors>
 <!-- by default just auto discover the other brokers -->
 <networkConnector name="default-nc"
uri="multicast://default"/>
 </networkConnectors>

Red Hat JBoss Fuse 6.1 JBI Development Guide

20

When configuring a network of containers in
installation_directory/conf/activemq.xml, ensure that the brokerName attribute is
unique for each node in the cluster. This will enable the instances in the network to uniquely
identify each other.

When configuring a network of containers you must ensure that you have unique persistent
stores for each ACTIVE instance. If you have a JDBC data source, you must use a separate
database for each ACTIVE instance. For example:

You can setup a network of containers on the same host. To do this, you must change the JMS
ports and transportConnector ports to avoid any port conflicts. Edit the
installation_directory/conf/activemq.xml file, changing the rmi.port and
activemq.port as appropriate. For example:

<property name="url"
 value="jdbc:mysql://localhost/broker_activemq_host1?
relaxAutoCommit=true"/>

rmi.port = 1098
rmi.host = localhost
jmx.url =
service:jmx:rmi:///jndi/rmi://${rmi.host}:${rmi.port}/jmxrmi

activemq.port = 61616
activemq.host = localhost
activemq.url = tcp://${activemq.host}:${activemq.port}

CHAPTER 5. CLUSTERING JBI ENDPOINTS

21

CHAPTER 6. USING THE JBI ANT TASKS

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

The JBI specification defines a number of Ant tasks that can be used to manage JBI components. These
tasks allow you to install, start, stop, and uninstall components in the Red Hat JBoss Fuse container. You
can use the JBI Ant tasks as either command line commands or as part of an Ant build file.

6.1. USING THE TASKS AS COMMANDS

Usage

This is the basic usage statement for the Red Hat JBoss Fuse Ant tasks when used from the command
line:

ant -f InstallDir/ant/servicemix-ant-tasks.xml [-Doption=value ...] task

The task argument is the name of the Ant task you are calling. Each task supports a number of options
that are specified using the -Doption=value flag.

Installing a component

The Ant task used to install a component to the Red Hat JBoss Fuse container is install-component.
Its options are described in Table 6.1.

Table 6.1. Options for installing a JBI component with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

Red Hat JBoss Fuse 6.1 JBI Development Guide

22

sm.install.file yes Specifies the name of the installer
file for the component

Option Required Description

Example 6.1 shows an example of using install-component to install the Camel component to a
container listening on port 1000.

Example 6.1. Installing a component using an Ant command

>ant -f ant/servicemix-ant-task.xml -Dsm.port=1000 -
Dsm.install.file=servicemix-camel-3.3.0.6-fuse-installer.zip install-
component
Buildfile: ant\servicemix-ant-task.xml install-component: [echo]
install-component [echo] Installing a service engine or binding
component. [echo] host=localhost [echo] port=1000 [echo]
file=hotdeploy\servicemix-camel-3.3.0.6-fuse-installer.zip BUILD
SUCCESSFUL Total time: 7 seconds

Removing a component

The Ant task used to remove a component from the Red Hat JBoss Fuse container is uninstall-
component. Its options are described in Table 6.2.

Table 6.2. Options for removing a JBI component with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.component.name yes Specifies the name of the JBI
component

CHAPTER 6. USING THE JBI ANT TASKS

23

Example 6.2 shows an example of using uninstall-component to remove the drools component from
a container listening on port 1000.

Example 6.2. Removing a component using an Ant command

>ant -f ant\servicemix-ant-task.xml -Dsm.port=1000 -
Dsm.component.name=servicemix-drools uninstall-component
Buildfile: ant\servicemix-ant-task.xml uninstall-component: [echo]
uninstall-component [echo] Uninstalling a Service Engine or Binding
Component. [echo] host=localhost [echo] port=1000 [echo]
name=servicemix-drools BUILD SUCCESSFUL Total time: 1 second

Starting a component

The Ant task used to start a component is start-component. Its options are described in Table 6.3.

Table 6.3. Options for starting a JBI component with an Ant command

Option Required Description

sm.username Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container.

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.component.name yes Specifies the name of the JBI
component

Example 6.3 shows an example of using start-component to start the cxf-se component in a
container listening on port 1000.

Example 6.3. Starting a component using an Ant command

>ant -f ant\servicemix-ant-task.xml -Dsm.port=1000 -
Dsm.component.name=servicemix-cxf-se start-component
Buildfile: ant\servicemix-ant-task.xml start-component: [echo] start-

Red Hat JBoss Fuse 6.1 JBI Development Guide

24

component [echo] starts a particular component (service engine or
binding component) in Servicemix [echo] host=localhost [echo] port=1000
[echo] name=servicemix-cxf-se BUILD SUCCESSFUL Total time: 1 second

Stopping a component

The Ant task used to stop a component is stop-component. Its options are described in Table 6.4.

Table 6.4. Options for stopping a JBI component with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.component.name yes Specifies the name of the JBI
component

Example 6.4 shows an example of using stop-component to stop the cxf-se component in a container
listening on port 1000.

Example 6.4. Stopping a component using an Ant command

>ant -f ant\servicemix-ant-task.xml -Dsm.port=1000 -
Dsm.component.name=servicemix-cxf-se stop-component
 Buildfile: ant\servicemix-ant-task.xml stop-component:
[echo] stop-component [echo] stops a particular component (service
engine or binding component) in Servicemix [echo] host=localhost [echo]
port=1000 [echo] name=servicemix-cxf-se BUILD SUCCESSFUL Total time: 1
second

Shutting down a component

CHAPTER 6. USING THE JBI ANT TASKS

25

The Ant task used to shutdown a component is shutdown-component. Its options are described in
Table 6.5.

Table 6.5. Options for shutting down a JBI component with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.component.name yes Specifies the name of the JBI
component

Installing a shared library

The Ant task used to install a shared library to the Red Hat JBoss Fuse container is install-shared-
library. Its options are described in Table 6.6.

Table 6.6. Options for installing a shared library with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

Red Hat JBoss Fuse 6.1 JBI Development Guide

26

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.install.file yes Specifies the name of the library's
installer file

Option Required Description

Removing a shared library

The Ant task used to remove a shared library from the Red Hat JBoss Fuse container is uninstall-
shared-library. Its options are described in Table 6.7.

Table 6.7. Options for removing a shared library with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.shared.library.name yes Specifies the name of the shared
library

6.2. USING THE TASKS IN BUILD FILES

Adding the JBI tasks to build an Ant file

Before you can use the JBI tasks in an Ant build file, you must add the tasks using a taskdef element,
as shown in Example 6.5.

Example 6.5. Adding the JBI tasks to an Ant build file

CHAPTER 6. USING THE JBI ANT TASKS

27

1

2

3

The build file fragment in Example 6.5 does the following:

Sets a property, fuseesb.install_dir, the installation directory for Red Hat JBoss Fuse

Loads the tasks using the ant/servicemix_ant_taskdef.properties

Sets the classpath to make all of the required jars from the Red Hat JBoss Fuse installation
available

Installing a component

The Ant task used to install a JBI component is jbi-install-component. Its attributes are listed in
Table 6.8.

Table 6.8. Attributes for installing a JBI component using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

1

2
3

...
<property name="fuseesb.install_dir" value="/home/fuse_esb"/>

<taskdef
file="${fuseesb.install_dir}/ant/servicemix_ant_taskdef.properties">

 <classpath id="fuseesb.classpath">
 <fileset dir="${fuseesb.install_dir}">

 <include name="*.jar"/>
 </fileset>
 <fileset dir="${fuseesb.install_dir}/lib">
 <include name="*.jar"/>
 </fileset>
 </classpath>
</taskdef>
...

Red Hat JBoss Fuse 6.1 JBI Development Guide

28

failOnError no Specifies if an error will cause the
entire build to fail

file yes Specifies the name of the installer
file for the component

Attribute Required Description

Example 6.6 shows an Ant target that installs the drools component.

Example 6.6. Ant target that installs a JBI component

Removing a component

The Ant task used to remove a JBI component is jbi-uninstall-component. Its attributes are listed
in Table 6.9.

Table 6.9. Attributes for removing a JBI component using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

failOnError no Specifies if an error will cause the
entire build to fail

...
<target name="installDrools" description="Installs the drools engine.">
 <jbi-install-component port="1099"
 file="servicemix-drools-3.3.0.6-fuse-
installer.zip" />
</target>
...

CHAPTER 6. USING THE JBI ANT TASKS

29

name yes Specifies the component's name

Attribute Required Description

Example 6.7 shows an Ant target that removes the drools component.

Example 6.7. Ant target that removes a JBI component

Starting a component

The Ant task used to start a JBI component is jbi-start-component. Its attributes are listed in
Table 6.10.

Table 6.10. Attributes for starting a JBI component using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099.

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

failOnError no Specifies if an error will cause the
entire build to fail

name yes Specifies the component's name

Example 6.8 shows an Ant target that starts the drools component.

...
<target name="removeDrools" description="Removes the drools engine.">
 <jbi-uninstall-component port="1099"
 name="servicemix-drools" />
</target>
...

Red Hat JBoss Fuse 6.1 JBI Development Guide

30

Example 6.8. Ant target that starts a JBI component

Stopping a component

The Ant task used to stop a JBI component is jbi-start-component. Its attributes are listed in
Table 6.11.

Table 6.11. Attributes for stopping a JBI component using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

failOnError no Specifies if an error will cause the
entire build to fail

name yes Specifies the component's name

Example 6.9 shows an Ant target that stops the drools component.

Example 6.9. Ant target that stops a JBI component

...
<target name="startDrools" description="Starts the drools engine.">
 <jbi-start-component port="1099" name="servicemix-drools" />
</target>
...

...
<target name="stopDrools" description="Stops the drools engine.">
 <jbi-stop-component port="1099" name="servicemix-drools" />
</target>
...

CHAPTER 6. USING THE JBI ANT TASKS

31

Shutting down a component

The Ant task used to shut down a JBI component is jbi-shut-down-component. Its attributes are
listed in Table 6.12.

Table 6.12. Attributes for shutting down a JBI component using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

failOnError no Specifies if an error will cause the
entire build to fail

name yes Specifies the component's name

Example 6.10 shows an Ant target that shuts down the drools component.

Example 6.10. Ant target that shuts down a JBI component

Installing a shared library

The Ant task used to install a shared library is jbi-install-shared-library. Its attributes are
listed in Table 6.13.

Table 6.13. Attributes for installing a shared library using an Ant task

...
<target name="shutdownDrools" description="Stops the drools engine.">
 <jbi-shut-down-component port="1099" name="servicemix-drools" />
</target>
...

Red Hat JBoss Fuse 6.1 JBI Development Guide

32

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

failOnError no Specifies if an error will cause the
entire build to fail

file yes Specifies the name of the installer
file for the library

Removing a shared library

The Ant task used to remove a shared library is jbi-uninstall-shared-library. Its attributes are
listed in Table 6.14.

Table 6.14. Attributes for removing a shared library using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

CHAPTER 6. USING THE JBI ANT TASKS

33

failOnError no Specifies if an error will cause the
entire build to fail

name yes Specifies the name of the library

Attribute Required Description

Red Hat JBoss Fuse 6.1 JBI Development Guide

34

CHAPTER 7. BUILDING JBI COMPONENTS USING MAVEN

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

Red Hat JBoss Fuse provides Maven tooling that simplifies the creation and deployment of JBI artifacts.
Among the tools provided are:

Plug-ins for packaging JBI components

A plug-in for packaging shared libraries

Archetypes that create starting point projects for JBI artifacts

The Red Hat JBoss Fuse Maven tools also include plug-ins for creating service units and service
assemblies. However, those plug-ins are not described in this book.

SETTING UP THE MAVEN TOOLS

In order to use the Red Hat JBoss Fuse Maven tools, you add the elements shown in Example 7.1 to
your POM file.

Example 7.1. POM elements for using Red Hat JBoss Fuse Maven tools

...
<pluginRepositories>
 <pluginRepository>
 <id>fusesource.m2</id>
 <name>JBoss Fuse Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/maven2</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </pluginRepository>
</pluginRepositories>
<repositories>
 <repository>
 <id>fusesource.m2</id>
 <name>JBoss Fuse Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/maven2</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>

CHAPTER 7. BUILDING JBI COMPONENTS USING MAVEN

35

These elements point Maven to the correct repositories to download the Red Hat JBoss Fuse Maven
tools and to load the plug-in that implements the tools.

CREATING A JBI MAVEN PROJECT

The Red Hat JBoss Fuse Maven tools provide a number of archetypes that can be used to seed a JBI
project. The archetype generates the proper file structure for the project along with a POM file that
contains the metadata required for the specified project type.

Example 7.2 shows the command for using the JBI archetypes.

Example 7.2. Command for JBI maven archetypes

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-archetype-name -DarchetypeVersion=fuse-4.0.0.0 [-
DgroupId=org.apache.servicemix.samples.embedded] [-DartifactId=servicemix-embedded-example
]

The value passed to the -DarchetypeArtifactId argument specifies the type of project you are
creating.

JBI COMPONENTS

As shown in Example 7.3, you specify a value of jbi-component for the project's packaging element,
which informs the Red Hat JBoss Fuse Maven tooling that the project is for a JBI component.

Example 7.3. Specifying that a maven project results in a JBI component

 <repository>
 <id>fusesource.m2-snapshot</id>
 <name>JBoss Fuse Open Source Community Snapshot Repository</name>
 <url>http://repo.fusesource.com/maven2-snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
</repositories>
 ...
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.servicemix.tooling</groupId>
 <artifactId>jbi-maven-plugin</artifactId>
 <version>${servicemix-version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>
 ...

Red Hat JBoss Fuse 6.1 JBI Development Guide

36

The plugin element responsible for packaging the JBI component is shown in Example 7.4. The
groupId element, the artifactId element, the version element, and the extensions element are
common to all instances of the Red Hat JBoss Fuse Maven plug-in. If you use the Maven archetypes to
generate the project, you should not have to change them.

Example 7.4. Plug-in specification for packaging a JBI component

The configuration element, along with its children, provides the Red Hat JBoss Fuse tooling with the
metadata necessary to construct the jbi.xml file required by the component.

type

Specifies the type of JBI component the project is building. Valid values are:

service-engine for creating a service engine

binding-component for creating a binding component

bootstrap

Specifies the name of the class that implements the JBI Bootstrap interface for the component.

TIP

You can omit this element if you intend to use the default Bootstrap implementation provided with
Red Hat JBoss Fuse.

component

Specifies the name of the class that implements the JBI Component interface for that component.

<project ...>
 ...
 <groupId>org.apache.servicemix</groupId>
 <artifactId>MyBindingComponent</artifactId>
 <packaging>jbi-component</packaging>
 ...
</project>

...
<plugin>
 <groupId>org.apache.servicemix.tooling</groupId>
 <artifactId>jbi-maven-plugin</artifactId>
 <version>${servicemix-version}</version>
 <extensions>true</extensions>
 <configuration>
 <type>service-engine</type>
 <bootstrap>org.apache.servicemix.samples.MyBootstrap</bootstrap>
 <component>org.apache.servicemix.samples.MyComponent</component>
 </configuration>
</plugin>
...

CHAPTER 7. BUILDING JBI COMPONENTS USING MAVEN

37

Once the project is properly configured, you can build the JBI component by using the mvn install
command. The Red Hat JBoss Fuse Maven tooling will generate a standard jar containing both the
component and an installable JBI package for the component.

SHARED LIBRARIES

As shown in Example 7.5, to instruct the Red Hat JBoss Fuse Maven tooling that the project is for a
shared library you specify a value of jbi-shared-library for the project's packaging element.

Example 7.5. Specifying that a maven project results in a JBI shared library

You build the shared library using the mvn install command. The Red Hat JBoss Fuse Maven tooling
generates a standard jar containing the shared library and an installable JBI package for the shared
library.

<project ...>
 ...
 <groupId>org.apache.servicemix</groupId>
 <artifactId>MyBindingComponent</artifactId>
 <packaging>jbi-shared-library</packaging>
 ...
</project>

Red Hat JBoss Fuse 6.1 JBI Development Guide

38

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

Abstract

Red Hat JBoss Fuse provides a Maven plug-in and a number of Maven archetypes that make
developing, packaging, and deploying applications easier.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

The tooling provides you with a number of benefits, including:

Automatic generation of JBI descriptors

Dependency checking

Service assembly deployment

Because Red Hat JBoss Fuse only allows you to deploy service assemblies, you must do the following
when using Maven tooling:

1. Set up a top-level project to build all of the service units and the final service assembly (see
Section 8.1, “Setting up a Red Hat JBoss Fuse JBI project”).

2. Create a project for each of your service units (see Section 8.2, “A service unit project”).

3. Create a project for the service assembly (see Section 8.3, “A service assembly project”).

8.1. SETTING UP A RED HAT JBOSS FUSE JBI PROJECT

Overview

When working with the Red Hat JBoss Fuse JBI Maven tooling, you create a top-level project that can
build all of the service units and then package them into a service assembly. Using a top-level project for
this purpose has several advantages:

It allows you to control the dependencies for all of the parts of an application in a central location.

It limits the number of times you need to specify the proper repositories to load.

It provides you a central location from which to build and deploy the application.

The top-level project is responsible for assembling the application. It uses the Maven assembly plug-in
and lists your service units and the service assembly as modules of the project.

Directory structure

Your top-level project contains the following directories:

A source directory containing the information required for the Maven assembly plug-in

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

39

A directory to store the service assembly project

At least one directory containing a service unit project

TIP

You will need a project folder for each service unit that is to be included in the generated service
assembly.

Setting up the Maven tools

To use the JBoss Fuse JBI Maven tooling, add the elements shown in Example 8.1 to your top-level
POM file.

Example 8.1. POM elements for using Red Hat JBoss Fuse Maven tooling

...
<pluginRepositories>
 <pluginRepository>
 <id>fusesource.m2</id>
 <name>FuseSource Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </pluginRepository>
</pluginRepositories>
<repositories>
 <repository>
 <id>fusesource.m2</id>
 <name>FuseSource Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 <repository>
 <id>fusesource.m2-snapshot</id>
 <name>FuseSource Open Source Community Snapshot Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public-
snapshots/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
</repositories>

Red Hat JBoss Fuse 6.1 JBI Development Guide

40

These elements point Maven to the correct repositories to download the JBoss Fuse Maven tooling and
to load the plug-in that implements the tooling.

Listing the sub-projects

The top-level POM lists all of the service units and the service assembly that is generated as modules.
The modules are contained in a modules element. The modules element contains one module
element for each service unit in the assembly. You also need a module element for the service
assembly.

The modules are listed in the order in which they are built. This means that the service assembly module
is listed after all of the service unit modules.

Example JBI project pOM

Example 8.2 shows a top-level POM for a project that contains a single service unit.

Example 8.2. Top-level POM for a Red Hat JBoss Fuse JBI project

 ...
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.servicemix.tooling</groupId>
 <artifactId>jbi-maven-plugin</artifactId>
 <version>servicemix-version</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>
 ...

1

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-
v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>com.widgets</groupId>
 <artifactId>demos</artifactId>
 <version>1.0</version>
 </parent>

 <groupId>com.widgets.demo</groupId>
 <artifactId>cxf-wsdl-first</artifactId>
 <name>CXF WSDL Fisrt Demo</name>
 <packaging>pom</packaging>

 <pluginRepositories>
 <pluginRepository>

 <id>fusesource.m2</id>
 <name>FuseSource Open Source Community Release Repository</name>

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

41

2

3

 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </pluginRepository>
 </pluginRepositories>
 <repositories>
 <repository>
 <id>fusesource.m2</id>
 <name>FuseSource Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 <repository>
 <id>fusesource.m2-snapshot</id>
 <name>FuseSource Open Source Community Snapshot Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public-
snapshots/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
 </repositories>

 <modules>
 <module>wsdl-first-cxfse-su</module>

 <module>wsdl-first-cxf-sa</module>
 </modules>

 <build>
 <plugins>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.1</version>
 <inherited>false</inherited>
 <executions>
 <execution>
 <id>src</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <descriptors>

Red Hat JBoss Fuse 6.1 JBI Development Guide

42

1

2

3

4

The top-level POM shown in Example 8.2, “Top-level POM for a Red Hat JBoss Fuse JBI project” does
the following:

Configures Maven to use the FuseSource repositories for loading the JBoss Fuse plug-ins.

Lists the sub-projects used for this application. The wsdl-first-cxfse-su module is the module
for the service unit. The wsdl-first-cxf-sa module is the module for the service assembly

Configures the Maven assembly plug-in.

Loads the JBoss Fuse JBI plug-in.

8.2. A SERVICE UNIT PROJECT

Overview

Each service unit in the service assembly must be its own project. These projects are placed at the same
level as the service assembly project. The contents of a service unit's project depends on the component
at which the service unit is targeted. At the minimum, a service unit project contains a POM and an XML
configuration file.

Seeding a project using a Maven artifact

Red Hat JBoss Fuse provides Maven artifacts for a number of service unit types. They can be used to
seed a project with the smx-arch command. As shown in Example 8.3, the smx-arch command takes
three arguments. The groupId value and the artifactId values correspond to the project's group ID
and artifact ID.

Example 8.3. Maven archetype command for service units

smx-arch su suArchetypeName ["-DgroupId=my.group.id"] ["-DartifactId=my.artifact.id"]

4

 <descriptor>src/main/assembly/src.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
 </plugin>

 <plugin>
 <groupId>org.apache.servicemix.tooling</groupId>

 <artifactId>jbi-maven-plugin</artifactId>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

43

IMPORTANT

The double quotes(") are required when using the -DgroupId argument and the -
DartifactId argument.

The suArchetypeName specifies the type of service unit to seed. Table 8.1 lists the possible values and
describes what type of project is seeded.

Table 8.1. Service unit archetypes

Name Description

camel Creates a project for using the Apache Camel service
engine

cxf-se Creates a project for developing a Java-first service
using the Apache CXF service engine

cxf-se-wsdl-first Creates a project for developing a WSDL-first service
using the Apache CXF service engine

cxf-bc Creates an endpoint project targeted at the Apache
CXF binding component

http-consumer Creates a consumer endpoint project targeted at the
HTTP binding component

http-provider Creates a provider endpoint project targeted at the
HTTP binding component

jms-consumer Creates a consumer endpoint project targeted at the
JMS binding component (see JBI Development
Guide)

jms-provider Creates a provider endpoint project targeted at the
JMS binding component (see JBI Development
Guide)

file-poller Creates a polling (consumer) endpoint project
targeted at the file binding component (see
Chapter 10, Using Poller Endpoints)

file-sender Creates a sender (provider) endpoint project targeted
at the file binding component (see Chapter 11, Using
Sender Endpoints)

ftp-poller Creates a polling (consumer) endpoint project
targeted at the FTP binding component

ftp-sender Creates a sender (provider) endpoint project targeted
at the FTP binding component

Red Hat JBoss Fuse 6.1 JBI Development Guide

44

jsr181-annotated Creates a project for developing an annotated Java
service to be run by the JSR181 service engine [a]

jsr181-wsdl-first Creates a project for developing a WSDL generated
Java service to be run by the JSR181 service engine
[a]

saxon-xquery Creates a project for executing xquery statements
using the Saxon service engine

saxon-xslt Creates a project for executing XSLT scripts using
the Saxon service engine

eip Creates a project for using the EIP service engine. [b]

lwcontainer Creates a project for deploying functionality into the
lightweight container [c]

bean Creates a project for deploying a POJO to be
executed by the bean service engine

ode Create a project for deploying a BPEL process into
the ODE service engine

[a] The JSR181 has been deprecated. The Apache CXF service engine has superseded it.

[b] The EIP service engine has been deprecated. The Apache Camel service engine has superseded it.

[c] The lightweight container has been deprecated.

Name Description

Contents of a project

The contents of your service unit project change from service unit to service unit. Different components
require different configuration. Some components, such as the Apache CXF service engine, require that
you include Java classes.

At a minimum, a service unit project will contain two things:

a POM file that configures the JBI plug-in to create a service unit

an XML configuration file stored in src/main/resources

For many of the components, the XML configuration file is called xbean.xml. The Apache
Camel component uses a file called camel-context.xml.

Configuring the Maven plug-in

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

45

You configure the Maven plug-in to package the results of the project build as a service unit by changing
the value of the project's packaging element to jbi-service-unit as shown in Example 8.4.

Example 8.4. Configuring the maven plug-in to build a service unit

Specifying the target components

To correctly fill in the metadata required for packaging a service unit, the Maven plug-in must be told
what component (or components) the service unit is targeting. If your service unit only has a single
component dependency, you can specify it in one of two ways:

List the targeted component as a dependency

Add a componentName property specifying the targeted component

If your service unit has more than one component dependency, you must configure the project as
follows:

1. Add a componentName property specifying the targeted component.

2. Add the remaining components to the list dependencies.

Example 8.5 shows the configuration for a service unit targeting the Apache CXF binding component.

Example 8.5. Specifying the target components for a service unit

The advantage of using the Maven dependency mechanism is that it allows Maven to verify if the
targeted component is deployed in the container. If one of the components is not deployed, Red Hat
JBoss Fuse will not hold off deploying the service unit until all of the required components are deployed.

<project ...>
 <modelVersion>4.0.0</modelVersion>

 ...
 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfse-wsdl-first-su</artifactId>
 <name>CXF WSDL Fisrt Demo :: SE Service Unit</name>
 <packaging>jbi-service-unit</packaging>
 ...
</project>

...
<dependencies>
 <dependency>
 <groupId>org.apache.servicemix</groupId>
 <artifactId>servicemix-cxf-bc</artifactId>

 <version>3.3.1.0-fuse</version>[1]

 </dependency>
>/dependencies>
...

Red Hat JBoss Fuse 6.1 JBI Development Guide

46

TIP

Typically, a message identifying the missing component(s) is written to the log.

If your service unit's targeted component is not available as a Maven artifact, you can specify the
targeted component using the componentName element. This element is added to the standard Maven
properties block and it specifies the name of a targeted component, as specified in Example 8.6.

Example 8.6. Specifying a target component for a service unit

When you use the componentName element, Maven does not check to see if the component is
installed, nor does it download the required component.

Example

Example 8.7 shows the POM file for a project that is building a service unit targeted to the Apache CXF
binding component.

Example 8.7. POM file for a service unit project

...
<properties>
 <componentName>servicemix-bean</componentName>
</properties>
...

1

2

3

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-
v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>com.widgets.demo</groupId>

 <artifactId>cxf-wsdl-first</artifactId>
 <version>1.0</version>
 </parent>

 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfse-wsdl-first-su</artifactId>
 <name>CXF WSDL Fisrt Demo :: SE Service Unit</name>

 <packaging>jbi-service-unit</packaging>

 <dependencies>
 <dependency>

 <groupId>org.apache.servicemix</groupId>
 <artifactId>servicemix-cxf-bc</artifactId>
 <version>3.3.1.0-fuse</version>
 </dependency>
 >/dependencies>

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

47

1

2

3

4

The POM file in Example 8.7, “POM file for a service unit project” does the following:

Specifies that it is a part of the top-level project shown in Example 8.2, “Top-level POM for a Red
Hat JBoss Fuse JBI project”

Specifies that this project builds a service unit

Specifies that the service unit targets the Apache CXF binding component

Specifies to use the Red Hat JBoss Fuse Maven plug-in

8.3. A SERVICE ASSEMBLY PROJECT

Overview

Red Hat JBoss Fuse requires that all service units are bundled into a service assembly before they can
be deployed to a container. The JBoss Fuse Maven plug-in collects all of the service units to be bundled
and the metadata necessary for packaging. It will then build a service assembly containing the service
units.

Seeding a project using a Maven artifact

Red Hat JBoss Fuse provides a Maven artifact for seeding a service assembly project. You can seed a
project with the smx-arch command. As shown in Example 8.8, the smx-arch command takes two
arguments: the groupId value and the artifactId values, which correspond to the project's group ID
and artifact ID.

Example 8.8. Maven archetype command for service assemblies

smx-arch sa ["-DgroupId=my.group.id"] ["-DartifactId=my.artifact.id"]

IMPORTANT

The double quotes(") are required when using the -DgroupId argument and the -
DartifactId argument.

Contents of a project

A service assembly project typically only contains the POM file used by Maven.

4

 <build>
 <plugins>

 <plugin>
 <groupId>org.apache.servicemix.tooling</groupId>

 <artifactId>jbi-maven-plugin</artifactId>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Red Hat JBoss Fuse 6.1 JBI Development Guide

48

Configuring the Maven plug-in

T configure the Maven plug-in to package the results of the project build as a service assembly, change
the value of the project's packaging element to jbi-service-assembly, as shown in Example 8.9.

Example 8.9. Configuring the Maven plug-in to build a service assembly

Specifying the target components

The Maven plug-in must know what service units are being bundled into the service assembly. This is
done by specifying the service units as dependencies, using the standard Maven dependencies
element. Add a dependency child element for each service unit. Example 8.10 shows the configuration
for a service assembly that bundles two service units.

Example 8.10. Specifying the target components for a service unit

Example

Example 8.11 shows a POM file for a project that is building a service assembly.

Example 8.11. POM for a service assembly project

<project ...>
 <modelVersion>4.0.0</modelVersion>

 ...
 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxf-wsdl-first-sa</artifactId>
 <name>CXF WSDL Fisrt Demo :: Service Assembly</name>
 <packaging>jbi-service-assembly</packaging>
 ...
</project>

...
<dependencies>
 <dependency>
 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfse-wsdl-first-su</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfbc-wsdl-first-su</artifactId>
 <version>1.0</version>
 </dependency>
</dependencies>
...

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

49

1

2

3

4

The POM in Example 8.11, “POM for a service assembly project” does the following:

Specifies that it is a part of the top-level project shown in Example 8.2, “Top-level POM for a Red
Hat JBoss Fuse JBI project”

Specifies that this project builds a service assembly

Specifies the service units being bundled by the service assembly

Specifies to use the JBoss Fuse Maven plug-in

[1] You replace this with the version of Apache CXF you are using.

1

2

3

4

 http://maven.apache.org/maven-
v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>com.widgets.demo</groupId>

 <artifactId>cxf-wsdl-first</artifactId>
 <version>1.0</version>
 </parent>

 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxf-wsdl-first-sa</artifactId>
 <name>CXF WSDL Fisrt Demo :: Service Assemby</name>

 <packaging>jbi-service-assembly</packaging>

 <dependencies>
 <dependency>

 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfse-wsdl-first-su</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfbc-wsdl-first-su</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>

 <plugin>
 <groupId>org.apache.servicemix.tooling</groupId>

 <artifactId>jbi-maven-plugin</artifactId>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Red Hat JBoss Fuse 6.1 JBI Development Guide

50

APPENDIX A. USING THE JBI CONSOLE COMMANDS

ACCESSING THE JBI COMMANDS

The jbi commands allow you to manage JBI artifacts that are deployed in the Red Hat JBoss Fuse
runtime.

Type jbi: then press Tab at the JBossFuse:karaf@root> prompt to view the available commands.

COMMANDS

Table A.1 describes the jbi commands available . For detailed information about the console
commands in Red Hat JBoss Fuse, see the "Console Reference".

Table A.1. JBI Commands

Command Description

jbi:list Lists all of the JBI artifacts deployed into the Red Hat
JBoss Fuse container. The list is separated into JBI
components and JBI service assemblies. It displays
the name of the artifact and its life-cycle state.

jbi:shutdown artifact Moves the specified artifact from the stopped state to
the shutdown state.

jbi:stop artifact Moves the specified artifact into the stopped state.

jbi:start artifact Moves the specified artifact into the started state.

APPENDIX A. USING THE JBI CONSOLE COMMANDS

51

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Console_Reference/

PART II. FILE BINDING COMPONENT

Abstract

This guide provides an overview of the JBI file binding component; describes configuring and using poller
and sender endpoints and file marshallers; describes the properties of poller and sender endpoints; and
describes how to use the Maven tooling.

Red Hat JBoss Fuse 6.1 JBI Development Guide

52

CHAPTER 9. INTRODUCTION TO THE FILE BINDING
COMPONENT

Abstract

The file binding component allows you to create endpoints that read files from a file system and write
files out to the file system.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

The file component provides integration to the file system. It can be used to read and write files via URI.
It can also be configured to periodically poll directories for new files.

It allows for the creation of two types of endpoint:

poller endpoint

A poller endpoint polls a specified location on the file system for files. When it finds a file it reads the
file and sends it to the NMR for delivery to the appropriate endpoint.

IMPORTANT

A poller endpoint can only create in-only message exchanges.

sender endpoint

A sender endpoint receives messages from the NMR. It then writes the contents of the message to a
specified location on the file system.

KEY FEATURES

The file component has the following advanced features:

custom filters for selecting files

custom marshalers for converting the contents of a file to and from a normalized message

custom locking mechanism for controlling file access during reads

archiving of read files

CONTENTS OF A FILE COMPONENT SERVICE UNIT

A service unit that configures the file binding component will contain two artifacts:

xbean.xml

CHAPTER 9. INTRODUCTION TO THE FILE BINDING COMPONENT

53

The xbean.xml file contains the XML configuration for the endpoint defined by the service unit. The
contents of this file are the focus of this guide.

NOTE

The service unit can define more than one endpoint.

meta-inf/jbi.xml

The jbi.xml file is the JBI descriptor for the service unit. Example 9.1, “JBI descriptor for a file
component service unit” shows a JBI descriptor for a file component service unit.

Example 9.1. JBI descriptor for a file component service unit

TIP

The developer typically does not need to hand code this file. It is generated by the Red Hat JBoss
Fuse Maven tooling.

OSGI PACKAGING

You can package file endpoints in an OSGi bundle. To do so, you need to make two minor changes:

you will need to include an OSGi bundle manifest in the META-INF folder of the bundle.

You need to add the following to your service unit's configuration file:

IMPORTANT

When you deploy file endpoints in an OSGi bundle, the resulting endpoints are deployed
as a JBI service unit.

For more information on using the OSGi packaging see Appendix H, Using the Maven OSGi Tooling.

NAMESPACE

The elements used to configure file endpoints are defined in the
http://servicemix.apache.org/file/1.0 namespace. You will need to add a namespace
declaration similar to the one in Example 9.2, “Namespace declaration for using file endpoints” to your
xbean.xml file's beans element.

Example 9.2. Namespace declaration for using file endpoints

<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
 <services binding-component="false" />
</jbi>

<bean class="org.apache.servicemix.common.osgi.EndpointExporter" />

Red Hat JBoss Fuse 6.1 JBI Development Guide

54

In addition, you need to add the schema location to the Spring beans element's xsi:schemaLocation
as shown in Example 9.3, “Schema location for using file endpoints”.

Example 9.3. Schema location for using file endpoints

<beans ...
 xmlns:file="http://servicemix.apache.org/file/1.0"
 ... >
 ...
</beans>

<beans ...
 xsi:schemaLocation="...
http://servicemix.apache.org/file/1.0
http://servicemix.apache.org/file/1.0/servicemix-file.xsd
...">
 ...
</beans>

CHAPTER 9. INTRODUCTION TO THE FILE BINDING COMPONENT

55

CHAPTER 10. USING POLLER ENDPOINTS

Abstract

Poller endpoints poll the file system for files and passes the file to a target endpoint inside an in-only
message exchange.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

10.1. INTRODUCTION TO POLLER ENDPOINTS

Overview

The function of a poller endpoint is to read data, in the form of files, from a location on a file system and
pass that information to other endpoints in the ESB. Poller endpoints create an in-only message
exchange containing the data read in from a file.

A poller endpoint, as its name implies, works by continually polling the file system to see if a file is
present for consumption. The polling interval is completely customizable.

You can also control the files a poller endpoint consumes. Using the basic configuration attributes, you
can configure the endpoint to poll for a specific file or you can poll it to monitor a specific directory on the
file system. In addition, you can configure the endpoint to use a custom file filter.

By default, poller endpoints will only consume valid XML files. You can customize this behavior by
configuring the endpoint to use a custom marshaler.

Where does a poller endpoint fit into a solution?

Poller endpoints play the role of consumer from the vantage point of the other endpoints in the ESB. As
shown in Figure 10.1, “Poller endpoint”, a poller endpoint watches the file system for files to consume.
When the endpoint consumes a file, it transfers its contents into a message and starts off an in-only
message exchange. Poller endpoints cannot receive messages from the NMR.

Red Hat JBoss Fuse 6.1 JBI Development Guide

56

Figure 10.1. Poller endpoint

Configuration element

Poller endpoints are configured using the poller element. All its configuration can be specified using
attributes of this element.

The more complex features, such as custom marshalers, require the addition of other elements. These
can either be separate bean elements or child elements of the poller element.

10.2. BASIC CONFIGURATION

Overview

The basic requirements for configuring a poller endpoint are straightforward. You need to supply the
following information:

the endpoint's name

the endpoint's service name

the file or directory to be monitored

the endpoint to which the resulting messages will be sent

All of this information is provided using attributes of the poller element.

Identifying the endpoint

CHAPTER 10. USING POLLER ENDPOINTS

57

All endpoints need to have a unique identity. An endpoint's identity is made up of two pieces of
information:

a service name

an endpoint name

Table 10.1, “Attributes for identifying a poller endpoint” describes the attributes used to identify a poller
endpoint.

Table 10.1. Attributes for identifying a poller endpoint

Name Description

service Specifies the service name of the endpoint. This
value must be a valid QName and does not need to
be unique.

endpoint Specifies the name of the endpoint. This value is a
simple string. It must be unique among all of the
endpoints associated with a given service name.

Specifying the message source

You specify the location in which the poller endpoint looks for new messages using the poller
element's file attribute. This attribute takes a URI that identifies a location on the file system.

If you want the endpoint to poll a specific file, you use the standard file:location URI. If you do not use the
file prefix, the endpoint will assume the URI specifies a directory on the file system and will consume
all valid XML files placed in the specified directory.

For example, the URI file:inbox tells the endpoint to poll for a file called inbox. The URI inbox instructs
the endpoint to poll the directory inbox.

IMPORTANT

Relative URIs are resolved from the directory in which the Red Hat JBoss Fuse container
was started.

Specifying the target endpoint

There are a number of attributes available for configuring the endpoint to which the generated messages
are sent. The poller endpoint will determine the target endpoint in the following manner:

1. If you explicitly specify an endpoint using both the targetService attribute and the
targetEndpoint attribute, the ESB will use that endpoint.

The targetService attribute specifies the QName of a service deployed into the ESB. The
targetEndpoint attribute specifies the name of an endpoint deployed by the service specified
by the targetService attribute.

2. If you only specify a value for the targetService attribute, the NMR will attempt to find an
appropriate endpoint on the specified service.

Red Hat JBoss Fuse 6.1 JBI Development Guide

58

3. If you do not specify a service name or an endpoint name, you must specify the name of an
interface that can accept the message using the targetInterface attribute. The NMR will
attempt to locate an endpoint that implements the specified interface and direct the messages to
it.

Interface names are specified as QNames. They correspond to the value of the name attribute of
either a WSDL 1.1 serviceType element or a WSDL 2.0 interface element.

IMPORTANT

If you specify values for more than one of the target attributes, the poller endpoint will use
the most specific information.

Example

Example 10.1, “Simple poller endpoint” shows the configuration for a simple poller endpoint.

Example 10.1. Simple poller endpoint

10.3. CONFIGURING POLLER ENDPOINTS INTERACTIONS WITH THE
FILE SYSTEM

Overview

Poller endpoints interact with the file system in basic ways. You can configure a number of the aspects
of this behavior including:

if the endpoint creates the directory it is configured to poll

if the endpoint polls the subdirectories of the configured directory

if the endpoint deletes the files it consumes

where the endpoint archives copies of the consumed files

Directory handling

The default behavior of a poller endpoint that is configured to poll a directory on the file system is to
create the directory if it does not exist and to poll all of that directory's subdirectories. You can configure
an endpoint to do only one, both, or none of these behaviors.

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:poller service="foo:filePoller"
 endpoint="filePoller"
 targetService="foo:fileSender"
 file="file:inbox/test.xml" />
 ...
</beans>

CHAPTER 10. USING POLLER ENDPOINTS

59

To configure an endpoint to not create the configured directory, you set its autoCreateDirectory
attribute to false. If the directory does not exist, the endpoint will do nothing. You will then have to
create the directory manually.

To configure the endpoint to only poll the configured directory and ignore its subdirectories, you set the
endpoint's recursive attribute to false.

Example 10.2, “Poller endpoint that does not check subdirectories” shows the configuration for a poller
endpoint that does not recurse into the subdirectories of the directory it polls.

Example 10.2. Poller endpoint that does not check subdirectories

File retention

By default, poller endpoints delete a file once it is consumed. To configure the endpoint to leave the file
in place after is consumed, set its deleteFile attribute to false.

Example 10.3, “Poller endpoint that leaves files behind” shows the configuration for a poller endpoint that
does not delete files.

Example 10.3. Poller endpoint that leaves files behind

IMPORTANT

When the poller endpoint does not automatically delete consumed files, the list of
consumed files is stored in memory. If the Red Hat JBoss Fuse container is stopped and
restarted, files that have been consumed, but not removed from the polling folder, will be
reprocessed. One possible solution is to use a custom lock manager that stores a list of
the consumed files to an external data store.

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:poller service="foo:filePoller"
 endpoint="filePoller"
 targetService="foo:fileSender"
 file="inbox"
 recursive="false" />
 ...
</beans>

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:poller service="foo:filePoller"
 endpoint="filePoller"
 targetService="foo:fileSender"
 file="inbox"
 deleteFile="false" />
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

60

Archiving files

By default, poller endpoints do not archive files after they are consumed. If you want the files consumed
by a poller endpoint to be archived you set the endpoint's archive attribute. The value of the archive
attribute is a URI pointing to the directory into which the consumed files will archived.

IMPORTANT

Relative URIs are resolved from the directory in which the Red Hat JBoss Fuse container
was started.

Example 10.4, “Poller endpoint that archives files” shows the configuration for a poller endpoint that files
into a directory called archives.

Example 10.4. Poller endpoint that archives files

10.4. CONFIGURING THE POLLING INTERVAL

Overview

A default poller endpoint provides limited scheduling facilities. You can configure when the endpoint
starts polling and the interval between polling attempts.

Scheduling the first poll

By default, poller endpoints begin polling as soon as they are started. You can control when a poller
endpoint first attempts to poll the file system using an attribute that controls the date of the first polling
attempt.

You specify a date for the first poll using the endpoint's firstTime attribute. The firstTime attribute
specifies a date using the standard xsd:date format of YYYY-MM-DD. For example, you would specify
April 1, 2025 as 2025-04-01. The first polling attempt will be made at 00:00:00 GMT on the specified
date.

NOTE

If you schedule the first polling attempt in the past, the endpoint will begin polling
immediately.

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:poller service="foo:filePoller"
 endpoint="filePoller"
 targetService="foo:fileSender"
 file="inbox"
 archive="archives" />
 ...
</beans>

CHAPTER 10. USING POLLER ENDPOINTS

61

Example 10.5, “Poller endpoint with a scheduled start time” shows the configuration for a poller endpoint
that starts polling at 1am GMT on April 1, 2010.

Example 10.5. Poller endpoint with a scheduled start time

Delaying the first poll

In addition to controlling the specific date on which polling will start, you can also specify how long to
delay the first polling attempt. The delay is specified using the endpoint's delay attribute which specifies
the delay interval in milliseconds.

NOTE

If you have specified a date for the first polling attempt, the delay will be added to the date
to determine when to make the first polling attempt.

Example 10.6, “Poller endpoint with a delayed start time” shows the configuration for a poller endpoint
that begins polling five minutes after it is started.

Example 10.6. Poller endpoint with a delayed start time

Configuring the polling interval

By default, poller endpoints poll the file system every five seconds. You can configure the polling interval
by providing a value for the endpoint's period attribute. The period attribute specifies the number of
milliseconds the endpoint waits between polling attempts.

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:poller service="foo:filePoller"
 endpoint="filePoller"
 targetService="foo:fileSender"
 file="inbox"
 firstTime="2010-04-01" />
 ...
</beans>

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:poller service="foo:filePoller"
 endpoint="filePoller"
 targetService="foo:fileSender"
 file="inbox"
 delay="300000" />
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

62

Example 10.7, “Poller Endpoint with a thirty second polling interval” shows the configuration for a poller
endpoint that uses a thirty second polling interval.

Example 10.7. Poller Endpoint with a thirty second polling interval

10.5. FILE LOCKING

Overview

It is possible to have multiple instances of a poller endpoint attempting to read a file on the system. To
ensure that there are no conflicts in accessing the file, poller endpoints obtain an exclusive lock on a file
while it is being processed.

The locking behavior is controlled by an implementation of the
org.apache.servicemix.common.locks.LockManager interface. By default, poller endpoints use
a provided implementation of this interface. If the default behavior is not appropriate for your application,
you can implement the LockManager interface and configure your endpoints to use your
implementation.

Implementing a lock manager

To implement a custom lock manager, you need to provide your own implementation of the
org.apache.servicemix.common.locks.LockManager interface. The LockManager has single
method, getLock() that needs to be implemented. Example 10.8, “The lock manager's get lock
method” shows the signature for getLock().

Example 10.8. The lock manager's get lock method

Lock getLock(String id);

The getLock() method takes a string that represents the URI of the file being processes and it returns
a java.util.concurrent.locks.Lock object. The returned Lock object holds the lock for the
specified file.

Example 10.9, “Simple lock manager implementation” shows a simple lock manager implementation.

Example 10.9. Simple lock manager implementation

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:poller service="foo:filePoller"
 endpoint="filePoller"
 targetService="foo:fileSender"
 file="inbox"
 period="30000" />
 ...
</beans>

package org.apache.servicemix.demo;

CHAPTER 10. USING POLLER ENDPOINTS

63

Configuring the endpoint to use a lock manager

You configure a poller endpoint to use a custom lock manager using its lockManager attribute. The
lockManager attribute's value is a reference to a bean element specifying the class of your custom lock
manager implementation.

Example 10.10, “Poller endpoint using a custom lock manager” shows configuration for a poller endpoint
that uses a custom lock manager.

Example 10.10. Poller endpoint using a custom lock manager

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import org.apache.servicemix.common.locks.LockManager;

public class myLockManager implements LockManager
{
 private ConcurrentMap<String, Lock> locks = new
ConcurrentHashMap<String, Lock>();

 public Lock getLock(String id)
 {
 Lock lock = locks.get(id);
 if (lock == null)
 {
 lock = new ReentrantLock();
 Lock oldLock = locks.putIfAbsent(id, lock);
 if (oldLock != null)
 {
 lock = oldLock;
 }
 }
 return lock;
 }

}

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:poller service="foo:filePoller"
 endpoint="filePoller"
 targetService="foo:fileSender"
 file="inbox"
 lockManager="#myLockManager" />

 <bean id="myLockManager"
class="org.apache.servicemix.demo.myLockManager" />
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

64

NOTE

You can also configure a poller endpoint to use a custom lock manager by adding a child
lockManager element to the endpoint's configuration. The lockManager element
simply wraps the bean element that configures the lock manager.

10.6. FILE FILTERING

Overview

When a poller endpoint is configured to poll a directory it will attempt to consume any file placed into that
directory. If you want to limit the files a poller endpoint will attempt to consume, you can configure the
endpoint to filter files based on their names. To do so, you must supply the endpoint with an
implementation of the java.io.FileFilter interface.

There are several file filter implementation available in open source including the Apache Commons IO
implementations and the Apache Jakarta-ORO implementations. You can also implement your own file
filter if you need specific filtering capabilities.

Implementing a file filter

To implement a file filter, you need to provide an implementation of the java.io.FileFilter
interface. The FileFilter interface has a single method, accept(), that needs to be implemented.
Example 10.11, “File filter's accept method” shows the signature of the accept() method.

Example 10.11. File filter's accept method

public boolean accept()(java.io.File pathname);

The accept() method takes a File object that represents the file being checked against the filter. If the
file passes the filter, the accept() method should return true. If the file does not pass, then the
method should return false.

Example 10.12, “Simple file filter implementation” shows a file filter implementation that matches against
a string passed into its constructor.

Example 10.12. Simple file filter implementation

package org.apache.servicemix.demo;

import java.io.File;
import java.io.FileFilter;

public class myFileFilter implements FileFilter
{
 String filtername = "joe.xml";

 public myFileFilter()
 {
 }

CHAPTER 10. USING POLLER ENDPOINTS

65

Configuring an endpoint to use a file filter

You configure a poller endpoint to use a file filter using its filter attribute. The filter attribute's
value is a reference to a bean element specifying the class of the file filter implementation.

Example 10.13, “Poller endpoint using a file filter” shows configuration for a poller endpoint that uses the
file filter implemented in Example 10.11, “File filter's accept method”. The constructor-arg element
sets the filter's fitlername by passing a value into the constructor.

Example 10.13. Poller endpoint using a file filter

NOTE

You can also configure a poller endpoint to use a file filter by adding a child filter
element to the endpoint's configuration. The filter element simply wraps the bean
element that configures the file filter.

 public myFileFilter(String filtername)
 {
 this.filtername = filtername;
 }

 public boolean accept(File file)
 {
 String name = file.getName();
 return name.equals(this.filtername);
 }
}

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:poller service="foo:filePoller"
 endpoint="filePoller"
 targetService="foo:fileSender"
 file="inbox"
 filter="#myFilter" />

 <bean id="myFilter" class="org.apache.servicemix.demo.myFileFilter">
 <constructor-arg value="joefred.xml" />
 </bean>
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

66

CHAPTER 11. USING SENDER ENDPOINTS

Abstract

Sender endpoints write messages to the file system.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

11.1. INTRODUCTION TO SENDER ENDPOINTS

Overview

The function of a sender endpoint is to write data, in the form of files, to a location on a file system. You
can control the location of the files written to the file system and have some control over the name of the
generated files. You can also control if data is appended to existing files or if new copies of a file are
created.

By default, sender endpoints write XML data to the file system. You can change this behavior by
configuring the endpoint to use a custom marshaler.

Where does a sender endpoint fit into a solution?

Sender endpoints play the role of provider from the vantage point of the other endpoints in the ESB. As
shown in Figure 11.1, “Sender endpoint”, a sender endpoint receives messages from the NMR and
writes the message data to the file system.

CHAPTER 11. USING SENDER ENDPOINTS

67

Figure 11.1. Sender endpoint

Configuration element

Sender endpoints are configured using the sender element. All its configuration can be specified using
attributes of this element.

Configuring a sender endpoint to use custom marshalers require the addition of other elements. These
can either be separate bean elements or child elements of the sender element.

11.2. BASIC CONFIGURATION

Overview

The basic requirements for configuring a sender endpoint are straightforward. You need to supply the
following information:

the endpoint's name

the endpoint's service name

the file or directory to which files are written

All of this information is provided using attributes of the sender element.

Identifying the endpoint

All endpoints in the ESB need to have a unique identity. An endpoint's identity is made up of two pieces:

a service name

Red Hat JBoss Fuse 6.1 JBI Development Guide

68

an endpoint name

Table 11.1, “Attributes for identifying a sender endpoint” describes the attributes used to identify a
sender endpoint.

Table 11.1. Attributes for identifying a sender endpoint

Name Description

service Specifies the service name of the endpoint. This
value must be a valid QName and does not need to
be unique across the ESB.

endpoint Specifies the name of the endpoint. This value is a
simple string. It must be unique among all of the
endpoints associated with a given service name.

Specifying the file destination

You specify the location the sender endpoint writes files using the sender element's directory
attribute. This attribute takes a URI that identifies a location on the file system.

IMPORTANT

Relative URIs are resolved from the directory in which the Red Hat JBoss Fuse container
was started.

Using the default marshaler, the name of the file is determined by the org.apache.servicemix.file.name
property. This property is set on either the message exchange or the message by the endpoint
originating the message exchange.

IMPORTANT

The marshaler is responsible for determining the name of the file being written. For more
information on marshalers see Chapter 12, File Marshalers.

Example

Example 11.1, “Simple sender endpoint” shows the configuration for a simple sender endpoint.

Example 11.1. Simple sender endpoint

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:sender service="foo:fileSender"
 endpoint="sender"
 directory="outbox" />
 ...
</beans>

CHAPTER 11. USING SENDER ENDPOINTS

69

11.3. CONFIGURING A SENDER ENDPOINT'S INTERACTION WITH THE
FILE SYSTEM

Overview

Sender endpoints interact with the file system in basic ways. You can configure a number of the aspects
of this behavior including:

if the endpoint creates the directory where it writes files

how the endpoint names temporary files

Directory creation

The default behavior of a sender endpoint is to automatically create the target directory for its files if that
directory does not already exist. To configure an endpoint to not create the target directory, you set its
autoCreateDirectory attribute to false. If the directory does not exist, the endpoint will do nothing.
You will then have to create the directory manually.

Example 11.2, “Sender endpoint that creates its target directory” shows the configuration for a sender
endpoint that does not automatically create its target directory.

Example 11.2. Sender endpoint that creates its target directory

Appending data

By default, sender endpoints overwrite existing files. If a message wants to reuse the name of an
existing file, the file on the file system is overwritten. You can configure a sender endpoint to append the
message to the existing file by setting the endpoint's append attribute to true.

Example 11.3, “Sender endpoint that appends existing files” shows the configuration for an endpoint that
appends messages to a file if it already exists.

Example 11.3. Sender endpoint that appends existing files

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:sender service="foo:fileSender"
 endpoint="fileSender"
 directory="outbox"
 autoCreateDirectory="false" />
 ...
</beans>

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:sender service="foo:fileSender"
 endpoint="fileSender"
 directory="outbox"

Red Hat JBoss Fuse 6.1 JBI Development Guide

70

Temporary file naming

By default, sender endpoints check the message exchange, or the message itself, for the name to use
for the file being written. If the endpoint cannot determine a name for the target file, it will use a
temporary file name. Table 11.2, “Attributes used to determine a temporary file name” describes the
attributes used to generate the temporary file name.

NOTE

Checking for the name of the file to write is handled by the marshaler. For more
information on marshalers see Chapter 12, File Marshalers.

Table 11.2. Attributes used to determine a temporary file name

Name Description Default

tempFilePrefix Specifies the prefix used when
creating output files.

servicemix-

tempFileSuffix Specifies the file extension to use
when creating output files.

.xml

The generated file names will have the form tempFilePrefixXXXXXtempFileSuffix. The five Xs in
the middle of the filename will be filled with randomly generated characters. So given the configuration
shown in Example 11.4, “Configuring a sender endpoint's temporary file prefix”, a possible temporary
filename would be widgets-xy60s.xml.

Example 11.4. Configuring a sender endpoint's temporary file prefix

 append="true" />
 ...
</beans>

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:sender service="foo:fileSender"
 endpoint="fileSender"
 directory="outbox"
 tempFilePrefix="widgets-" />
 ...
</beans>

CHAPTER 11. USING SENDER ENDPOINTS

71

CHAPTER 12. FILE MARSHALERS

Abstract

When using file component endpoints, you may want to customize how messages are processed as they
pass in and out of the ESB. The Red Hat JBoss Fuse file binding component allows you to write custom
marshalers for your file component endpoints.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

File component endpoints use a marshaler for processing messages. Poller endpoints rely on the
marshaler for reading data off of the file system and normalizing it so it can be passed to the NMR.
Sender endpoints rely on the marshaler for determining the name of the file to be written and for
converting the normalized messages into the format to be written to the file system.

The default marshaler used by file component endpoints reads and writes valid XML files. It queries the
message exchange, and the message, received from the NMR for the name of the outgoing message.
The default marshaler expects the file name to be stored in a property called
org.apache.servicemix.file.name.

If your application requires different functionality from the marshaler, you can provide a custom
marshaler by implementing the org.apache.servicemix.components.util.FileMarshaler
interface. You can easily configure your endpoints to use your custom marshaler instead of the default
one.

PROVIDED FILE MARSHALERS

In addition to the default file marshaler, Red Hat JBoss Fuse provides two other file marshalers that file
component endpoints can use:

Binary File Marshaler

The binary file marshaler is provided by the class
org.apache.servicemix.components.util.BinaryFileMarshaler. It reads in binary data
and adds the data to the normalized message as an attachment. You can set the name of the
attachment and specify a content type for the attachment using the properties shown in Table 12.1,
“Properties for configuring the binary file marshaler”.

Table 12.1. Properties for configuring the binary file marshaler

Name Description Default

attachment Specifies the name of the
attachment added to the
normalized message.

content

Red Hat JBoss Fuse 6.1 JBI Development Guide

72

contentType Specifies the content type of the
binary data being used. Content
types are specified using MIME
types. MIME types are specified
by RFC 2045.

Name Description Default

Flat File Marshaler

The flat file marshaler is provided by the class
org.apache.servicemix.components.util.SimpleFlatFileMarshaler. It reads in flat
text files and converts them into XML messages.

By default, the file is wrapped in a File element. Each line in the file is wrapped in a Line element
with a number attribute that represents the position of the line in the original file.

You can control some aspects of the generated XML file using the properties described in
Table 12.2, “Properties used to control the flat file marshaler”.

Table 12.2. Properties used to control the flat file marshaler

Name Description Default

docElementname Specifies the name of the root
element generated by a file.

File

lineElementname Specifies the name of the
element generated for each line
of the file.

Line

insertLineNumbers Specifies if the elements
corresponding to a line will use
the number attribute.

true

IMPLEMENTING A FILE MARSHALER

To develop a custom file marshaler, you need to implement the
org.apache.servicemix.components.util.FileMarshaler interface. Example 12.1, “The file
marshaler interface” shows the interface.

Example 12.1. The file marshaler interface

package org.apache.servicemix.components.util;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import javax.jbi.JBIException;

CHAPTER 12. FILE MARSHALERS

73

http://tools.ietf.org/html/rfc2045

The FileMarshaler interface has three methods that need to be implemented:

readMessage()

The readMessage() method is responsible for reading a file from the file system and converting the
data into a normalized message. Table 12.3, “Parameters for reading messages from the file system”
describes the parameters used by the method.

Table 12.3. Parameters for reading messages from the file system

Name Description

exchange Contains the MessageExchange object that is
going to be passed to the NMR.

message Contains the NormalizedMessage object that is
going to be passed to the NMR.

in Contains the BufferedInputStream which
points to the file in the file system.

path Contains the full path to the file on the file system
as determined by the Java
getCanonicalPath() method.

getOutputName()

The getOutputName() method returns the name of the file to be written to the file system. The
message exchange and the message received by the sender endpoint are passed to the method.

IMPORTANT

The returned file name does not contain a directory path. The sender endpoint uses
the directory it was configured to use.

writeMessage()

import javax.jbi.messaging.MessageExchange;
import javax.jbi.messaging.MessagingException;
import javax.jbi.messaging.NormalizedMessage;

public interface FileMarshaler
{
 void readMessage(MessageExchange exchange, NormalizedMessage message,
InputStream in, String path) throws IOException, JBIException;

 String getOutputName(MessageExchange exchange, NormalizedMessage
message) throws MessagingException;

 void writeMessage(MessageExchange exchange, NormalizedMessage message,
OutputStream out, String path) throws IOException, JBIException;
}

Red Hat JBoss Fuse 6.1 JBI Development Guide

74

The writeMessage() method is responsible for writing messages received from the NMR to the file
system as files. Table 12.4, “Parameters for writing messages to the file system” describes the
parameters used by the method.

Table 12.4. Parameters for writing messages to the file system

Name Description

exchange Contains the MessageExchange object received
from the ESB.

message Contains the NormalizedMessage object
received from the ESB.

out Contains the BufferedOutputStream which
points to the file in the file system.

path Contains the path to the file are returned from the
getOutputName() method.

Example 12.2, “Simple file marshaler” shows a simple file mashaler.

Example 12.2. Simple file marshaler

package org.apache.servicemix.demos;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.ObjectOutputStream;
import java.io.OutputStream;

import javax.jbi.JBIException;
import javax.jbi.messaging.MessageExchange;
import javax.jbi.messaging.MessagingException;
import javax.jbi.messaging.NormalizedMessage;

public class myFileMarshaler implements FileMarshaler
{

 public void readMessage(MessageExchange exchange, NormalizedMessage
message,
 InputStream in,
String path)
 throws IOException, JBIException
 {
 message.setContent(new StreamSource(in, path));
 }

 public String getOutputName(MessageExchange exchange,
NormalizedMessage message)
 throws MessagingException

CHAPTER 12. FILE MARSHALERS

75

CONFIGURING AN ENDPOINT TO USE A FILE MARSHALER

You configure a file component endpoint to use a file marshaler using its marshaler attribute. The
marshaler attribute's value is a reference to a bean element specifying the class of the file filter
implementation.

Example 12.3, “Poller endpoint using a file marshaler” shows configuration for a poller endpoint that uses
the file marshaler implemented in Example 12.2, “Simple file marshaler”.

Example 12.3. Poller endpoint using a file marshaler

NOTE

You can also configure a file component endpoint to use a file marshaler by adding a child
marshaler element to the endpoint's configuration. The marshaler element simply
wraps the bean element that configures the file marshaler.

 {
 return "fred.xml";
 }

 public void writeMessage(MessageExchange exchange, NormalizedMessage
message,
 OutputStream out,
String path)
 throws IOException, JBIException
 {
 Source src = message.getContent();
 if (src == null)
 {
 throw new NoMessageContentAvailableException(exchange);
 }
 try
 {
 ObjectOutputStream objectOut = new ObjectOutputStream(out);
 objectOut.writeObject(src);
 }
 }
}

<beans xmlns:file="http://servicemix.apache.org/file/1.0"
 xmlns:foo="http://servicemix.org/demo/">

 <file:poller service="foo:filePoller"
 endpoint="filePoller"
 targetService="foo:fileSender"
 file="inbox"
 marshaler="#myMarshaler" />

 <bean id="myMarshaler"
class="org.apache.servicemix.demo.myFileMarshaler" />

Red Hat JBoss Fuse 6.1 JBI Development Guide

76

APPENDIX B. POLLER ENDPOINT PROPERTIES

ATTRIBUTES

Table B.1, “Attributes for configuring a poller endpoint” describes the attributes used to configure a poller
endpoint.

Table B.1. Attributes for configuring a poller endpoint

Name Type Description Default

service QName Specifies the service
name of the endpoint.

required

endpoint String Specifies the name of
the endpoint.

required

interfaceName QName Specifies the interface
name of the endpoint.

targetService QName Specifies the service
name of the target
endpoint.

targetEndPoint String Specifies the name of
the target endpoint.

targetInterface QName Specifies the interface
name of the target
endpoint.

targetUri string Specifies the URI of the
target endpoint.

autoCreateDirect
ory

boolean Specifies if the endpoint
will create the target
directory if it does not
exist.

true

firstTime date Specifies the date and
the time the first poll will
take place.

null (The first poll will
happen right after start
up.)

delay long Specifies amount of
time, in milliseconds, to
wait before performing
the first poll.

0

APPENDIX B. POLLER ENDPOINT PROPERTIES

77

period long Specifies the amount of
time, in milliseconds,
between polls.

5000

file String Speficies the file or
directory to poll.

required

deleteFile boolean Specifies if the file is
deleted after it is
processed.

true

recursive boolean Specifies if the endpoint
processes sub
directories when polling.

true

archive string Specifies the name of
the directory to archive
files into before deleting
them.

null (no archiving)

Name Type Description Default

BEANS

Table B.2, “Beans for configuring a poller endpoint” describes the beans which can be used to configure
a poller endpoint.

Table B.2. Beans for configuring a poller endpoint

Name Type Description Default

marshaler org.apache.servi
cemix.components
.util.FileMarsha
ler

Specifies the class used
to marshal data from the
file.

DefaultFileMarsh
aler

lockManager org.apache.servi
cemix.locks.Lock
Manager

Specifies the class
implementing the file
locking.

SimpleLockManage
r

filter java.io.FileFilt
er

Specifies the class
implementing the
filtering logic to use for
selecting files.

Red Hat JBoss Fuse 6.1 JBI Development Guide

78

APPENDIX C. SENDER ENDPOINT PROPERTIES

ATTRIBUTES

Table C.1, “Attributes for configuring a sender endpoint” describes the attributes used to configure a
sender endpoint.

Table C.1. Attributes for configuring a sender endpoint

Name Type Description Default

service QName Specifies the service
name of the endpoint.

required

endpoint String Specifies the name of
the endpoint.

required

directory String Specifies the name of
the directory into which
data is written.

required

autoCreateDirect
ory

boolean Specifies if the endpoint
creates the output
directory if it does not
exist.

true

append boolean Specifies if the data is
appended to the end of
an existing file or if the
data is written to a new
file.

false

tempFilePrefix String Specifies the prefix used
when creating output
files.

servicemix-

tempFileSuffix String Specifies the file
extension to use when
creating output files.

.xml

BEANS

Table C.2, “Attributes for configuring a sender endpoint” describes the beans used to configure a sender
endpoint.

Table C.2. Attributes for configuring a sender endpoint

Name Type Description Default

APPENDIX C. SENDER ENDPOINT PROPERTIES

79

marshaler org.apache.servi
cemix.components
.util.FileMarsha
ler

Specifies the marshaler
to use when writing data
from the NMR to the file
system.

DefaultFileMarsh
aler

Name Type Description Default

Red Hat JBoss Fuse 6.1 JBI Development Guide

80

PART III. JMS BINDING COMPONENT

Abstract

This guide provides an overview of the JBI JMS binding component; describes how to configure the
connection factory, how to create and configure various types of endpoints, and how to use the Maven
tooling.

PART III. JMS BINDING COMPONENT

81

CHAPTER 13. INTRODUCTION TO THE RED HAT JBOSS FUSE
JMS BINDING COMPONENT

Abstract

The JMS binding component allows you to create endpoints that interact with JMS destinations outside
of the Red Hat JBoss Fuse's runtime environment. It provides a robust and highly configurable means to
interact with JMS systems.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

The Red Hat JBoss Fuse JMS binding component is built using the Spring 2.0 JMS framework. It allows
you to create two types of endpoints:

Consumer Endpoints

A Consumer endpoint's primary roll is to listen for messages on an external JMS destination and pass
them into to the NMR for delivery to endpoints inside of the Red Hat JBoss Fuse container. Consumer
endpoints can send responses if one is required.

Provider Endpoints

A Provider endpoint's primary roll is to take messages from the NMR and send them to an external
JMS destination.

NOTE

The JMS binding component also supports non-Spring based endpoints. However, the
non-Spring based endpoints are deprecated.

In most instances, you do not need to write any Java code to create endpoints. All of the configuration is
done using Spring XML that is placed in an xbean.xml file. There are some instances where you will
need to develop your own Java classes to supplement the basic functionality provided by the binding
components default implementations. These cases are discussed at the end of this guide.

KEY FEATURES

The Red Hat JBoss Fuse JMS binding component provides a number of enterprise quality features
including:

Support for JMS 1.0.2 and JMS 1.1

JMS transactions

XA transactions

Support of all MEP patterns

Red Hat JBoss Fuse 6.1 JBI Development Guide

82

1

2

3

4

SOAP support

MIME support

Customizable message marshaling

CONTENTS OF A JMS SERVICE UNIT

A service unit that configures the JMS binding component will contain two artifacts:

xbean.xml

The xbean.xml file contains the XML configuration for the endpoint defined by the service unit. The
contents of this file are the focus of this guide.

NOTE

The service unit can define more than one endpoint.

meta-inf/jbi.xml

The jbi.xml file is the JBI descriptor for the service unit. Example 13.1, “JBI Descriptor for a JMS
Service Unit” shows a JBI descriptor for a JMS service unit.

Example 13.1. JBI Descriptor for a JMS Service Unit

The elements shown in Example 13.1, “JBI Descriptor for a JMS Service Unit” do the following:

The service element is the root element of all service unit descriptors. The value of the
binding-component attribute is always false.

The service element contains namespace references for all of the namespaces defined in the
xbean.xml file's bean element.

The provides element corresponds to a JMS provider endpoint. The service-name attribute
derives its value from the service attribute in the JMS provider's configuration.

NOTE

This attribute can also appear on a consumes element.

The endpoint-name attribute derives its value from the endpoint attribute in the JMS
provider's configuration.

1

2 3
4

5

<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
 <services binding-component="false"
 xmlns:b="http://servicemix.apache.org/samples/bridge">

 <provides service-name="b:jms"
 endpoint-name="endpoint"/>

 <consumes interface-name="b:MyConsumerInterface"/>
 </services>

</jbi>

CHAPTER 13. INTRODUCTION TO THE RED HAT JBOSS FUSE JMS BINDING COMPONENT

83

5

NOTE

This attribute can also appear on a consumes element.

The consumes element corresponds to a JMS consumer endpoint. The interface-name
attribute derives its value from the interfaceName attribute in the JMS consumer's
configuration.

NOTE

This attribute can also appear on a provides element.

USING THE MAVEN JBI TOOLING

The Red Hat JBoss Fuse Maven tooling provides two archetypes for seeding a project whose result is a
service unit for the JMS binding component:

servicemix-jms-consumer-endpoint

The servicemix-jms-consumer-endpoint archetype creates a project that results in a service
unit that configures a JMS consumer endpoint.

TIP

You can use the smx-arch command to in place of typing the entire Maven command.

smx-arch su jms-consumer ["-DgroupId=my.group.id"] ["-
DartifactId=my.artifact.id"]

servicemix-jms-provider-endpoint

The servicemix-jms-provider-endpoint archetype creates a project that results in a service
unit that configures a JMS provider endpoint.

TIP

You can use the smx-arch command to in place of typing the entire Maven command.

smx-arch su jms-provider ["-DgroupId=my.group.id"] ["-
DartifactId=my.artifact.id"]

The resulting project will contain two generated artifacts:

a pom.xml file containing the metadata needed to generate and package the service unit

a src/main/resources/xbean.xml file containing the configuration for the endpoint

Red Hat JBoss Fuse 6.1 JBI Development Guide

84

IMPORTANT

The endpoint configuration generated by the archetype is for the deprecated JMS
endpoints. While this configuration will work, it is not recommended for new
projects and is not covered in this guide.

If you want to add custom marshalers, custom destination choosers, or other custom Java code, you
must add a java folder to the generated src folder. You also need to modify the generated pom.xml
file to compile the code and package it with the service unit.

OSGI PACKAGING

To package JMS endpoints as OSGi bundles you need to make two minor changes:

include an OSGi bundle manifest in the META-INF folder of the bundle

add the following to your service unit's configuration file:

IMPORTANT

When you deploy JMS endpoints in an OSGi bundle, the resulting endpoints are
deployed as a JBI service unit.

For more information on using the OSGi packaging see Appendix H, Using the Maven OSGi Tooling.

NAMESPACE

The elements used to configure JMS endpoints are defined in the
http://servicemix.apache.org/jms/1.0 namespace. You will need to add a namespace
declaration similar to the one in Example 13.2, “Namespace Declaration for Using JMS Endpoints” to
your xbeans.xml file's beans element.

Example 13.2. Namespace Declaration for Using JMS Endpoints

In addition, you need to add the schema location to the Spring beans element's xsi:schemaLocation
as shown in Example 13.3, “Schema Location for Using JMS Endpoints”.

Example 13.3. Schema Location for Using JMS Endpoints

<bean class="org.apache.servicemix.common.osgi.EndpointExporter" />

<beans ...
 xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
</beans>

<beans ...
 xsi:schemaLocation="...
http://servicemix.apache.org/jms/1.0
http://servicemix.apache.org/jms/1.0/servicemix-jms.xsd

CHAPTER 13. INTRODUCTION TO THE RED HAT JBOSS FUSE JMS BINDING COMPONENT

85

...">
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

86

CHAPTER 14. CONFIGURING THE CONNECTION FACTORY

Abstract

The JMS binding component needs to have access to your JMS provider's connection factory. This is
configured in the XML file and the specifics depend on the JMS provider in use.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

When working with a JMS broker, a client application needs a ConnectionFactory object to create
connections to the broker. The ConnectionFactory object is a JMS object that is provided along with
the JMS broker. Each JMS provider has a unique ConnectionFactory object that uses properties
specific to a particular JMS implementation.

When using the Red Hat JBoss Fuse JMS binding component, you must configure each service unit with
the information it needs to load a ConnectionFactory object. Often the ConnectionFactory object
is looked up through JNDI. However, the information needed depends on the JMS provider you are
using.

Commonly used JMS providers include Red Hat JBoss A-MQ, Apache ActiveMQ, IBM's WebShere®
MQ, BEA's WebLogic®, and Progress Software's SonicMQ®. JBoss A-MQ and Apache ActiveMQ can
be configured using simple Spring XML. Other JMS providers must be configured using either JNDI or
using custom Spring beans. This chapter provides basic information for configuring the
ConnectionFactory objects for each of these platforms.

14.1. USING APACHE ACTIVEMQ CONNECTION FACTORIES

Overview

The recommended method for creating connections to Apache ActiveMQ, is by using the Jencks
AMQPool. It provides support for using a scalable pool of connections for managing overhead. You can
download the needed jar from http://repo1.maven.org/maven2/org/jencks/jencks-amqpool/2.0/jencks-
amqpool-2.0.jar. Once the jar is downloaded, you need to add it to your classpath. The easiest way to do
this is to place the jar into your InstallDir\lib folder.

NOTE

The examples included with Red Hat JBoss Fuse use the standard Apache ActiveMQ
connection factory. This is fine for testing purposes, but is not robust enough for
enterprise deployments.

The Jencks AMQPool supplies three connection factories:

simple

XA

JCA

CHAPTER 14. CONFIGURING THE CONNECTION FACTORY

87

http://repo1.maven.org/maven2/org/jencks/jencks-amqpool/2.0/jencks-amqpool-2.0.jar

Namespace

To add the AMQPool configuration elements to your endpoint's configuration, you need to add the
following XML namespace declaration to your beans element:

Simple pool

The simple pooling connection factory supports pooling, but does not support transactions. It is specified
using the amqpool:pool element. The attributes used to configure the simple pooled connection factory
are described in Table 14.1, “Attributes for Configuring the Simple AMQPool Connection Factory”.

Table 14.1. Attributes for Configuring the Simple AMQPool Connection Factory

Attribute Description Required

id Specifies a unique identifier by
which other elements refer to this
element.

yes

url Specifies the URL used to
connect to the JMS broker.

yes

maxConnections Specifies the maximum number of
simultaneous connections to the
broker. The default value is 1, but
you can safely increase it to 8 in
all conditions.

no

maximumActive Specifies the maximum number of
active sessions for a particular
connection. The default value is
500.

no

Example 14.1, “Configuring a Simple AMQPool Connection Factory” shows a configuration snippet for
configuring the simple AMQPool connection factory.

Example 14.1. Configuring a Simple AMQPool Connection Factory

XA pool

xmlns:amqpool="http://jencks.org/amqpool/2.0"

<beans xmlns:amqpool="http://jencks.org/amqpool/2.0"
 ... >
 ...
 <amqpool:pool id="connectionFactory"
 url="tcp://localhost:61616"
 maxConnections="8" />
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

88

The XA pooling connection factory supports XA transactions and late enlistment. It is specified using the
amqpool:xa-pool element. The attributes used to configure the XA pooled connection factory are
described in Table 14.2, “Attributes for Configuring the XA AMQPool Connection Factory”.

Table 14.2. Attributes for Configuring the XA AMQPool Connection Factory

Attribute Description Required

id Specifies a unique identifier by
which other elements refer to this
element.

yes

url Specifies the URL used to
connect to the JMS broker.

yes

transactionManager Specifies a reference to an
element that configures an XA
transaction manager.

yes

maxConnections Specifies the maximum number of
simultaneous connections to the
broker. The default value is 1, but
you can safely increase it to 8 in
all conditions.

no

maximumActive Specifies the maximum number of
active sessions for a particular
connection. The default value is
500.

no

Example 14.2, “Configuring an XA AMQPool Connection Factory” shows a configuration snippet for
configuring an XA AMQPool connection factory.

Example 14.2. Configuring an XA AMQPool Connection Factory

JCA pool

<beans xmlns:amqpool="http://jencks.org/amqpool/2.0"
 xmlns:jencks="http://jencks.org/2.0"
 ... >
 ...
 <amqpool:xa-pool id="connectionFactory"
 url="tcp://localhost:61616"
 maxConnections="8"
 transactionManager="#transactionManager" />

 <jencks:transactionManager id="transactionManager"
 transactionLogDir="./data/txlog"
 defaultTransactionTimeoutSeconds="600" />

</beans>

CHAPTER 14. CONFIGURING THE CONNECTION FACTORY

89

The JCA pooling connection factory is intended to be used inside of J2EE environments or in conjunction
with the Jencks JCA environment. It is specified using the amqpool:jca-pool element. The attributes
used to configure the JCA pooled connection factory are described in Table 14.3, “Attributes for
Configuring the JCA AMQPool Connection Factory”.

Table 14.3. Attributes for Configuring the JCA AMQPool Connection Factory

Attribute Description Required

id Specifies a unique identifier by
which other elements refer to this
element.

yes

url Specifies the URL used to
connect to the JMS broker.

yes

transactionManager Specifies a reference to an
element that configures an XA
transaction manager.

yes

name Specifies a unique name by which
the JMS broker can be identified.

yes

maxConnections Specifies the maximum number of
simultaneous connections to the
broker. The default value is 1, but
you can safely increase it to 8 in
all conditions.

no

maximumActive Specifies the maximum number of
active sessions for a particular
connection. The default value is
500.

no

Example 14.3, “Configuring a JCA AMQPool Connection Factory” shows a configuration snippet for
configuring the JCA AMQPool connection factory.

Example 14.3. Configuring a JCA AMQPool Connection Factory

<beans xmlns:amqpool="http://jencks.org/amqpool/2.0"
 xmlns:jencks="http://jencks.org/2.0"
 ... >
 ...
 <amqpool:jca-pool id="connectionFactory"
 url="tcp://localhost:61616"
 maxConnections="8"
 transactionManager="#transactionManager"
 name="joeFred" />

 <jencks:transactionManager id="transactionManager"
 transactionLogDir="./data/txlog"
 defaultTransactionTimeoutSeconds="600" />

Red Hat JBoss Fuse 6.1 JBI Development Guide

90

14.2. USING JNDI

Overview

Many JMS providers store a reference to their connection factory in a JNDI service to ease retrieval. Red
Hat JBoss Fuse allows developers to choose between a straight JNDI look-up and using Spring JNDI
templates. Which mechanism you choose will depend on your environment.

Spring JEE JNDI lookup

Spring provides a built-in JNDI look-up feature that can be used to retrieve the connection factory for a
JMS provider. To use the built-in JNDI look-up do the following:

1. Add the following namespace declaration to your beans element in your service unit's
configuration.

2. Add a jee:jndi-lookup element to your service unit's configuration.

The jee:jndi-lookup element has two attributes. They are described in Table 14.4,
“Attributes for Using Spring's JEE JNDI Lookup”.

Table 14.4. Attributes for Using Spring's JEE JNDI Lookup

Attribute Description

id Specifies a unique identifier by which the JMS
endpoints will reference the connection factory.

jndi-name Specifies the JNDI name of the connection
factory.

3. Add a jee:environment child element to the jee:jndi-lookup element.

The jee:environment element contains a collection of Java properties that are used to
access the JNDI provider. These properties will be provided by your JNDI provider's
documentation.

Example 14.4, “Getting the WebLogic Connection Factory Using Spring's JEE JNDI Look-up” shows a
configuration snippet for using the JNDI look-up with WebLogic.

Example 14.4. Getting the WebLogic Connection Factory Using Spring's JEE JNDI Look-up

</beans>

xmlns:jee="http://www.springframework.org/schema/jee"

<beans xmlns:jee="http://www.springframework.org/schema/jee" ... >
 ...
 <jee:jndi-lookup id="connectionFactory" jndi-
name="weblogic.jms.XAConnectionFactory">

CHAPTER 14. CONFIGURING THE CONNECTION FACTORY

91

Spring JNDI Templates

Another approach to using JNDI to get a reference to a JMS connection factory is to use the Spring
framework's JndiTemplate bean. Using this approach, you configure an instance of the JndiTemple
bean and then use the bean to perform all of your JNDI look-ups using a JndiObjectFactoryBean
bean.

To get the JMS connection factory using a Spring JNDI template do the following:

1. Add a bean element to your configuration for the JNDI template.

a. Set the bean element's id attribute to a unique identifier.

b. Set the bean element's class attribute to
org.springframework.jndi.JndiTemplate.

c. Add a property child element to the bean element.

The property element will contain the properties for accessing the JNDI provider.

d. Set the property element's name attribute to environment.

e. Add a props child to the property element.

f. Add a prop child element to the props element for each Java property needed to connect
to the JNDI provider.

A prop element has a single attribute called key whose value is the name of the Java
property being set. The value of the element is the value of the Java property being set.
Example 14.5, “Setting a Java Property” shows a prop element for setting the
java.naming.factory.initial property.

Example 14.5. Setting a Java Property

NOTE

The properties you need to set will be determined by your JNDI provider.
Check its documentation.

 <jee:environment>
 java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
 java.naming.provider.url=t3://localhost:7001
 </jee:environment>
 </jee:jndi-lookup>
 ...
</beans>

<prop key="java.naming.factory.initial">
 com.sun.jndi.fscontext.RefFSContextFactory
</prop>

Red Hat JBoss Fuse 6.1 JBI Development Guide

92

2. Add a bean element to your configuration to retrieve the JMS connection factory using the JNDI
template.

a. Set the bean element's id attribute to a unique identifier.

b. Set the bean element's class attribute to
org.springframework.jndi.JndiObjectFactoryBean.

c. Add a property child element to the bean element.

This property element loads the JNDI template to be used for the look-up. You must set
its name attribute to jndiTemplate. The value of its ref attribute is taken from the name
attribute of the bean element that configured the JNDI template.

d. Add a second property child element to the bean element.

This property element specifies the JNDI name of the connection factory. You must set its
name attribute to jndiTemplate.

e. Add a value child element to the property element.

The value of the element is the JNDI name of the connection factory.

Example 14.6, “Using a JNDI Template to Look Up a Connection Factory” shows a configuration
fragment for retrieving the WebSphere MQ connection factory using Sun's reference JNDI
implementation.

Example 14.6. Using a JNDI Template to Look Up a Connection Factory

<beans ... >
 ...
 <bean id="jndiTemplate"
 class="org.springframework.jndi.JndiTemplate">
 <property name="environment">
 <props>
 <prop key="java.naming.factory.initial">
 com.sun.jndi.fscontext.RefFSContextFactory
 </prop>
 <prop key="java.naming.provider.url">
 file:/tmp/
 </prop>
 </props>
 </property>
 </bean>

 <bean id="connectionFactory"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiTemplate"
 ref="jndiTemplate" />
 <property name="jndiName">
 <value>MQConnFactory</value>
 </property>
 </bean>
 ...
</beans>

CHAPTER 14. CONFIGURING THE CONNECTION FACTORY

93

14.3. USING A SPRING BEAN

Overview

You can add your JMS provider's configuration factory directly into the service units configuration as a
Spring bean. Configuring the connection factory in this manner requires that you fully specify all of the
properties needed to instantiate a ConnectionFactory for your JMS provider.

NOTE

Your JMS provider's documentation will describe the properties needed to instantiate a
connection factory and the settings for the properties.

Example

Example 14.7, “Configuring a Connection Factory with a Spring Bean” shows an example of a
WebSphere MQ connection factory configured as a Spring bean.

Example 14.7. Configuring a Connection Factory with a Spring Bean

<bean id="connectionFactory"
class="com.ibm.mq.jms.MQQueueConnectionFactory">
 <property name="transportType">
 <util:constant static-
field="com.ibm.mq.jms.JMSC.MQJMS_TP_CLIENT_MQ_TCPIP" />
 </property>
 <property name="queueManager" value="my.queue.mgr" />
 <property name="hostName" value="myHost" />
 <property name="channel" value="myChannel" />
 <property name="port" value="12345" />
</bean>

Red Hat JBoss Fuse 6.1 JBI Development Guide

94

CHAPTER 15. CREATING A CONSUMER ENDPOINT

Abstract

A consumer is an endpoint that listens for messages, passes the messages to the NMR, and sends any
response that maybe generated back to the external JMS endpoint. They are built using the Spring
framework's JMS MessageListener interface.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

15.1. INTRODUCTION TO CONSUMER ENDPOINTS

Where does a consumer fit into a solution?

Consumer endpoints play the role of consumer from the vantage point of the other endpoints in the ESB.
As shown in Figure 15.1, “Consumer Endpoint”,consumer endpoints listen for messages on a JMS
destination. When the message is received, the consumer endpoint passes it onto the NMR for delivery.
If the JMS message is part of an in-out message exchange, the consumer endpoint will place that
message into a reply destination for delivery to the originator of the JMS message.

Figure 15.1. Consumer Endpoint

Types of consumer endpoints

The JMS binding component offers three types of consumer endpoints:

CHAPTER 15. CREATING A CONSUMER ENDPOINT

95

Generic

The generic consumer endpoint can handle any type of message data. It is configured using the
jms:consumer element.

SOAP

The SOAP consumer endpoint is specifically tailored to receive SOAP messages. It uses a WSDL
document to define the structure of the messages. It is configured using the jms:soap-consumer
element.

TIP

The Apache CXF binding component's JMS transport is better adapted to handling SOAP messages,
but offers less control over the JMS connection.

JCA

The JCA consumer endpoint uses JCA to connect to the JMS provider. It is configured using the
jms:jca-consumer element. For more information on using the JCA consumer endpoint, see
Section 15.3, “Using the JCA Consumer Endpoint”.

15.2. USING THE GENERIC ENDPOINT OR THE SOAP ENDPOINT

15.2.1. Basic Configuration

Procedure

To configure a generic consumer or a SOAP consumer do the following:

1. Decide what type of consumer endpoint to use.

See the section called “Types of consumer endpoints”.

2. Specify the name of the service for which this endpoint is acting as a proxy.

This is specified using the service attribute.

TIP

If you are using a SOAP consumer and your WSDL file only has one service defined, you do not
need to specify the service name.

3. Specify the name of the endpoint for which this endpoint is acting as a proxy.

This is specified using the endpoint attribute.

TIP

If you are using a SOAP consumer and your WSDL file only has one endpoint defined, you do
not need to specify the endpoint name.

4. Specify the connection factory the endpoint will use.

Red Hat JBoss Fuse 6.1 JBI Development Guide

96

The endpoint's connection factory is configured using the endpoint's connectionFactory
attribute. The connectionFactory attribute's value is a reference to the bean that configures
the connection factory. For example, if the connection factory configuration bean is named
widgetConnectionFactory, the value of the connectionFactory attribute would be
#widgetConnectionFactory.

For information on configuring a connection factory see Chapter 14, Configuring the Connection
Factory.

5. Specify the destination onto which the endpoint will place messages.

For more information see the section called “Configuring a destination”.

6. Specify the ESB endpoint to which incoming messages are targeted.

For more information see the section called “Specifying the target endpoint”.

7. If you are using a JMS SOAP consumer, specify the location of the WSDL defining the message
exchange using the wsdl attribute.

8. If your JMS destination is a topic, set the pubSubDomaim attribute to true.

9. If your endpoint is interacting with a broker that only supports JMS 1.0.2, set the jms102
attribute to true.

Configuring a destination

A consumer endpoint chooses the destination to use for sending messages with the following algorithm:

1. The endpoint will check to see if you configured the destination explicitly.

You configure a destination using a Spring bean. You can add the bean directly to the endpoint
by wrapping it in a jms:destination child element. You can also configure the bean
separately and refer the bean using the endpoint's destination attribute as shown in
Example 15.1, “Configuring a Consumer's Destination”.

Example 15.1. Configuring a Consumer's Destination

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:consumer service="my:widgetService"
 endpoint="jbiWidget"
 destination="#widgetQueue"
 ... />
 ...
 <jee:jndi-lookup id="widgetQueue" jndi-name="my.widget.queue">
 <jee:environment>

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
 java.naming.provider.url=t3://localhost:7001
 </jee:environment>
 </jee:jndi-lookup>
 ...
</beans>

CHAPTER 15. CREATING A CONSUMER ENDPOINT

97

2. If you did not explicitly configure a destination, the endpoint will use the value of the
destinationName attribute to choose its destination.

The value of the destinationName attribute is a string that will be used as the name for the
JMS destination. The binding component's default behavior when you provide a destination
name is to resolve the destination using the standard JMS Session.createTopic() and
Session.createQueue() methods.

NOTE

You can override the binding component's default behavior by providing a custom
DestinationResolver implementation. See Section 19.2, “Using a Custom
Destination Resolver”.

Specifying the target endpoint

There are a number of attributes available for configuring the endpoint to which the generated messages
are sent. The poller endpoint will determine the target endpoint in the following manner:

1. If you explicitly specify an endpoint using both the targetService attribute and the
targetEndpoint attribute, the ESB will use that endpoint.

The targetService attribute specifies the QName of a service deployed into the ESB. The
targetEndpoint attribute specifies the name of an endpoint deployed by the service specified
by the targetService attribute.

2. If you only specify a value for the targetService attribute, the ESB will attempt to find an
appropriate endpoint on the specified service.

3. If you do not specify a service name or an endpoint name, you must specify an the name of an
interface that can accept the message using the targetInterface attribute. The ESB will
attempt to locate an endpoint that implements the specified interface and direct the messages to
it.

Interface names are specified as QNames. They correspond to the value of the name attribute of
either a WSDL 1.1 serviceType element or a WSDL 2.0 interface element.

IMPORTANT

If you specify values for more than one of the target attributes, the consumer endpoint will
use the most specific information.

Examples

Example 15.2, “Basic Configuration for a Generic Consumer Endpoint” shows the basic configuration for
a plain JMS provider endpoint.

Example 15.2. Basic Configuration for a Generic Consumer Endpoint

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...

Red Hat JBoss Fuse 6.1 JBI Development Guide

98

Example 15.3, “Basic Configuration for a SOAP Consumer Endpoint” shows the basic configuration for a
SOAP JMS provider endpoint.

Example 15.3. Basic Configuration for a SOAP Consumer Endpoint

15.2.2. Listener Containers

Overview

Both the generic consumer endpoint and the SOAP consumer endpoint use Spring listener containers to
handle incoming messages. The listener container handles the details of receiving messages from the
destination, participating in transactions, and controlling the threads used to dispatch messages to the
endpoint.

Types of listener containers

Red Hat JBoss Fuse's JMS consumer endpoints support three types of listener containers:

Simple

The simple listener container creates a fixed number of JMS sessions at startup and uses them
throughout the lifespan of the container. It cannot dynamically adapt to runtime conditions nor
participate in externally managed transactions.

Default

The default listener container provides the best balance between placing requirements on the JMS
provider and features. Because of this, it is the default listerner container for Red Hat JBoss Fuse
JMS consumer endpoints. The default listener container can adapt to changing runtime demands. It
is also capable of participating in externally managed transactions.

Server session

The server session listener container leverages the JMS ServerSessionPool SPI to allow for
dynamic management of JMS sessions. It provides the best runtime scaling and supports externally

 <jms:consumer service="my:widgetService"
 endpoint="jbiWidget"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 targetService="my:targetService" />
 ...
</beans>

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:soap-consumer wsdl="classpath:widgets.wsdl"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 targetService="my:targetService" />
 ...
</beans>

CHAPTER 15. CREATING A CONSUMER ENDPOINT

99

managed transactions. However, it requires that your JMS provider supports the JMS
ServerSessionPool SPI.

Specifying an endpoint's listener container

By default, consumer endpoints use the default listener container. If you want to configure the an
endpoint to use a different listener container, you specify that using the endpoint's listenerType
attribute. Table 15.1, “Values for Configuring a Consumer's Listener Container” lists the values for the
listenerType attribute.

Table 15.1. Values for Configuring a Consumer's Listener Container

Value Description

simple Specifies that the endpoint will use the simple
listener container.

default Specifies that the endpoint will use the default
listener container.

server Specifies that the endpoint will use the server
session listener container.

Example 15.4, “Configuring a SOAP Consumer to Use the Simple Listener Container” shows
configuration for SOAP consumer that uses the simple listener container.

Example 15.4. Configuring a SOAP Consumer to Use the Simple Listener Container

Performace tuning using the listener container

There are several ways of tuning the performance of a generic consumer endpoint or a SOAP consumer
endpoint. They are all controlled by the listener container used by the endpoint.

Table 15.2, “Attributes Used to Performance Tune Standard JMS Consumers and SOAP JMS
Consumers” describes the attributes used to tune endpoint performance.

Table 15.2. Attributes Used to Performance Tune Standard JMS Consumers and SOAP JMS
Consumers

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:soap-consumer wsdl="classpath:widgets.wsdl"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 listenerType="simple" />
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

100

Attribute Type Listener(s) Description Default

cacheLevel int default Specifies the level
of caching allowed
by the listener.
Valid values are
0(CACHE_NONE)
,
1(CACHE_CONN
ECTION),
2(CACHE_SESSI
ON), and
3(CACHE_CONS
UMER).

0

clientId string all Specifies the ID to
be used for the
shared
Connection
object used by the
listener container.

Uses provider
assigned ID

concurrentCo
nsumers

int default

simple

Specifies the
number of
concurrent
consumers created
by the listener.

1

maxMessagesP
erTask

int default

server

Specifies the
number of
attempts to receive
messages per
task.

-1(unlimited)

receiveTimeo
ut

long default Specifies the
timeout for
receiving a
message in
milliseconds.

1000

recoveryInte
rval

long default Specifies the
interval, in
milliseconds,
between attempts
to recover after a
failed listener set-
up.

5000

Example 15.5, “Tuning a Generic Consumer Endpoint” shows an example of a generic consumer that
allows consumer level message caching and only tries once to receive a message.

Example 15.5. Tuning a Generic Consumer Endpoint

CHAPTER 15. CREATING A CONSUMER ENDPOINT

101

Configuring the server session listener container's session factory

The server session listener container uses the JMS ServerSessionPool SPI to tune an endpoint's
performance. In order for the listener container to function,k it uses a ServerSessionFactory object.
By default, the Red Hat JBoss Fuse JMS BC uses the Spring framework's
SimpleServerSessionFactory object. This server session factory creates a new JMS
ServerSession object with a new JMS session everytime it is called.

You can configure the endpoint to use a different server session factory using the
serverSessionFactory attribute. This attribute provides a reference to the bean configuring the
ServerSessionFactory object.

NOTE

You can also explicitly configure the endpoint's ServerSessionFactory object by
adding a serverSessionFactory child element to the endpoint's configuration. This
element would wrap the ServerSessionFactory object's configuration bean.

Example 15.6, “Configuring a Consumer to Use a Pooled Session Factory” shows an example of
configuring an endpoint to use the Spring framework's CommonsPoolServerSessionFactory object
as a session factory.

Example 15.6. Configuring a Consumer to Use a Pooled Session Factory

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:consumer service="my:widgetService"
 endpoint="jbiWidget"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 cacheLevel="3"
 maxMessagesPerTask="1"/>
 ...
</beans>

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:consumer service="my:widgetService"
 endpoint="jbiWidget"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 listenerType="server"
 serverSessionFactory="#pooledSessionFactory"/>

 <bean id="pooledSessionFactory"

class="org.springframework.jms.listener.serversession.CommonsPoolServerS
essionFactory" />
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

102

15.2.3. Advanced Configuration

Using transactions

By default, generic consumers and SOAP consumers do not wrap message exchanges in transactions.
If there is a failure during the exchange, you have no guarantee that resending the request will not result
in duplicating a task that has already been completed.

If your application requires message exchanges to be wrapped in a transaction, you can use the
endpoint's transacted attribute to specify the type of transactions to use. Table 15.3, “Consumer
Transaction Support” describes the possible values for the transacted attribute.

Table 15.3. Consumer Transaction Support

Value Description

none Specifies that message exchanges are not wrapped
in a transaction. This is the default setting.

jms Specifies that message exchanges are wrapped in
local JMS transactions.

xa Specifies that message exchanges will be wrapped in
an externally managed XA transaction. You must also
provide a transaction manager when using XA
transactions.

IMPORTANT

Only the default listener container can support XA transactions.

Using message selectors

If you want to configure your consumer to use a JMS message selector, you can set the optional
messageSelector attribute. The value of the attribute is the string value of the selector. For more
information on the syntax used to specify message selectors, see the JMS 1.1 specification.

Using durable subscriptions

If you want to configure your server to use durable subscriptions, you need to set values for two
attributes. To indicate that the consumer uses a durable subscription you set the
subscriptionDurable attribute to true. You specify the name used to register the durable
subscription using the durableSubscriberName attribute.

Example 15.7, “Consumer using a Durable Subscription” shows a configuration snipit for a consumer that
registers for a durable subscription.

Example 15.7. Consumer using a Durable Subscription

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"

CHAPTER 15. CREATING A CONSUMER ENDPOINT

103

15.2.4. SOAP Specific Configuration

Overview

The SOAP consumer has two specialized configuration properties. One controls if the endpoint needs to
use the JBI wrapper to make messages consumable. The other determines if the endpoint checks its
WSDL for compliance with the WS-I basic profile.

Using the JBI wrapper

There are instances when a JBI component cannot consume a native SOAP message. For instance,
SOAP headers pose difficulty for JBI components. The JBI specification defines a JBI wrapper that can
be used to make SOAP messages, or any message defined in WSDL 1.1, conform to the expectations
of a JBI component.

To configure a SOAP consumer to wrap messages in the JBI wrapper you set its useJbiWrapper
attribute to true.

Example 15.8, “Configuring a SOAP Consumer to Use the JBI Wrapper” shows a configuration fragment
for configuring a SOAP consumer to use the JBI wrapper.

Example 15.8. Configuring a SOAP Consumer to Use the JBI Wrapper

WSDL verification

The WS-I basic profile is a specification describing the minimum set of requirements for a Web service to
be considered interoperable. The requirement of the specification mostly constrain the binding of
messages into SOAP containers.

By default, SOAP consumers will verify that their WSDL complies to the WS-I basic profile before starting
up. If the WSDL does not comply, the endpoint will not start up.

 ... >
 ...
 <jms:soap-consumer wsdl="classpath:widgets.wsdl"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 subscriptionDurable="true"
 durableSubscriberName="widgetSubscriber" />
 ...
</beans>

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:soap-consumer wsdl="classpath:widgets.wsdl"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 useJbiWrapper="true" />
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

104

If you want to skip the WS-I basic profile verification, you can set the consumer's validateWsdl
attribute to false.

15.3. USING THE JCA CONSUMER ENDPOINT

Procedure

To configure a JCA consumer endpoint do the following:

1. Specify the name of the service for which this endpoint is acting as a proxy.

This is specified using the service attribute.

2. Specify the name of the endpoint for which this endpoint is acting as a proxy.

This is specified using the endpoint attribute.

3. Specify the connection factory the endpoint will use.

The endpoint's connection factory is configured using the endpoint's connectionFactory
attribute. The connectionFactory attribute's value is a reference to the bean that configures
the connection factory. For example if the connection factory configuration bean is named
widgetConnectionFactory, the value of the connectionFactory attribute would be
#widgetConnectionFactory.

For information on configuring a connection factory see Chapter 14, Configuring the Connection
Factory.

4. Specify the destination onto which the endpoint will place messages.

For more information see the section called “Configuring a destination”.

5. Configure the JCA resource adapter that the consumer will use.

You configure the endpoint's resource adapter using the resourceAdapter attribute. The
attribute's value is a reference to the bean that configures the resource adapter.

6. Configure the ActivationSpec object that will be used by the endpoint.

You configure the endpoint's resource adapter using the activationSpec attribute. The
attribute's value is a reference to the bean that configures the ActivationSpec object.

7. Specify the ESB endpoint to which incoming messages are targeted.

For more information see the section called “Specifying the target endpoint”.

8. If your JMS destination is a topic, set the pubSubDomaim attribute to true.

Configuring a destination

A consumer endpoint chooses the destination to use for sending messages with the following algorithm:

1. The endpoint will check to see if you configured the destination explicitly.

You configure a destination using a Spring bean. You can add the bean directly to the endpoint

CHAPTER 15. CREATING A CONSUMER ENDPOINT

105

by wrapping it in a jms:destination child element. You can also configure the bean
separately and refer the bean using the endpoint's destination attribute as shown in
Example 15.9, “Configuring a JCA Consumer's Destination”.

Example 15.9. Configuring a JCA Consumer's Destination

2. If you did not explicitly configure a destination, the endpoint will use the value of the
destinationName attribute to choose its destination.

The value of the destinationName attribute is a string that corresponds to the name of the
JMS destination. The binding component's default behavior when you provide a destination
name is to resolve the destination using the standard JMS Session.createTopic() and
Session.createQueue() methods.

NOTE

You can override the binding component's default behavior by providing a custom
DestinationResolver implementation. See Section 19.2, “Using a Custom
Destination Resolver”.

Specifying the target endpoint

There are a number of attributes available for configuring the endpoint to which the generated messages
are sent. The poller endpoint will determine the target endpoint in the following manner:

1. If you explicitly specify an endpoint using both the targetService attribute and the
targetEndpoint attribute, the ESB will use that endpoint.

The targetService attribute specifies the QName of a service deployed into the ESB. The
targetEndpoint attribute specifies the name of an endpoint deployed by the service specified
by the targetService attribute.

2. If you only specify a value for the targetService attribute, the ESB will attempt to find an
appropriate endpoint on the specified service.

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:jca-consumer service="my:widgetService"
 endpoint="jbiWidget"
 destination="#widgetQueue"
 ... />
 ...
 <jee:jndi-lookup id="widgetQueue" jndi-name="my.widget.queue">
 <jee:environment>

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
 java.naming.provider.url=t3://localhost:7001
 </jee:environment>
 </jee:jndi-lookup>
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

106

3. If you do not specify a service name or an endpoint name, you must specify an the name of an
interface that can accept the message using the targetInterface attribute. The ESB will
attempt to locate an endpoint that implements the specified interface and direct the messages to
it.

Interface names are specified as QNames. They correspond to the value of the name attribute of
either a WSDL 1.1 serviceType element or a WSDL 2.0 interface element.

IMPORTANT

If you specify values for more than one of the target attributes, the consumer endpoint will
use the most specific information.

Example

Example 15.10, “Basic Configuration for a JCA Consumer Endpoint” shows the configuration for a JCA
consumer endpoint.

Example 15.10. Basic Configuration for a JCA Consumer Endpoint

15.4. CONFIGURING HOW REPLIES ARE SENT

If your endpoint is participating in in/out message exchanges, or exceptions need to be returned to the
external endpoint, you need to configure how your endpoint will handle the reply messages. You can
configure the JMS destination used to send the reply and how the endpoint specifies the reply message's
correlation ID. In addition, you can specify a number of QoS settings including:

the reply message's priority

the reply message's persistence

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:jca-consumer service="my:widgetService"
 endpoint="jbi"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 resourceAdapter="#ra"
 activationSpec="#as"
 targetService="my:targetService" />

 <bean id="ra"
 class="org.activemq.ra.ActiveMQConnectionFactory">
 ...
 </bean>

 <bean id="as"
 class="org.apache.activemq.ra.ActiveMQActivationSpec">
 ...
 </bean>
 ...
</beans>

CHAPTER 15. CREATING A CONSUMER ENDPOINT

107

the reply message's lifespan

You can also specify a number of custom properties to place in a reply message's JMS header.

15.4.1. Configuring the Reply Destination

Overview

Red Hat JBoss Fuse JMS consumers determine destination of reply messages and exceptions uses a
straightforward algorithm. By default, the reply destination is supplied by the message that started the
exchange. If the reply destination cannot be determined from the request message, the endpoint will use
a number of strategies to determine the reply destination.

You can customize how the endpoint determines the reply destination using the endpoint's configuration.
You can also supply fall back values for the endpoint to use.

Determining the reply destination

Consumer endpoints use the following algorithm to determine the reply destination for a message
exchange:

1. If the in message of the exchange includes a value for the JMSReplyTo property, that value is
used as the reply destination.

2. If the JMSReplyTo is not specified, the endpoint looks for a destination chooser implementation
to use.

If you have configured your endpoint with a destination chooser, the endpoint will use the
destination chooser to select the reply destination.

For more information on using destination choosers see Section 19.1, “Using a Custom
Destination Chooser”.

3. If the JMSReplyTo is not specified and there is no configured destination chooser, the endpoint
checks its replyDestination attribute for a destination.

You configure a destination using a Spring bean. The recommend method to configure the
destination is to configure the bean separately and refer the bean using the endpoint's
replyDestination attribute as shown in Example 15.11, “Configuring a Consumer's Reply
Destination”. You can also add the bean directly to the endpoint by wrapping it in a
jms:replyDestination child element.

4. As a last resort, the endpoint will use the value of the replyDestinationName attribute to
determine the reply destination.

The replyDestinationName attribute takes a string that is used as the name of the
destination to use. The binding component's default behavior when you provide a destination
name is to resolve the destination using the standard JMS Session.createTopic() and
Session.createTopic() methods to resolve the JMS destination.

NOTE

You can override the binding component's default behavior by providing a custom
DestinationResolver implementation. See Section 19.2, “Using a Custom
Destination Resolver”.

Red Hat JBoss Fuse 6.1 JBI Development Guide

108

Example

Example 15.11, “Configuring a Consumer's Reply Destination” shows an example of configuring a
consumer endpoint to use a dedicated JMS destination.

Example 15.11. Configuring a Consumer's Reply Destination

15.4.2. Configuring the Qualities of Service

Overview

You can specify a number of the reply message's QoS settings including:

the reply message's priority

the reply message's persistence

the reply message's lifespan

These properties are stored in the JMS message header. By default, the JMS broker automatically
populates their values. You can, however, configure an endpoint to override the broker's default.

Setting the reply message's priority

JMS uses a priority system to determine the relative importance of delivering a message. Messages with
higher priority are delivered before messages with a lower priority.

You configure the priority of the reply message messages by setting the consumer's replyPriority
attribute. The value is used to set the reply message's JMSPriority property.

JMS supports priority values between 0 and 9. The lowest priority is 0 and the highest priority is 9. The
default priority for a message is 4.

Setting the reply message's persistence

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:consumer service="my:widgetService"
 endpoint="jbiWidget"
 destinationName="my.widgetQueue"
 connectionFactory="#connectionFactory"
 replyDestination="#widgetReplyQueue" />
 ...
 <jee:jndi-lookup id="widgetReplyQueue" jndi-
name="my.widget.reply.queue">
 <jee:environment>
 java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
 java.naming.provider.url=t3://localhost:7001
 </jee:environment>
 </jee:jndi-lookup>
 ...
</beans>

CHAPTER 15. CREATING A CONSUMER ENDPOINT

109

JMS uses a message's delivery mode to determine its persistence in the system. You can set the
delivery mode for the reply messages sent by an endpoint by setting the endpoint's
replyDeliveryMode attribute. The value you provide for the replyDeliveryMode attribute is used
to set the reply message's JMSDeliveryMode property.

JMS implementations support two delivery modes: persistent and non-persistent.

Persistent messages can survive a shutdown of the JMS broker. This is the default setting for JMS
messages. You can specify persistence by setting the endpoint's deliveryMode attribute to 2. This
setting corresponds to DeliveryMode.PERSISTENT.

Non-persistent messages are lost if the JMS broker is shutdown before they are delivered. You can
specify non-persistence by setting the endpoint's deliveryMode attribute to 1. This setting corresponds
to DeliveryMode.NON_PERSISTENT.

Setting a reply message's lifespan

You can control how long reply messages live before the JMS broker reap them by setting the endpoint's
replyTimeToLive attribute. The value is the number of milliseconds you want the message to be
available from the time it is sent.

The value of the replyTimeToLive attribute is used to compute the value for the reply message's
JMSExpirary property. The value is computed by adding the specified number of milliseconds to the time
the message is created.

The default behavior is to allow messages to persist forever.

Enforcing the configured values

By default, the consumer ignores these settings and allows the JMS provider to insert its own default
values for the reply message's QoS settings. To force your settings to be used, you need to set the
endpoint's replyExplicitQosEnabled to true. Doing so instructs the consumer to always use the
values provided in the configuration.

Example

Example 15.12, “Consumer with Reply QoS Properties” shows the configuration for a consumer whose
reply messages are set to have low priority and to be non-persistent.

Example 15.12. Consumer with Reply QoS Properties

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:jca-consumer service="my:widgetService"
 endpoint="jbiWidget"
 connectionFactory="#connectionFactory"
 destinationName="widgetQueue"
 resourceAdapter="#ra"
 activationSpec="#as"
 replyExplicitQosEnabled="true"
 replyDeliveryMode="1"
 replyPriority="0" />
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

110

15.4.3. Setting Custom JMS Properties

Overview

The JMS specification allows for the placing of custom properties into a message's header. These
custom properties are specified as a set of name/value pairs that can store both simple types and Java
objects. The properties can be used for a number of tasks including message selection.

When using the Red Hat JBoss Fuse JMS binding component, you define the custom properties added
to the reply messages as property map. This is done using the Spring map element. You can configure
one static map that will be applied to every reply message generated by the consumer.

Setting custom JMS header properties

You can configure a consumer to add custom properties to reply messages in one of two ways:

1. Use the endpoint's replyProperties attribute to refer to the property map defining the custom
properties.

2. Add a jms:replyProperties child element to the endpoint. The jms:replyProperties
element wraps the property map.

Defining the property map

The property map containing the custom properties you want added to the reply messages is stored in a
java.util.Map object. You define that map object using the Spring util:map element.

The util:map element is defined in the http://www.springframework.org/schema/util
namespace. In order to use the element you will need to add the following namespace alias to your
beans element:

The entries in the map are defined by adding entry child element's to the util:map element. Each
entry element takes two attributes. The key entry is the map key and corresponds to the properties
name. The value attribute is the value of the property.

TIP

If you want the value of a property to be complex type that is stored in a Java object, you can use the
entry element's ref attribute instead of the value attribute. The ref attribute points to another bean
element that defines a Java object.

Example

Example 15.13, “Adding Custom Properties to a Reply Message” shows an example of a SOAP
consumer whose reply messages have a set of custom properties added to their header.

Example 15.13. Adding Custom Properties to a Reply Message

xmlns:util="http://www.springframework.org/schema/util"

CHAPTER 15. CREATING A CONSUMER ENDPOINT

111

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 xmlns:util="http://www.springframework.org/schema/util"
 ... >
 ...
 <jms:consumer service="my:widgetService"
 endpoint="jbiWidget"
 destinationName="my.widgetQueue"
 connectionFactory="#connectionFactory"
 replyDestination="#widgetReplyQueue"
 replyProperties="#jmsProps" />
 ...
 <util:map id="jmsProps">
 <entry key="location" value="San Jose"/>
 <entry key="orig_code" value="sjwf"/>
 <entry key="client_code" value="widget010"/>
 </util:map>
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

112

CHAPTER 16. CREATING A PROVIDER ENDPOINT

Abstract

A provider is an endpoint that sends messages to remotes endpoints and, depending on the message
exchange pattern, waits for a response. They use the Spring framework's JMSTemplate interface.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

16.1. INTRODUCTION TO PROVIDER ENDPOINTS

Where does a provider fit into a solution?

A provider endpoint plays the role of a provider from the vantage point of other endpoints inside of the
ESB. As shown in Figure 16.1, “Provider Endpoint”, a provider endpoint receives messages from the
NMR and places them onto a JMS destination. If the NMR message is part of an in-out message
exchange, the endpoint will listen for the response on a reply destination.

Figure 16.1. Provider Endpoint

Types of providers

The JMS binding component has two types of provider endpoints:

Generic

CHAPTER 16. CREATING A PROVIDER ENDPOINT

113

The generic provider endpoint can handle any type of message data. It is configured using the
jms:provider element.

SOAP

The SOAP provider endpoint is specifically tailored to receive SOAP messages. It uses a WSDL
document to define the structure of the messages. It is configured using the jms:soap-provider
element.

TIP

The Apache CXF binding component's JMS transport is better adapted to handling SOAP messages,
but offers less control over the JMS connection.

16.2. BASIC CONFIGURATION

Procedure

To configure a provider endpoint do the following:

1. Decide what type of provider endpoint to use.

See the section called “Types of providers”.

2. Specify the name of the service for which this endpoint is acting as a proxy.

This is specified using the service attribute.

TIP

If you are using a SOAP provider and your WSDL file only has one service defined, you do not
need to specify the service name.

3. Specify the name of the endpoint for which this endpoint is acting as a proxy.

This is specified using the endpoint attribute.

TIP

If you are using a SOAP provider and your WSDL file only has one endpoint defined, you do not
need to specify the endpoint name.

4. Specify the connection factory the endpoint will use.

The endpoint's connection factory is configured using the endpoint's connectionFactory
attribute. The connectionFactory attribute's value is a reference to the bean that configures
the connection factory. For example, if the connection factory configuration bean is named
widgetConnectionFactory, the value of the connectionFactory attribute would be
#widgetConnectionFactory.

For information on configuring a connection factory see Chapter 14, Configuring the Connection
Factory.

Red Hat JBoss Fuse 6.1 JBI Development Guide

114

5. Specify the destination onto which the endpoint will place messages.

For more information see the section called “Configuring a destination”.

6. If you are using a JMS SOAP provider, specify the location of the WSDL defining the message
exchange using the wsdl attribute.

7. If your JMS destination is a topic, set the pubSubDomaim attribute to true.

8. If your endpoint is interacting with a broker that only supports JMS 1.0.2, set the jms102
attribute to true.

Configuring a destination

A provider endpoint chooses the destination to use for sending messages with the following algorithm:

1. If you provided a custom DestinationChooser implementation, the endpoint will use that to
choose it's endpoint.

For more information about providing custom DestinationChooser implementations see
Section 19.1, “Using a Custom Destination Chooser”.

2. If you did not provide a custom DestinationChooser implementation, the endpoint will use its
default DestinationChooser implementation to choose an endpoint.

The default destination chooser checks the message exchange received from the NMR for a
DESTINATION_KEY property. If the message exchange has that property set, it returns that
destination.

3. If the destination chooser does not return a destination, the endpoint will check to see if you
configured the destination explicitly.

You configure a destination using a Spring bean. The recommend way to configure the
destination is to configure the bean separately and refer the bean using the endpoint's
destination attribute as shown in Example 16.1, “Configuring a Provider's Destination”. You
can also add the bean directly to the endpoint by wrapping it in a jms:destination child
element.

Example 16.1. Configuring a Provider's Destination

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:provider service="my:widgetService"
 endpoint="jbiWidget"
 destination="#widgetQueue"
 connectionFactory="#connectionFactory" />
 ...
 <jee:jndi-lookup id="widgetQueue" jndi-name="my.widget.queue">
 <jee:environment>

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
 java.naming.provider.url=t3://localhost:7001
 </jee:environment>
 </jee:jndi-lookup>
 ...

CHAPTER 16. CREATING A PROVIDER ENDPOINT

115

4. If the destination chooser does not return a destination and you did not explicitly configure a
destination, the endpoint will use the value of the destinationName attribute to choose its
destination.

The destinationName attribute takes a string that is used as the name of the destination to
use. The binding component's default behavior when you provide a destination name is to
resolve the destination using the standard JMS Session.createTopic() and
Session.createQueue() methods to resolve the JMS destination.

NOTE

You can override the binding component's default behavior by providing a custom
DestinationResolver implementation. See Section 19.2, “Using a Custom
Destination Resolver”.

Examples

Example 16.2, “Basic Configuration for a Generic Provider Endpoint” shows the basic configuration for a
plain JMS provider endpoint.

Example 16.2. Basic Configuration for a Generic Provider Endpoint

Example 16.3, “Basic Configuration for a SOAP Provider Endpoint” shows the basic configuration for a
SOAP JMS provider endpoint.

Example 16.3. Basic Configuration for a SOAP Provider Endpoint

16.3. CONFIGURING HOW RESPONSES ARE RECEIVED

</beans>

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:provider service="my:widgetService"
 endpoint="jbiWidget"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory" />
 ...
</beans>

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:soap-provider wsdl="classpath:widgets.wsdl"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory" />
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

116

Overview

If your provider endpoint participates in in/out message exchanges, it will wait for a response from
receiving endpoint. You can configure the JMS destination on which the endpoint listens for the
response. You can also configure the amount of time the endpoint will wait for a response before it times
out.

Configuring the response destination

An endpoint chooses the destination to use for receiving responses with the following algorithm:

1. If you provided a custom DestinationChooser implementation, the endpoint will use that to
choose it's endpoint.

For more information about providing custom DestinationChooser implementations see
Section 19.1, “Using a Custom Destination Chooser”.

2. If you did not provide a custom DestinationChooser implementation, the endpoint will use its
default DestinationChooser implementation to choose an endpoint.

The default destination chooser checks the message exchange received from the NMR for a
DESTINATION_KEY property. If the message exchange has that property set, it returns that
destination.

3. If the destination chooser does not return a destination, the endpoint will check to see if you
configured the destination explicitly.

You configure a response destination using a Spring bean. The recommend way to configure the
destination is to configure the bean separately and refer the bean using the endpoint's
replyDestination attribute as shown in Example 16.1, “Configuring a Provider's
Destination”. You can also add the bean directly to the endpoint by wrapping it in a
jms:replyDestination child element.

4. If the destination chooser does not return a destination and you did not explicitly configure a
destination, the endpoint will use the value of the replyDestinationName attribute to choose
its destination.

The replyDestinationName attribute takes a string that is used as the name of the
destination to use. The binding component's default behavior when you provide a destination
name is to resolve the destination using the standard JMS Session.createTopic() and
Session.createTopic() methods to resolve the JMS destination.

NOTE

You can override the binding component's default behavior by providing a custom
DestinationResolver implementation. See Section 19.2, “Using a Custom
Destination Resolver”.

Configuring the timeout interval

By default, a provider endpoint will wait an unlimited amount of time for a response. Since the provider
blocks while it is waiting for a response, your application may hang indefinitely if a response does not
arrive.

CHAPTER 16. CREATING A PROVIDER ENDPOINT

117

You can configure the endpoint to timeout using the recieveTimeout attribute. The recieveTimeout
attribute specifies the number of milliseconds the provider endpoint will wait for a response before timing
out.

Example

Example 16.4, “JMS Provider Endpoint with a Response Destination” shows a JMS provider endpoint
that will wait for a response for one minute.

Example 16.4. JMS Provider Endpoint with a Response Destination

16.4. ADVANCED PROVIDER CONFIGURATION

16.4.1. JMS Message Qualities of Service

Overview

JMS messages have a number of quality of service properties that can be set. These QoS properties
include the following:

the message's relative priority

the message's persistence

the message's lifespan

These properties are stored in the JMS message header. By default, the JMS broker automatically
populates their values. You can, however, configure an endpoint to override the broker's default.

Setting a message's priority

You configure the endpoint to set the priority for all out going JMS messages using the priority
attribute. The value you provide for the priority attribute is used to set the JMS message's
JMSPriority property.

JMS priority values can range from 0 to 9. The lowest priority is 0 and the highest priority is 9. If you do
not provide a value, the JMS provider will use the default priority value of 4. The default priority is
considered normal.

Setting a message's persistence

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:soap-provider wsdl="classpath:widgets.wsdl"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 recieveTimeout="60000"
 replyDestinationName="widgetResponse" />
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

118

In JMS a message's persistence is controlled by its delivery mode property. You configure the delivery
mode of the messages produced by a JMS provider by setting its deliveryMode attribute. The value
you provide for the deliveryMode attribute is used to set the JMS message's JMSDeliveryMode
property.

JMS implementations support two delivery modes: persistent and non-persistent.

Persistent messages can survive a shutdown of the JMS broker. This is the default setting for JMS
messages. You can specify persistence by setting the endpoint's deliveryMode attribute to 2. This
setting corresponds to DeliveryMode.PERSISTENT.

Non-persistent messages are lost if the JMS broker is shutdown before they are delivered. You can
specify non-persistence by setting the endpoint's deliveryMode attribute to 1. This setting corresponds
to DeliveryMode.NON_PERSISTENT.

Setting a message's life span

You can control how long messages persists before the JMS broker reaps them by setting the endpoint's
timeToLive attribute. The value is the number of milliseconds you want the message to be available
from the time it is sent. The default behavior is to allow messages to persist forever.

The value of the timeToLive attribute is used to compute the value for the message's JMSExpirary
property. The value is computed by adding the specified number of milliseconds to the time the message
is created.

Enforcing configured values

By default, a JMS provider endpoint will allow the JMS provider to set these values to default values and
ignore any values set through the configuration. To override this behavior, you need to set the endpoint's
explicitQosEnabled attribute to true.

Example

Example 16.5, “Setting JMS Provider Endpoint Message Properties” shows configuration for a JMS
SOAP provider whose messages have a priority of 1.

Example 16.5. Setting JMS Provider Endpoint Message Properties

16.4.2. JMS Message Optimization

Overview

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:soap-provider wsdl="classpath:widgets.wsdl"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 priority="1"
 explicitQosEnabled="true" />
 ...
</beans>

CHAPTER 16. CREATING A PROVIDER ENDPOINT

119

JMS message producers are able to provide hints to the JMS broker about possible message
optimizations. These hints include whether or not JMS message IDs are required and whether or not
timestamps are needed.

By default, Red Hat JBoss Fuse JMS provider endpoints require that messages have IDs and
timestamps. However, if your application does not require them you can instruct the endpoint to inform
the JMS provider that it can skip the creation of IDs and time stamps. The JMS provider is not required to
take the hint.

Message IDs

By default, a JMS message broker generates a unique identifiers for each message that it manages and
places the ID in the message's header. These IDs can be used by JMS applications for a number of
purposes. One reason to use them is to correlate request and reply messages.

Message IDs take time to create and increase the size of a message. If your application does not require
message IDs, you can optimize it by configuring the endpoint to disable message ID generation by
setting the messageIdEnabled attribute to false.

Setting the messageIdEnabled attribute to false causes the endpoint to call its message producer's
setDisableMessageID() method with a value of true. The JMS broker is then given a hint that it
does not need to generate message IDs or add them to the messages from the endpoint. The JMS
broker can choose to accept the hint or ignore it.

Time stamps

By default, a JMS message broker places time stamp representing the time the message is processed
into each message's header.

Time stamps increase the size of a message. If your application does not use the timestamps, you can
optimize it by configuring the endpoint to disable time stamp generation by setting the
messageTimeStampEnabled attribute to false.

Setting the messageTimeStampEnabled attribute to false causes the endpoint to call its message
producer's setDisableMessageTimestamp() method with a value of true. The JMS broker is then
given a hint that it does not need to generate message IDs or add them to the messages from the
endpoint. The JMS broker can choose to accept the hint or ignore it.

16.4.3. SOAP Specific Configuration

Overview

The SOAP provider has two specialized configuration properties. One controls if the endpoint needs to
use the JBI wrapper to make messages consumable. The other determines if the endpoint checks its
WSDL for compliance with the WS-I basic profile.

Using the JBI wrapper

There are instances when a JBI component cannot consume a native SOAP message. For instance,
SOAP headers pose difficulty for JBI components. The JBI specification defines a JBI wrapper that can
be used to make SOAP messages, or any message defined in WSDL 1.1, conform to the expectations
of a JBI component.

Red Hat JBoss Fuse 6.1 JBI Development Guide

120

To configure a SOAP provider to wrap messages in the JBI wrapper, you set its useJbiWrapper
attribute to true.

Example 16.6, “Configuring a SOAP Provider to Use the JBI Wrapper” shows a configuration fragment
for configuring a SOAP provider to use the JBI wrapper.

Example 16.6. Configuring a SOAP Provider to Use the JBI Wrapper

WSDL verification

The WS-I basic profile is a specification describing the minimum set of requirements for a Web service to
be considered interoperable. The requirement of the specification mostly constrain the binding of
messages into SOAP containers.

By default, SOAP providers will verify that their WSDL complies to the WS-I basic profile before starting
up. If the WSDL does not comply, the endpoint will not start up.

If you want to skip the WS-I basic profile verification, you can set the provider's validateWsdl attribute
to false.

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:soap-provider wsdl="classpath:widgets.wsdl"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 useJbiWrapper="true" />
 ...
</beans>

CHAPTER 16. CREATING A PROVIDER ENDPOINT

121

CHAPTER 17. MAKING ENDPOINTS STATEFUL

Abstract

You can configure JMS endpoints to store a copy of the current message exchange in a persistent
datastore. This helps in cases where you need to recover from failures.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

Red Hat JBoss Fuse JMS endpoints typically do not store any state information. You can, however,
configure them to store a copy of the current JMS message being sent. The message can be stored
either in memory or in a JDBC configured database.

Having the endpoint store a copy of the current JMS message can aid in recovery from failures. For
example, if your application is deployed in a cluster of JBoss Fuse containers you can configure your
endpoints to fail over if one of the containers crashes. If your endpoints are configured to store state in a
JDBC database, they can then resend any request that was in process.

ACTIVATING STATEFULLNESS

You configure an endpoint to save a copy of the current message by setting its stateless attribute to
false.

CONFIGURING THE DATASTORE

By default, JMS endpoints uses a memory based message store. The memory based message store is
a simple hash map that is stored in active memory. It cannot persist in the event of a failure, does not
support transactions, or access by multiple members of a cluster.

If you need to use a more robust message store, you can configure a provider endpoint to use a JDBC
accessible database as a message store. A JDBC message store can be shared among a cluster of
endpoints, can be persisted in the event of a failure, and, depending on the database, be enlisted in
transactions.

To configure an endpoint to use a JDBC accessible datastore, you configure its storeFactory attribute
to reference a bean configuring an instance of the
org.apache.servicemix.store.jdbc.JdbcStoreFactory class. Table 17.1, “Properties Used
to Configure a JDBC Store Factory” list the properties you can set for the JDBC store factory.

Table 17.1. Properties Used to Configure a JDBC Store Factory

Name Description

clustered Specifies if a datastore can be accessed by the
members of an endpoint cluster.

Red Hat JBoss Fuse 6.1 JBI Development Guide

122

transactional Specifies if the datastore can be enlisted in
transactions.

dataSource Specifies the configuration for the data source to be
used when creating the store.

adapter Specifies the configuration for the JDBC adapter
used to connect to the data source.

Name Description

NOTE

The values for dataSource and adapter will depend on the database you are using and the
JDBC adapter you are using.

EXAMPLE

The fragment in Example 17.1, “Configuring a Statefull JMS Provider Endpoint” shows the configuration
needed for a stateful JMS provider endpoint using MySQL as a JDBC accessible datastore.

Example 17.1. Configuring a Statefull JMS Provider Endpoint

1
2

3

4

<jms:provider service="tns:widgetServer"
 endpoint="widgetPort"

 storeFactory="#storeFactory">
 stateless="false" />

<bean id="storeFactory"
 class="org.apache.servicemix.store.jdbc.JdbcStoreFactory">

 <property name="clustered" value="true"/>
 <property name="dataSource">
 <ref local="mysql-ds"/>
 </property>
</bean>

<bean id="mysql-ds"
 class="com.mchange.v2.c3p0.ComboPooledDataSource"

 destroy-method="close">
 <property name="driverClass" value="com.mysql.jdbc.Driver"/>
 <property name="jdbcUrl"
 value="jdbc:mysql://localhost:3306/activemq?
relaxAutoCommit=true"/>
 <property name="user" value="activemq"/>
 <property name="password" value="activemq"/>
 <property name="minPoolSize" value="5"/>
 <property name="maxPoolSize" value="10"/>
 <property name="acquireIncrement" value="3"/>
 <property name="autoCommitOnClose" value="false"/>
</bean>

CHAPTER 17. MAKING ENDPOINTS STATEFUL

123

1

2

3

4

The fragment in Example 17.1, “Configuring a Statefull JMS Provider Endpoint” does the following:

Configures the endpoint's store factory by providing a reference to the bean configuring the factory.

Configures the endpoint to store a copy of the current message in the datastore.

Configures the JDBC factory store to create a datastore that can be accessed by a cluster of
endpoints.

Configures the MySQL JDBC driver.

Red Hat JBoss Fuse 6.1 JBI Development Guide

124

CHAPTER 18. WORKING WITH MESSAGE MARSHALERS

Abstract

When using JMS endpoints, you may want to customize how messages are processed as they are
passed into and out of the ESB. The Red Hat JBoss Fuse JMS binding component allows you to write
custom marshalers for your JMS endpoints.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

18.1. CONSUMER MARSHALERS

Overview

Consumer endpoints use an implementation of the
org.apache.servicemix.jms.endpoints.JmsConsumerMarshaler interface to process the
incoming JMS messages and convert them into normalized messages. Consumer marshalers also
convert fault messages and response messages into JMS messages that can be returned to the remote
endpoint. The JMS binding component comes with two consumer marshaler implementations:

DefaultConsumerMarshaler

The DefaultConsumerMarshaler class provides the marshaler used by generic consumer
endpoints and the JCA consumer endpoints.

JmsSoapConsumerMarshaler

The JmsSoapConsumerMarshaler class provides the marshaler used by SOAP consumer
endpoints.

NOTE

The default SOAP marshaler does not support the full range of SOAP messages nor
does it support marshaling map based messages into JMS messages.

When the default consumer marshaler does not suffice for your application you can provide a custom
implementation of the JmsConsumerMarshaler interface.

Implementing the marshaler

To create a custom consumer marshaler, you implement the
org.apache.servicemix.jms.endpoints.JmsConsumerMarshaler interface. The
JmsConsumerMarshaler interface, shown in Example 18.1, “The Consumer Marshaler Interface”, has
five methods that need implementing:

Example 18.1. The Consumer Marshaler Interface

public interface JmsConsumerMarshaler

CHAPTER 18. WORKING WITH MESSAGE MARSHALERS

125

createContext()

The createContext() method takes the JMS message and returns an object that implements the
JmsContext interface.

createExchange()

The createExchange() creates a message exchange using the JMS message and the JBI
context. Creating a message exchange entails the creation of the exchange, populating the
exchange's in message, specifying the message exchange pattern to use, and setting any other
required properties.

createOut()

The createOut() method takes the response message from the message exchange and converts
it into a JMS message. The method takes the message exchange, the outgoing message, the active
JMS session, and the JMS context.

createFault()

The createFault() method is called if a fault message is returned. It takes the message
exchange, the fault message, the active JMS session, and the JMS context and returns a JMS
message that encapsulates the fault message.

createError()

The createError() method is called if an exception is thrown while the message exchange is
being processed. It takes the message exchange, the exception, the active JMS session, and the
JMS context and returns a JMS message that encapsulates the exception.

 {
 public interface JmsContext
 {
 Message getMessage();
 }

 JmsContext createContext(Message message) throws Exception;

 MessageExchange createExchange(JmsContext jmsContext,
ComponentContext jbiContext) throws Exception;

 Message createOut(MessageExchange exchange,
 NormalizedMessage outMsg,
 Session session,
 JmsContext context) throws Exception;

 Message createFault(MessageExchange exchange,
 Fault fault,
 Session session,
 JmsContext context) throws Exception;

 Message createError(MessageExchange exchange,
 Exception error,
 Session session,
 JmsContext context) throws Exception;
}

Red Hat JBoss Fuse 6.1 JBI Development Guide

126

In addition to implementing the methods, you need to provide an implementation of the JmsContext
interface. The JmsContext interface has a single method called getMessage() which returns the JMS
message contained in the context.

Example 18.2, “Consumer Marshaler Implementation” shows a simple consumer marshaler
implementation.

Example 18.2. Consumer Marshaler Implementation

package com.widgetVendor.example;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

import javax.jbi.component.ComponentContext;
import javax.jbi.messaging.Fault;
import javax.jbi.messaging.MessageExchange;
import javax.jbi.messaging.NormalizedMessage;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.xml.transform.Source;

import org.apache.servicemix.jbi.jaxp.SourceTransformer;
import org.apache.servicemix.jbi.jaxp.StringSource;
import org.apache.servicemix.jbi.messaging.MessageExchangeSupport;

public class widgetConsumerMarshaler implements JmsConsumerMarshaler
{
 public JmsContext createContext(Message message) throws Exception
 {
 return new Context(message);
 }

 public MessageExchange createExchange(JmsContext jmsContext,
ComponentContext jbiContext) throws Exception
 {
 Context ctx = (Context) jmsContext;
 MessageExchange exchange =
jbiContext.getDeliveryChannel().createExchangeFactory().createExchange(M
essageExchangeSupport.IN_ONLY);
 NormalizedMessage inMessage = exchange.createMessage();
 TextMessage textMessage = (TextMessage) ctx.message;
 Source source = new StringSource(textMessage.getText());
 inMessage.setContent(source);
 exchange.setMessage(inMessage, "in");
 return exchange;
 }

 public Message createOut(MessageExchange exchange, NormalizedMessage
outMsg, Session session, JmsContext context) throws Exception
 {
 String text = new SourceTransformer().contentToString(outMsg);
 return session.createTextMessage(text);
 }

CHAPTER 18. WORKING WITH MESSAGE MARSHALERS

127

Configuring the consumer

You configure a consumer to use a custom marshaler using its marshaler attribute. The marshaler
attribute's value is a reference to a bean element specifying the class of your custom marshaler
implementation.

Example 18.3, “Configuring a Consumer to Use a Customer Marshaler” shows configuration for a
consumer that uses a custom marshaler.

Example 18.3. Configuring a Consumer to Use a Customer Marshaler

 public Message createFault(MessageExchange exchange, Fault fault,
Session session, JmsContext context) throws Exception
 {
 String text = new SourceTransformer().contentToString(fault);
 return session.createTextMessage(text);
 }

 public Message createError(MessageExchange exchange, Exception
error, Session session, JmsContext context) throws Exception
 {
 throw error;
 }

 protected static class Context implements JmsContext
 {
 Message message;

 Context(Message message)
 {
 this.message = message;
 }

 public Message getMessage()
 {
 return this.message;
 }
 }

}

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:soap-consumer wsdl="classpath:widgets.wsdl"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 marshaler="#myConsumerMarshaler" />

 <bean id="myConsumerMarshaler"
class="com.widgetVendor.example.widgetConsumerMarshaler" />
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

128

NOTE

You can also configure a consumer to use a custom marshaler by adding a child
marshaler element to the consumer's configuration. The marshaler element simply
wraps the bean element that configures the marshaler.

18.2. PROVIDER MARSHALERS

Overview

Providers use an implementation of the
org.apache.servicemix.jms.endpoints.JmsProviderMarshaler interface to convert
normalized messages into JMS messages. The marshaler also converts the incoming reply from a JMS
message into a normalized message. The JMS binding component comes with two provider marshaler
implementations:

DefaultProviderMarshaler

The DefaultProviderMarshaler class provides the marshaler used by generic provider
endpoints.

JmsSoapProviderMarshaler

The JmsSoapProviderMarshaler class provides the marshaler used by SOAP provider
endpoints.

NOTE

The default SOAP marshaler does not support the full range of SOAP messages nor
does it support marshaling map based messages into JMS messages.

When the default provider marshalers do not suffice for your application, you can provide a custom
implementation of the JmsProviderMarshaler interface.

Implementing the marshaler

To create a custom provider marshaler, you implement the
org.apache.servicemix.jms.endpoints.JmsProviderMarshaler interface. The
JmsProviderMarshaler interface, shown in Example 18.4, “The Provider Marshaler Interface”, has
two methods you need to implement:

Example 18.4. The Provider Marshaler Interface

public interface JmsProviderMarshaler
{
 Message createMessage(MessageExchange exchange, NormalizedMessage in,
Session session) throws Exception;

CHAPTER 18. WORKING WITH MESSAGE MARSHALERS

129

createMessage()

The createMessage() method uses information from the Red Hat JBoss Fuse core to generate a
JMS message. Its parameters include the message exchange, the normalized message that is
received by the provider, and the active JMS session.

populateMessage()

The populateMessage() method takes a JMS message and adds it to a message exchange for
use by the Red Hat JBoss Fuse core.

Example 18.5, “Provider Marshaler Implementation” shows a simple provider marshaler implementation.

Example 18.5. Provider Marshaler Implementation

 void populateMessage(Message message, MessageExchange exchange,
NormalizedMessage normalizedMessage) throws Exception;
}

package com.widgetVendor.example;

import javax.jbi.messaging.MessageExchange;
import javax.jbi.messaging.NormalizedMessage;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.xml.transform.Source;

import org.apache.servicemix.jbi.jaxp.SourceTransformer;
import org.apache.servicemix.jbi.jaxp.StringSource;
import org.apache.servicemix.jms.endpoints.JmsProviderMarshaler;

public class widgetProviderMarshaler implements JmsProviderMarshaler
{
 private SourceTransformer transformer = new SourceTransformer();

 public Message createMessage(MessageExchange exchange,
NormalizedMessage in, Session session) throws Exception
 {
 TextMessage text = session.createTextMessage();
 text.setText(transformer.contentToString(in));
 return text;
 }

 public void populateMessage(Message message, MessageExchange
exchange, NormalizedMessage normalizedMessage) throws Exception
 {
 TextMessage textMessage = (TextMessage) message;
 Source source = new StringSource(textMessage.getText());
 normalizedMessage.setContent(source);
 }
}

Red Hat JBoss Fuse 6.1 JBI Development Guide

130

Configuring the provider

You configure a provider to use a custom marshaler using its marshaler attribute. The marshaler
attribute's value is a reference to a bean element specifying the class of your custom marshaler
implementation.

Example 18.6, “Configuring a Provider to Use a Customer Marshaler” shows configuration for a provider
that uses a custom marshaler.

Example 18.6. Configuring a Provider to Use a Customer Marshaler

NOTE

You can also configure a provider to use a custom marshaler by adding a child
marshaler element to the provider's configuration. The marshaler element simply
wraps the bean element that configures the marshaler.

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:soap-provider wsdl="classpath:widgets.wsdl"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 marshaler="#myProviderMarshaler" />

 <bean id="myProviderMarshaler"
class="com.widgetVendor.example.widgetProviderMarshaler" />
 ...
</beans>

CHAPTER 18. WORKING WITH MESSAGE MARSHALERS

131

CHAPTER 19. IMPLEMENTING DESTINATION RESOLVING
LOGIC

Abstract

You can provide logic that allows your JMS endpoints to resolve destinations at run time. This is done by
providing an implementation of the DestinationChooser interface or the DestinationResolver
interface.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

It may not always be appropriate to hard code destinations into applications. Instead, you may want to
allow the endpoints to dynamically discover the JMS destinations. The Red Hat JBoss Fuse JMS binding
component provides two mechanisms for endpoints to dynamically discover destinations:

destination choosers

Destination choosers are specific to the Red Hat JBoss Fuse JMS binding component. They are the
first mechanism used by an endpoint when it trys to pick a JMS destination.

Destination choosers implement the
org.apache.servicemix.jms.endpoints.DestinationChooser interface.

destination resolvers

Destination resolvers are part of the Spring JMS framework. They are used when the JMS destination
is specified using a string. This can happen if either the destination chooser returns a string or if the
endpoint's destination is configured using the destinationName attribute.

Destination resolvers implement the
org.springframework.jms.support.destination.DestinationResolver interface.

19.1. USING A CUSTOM DESTINATION CHOOSER

Overview

Provider endpoints use a destination chooser to determine the JMS destination on which to send
requests and receive replies. They have a default destination chooser that queries the message
exchange for a property that specifies the destination to use. Consumer endpoints use destination
choosers to determine where to send reply messages. In both cases, the destination chooser is the first
method employed by an endpoint when looking for a JMS destination. If the destination chooser returns
a destination, or a destination name, the endpoint will use the returned value.

To customize the logic used in choosing a destination, you can provide an implementation of the
org.apache.servicemix.jms.endpoints.DestinationChooser interface and configure the
endpoint to load it. The configured destination chooser will be used in place of the default destination
chooser.

Red Hat JBoss Fuse 6.1 JBI Development Guide

132

Implementing a destination chooser

Destination choosers implement the
org.apache.servicemix.jms.endpoints.DestinationChooser interface. This interface has a
single method: chooseDestination().

chooseDestination(), whose signature is shown in Example 19.1, “Destination Chooser Method”,
takes the JBI message exchange and a copy of the message. It returns either a JMS Destination
object or a string representing the destination name.

NOTE

If the destination chooser returns a string, the endpoint will use a destination resolver to
convert the string into a JMS destination. See Section 19.2, “Using a Custom Destination
Resolver”.

Example 19.1. Destination Chooser Method

Object chooseDestination(MessageExchange exchange,
 Object message);

The message parameter can be either of the following type of object:

javax.jbi.messaging.NormalizedMessage

javax.jbi.messaging.Fault

Exception

Example 19.2, “Simple Destination Chooser” shows a simple destination chooser implementation. It
checks the message for a property that represents the JMS destination on which the request is to be
placed.

Example 19.2. Simple Destination Chooser

package com.widgetVendor.example;

import package org.apache.servicemix.jms.endpoints.DestinationChooser;
import javax.jbi.messaging.MessageExchange;
import javax.jbi.messaging.NormalizedMessage;
import javax.jms.Destination;

public class widgetDestinationChooser implements DestinationChooser {

 public static final String DESTINATION_KEY =
"org.apache.servicemix.jms.destination";

 public SimpleDestinationChooser() {
 }

 public Object chooseDestination(MessageExchange exchange, Object
message) {
 Object property = null;

CHAPTER 19. IMPLEMENTING DESTINATION RESOLVING LOGIC

133

Configuring an endpoint to use a destination chooser

You can configure an endpoint to use a custom destination chooser in one of two ways. The
recommended way is to configure the destination chooser as a bean and have the endpoint reference the
destination chooser's bean. The other way is to explicitly include the destination chooser's configuration
as a child of the endpoint.

As shown in Example 19.3, “Configuring a Destination Chooser with a Bean Reference”, configuring an
endpoint's destination chooser using a bean reference is a two step process:

1. Configure a bean element for your destination chooser.

2. Add a destinationChooser attribute that references the destination chooser's bean to your
endpoint.

Example 19.3. Configuring a Destination Chooser with a Bean Reference

Example 19.4, “Explicitly Configuring a Destination Chooser” shows an example configuration using the
jms:destinationChooser element. This method is less flexible than the recommended method
because other endpoints cannot reuse the destination chooser's configuration.

Example 19.4. Explicitly Configuring a Destination Chooser

 if (message instanceof NormalizedMessage) {
 property = ((NormalizedMessage)
message).getProperty(DESTINATION_KEY);
 }
 if (property instanceof Destination) {
 return (Destination) property;
 }
 if (property instanceof String) {
 return (String) property;
 }
 return new String("widgetDest");
 }
}

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:provider service="my:widgetService"
 endpoint="jbiWidget"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 destinationChooser="#widgetDestinationChooser" />
 <bean id="widgetDestinationChooser"
 class="com.widgetVendor.example.widgetDestinationChooser" />
 ...
</beans>

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >

Red Hat JBoss Fuse 6.1 JBI Development Guide

134

19.2. USING A CUSTOM DESTINATION RESOLVER

Overview

Destination resolvers are a part of the JMS technology Red Hat JBoss Fuse inherits from the Spring
Framework. They convert string destination names into JMS Destination objects. For example, if you
specify an endpoint's destination using the destinationName attribute, the endpoint will use a
destination resolver to get the appropriate JMS Destination object. Destination resolvers are also
used if a destination chooser returns a string and not a JMS Destination object.

Red Hat JBoss Fuse JMS endpoints default to using the DynamicDestinationResolver destination
resolver provided by the Spring Framework. This destination resolver uses the standard JMS
Session.createTopic() and Session.createQueue() methods to resolve destination names.

Red Hat JBoss Fuse JMS endpoints can also use the Spring Framework's
JndiDestinationResolver destination resolver. This destination resolver uses the string destination
name to perform a JNDI lookup for the JMS destination. If JMS destination is not returned from the JNDI
lookup, the resolver resorts to dynamically resolving the destination name. For information on configuring
and endpoint to use the JndiDestinationResolver destination resolver. See the section called
“Configuring an endpoint to use a destination resolver”.

Implementing a destination resolver

Destination resolvers implement the
org.springframework.jms.support.destination.DestinationResolver interface. The
interface has a single method: resolveDestinationName().

The resolveDestinationName() method, whose signature shown in Example 19.5, “Destination
Resolver Method”, takes three parameters: a JMS session, a destination name, and a boolean specifying
if the destination is a JMS topic.[2] It returns a JMS destination that correlates to the provided destination
name.

Example 19.5. Destination Resolver Method

Destination resolveDestinationName(Session session,
 String destinationName,
 boolean pubSubDomain)
 throws JMSException;

 ...
 <jms:provider service="my:widgetService"
 endpoint="jbiWidget"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory">
 <jms:destinationChooser>
 <bean id="widgetDestinationChooser"
 class="com.widgetVendor.example.widgetDestinationChooser"
/>
 </jms:destinationChooser>
 </jms:provider>
 ...
</beans>

CHAPTER 19. IMPLEMENTING DESTINATION RESOLVING LOGIC

135

Example 19.6, “Simple Destination Resolver” shows a simple destination resolver implementation.

Example 19.6. Simple Destination Resolver

Configuring an endpoint to use a destination resolver

You can configure an endpoint to use a custom destination resolver in one of two ways. The
recommended way is to configure the destination resolver as a bean and have the endpoint reference the
destination resolver's bean. The other way is to explicitly include the destination resolver's configuration
as a child of the endpoint.

As shown in Example 19.7, “Configuring a Destination Resolver with a Bean Reference”, configuring an
endpoint's destination resolver using a bean reference is a two step process:

1. Configure a bean element for your destination resolver.

2. Add a destinationResolver attribute that references the destination resolver's bean to your
endpoint.

Example 19.7. Configuring a Destination Resolver with a Bean Reference

package com.widgetVendor.example;

import org.springframework.jms.support.destination.DestinationResolver;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Session;

public class widgetDestinationResolver implements DestinationResolver
{

 public Destination resolveDestinationName(Session session,
 String destinationName,
 boolean pubSubDomain)
 throws JMSException
 {
 if (pubSubDomain)
 {
 return session.createTopic(destinationName);
 }
 else
 {
 return session.createQueue(destinationName);
 }
 }
}

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:consumer service="my:widgetService"
 endpoint="jbiWidget"

Red Hat JBoss Fuse 6.1 JBI Development Guide

136

Example 19.8, “Explicitly Configuring a Destination Resolver” shows an example configuration using the
jms:destinationResolver element. This method is less flexible than the recommended method
because other endpoints cannot reuse the destination resolver's configuration.

Example 19.8. Explicitly Configuring a Destination Resolver

[2] If the value is false, a JMS queue will be returned.

 destinationName="widgetQueue"
 connectionFactory="#connectionFactory"
 destinationResolver="#widgetDestinationResolver" />
 <bean id="widgetDestinationResolver"
 class="com.widgetVendor.example.widgetDestinationResolver" />
 ...
</beans>

<beans xmlns:jms="http://servicemix.apache.org/jms/1.0"
 ... >
 ...
 <jms:consumer service="my:widgetService"
 endpoint="jbiWidget"
 destinationName="widgetQueue"
 connectionFactory="#connectionFactory">
 <jms:destinationResolver>
 <bean id="widgetDestinationResolver"
 class="com.widgetVendor.example.widgetDestinationResolver"
/>
 </jms:destinationChooser>
 </jms:consumer>
 ...
</beans>

CHAPTER 19. IMPLEMENTING DESTINATION RESOLVING LOGIC

137

APPENDIX D. CONSUMER ENDPOINT PROPERTIES

D.1. COMMON PROPERTIES

Attributes

The attributes described in Table D.1, “Common Consumer Endpoint Property Attributes” can be used
on all elements used to configure a consumer endpoint.

Table D.1. Common Consumer Endpoint Property Attributes

Name Type Description Required

connectionFactor
y

string Specifies a reference to
the bean configuring the
connection factory which
is to be used by the
endpoint.

yes

service QName Specifies the service
name of the proxied
endpoint.

yes

endpoint string Specifies the endpoint
name of the proxied
endpoint.

yes

interfaceName QName Specifies the interface
name of the proxied
endpoint.

no

jms102 boolean Specifies if the
consumer uses JMS
1.0.2 compliant APIs.

no (defaults to false)

pubSubDomaim boolean Specifies if the
destination is a topic.

no

replyDeliveryMod
e

int Specifies the JMS
delivery mode used for
the reply.

no (defaults to
PERSISTENT(2))

replyDestination
Name

string Specifies the name of
the JMS destination to
use for the reply.

no (if not set
replyDestination
or
destinationChoos
er is used)

Red Hat JBoss Fuse 6.1 JBI Development Guide

138

replyExplicitQos
Enabled

boolean Specifies if the QoS
values specified for the
endpoint are explicitly
used when the reply is
sent.

no (default is false)

replyPriority int Specifies the JMS
message priority of the
reply.

no (defaults to 4)

replyTimeToLive long Specifies the number of
milliseconds the reply
message is valid.

no (defaults to unlimited)

stateless boolean Specifies if the
consumer retains state
information about the
message exchange
while it is in process.

no

synchronous boolean Specifies if the
consumer will block
while waiting for a
response. This means
the consumer can only
process one message at
a time.

no (defaults to true)

targetEndpoint string Specifies the endpoint
name of the target
endpoint.

no (defaults to the
endpoint attribute)

targetInterface QName Specifies the interface
name of the target
endpoint.

no

targetService QName Specifies the service
name of the target
endpoint.

no (defaults to the
service attribute)

targetUri string Specifies the URI of the
target endpoint.

no

useMessageIdInRe
sponse

boolean Specifies if the request
message's ID is used as
the reply's correlation ID.

no (defaults to false
meaning the request's
correlation ID is used)

Name Type Description Required

Beans

APPENDIX D. CONSUMER ENDPOINT PROPERTIES

139

The elements described in Table D.2, “Common Consumer Endpoint Property Beans” can be used on
all elements used to configure a consumer endpoint.

Table D.2. Common Consumer Endpoint Property Beans

Name Type Description Required

marshaler JmsConsumerMarsh
aler

Specifies the class
implementing the
message marshaler.

no (defaults to
DefaultConsumerM
arshaler)

destinationChoos
er

DestinationChoos
er

Specifies a class
implementing logic for
choosing reply
destinations.

no

destinationResol
ver

DestinationResol
ver

Specifies the class
implementing logic for
converting strings into
destination IDs.

no (defaults to
DynamicDestinati
onResolver)

replyDestination Destination Specifies the JMS
destination for the
replies.

no (if not set either the
replyDestination
Name or the
destinationChoos
er is used)

replyProperties Map Specifies custom
properties to be placed
in the reply's JMS
header.

no

storeFactory StoreFactory Specifies the factory
class used to create the
data store for state
information.

no (defaults to
MemoryStoreFacto
ry)

store Store Specifies the data store
used to store state
information.

no

D.2. PROPERTIES SPECIFIC TO GENERIC CONSUMERS AND SOAP
CONSUMERS

Common Attributes

The attributes described in Table D.3, “Attributes Uses to Configure Standard JMS Consumers and
SOAP JMS Consumers” are specific to the jms:consumer element and the jms:soap-consumer
elements.

Table D.3. Attributes Uses to Configure Standard JMS Consumers and SOAP JMS Consumers

Red Hat JBoss Fuse 6.1 JBI Development Guide

140

Attribute Type Listener(s) Description Required

listenerType string all Specifies the type
of Spring JMS
message listener
to use. Valid
values are
default,
simple, and
server.

no (defaults to
default)

transacted string all Specifies the type
of transaction used
to wrap the
message
exchanges. Valid
values are none,
xa, and jms.

no (defaults to
none)

clientId string all Specifies the JMS
client id for a
shared
Connection
created and used
by this listener.

no

destinationN
ame

string all Specifies the
name of the
destination used to
receive messages.

no

durableSubsc
riptionName

string all Specifies the
name used to
register the
durable
subscription.

no

messageSelec
tor

string all Specifies the
message selector
string to use.

no

sessionAckno
wlegeMode

int all Specifies the
acknowledgment
mode that is used
when creating a
Session to send
a message.

no (defaults to
Session.AUTO
_ACKNOWLEDGE)

APPENDIX D. CONSUMER ENDPOINT PROPERTIES

141

subscription
Durable

boolean all Specifies if the
listener uses a
durable
subscription to
listen form
messages.

no (defaults to
false)

pubSubNoLoca
l

boolean default

simple

Specifies if
messages
published by the
listener's
Connection are
suppressed.

no (defaults to
false)

concurrentCo
nsumers

int default

simple

Specifies the
number of
concurrent
consumers created
by the listener.

no (defaults to 1)

cacheLevel int default Specifies the level
of caching allowed
by the listener.

no (defaults to 0)

receiveTimeo
ut

long default Specifies the
timeout for
receiving a
message in
milliseconds.

no (default is
1000)

recoveryInte
rval

long default Specifies the
interval, in
milliseconds,
between attempts
to recover after a
failed listener set-
up.

no (defaults to
5000)

maxMessagesP
erTask

int default

server

Specifies the
number of
attempts to receive
messages per
task.

no (defaults to -1)

Attribute Type Listener(s) Description Required

Common Beans

The elements described in Table D.4, “Elements Uses to Configure Standard JMS Consumers and
SOAP JMS Consumers” are specific to the jms:consumer element and the jms:soap-consumer
elements.

Red Hat JBoss Fuse 6.1 JBI Development Guide

142

Table D.4. Elements Uses to Configure Standard JMS Consumers and SOAP JMS Consumers

Element Type Listener(s) Description Required

destination Destination all Specifies the
destination used to
receive messages.

no

exceptionLis
tener

ExceptionLis
tener

all Specifies an
ExceptionLis
tener to notify in
case of a
JMSException
is thrown by the
registered
message listener
or the invocation
infrastructure.

no

serverSessio
nFactory

ServerSessio
nFactory

server Specifies the
ServerSessio
nFactory to
use.

no (defaults to
SimpleServer
SessionFacto
ry)

SOAP consumer specific attributes

The attributes described in Table D.5, “Attributes for the JMS SOAP Consumer” are specific to the
jms:soap-consumer element.

Table D.5. Attributes for the JMS SOAP Consumer

Attribute Type Description Required

wsdl string Specifies the WSDL
describing the service.

yes

useJbiWrapper boolean Specifies if the JBI
wrapper is sent in the
body of the message.

no (defaults to true)

validateWsdl boolean Specifies if the WSDL is
checked WSI-BP
compliance.

no (defaults to true)

policies Policy[] Specifies a list of
interceptors used to
process the message.

no

D.3. PROPERTIES SPECIFIC TO A JCA CONSUMER

APPENDIX D. CONSUMER ENDPOINT PROPERTIES

143

The elements described in Table D.6, “Elements Used to Configure a JCA Consumer” are specific to the
jms:jca-consumer element.

Table D.6. Elements Used to Configure a JCA Consumer

Element Type Description Required

resourceAdapter ResourceAdapter Specifies the resource
adapter used for the
endpoint.

yes

activationSpec ActivationSpec Specifies the activation
information needed by
the endpoint.

yes

bootstrapContext BootstrapContext Specifies the bootstrap
context used when
starting the resource
adapter.

no (a default one will be
created)

Red Hat JBoss Fuse 6.1 JBI Development Guide

144

APPENDIX E. PROVIDER ENDPOINT PROPERTIES

E.1. COMMON PROPERTIES

Attributes

The attributes described in Table E.1, “Common Provider Endpoint Property Attributes” can be used on
all elements used to configure a provider endpoint.

Table E.1. Common Provider Endpoint Property Attributes

Attribute Type Description Required

connectionFactor
y

string Specifies a reference to
the bean which
configure the connection
factory to be used by the
endpoint.

yes

deliveryMode int Specifies the JMS
delivery mode.

no (defaults to
persistent)

destinationName string Specifies the JNDI
name of the destination
used to send messages.

no

endpoint string Specifies the endpoint
name of the proxied
endpoint.

yes

explicitQosEnabl
ed

boolean Specifies if the JMS
messages have the
specified properties
explicitly applied.

no (defaults to false)

interfaceName QName Specifies the interface
name of the proxied
endpoint.

no

jms102 boolean Specifies if the provider
is to be JMS 1.0.2
compatible.

no (defaults to false)

messageIdEnabled boolean Specifies if JMS
message IDs are
enabled.

no (defaults to true)

messageTimeStamp
Enabled

boolean Specifies if JMS
messages are time
stamped.

no (defaults to true)

APPENDIX E. PROVIDER ENDPOINT PROPERTIES

145

priority int Specifies the priority
assigned to the JMS
messages.

no (defaults to 4)

pubSubDomain boolean Specifies if the
destination is a topic.

no (defaults to false

pubSubNoLocal boolean Specifies if messages
published by the
listener's Connection are
suppressed.

no (defaults to false)

recieveTimeout long Specifies the timeout for
receiving a message in
milliseconds.

no (defaults to unlimited)

replyDestination
Name

string Specifies the JNDI
name of the destination
used to receive
messages.

no

service QName Specifies the service
name of the proxied
endpoint.

yes

stateless boolean Specifies if the
consumer retains state
information about the
message exchange
while it is in process.

no (defaults to false)

timeToLive long Specifies the number of
milliseconds the
message is valid.

no (defaults to unlimited)

Attribute Type Description Required

Beans

The elements described in Table E.2, “Common Provider Endpoint Property Beans” can be used on all
elements used to configure a JMS provider endpoint.

Table E.2. Common Provider Endpoint Property Beans

Element Type Description Required

destination Destination Specifies the JMS
destination used to send
messages.

no

Red Hat JBoss Fuse 6.1 JBI Development Guide

146

destinationChoos
er

DestinationChoos
er

Specifies a class
implementing logic for
choosing the JMS
destinations.

no (defaults to
SimpleDestinatio
nChooser)

destinationResol
ver

DestinationResol
ver

Specifies a class
implementing logic for
converting strings into
destination IDs.

no (defaults to
DynamicDestinati
onResolver)

marshaler JmsProviderMarsh
aler

Specifies the class
implementing the
message marshaler.

no (defaults to
DefaultProviderM
arshaler or
JmsSoapProviderM
arshaler)

replyDestination Destination Specifies the JMS
destination used to
receive messages.

no

replyDestination
Chooser

DestinationChoos
er

Specifies a class
implementing logic for
choosing the destination
used to receive replies.

no (defaults to
SimpleDestinatio
nChooser)

storeFactory StoreFactory Specifies the factory
class used to create the
data store for state
information.

no (defaults to
MemoryStoreFacto
ry)

store Store Specifies the data store
used to store state
information.

no

Element Type Description Required

E.2. PROPERTIES SPECIFIC TO SOAP PROVIDERS

Attributes

The attributes described in Table E.3, “Attributes Used to Configure SOAP JMS Providers” are specific
to jms:soap-provider elements.

Table E.3. Attributes Used to Configure SOAP JMS Providers

Attribute Type Description Required

useJbiWrapper boolean Specifies if the JBI
wrapper is sent in the
body of the message.

no (defaults to true)

APPENDIX E. PROVIDER ENDPOINT PROPERTIES

147

validateWsdl boolean Specifies if the WSDL is
checked for WSI-BP
compliance.

no (defaults to true)

wsdl string Specifies the location of
the WSDL describing
the service.

yes

Attribute Type Description Required

Beans

The elements described in Table E.4, “Elements Used to Configure SOAP JMS Providers” are specific
to jms:soap-provider elements.

Table E.4. Elements Used to Configure SOAP JMS Providers

Element Type Description Required

policies Policy[] Specifies a list of
interceptors that will
process the message.

no

Red Hat JBoss Fuse 6.1 JBI Development Guide

148

PART IV. CXF BINDING COMPONENT

Abstract

This guide provides an overview of the JBI CXF binding component; describes how to define endpoints
in WSDL, how to configure and package endpoints, and how to configure the CXF runtime; describes the
properties of consumer and provider endpoints; and describes how to use the Maven tooling.

PART IV. CXF BINDING COMPONENT

149

CHAPTER 20. INTRODUCTION TO THE APACHE CXF BINDING
COMPONENT

Abstract

The Apache CXF binding component allows you to create SOAP/HTTP and SOAP/JMS endpoints.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

The Apache CXF binding component provides connectivity to external endpoints using either
SOAP/HTTP or SOAP/JMS. The endpoints are defined using WSDl files that contain Apache CXF
specific extensions for defining the transport. In addition, you can add Apache CXF-based Spring
configuration to use the advanced features.

It allows for the creation of two types of endpoint:

consumer endpoint

A consumer endpoint listens for messages on a specified address. When it receives a message it
sends it to the NMR for delivery to the appropriate endpoint. If the message is part of a two-way
exchange, then the consumer endpoint is also responsible for returning the response to the external
endpoint.

For information about configuring consumer endpoints see Chapter 28, Consumer Endpoints.

provider endpoint

A provider endpoint receives messages from the NMR. It then packages the message as a SOAP
message and sends it to the specified external address. If the message is part of a two-way message
exchange, the provider endpoint waits for the response from the external endpoint. The provider
endpoint will then direct the response back to the NMR.

For information about configuring provider endpoints see Chapter 29, Provider Endpoints.

KEY FEATURES

The Apache CXF binding component has the following features:

HTTP support

JMS 1.1 support

SOAP 1.1 support

SOAP 1.2 support

MTOM support

Red Hat JBoss Fuse 6.1 JBI Development Guide

150

Support for all MEPs as consumers or providers

SSL support

WS-Security support

WS-Policy support

WS-RM support

WS-Addressing support

STEPS FOR WORKING WITH THE APACHE CXF BINDING COMPONENT

Using the Apache CXF binding component to expose SOAP endpoints usually involves the following
steps:

1. Defining the contract for your endpoint in WSDL.

See ???.

2. Configuring the endpoint and packaging it into a service unit.

See ???.

3. Bundling the service unit into a service assembly for deployment into the Red Hat JBoss Fuse
container.

MORE INFORMATION

For more information about using Apache CXF to create SOAP endpoints see the Apache CXF
documentation.

CHAPTER 20. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT

151

http://cxf.apache.org/docs/index.html

CHAPTER 21. INTRODUCING WSDL CONTRACTS

Abstract

WSDL documents define services using Web Service Description Language and a number of possible
extensions. The documents have a logical part and a concrete part. The abstract part of the contract
defines the service in terms of implementation neutral data types and messages. The concrete part of
the document defines how an endpoint implementing a service will interact with the outside world.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

The recommended approach to design services is to define your services in WSDL and XML Schema
before writing any code. When hand-editing WSDL documents you must make sure that the document is
valid, as well as correct. To do this you must have some familiarity with WSDL. You can find the
standard on the W3C web site, www.w3.org.

21.1. STRUCTURE OF A WSDL DOCUMENT

A WSDL document is, at its simplest, a collection of elements contained within a root definition
element. These elements describe a service and how an endpoint implementing that service is
accessed.

A WSDL document has two distinct parts:

A logical part that defines the service in implementation neutral terms

A concrete part that defines how an endpoint implementing the service is exposed on a network

The logical part

The logical part of a WSDL document contains the types, the message, and the portType elements. It
describes the service’s interface and the messages exchanged by the service. Within the types
element, XML Schema is used to define the structure of the data that makes up the messages. A number
of message elements are used to define the structure of the messages used by the service. The
portType element contains one or more operation elements that define the messages sent by the
operations exposed by the service.

The concrete part

The concrete part of a WSDL document contains the binding and the service elements. It describes
how an endpoint that implements the service connects to the outside world. The binding elements
describe how the data units described by the message elements are mapped into a concrete, on-the-
wire data format, such as SOAP. The service elements contain one or more port elements which
define the endpoints implementing the service.

21.2. WSDL ELEMENTS

A WSDL document is made up of the following elements:

Red Hat JBoss Fuse 6.1 JBI Development Guide

152

http://www.w3.org/TR/wsdl

definitions — The root element of a WSDL document. The attributes of this element specify
the name of the WSDL document, the document’s target namespace, and the shorthand
definitions for the namespaces referenced in the WSDL document.

types — The XML Schema definitions for the data units that form the building blocks of the
messages used by a service. For information about defining data types see Chapter 22, Defining
Logical Data Units.

message — The description of the messages exchanged during invocation of a services
operations. These elements define the arguments of the operations making up your service. For
information on defining messages see Chapter 23, Defining Logical Messages Used by a
Service.

portType — A collection of operation elements describing the logical interface of a service.
For information about defining port types see Chapter 24, Defining Your Logical Interfaces.

operation — The description of an action performed by a service. Operations are defined by
the messages passed between two endpoints when the operation is invoked. For information on
defining operations see the section called “Operations”.

binding — The concrete data format specification for an endpoint. A binding element defines
how the abstract messages are mapped into the concrete data format used by an endpoint. This
element is where specifics such as parameter order and return values are specified.

service — A collection of related port elements. These elements are repositories for
organizing endpoint definitions.

port — The endpoint defined by a binding and a physical address. These elements bring all of
the abstract definitions together, combined with the definition of transport details, and they define
the physical endpoint on which a service is exposed.

21.3. DESIGNING A CONTRACT

To design a WSDL contract for your services you must perform the following steps:

1. Define the data types used by your services.

2. Define the messages used by your services.

3. Define the interfaces for your services.

4. Define the bindings between the messages used by each interface and the concrete
representation of the data on the wire.

5. Define the transport details for each of the services.

CHAPTER 21. INTRODUCING WSDL CONTRACTS

153

CHAPTER 22. DEFINING LOGICAL DATA UNITS

Abstract

When describing a service in a WSDL contract complex data types are defined as logical units using
XML Schema.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

When defining a service, the first thing you must consider is how the data used as parameters for the
exposed operations is going to be represented. Unlike applications that are written in a programming
language that uses fixed data structures, services must define their data in logical units that can be
consumed by any number of applications. This involves two steps:

1. Breaking the data into logical units that can be mapped into the data types used by the physical
implementations of the service

2. Combining the logical units into messages that are passed between endpoints to carry out the
operations

This chapter discusses the first step. Chapter 23, Defining Logical Messages Used by a Service
discusses the second step.

22.1. MAPPING DATA INTO LOGICAL DATA UNITS

The interfaces used to implement a service define the data representing operation parameters as XML
documents. If you are defining an interface for a service that is already implemented, you must translate
the data types of the implemented operations into discreet XML elements that can be assembled into
messages. If you are starting from scratch, you must determine the building blocks from which your
messages are built, so that they make sense from an implementation standpoint.

Available type systems for defining service data units

According to the WSDL specification, you can use any type system you choose to define data types in a
WSDL contract. However, the W3C specification states that XML Schema is the preferred canonical type
system for a WSDL document. Therefore, XML Schema is the intrinsic type system in Apache CXF.

XML Schema as a type system

XML Schema is used to define how an XML document is structured. This is done by defining the
elements that make up the document. These elements can use native XML Schema types, like xsd:int,
or they can use types that are defined by the user. User defined types are either built up using
combinations of XML elements or they are defined by restricting existing types. By combining type
definitions and element definitions you can create intricate XML documents that can contain complex
data.

When used in WSDL XML Schema defines the structure of the XML document that holds the data used
to interact with a service. When defining the data units used by your service, you can define them as
types that specify the structure of the message parts. You can also define your data units as elements
that make up the message parts.

Red Hat JBoss Fuse 6.1 JBI Development Guide

154

Considerations for creating your data units

You might consider simply creating logical data units that map directly to the types you envision using
when implementing the service. While this approach works, and closely follows the model of building
RPC-style applications, it is not necessarily ideal for building a piece of a service-oriented architecture.

The Web Services Interoperability Organization’s WS-I basic profile provides a number of guidelines for
defining data units and can be accessed at http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-
24.html#WSDLTYPES. In addition, the W3C also provides the following guidelines for using XML
Schema to represent data types in WSDL documents:

Use elements, not attributes.

Do not use protocol-specific types as base types.

22.2. ADDING DATA UNITS TO A CONTRACT

Depending on how you choose to create your WSDL contract, creating new data definitions requires
varying amounts of knowledge. The Apache CXF GUI tools provide a number of aids for describing data
types using XML Schema. Other XML editors offer different levels of assistance. Regardless of the editor
you choose, it is a good idea to have some knowledge about what the resulting contract should look like.

Procedure

Defining the data used in a WSDL contract involves the following steps:

1. Determine all the data units used in the interface described by the contract.

2. Create a types element in your contract.

3. Create a schema element, shown in Example 22.1, “Schema entry for a WSDL contract”, as a
child of the type element.

The targetNamespace attribute specifies the namespace under which new data types are
defined. The remaining entries should not be changed.

Example 22.1. Schema entry for a WSDL contract

4. For each complex type that is a collection of elements, define the data type using a
complexType element. See Section 22.4.1, “Defining data structures”.

5. For each array, define the data type using a complexType element. See Section 22.4.2,
“Defining arrays”.

6. For each complex type that is derived from a simple type, define the data type using a
simpleType element. See Section 22.4.4, “Defining types by restriction”.

7. For each enumerated type, define the data type using a simpleType element. See
Section 22.4.5, “Defining enumerated types”.

<schema targetNamespace="http://schemas.iona.com/bank.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

CHAPTER 22. DEFINING LOGICAL DATA UNITS

155

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES

8. For each element, define it using an element element. See Section 22.5, “Defining elements”.

22.3. XML SCHEMA SIMPLE TYPES

If a message part is going to be of a simple type it is not necessary to create a type definition for it.
However, the complex types used by the interfaces defined in the contract are defined using simple
types.

Entering simple types

XML Schema simple types are mainly placed in the element elements used in the types section of your
contract. They are also used in the base attribute of restriction elements and extension
elements.

Simple types are always entered using the xsd prefix. For example, to specify that an element is of type
int, you would enter xsd:int in its type attribute as shown in Example 22.2, “Defining an element with a
simple type”.

Example 22.2. Defining an element with a simple type

Supported XSD simple types

Apache CXF supports the following XML Schema simple types:

xsd:string

xsd:normalizedString

xsd:int

xsd:unsignedInt

xsd:long

xsd:unsignedLong

xsd:short

xsd:unsignedShort

xsd:float

xsd:double

xsd:boolean

xsd:byte

xsd:unsignedByte

xsd:integer

<element name="simpleInt" type="xsd:int" />

Red Hat JBoss Fuse 6.1 JBI Development Guide

156

xsd:positiveInteger

xsd:negativeInteger

xsd:nonPositiveInteger

xsd:nonNegativeInteger

xsd:decimal

xsd:dateTime

xsd:time

xsd:date

xsd:QName

xsd:base64Binary

xsd:hexBinary

xsd:ID

xsd:token

xsd:language

xsd:Name

xsd:NCName

xsd:NMTOKEN

xsd:anySimpleType

xsd:anyURI

xsd:gYear

xsd:gMonth

xsd:gDay

xsd:gYearMonth

xsd:gMonthDay

22.4. DEFINING COMPLEX DATA TYPES

XML Schema provides a flexible and powerful mechanism for building complex data structures from its
simple data types. You can create data structures by creating a sequence of elements and attributes.
You can also extend your defined types to create even more complex types.

In addition to building complex data structures, you can also describe specialized types such as
enumerated types, data types that have a specific range of values, or data types that need to follow
certain patterns by either extending or restricting the primitive types.

CHAPTER 22. DEFINING LOGICAL DATA UNITS

157

22.4.1. Defining data structures

In XML Schema, data units that are a collection of data fields are defined using complexType elements.
Specifying a complex type requires three pieces of information:

1. The name of the defined type is specified in the name attribute of the complexType element.

2. The first child element of the complexType describes the behavior of the structure’s fields when
it is put on the wire. See the section called “Complex type varieties”.

3. Each of the fields of the defined structure are defined in element elements that are
grandchildren of the complexType element. See the section called “Defining the parts of a
structure”.

For example, the structure shown in Example 22.3, “Simple Structure” is be defined in XML Schema as a
complex type with two elements.

Example 22.3. Simple Structure

Example 22.4, “A complex type” shows one possible XML Schema mapping for the structure shown in
Example 22.3, “Simple Structure”.

Example 22.4. A complex type

Complex type varieties

XML Schema has three ways of describing how the fields of a complex type are organized when
represented as an XML document and passed on the wire. The first child element of the complexType
element determines which variety of complex type is being used. Table 22.1, “Complex type descriptor
elements” shows the elements used to define complex type behavior.

Table 22.1. Complex type descriptor elements

Element Complex Type Behavior

sequence All the complex type’s fields must be present and
they must be in the exact order they are specified in
the type definition.

struct personalInfo
{
 string name;
 int age;
};

<complexType name="personalInfo">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
 </sequence>
</complexType>

Red Hat JBoss Fuse 6.1 JBI Development Guide

158

all All of the complex type’s fields must be present but
they can be in any order.

choice Only one of the elements in the structure can be
placed in the message.

Element Complex Type Behavior

If a sequence element, an all element, or a choice is not specified, then a sequence is assumed.
For example, the structure defined in Example 22.4, “A complex type” generates a message containing
two elements: name and age.

If the structure is defined using a choice element, as shown in Example 22.5, “Simple complex choice
type”, it generates a message with either a name element or an age element.

Example 22.5. Simple complex choice type

Defining the parts of a structure

You define the data fields that make up a structure using element elements. Every complexType
element should contain at least one element element. Each element element in the complexType
element represents a field in the defined data structure.

To fully describe a field in a data structure, element elements have two required attributes:

The name attribute specifies the name of the data field and it must be unique within the defined
complex type.

The type attribute specifies the type of the data stored in the field. The type can be either one of
the XML Schema simple types, or any named complex type that is defined in the contract.

In addition to name and type, element elements have two other commonly used optional attributes:
minOcurrs and maxOccurs. These attributes place bounds on the number of times the field occurs in
the structure. By default, each field occurs only once in a complex type. Using these attributes, you can
change how many times a field must or can appear in a structure. For example, you can define a field,
previousJobs, that must occur at least three times, and no more than seven times, as shown in
Example 22.6, “Simple complex type with occurrence constraints”.

Example 22.6. Simple complex type with occurrence constraints

<complexType name="personalInfo">
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 </choice>
</complexType>

<complexType name="personalInfo>
 <all>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>

CHAPTER 22. DEFINING LOGICAL DATA UNITS

159

You can also use the minOccurs to make the age field optional by setting the minOccurs to zero as
shown in Example 22.7, “Simple complex type with minOccurs set to zero”. In this case age can be
omitted and the data will still be valid.

Example 22.7. Simple complex type with minOccurs set to zero

Defining attributes

In XML documents attributes are contained in the element’s tag. For example, in the complexType
element name is an attribute. They are specified using the attribute element. It comes after the all,
sequence, or choice element and are a direct child of the complexType element. Example 22.8,
“Complex type with an attribute” shows a complex type with an attribute.

Example 22.8. Complex type with an attribute

The attribute element has three attributes:

name — A required attribute that specifies the string identifying the attribute.

type — Specifies the type of the data stored in the field. The type can be one of the XML
Schema simple types.

use — Specifies if the attribute is required or optional. Valid values are required or
optional.

If you specify that the attribute is optional you can add the optional attribute default. The default
attribute allows you to specify a default value for the attribute.

 <element name="previousJobs" type="xsd:string:
 minOccurs="3" maxOccurs="7"/>
 </all>
</complexType>

<complexType name="personalInfo>
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int" minOccurs="0"/>
 </choice>
</complexType>

<complexType name="personalInfo>
 <all>
 <element name="name" type="xsd:string"/>
 <element name="previousJobs" type="xsd:string"
 minOccurs="3" maxOccurs="7"/>
 </all>
 <attribute name="age" type="xsd:int" use="optional" />
</complexType>

Red Hat JBoss Fuse 6.1 JBI Development Guide

160

22.4.2. Defining arrays

Apache CXF supports two methods for defining arrays in a contract. The first is define a complex type
with a single element whose maxOccurs attribute has a value greater than one. The second is to use
SOAP arrays. SOAP arrays provide added functionality such as the ability to easily define multi-
dimensional arrays and to transmit sparsely populated arrays.

Complex type arrays

Complex type arrays are a special case of a sequence complex type. You simply define a complex type
with a single element and specify a value for the maxOccurs attribute. For example, to define an array of
twenty floating point numbers you use a complex type similar to the one shown in Example 22.9,
“Complex type array”.

Example 22.9. Complex type array

You can also specify a value for the minOccurs attribute.

SOAP arrays

SOAP arrays are defined by deriving from the SOAP-ENC:Array base type using the wsdl:arrayType
element. The syntax for this is shown in Example 22.10, “Syntax for a SOAP array derived using
wsdl:arrayType”.

Example 22.10. Syntax for a SOAP array derived using wsdl:arrayType

Using this syntax, TypeName specifies the name of the newly-defined array type. ElementType specifies
the type of the elements in the array. ArrayBounds specifies the number of dimensions in the array. To
specify a single dimension array use []; to specify a two-dimensional array use either [][] or [,].

For example, the SOAP Array, SOAPStrings, shown in Example 22.11, “Definition of a SOAP array”,
defines a one-dimensional array of strings. The wsdl:arrayType attribute specifies the type of the
array elements, xsd:string, and the number of dimensions, with [] implying one dimension.

Example 22.11. Definition of a SOAP array

<complexType name="personalInfo">
 <element name="averages" type="xsd:float" maxOccurs="20"/>
</complexType>

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="ElementType<ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>

<complexType name="SOAPStrings">
 <complexContent>

CHAPTER 22. DEFINING LOGICAL DATA UNITS

161

You can also describe a SOAP Array using a simple element as described in the SOAP 1.1
specification. The syntax for this is shown in Example 22.12, “Syntax for a SOAP array derived using an
element”.

Example 22.12. Syntax for a SOAP array derived using an element

When using this syntax, the element's maxOccurs attribute must always be set to unbounded.

22.4.3. Defining types by extension

Like most major coding languages, XML Schema allows you to create data types that inherit some of
their elements from other data types. This is called defining a type by extension. For example, you could
create a new type called alienInfo, that extends the personalInfo structure defined in
Example 22.4, “A complex type” by adding a new element called planet.

Types defined by extension have four parts:

1. The name of the type is defined by the name attribute of the complexType element.

2. The complexContent element specifies that the new type will have more than one element.

NOTE

If you are only adding new attributes to the complex type, you can use a
simpleContent element.

3. The type from which the new type is derived, called the base type, is specified in the base
attribute of the extension element.

4. The new type’s elements and attributes are defined in the extension element, the same as
they are for a regular complex type.

For example, alienInfo is defined as shown in Example 22.13, “Type defined by extension”.

 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="ElementName" type="ElementType"
 maxOccurs="unbounded"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

Red Hat JBoss Fuse 6.1 JBI Development Guide

162

Example 22.13. Type defined by extension

22.4.4. Defining types by restriction

XML Schema allows you to create new types by restricting the possible values of an XML Schema
simple type. For example, you can define a simple type, SSN, which is a string of exactly nine
characters. New types defined by restricting simple types are defined using a simpleType element.

The definition of a type by restriction requires three things:

1. The name of the new type is specified by the name attribute of the simpleType element.

2. The simple type from which the new type is derived, called the base type, is specified in the
restriction element. See the section called “Specifying the base type”.

3. The rules, called facets, defining the restrictions placed on the base type are defined as children
of the restriction element. See the section called “Defining the restrictions”.

Specifying the base type

The base type is the type that is being restricted to define the new type. It is specified using a
restriction element. The restriction element is the only child of a simpleType element and
has one attribute, base, that specifies the base type. The base type can be any of the XML Schema
simple types.

For example, to define a new type by restricting the values of an xsd:int you use a definition like the one
shown in Example 22.14, “Using int as the base type”.

Example 22.14. Using int as the base type

Defining the restrictions

The rules defining the restrictions placed on the base type are called facets. Facets are elements with
one attribute, value, that defines how the facet is enforced. The available facets and their valid value
settings depend on the base type. For example, xsd:string supports six facets, including:

<complexType name="alienInfo">
 <complexContent>
 <extension base="personalInfo">
 <sequence>
 <element name="planet" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<simpleType name="restrictedInt">
 <restriction base="xsd:int">
 ...
 </restriction>
</simpleType>

CHAPTER 22. DEFINING LOGICAL DATA UNITS

163

length

minLength

maxLength

pattern

whitespace

enumeration

Each facet element is a child of the restriction element.

Example

Example 22.15, “SSN simple type description” shows an example of a simple type, SSN, which
represents a social security number. The resulting type is a string of the form xxx-xx-xxxx.
<SSN>032-43-9876<SSN> is a valid value for an element of this type, but <SSN>032439876</SSN> is
not.

Example 22.15. SSN simple type description

22.4.5. Defining enumerated types

Enumerated types in XML Schema are a special case of definition by restriction. They are described by
using the enumeration facet which is supported by all XML Schema primitive types. As with
enumerated types in most modern programming languages, a variable of this type can only have one of
the specified values.

Defining an enumeration in XML Schema

The syntax for defining an enumeration is shown in Example 22.16, “Syntax for an enumeration”.

Example 22.16. Syntax for an enumeration

<simpleType name="SSN">
 <restriction base="xsd:string">
 <pattern value="\d{3}-\d{2}-\d{4}"/>
 </restriction>
</simpleType>

<simpleType name="EnumName">
 <restriction base="EnumType">
 <enumeration value="Case1Value"/>
 <enumeration value="Case2Value"/>
 ...
 <enumeration value="CaseNValue"/>
 </restriction>
</simpleType>

Red Hat JBoss Fuse 6.1 JBI Development Guide

164

EnumName specifies the name of the enumeration type. EnumType specifies the type of the case
values. CaseNValue, where N is any number one or greater, specifies the value for each specific case of
the enumeration. An enumerated type can have any number of case values, but because it is derived
from a simple type, only one of the case values is valid at a time.

Example

For example, an XML document with an element defined by the enumeration widgetSize, shown in
Example 22.17, “widgetSize enumeration”, would be valid if it contained <widgetSize>big</widgetSize>,
but it would not be valid if it contained <widgetSize>big,mungo</widgetSize>.

Example 22.17. widgetSize enumeration

22.5. DEFINING ELEMENTS

Elements in XML Schema represent an instance of an element in an XML document generated from the
schema. The most basic element consists of a single element element. Like the element element
used to define the members of a complex type, they have three attributes:

name — A required attribute that specifies the name of the element as it appears in an XML
document.

type — Specifies the type of the element. The type can be any XML Schema primitive type or
any named complex type defined in the contract. This attribute can be omitted if the type has an
in-line definition.

nillable — Specifies whether an element can be omitted from a document entirely. If
nillable is set to true, the element can be omitted from any document generated using the
schema.

An element can also have an in-line type definition. In-line types are specified using either a
complexType element or a simpleType element. Once you specify if the type of data is complex or
simple, you can define any type of data needed using the tools available for each type of data. In-line
type definitions are discouraged because they are not reusable.

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 </restriction>
</simpleType>

CHAPTER 22. DEFINING LOGICAL DATA UNITS

165

CHAPTER 23. DEFINING LOGICAL MESSAGES USED BY A
SERVICE

Abstract

A service is defined by the messages exchanged when its operations are invoked. In a WSDL contract
these messages are defined using message element. The messages are made up of one or more parts
that are defined using part elements.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

A service’s operations are defined by specifying the logical messages that are exchanged when an
operation is invoked. These logical messages define the data that is passed over a network as an XML
document. They contain all of the parameters that are a part of a method invocation.

Logical messages are defined using the message element in your contracts. Each logical message
consists of one or more parts, defined in part elements.

TIP

While your messages can list each parameter as a separate part, the recommended practice is to use
only a single part that encapsulates the data needed for the operation.

MESSAGES AND PARAMETER LISTS

Each operation exposed by a service can have only one input message and one output message. The
input message defines all of the information the service receives when the operation is invoked. The
output message defines all of the data that the service returns when the operation is completed. Fault
messages define the data that the service returns when an error occurs.

In addition, each operation can have any number of fault messages. The fault messages define the data
that is returned when the service encounters an error. These messages usually have only one part that
provides enough information for the consumer to understand the error.

MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS

If you are defining an existing application as a service, you must ensure that each parameter used by
the method implementing the operation is represented in a message. You must also ensure that the
return value is included in the operation’s output message.

One approach to defining your messages is RPC style. When using RPC style, you define the messages
using one part for each parameter in the method’s parameter list. Each message part is based on a type
defined in the types element of the contract. Your input message contains one part for each input
parameter in the method. Your output message contains one part for each output parameter, plus a part
to represent the return value, if needed. If a parameter is both an input and an output parameter, it is
listed as a part for both the input message and the output message.

RPC style message definition is useful when service enabling legacy systems that use transports such
as Tibco or CORBA. These systems are designed around procedures and methods. As such, they are

Red Hat JBoss Fuse 6.1 JBI Development Guide

166

easiest to model using messages that resemble the parameter lists for the operation being invoked. RPC
style also makes a cleaner mapping between the service and the application it is exposing.

MESSAGE DESIGN FOR SOAP SERVICES

While RPC style is useful for modeling existing systems, the service’s community strongly favors the
wrapped document style. In wrapped document style, each message has a single part. The message’s
part references a wrapper element defined in the types element of the contract. The wrapper element
has the following characteristics:

It is a complex type containing a sequence of elements. For more information see Section 22.4,
“Defining complex data types”.

If it is a wrapper for an input message:

It has one element for each of the method’s input parameters.

Its name is the same as the name of the operation with which it is associated.

If it is a wrapper for an output message:

It has one element for each of the method’s output parameters and one element for each of
the method’s inout parameters.

Its first element represents the method’s return parameter.

Its name would be generated by appending Response to the name of the operation with
which the wrapper is associated.

MESSAGE NAMING

Each message in a contract must have a unique name within its namespace. It is recommended that you
use the following naming conventions:

Messages should only be used by a single operation.

Input message names are formed by appending Request to the name of the operation.

Output message names are formed by appending Response to the name of the operation.

Fault message names should represent the reason for the fault.

MESSAGE PARTS

Message parts are the formal data units of the logical message. Each part is defined using a part
element, and is identified by a name attribute and either a type attribute or an element attribute that
specifies its data type. The data type attributes are listed in Table 23.1, “Part data type attributes”.

Table 23.1. Part data type attributes

Attribute Description

element="elem_name" The data type of the part is defined by an element
called elem_name.

CHAPTER 23. DEFINING LOGICAL MESSAGES USED BY A SERVICE

167

type="type_name" The data type of the part is defined by a type called
type_name.

Attribute Description

Messages are allowed to reuse part names. For instance, if a method has a parameter, foo, that is
passed by reference or is an in/out, it can be a part in both the request message and the response
message, as shown in Example 23.1, “Reused part”.

Example 23.1. Reused part

EXAMPLE

For example, imagine you had a server that stored personal information and provided a method that
returned an employee’s data based on the employee's ID number. The method signature for looking up
the data is similar to Example 23.2, “personalInfo lookup method”.

Example 23.2. personalInfo lookup method

This method signature can be mapped to the RPC style WSDL fragment shown in Example 23.3, “RPC
WSDL message definitions”.

Example 23.3. RPC WSDL message definitions

It can also be mapped to the wrapped document style WSDL fragment shown in Example 23.4,
“Wrapped document WSDL message definitions”.

Example 23.4. Wrapped document WSDL message definitions

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
<message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
<message>

personalInfo lookup(long empId)

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int"/>
<message/>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo"/>
<message/>

<types>
 <schema ... >

Red Hat JBoss Fuse 6.1 JBI Development Guide

168

 ...
 <element name="personalLookup">
 <complexType>
 <sequence>
 <element name="empID" type="xsd:int" />
 </sequence>
 </complexType>
 </element>
 <element name="personalLookupResponse">
 <complexType>
 <sequence>
 <element name="return" type="personalInfo" />
 </sequence>
 </complexType>
 </element>
 </schema>
</types>
<message name="personalLookupRequest">
 <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalLookupResponse"/>
<message/>

CHAPTER 23. DEFINING LOGICAL MESSAGES USED BY A SERVICE

169

CHAPTER 24. DEFINING YOUR LOGICAL INTERFACES

Abstract

Logical service interfaces are defined using the portType element.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

Logical service interfaces are defined using the WSDL portType element. The portType element is a
collection of abstract operation definitions. Each operation is defined by the input, output, and fault
messages used to complete the transaction the operation represents. When code is generated to
implement the service interface defined by a portType element, each operation is converted into a
method containing the parameters defined by the input, output, and fault messages specified in the
contract.

PROCESS

To define a logical interface in a WSDL contract you must do the following:

1. Create a portType element to contain the interface definition and give it a unique name. See
the section called “Port types”.

2. Create an operation element for each operation defined in the interface. See the section
called “Operations”.

3. For each operation, specify the messages used to represent the operation’s parameter list,
return type, and exceptions. See the section called “Operation messages”.

PORT TYPES

A WSDL portType element is the root element in a logical interface definition. While many Web service
implementations map portType elements directly to generated implementation objects, a logical
interface definition does not specify the exact functionality provided by the the implemented service. For
example, a logical interface named ticketSystem can result in an implementation that either sells
concert tickets or issues parking tickets.

The portType element is the unit of a WSDL document that is mapped into a binding to define the
physical data used by an endpoint exposing the defined service.

Each portType element in a WSDL document must have a unique name, which is specified using the
name attribute, and is made up of a collection of operations, which are described in operation
elements. A WSDL document can describe any number of port types.

OPERATIONS

Logical operations, defined using WSDL operation elements, define the interaction between two
endpoints. For example, a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Red Hat JBoss Fuse 6.1 JBI Development Guide

170

Each operation defined within a portType element must have a unique name, specified using the name
attribute. The name attribute is required to define an operation.

OPERATION MESSAGES

Logical operations are made up of a set of elements representing the logical messages communicated
between the endpoints to execute the operation. The elements that can describe an operation are listed
in Table 24.1, “Operation message elements”.

Table 24.1. Operation message elements

Element Description

input Specifies the message the client endpoint sends to
the service provider when a request is made. The
parts of this message correspond to the input
parameters of the operation.

output Specifies the message that the service provider
sends to the client endpoint in response to a request.
The parts of this message correspond to any
operation parameters that can be changed by the
service provider, such as values passed by
reference. This includes the return value of the
operation.

fault Specifies a message used to communicate an error
condition between the endpoints.

An operation is required to have at least one input or one output element. An operation can have both
input and output elements, but it can only have one of each. Operations are not required to have any
fault elements, but can, if required, have any number of fault elements.

The elements have the two attributes listed in Table 24.2, “Attributes of the input and output elements”.

Table 24.2. Attributes of the input and output elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format. The
name must be unique within the enclosing port type.

message Specifies the abstract message that describes the
data being sent or received. The value of the
message attribute must correspond to the name
attribute of one of the abstract messages defined in
the WSDL document.

It is not necessary to specify the name attribute for all input and output elements; WSDL provides a
default naming scheme based on the enclosing operation’s name. If only one element is used in the

CHAPTER 24. DEFINING YOUR LOGICAL INTERFACES

171

operation, the element name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation with either Request or
Response respectively appended to the name.

RETURN VALUES

Because the operation element is an abstract definition of the data passed during an operation, WSDL
does not provide for return values to be specified for an operation. If a method returns a value it will be
mapped into the output element as the last part of that message.

EXAMPLE

For example, you might have an interface similar to the one shown in Example 24.1, “personalInfo
lookup interface”.

Example 24.1. personalInfo lookup interface

This interface can be mapped to the port type in Example 24.2, “personalInfo lookup port type”.

Example 24.2. personalInfo lookup port type

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

<message name="personalLookupRequest">
 <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalLookupResponse"/>
<message/>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound"/>
<message/>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest"/>
 <output name="return" message="personalLookupResponse"/>
 <fault name="exception" message="idNotFoundException"/>
 </operation>
</portType>

Red Hat JBoss Fuse 6.1 JBI Development Guide

172

CHAPTER 25. USING HTTP

Abstract

HTTP is the underlying transport for the Web. It provides a standardized, robust, and flexible platform for
communicating between endpoints. Because of these factors it is the assumed transport for most WS-*
specifications and is integral to RESTful architectures.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

25.1. ADDING A BASIC HTTP ENDPOINT

Overview

There are three ways of specifying an HTTP endpoint’s address depending on the payload format you
are using.

SOAP 1.1 uses the standardized soap:address element.

SOAP 1.2 uses the soap12:address element.

All other payload formats use the http:address element.

SOAP 1.1

When you are sending SOAP 1.1 messages over HTTP you must use the SOAP 1.1 address element
to specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address
as a URL. The SOAP 1.1 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap/.

Example 25.1, “SOAP 1.1 Port Element” shows a port element used to send SOAP 1.1 messages over
HTTP.

Example 25.1. SOAP 1.1 Port Element

SOAP 1.2

<definitions ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...>
 ...
 <service name="SOAP11Service">
 <port binding="SOAP11Binding" name="SOAP11Port">
 <soap:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
<definitions>

CHAPTER 25. USING HTTP

173

When you are sending SOAP 1.2 messages over HTTP you must use the SOAP 1.2 address element
to specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address
as a URL. The SOAP 1.2 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap12/.

Example 25.2, “SOAP 1.2 Port Element” shows a port element used to send SOAP 1.2 messages over
HTTP.

Example 25.2. SOAP 1.2 Port Element

Other messages types

When your messages are mapped to any payload format other than SOAP you must use the HTTP
address element to specify the endpoint’s address. It has one attribute, location, that specifies the
endpoint’s address as a URL. The HTTP address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/http/.

Example 25.3, “HTTP Port Element” shows a port element used to send an XML message.

Example 25.3. HTTP Port Element

25.2. CONSUMER CONFIGURATION

Namespace

The WSDL extension elements used to configure an HTTP consumer endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix
http-conf. In order to use the HTTP configuration elements you must add the line shown in

<definitions ...
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" ...
>
 <service name="SOAP12Service">
 <port binding="SOAP12Binding" name="SOAP12Port">
 <soap12:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
</definitions>

<definitions ...
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" ... >
 <service name="HTTPService">
 <port binding="HTTPBinding" name="HTTPPort">
 <http:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
</definitions>

Red Hat JBoss Fuse 6.1 JBI Development Guide

174

Example 25.4, “HTTP Consumer WSDL Element's Namespace” to the definitions element of your
endpoint's WSDL document.

Example 25.4. HTTP Consumer WSDL Element's Namespace

Configuring the endpoint

The http-conf:client element is used to specify the connection properties of an HTTP consumer in
a WSDL document. The http-conf:client element is a child of the WSDL port element. The
attributes are described in Table 25.1, “HTTP Consumer Configuration Attributes”.

Table 25.1. HTTP Consumer Configuration Attributes

Attribute Description

ConnectionTimeout Specifies the amount of time, in milliseconds, that the
consumer attempts to establish a connection before it
times out. The default is 30000.

0 specifies that the consumer will continue to send
the request indefinitely.

ReceiveTimeout Specifies the amount of time, in milliseconds, that the
consumer will wait for a response before it times out.
The default is 30000.

0 specifies that the consumer will wait indefinitely.

AutoRedirect Specifies if the consumer will automatically follow a
server issued redirection. The default is false.

MaxRetransmits Specifies the maximum number of times a consumer
will retransmit a request to satisfy a redirect. The
default is -1 which specifies that unlimited
retransmissions are allowed.

<definitions ...
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

CHAPTER 25. USING HTTP

175

AllowChunking Specifies whether the consumer will send requests
using chunking. The default is true which specifies
that the consumer will use chunking when sending
requests.

Chunking cannot be used if either of the following are
true:

http-conf:basicAuthSupplier is
configured to provide credentials
preemptively.

AutoRedirect is set to true.

In both cases the value of AllowChunking is
ignored and chunking is disallowed.

Accept Specifies what media types the consumer is
prepared to handle. The value is used as the value of
the HTTP Accept property. The value of the attribute
is specified using multipurpose internet mail
extensions (MIME) types.

AcceptLanguage Specifies what language (for example, American
English) the consumer prefers for the purpose of
receiving a response. The value is used as the value
of the HTTP AcceptLanguage property.

Language tags are regulated by the International
Organization for Standards (ISO) and are typically
formed by combining a language code, determined by
the ISO-639 standard, and country code, determined
by the ISO-3166 standard, separated by a hyphen.
For example, en-US represents American English.

AcceptEncoding Specifies what content encodings the consumer is
prepared to handle. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). The value is used as the value of
the HTTP AcceptEncoding property.

ContentType Specifies the media type of the data being sent in the
body of a message. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType property. The default is text/xml.

For web services, this should be set to text/xml. If
the client is sending HTML form data to a CGI script,
this should be set to application/x-www-
form-urlencoded. If the HTTP POST request is
bound to a fixed payload format (as opposed to
SOAP), the content type is typically set to
application/octet-stream.

Attribute Description

Red Hat JBoss Fuse 6.1 JBI Development Guide

176

Host Specifies the Internet host and port number of the
resource on which the request is being invoked. The
value is used as the value of the HTTP Host
property.

This attribute is typically not required. It is only
required by certain DNS scenarios or application
designs. For example, it indicates what host the client
prefers for clusters (that is, for virtual servers
mapping to the same Internet protocol (IP) address).

Connection Specifies whether a particular connection is to be
kept open or closed after each request/response
dialog. There are two valid values:

Keep-Alive — Specifies that the
consumer wants the connection kept open
after the initial request/response sequence.
If the server honors it, the connection is
kept open until the consumer closes it.

close(default) — Specifies that the
connection to the server is closed after each
request/response sequence.

CacheControl Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a request from a consumer to a service
provider. See the section called “Consumer Cache
Control Directives”.

Cookie Specifies a static cookie to be sent with all requests.

BrowserType Specifies information about the browser from which
the request originates. In the HTTP specification from
the World Wide Web consortium (W3C) this is also
known as the user-agent. Some servers optimize
based on the client that is sending the request.

Attribute Description

CHAPTER 25. USING HTTP

177

Referer Specifies the URL of the resource that directed the
consumer to make requests on a particular service.
The value is used as the value of the HTTP Referer
property.

This HTTP property is used when a request is the
result of a browser user clicking on a hyperlink rather
than typing a URL. This can allow the server to
optimize processing based upon previous task flow,
and to generate lists of back-links to resources for the
purposes of logging, optimized caching, tracing of
obsolete or mistyped links, and so on. However, it is
typically not used in web services applications.

If the AutoRedirect attribute is set to true and
the request is redirected, any value specified in the
Referer attribute is overridden. The value of the
HTTP Referer property is set to the URL of the
service that redirected the consumer’s original
request.

DecoupledEndpoint Specifies the URL of a decoupled endpoint for the
receipt of responses over a separate provider-
>consumer connection. For more information on
using decoupled endpoints see, Section 25.4, “Using
the HTTP Transport in Decoupled Mode”.

You must configure both the consumer endpoint and
the service provider endpoint to use WS-Addressing
for the decoupled endpoint to work.

ProxyServer Specifies the URL of the proxy server through which
requests are routed.

ProxyServerPort Specifies the port number of the proxy server
through which requests are routed.

ProxyServerType Specifies the type of proxy server used to route
requests. Valid values are:

HTTP(default)

SOCKS

Attribute Description

Consumer Cache Control Directives

Table 25.2, “http-conf:client Cache Control Directives” lists the cache control directives supported
by an HTTP consumer.

Table 25.2. http-conf:client Cache Control Directives

Directive Behavior

Red Hat JBoss Fuse 6.1 JBI Development Guide

178

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

no-store Caches must not store either any part of a response
or any part of the request that invoked it.

max-age The consumer can accept a response whose age is
no greater than the specified time in seconds.

max-stale The consumer can accept a response that has
exceeded its expiration time. If a value is assigned to
max-stale, it represents the number of seconds
beyond the expiration time of a response up to which
the consumer can still accept that response. If no
value is assigned, the consumer can accept a stale
response of any age.

min-fresh The consumer wants a response that is still fresh for
at least the specified number of seconds indicated.

no-transform Caches must not modify media type or location of the
content in a response between a provider and a
consumer.

only-if-cached Caches should return only responses that are
currently stored in the cache, and not responses that
need to be reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can adhere
to the behavior mandated by the standard directive.

Directive Behavior

Example

Example 25.5, “WSDL to Configure an HTTP Consumer Endpoint” shows a WSDL fragment that
configures an HTTP consumer endpoint to specify that it does not interact with caches.

Example 25.5. WSDL to Configure an HTTP Consumer Endpoint

<service ... >
 <port ... >
 <soap:address ... />
 <http-conf:client CacheControl="no-cache" />
 </port>
</service>

CHAPTER 25. USING HTTP

179

25.3. PROVIDER CONFIGURATION

Namespace

The WSDL extension elements used to configure an HTTP provider endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix
http-conf. To use the HTTP configuration elements you must add the line shown in Example 25.6,
“HTTP Provider WSDL Element's Namespace” to the definitions element of your endpoint's WSDL
document.

Example 25.6. HTTP Provider WSDL Element's Namespace

Configuring the endpoint

The http-conf:server element is used to specify the connection properties of an HTTP service
provider in a WSDL document. The http-conf:server element is a child of the WSDL port element.
The attributes are described in Table 25.3, “HTTP Service Provider Configuration Attributes”.

Table 25.3. HTTP Service Provider Configuration Attributes

Attribute Description

ReceiveTimeout Sets the length of time, in milliseconds, the service
provider attempts to receive a request before the
connection times out. The default is 30000.

0 specifies that the provider will not timeout.

SuppressClientSendErrors Specifies whether exceptions are to be thrown when
an error is encountered on receiving a request. The
default is false; exceptions are thrown on
encountering errors.

SuppressClientReceiveErrors Specifies whether exceptions are to be thrown when
an error is encountered on sending a response to a
consumer. The default is false; exceptions are
thrown on encountering errors.

HonorKeepAlive Specifies whether the service provider honors
requests for a connection to remain open after a
response has been sent. The default is false;
keep-alive requests are ignored.

<definitions ...
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

Red Hat JBoss Fuse 6.1 JBI Development Guide

180

RedirectURL Specifies the URL to which the client request should
be redirected if the URL specified in the client
request is no longer appropriate for the requested
resource. In this case, if a status code is not
automatically set in the first line of the server
response, the status code is set to 302 and the
status description is set to Object Moved. The
value is used as the value of the HTTP RedirectURL
property.

CacheControl Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a response from a service provider to a
consumer. See the section called “Service Provider
Cache Control Directives”.

ContentLocation Sets the URL where the resource being sent in a
response is located.

ContentType Specifies the media type of the information being
sent in a response. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType location.

ContentEncoding Specifies any additional content encodings that have
been applied to the information being sent by the
service provider. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). Possible content encoding values
include zip, gzip, compress, deflate, and
identity. This value is used as the value of the
HTTP ContentEncoding property.

The primary use of content encodings is to allow
documents to be compressed using some encoding
mechanism, such as zip or gzip. Apache CXF
performs no validation on content codings. It is the
user’s responsibility to ensure that a specified content
coding is supported at application level.

ServerType Specifies what type of server is sending the
response. Values take the form program-
name/version; for example, Apache/1.2.5.

Attribute Description

Service Provider Cache Control Directives

Table 25.4, “http-conf:server Cache Control Directives” lists the cache control directives supported
by an HTTP service provider.

Table 25.4. http-conf:server Cache Control Directives

CHAPTER 25. USING HTTP

181

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

public Any cache can store the response.

private Public (shared) caches cannot store the response
because the response is intended for a single user. If
specific response header fields are specified with this
value, the restriction applies only to those header
fields within the response. If no response header
fields are specified, the restriction applies to the
entire response.

no-store Caches must not store any part of the response or
any part of the request that invoked it.

no-transform Caches must not modify the media type or location of
the content in a response between a server and a
client.

must-revalidate Caches must revalidate expired entries that relate to
a response before that entry can be used in a
subsequent response.

proxy-revalidate Does the same as must-revalidate, except that it can
only be enforced on shared caches and is ignored by
private unshared caches. When using this directive,
the public cache directive must also be used.

max-age Clients can accept a response whose age is no
greater that the specified number of seconds.

s-max-age Does the same as max-age, except that it can only be
enforced on shared caches and is ignored by private
unshared caches. The age specified by s-max-age
overrides the age specified by max-age. When using
this directive, the proxy-revalidate directive must also
be used.

cache-extension Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can adhere
to the behavior mandated by the standard directive.

Example

Red Hat JBoss Fuse 6.1 JBI Development Guide

182

Example 25.7, “WSDL to Configure an HTTP Service Provider Endpoint” shows a WSDL fragment that
configures an HTTP service provider endpoint specifying that it will not interact with caches.

Example 25.7. WSDL to Configure an HTTP Service Provider Endpoint

25.4. USING THE HTTP TRANSPORT IN DECOUPLED MODE

Overview

In normal HTTP request/response scenarios, the request and the response are sent using the same
HTTP connection. The service provider processes the request and responds with a response containing
the appropriate HTTP status code and the contents of the response. In the case of a successful request,
the HTTP status code is set to 200.

In some instances, such as when using WS-RM or when requests take an extended period of time to
execute, it makes sense to decouple the request and response message. In this case the service
providers sends the consumer a 202 Accepted response to the consumer over the back-channel of the
HTTP connection on which the request was received. It then processes the request and sends the
response back to the consumer using a new decoupled server->client HTTP connection. The consumer
runtime receives the incoming response and correlates it with the appropriate request before returning to
the application code.

Configuring decoupled interactions

Using the HTTP transport in decoupled mode requires that you do the following:

1. Configure the consumer to use WS-Addressing.

See the section called “Configuring an endpoint to use WS-Addressing”.

2. Configure the consumer to use a decoupled endpoint.

See the section called “Configuring the consumer”.

3. Configure any service providers that the consumer interacts with to use WS-Addressing.

See the section called “Configuring an endpoint to use WS-Addressing”.

Configuring an endpoint to use WS-Addressing

Specify that the consumer and any service provider with which the consumer interacts use WS-
Addressing.

You can specify that an endpoint uses WS-Addressing in one of two ways:

<service ... >
 <port ... >
 <soap:address ... />
 <http-conf:server CacheControl="no-cache" />
 </port>
</service>

CHAPTER 25. USING HTTP

183

Adding the wswa:UsingAddressing element to the endpoint's WSDL port element as shown
in Example 25.8, “Activating WS-Addressing using WSDL”.

Example 25.8. Activating WS-Addressing using WSDL

Adding the WS-Addressing policy to the endpoint's WSDL port element as shown in
Example 25.9, “Activating WS-Addressing using a Policy”.

Example 25.9. Activating WS-Addressing using a Policy

NOTE

The WS-Addressing policy supersedes the wswa:UsingAddressing WSDL element.

Configuring the consumer

Configure the consumer endpoint to use a decoupled endpoint using the DecoupledEndpoint attribute
of the http-conf:conduit element.

Example 25.10, “Configuring a Consumer to Use a Decoupled HTTP Endpoint” shows the configuration
for setting up the endpoint defined in Example 25.8, “Activating WS-Addressing using WSDL” to use use
a decoupled endpoint. The consumer now receives all responses at
http://widgetvendor.net/widgetSellerInbox.

Example 25.10. Configuring a Consumer to Use a Decoupled HTTP Endpoint

...
<service name="WidgetSOAPService">
 <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
 <soap:address="http://widgetvendor.net/widgetSeller" />
 <wswa:UsingAddressing
xmlns:wswa="http://www.w3.org/2005/02/addressing/wsdl"/>
 </port>
</service>
...

...
<service name="WidgetSOAPService">
 <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
 <soap:address="http://widgetvendor.net/widgetSeller" />
 <wsp:Policy xmlns:wsp="http://www.w3.org/2006/07/ws-policy">
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 </wsp:Policy>
 </port>
</service>
...

<beans xmlns="http://www.springframework.org/schema/beans"

Red Hat JBoss Fuse 6.1 JBI Development Guide

184

How messages are processed

Using the HTTP transport in decoupled mode adds extra layers of complexity to the processing of HTTP
messages. While the added complexity is transparent to the implementation level code in an application,
it might be important to understand what happens for debugging reasons.

Figure 25.1, “Message Flow in for a Decoupled HTTP Transport” shows the flow of messages when
using HTTP in decoupled mode.

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"

xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http:conduit name="
{http://widgetvendor.net/services}WidgetSOAPPort.http-conduit">
 <http:client
DecoupledEndpoint="http://widgetvendor.net:9999/decoupled_endpoint" />
 </http:conduit>
</beans>

CHAPTER 25. USING HTTP

185

Figure 25.1. Message Flow in for a Decoupled HTTP Transport

A request starts the following process:

1. The consumer implementation invokes an operation and a request message is generated.

2. The WS-Addressing layer adds the WS-A headers to the message.

When a decoupled endpoint is specified in the consumer's configuration, the address of the
decoupled endpoint is placed in the WS-A ReplyTo header.

3. The message is sent to the service provider.

4. The service provider receives the message.

5. The request message from the consumer is dispatched to the provider's WS-A layer.

6. Because the WS-A ReplyTo header is not set to anonymous, the provider sends back a
message with the HTTP status code set to 202, acknowledging that the request has been
received.

7. The HTTP layer sends a 202 Accepted message back to the consumer using the original
connection's back-channel.

8. The consumer receives the 202 Accepted reply on the back-channel of the HTTP connection
used to send the original message.

When the consumer receives the 202 Accepted reply, the HTTP connection closes.

Red Hat JBoss Fuse 6.1 JBI Development Guide

186

9. The request is passed to the service provider's implementation where the request is processed.

10. When the response is ready, it is dispatched to the WS-A layer.

11. The WS-A layer adds the WS-Addressing headers to the response message.

12. The HTTP transport sends the response to the consumer's decoupled endpoint.

13. The consumer's decoupled endpoint receives the response from the service provider.

14. The response is dispatched to the consumer's WS-A layer where it is correlated to the proper
request using the WS-A RelatesTo header.

15. The correlated response is returned to the client implementation and the invoking call is
unblocked.

CHAPTER 25. USING HTTP

187

CHAPTER 26. USING JMS

Abstract

HTTP is the underlying transport for the Web. It provides a standardized, robust, and flexible platform for
communicating between endpoints. Because of these factors it is the assumed transport for most WS-*
specifications and is integral to RESTful architectures.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

26.1. USING SOAP/JMS

Apache CXF implements the W3C standard SOAP/JMS transport. This standard is intended to provide a
more robust alternative to SOAP/HTTP services. Apache CXF applications using this transport should be
able to interoperate with applications that also implement the SOAP/JMS standard. The transport is
configured directly in an endpoint's WSDL.

26.1.1. Basic configuration

Overview

The SOAP over JMS protocol is defined by the World Wide Web Consortium(W3C) as a way of
providing a more reliable transport layer to the customary SOAP/HTTP protocol used by most services.
The Apache CXF implementation is fully compliant with the specification and should be compatible with
any framework that is also compliant.

This transport uses JNDI to find the JMS destinations. When an operation is invoked, the request is
packaged as a SOAP message and sent in the body of a JMS message to the specified destination.

To use the SOAP/JMS transport:

1. Specify that the transport type is SOAP/JMS.

2. Specify the target destination using a JMS URI.

3. Optionally, configure the JNDI connection.

4. Optionally, add additional JMS configuration.

Specifying the JMS transport type

You configure a SOAP binding to use the JMS transport when specifying the WSDL binding. You set the
soap:binding element's transport attribute to http://www.w3.org/2010/soapjms/.
Example 26.1, “SOAP over JMS binding specification” shows a WSDL binding that uses SOAP/JMS.

Example 26.1. SOAP over JMS binding specification

<wsdl:binding ... >
 <soap:binding style="document"

Red Hat JBoss Fuse 6.1 JBI Development Guide

188

http://www.w3.org/TR/soapjms/

Specifying the target destination

You specify the address of the JMS target destination when specifying the WSDL port for the endpoint.
The address specification for a SOAP/JMS endpoint uses the same soap:address element and
attribute as a SOAP/HTTP endpoint. The difference is the address specification. JMS endpoints use a
JMS URI as defined in the URI Scheme for JMS 1.0. Example 26.2, “JMS URI syntax” shows the syntax
for a JMS URI.

Example 26.2. JMS URI syntax

Table 26.1, “JMS URI variants” describes the available variants for the JMS URI.

Table 26.1. JMS URI variants

Variant Description

jndi Specifies that the destination is a JNDI name for the
target destination. When using this variant, you must
provide the configuration for accessing the JNDI
provider.

topic Specifies that the destination is the name of the topic
to be used as the target destination. The string
provided is passed into
Session.createTopic() to create a
representation of the destination.

queue Specifies that the destination is the name of the
queue to be used as the target destination. The string
provided is passed into
Session.createQueue() to create a
representation of the destination.

The options portion of a JMS URI are used to configure the transport and are discussed in
Section 26.1.2, “JMS URIs”.

Example 26.3, “SOAP/JMS endpoint address” shows the WSDL port entry for a SOAP/JMS endpoint
whose target destination is looked up using JNDI.

Example 26.3. SOAP/JMS endpoint address

 transport="http://www.w3.org/2010/soapjms/" />
 ...
</wsdl:binding>

jms:variant:destination?options

<wsdl:port ... >
 ...
 <soap:address

CHAPTER 26. USING JMS

189

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

For working with SOAP/JMS services in Java see ???.

Configuring JNDI and the JMS transport

The SOAP/JMS provides several ways to configure the JNDI connection and the JMS transport:

Using the JMS URI

Using WSDL extensions

26.1.2. JMS URIs

Overview

When using SOAP/JMS, a JMS URI is used to specify the endpoint's target destination. The JMS URI
can also be used to configure JMS connection by appending one or more options to the URI. These
options are detailed in the IETF standard, URI Scheme for Java Message Service 1.0. They can be used
to configure the JNDI system, the reply destination, the delivery mode to use, and other JMS properties.

Syntax

As shown in Example 26.2, “JMS URI syntax”, you can append one or more options to the end of a JMS
URI by separating them from the destination's address with a question mark(?). Multiple options are
separated by an ampersand(&). Example 26.4, “Syntax for JMS URI options” shows the syntax for using
multiple options in a JMS URI.

Example 26.4. Syntax for JMS URI options

JMS properties

Table 26.2, “JMS properties settable as URI options” shows the URI options that affect the JMS transport
layer.

Table 26.2. JMS properties settable as URI options

Property Default Description

location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
</wsdl:port>

jmsAddress?option1=value1&option2=value2&...optionN=valueN

Red Hat JBoss Fuse 6.1 JBI Development Guide

190

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

deliveryMode PERSISTENT Specifies whether to use JMS
PERSISTENT or
NON_PERSISTENT message
semantics. In the case of
PERSISTENT delivery mode, the
JMS broker stores messages in
persistent storage before
acknowledging them; whereas
NON_PERSISTENT messages
are kept in memory only.

replyToName Explicitly specifies the reply
destination to appear in the
JMSReplyTo header. Setting
this property is recommended for
applications that have request-
reply semantics because the JMS
provider will assign a temporary
reply queue if one is not explicitly
set.

The value of this property has an
interpretation that depends on the
variant specified in the JMS URI:

jndi variant—the JNDI
name of the destination

queue or topic
variants—the actual
name of the destination

priority 4 Specifies the JMS message
priority, which ranges from 0
(lowest) to 9 (highest).

timeToLive 0 Time (in milliseconds) after which
the message will be discarded by
the JMS provider. A value of 0
represents an infinite lifetime (the
default).

Property Default Description

JNDI properties

Table 26.3, “JNDI properties settable as URI options” shows the URI options that can be used to
configure JNDI for this endpoint.

Table 26.3. JNDI properties settable as URI options

Property Description

CHAPTER 26. USING JMS

191

jndiConnectionFactoryName Specifies the JNDI name of the JMS connection
factory.

jndiInitialContextFactory Specifies the fully qualified Java class name of the
JNDI provider (which must be of
javax.jms.InitialContextFactory type).
Equivalent to setting the
java.naming.factory.initial Java system
property.

jndiURL Specifies the URL that initializes the JNDI provider.
Equivalent to setting the
java.naming.provider.url Java system
property.

Property Description

Additional JNDI properties

The properties, java.naming.factory.initial and java.naming.provider.url, are standard
properties, which are required to initialize any JNDI provider. Sometimes, however, a JNDI provider
might support custom properties in addition to the standard ones. In this case, you can set an arbitrary
JNDI property by setting a URI option of the form jndi-PropertyName.

For example, if you were using SUN's LDAP implementation of JNDI, you could set the JNDI property,
java.naming.factory.control, in a JMS URI as shown in Example 26.5, “Setting a JNDI property
in a JMS URI”.

Example 26.5. Setting a JNDI property in a JMS URI

Example

If the JMS provider is not already configured, it is possible to provide the requisite JNDI configuration
details in the URI using options (see Table 26.3, “JNDI properties settable as URI options”). For
example, to configure an endpoint to use the Apache ActiveMQ JMS provider and connect to the queue
called test.cxf.jmstransport.queue, use the URI shown in Example 26.6, “JMS URI that
configures a JNDI connection”.

Example 26.6. JMS URI that configures a JNDI connection

jms:queue:FOO.BAR?jndi-
java.naming.factory.control=com.sun.jndi.ldap.ResponseControlFactory

jms:jndi:dynamicQueues/test.cxf.jmstransport.queue
?
jndiInitialContextFactory=org.apache.activemq.jndi.ActiveMQInitialContex
tFactory
&jndiConnectionFactoryName=ConnectionFactory
&jndiURL=tcp://localhost:61616

Red Hat JBoss Fuse 6.1 JBI Development Guide

192

26.1.3. WSDL extensions

Overview

You can specify the basic configuration of the JMS transport by inserting WSDL extension elements into
the contract, either at binding scope, service scope, or port scope. The WSDL extensions enable you to
specify the properties for bootstrapping a JNDI InitialContext, which can then be used to look up
JMS destinations. You can also set some properties that affect the behavior of the JMS transport layer.

SOAP/JMS namespace

the SOAP/JMS WSDL extensions are defined in the http://www.w3.org/2010/soapjms/
namespace. To use them in your WSDL contracts add the following setting to the wsdl:definitions
element:

WSDL extension elements

Table 26.4, “SOAP/JMS WSDL extension elements” shows all of the WSDL extension elements you can
use to configure the JMS transport.

Table 26.4. SOAP/JMS WSDL extension elements

Element Default Description

soapjms:jndiInitialCont
extFactory

 Specifies the fully qualified Java
class name of the JNDI provider.
Equivalent to setting the
java.naming.factory.ini
tial Java system property.

soapjms:jndiURL Specifies the URL that initializes
the JNDI provider. Equivalent to
setting the
java.naming.provider.ur
l Java system property.

soapjms:jndiContextPara
meter

 Enables you to specify an
additional property for creating the
JNDI InitialContext. Use
the name and value attributes to
specify the property.

soapjms:jndiConnectionF
actoryName

 Specifies the JNDI name of the
JMS connection factory.

<wsdl:definitions ...
 xmlns:soapjms="http://www.w3.org/2010/soapjms/"
 ... >

CHAPTER 26. USING JMS

193

soapjms:deliveryMode PERSISTENT Specifies whether to use JMS
PERSISTENT or
NON_PERSISTENT message
semantics. In the case of
PERSISTENT delivery mode, the
JMS broker stores messages in
persistent storage before
acknowledging them; whereas
NON_PERSISTENT messages
are kept in memory only.

soapjms:replyToName Explicitly specifies the reply
destination to appear in the
JMSReplyTo header. Setting
this property is recommended for
SOAP invocations that have
request-reply semantics. If this
property is not set the JMS
provider allocates a temporary
queue with an automatically
generated name.

The value of this property has an
interpretation that depends on the
variant specified in the JMS URI,
as follows:

jndi variant—the JNDI
name of the destination.

queue or topic
variants—the actual
name of the destination.

soapjms:priority 4 Specifies the JMS message
priority, which ranges from 0
(lowest) to 9 (highest).

soapjms:timeToLive 0 Time, in milliseconds, after which
the message will be discarded by
the JMS provider. A value of 0
represents an infinite lifetime.

Element Default Description

Configuration scopes

The WSDL elements placement in the WSDL contract effect the scope of the configuration changes on
the endpoints defined in the contract. The SOAP/JMS WSDL elements can be placed as children of
either the wsdl:binding element, the wsdl:service element, or the wsdl:port element. The
parent of the SOAP/JMS elements determine which of the following scopes the configuration is placed
into.

Binding scope

You can configure the JMS transport at the binding scope by placing extension elements inside the

Red Hat JBoss Fuse 6.1 JBI Development Guide

194

wsdl:binding element. Elements in this scope define the default configuration for all endpoints that
use this binding. Any settings in the binding scope can be overridden at the service scope or the port
scope.

Service scope

You can configure the JMS transport at the service scope by placing extension elements inside a
wsdl:service element. Elements in this scope define the default configuration for all endpoints in
this service. Any settings in the service scope can be overridden at the port scope.

Port scope

You can configure the JMS transport at the port scope by placing extension elements inside a
wsdl:port element. Elements in the port scope define the configuration for this port. They override
any defaults defined at the service scope or at the binding scope.

Example

Example 26.7, “WSDL contract with SOAP/JMS configuration” shows a WSDL contract for a SOAP/JMS
service. It configures the JNDI layer in the binding scope, the message delivery details in the service
scope, and the reply destination in the port scope.

Example 26.7. WSDL contract with SOAP/JMS configuration

1

2

3

4

5

<wsd;definitions ...
 xmlns:soapjms="http://www.w3.org/2010/soapjms/"
 ... >

 ...
 <wsdl:binding name="JMSGreeterPortBinding"
type="tns:JMSGreeterPortType">
 ...

 <soapjms:jndiInitialContextFactory>
 org.apache.activemq.jndi.ActiveMQInitialContextFactory

 </soapjms:jndiInitialContextFactory>
 <soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>
 <soapjms:jndiConnectionFactoryName>
 ConnectionFactory
 </soapjms:jndiConnectionFactoryName>
 ...
 </wsdl:binding>
 ...
 <wsdl:service name="JMSGreeterService">
 ...

 <soapjms:deliveryMode>NON_PERSISTENT</soapjms:deliveryMode>
 <soapjms:timeToLive>60000</soapjms:timeToLive>

 ...
 <wsdl:port binding="tns:JMSGreeterPortBinding" name="GreeterPort">

 <soap:address
location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
 <soapjms:replyToName>
 dynamicQueues/greeterReply.queue

 </soapjms:replyToName>
 ...
 </wsdl:port>
 ...

CHAPTER 26. USING JMS

195

1

2

3

4

5

The WSDL in Example 26.7, “WSDL contract with SOAP/JMS configuration” does the following:

Declare the namespace for the SOAP/JMS extensions.

Configure the JNDI connections in the binding scope.

Configure the JMS delivery style to non-persistent and each message to live for one minute.

Specify the target destination.

Configure the JMS transport so that reply messages are delivered on the greeterReply.queue
queue.

26.2. USING WSDL TO CONFIGURE JMS

The WSDL extensions for defining a JMS endpoint are defined in the namespace
http://cxf.apache.org/transports/jms. In order to use the JMS extensions you will need to add the line
shown in Example 26.8, “JMS WSDL extension namespace” to the definitions element of your contract.

Example 26.8. JMS WSDL extension namespace

26.2.1. Basic JMS configuration

Overview

The JMS address information is provided using the jms:address element and its child, the
jms:JMSNamingProperties element. The jms:address element’s attributes specify the information
needed to identify the JMS broker and the destination. The jms:JMSNamingProperties element
specifies the Java properties used to connect to the JNDI service.

IMPORTANT

Information specified using the JMS feature will override the information in the endpoint's
WSDL file.

Specifying the JMS address

The basic configuration for a JMS endpoint is done by using a jms:address element as the child of
your service’s port element. The jms:address element used in WSDL is identical to the one used in
the configuration file. Its attributes are listed in Table 26.5, “JMS endpoint attributes”.

Table 26.5. JMS endpoint attributes

 </wsdl:service>
 ...
</wsdl:definitions>

xmlns:jms="http://cxf.apache.org/transports/jms"

Red Hat JBoss Fuse 6.1 JBI Development Guide

196

Attribute Description

destinationStyle Specifies if the JMS destination is a JMS queue or a
JMS topic.

jndiConnectionFactoryName Specifies the JNDI name bound to the JMS
connection factory to use when connecting to the
JMS destination.

jmsDestinationName Specifies the JMS name of the JMS destination to
which requests are sent.

jmsReplyDestinationName Specifies the JMS name of the JMS destinations
where replies are sent. This attribute allows you to
use a user defined destination for replies. For more
details see Section 26.3, “Using a Named Reply
Destination”.

jndiDestinationName Specifies the JNDI name bound to the JMS
destination to which requests are sent.

jndiReplyDestinationName Specifies the JNDI name bound to the JMS
destinations where replies are sent. This attribute
allows you to use a user defined destination for
replies. For more details see Section 26.3, “Using a
Named Reply Destination”.

connectionUserName Specifies the user name to use when connecting to a
JMS broker.

connectionPassword Specifies the password to use when connecting to a
JMS broker.

The jms:address WSDL element uses a jms:JMSNamingProperties child element to specify
additional information needed to connect to a JNDI provider.

Specifying JNDI properties

To increase interoperability with JMS and JNDI providers, the jms:address element has a child
element, jms:JMSNamingProperties, that allows you to specify the values used to populate the
properties used when connecting to the JNDI provider. The jms:JMSNamingProperties element has
two attributes: name and value. name specifies the name of the property to set. value attribute
specifies the value for the specified property. jms:JMSNamingProperties element can also be used
for specification of provider specific properties.

The following is a list of common JNDI properties that can be set:

1. java.naming.factory.initial

2. java.naming.provider.url

CHAPTER 26. USING JMS

197

3. java.naming.factory.object

4. java.naming.factory.state

5. java.naming.factory.url.pkgs

6. java.naming.dns.url

7. java.naming.authoritative

8. java.naming.batchsize

9. java.naming.referral

10. java.naming.security.protocol

11. java.naming.security.authentication

12. java.naming.security.principal

13. java.naming.security.credentials

14. java.naming.language

15. java.naming.applet

For more details on what information to use in these attributes, check your JNDI provider’s
documentation and consult the Java API reference material.

Example

Example 26.9, “JMS WSDL port specification” shows an example of a JMS WSDL port specification.

Example 26.9. JMS WSDL port specification

26.2.2. JMS client configuration

Overview

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </port>
</service>

Red Hat JBoss Fuse 6.1 JBI Development Guide

198

JMS consumer endpoints specify the type of messages they use. JMS consumer endpoint can use
either a JMS ByteMessage or a JMS TextMessage.

When using an ByteMessage the consumer endpoint uses a byte[] as the method for storing data into
and retrieving data from the JMS message body. When messages are sent, the message data, including
any formating information, is packaged into a byte[] and placed into the message body before it is placed
on the wire. When messages are received, the consumer endpoint will attempt to unmarshall the data
stored in the message body as if it were packed in a byte[].

When using a TextMessage, the consumer endpoint uses a string as the method for storing and
retrieving data from the message body. When messages are sent, the message information, including
any format-specific information, is converted into a string and placed into the JMS message body. When
messages are received the consumer endpoint will attempt to unmarshall the data stored in the JMS
message body as if it were packed into a string.

When native JMS applications interact with Apache CXF consumers, the JMS application is responsible
for interpreting the message and the formatting information. For example, if the Apache CXF contract
specifies that the binding used for a JMS endpoint is SOAP, and the messages are packaged as
TextMessage, the receiving JMS application will get a text message containing all of the SOAP
envelope information.

Specifying the message type

The type of messages accepted by a JMS consumer endpoint is configured using the optional
jms:client element. The jms:client element is a child of the WSDL port element and has one
attribute:

Table 26.6. JMS Client WSDL Extensions

messageType Specifies how the message data will be packaged as
a JMS message. text specifies that the data will be
packaged as a TextMessage. binary specifies
that the data will be packaged as an
ByteMessage.

Example

Example 26.10, “WSDL for a JMS consumer endpoint” shows the WSDL for configuring a JMS consumer
endpoint.

Example 26.10. WSDL for a JMS consumer endpoint

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>

CHAPTER 26. USING JMS

199

26.2.3. JMS provider configuration

Overview

JMS provider endpoints have a number of behaviors that are configurable. These include:

how messages are correlated

the use of durable subscriptions

if the service uses local JMS transactions

the message selectors used by the endpoint

Specifying the configuration

Provider endpoint behaviors are configured using the optional jms:server element. The jms:server
element is a child of the WSDL wsdl:port element and has the following attributes:

Table 26.7. JMS provider endpoint WSDL extensions

Attribute Description

useMessageIDAsCorrealationID Specifies whether JMS will use the message ID to
correlate messages. The default is false.

durableSubscriberName Specifies the name used to register a durable
subscription.

messageSelector Specifies the string value of a message selector to
use. For more information on the syntax used to
specify message selectors, see the JMS 1.1
specification.

transactional Specifies whether the local JMS broker will create
transactions around message processing. The
default is false. [a]

[a] Currently, setting the transactional attribute to true is not supported by the runtime.

Example

Example 26.11, “WSDL for a JMS provider endpoint” shows the WSDL for configuring a JMS provider
endpoint.

 <jms:client messageType="binary" />
 </port>
</service>

Red Hat JBoss Fuse 6.1 JBI Development Guide

200

Example 26.11. WSDL for a JMS provider endpoint

26.3. USING A NAMED REPLY DESTINATION

Overview

By default, Apache CXF endpoints using JMS create a temporary queue for sending replies back and
forth. If you prefer to use named queues, you can configure the queue used to send replies as part of an
endpoint's JMS configuration.

Setting the reply destination name

You specify the reply destination using either the jmsReplyDestinationName attribute or the
jndiReplyDestinationName attribute in the endpoint's JMS configuration. A client endpoint will listen
for replies on the specified destination and it will specify the value of the attribute in the ReplyTo field of
all outgoing requests. A service endpoint will use the value of the jndiReplyDestinationName
attribute as the location for placing replies if there is no destination specified in the request’s ReplyTo
field.

Example

Example 26.12, “JMS Consumer Specification Using a Named Reply Queue” shows the configuration for
a JMS client endpoint.

Example 26.12. JMS Consumer Specification Using a Named Reply Queue

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 <jms:server messageSelector="cxf_message_selector"
 useMessageIDAsCorrelationID="true"
 transactional="true"
 durableSubscriberName="cxf_subscriber" />
 </port>
</service>

<jms:conduit name="
{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
 <jms:address destinationStyle="queue"
 jndiConnectionFactoryName="myConnectionFactory"
 jndiDestinationName="myDestination"
 jndiReplyDestinationName="myReplyDestination" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

CHAPTER 26. USING JMS

201

value="org.apache.cxf.transport.jms.MyInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </jms:conduit>

Red Hat JBoss Fuse 6.1 JBI Development Guide

202

CHAPTER 27. INTRODUCTION TO THE APACHE CXF BINDING
COMPONENT

Abstract

Endpoints being deployed using the Apache CXF binding component are packaged into a service unit.
The service unit will container the WSDL document defining the endpoint's interface and a configuration
file that sets-up the endpoint's runtime behavior.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

CONTENTS OF A FILE COMPONENT SERVICE UNIT

A service unit that configures the Apache CXF binding component will contain the following artifacts:

xbean.xml

The xbean.xml file contains the XML configuration for the endpoint defined by the service unit. The
contents of this file are the focus of this guide.

NOTE

The service unit can define more than one endpoint.

WSDL file

The WSDL file defines the endpoint the interface exposes.

Spring configuration file

The Spring configuration file contains configuration for the Apache CXF runtime.

meta-inf/jbi.xml

The jbi.xml file is the JBI descriptor for the service unit. Example 27.1, “JBI Descriptor for a
Apache CXF Binding Component Service Unit” shows a JBI descriptor for a Apache CXF binding
component service unit.

Example 27.1. JBI Descriptor for a Apache CXF Binding Component Service Unit

For information on using the Maven tooling to package endpoints into a JBI service unit see ???.

OSGI PACKAGING

<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
 <services binding-component="false" />
</jbi>

CHAPTER 27. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT

203

You can package Apache CXF binding component endpoints in an OSGi bundle. To do so you need to
make two minor changes:

you will need to include an OSGi bundle manifest in the META-INF folder of the bundle.

You need to add the following to your service unit's configuration file:

IMPORTANT

When you deploy Apache CXF binding component endpoints in an OSGi bundle, the
resulting endpoints are deployed as a JBI service unit.

For more information on using the OSGi packaging see Appendix H, Using the Maven OSGi Tooling.

NAMESPACE

The elements used to configure Apache CXF binding component endpoints are defined in the
http://servicemix.apache.org/cxfbc/1.0 namespace. You will need to add a namespace
declaration similar to the one in Example 27.2, “Namespace Declaration for Using Apache CXF Binding
Component Endpoints” to your xbeans.xml file's beans element.

Example 27.2. Namespace Declaration for Using Apache CXF Binding Component Endpoints

In addition, you need to add the schema location to the Spring beans element's xsi:schemaLocation
as shown in Example 27.3, “Schema Location for Using Apache CXF Binding Component Endpoints”.

Example 27.3. Schema Location for Using Apache CXF Binding Component Endpoints

<bean class="org.apache.servicemix.common.osgi.EndpointExporter" />

<beans ...
 xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
 ... >
 ...
</beans>

<beans ...
 xsi:schemaLocation="...
http://servicemix.apache.org/cxfbc/1.0
http://servicemix.apache.org/cxfbc/1.0/servicemix-cxfbc.xsd
...">
 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

204

CHAPTER 28. CONSUMER ENDPOINTS

Abstract

A consumer endpoint listens for requests from external endpoints and delivers responses back to the
requesting endpoint. It is configured using a single XML element that specifies the WSDL document
defining the endpoint.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

Consumer endpoints play the role of consumer from the vantage point of other endpoints running inside
of the ESB. However, from outside of the ESB a consumer endpoint plays the role of a service provider.
As shown in Figure 28.1, “Consumer Endpoint”, consumer endpoints listen from incoming requests from
external endpoints. When it receives a request, the consumer passes it off to the NMR fro delivery to
endpoint that will process the request. If a response is generated, the consumer endpoint delivers the
response back to the external endpoint.

Figure 28.1. Consumer Endpoint

CHAPTER 28. CONSUMER ENDPOINTS

205

IMPORTANT

Because consumer endpoint's behave like service providers to external endpoints, you
configure the runtime behavior of the transport using the provider-specific WSDL entries.

PROCEDURE

To configure a consumer endpoint do the following:

1. Add a consumer element to your xbean.xml file.

2. Add a wsdl attribute to the consumer element.

See the section called “Specifying the WSDL”.

3. If your WSDL defines more than one service, you will need to specify a value for the service
attribute.

See the section called “Specifying the endpoint details”.

4. If the service you choose defines more than one endpoint, you will need to specify a value for the
endpoint attribute.

See the section called “Specifying the endpoint details”.

5. Specify the details for the target of the requests received by the endpoint.

See the section called “Specifying the target endpoint”.

6. If your endpoint is going to be receiving binary attachments set its mtomEnabled attribute to
true.

See Chapter 30, Using MTOM to Process Binary Content.

7. If your endpoint does not need to process the JBI wrapper set its useJbiWrapper attribute to
false.

See Chapter 31, Working with the JBI Wrapper.

8. If you are using any of the advanced features, such as WS-Addressing or WS-Policy, specify a
value for the busCfg attribute.

See ???.

SPECIFYING THE WSDL

The wsdl attribute is the only required attribute to configure a consumer endpoint. It specifies the
location of the WSDL document that defines the endpoint being exposed. The path used is relative to the
top-level of the exploded service unit.

TIP

If the WSDL document defines a single service with a single endpoint, then you do not require any
additional information to expose a consumer endpoint.

Red Hat JBoss Fuse 6.1 JBI Development Guide

206

Example 28.1, “Minimal Consumer Endpoint Configuration” shows the minimal configuration for a
consumer endpoint.

Example 28.1. Minimal Consumer Endpoint Configuration

For information on creating a WSDL document see ???.

SPECIFYING THE ENDPOINT DETAILS

If the endpoint's WSDL document defines a single service with a single endpoint, the ESB can easily
determine which endpoint to use. It will use the values from the WSDL document to specify the service
name, endpoint name and interface name for the instantiated endpoint.

However, if the endpoint's WSDL document defines multiple services or if it defines multiple endpoints
for a service, you will need to provide the consumer endpoint with additional information so that it can
determine the proper definition to use. What information you need to provide depends on the complexity
of the WSDL document. You may need to supply values for both the service name and the endpoint
name, or you may only have to supply one of these values.

If the WSDL document contains more than one service element you will need to specify a value for the
consumer's service attribute. The value of the consumer's service attribute is the QName of the
WSDL service element that defines the desired service in the WSDL document. For example, if you
wanted your endpoint to use the WidgetSalesService in the WSDL shown in Example 28.2, “WSDL with
Two Services” you would use the configuration shown in Example 28.3, “Consumer Endpoint with a
Defined Service Name”.

Example 28.2. WSDL with Two Services

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
 ... >
 ...
 <cxfbc:consumer wsdl="/wsdl/widget.wsdl" />

 ...
</beans>

<definitions ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 targetNamespace="http://demos.widgetVendor.com" ...>
 ...
 <service name="WidgetSalesService">
 <port binding="WidgetSalesBinding" name="WidgetSalesPort">
 <soap:address location="http://widget.sales.com/index.xml">
 </port>
 </service>

 <service name="WidgetInventoryService">
 <port binding="WidgetInventoryBinding" name="WidgetInventoryPort">
 <soap:address location="http://widget.inventory.com/index.xml">
 </port>
 </service>
 ...
<definitions>

CHAPTER 28. CONSUMER ENDPOINTS

207

Example 28.3. Consumer Endpoint with a Defined Service Name

If the WSDL document's service definition contains more than one endpoint, then you will need to provide
a value for the consumer's endpoint attribute. The value of the endpoint attribute corresponds to the
value of the WSDL port element's name attribute. For example, if you wanted your endpoint to use the
WidgetEasternSalesPort in the WSDL shown in Example 28.4, “Service with Two Endpoints” you would
use the configuration shown in Example 28.5, “Consumer Endpoint with a Defined Endpoint Name”.

Example 28.4. Service with Two Endpoints

Example 28.5. Consumer Endpoint with a Defined Endpoint Name

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
 xmlns:widgets="http://demos.widgetVendor.com"
 ... >
 ...
 <cxfbc:consumer wsdl="/wsdl/widget.wsdl"
 service="widgets:WidgetSalesService" />

 ...
</beans>

<definitions ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 targetNamespace="http://demos.widgetVendor.com" ...>
 ...
 <service name="WidgetSalesService">
 <port binding="WidgetSalesBinding" name="WidgetWesternSalesPort">
 <soap:address location="http://widget.sales.com/index.xml">
 </port>
 <port binding="WidgetSalesBinding" name="WidgetEasternSalesPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </port>
 </service>
 ...
<definitions>

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
 xmlns:widgets="http://demos.widgetVendor.com"
 ... >
 ...
 <cxfbc:consumer wsdl="/wsdl/widget.wsdl"

Red Hat JBoss Fuse 6.1 JBI Development Guide

208

SPECIFYING THE TARGET ENDPOINT

The consumer endpoint will determine the target endpoint in the following manner:

1. If you explicitly specify an endpoint using both the targetService attribute and the
targetEndpoint attribute, the ESB will use that endpoint.

2. If you only specify a value for the targetService attribute, the ESB will attempt to find an
appropriate endpoint on the specified service.

3. If you specify an the name of an interface that can accept the message using the
targetInterface attribute, the ESB will attempt to locate an endpoint that implements the
specified interface and direct the messages to it.

4. If you do not use any of the target attributes, the ESB will use the values used in configuring the
endpoint's service name and endpoint name to determine the target endpoint.

Example 28.6, “Consumer Endpoint Configuration Specifying a Target Endpoint” shows the configuration
for a consumer endpoint that specifies the target endpoint to use.

Example 28.6. Consumer Endpoint Configuration Specifying a Target Endpoint

IMPORTANT

If you specify values for more than one of the target attributes, the consumer endpoint will
use the most specific information.

 endpoint="WidgetEasternSalesService" />
 ...
</beans>

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
 xmlns:widgets="http://demos.widgetVendor.com"
 ... >
 ...
 <cxfbc:consumer wsdl="/wsdl/widget.wsdl"
 targetEndpoint="WidgetSalesTargetPort"
 targetService="widgets:WidgetSalesTargetService" />

 ...
</beans>

CHAPTER 28. CONSUMER ENDPOINTS

209

CHAPTER 29. PROVIDER ENDPOINTS

Abstract

A provider endpoint sends requests to external endpoints and waits for the response. It is configured
using a single XML element that specifies the WSDL document defining the endpoint.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

Provider endpoints play the role of service provider from the vantage point of other endpoints running
inside of the ESB. However, from outside of the ESB a provider endpoint plays the role of a consumer.
As shown in Figure 29.1, “Provider Endpoint”, provider endpoints make requests on external endpoints.
When it receives the response, the provider endpoint returns it back to the NMR.

Figure 29.1. Provider Endpoint

IMPORTANT

Because provider endpoint's behave like consumers to external endpoints, you configure
the runtime behavior of the transport using the consumer-specific WSDL entries.

PROCEDURE

Red Hat JBoss Fuse 6.1 JBI Development Guide

210

To configure a provider endpoint do the following:

1. Add a provider element to your xbean.xml file.

2. Add a wsdl attribute to the provider element.

See the section called “Specifying the WSDL”.

3. If your WSDL defines more than one service, you will need to specify a value for the service
attribute.

See the section called “Specifying the endpoint details”.

4. If the service you choose defines more than one endpoint, you will need to specify a value for the
endpoint attribute.

See the section called “Specifying the endpoint details”.

5. If your endpoint is going to be receiving binary attachments set its mtomEnabled attribute to
true.

See Chapter 30, Using MTOM to Process Binary Content.

6. If your endpoint does not need to process the JBI wrapper set its useJbiWrapper attribute to
false.

See Chapter 31, Working with the JBI Wrapper.

7. If you are using any of the advanced features, such as WS-Addressing or WS-Policy, specify a
value for the busCfg attribute.

See ???.

SPECIFYING THE WSDL

The wsdl attribute is the only required attribute to configure a provider endpoint. It specifies the location
of the WSDL document that defines the endpoint being exposed. The path used is relative to the top-
level of the exploded service unit.

TIP

If the WSDL document defines a single service with a single endpoint, then you do not require any
additional information to expose a provider endpoint.

Example 29.1, “Minimal Provider Endpoint Configuration” shows the minimal configuration for a provider
endpoint.

Example 29.1. Minimal Provider Endpoint Configuration

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
 ... >
 ...
 <cxfbc:provider wsdl="/wsdl/widget.wsdl" />

CHAPTER 29. PROVIDER ENDPOINTS

211

For information on creating a WSDL document see ???.

SPECIFYING THE ENDPOINT DETAILS

If the endpoint's WSDL document defines a single service with a single endpoint, the ESB can easily
determine which endpoint to use. It will use the values from the WSDL document to specify the service
name, endpoint name and interface name for the instantiated endpoint.

However, if the endpoint's WSDL document defines multiple services or if it defines multiple endpoints
for a service, you will need to provide the provider endpoint with additional information so that it can
determine the proper definition to use. What information you need to provide depends on the complexity
of the WSDL document. You may need to supply values for both the service name and the endpoint
name, or you may only have to supply one of these values.

If the WSDL document contains more than one service element you will need to specify a value for the
provider's service attribute. The value of the provider's service attribute is the QName of the WSDL
service element that defines the desired service in the WSDL document. For example, if you wanted
your endpoint to use the WidgetInventoryService in the WSDL shown in Example 29.2, “WSDL with Two
Services” you would use the configuration shown in Example 29.3, “Provider Endpoint with a Defined
Service Name”.

Example 29.2. WSDL with Two Services

Example 29.3. Provider Endpoint with a Defined Service Name

 ...
</beans>

<definitions ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 targetNamespace="http://demos.widgetVendor.com" ...>
 ...
 <service name="WidgetSalesService">
 <port binding="WidgetSalesBinding" name="WidgetSalesPort">
 <soap:address location="http://widget.sales.com/index.xml">
 </port>
 </service>

 <service name="WidgetInventoryService">
 <port binding="WidgetInventoryBinding" name="WidgetInventoryPort">
 <soap:address location="http://widget.inventory.com/index.xml">
 </port>
 </service>
 ...
<definitions>

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
 xmlns:widgets="http://demos.widgetVendor.com"
 ... >
 ...
 <cxfbc:provider wsdl="/wsdl/widget.wsdl"

Red Hat JBoss Fuse 6.1 JBI Development Guide

212

If the WSDL document's service definition contains more than one endpoint, then you will need to provide
a value for the provider's endpoint attribute. The value of the endpoint attribute corresponds to the
value of the WSDL port element's name attribute. For example, if you wanted your endpoint to use the
WidgetWesternSalesPort in the WSDL shown in Example 29.4, “Service with Two Endpoints” you would
use the configuration shown in Example 29.5, “Provider Endpoint with a Defined Endpoint Name”.

Example 29.4. Service with Two Endpoints

Example 29.5. Provider Endpoint with a Defined Endpoint Name

 service="widgets:WidgetInventoryService" />

 ...
</beans>

<definitions ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 targetNamespace="http://demos.widgetVendor.com" ...>
 ...
 <service name="WidgetSalesService">
 <port binding="WidgetSalesBinding" name="WidgetWesternSalesPort">
 <soap:address location="http://widget.sales.com/index.xml">
 </port>
 <port binding="WidgetSalesBinding" name="WidgetEasternSalesPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </port>
 </service>
 ...
<definitions>

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
 xmlns:widgets="http://demos.widgetVendor.com"
 ... >
 ...
 <cxfbc:provider wsdl="/wsdl/widget.wsdl"
 endpoint="WidgetWesternSalesService" />
 ...
</beans>

CHAPTER 29. PROVIDER ENDPOINTS

213

CHAPTER 30. USING MTOM TO PROCESS BINARY CONTENT

Abstract

Enabling MTOM support allows your endpoints to consume and produce messages that contain binary
data.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

SOAP Message Transmission Optimization Mechanism (MTOM) specifies an optimized method for
sending binary data as part of a SOAP message using the XML-binary Optimized Packaging (XOP)
packages for transmitting binary data. The Apache CXF binding supports the use of MTOM to send and
receive binary data. MTOM support is enabled on an endpoint by endpoint basis.

CONFIGURING AN ENDPOINT TO SUPPORT MTOM

As shown in Example 30.1, “Configuring an Endpoint to Use MTOM”, you configure an endpoint to
support MTOM by setting its mtomEnabled attribute to true.

Example 30.1. Configuring an Endpoint to Use MTOM

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
 ...>

 <cxfbc:consumer wsdl="/wsdl/widget.wsdl"
 mtomEnabled="true" />

 ...
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

214

CHAPTER 31. WORKING WITH THE JBI WRAPPER

Abstract

By default, all Apache CXF binding component endpoints expect SOAP messages to be inside of the JBI
wrapper. You can turn off the extra processing if it is not required.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

There are instances when a JBI component cannot consume a native SOAP message. For instance,
SOAP headers pose difficulty for JBI components. The JBI specification defines a JBI wrapper that can
be used to make SOAP messages, or any message defined in WSDL 1.1, conform to the expectations
of a JBI component.

For the sake of compatibility, all endpoints exposed by the Apache CXF binding component will check for
the JBI wrapper. If it is present the endpoint will unwrap the messages. If you are positive that your
endpoints will never receive messages that use the JBI wrapper, you can turn off the extra processing.

TURNING OF JBI WRAPPER PROCESSING

If you are sure your endpoint will not receive messages using the JBI wrapper you can set its
useJbiWrapper attribute to false. This instructs the endpoint to disable the processing of the JBI
wrapper. If the endpoint does receive a message that uses the JBI wrapper, it will fail to process the
message and generate an error.

EXAMPLE

Example 31.1, “Configuring a Consumer to Not Use the JBI Wrapper” shows a configuration fragment for
configuring a consumer that does not process the JBI wrapper.

Example 31.1. Configuring a Consumer to Not Use the JBI Wrapper

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
 ... >
 ...
 <cxfbc:consumer wsdl="/wsdl/widget.wsdl"
 useJbiWrapper="false" />
 ...
</beans>

CHAPTER 31. WORKING WITH THE JBI WRAPPER

215

CHAPTER 32. USING MESSAGE INTERCEPTORS

Abstract

You can use low-level message interceptors to process messages before they are delivered to your
endpoint's service implementation.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

Interceptors are a low-level pieces of code that process messages as they are passed between the
message channel and service's implementation. They have access to the raw message data and can be
used to process SOAP action entries, process security tokens, or correlate messages. Interceptors are
called in a chain and you can configure what interceptors are used at a number of points along the chain.

CONFIGURING AN ENDPOINT'S INTERCEPTOR CHAIN

A Apache CXF binding component endpoint's interceptor chain has four points at which you can insert an
interceptor:

in interceptors

On consumer endpoints the in interceptors process messages when they are received from the
external endpoint.

On provider endpoints the in interceptors process messages when they are received from the NMR.

in fault interceptors

The in fault interceptors process fault messages that are generated before the service
implementation gets called.

out interceptors

On consumer endpoints the out interceptors process messages as they pass from the service
implementation to the external endpoint.

On provider endpoints the out interceptors process messages as they pass from the service
implementation to the NMR.

out fault interceptors

The out fault interceptors process fault messages that are generated by the service implementation
or by an out interceptor.

An endpoint's interceptor chain is configured using children of its consumer element or provider
element. Table 32.1, “Elements Used to Configure an Endpoint's Interceptor Chain” lists the elements
used to configure an endpoint's interceptor chain.

Table 32.1. Elements Used to Configure an Endpoint's Interceptor Chain

Red Hat JBoss Fuse 6.1 JBI Development Guide

216

Name Description

inInterceptors Specifies a list of interceptors that process incoming
messages.

inFaultInterceptors Specifies a list of interceptors that process incoming
fault messages.

outInterceptors Specifies a list of interceptors that process outgoing
messages.

outFaultInterceptors Specifies a list of interceptors that process outgoing
fault messages.

Example 32.1, “Configuring an Interceptor Chain” shows a consumer endpoint configured to use the
Apache CXF logging interceptors.

Example 32.1. Configuring an Interceptor Chain

IMPLEMENTING AN INTERCEPTOR

You can implement a custom interceptor by extending the
org.apache.cxf.phase.AbstractPhaseInterceptor class or one of its sub-classes. Extending
AbstractPhaseInterceptor provides you with access to the generic message handling APIs used
by Apache CXF. Extending one of the sub-classes provides you with more specific APIs. For example,
extending the AbstractSoapInterceptor class allows your interceptor to work directly with the
SOAP APIs.

MORE INFORMATION

For more information about writing Apache CXF interceptors see the Apache CXF documentation.

<cxfbc:consumer ...>
 ...
 <cxfbc:inInterceptors>
 <bean class="org.apache.cxf.interceptor.LoggingInInterceptor" />
 </cxfbc:inInterceptors>
 <cxfbc:outInterceptors>
 <bean class="org.apache.cxf.interceptor.LoggingOutInterceptor" />
 </cxfbc:outInterceptors>
 <cxfbc:inFaultInterceptors>
 <bean class="org.apache.cxf.interceptor.LoggingInInterceptor" />
 </cxfbc:inFaultInterceptors>
 <cxfbc:outFaultInterceptors>
 <bean class="org.apache.cxf.interceptor.LoggingOutInterceptor" />
 </cxfbc:outFaultInterceptors>
</cxfbc:consumer>

CHAPTER 32. USING MESSAGE INTERCEPTORS

217

http://cwiki.apache.org/CXF20DOC/interceptors.html

CHAPTER 33. CONFIGURING THE ENDPOINTS TO LOAD
APACHE CXF RUNTIME CONFIGURATION

Abstract

Both consumers and providers use the busCfg attribute to configure the endpoint to load Apache CXF
runtime configuration. Its value points to a Apache CXF configuration file.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

SPECIFYING THE CONFIGURATION TO LOAD

You instruct an endpoint to load Apache CXF runtime configuration using the busCfg attribute. Both the
provider element and the consumer element accept this attribute. The attribute's value is the path to a
file containing configuration information used by the Apache CXF runtime. This path is relative to the
location of the endpoint's xbean.xml file.

TIP

The Apache CXF configuration file should be stored in the endpoint's service unit.

Each endpoint uses a separate Apache CXF runtime. If your service unit creates multiple endpoints,
each endpoint can load its own Apache CXF runtime configuration.

EXAMPLE

Example 33.1, “Provider Endpoint that Loads Apache CXF Runtime Configuration” shows the
configuraiton for a provider endpoint that loads a Apache CXF configuration file called jms-
config.xml.

Example 33.1. Provider Endpoint that Loads Apache CXF Runtime Configuration

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
 xmlns:greeter="http://cxf.apache.org/jms_greeter"
 xmlns:test="http://test">

 <cxfbc:provider wsdl="classpath:jms_greeter.wsdl"
 service="greeter:JMSGreeterService"
 endpoint="GreeterPort"
 interfaceName="greeter:JMSGreeterPortType"
 useJBIWrapper="false"
 busCfg="./jms-config.xml" />

</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

218

CHAPTER 34. TRANSPORT CONFIGURATION

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

34.1. USING THE JMS CONFIGURATION BEAN

Overview

To simplify JMS configuration and make it more powerful, Apache CXF uses a single JMS configuration
bean to configure JMS endpoints. The bean is implemented by the
org.apache.cxf.transport.jms.JMSConfiguration class. It can be used to either configure
endpoint's directly or to configure the JMS conduits and destinations.

Configuration namespace

The JMS configuration bean uses the Spring p-namespace to make the configuration as simple as
possible. To use this namespace you need to declare it in the configuration's root element as shown in
Example 34.1, “Declaring the Spring p-namespace”.

Example 34.1. Declaring the Spring p-namespace

Specifying the configuration

You specify the JMS configuration by defining a bean of class
org.apache.cxf.transport.jms.JMSConfiguration. The properties of the bean provide the
configuration settings for the transport.

Table 34.1, “General JMS Configuration Properties” lists properties that are common to both providers
and consumers.

Table 34.1. General JMS Configuration Properties

Property Default Description

connectionFactory-ref Specifies a reference to a bean
that defines a JMS
ConnectionFactory.

<beans ...
 xmlns:p="http://www.springframework.org/schema/p"
 ... >
 ...
</beans>

CHAPTER 34. TRANSPORT CONFIGURATION

219

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-p-namespace

wrapInSingleConnectionF
actory

true Specifies whether to wrap the
ConnectionFactory with a
Spring
SingleConnectionFactory
. Doing so can improve the
performance of the JMS transport
when the specified connection
factory does not pool connections.

reconnectOnException false Specifies whether to create a new
connection in the case of an
exception. This property is only
used when wrapping the
connection factory with a Spring
SingleConnectionFactory
.

targetDestination Specifies the JNDI name or
provider specific name of a
destination.

replyDestination Specifies the JMS name of the
JMS destinations where replies
are sent. This attribute allows you
to use a user defined destination
for replies. For more details see
Section 26.3, “Using a Named
Reply Destination”.

destinationResolver Specifies a reference to a Spring
DestinationResolver. This
allows you to define how
destination names are resolved.
By default a
DynamicDestinationResol
ver is used. It resolves
destinations using the JMS
providers features. If you
reference a
JndiDestinationResolver
you can resolve the destination
names using JNDI.

transactionManager Specifies a reference to a Spring
transaction manager. This allows
the service to participate in JTA
Transactions.

Property Default Description

Red Hat JBoss Fuse 6.1 JBI Development Guide

220

taskExecutor Specifies a reference to a Spring
TaskExecutor. This is used in
listeners to decide how to handle
incoming messages. By default
the transport uses the Spring
SimpleAsyncTaskExecutor
.

useJms11 false Specifies whether JMS 1.1
features are available.

messageIdEnabled true Specifies whether the JMS
transport wants the JMS broker to
provide message IDs. Setting this
to false causes the endpoint to
call its message producer's
setDisableMessageID()
method with a value of true. The
JMS broker is then given a hint
that it does not need to generate
message IDs or add them to the
messages from the endpoint. The
JMS broker can choose to accept
the hint or ignore it.

messageTimestampEnabled true Specifies whether the JMS
transport wants the JMS broker to
provide message time stamps.
Setting this to false causes the
endpoint to call its message
producer's
setDisableMessageTimest
amp() method with a value of
true. The JMS broker is then
given a hint that it does not need
to generate time stamps or add
them to the messages from the
endpoint. The JMS broker can
choose to accept the hint or
ignore it.

cacheLevel 3 Specifies the level of caching
allowed by the listener. Valid
values are 0(CACHE_NONE),
1(CACHE_CONNECTION),
2(CACHE_SESSION),
3(CACHE_CONSUMER),
4(CACHE_AUTO).

Property Default Description

CHAPTER 34. TRANSPORT CONFIGURATION

221

pubSubNoLocal false Specifies whether to receive
messages produced from the
same connection.

receiveTimeout 0 Specifies, in milliseconds, the
amount of time to wait for
response messages. 0 means
wait indefinitely.

explicitQosEnabled false Specifies whether the QoS
settings like priority, persistence,
and time to live are explicitly set
for each message or if they are
allowed to use default values.

deliveryMode 1 Specifies if a message is
persistent. The two values are:

1(NON_PERSISTENT)
—messages will be kept
memory

2(PERSISTENT)—
messages will be
persisted to disk

priority 4 Specifies the message's priority
for the messages. JMS priority
values can range from 0 to 9. The
lowest priority is 0 and the highest
priority is 9.

timeToLive 0 Specifies, in milliseconds, the
message will be available after it
is sent. 0 specifies an infinite time
to live.

sessionTransacted false Specifies if JMS transactions are
used.

concurrentConsumers 1 Specifies the minimum number of
concurrent consumers created by
the listener.

maxConcurrentConsumers 1 Specifies the maximum number of
concurrent consumers by listener.

Property Default Description

Red Hat JBoss Fuse 6.1 JBI Development Guide

222

messageSelector Specifies the string value of the
selector. For more information on
the syntax used to specify
message selectors, see the JMS
1.1 specification.

subscriptionDurable false Specifies whether the server uses
durrable subscriptions.

durableSubscriptionName Specifies the string used to
register the durable subscription.

messageType text Specifies how the message data
will be packaged as a JMS
message. text specifies that the
data will be packaged as a
TextMessage. binary
specifies that the data will be
packaged as an ByteMessage.

pubSubDomain false Specifies whether the target
destination is a topic.

jmsProviderTibcoEms false Specifies if your JMS provider is
Tibco EMS. This causes the
principal in the security context to
be populated from the
JMS_TIBCO_SENDER header.

useMessageIDAsCorrelati
onID

false Specifies whether JMS will use
the message ID to correlate
messages. If not, the client will set
a generated correlation ID.

Property Default Description

As shown in Example 34.2, “JMS configuration bean”, the bean's properties are specified as attributes to
the bean element. They are all declared in the Spring p namespace.

Example 34.2. JMS configuration bean

Applying the configuration to an endpoint

The JMSConfiguration bean can be applied directly to both server and client endpoints using the

<bean id="jmsConfig"
 class="org.apache.cxf.transport.jms.JMSConfiguration"
 p:connectionFactory-ref="connectionFactory"
 p:targetDestination="dynamicQueues/greeter.request.queue"
 p:pubSubDomain="false" />

CHAPTER 34. TRANSPORT CONFIGURATION

223

Apache CXF features mechanism. To do so:

1. Set the endpoint's address attribute to jms://.

2. Add a jaxws:feature element to the endpoint's configuration.

3. Add a bean of type org.apache.cxf.transport.jms.JMSConfigFeature to the feature.

4. Set the bean element's p:jmsConfig-ref attribute to the ID of the JMSConfiguration
bean.

Example 34.3, “Adding JMS configuration to a JAX-WS client” shows a JAX-WS client that uses the JMS
configuration from Example 34.2, “JMS configuration bean”.

Example 34.3. Adding JMS configuration to a JAX-WS client

Applying the configuration to the transport

The JMSConfiguration bean can be applied to JMS conduits and JMS destinations using the
jms:jmsConfig-ref element. The jms:jmsConfig-ref element's value is the ID of the
JMSConfiguration bean.

Example 34.4, “Adding JMS configuration to a JMS conduit” shows a JMS conduit that uses the JMS
configuration from Example 34.2, “JMS configuration bean”.

Example 34.4. Adding JMS configuration to a JMS conduit

34.2. CONFIGURING THE JETTY RUNTIME

Overview

<jaxws:client id="CustomerService"
 xmlns:customer="http://customerservice.example.com/"
 serviceName="customer:CustomerServiceService"
 endpointName="customer:CustomerServiceEndpoint"
 address="jms://"

serviceClass="com.example.customerservice.CustomerService">
 <jaxws:features>
 <bean class="org.apache.cxf.transport.jms.JMSConfigFeature"
 p:jmsConfig-ref="jmsConfig"/>
 </jaxws:features>
</jaxws:client>

<jms:conduit name="
{http://cxf.apache.org/jms_conf_test}HelloWorldQueueBinMsgPort.jms-
conduit">
 ...
 <jms:jmsConfig-ref>jmsConf</jms:jmsConfig-ref>
</jms:conduit>

Red Hat JBoss Fuse 6.1 JBI Development Guide

224

The Jetty runtime is used by HTTP service providers and HTTP consumers using a decoupled endpoint.
The runtime's thread pool can be configured, and you can also set a number of the security settings for
an HTTP service provider through the Jetty runtime.

Maven dependency

If you use Apache Maven as your build system, you can add the Jetty runtime to your project by
including the following dependency in your project's pom.xml file:

Namespace

The elements used to configure the Jetty runtime are defined in the namespace
http://cxf.apache.org/transports/http-jetty/configuration. It is commonly referred to using the prefix httpj.
In order to use the Jetty configuration elements you must add the lines shown in Example 34.5, “Jetty
Runtime Configuration Namespace” to the beans element of your endpoint's configuration file. In
addition, you must add the configuration elements' namespace to the xsi:schemaLocation attribute.

Example 34.5. Jetty Runtime Configuration Namespace

The engine-factory element

The httpj:engine-factory element is the root element used to configure the Jetty runtime used by
an application. It has a single required attribute, bus, whose value is the name of the Bus that manages
the Jetty instances being configured.

TIP

The value is typically cxf which is the name of the default Bus instance.

The httpj:engine-factory element has three children that contain the information used to configure
the HTTP ports instantiated by the Jetty runtime factory. The children are described in Table 34.2,
“Elements for Configuring a Jetty Runtime Factory”.

Table 34.2. Elements for Configuring a Jetty Runtime Factory

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-jetty</artifactId>
 <version>${cxf-version}</version>
</dependency>

<beans ...
 xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/http-
jetty/configuration

http://cxf.apache.org/schemas/configuration/http-jetty.xsd
 ...">

CHAPTER 34. TRANSPORT CONFIGURATION

225

Element Description

httpj:engine Specifies the configuration for a particular Jetty
runtime instance. See the section called “The
engine element”.

httpj:identifiedTLSServerParameters Specifies a reusable set of properties for securing an
HTTP service provider. It has a single attribute, id,
that specifies a unique identifier by which the property
set can be referred.

httpj:identifiedThreadingParameters Specifies a reusable set of properties for controlling a
Jetty instance's thread pool. It has a single attribute,
id, that specifies a unique identifier by which the
property set can be referred.

See the section called “Configuring the thread pool” .

The engine element

The httpj:engine element is used to configure specific instances of the Jetty runtime. It has a single
attribute, port, that specifies the number of the port being managed by the Jetty instance.

TIP

You can specify a value of 0 for the port attribute. Any threading properties specified in an
httpj:engine element with its port attribute set to 0 are used as the configuration for all Jetty
listeners that are not explicitly configured.

Each httpj:engine element can have two children: one for configuring security properties and one for
configuring the Jetty instance's thread pool. For each type of configuration you can either directly
provide the configuration information or you can provide a reference to a set of configuration properties
defined in the parent httpj:engine-factory element.

The child elements used to provide the configuration properties are described in Table 34.3, “Elements
for Configuring a Jetty Runtime Instance”.

Table 34.3. Elements for Configuring a Jetty Runtime Instance

Element Description

httpj:tlsServerParameters Specifies a set of properties for configuring the
security used for the specific Jetty instance.

httpj:tlsServerParametersRef Refers to a set of security properties defined by a
identifiedTLSServerParameters element.
The id attribute provides the id of the referred
identifiedTLSServerParameters element.

httpj:threadingParameters Specifies the size of the thread pool used by the
specific Jetty instance. See the section called
“Configuring the thread pool”.

Red Hat JBoss Fuse 6.1 JBI Development Guide

226

httpj:threadingParametersRef Refers to a set of properties defined by a
identifiedThreadingParameters element.
The id attribute provides the id of the referred
identifiedThreadingParameters element.

Element Description

Configuring the thread pool

You can configure the size of a Jetty instance's thread pool by either:

Specifying the size of the thread pool using a identifiedThreadingParameters element in
the engine-factory element. You then refer to the element using a
threadingParametersRef element.

Specifying the size of the of the thread pool directly using a threadingParameters element.

The threadingParameters has two attributes to specify the size of a thread pool. The attributes are
described in Table 34.4, “Attributes for Configuring a Jetty Thread Pool”.

NOTE

The httpj:identifiedThreadingParameters element has a single child
threadingParameters element.

Table 34.4. Attributes for Configuring a Jetty Thread Pool

Attribute Description

minThreads Specifies the minimum number of threads available
to the Jetty instance for processing requests.

maxThreads Specifies the maximum number of threads available
to the Jetty instance for processing requests.

Example

Example 34.6, “Configuring a Jetty Instance” shows a configuration fragment that configures a Jetty
instance on port number 9001.

Example 34.6. Configuring a Jetty Instance

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
 xsi:schemaLocation="http://cxf.apache.org/configuration/security
 http://cxf.apache.org/schemas/configuration/security.xsd

CHAPTER 34. TRANSPORT CONFIGURATION

227

 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://cxf.apache.org/transports/http-jetty/configuration
 http://cxf.apache.org/schemas/configuration/http-jetty.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
2.0.xsd">
 ...

 <httpj:engine-factory bus="cxf">
 <httpj:identifiedTLSServerParameters id="secure">
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="JKS" password="password"
 file="certs/cherry.jks"/>
 </sec:keyManagers>
 </httpj:identifiedTLSServerParameters>

 <httpj:engine port="9001">
 <httpj:tlsServerParametersRef id="secure" />
 <httpj:threadingParameters minThreads="5"
 maxThreads="15" />
 </httpj:engine>
 </httpj:engine-factory>
 </beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

228

CHAPTER 35. DEPLOYING WS-ADDRESSING

Abstract

Apache CXF supports WS-Addressing for JAX-WS applications. This chapter explains how to deploy
WS-Addressing in the Apache CXF runtime environment.

35.1. INTRODUCTION TO WS-ADDRESSING

Overview

WS-Addressing is a specification that allows services to communicate addressing information in a
transport neutral way. It consists of two parts:

A structure for communicating a reference to a Web service endpoint

A set of Message Addressing Properties (MAP) that associate addressing information with a
particular message

Supported specifications

Apache CXF supports both the WS-Addressing 2004/08 specification and the WS-Addressing 2005/03
specification.

Further information

For detailed information on WS-Addressing, see the 2004/08 submission at
http://www.w3.org/Submission/ws-addressing/.

35.2. WS-ADDRESSING INTERCEPTORS

Overview

In Apache CXF, WS-Addressing functionality is implemented as interceptors. The Apache CXF runtime
uses interceptors to intercept and work with the raw messages that are being sent and received. When a
transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the WS-Addressing interceptors are added to the application's interceptor chain, any
WS-Addressing information included with a message is processed.

WS-Addressing Interceptors

The WS-Addressing implementation consists of two interceptors, as described in Table 35.1, “WS-
Addressing Interceptors”.

Table 35.1. WS-Addressing Interceptors

Interceptor Description

CHAPTER 35. DEPLOYING WS-ADDRESSING

229

http://www.w3.org/Submission/ws-addressing/

org.apache.cxf.ws.addressing.MAPAggr
egator

A logical interceptor responsible for aggregating the
Message Addressing Properties (MAPs) for outgoing
messages.

org.apache.cxf.ws.addressing.soap.MA
PCodec

A protocol-specific interceptor responsible for
encoding and decoding the Message Addressing
Properties (MAPs) as SOAP headers.

Interceptor Description

35.3. ENABLING WS-ADDRESSING

Overview

To enable WS-Addressing the WS-Addressing interceptors must be added to the inbound and outbound
interceptor chains. This is done in one of the following ways:

Apache CXF Features

RMAssertion and WS-Policy Framework

Using Policy Assertion in a WS-Addressing Feature

Adding WS-Addressing as a Feature

WS-Addressing can be enabled by adding the WS-Addressing feature to the client and the server
configuration as shown in Example 35.1, “client.xml—Adding WS-Addressing Feature to Client
Configuration” and Example 35.2, “server.xml—Adding WS-Addressing Feature to Server Configuration”
respectively.

Example 35.1. client.xml—Adding WS-Addressing Feature to Client Configuration

Example 35.2. server.xml—Adding WS-Addressing Feature to Server Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:client ...>
 <jaxws:features>
 <wsa:addressing/>
 </jaxws:features>
 </jaxws:client>
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

230

35.4. CONFIGURING WS-ADDRESSING ATTRIBUTES

Overview

The Apache CXF WS-Addressing feature element is defined in the namespace
http://cxf.apache.org/ws/addressing. It supports the two attributes described in Table 35.2,
“WS-Addressing Attributes”.

Table 35.2. WS-Addressing Attributes

Attribute Name Value

allowDuplicates A boolean that determines if duplicate MessageIDs
are tolerated. The default setting is true.

usingAddressingAdvisory A boolean that indicates if the presence of the
UsingAddressing element in the WSDL is
advisory only; that is, its absence does not prevent
the encoding of WS-Addressing headers.

Configuring WS-Addressing attributes

Configure WS-Addressing attributes by adding the attribute and the value you want to set it to the WS-
Addressing feature in your server or client configuration file. For example, the following configuration
extract sets the allowDublicates attribute to false on the server endpoint:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint ...>
 <jaxws:features>
 <wsa:addressing/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

<beans ... xmlns:wsa="http://cxf.apache.org/ws/addressing" ...>
 <jaxws:endpoint ...>
 <jaxws:features>
 <wsa:addressing allowDuplicates="false"/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

CHAPTER 35. DEPLOYING WS-ADDRESSING

231

Using a WS-Policy assertion embedded in a feature

In Example 35.3, “Using the Policies to Configure WS-Addressing” an addressing policy assertion to
enable non-anonymous responses is embedded in the policies element.

Example 35.3. Using the Policies to Configure WS-Addressing

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:policy="http://cxf.apache.org/policy-config"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-
policy.xsd
http://cxf.apache.org/ws/addressing
http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint name="
{http://cxf.apache.org/greeter_control}GreeterPort"
 createdFromAPI="true">
 <jaxws:features>
 <policy:policies>
 <wsp:Policy
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 <policy:policies>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

232

CHAPTER 36. ENABLING RELIABLE MESSAGING

Abstract

Apache CXF supports WS-Reliable Messaging(WS-RM). This chapter explains how to enable and
configure WS-RM in Apache CXF.

36.1. INTRODUCTION TO WS-RM

Overview

WS-ReliableMessaging (WS-RM) is a protocol that ensures the reliable delivery of messages in a
distributed environment. It enables messages to be delivered reliably between distributed applications in
the presence of software, system, or network failures.

For example, WS-RM can be used to ensure that the correct messages have been delivered across a
network exactly once, and in the correct order.

How WS-RM works

WS-RM ensures the reliable delivery of messages between a source and a destination endpoint. The
source is the initial sender of the message and the destination is the ultimate receiver, as shown in
Figure 36.1, “Web Services Reliable Messaging”.

Figure 36.1. Web Services Reliable Messaging

The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to the RM destination. This
contains a reference for the endpoint that receives acknowledgements (the wsrm:AcksTo
endpoint).

2. The RM destination sends a CreateSequenceResponse protocol message back to the RM
source. This message contains the sequence ID for the RM sequence session.

CHAPTER 36. ENABLING RELIABLE MESSAGING

233

3. The RM source adds an RM Sequence header to each message sent by the application source.
This header contains the sequence ID and a unique message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the RM source by sending
messages that contain the RM SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination in an exactly-once-in-
order fashion.

7. The RM source retransmits a message that it has not yet received an acknowledgement.

The first retransmission attempt is made after a base retransmission interval. Successive
retransmission attempts are made, by default, at exponential back-off intervals or, alternatively,
at fixed intervals. For more details, see Section 36.4, “Configuring WS-RM”.

This entire process occurs symmetrically for both the request and the response message; that is, in the
case of the response message, the server acts as the RM source and the client acts as the RM
destination.

WS-RM delivery assurances

WS-RM guarantees reliable message delivery in a distributed environment, regardless of the transport
protocol used. Either the source or the destination endpoint logs an error if reliable delivery can not be
assured.

Supported specifications

Apache CXF supports the 2005/02 version of the WS-RM specification, which is based on the WS-
Addressing 2004/08 specification.

Further information

For detailed information on WS-RM, see the specification at http://specs.xmlsoap.org/ws/2005/02/rm/ws-
reliablemessaging.pdf.

36.2. WS-RM INTERCEPTORS

Overview

In Apache CXF, WS-RM functionality is implemented as interceptors. The Apache CXF runtime uses
interceptors to intercept and work with the raw messages that are being sent and received. When a
transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the application's interceptor chain includes the WS-RM interceptors, the application
can participate in reliable messaging sessions. The WS-RM interceptors handle the collection and
aggregation of the message chunks. They also handle all of the acknowledgement and retransmission
logic.

Apache CXF WS-RM Interceptors

The Apache CXF WS-RM implementation consists of four interceptors, which are described in
Table 36.1, “Apache CXF WS-ReliableMessaging Interceptors”.

Red Hat JBoss Fuse 6.1 JBI Development Guide

234

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

Table 36.1. Apache CXF WS-ReliableMessaging Interceptors

Interceptor Description

org.apache.cxf.ws.rm.RMOutIntercepto
r

Deals with the logical aspects of providing reliability
guarantees for outgoing messages.

Responsible for sending the CreateSequence
requests and waiting for their
CreateSequenceResponse responses.

Also responsible for aggregating the sequence
properties—ID and message number—for an
application message.

org.apache.cxf.ws.rm.RMInInterceptor Responsible for intercepting and processing RM
protocol messages and
SequenceAcknowledgement messages that are
piggybacked on application messages.

org.apache.cxf.ws.rm.soap.RMSoapInte
rceptor

Responsible for encoding and decoding the reliability
properties as SOAP headers.

org.apache.cxf.ws.rm.RetransmissionI
nterceptor

Responsible for creating copies of application
messages for future resending.

Enabling WS-RM

The presence of the WS-RM interceptors on the interceptor chains ensures that WS-RM protocol
messages are exchanged when necessary. For example, when intercepting the first application
message on the outbound interceptor chain, the RMOutInterceptor sends a CreateSequence
request and waits to process the original application message until it receives the
CreateSequenceResponse response. In addition, the WS-RM interceptors add the sequence headers
to the application messages and, on the destination side, extract them from the messages. It is not
necessary to make any changes to your application code to make the exchange of messages reliable.

For more information on how to enable WS-RM, see Section 36.3, “Enabling WS-RM”.

Configuring WS-RM Attributes

You control sequence demarcation and other aspects of the reliable exchange through configuration. For
example, by default Apache CXF attempts to maximize the lifetime of a sequence, thus reducing the
overhead incurred by the out-of-band WS-RM protocol messages. To enforce the use of a separate
sequence per application message configure the WS-RM source’s sequence termination policy (setting
the maximum sequence length to 1).

For more information on configuring WS-RM behavior, see Section 36.4, “Configuring WS-RM”.

36.3. ENABLING WS-RM

Overview

CHAPTER 36. ENABLING RELIABLE MESSAGING

235

To enable reliable messaging, the WS-RM interceptors must be added to the interceptor chains for both
inbound and outbound messages and faults. Because the WS-RM interceptors use WS-Addressing, the
WS-Addressing interceptors must also be present on the interceptor chains.

You can ensure the presence of these interceptors in one of two ways:

Explicitly, by adding them to the dispatch chains using Spring beans

Implicitly, using WS-Policy assertions, which cause the Apache CXF runtime to transparently add
the interceptors on your behalf.

Spring beans—explicitly adding interceptors

To enable WS-RM add the WS-RM and WS-Addressing interceptors to the Apache CXF bus, or to a
consumer or service endpoint using Spring bean configuration. This is the approach taken in the WS-RM
sample that is found in the InstallDir/samples/ws_rm directory. The configuration file, ws-
rm.cxf, shows the WS-RM and WS-Addressing interceptors being added one-by-one as Spring beans
(see Example 36.1, “Enabling WS-RM Using Spring Beans”).

Example 36.1. Enabling WS-RM Using Spring Beans

1

2

3

4

5

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/
 beans http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="mapAggregator"
class="org.apache.cxf.ws.addressing.MAPAggregator"/>

 <bean id="mapCodec"
class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>

 <bean id="rmLogicalOut"
class="org.apache.cxf.ws.rm.RMOutInterceptor">

 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmLogicalIn" class="org.apache.cxf.ws.rm.RMInInterceptor">
 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmCodec"
class="org.apache.cxf.ws.rm.soap.RMSoapInterceptor"/>
 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">

 <property name="inInterceptors">
 <list>

 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

 <property name="inFaultInterceptors">
 <list>

 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

Red Hat JBoss Fuse 6.1 JBI Development Guide

236

1

2

3

4

5

6

7

The code shown in Example 36.1, “Enabling WS-RM Using Spring Beans” can be explained as follows:

A Apache CXF configuration file is a Spring XML file. You must include an opening Spring beans
element that declares the namespaces and schema files for the child elements that are
encapsulated by the beans element.

Configures each of the WS-Addressing interceptors—MAPAggregator and MAPCodec. For more
information on WS-Addressing, see Chapter 35, Deploying WS-Addressing.

Configures each of the WS-RM interceptors—RMOutInterceptor, RMInInterceptor, and
RMSoapInterceptor.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound messages.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound faults.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound messages.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound faults.

WS-Policy framework—implicitly adding interceptors

The WS-Policy framework provides the infrastructure and APIs that allow you to use WS-Policy. It is
compliant with the November 2006 draft publications of the Web Services Policy 1.5—Framework and
Web Services Policy 1.5—Attachment specifications.

To enable WS-RM using the Apache CXF WS-Policy framework, do the following:

1. Add the policy feature to your client and server endpoint. Example 36.2, “Configuring WS-RM
using WS-Policy” shows a reference bean nested within a jaxws:feature element. The
reference bean specifies the AddressingPolicy, which is defined as a separate element
within the same configuration file.

Example 36.2. Configuring WS-RM using WS-Policy

6

7

 <property name="outInterceptors">
 <list>

 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

 <property name="outFaultInterceptors">
 <list>

 <ref bean="mapAggregator">
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>
 </property>
 </bean>
</beans>

CHAPTER 36. ENABLING RELIABLE MESSAGING

237

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

2. Add a reliable messaging policy to the wsdl:service element—or any other WSDL element
that can be used as an attachment point for policy or policy reference elements—to your WSDL
file, as shown in Example 36.3, “Adding an RM Policy to Your WSDL File”.

Example 36.3. Adding an RM Policy to Your WSDL File

36.4. CONFIGURING WS-RM

You can configure WS-RM by:

Setting Apache CXF-specific attributes that are defined in the Apache CXF WS-RM manager
namespace, http://cxf.apache.org/ws/rm/manager.

<jaxws:client>
 <jaxws:features>
 <ref bean="AddressingPolicy"/>
 </jaxws:features>
</jaxws:client>
<wsp:Policy wsu:Id="AddressingPolicy"
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
</wsp:Policy>

<wsp:Policy wsu:Id="RM"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd">
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp:BaseRetransmissionInterval Milliseconds="10000"/>
 </wsrmp:RMAssertion>
</wsp:Policy>
...
<wsdl:service name="ReliableGreeterService">
 <wsdl:port binding="tns:GreeterSOAPBinding"
name="GreeterPort">
 <soap:address
location="http://localhost:9020/SoapContext/GreeterPort"/>
 <wsp:PolicyReference URI="#RM"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"/>
 </wsdl:port>
</wsdl:service>

Red Hat JBoss Fuse 6.1 JBI Development Guide

238

Setting standard WS-RM policy attributes that are defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace.

36.4.1. Configuring Apache CXF-Specific WS-RM Attributes

Overview

To configure the Apache CXF-specific attributes, use the rmManager Spring bean. Add the following to
your configuration file:

The http://cxf.apache.org/ws/rm/manager namespace to your list of namespaces.

An rmManager Spring bean for the specific attribute that your want to configure.

Example 36.4, “Configuring Apache CXF-Specific WS-RM Attributes” shows a simple example.

Example 36.4. Configuring Apache CXF-Specific WS-RM Attributes

Children of the rmManager Spring bean

Table 36.2, “Children of the rmManager Spring Bean” shows the child elements of the rmManager
Spring bean, defined in the http://cxf.apache.org/ws/rm/manager namespace.

Table 36.2. Children of the rmManager Spring Bean

Element Description

RMAssertion An element of type RMAssertion

deliveryAssurance An element of type DeliveryAssuranceType that
describes the delivery assurance that should apply

sourcePolicy An element of type SourcePolicyType that allows you
to configure details of the RM source

destinationPolicy An element of type DestinationPolicyType that allows
you to configure details of the RM destination

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/ws/rm/manager
http://cxf.apache.org/schemas/configuration/wsrm-manager.xsd">
...
<wsrm-mgr:rmManager>
<!--
 ...Your configuration goes here
-->
</wsrm-mgr:rmManager>

CHAPTER 36. ENABLING RELIABLE MESSAGING

239

Example

For an example, see the section called “Maximum unacknowledged messages threshold”.

36.4.2. Configuring Standard WS-RM Policy Attributes

Overview

You can configure standard WS-RM policy attributes in one of the following ways:

RMAssertion in rmManager Spring bean

Policy within a feature

WSDL file

External attachment

WS-Policy RMAssertion Children

Table 36.3, “Children of the WS-Policy RMAssertion Element” shows the elements defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 36.3. Children of the WS-Policy RMAssertion Element

Name Description

InactivityTimeout Specifies the amount of time that must pass without
receiving a message before an endpoint can consider
an RM sequence to have been terminated due to
inactivity.

BaseRetransmissionInterval Sets the interval within which an acknowledgement
must be received by the RM Source for a given
message. If an acknowledgement is not received
within the time set by the
BaseRetransmissionInterval, the RM
Source will retransmit the message.

ExponentialBackoff Indicates the retransmission interval will be adjusted
using the commonly known exponential backoff
algorithm (Tanenbaum).

For more information, see Computer Networks,
Andrew S. Tanenbaum, Prentice Hall PTR, 2003.

AcknowledgementInterval In WS-RM, acknowledgements are sent on return
messages or sent stand-alone. If a return message is
not available to send an acknowledgement, an RM
Destination can wait for up to the acknowledgement
interval before sending a stand-alone
acknowledgement. If there are no unacknowledged
messages, the RM Destination can choose not to
send an acknowledgement.

Red Hat JBoss Fuse 6.1 JBI Development Guide

240

More detailed reference information

For more detailed reference information, including descriptions of each element’s sub-elements and
attributes, please refer to http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd.

RMAssertion in rmManager Spring bean

You can configure standard WS-RM policy attributes by adding an RMAssertion within a Apache CXF
rmManager Spring bean. This is the best approach if you want to keep all of your WS-RM configuration
in the same configuration file; that is, if you want to configure Apache CXF-specific attributes and
standard WS-RM policy attributes in the same file.

For example, the configuration in Example 36.5, “Configuring WS-RM Attributes Using an RMAssertion
in an rmManager Spring Bean” shows:

A standard WS-RM policy attribute, BaseRetransmissionInterval, configured using an
RMAssertion within an rmManager Spring bean.

An Apache CXF-specific RM attribute, intraMessageThreshold, configured in the same
configuration file.

Example 36.5. Configuring WS-RM Attributes Using an RMAssertion in an rmManager Spring
Bean

Policy within a feature

You can configure standard WS-RM policy attributes within features, as shown in Example 36.6,
“Configuring WS-RM Attributes as a Policy within a Feature”.

Example 36.6. Configuring WS-RM Attributes as a Policy within a Feature

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
 </wsrm-policy:RMAssertion>
 <wsrm-mgr:destinationPolicy>
 <wsrm-mgr:acksPolicy intraMessageThreshold="0" />
 </wsrm-mgr:destinationPolicy>
</wsrm-mgr:rmManager>
</beans>

<xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
 xmlns:jaxws="http://cxf.apache.org/jaxws"

CHAPTER 36. ENABLING RELIABLE MESSAGING

241

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

WSDL file

If you use the WS-Policy framework to enable WS-RM, you can configure standard WS-RM policy
attributes in a WSDL file. This is a good approach if you want your service to interoperate and use WS-
RM seamlessly with consumers deployed to other policy-aware Web services stacks.

For an example, see the section called “WS-Policy framework—implicitly adding interceptors” where the
base retransmission interval is configured in the WSDL file.

External attachment

You can configure standard WS-RM policy attributes in an external attachment file. This is a good
approach if you cannot, or do not want to, change your WSDL file.

Example 36.7, “Configuring WS-RM in an External Attachment” shows an external attachment that
enables both WS-A and WS-RM (base retransmission interval of 30 seconds) for a specific EPR.

Example 36.7. Configuring WS-RM in an External Attachment

 xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-
policy.xsd
http://cxf.apache.org/ws/addressing
http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
 <jaxws:endpoint name="
{http://cxf.apache.org/greeter_control}GreeterPort"
createdFromAPI="true">
 <jaxws:features>
 <wsp:Policy>
 <wsrm:RMAssertion
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrm:AcknowledgementInterval Milliseconds="200"
/>
 </wsrm:RMAssertion>
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

<attachments xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsp:PolicyAttachment>
 <wsp:AppliesTo>
 <wsa:EndpointReference>

Red Hat JBoss Fuse 6.1 JBI Development Guide

242

36.4.3. WS-RM Configuration Use Cases

Overview

This subsection focuses on configuring WS-RM attributes from a use case point of view. Where an
attribute is a standard WS-RM policy attribute, defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace, only the example of setting it in an
RMAssertion within an rmManager Spring bean is shown. For details of how to set such attributes as
a policy within a feature; in a WSDL file, or in an external attachment, see Section 36.4.2, “Configuring
Standard WS-RM Policy Attributes”.

The following use cases are covered:

Base retransmission interval

Exponential backoff for retransmission

Acknowledgement interval

Maximum unacknowledged messages threshold

Maximum length of an RM sequence

Message delivery assurance policies

Base retransmission interval

The BaseRetransmissionInterval element specifies the interval at which an RM source retransmits
a message that has not yet been acknowledged. It is defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd schema file. The default value is 3000
milliseconds.

Example 36.8, “Setting the WS-RM Base Retransmission Interval” shows how to set the WS-RM base
retransmission interval.

Example 36.8. Setting the WS-RM Base Retransmission Interval

<wsa:Address>http://localhost:9020/SoapContext/GreeterPort</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wsp:Policy>
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp:BaseRetransmissionInterval
Milliseconds="30000"/>
 </wsrmp:RMAssertion>
 </wsp:Policy>
 </wsp:PolicyAttachment>
</attachments>/

CHAPTER 36. ENABLING RELIABLE MESSAGING

243

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

Exponential backoff for retransmission

The ExponentialBackoff element determines if successive retransmission attempts for an
unacknowledged message are performed at exponential intervals.

The presence of the ExponentialBackoff element enables this feature. An exponential backoff ratio
of 2 is used by default.

Example 36.9, “Setting the WS-RM Exponential Backoff Property” shows how to set the WS-RM
exponential backoff for retransmission.

Example 36.9. Setting the WS-RM Exponential Backoff Property

Acknowledgement interval

The AcknowledgementInterval element specifies the interval at which the WS-RM destination sends
asynchronous acknowledgements. These are in addition to the synchronous acknowledgements that it
sends on receipt of an incoming message. The default asynchronous acknowledgement interval is 0
milliseconds. This means that if the AcknowledgementInterval is not configured to a specific value,
acknowledgements are sent immediately (that is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM destination only if both of the following conditions
are met:

The RM destination is using a non-anonymous wsrm:acksTo endpoint.

The opportunity to piggyback an acknowledgement on a response message does not occur
before the expiry of the acknowledgement interval.

Example 36.10, “Setting the WS-RM Acknowledgement Interval” shows how to set the WS-RM
acknowledgement interval.

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:ExponentialBackoff="4"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

244

Example 36.10. Setting the WS-RM Acknowledgement Interval

Maximum unacknowledged messages threshold

The maxUnacknowledged attribute sets the maximum number of unacknowledged messages that can
accrue per sequence before the sequence is terminated.

Example 36.11, “Setting the WS-RM Maximum Unacknowledged Message Threshold” shows how to set
the WS-RM maximum unacknowledged messages threshold.

Example 36.11. Setting the WS-RM Maximum Unacknowledged Message Threshold

Maximum length of an RM sequence

The maxLength attribute sets the maximum length of a WS-RM sequence. The default value is 0, which
means that the length of a WS-RM sequence is unbound.

When this attribute is set, the RM endpoint creates a new RM sequence when the limit is reached, and
after receiving all of the acknowledgements for the previously sent messages. The new message is sent
using a newsequence.

Example 36.12, “Setting the Maximum Length of a WS-RM Message Sequence” shows how to set the
maximum length of an RM sequence.

Example 36.12. Setting the Maximum Length of a WS-RM Message Sequence

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:AcknowledgementInterval Milliseconds="2000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />
 </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy maxLength="100" />

CHAPTER 36. ENABLING RELIABLE MESSAGING

245

Message delivery assurance policies

You can configure the RM destination to use the following delivery assurance policies:

AtMostOnce — The RM destination delivers the messages to the application destination only
once. If a message is delivered more than once an error is raised. It is possible that some
messages in a sequence may not be delivered.

AtLeastOnce — The RM destination delivers the messages to the application destination at
least once. Every message sent will be delivered or an error will be raised. Some messages
might be delivered more than once.

InOrder — The RM destination delivers the messages to the application destination in the
order that they are sent. This delivery assurance can be combined with the AtMostOnce or
AtLeastOnce assurances.

Example 36.13, “Setting the WS-RM Message Delivery Assurance Policy” shows how to set the WS-RM
message delivery assurance.

Example 36.13. Setting the WS-RM Message Delivery Assurance Policy

36.5. CONFIGURING WS-RM PERSISTENCE

Overview

The Apache CXF WS-RM features already described in this chapter provide reliability for cases such as
network failures. WS-RM persistence provides reliability across other types of failure such as an RM
source or an RM destination crash.

WS-RM persistence involves storing the state of the various RM endpoints in persistent storage. This
enables the endpoints to continue sending and receiving messages when they are reincarnated.

Apache CXF enables WS-RM persistence in a configuration file. The default WS-RM persistence store is
JDBC-based. For convenience, Apache CXF includes Derby for out-of-the-box deployment. In addition,
the persistent store is also exposed using a Java API.

 </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:deliveryAssurance>
 <wsrm-mgr:AtLeastOnce />
 </wsrm-mgr:deliveryAssurance>
</wsrm-mgr:reliableMessaging>
</beans>

Red Hat JBoss Fuse 6.1 JBI Development Guide

246

IMPORTANT

WS-RM persistence is supported for oneway calls only, and it is disabled by default.

How it works

Apache CXF WS-RM persistence works as follows:

At the RM source endpoint, an outgoing message is persisted before transmission. It is evicted
from the persistent store after the acknowledgement is received.

After a recovery from crash, it recovers the persisted messages and retransmits until all the
messages have been acknowledged. At that point, the RM sequence is closed.

At the RM destination endpoint, an incoming message is persisted, and upon a successful store,
the acknowledgement is sent. When a message is successfully dispatched, it is evicted from the
persistent store.

After a recovery from a crash, it recovers the persisted messages and dispatches them. It also
brings the RM sequence to a state where new messages are accepted, acknowledged, and
delivered.

Enabling WS-persistence

To enable WS-RM persistence, you must specify the object implementing the persistent store for WS-
RM. You can develop your own or you can use the JDBC based store that comes with Apache CXF.

The configuration shown in Example 36.14, “Configuration for the Default WS-RM Persistence Store”
enables the JDBC-based store that comes with Apache CXF.

Example 36.14. Configuration for the Default WS-RM Persistence Store

Configuring WS-persistence

The JDBC-based store that comes with Apache CXF supports the properties shown in Table 36.4,
“JDBC Store Properties”.

Table 36.4. JDBC Store Properties

Attribute Name Type Default Setting

driverClassName String org.apache.derby.jdbc.E
mbeddedDriver

userName String null

<bean id="RMTxStore"
class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <property name="store" ref="RMTxStore"/>
</wsrm-mgr:rmManager>

CHAPTER 36. ENABLING RELIABLE MESSAGING

247

passWord String null

url String jdbc:derby:rmdb;create=true

Attribute Name Type Default Setting

The configuration shown in Example 36.15, “Configuring the JDBC Store for WS-RM Persistence”
enables the JDBC-based store that comes with Apache CXF, while setting the driverClassName and url
to non-default values.

Example 36.15. Configuring the JDBC Store for WS-RM Persistence

<bean id="RMTxStore"
class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
 <property name="driverClassName" value="com.acme.jdbc.Driver"/>
 <property name="url" value="jdbc:acme:rmdb;create=true"/>
</bean>

Red Hat JBoss Fuse 6.1 JBI Development Guide

248

APPENDIX F. CONSUMER ENDPOINT PROPERTIES
The attributes described in Table F.1, “Consumer Endpoint Attributes” are used to configure a consumer
endpoint.

Table F.1. Consumer Endpoint Attributes

Name Type Description Required

wsdl String Specifies the location of
the WSDL defining the
endpoint.

yes

service QName Specifies the service
name of the proxied
endpoint. This
corresponds to WSDL
service element's
name attribute.

no[a]

endpoint String Specifies the endpoint
name of the proxied
endpoint. This
corresponds to WSDL
port element's name
attribute.

no[b]

interfaceName QName Specifies the interface
name of the proxied
endpoint. This
corresponds to WSDL
portType element's
name attribute.

no

targetService QName Specifies the service
name of the target
endpoint.

no (defaults to the value
of the service
attribute)

targetEndpoint String Specifies the endpoint
name of the target
endpoint.

no (defaults to the value
of the endpoint
attribute)

targetInterfaceN
ame

QName Specifies the interface
name of the target
endpoint.

no

busCfg String Specifies the location of
a spring configuration
file used for Apache
CXF bus initialization.

no

APPENDIX F. CONSUMER ENDPOINT PROPERTIES

249

mtomEnabled boolean Specifies if MTOM /
attachment support is
enabled.

no (defaults to false)

useJbiWrapper boolean Specifies if the JBI
wrapper is sent in the
body of the message.

no (defaults to true)

timeout int Specifies the number of
seconds to wait for a
response.

no (defaults to 10

[a] If the WSDL defining the service has more than one service element, this attribute is required.

[b] If the service being used defines more than one endpoint, this attribute is required.

Name Type Description Required

Red Hat JBoss Fuse 6.1 JBI Development Guide

250

APPENDIX G. PROVIDER ENDPOINT PROPERTIES
The attributes described in Table G.1, “Provider Endpoint Attributes” are used to configure a provider
endpoint.

Table G.1. Provider Endpoint Attributes

Attribute Type Description Required

wsdl String Specifies the location of
the WSDL defining the
endpoint.

yes

service QName Specifies the service
name of the exposed
endpoint.

no[a]

endpoint String Specifies the endpoint
name of the exposed
endpoint.

no[b]

locationURI URI Specifies the URL of the
target service.

no[c][d]

interfaceName QName Specifies the interface
name of the exposed jbi
endpoint.

no

busCfg String Specifies the location of
the spring configuration
file used for Apache
CXF bus initialization.

no

mtomEnabled boolean Specifies if MTOM /
attachment support is
enabled.

no (defaults to false)

useJbiWrapper boolean Specifies if the JBI
wrapper is sent in the
body of the message.

no (defaults to true)

[a] If the WSDL defining the service has more than one service element, this attribute is required.

[b] If the service being used defines more than one endpoint, this attribute is required.

[c] If specified, the value of this attribute overrides the HTTP address specified in the WSDL contract.

[d] This attribute is ignored if the endpoint uses a JMS address in the WSDL.

APPENDIX G. PROVIDER ENDPOINT PROPERTIES

251

APPENDIX H. USING THE MAVEN OSGI TOOLING

Abstract

Manually creating a bundle, or a collection of bundles, for a large project can be cumbersome. The
Maven bundle plug-in makes the job easier by automating the process and providing a number of
shortcuts for specifying the contents of the bundle manifest.

The Red Hat JBoss Fuse OSGi tooling uses the Maven bundle plug-in from Apache Felix. The bundle
plug-in is based on the bnd tool from Peter Kriens. It automates the construction of OSGi bundle
manifests by introspecting the contents of the classes being packaged in the bundle. Using the
knowledge of the classes contained in the bundle, the plug-in can calculate the proper values to populate
the Import-Packages and the Export-Package properties in the bundle manifest. The plug-in also has
default values that are used for other required properties in the bundle manifest.

To use the bundle plug-in, do the following:

1. Add the bundle plug-in to your project's POM file.

2. Configure the plug-in to correctly populate your bundle's manifest.

H.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT

Overview

A Maven project for building an OSGi bundle can be a simple single level project. It does not require any
sub-projects. However, it does require that you do the following:

1. Add the bundle plug-in to your POM.

2. Instruct Maven to package the results as an OSGi bundle.

NOTE

There are several Maven archetypes you can use to set up your project with the
appropriate settings.

Directory structure

A project that constructs an OSGi bundle can be a single level project. It only requires that you have a
top-level POM file and a src folder. As in all Maven projects, you place all Java source code in the
src/java folder, and you place any non-Java resources in the src/resources folder.

Non-Java resources include Spring configuration files, JBI endpoint configuration files, and WSDL
contracts.

NOTE

Red Hat JBoss Fuse OSGi projects that use Apache CXF, Apache Camel, or another
Spring configured bean also include a beans.xml file located in the
src/resources/META-INF/spring folder.

Red Hat JBoss Fuse 6.1 JBI Development Guide

252

http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

1

2

3

4

5

Adding a bundle plug-in

Before you can use the bundle plug-in you must add a dependency on Apache Felix. After you add the
dependency, you can add the bundle plug-in to the plug-in portion of the POM.

Example H.1, “Adding an OSGi bundle plug-in to a POM” shows the POM entries required to add the
bundle plug-in to your project.

Example H.1. Adding an OSGi bundle plug-in to a POM

The entries in Example H.1, “Adding an OSGi bundle plug-in to a POM” do the following:

Adds the dependency on Apache Felix

Adds the bundle plug-in to your project

Configures the plug-in to use the project's artifact ID as the bundle's symbolic name

Configures the plug-in to include all Java packages imported by the bundled classes; also imports
the org.apache.camel.osgi package

Configures the plug-in to bundle the listed class, but not to include them in the list of exported
packages

1

2

3
4

5

...
<dependencies>

 <dependency>
 <groupId>org.apache.felix</groupId>

 <artifactId>org.osgi.core</artifactId>
 <version>1.0.0</version>
 </dependency>
...
</dependencies>
...
<build>
 <plugins>

 <plugin>
 <groupId>org.apache.felix</groupId>

 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName>

 <Import-Package>*,org.apache.camel.osgi</Import-Package>
 <Private-

Package>org.apache.servicemix.examples.camel</Private-Package>
 </instructions>

 </configuration>
 </plugin>
 </plugins>
</build>
...

APPENDIX H. USING THE MAVEN OSGI TOOLING

253

NOTE

Edit the configuration to meet the requirements of your project.

For more information on configuring the bundle plug-in, see Section H.2, “Configuring the Bundle Plug-
In”.

Activating a bundle plug-in

To have Maven use the bundle plug-in, instruct it to package the results of the project as a bundle. Do
this by setting the POM file's packaging element to bundle.

Useful Maven archetypes

There are several Maven archetypes to generate a project that is preconfigured to use the bundle plug-
in:

the section called “Spring OSGi archetype”

the section called “Apache CXF code-first archetype”

the section called “Apache CXF wsdl-first archetype”

the section called “Apache Camel archetype”

Spring OSGi archetype

The Spring OSGi archetype creates a generic project for building an OSGi project using Spring DM, as
shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.springframework.osgi -
DarchetypeArtifactId=spring-osgi-bundle-archetype -DarchetypeVersion=1.12
-DgroupId=groupId -DartifactId=artifactId -Dversion=version

Apache CXF code-first archetype

The Apache CXF code-first archetype creates a project for building a service from Java, as shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=spring-osgi-bundle-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

org.springframework.osgi/spring-bundle-osgi-archetype/1.1.2

org.apache.servicemix.tooling/servicemix-osgi-cxf-code-first-
archetype/2008.01.0.3-fuse

Red Hat JBoss Fuse 6.1 JBI Development Guide

254

Apache CXF wsdl-first archetype

The Apache CXF wsdl-first archetype creates a project for creating a service from WSDL, as shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-osgi-cxf-wsdl-first-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

Apache Camel archetype

The Apache Camel archetype creates a project for building a route that is deployed into JBoss Fuse, as
shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-osgi-camel-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

H.2. CONFIGURING THE BUNDLE PLUG-IN

Overview

A bundle plug-in requires very little information to function. All of the required properties use default
settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will probably want to modify some
of the values. You can specify most of the properties inside the plug-in's instructions element.

Configuration properties

Some of the commonly used configuration properties are:

Bundle-SymbolicName

Bundle-Name

Bundle-Version

Export-Package

Private-Package

org.apache.servicemix.tooling/servicemix-osgi-cxf-wsdl-first-
archetype/2008.01.0.3-fuse

org.apache.servicemix.tooling/servicemix-osgi-camel-archetype/2008.01.0.3-
fuse

APPENDIX H. USING THE MAVEN OSGI TOOLING

255

Import-Package

Setting a bundle's symbolic name

By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupId + "." +
artifactId, with the following exceptions:

If groupId has only one section (no dots), the first package name with classes is returned.

For example, if the group Id is commons-logging:commons-logging, the bundle's symbolic
name is org.apache.commons.logging.

If artifactId is equal to the last section of groupId, then groupId is used.

For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven,
the bundle's symbolic name is org.apache.maven.

If artifactId starts with the last section of groupId, that portion is removed.

For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven-
core, the bundle's symbolic name is org.apache.maven.core.

To specify your own value for the bundle's symbolic name, add a Bundle-SymbolicName child in the
plug-in's instructions element, as shown in Example H.2.

Example H.2. Setting a bundle's symbolic name

Setting a bundle's name

By default, a bundle's name is set to ${project.name}.

To specify your own value for the bundle's name, add a Bundle-Name child to the plug-in's
instructions element, as shown in Example H.3.

Example H.3. Setting a bundle's name

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
 ...
 </instructions>
 </configuration>
</plugin>

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-Name>JoeFred</Bundle-Name>

Red Hat JBoss Fuse 6.1 JBI Development Guide

256

Setting a bundle's version

By default, a bundle's version is set to ${project.version}. Any dashes (-) are replaced with dots
(.) and the number is padded up to four digits. For example, 4.2-SNAPSHOT becomes
4.2.0.SNAPSHOT.

To specify your own value for the bundle's version, add a Bundle-Version child to the plug-in's
instructions element, as shown in Example H.4.

Example H.4. Setting a bundle's version

Specifying exported packages

By default, the OSGi manifest's Export-Package list is populated by all of the packages in your local
Java source code (under src/main/java), except for the deault package, ., and any packages
containing .impl or .internal.

IMPORTANT

If you use a Private-Package element in your plug-in configuration and you do not
specify a list of packages to export, the default behavior includes only the packages listed
in the Private-Package element in the bundle. No packages are exported.

The default behavior can result in very large packages and in exporting packages that should be kept
private. To change the list of exported packages you can add an Export-Package child to the plug-in's
instructions element.

The Export-Package element specifies a list of packages that are to be included in the bundle and that
are to be exported. The package names can be specified using the * wildcard symbol. For example, the
entry com.fuse.demo.* includes all packages on the project's classpath that start with com.fuse.demo.

You can specify packages to be excluded be prefixing the entry with !. For example, the entry
!com.fuse.demo.private excludes the package com.fuse.demo.private.

 ...
 </instructions>
 </configuration>
</plugin>

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-Version>1.0.3.1</Bundle-Version>
 ...
 </instructions>
 </configuration>
</plugin>

APPENDIX H. USING THE MAVEN OSGI TOOLING

257

When excluding packages, the order of entries in the list is important. The list is processed in order from
the beginning and any subsequent contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except the package
com.fuse.demo.private, list the packages using:

However, if you list the packages using com.fuse.demo.*,!com.fuse.demo.private, then
com.fuse.demo.private is included in the bundle because it matches the first pattern.

Specifying private packages

If you want to specify a list of packages to include in a bundle without exporting them, you can add a
Private-Package instruction to the bundle plug-in configuration. By default, if you do not specify a
Private-Package instruction, all packages in your local Java source are included in the bundle.

IMPORTANT

If a package matches an entry in both the Private-Package element and the Export-
Package element, the Export-Package element takes precedence. The package is
added to the bundle and exported.

The Private-Package element works similarly to the Export-Package element in that you specify a
list of packages to be included in the bundle. The bundle plug-in uses the list to find all classes on the
project's classpath that are to be included in the bundle. These packages are packaged in the bundle,
but not exported (unless they are also selected by the Export-Package instruction).

Example H.5 shows the configuration for including a private package in a bundle

Example H.5. Including a private package in a bundle

Specifying imported packages

By default, the bundle plug-in populates the OSGi manifest's Import-Package property with a list of all
the packages referred to by the contents of the bundle.

While the default behavior is typically sufficient for most projects, you might find instances where you
want to import packages that are not automatically added to the list. The default behavior can also result
in unwanted packages being imported.

!com.fuse.demo.private,com.fuse.demo.*

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>
 ...
 </instructions>
 </configuration>
</plugin>

Red Hat JBoss Fuse 6.1 JBI Development Guide

258

To specify a list of packages to be imported by the bundle, add an Import-Package child to the plug-
in's instructions element. The syntax for the package list is the same as for the Export-Package
element and the Private-Package element.

IMPORTANT

When you use the Import-Package element, the plug-in does not automatically scan
the bundle's contents to determine if there are any required imports. To ensure that the
contents of the bundle are scanned, you must place an * as the last entry in the package
list.

Example H.6 shows the configuration for specifying the packages imported by a bundle

Example H.6. Specifying the packages imported by a bundle

More information

For more information on configuring a bundle plug-in, see:

"Managing OSGi Dependencies"

Apache Felix documentation

Peter Kriens' aQute Software Consultancy web site

INDEX

A

AcknowledgementInterval, Acknowledgement interval

all element, Complex type varieties

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Import-Package>javax.jws,
 javax.wsdl,
 org.apache.cxf.bus,
 org.apache.cxf.bus.spring,
 org.apache.cxf.bus.resource,
 org.apache.cxf.configuration.spring,
 org.apache.cxf.resource,
 org.springframework.beans.factory.config,
 *
 </Import-Package>
 ...
 </instructions>
 </configuration>
</plugin>

INDEX

259

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Managing_OSGi_Dependencies/
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

AMQPool, Using Apache ActiveMQ Connection Factories

JCA, JCA pool

simple, Simple pool

XA, XA pool

amqpool:jca-pool, JCA pool

id, JCA pool

maxConnections, JCA pool

maximumActive, JCA pool

name, JCA pool

transactionManager, JCA pool

url, JCA pool

amqpool:pool, Simple pool

id, Simple pool

maxConnections, Simple pool

maximumActive, Simple pool

url, Simple pool

amqpool:xa-pool, XA pool

id, XA pool

maxConnections, XA pool

maximumActive, XA pool

transactionManager, XA pool

url, XA pool

Ant task

install-component, Installing a component

install-shared-library, Installing a shared library

installing components, Installing a component, Installing a component

installing shared libraries, Installing a shared library, Installing a shared library

jbi-install-component, Installing a component

jbi-install-shared-library, Installing a shared library

jbi-shut-down-component, Shutting down a component

jbi-start-component, Starting a component

jbi-stop-component, Stopping a component

Red Hat JBoss Fuse 6.1 JBI Development Guide

260

jbi-uninstall-component, Removing a component

jbi-uninstall-shared-library, Removing a shared library

removing components, Removing a component, Removing a shared library, Removing a
component

removing shared libraries, Removing a shared library

shutdown-component, Shutting down a component

shutting down components, Shutting down a component, Shutting down a component

start-component, Starting a component

starting components, Starting a component, Starting a component

stop-component, Stopping a component

stopping components, Stopping a component, Stopping a component

uninstall-component, Removing a component

uninstall-shared-library, Removing a shared library

uninstalling components, Removing a component, Removing a shared library, Removing a
component

application source, How WS-RM works

AtLeastOnce, Message delivery assurance policies

AtMostOnce, Message delivery assurance policies

attribute element, Defining attributes

name attribute, Defining attributes

type attribute, Defining attributes

use attribute, Defining attributes

B

BaseRetransmissionInterval, Base retransmission interval

binary files, Provided file marshalers

BinaryFileMarshaler, Provided file marshalers

attachment, Provided file marshalers

contentType, Provided file marshalers

binding component, Component types

binding element, WSDL elements

Bundle-Name, Setting a bundle's name

Bundle-SymbolicName, Setting a bundle's symbolic name

INDEX

261

Bundle-Version, Setting a bundle's version

bundles

exporting packages, Specifying exported packages

importing packages, Specifying imported packages

name, Setting a bundle's name

private packages, Specifying private packages

symbolic name, Setting a bundle's symbolic name

version, Setting a bundle's version

C

choice element, Complex type varieties

clustering JBI endpoints, Overview

complex types

all type, Complex type varieties

choice type, Complex type varieties

elements, Defining the parts of a structure

occurrence constraints, Defining the parts of a structure

sequence type, Complex type varieties

complexType element, Defining data structures

component life-cycle, Managing JBI components

componentName, Specifying the target components

concrete part, The concrete part

configuration

HTTP thread pool, Configuring the thread pool

Jetty engine, The engine-factory element

Jetty instance, The engine element

connection factory

AMQPool (see AMQPool)

Apache ActiveMQ, Using Apache ActiveMQ Connection Factories

pooled (see AMQPool)

ConnectionFactory, Procedure, Procedure, Procedure

consumer, Component roles, Types of consumer endpoints

busCfg, Specifying the configuration to load

Red Hat JBoss Fuse 6.1 JBI Development Guide

262

cacheLevel, Performace tuning using the listener container

clientId, Performace tuning using the listener container

concurrentConsumers, Performace tuning using the listener container

connectionFactory, Procedure

destination, Configuring a destination

destinationChooser, Determining the reply destination, Configuring an endpoint to use a
destination chooser

destinationName, Configuring a destination

destinationResolver, Configuring an endpoint to use a destination resolver

durableSubscriberName, Using durable subscriptions

endpoint, Procedure, Specifying the endpoint details, Specifying the endpoint details

generic, Types of consumer endpoints

JCA, Types of consumer endpoints

jms102, Procedure

listenerType, Specifying an endpoint's listener container

marshaler, Configuring the consumer

maxMessagesPerTask, Performace tuning using the listener container

messageSelector, Using message selectors

mtomEnabled, Configuring an endpoint to support MTOM

pubSubDomaim, Procedure

receiveTimeout, Performace tuning using the listener container

recoveryInterval, Performace tuning using the listener container

replyDeliveryMode, Setting the reply message's persistence

replyDestination, Determining the reply destination

replyDestinationName, Determining the reply destination

replyExplicitQosEnabled, Enforcing the configured values

replyPriority, Setting the reply message's priority

replyProperties, Setting custom JMS header properties

replyTimeToLive, Setting a reply message's lifespan

serverSessionFactory, Configuring the server session listener container's session factory

service, Procedure, Specifying the endpoint details, Specifying the endpoint details

soap, Types of consumer endpoints

stateless, Activating statefullness

INDEX

263

storeFactory, Configuring the datastore

subscriptionDurable, Using durable subscriptions

targetEndpoint, Specifying the target endpoint, Specifying the target endpoint

targetInterface, Specifying the target endpoint, Specifying the target endpoint

targetService, Specifying the target endpoint, Specifying the target endpoint

transacted, Using transactions

useJbiWrapper, Turning of JBI wrapper processing

wsdl, Specifying the WSDL

consumer endpoint, Overview

connection factory, Procedure, Procedure

CreateSequence, How WS-RM works

CreateSequenceResponse, How WS-RM works

D

DefaultConsumerMarshaler, Overview

DefaultProviderMarshaler, Overview

definitions element, WSDL elements

delivery mode, Setting the reply message's persistence, Setting a message's persistence

destination chooser, Determining the reply destination

implementing, Implementing a destination chooser

destination resolver

configuration, Configuring an endpoint to use a destination resolver

implementing, Implementing a destination resolver

DestinationChooser, Configuring a destination, Configuring the response destination,
Implementing a destination chooser

destinationChooser, Configuring an endpoint to use a destination chooser

DestinationResolver, Implementing a destination resolver

destinationResolver, Configuring an endpoint to use a destination resolver

driverClassName, Configuring WS-persistence

durable subscriptions, Using durable subscriptions

E

element element, Defining the parts of a structure

Red Hat JBoss Fuse 6.1 JBI Development Guide

264

maxOccurs attribute, Defining the parts of a structure

minOccurrs attribute, Defining the parts of a structure

name attribute, Defining the parts of a structure

type attribute, Defining the parts of a structure

ExponentialBackoff, Exponential backoff for retransmission

Export-Package, Specifying exported packages

F

file name, Specifying the file destination

FileFilter, Overview

accept(), Implementing a file filter

implementing, Implementing a file filter

FileMarshaler, Implementing a file marshaler

getOutputName(), Implementing a file marshaler

readMessage(), Implementing a file marshaler

writeMessage(), Implementing a file marshaler

filter, Configuring an endpoint to use a file filter

flat files, Provided file marshalers

G

getOutoutName(), Implementing a file marshaler

H

HTTP

endpoint address, Adding a Basic HTTP Endpoint

http-conf:client

Accept, Configuring the endpoint

AcceptEncoding, Configuring the endpoint

AcceptLanguage, Configuring the endpoint

AllowChunking, Configuring the endpoint

AutoRedirect, Configuring the endpoint

BrowserType, Configuring the endpoint

CacheControl, Configuring the endpoint, Consumer Cache Control Directives

Connection, Configuring the endpoint

INDEX

265

ConnectionTimeout, Configuring the endpoint

ContentType, Configuring the endpoint

Cookie, Configuring the endpoint

DecoupledEndpoint, Configuring the endpoint, Configuring the consumer

Host, Configuring the endpoint

MaxRetransmits, Configuring the endpoint

ProxyServer, Configuring the endpoint

ProxyServerPort, Configuring the endpoint

ProxyServerType, Configuring the endpoint

ReceiveTimeout, Configuring the endpoint

Referer, Configuring the endpoint

http-conf:server

CacheControl, Configuring the endpoint

ContentEncoding, Configuring the endpoint

ContentLocation, Configuring the endpoint

ContentType, Configuring the endpoint

HonorKeepAlive, Configuring the endpoint

ReceiveTimeout, Configuring the endpoint

RedirectURL, Configuring the endpoint

ServerType, Configuring the endpoint

SuppressClientReceiveErrors, Configuring the endpoint

SuppressClientSendErrors, Configuring the endpoint

http:address, Other messages types

httpj:engine, The engine element

httpj:engine-factory, The engine-factory element

httpj:identifiedThreadingParameters, The engine-factory element, Configuring the thread pool

httpj:identifiedTLSServerParameters, The engine-factory element

httpj:threadingParameters, The engine element, Configuring the thread pool

maxThreads, Configuring the thread pool

minThreads, Configuring the thread pool

httpj:threadingParametersRef, The engine element

httpj:tlsServerParameters, The engine element

Red Hat JBoss Fuse 6.1 JBI Development Guide

266

httpj:tlsServerParametersRef, The engine element

I

Import-Package, Specifying imported packages

inFaultInterceptors, Configuring an endpoint's interceptor chain

inInterceptors, Configuring an endpoint's interceptor chain

InOrder, Message delivery assurance policies

install-component, Installing a component

sm.host, Installing a component

sm.install.file, Installing a component

sm.password, Installing a component

sm.port, Installing a component

sm.username, Installing a component

install-shared-library, Installing a shared library

sm.host, Installing a shared library

sm.install.file, Installing a shared library

sm.password, Installing a shared library

sm.port, Installing a shared library

sm.username, Installing a shared library

installing components, Installing a component, Installing a component

J

Java Management Extenstions, JMX

java.util.Map, Defining the property map

JBI clustering, Overview

JBI wrapper, Using the JBI wrapper, Using the JBI wrapper

jbi-install-component, Installing a component

failOnError, Installing a component

file, Installing a component

host, Installing a component

password, Installing a component

port, Installing a component

username, Installing a component

INDEX

267

jbi-install-shared-library, Installing a shared library

failOnError, Installing a shared library

file, Installing a shared library

host, Installing a shared library

password, Installing a shared library

port, Installing a shared library

username, Installing a shared library

jbi-shut-down-component, Shutting down a component

failOnError, Shutting down a component

host, Shutting down a component

name, Shutting down a component

password, Shutting down a component

port, Shutting down a component

username, Shutting down a component

jbi-start-component, Starting a component

failOnError, Starting a component

host, Starting a component

name, Starting a component

password, Starting a component

port, Starting a component

username, Starting a component

jbi-stop-component, Stopping a component

failOnError, Stopping a component

host, Stopping a component

name, Stopping a component

password, Stopping a component

port, Stopping a component

username, Stopping a component

jbi-uninstall-component, Removing a component

failOnError, Removing a component

host, Removing a component

name, Removing a component

Red Hat JBoss Fuse 6.1 JBI Development Guide

268

password, Removing a component

port, Removing a component

username, Removing a component

jbi-uninstall-shared-library, Removing a shared library

failOnError, Removing a shared library

host, Removing a shared library

name, Removing a shared library

password, Removing a shared library

port, Removing a shared library

username, Removing a shared library

jbi.xml, Contents of a file component service unit, Contents of a JMS service unit, Contents of a
file component service unit

jca-consumer, Types of consumer endpoints

activationSpec, Procedure

connectionFactory, Procedure

destination, Configuring a destination

destinationChooser, Determining the reply destination, Configuring an endpoint to use a
destination chooser

destinationName, Configuring a destination

destinationResolver, Configuring an endpoint to use a destination resolver

endpoint, Procedure

marshaler, Configuring the consumer

pubSubDomaim, Procedure

replyDeliveryMode, Setting the reply message's persistence

replyDestination, Determining the reply destination

replyDestinationName, Determining the reply destination

replyExplicitQosEnabled, Enforcing the configured values

replyPriority, Setting the reply message's priority

replyProperties, Setting custom JMS header properties

replyTimeToLive, Setting a reply message's lifespan

resourceAdapter, Procedure

service, Procedure

stateless, Activating statefullness

INDEX

269

storeFactory, Configuring the datastore

targetEndpoint, Specifying the target endpoint

targetInterface, Specifying the target endpoint

targetService, Specifying the target endpoint

JdbcStore, Configuring the datastore

JdbcStoreFactory, Configuring the datastore

jee:environment, Spring JEE JNDI lookup

jee:jndi-lookup, Spring JEE JNDI lookup

id, Spring JEE JNDI lookup

jndi-name, Spring JEE JNDI lookup

Jencks AMQPool (see AMQPool)

JMS

specifying the message type, Specifying the message type

JMS destination

specifying, Specifying the JMS address

jms:address, Specifying the JMS address

connectionPassword attribute, Specifying the JMS address

connectionUserName attribute, Specifying the JMS address

destinationStyle attribute, Specifying the JMS address

jmsDestinationName attribute, Specifying the JMS address

jmsiReplyDestinationName attribute, Using a Named Reply Destination

jmsReplyDestinationName attribute, Specifying the JMS address

jndiConnectionFactoryName attribute, Specifying the JMS address

jndiDestinationName attribute, Specifying the JMS address

jndiReplyDestinationName attribute, Specifying the JMS address, Using a Named Reply
Destination

jms:client, Specifying the message type

messageType attribute, Specifying the message type

jms:JMSNamingProperties, Specifying JNDI properties

jms:server, Specifying the configuration

durableSubscriberName, Specifying the configuration

messageSelector, Specifying the configuration

Red Hat JBoss Fuse 6.1 JBI Development Guide

270

transactional, Specifying the configuration

useMessageIDAsCorrealationID, Specifying the configuration

JMSConfiguration, Specifying the configuration

JmsConsumerMarshaler, Implementing the marshaler

JMSDeliveryMode, Setting the reply message's persistence, Setting a message's persistence

JMSExpirary, Setting a reply message's lifespan, Setting a message's life span

JMSPriority, Setting the reply message's priority, Setting a message's priority

JmsProviderMarshaler, Implementing the marshaler

JmsSoapConsumerMarshaler, Overview

JmsSoapProviderMarshaler, Overview

JMX, JMX

JNDI

specifying the connection factory, Specifying the JMS address

JndiObjectFactoryBean, Spring JNDI Templates

JndiTemplate, Spring JNDI Templates

L

listener container

default, Types of listener containers, Specifying an endpoint's listener container

server session, Types of listener containers, Specifying an endpoint's listener container

simple, Types of listener containers, Specifying an endpoint's listener container

LockManager, Overview

getLock(), Implementing a lock manager

implementing, Implementing a lock manager

lockManager, Configuring the endpoint to use a lock manager

logical part, The logical part

M

map, Defining the property map

marshaler, Configuring an endpoint to use a file marshaler, Configuring the consumer

marshaling

binary files, Provided file marshalers

flat files, Provided file marshalers

INDEX

271

Maven archetypes, Useful Maven archetypes

Maven tooling

adding the bundle plug-in, Adding a bundle plug-in

binding component, JBI components

component bootstrap class, JBI components

component implementation class, JBI components

component type, JBI components

JBI component, JBI components

project creation, Creating a JBI Maven project

service engine, JBI components

servicemix-jms-consumer-endpoint, Using the Maven JBI tooling

servicemix-jms-provider-endpoint, Using the Maven JBI tooling

set up, Setting up the Maven tools, Setting up the Maven tools

shared libraries, Shared libraries

maxLength, Maximum length of an RM sequence

maxUnacknowledged, Maximum unacknowledged messages threshold

MemoryStore, Configuring the datastore

message element, WSDL elements, Defining Logical Messages Used by a Service

message exchange patterns, Message exchange patterns

in-only, Message exchange patterns

in-optional-out, Message exchange patterns

in-out, Message exchange patterns

robust-in-only, Message exchange patterns

message persistence, Setting the reply message's persistence, Setting a message's persistence

message priority, Setting a message's priority

message selectors, Using message selectors

N

named reply destination

specifying in WSDL, Specifying the JMS address

using, Using a Named Reply Destination

namespace, Namespace, Namespace

Red Hat JBoss Fuse 6.1 JBI Development Guide

272

O

operation element, WSDL elements

outFaultInterceptors, Configuring an endpoint's interceptor chain

outInterceptors, Configuring an endpoint's interceptor chain

P

part element, Defining Logical Messages Used by a Service, Message parts

element attribute, Message parts

name attribute, Message parts

type attribute, Message parts

passWord, Configuring WS-persistence

persistence, Setting the reply message's persistence, Setting a message's persistence

poller, Configuration element

archive, Archiving files

autoCreateDirectory, Directory handling

delay, Scheduling the first poll

deleteFile, File retention

endpoint, Identifying the endpoint

file, Specifying the message source

filter, Configuring an endpoint to use a file filter

firstTime, Scheduling the first poll

lockManager, Configuring the endpoint to use a lock manager

marshaler, Configuring an endpoint to use a file marshaler

period, Configuring the polling interval

recursive, Directory handling

service, Identifying the endpoint

targetEndpoint, Specifying the target endpoint

targetInterface, Specifying the target endpoint

targetService, Specifying the target endpoint

poller endpoint, Overview

port element, WSDL elements

portType element, WSDL elements, Port types

priority, Setting a message's priority

INDEX

273

Private-Package, Specifying private packages

provider, Component roles, Types of providers

busCfg, Specifying the configuration to load

connectionFactory, Procedure

deliveryMode, Setting a message's persistence

destination, Configuring a destination

destinationChooser, Configuring a destination, Configuring the response destination,
Configuring an endpoint to use a destination chooser

destinationName, Configuring a destination

destinationResolver, Configuring an endpoint to use a destination resolver

endpoint, Procedure

explicitQosEnabled, Enforcing configured values

generic, Types of providers

jms102, Procedure

marshaler, Configuring the provider

messageIdEnabled, Message IDs

messageTimeStampEnabled, Time stamps

mtomEnabled, Configuring an endpoint to support MTOM

priority, Setting a message's priority

pubSubDomaim, Procedure

recieveTimeout, Configuring the timeout interval

replyDestination, Configuring the response destination

replyDestinationName, Configuring the response destination

service, Procedure

soap, Types of providers

stateless, Activating statefullness

storeFactory, Configuring the datastore

timeToLive, Setting a message's life span

useJbiWrapper, Turning of JBI wrapper processing

wsdl, Specifying the WSDL

provider endpoint, Overview

connection factory, Procedure

Red Hat JBoss Fuse 6.1 JBI Development Guide

274

R

readMessage(), Implementing a file marshaler

replyProperties, Setting custom JMS header properties

RMAssertion, WS-Policy RMAssertion Children

RPC style design, Message design for integrating with legacy systems

S

sender, Configuration element

append, Appending data

autoCreateDirectory, Directory creation

directory, Specifying the file destination

endpoint, Identifying the endpoint

marshaler, Configuring an endpoint to use a file marshaler

service, Identifying the endpoint

tempFilePrefix, Temporary file naming

tempFileSuffix, Temporary file naming

sender endpoint, Overview

Sequence, How WS-RM works

sequence element, Complex type varieties

SequenceAcknowledgment, How WS-RM works

service assembly, Packaging

seeding, Seeding a project using a Maven artifact

specifying the service units, Specifying the target components

service consumer, Component roles

service element, WSDL elements

service engine, Component types

service provider, Component roles

service unit, Packaging

seeding, Seeding a project using a Maven artifact

specifying the target component, Specifying the target components

service unit life-cycle, Managing service units

shutdown-component, Shutting down a component

sm.component.name, Shutting down a component

INDEX

275

sm.host, Shutting down a component

sm.password, Shutting down a component

sm.port, Shutting down a component

sm.username, Shutting down a component

SimpleFlatFileMarshaler, Provided file marshalers

docElementname, Provided file marshalers

insertLineNumbers, Provided file marshalers

lineElementname , Provided file marshalers

sm.component.name, Removing a component, Starting a component, Stopping a component,
Shutting down a component

sm.host, Installing a component, Removing a component, Starting a component, Stopping a
component, Shutting down a component, Installing a shared library, Removing a shared library

sm.install.file, Installing a component, Installing a shared library

sm.password, Installing a component, Removing a component, Starting a component, Stopping a
component, Shutting down a component, Installing a shared library, Removing a shared library

sm.port, Installing a component, Removing a component, Starting a component, Stopping a
component, Shutting down a component, Installing a shared library, Removing a shared library

sm.shared.library.name, Removing a shared library

sm.username, Installing a component, Removing a component, Starting a component, Stopping a
component, Shutting down a component, Installing a shared library, Removing a shared library

smx-arch, Seeding a project using a Maven artifact, Seeding a project using a Maven artifact

SOAP 1.1

endpoint address, SOAP 1.1

SOAP 1.2

endpoint address, SOAP 1.2

soap-consumer, Types of consumer endpoints

cacheLevel, Performace tuning using the listener container

clientId, Performace tuning using the listener container

concurrentConsumers, Performace tuning using the listener container

connectionFactory, Procedure

destination, Configuring a destination

destinationChooser, Determining the reply destination, Configuring an endpoint to use a
destination chooser

destinationName, Configuring a destination

Red Hat JBoss Fuse 6.1 JBI Development Guide

276

destinationResolver, Configuring an endpoint to use a destination resolver

durableSubscriberName, Using durable subscriptions

endpoint, Procedure

jms102, Procedure

listenerType, Specifying an endpoint's listener container

marshaler, Configuring the consumer

maxMessagesPerTask, Performace tuning using the listener container

messageSelector, Using message selectors

pubSubDomaim, Procedure

receiveTimeout, Performace tuning using the listener container

recoveryInterval, Performace tuning using the listener container

replyDeliveryMode, Setting the reply message's persistence

replyDestination, Determining the reply destination

replyDestinationName, Determining the reply destination

replyExplicitQosEnabled, Enforcing the configured values

replyPriority, Setting the reply message's priority

replyProperties, Setting custom JMS header properties

replyTimeToLive, Setting a reply message's lifespan

serverSessionFactory, Configuring the server session listener container's session factory

service, Procedure

stateless, Activating statefullness

storeFactory, Configuring the datastore

subscriptionDurable, Using durable subscriptions

targetEndpoint, Specifying the target endpoint

targetInterface, Specifying the target endpoint

targetService, Specifying the target endpoint

transacted, Using transactions

useJbiWrapper, Using the JBI wrapper

validateWsdl, WSDL verification

wsdl, Procedure

soap-provider, Types of providers

connectionFactory, Procedure

deliveryMode, Setting a message's persistence

INDEX

277

destination, Configuring a destination

destinationChooser, Configuring a destination, Configuring the response destination,
Configuring an endpoint to use a destination chooser

destinationName, Configuring a destination

destinationResolver, Configuring an endpoint to use a destination resolver

endpoint, Procedure

explicitQosEnabled, Enforcing configured values

jms102, Procedure

marshaler, Configuring the provider

messageIdEnabled, Message IDs

messageTimeStampEnabled, Time stamps

priority, Setting a message's priority

pubSubDomaim, Procedure

recieveTimeout, Configuring the timeout interval

replyDestination, Configuring the response destination

replyDestinationName, Configuring the response destination

service, Procedure

stateless, Activating statefullness

storeFactory, Configuring the datastore

timeToLive, Setting a message's life span

useJbiWrapper, Using the JBI wrapper

validateWsdl, WSDL verification

wsdl, Procedure

soap12:address, SOAP 1.2

soap:address, SOAP 1.1

Spring map, Defining the property map

start-component, Starting a component

sm.component.name, Starting a component

sm.host, Starting a component

sm.password, Starting a component

sm.port, Starting a component

sm.username, Starting a component

stop-component, Stopping a component

Red Hat JBoss Fuse 6.1 JBI Development Guide

278

sm.component.name, Stopping a component

sm.host, Stopping a component

sm.password, Stopping a component

sm.port, Stopping a component

sm.username, Stopping a component

T

time to live, Setting a message's life span

transactions, Using transactions

types element, WSDL elements

U

uninstall-component, Removing a component

sm.component.name, Removing a component

sm.host, Removing a component

sm.password, Removing a component

sm.port, Removing a component

sm.username, Removing a component

uninstall-shared-library, Removing a shared library

sm.host, Removing a shared library

sm.password, Removing a shared library

sm.port, Removing a shared library

sm.shared.library.name, Removing a shared library

sm.username, Removing a shared library

userName, Configuring WS-persistence

util:map, Defining the property map

W

wrapped document style, Message design for SOAP services

writeMessage(), Implementing a file marshaler

WS-Addressing

using, Configuring an endpoint to use WS-Addressing

WS-I basic profile, WSDL verification, WSDL verification

INDEX

279

WS-RM

AcknowledgementInterval, Acknowledgement interval

AtLeastOnce, Message delivery assurance policies

AtMostOnce, Message delivery assurance policies

BaseRetransmissionInterval, Base retransmission interval

configuring, Configuring WS-RM

destination, How WS-RM works

driverClassName, Configuring WS-persistence

enabling, Enabling WS-RM

ExponentialBackoff, Exponential backoff for retransmission

externaL attachment, External attachment

initial sender, How WS-RM works

InOrder, Message delivery assurance policies

interceptors, Apache CXF WS-RM Interceptors

maxLength, Maximum length of an RM sequence

maxUnacknowledged, Maximum unacknowledged messages threshold

passWord, Configuring WS-persistence

rmManager, Children of the rmManager Spring bean

source, How WS-RM works

ultimate receiver, How WS-RM works

url, Configuring WS-persistence

userName, Configuring WS-persistence

wsam:Addressing, Configuring an endpoint to use WS-Addressing

WSDL design

RPC style, Message design for integrating with legacy systems

wrapped document style, Message design for SOAP services

WSDL extensors

jms:address (see jms:address)

jms:client (see jms:client)

jms:JMSNamingProperties (see jms:JMSNamingProperties)

jms:server (see jms:server)

wsrm:AcksTo, How WS-RM works

Red Hat JBoss Fuse 6.1 JBI Development Guide

280

wswa:UsingAddressing, Configuring an endpoint to use WS-Addressing

X

xbean.xml, Contents of a file component service unit, Contents of a JMS service unit, Contents of
a file component service unit

INDEX

281

	Table of Contents
	PART I. INTRODUCING JAVA BUSINESS INTEGRATION
	CHAPTER 1. INTRODUCTION TO JBI
	CHAPTER 2. THE COMPONENT FRAMEWORK
	OVERVIEW
	COMPONENT TYPES
	PACKAGING
	COMPONENT ROLES

	CHAPTER 3. THE NORMALIZED MESSAGE ROUTER
	OVERVIEW
	MESSAGE EXCHANGE PATTERNS
	NORMALIZED MESSAGES

	CHAPTER 4. MANAGEMENT STRUCTURE
	OVERVIEW
	JMX
	INSTALLING AND UNINSTALLING ARTIFACTS INTO THE JBI ENVIRONMENT
	MANAGING JBI COMPONENTS
	MANAGING SERVICE UNITS

	CHAPTER 5. CLUSTERING JBI ENDPOINTS
	OVERVIEW
	FEATURES
	STEPS TO SET UP CLUSTERING
	INSTALLING THE CLUSTERING FEATURE
	DEFAULT CLUSTERING ENGINE CONFIGURATION
	CHANGING THE DEFAULT CONFIGURATION
	CHANGING THE JMS BROKER
	USING CLUSTERING IN AN APPLICATION
	ESTABLISHING NETWORK CONNECTIONS BETWEEN CONTAINERS
	HIGH AVAILABILITY
	CLUSTER CONFIGURATION CONVENTIONS

	CHAPTER 6. USING THE JBI ANT TASKS
	6.1. USING THE TASKS AS COMMANDS
	Usage
	Installing a component
	Removing a component
	Starting a component
	Stopping a component
	Shutting down a component
	Installing a shared library
	Removing a shared library

	6.2. USING THE TASKS IN BUILD FILES
	Adding the JBI tasks to build an Ant file
	Installing a component
	Removing a component
	Starting a component
	Stopping a component
	Shutting down a component
	Installing a shared library
	Removing a shared library

	CHAPTER 7. BUILDING JBI COMPONENTS USING MAVEN
	OVERVIEW
	SETTING UP THE MAVEN TOOLS
	CREATING A JBI MAVEN PROJECT
	JBI COMPONENTS
	SHARED LIBRARIES

	CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN
	8.1. SETTING UP A RED HAT JBOSS FUSE JBI PROJECT
	Overview
	Directory structure
	Setting up the Maven tools
	Listing the sub-projects
	Example JBI project pOM

	8.2. A SERVICE UNIT PROJECT
	Overview
	Seeding a project using a Maven artifact
	Contents of a project
	Configuring the Maven plug-in
	Specifying the target components
	Example

	8.3. A SERVICE ASSEMBLY PROJECT
	Overview
	Seeding a project using a Maven artifact
	Contents of a project
	Configuring the Maven plug-in
	Specifying the target components
	Example

	APPENDIX A. USING THE JBI CONSOLE COMMANDS
	ACCESSING THE JBI COMMANDS
	COMMANDS

	PART II. FILE BINDING COMPONENT
	CHAPTER 9. INTRODUCTION TO THE FILE BINDING COMPONENT
	OVERVIEW
	KEY FEATURES
	CONTENTS OF A FILE COMPONENT SERVICE UNIT
	OSGI PACKAGING
	NAMESPACE

	CHAPTER 10. USING POLLER ENDPOINTS
	10.1. INTRODUCTION TO POLLER ENDPOINTS
	Overview
	Where does a poller endpoint fit into a solution?
	Configuration element

	10.2. BASIC CONFIGURATION
	Overview
	Identifying the endpoint
	Specifying the message source
	Specifying the target endpoint
	Example

	10.3. CONFIGURING POLLER ENDPOINTS INTERACTIONS WITH THE FILE SYSTEM
	Overview
	Directory handling
	File retention
	Archiving files

	10.4. CONFIGURING THE POLLING INTERVAL
	Overview
	Scheduling the first poll
	Delaying the first poll
	Configuring the polling interval

	10.5. FILE LOCKING
	Overview
	Implementing a lock manager
	Configuring the endpoint to use a lock manager

	10.6. FILE FILTERING
	Overview
	Implementing a file filter
	Configuring an endpoint to use a file filter

	CHAPTER 11. USING SENDER ENDPOINTS
	11.1. INTRODUCTION TO SENDER ENDPOINTS
	Overview
	Where does a sender endpoint fit into a solution?
	Configuration element

	11.2. BASIC CONFIGURATION
	Overview
	Identifying the endpoint
	Specifying the file destination
	Example

	11.3. CONFIGURING A SENDER ENDPOINT'S INTERACTION WITH THE FILE SYSTEM
	Overview
	Directory creation
	Appending data
	Temporary file naming

	CHAPTER 12. FILE MARSHALERS
	OVERVIEW
	PROVIDED FILE MARSHALERS
	IMPLEMENTING A FILE MARSHALER
	CONFIGURING AN ENDPOINT TO USE A FILE MARSHALER

	APPENDIX B. POLLER ENDPOINT PROPERTIES
	ATTRIBUTES
	BEANS

	APPENDIX C. SENDER ENDPOINT PROPERTIES
	ATTRIBUTES
	BEANS

	PART III. JMS BINDING COMPONENT
	CHAPTER 13. INTRODUCTION TO THE RED HAT JBOSS FUSE JMS BINDING COMPONENT
	OVERVIEW
	KEY FEATURES
	CONTENTS OF A JMS SERVICE UNIT
	USING THE MAVEN JBI TOOLING
	OSGI PACKAGING
	NAMESPACE

	CHAPTER 14. CONFIGURING THE CONNECTION FACTORY
	14.1. USING APACHE ACTIVEMQ CONNECTION FACTORIES
	Overview
	Namespace
	Simple pool
	XA pool
	JCA pool

	14.2. USING JNDI
	Overview
	Spring JEE JNDI lookup
	Spring JNDI Templates

	14.3. USING A SPRING BEAN
	Overview
	Example

	CHAPTER 15. CREATING A CONSUMER ENDPOINT
	15.1. INTRODUCTION TO CONSUMER ENDPOINTS
	Where does a consumer fit into a solution?
	Types of consumer endpoints

	15.2. USING THE GENERIC ENDPOINT OR THE SOAP ENDPOINT
	15.2.1. Basic Configuration
	Procedure
	Configuring a destination
	Specifying the target endpoint
	Examples

	15.2.2. Listener Containers
	Overview
	Types of listener containers
	Specifying an endpoint's listener container
	Performace tuning using the listener container
	Configuring the server session listener container's session factory

	15.2.3. Advanced Configuration
	Using transactions
	Using message selectors
	Using durable subscriptions

	15.2.4. SOAP Specific Configuration
	Overview
	Using the JBI wrapper
	WSDL verification

	15.3. USING THE JCA CONSUMER ENDPOINT
	Procedure
	Configuring a destination
	Specifying the target endpoint
	Example

	15.4. CONFIGURING HOW REPLIES ARE SENT
	15.4.1. Configuring the Reply Destination
	Overview
	Determining the reply destination
	Example

	15.4.2. Configuring the Qualities of Service
	Overview
	Setting the reply message's priority
	Setting the reply message's persistence
	Setting a reply message's lifespan
	Enforcing the configured values
	Example

	15.4.3. Setting Custom JMS Properties
	Overview
	Setting custom JMS header properties
	Defining the property map
	Example

	CHAPTER 16. CREATING A PROVIDER ENDPOINT
	16.1. INTRODUCTION TO PROVIDER ENDPOINTS
	Where does a provider fit into a solution?
	Types of providers

	16.2. BASIC CONFIGURATION
	Procedure
	Configuring a destination
	Examples

	16.3. CONFIGURING HOW RESPONSES ARE RECEIVED
	Overview
	Configuring the response destination
	Configuring the timeout interval
	Example

	16.4. ADVANCED PROVIDER CONFIGURATION
	16.4.1. JMS Message Qualities of Service
	Overview
	Setting a message's priority
	Setting a message's persistence
	Setting a message's life span
	Enforcing configured values
	Example

	16.4.2. JMS Message Optimization
	Overview
	Message IDs
	Time stamps

	16.4.3. SOAP Specific Configuration
	Overview
	Using the JBI wrapper
	WSDL verification

	CHAPTER 17. MAKING ENDPOINTS STATEFUL
	OVERVIEW
	ACTIVATING STATEFULLNESS
	CONFIGURING THE DATASTORE
	EXAMPLE

	CHAPTER 18. WORKING WITH MESSAGE MARSHALERS
	18.1. CONSUMER MARSHALERS
	Overview
	Implementing the marshaler
	Configuring the consumer

	18.2. PROVIDER MARSHALERS
	Overview
	Implementing the marshaler
	Configuring the provider

	CHAPTER 19. IMPLEMENTING DESTINATION RESOLVING LOGIC
	19.1. USING A CUSTOM DESTINATION CHOOSER
	Overview
	Implementing a destination chooser
	Configuring an endpoint to use a destination chooser

	19.2. USING A CUSTOM DESTINATION RESOLVER
	Overview
	Implementing a destination resolver
	Configuring an endpoint to use a destination resolver

	APPENDIX D. CONSUMER ENDPOINT PROPERTIES
	D.1. COMMON PROPERTIES
	Attributes
	Beans

	D.2. PROPERTIES SPECIFIC TO GENERIC CONSUMERS AND SOAP CONSUMERS
	Common Attributes
	Common Beans
	SOAP consumer specific attributes

	D.3. PROPERTIES SPECIFIC TO A JCA CONSUMER

	APPENDIX E. PROVIDER ENDPOINT PROPERTIES
	E.1. COMMON PROPERTIES
	Attributes
	Beans

	E.2. PROPERTIES SPECIFIC TO SOAP PROVIDERS
	Attributes
	Beans

	PART IV. CXF BINDING COMPONENT
	CHAPTER 20. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT
	OVERVIEW
	KEY FEATURES
	STEPS FOR WORKING WITH THE APACHE CXF BINDING COMPONENT
	MORE INFORMATION

	CHAPTER 21. INTRODUCING WSDL CONTRACTS
	21.1. STRUCTURE OF A WSDL DOCUMENT
	The logical part
	The concrete part

	21.2. WSDL ELEMENTS
	21.3. DESIGNING A CONTRACT

	CHAPTER 22. DEFINING LOGICAL DATA UNITS
	22.1. MAPPING DATA INTO LOGICAL DATA UNITS
	Available type systems for defining service data units
	XML Schema as a type system
	Considerations for creating your data units

	22.2. ADDING DATA UNITS TO A CONTRACT
	Procedure

	22.3. XML SCHEMA SIMPLE TYPES
	Entering simple types
	Supported XSD simple types

	22.4. DEFINING COMPLEX DATA TYPES
	22.4.1. Defining data structures
	Complex type varieties
	Defining the parts of a structure
	Defining attributes

	22.4.2. Defining arrays
	Complex type arrays
	SOAP arrays

	22.4.3. Defining types by extension
	22.4.4. Defining types by restriction
	Specifying the base type
	Defining the restrictions
	Example

	22.4.5. Defining enumerated types
	Defining an enumeration in XML Schema
	Example

	22.5. DEFINING ELEMENTS

	CHAPTER 23. DEFINING LOGICAL MESSAGES USED BY A SERVICE
	MESSAGES AND PARAMETER LISTS
	MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS
	MESSAGE DESIGN FOR SOAP SERVICES
	MESSAGE NAMING
	MESSAGE PARTS
	EXAMPLE

	CHAPTER 24. DEFINING YOUR LOGICAL INTERFACES
	PROCESS
	PORT TYPES
	OPERATIONS
	OPERATION MESSAGES
	RETURN VALUES
	EXAMPLE

	CHAPTER 25. USING HTTP
	25.1. ADDING A BASIC HTTP ENDPOINT
	Overview
	SOAP 1.1
	SOAP 1.2
	Other messages types

	25.2. CONSUMER CONFIGURATION
	Namespace
	Configuring the endpoint
	Consumer Cache Control Directives
	Example

	25.3. PROVIDER CONFIGURATION
	Namespace
	Configuring the endpoint
	Service Provider Cache Control Directives
	Example

	25.4. USING THE HTTP TRANSPORT IN DECOUPLED MODE
	Overview
	Configuring decoupled interactions
	Configuring an endpoint to use WS-Addressing
	Configuring the consumer
	How messages are processed

	CHAPTER 26. USING JMS
	26.1. USING SOAP/JMS
	26.1.1. Basic configuration
	Overview
	Specifying the JMS transport type
	Specifying the target destination
	Configuring JNDI and the JMS transport

	26.1.2. JMS URIs
	Overview
	Syntax
	JMS properties
	JNDI properties
	Additional JNDI properties
	Example

	26.1.3. WSDL extensions
	Overview
	SOAP/JMS namespace
	WSDL extension elements
	Configuration scopes
	Example

	26.2. USING WSDL TO CONFIGURE JMS
	26.2.1. Basic JMS configuration
	Overview
	Specifying the JMS address
	Specifying JNDI properties
	Example

	26.2.2. JMS client configuration
	Overview
	Specifying the message type
	Example

	26.2.3. JMS provider configuration
	Overview
	Specifying the configuration
	Example

	26.3. USING A NAMED REPLY DESTINATION
	Overview
	Setting the reply destination name
	Example

	CHAPTER 27. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT
	CONTENTS OF A FILE COMPONENT SERVICE UNIT
	OSGI PACKAGING
	NAMESPACE

	CHAPTER 28. CONSUMER ENDPOINTS
	OVERVIEW
	PROCEDURE
	SPECIFYING THE WSDL
	SPECIFYING THE ENDPOINT DETAILS
	SPECIFYING THE TARGET ENDPOINT

	CHAPTER 29. PROVIDER ENDPOINTS
	OVERVIEW
	PROCEDURE
	SPECIFYING THE WSDL
	SPECIFYING THE ENDPOINT DETAILS

	CHAPTER 30. USING MTOM TO PROCESS BINARY CONTENT
	OVERVIEW
	CONFIGURING AN ENDPOINT TO SUPPORT MTOM

	CHAPTER 31. WORKING WITH THE JBI WRAPPER
	OVERVIEW
	TURNING OF JBI WRAPPER PROCESSING
	EXAMPLE

	CHAPTER 32. USING MESSAGE INTERCEPTORS
	OVERVIEW
	CONFIGURING AN ENDPOINT'S INTERCEPTOR CHAIN
	IMPLEMENTING AN INTERCEPTOR
	MORE INFORMATION

	CHAPTER 33. CONFIGURING THE ENDPOINTS TO LOAD APACHE CXF RUNTIME CONFIGURATION
	SPECIFYING THE CONFIGURATION TO LOAD
	EXAMPLE

	CHAPTER 34. TRANSPORT CONFIGURATION
	34.1. USING THE JMS CONFIGURATION BEAN
	Overview
	Configuration namespace
	Specifying the configuration
	Applying the configuration to an endpoint
	Applying the configuration to the transport

	34.2. CONFIGURING THE JETTY RUNTIME
	Overview
	Maven dependency
	Namespace
	The engine-factory element
	The engine element
	Configuring the thread pool
	Example

	CHAPTER 35. DEPLOYING WS-ADDRESSING
	35.1. INTRODUCTION TO WS-ADDRESSING
	Overview
	Supported specifications
	Further information

	35.2. WS-ADDRESSING INTERCEPTORS
	Overview
	WS-Addressing Interceptors

	35.3. ENABLING WS-ADDRESSING
	Overview
	Adding WS-Addressing as a Feature

	35.4. CONFIGURING WS-ADDRESSING ATTRIBUTES
	Overview
	Configuring WS-Addressing attributes
	Using a WS-Policy assertion embedded in a feature

	CHAPTER 36. ENABLING RELIABLE MESSAGING
	36.1. INTRODUCTION TO WS-RM
	Overview
	How WS-RM works
	WS-RM delivery assurances
	Supported specifications
	Further information

	36.2. WS-RM INTERCEPTORS
	Overview
	Apache CXF WS-RM Interceptors
	Enabling WS-RM
	Configuring WS-RM Attributes

	36.3. ENABLING WS-RM
	Overview
	Spring beans—explicitly adding interceptors
	WS-Policy framework—implicitly adding interceptors

	36.4. CONFIGURING WS-RM
	36.4.1. Configuring Apache CXF-Specific WS-RM Attributes
	Overview
	Children of the rmManager Spring bean
	Example

	36.4.2. Configuring Standard WS-RM Policy Attributes
	Overview
	WS-Policy RMAssertion Children
	More detailed reference information
	RMAssertion in rmManager Spring bean
	Policy within a feature
	WSDL file
	External attachment

	36.4.3. WS-RM Configuration Use Cases
	Overview
	Base retransmission interval
	Exponential backoff for retransmission
	Acknowledgement interval
	Maximum unacknowledged messages threshold
	Maximum length of an RM sequence
	Message delivery assurance policies

	36.5. CONFIGURING WS-RM PERSISTENCE
	Overview
	How it works
	Enabling WS-persistence
	Configuring WS-persistence

	APPENDIX F. CONSUMER ENDPOINT PROPERTIES
	APPENDIX G. PROVIDER ENDPOINT PROPERTIES
	APPENDIX H. USING THE MAVEN OSGI TOOLING
	H.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT
	Overview
	Directory structure
	Adding a bundle plug-in
	Activating a bundle plug-in
	Useful Maven archetypes
	Spring OSGi archetype
	Apache CXF code-first archetype
	Apache CXF wsdl-first archetype
	Apache Camel archetype

	H.2. CONFIGURING THE BUNDLE PLUG-IN
	Overview
	Configuration properties
	Setting a bundle's symbolic name
	Setting a bundle's name
	Setting a bundle's version
	Specifying exported packages
	Specifying private packages
	Specifying imported packages
	More information

	INDEX

