
Red Hat JBoss Enterprise Application
Platform 8.0

Secure storage of credentials in JBoss EAP

Guide to securely storing credentials in credential stores

Last Updated: 2024-02-21

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of
credentials in JBoss EAP

Guide to securely storing credentials in credential stores

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to securely storing credentials in credential stores.

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON
1.1. TYPES OF CREDENTIAL STORES PROVIDED BY ELYTRON

1.1.1. KeyStoreCredentialStore/credential-store in Elytron
1.1.2. PropertiesCredentialStore/secret-key-credential-store in Elytron

1.2. CREDENTIAL TYPES IN ELYTRON
1.3. CREDENTIAL TYPES SUPPORTED BY ELYTRON CREDENTIAL STORES
1.4. CREDENTIAL STORE OPERATIONS USING THE JBOSS EAP MANAGEMENT CLI

1.4.1. Creating a credential-store for a standalone server
1.4.2. Creating a credential-store for a managed domain
1.4.3. Creating a secret-key-credential-store for a standalone server
1.4.4. Adding a PasswordCredential to a credential-store
1.4.5. Generating a SecretKeyCredential in a credential-store
1.4.6. Generating a SecretKeyCredential in a secret-key-credential-store
1.4.7. Importing a SecretKeyCredential to a secret-key-credential-store
1.4.8. Listing the credentials in a credential-store
1.4.9. Exporting a SecretKeyCredential from a credential-store
1.4.10. Exporting a SecretKeyCredential from a secret-key-credential-store
1.4.11. Removing a credential from credential-store
1.4.12. Removing a credential from the secret-key-credential-store

1.5. CREDENTIAL STORE OPERATIONS USING THE WILDFLY ELYTRON TOOL
1.5.1. Creating a credential-store using the WildFly Elytron tool
1.5.2. Creating a credential-store using the Bouncy Castle provider
1.5.3. Creating a secret-key-credential-store using WildFly Elytron tool
1.5.4. WildFly Elytron tool credential-store operations
1.5.5. WildFly Elytron tool secret-key-credential-store operations
1.5.6. Adding a credential-store created with the WildFly Elytron tool to a JBoss EAP Server
1.5.7. WildFly Elytron tool key pair management operations
1.5.8. Example use of stored key pair in the Elytron configuration files
1.5.9. Generating masked encrypted strings using the WildFly Elytron tool

1.6. AUTOMATIC UPDATE OF CREDENTIALS IN CREDENTIAL STORE
1.7. EXAMPLE OF USING A CREDENTIAL STORE WITH ELYTRON CLIENT
1.8. CREATING FIPS 140-2 COMPLIANT CREDENTIAL STORES

1.8.1. Creating FIPS 140-2 compliant credential store using a SunPKCS#11 provider and NSS database
1.8.1.1. JDKs that support FIPS when using a SunPKCS#11 provider and NSS database
1.8.1.2. Creating FIPS 140-2 compliant credential store using a SUNPKCS#11 provider and NSS database in
FIPS enabled RHEL

1.8.2. Creating FIPS 140-2 compliant credential store using BouncyCastle providers
1.8.2.1. Creating FIPS 140-2 compliant credential store using BouncyCastle providers

CHAPTER 2. PROVIDING AN INITIAL KEY TO JBOSS EAP TO UNLOCK SECURED RESOURCES
2.1. ENCRYPTED EXPRESSIONS IN ELYTRON
2.2. CREATING AN ENCRYPTED EXPRESSION IN ELYTRON
2.3. USING AN ENCRYPTED EXPRESSION TO SECURE A KEYSTORECREDENTIALSTORE/CREDENTIAL-
STORE

CHAPTER 3. REFERENCE
3.1. AGGREGATE-PROVIDERS ATTRIBUTES
3.2. CREDENTIAL-STORE ATTRIBUTES

4

5

6
6
6
6
7
7
8
8
9
11
11

12
13
14
15
16
17
17
19

20
20
21
22
22
25
26
27
28
29
29
30
31
32
32

32
36
36

41
41

42

44

46
46
46

Table of Contents

1

3.3. CREDENTIAL-STORE IMPLEMENTATION PROPERTIES
3.4. EXPRESSION=ENCRYPTION ATTRIBUTES
3.5. PROVIDER-LOADER ATTRIBUTES
3.6. SECRET-KEY-CREDENTIAL-STORE ATTRIBUTES

47
47
48
48

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

2

Table of Contents

3

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket.

2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

4

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12316621&summary=(userfeedback)&issuetype=13&description=[Please+include+the+Document+URL,+the+section+number+and +describe+the+issue]&priority=3&labels=[ddf]&components=12391723&customfield_10010

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN
ELYTRON

1.1. TYPES OF CREDENTIAL STORES PROVIDED BY ELYTRON

Elytron provides two default credential store types you can use to save your credentials:
KeyStoreCredentialStore and PropertiesCredentialStore. You can manage credential stores with the
JBoss EAP management CLI, or you can use the WildFly Elytron tool to manage them offline. In addition
to the two default store types, you can also create, use, and manage your own custom credential stores.

1.1.1. KeyStoreCredentialStore/credential-store in Elytron

You can store all the Elytron credential types in a KeyStoreCredentialStore. The resource name for
KeyStoreCredentialStore in the elytron subsystem is credential-store. The KeyStoreCredentialStore
protects your credentials using the mechanisms provided by the KeyStore implementations in the Java
Development Kit (JDK).

Access a KeyStoreCredentialStore in the management CLI as follows:

/subsystem=elytron/credential-store

Additional resources

Creating a credential-store for a standalone server

Creating a credential-store for a managed domain

Creating a credential-store using the WildFly Elytron tool

Creating a credential-store using the Bouncy Castle provider

credential-store attributes

1.1.2. PropertiesCredentialStore/secret-key-credential-store in Elytron

To start properly, JBoss EAP requires an initial key to unlock certain secure resources. Use the
PropertiesCredentialStore to provide this initial secret key to unlock these necessary server resources.
You can also use the PropertiesCredentialStore to store SecretKeyCredential, which supports storing
Advanced Encryption Standard (AES) secret keys. Use file system permissions to restrict access to the
credential store. Ideally, you should give access only to your application server to restrict access to this
credential store.

The resource name in the elytron subsystem for PropertiesCredentialStore is secret-key-credential-
store, and you can access it in the management CLI as follows:

/subsystem=elytron/secret-key-credential-store

Additional resources

Creating a secret-key-credential-store for a standalone server

Creating a secret-key-credential-store using WildFly Elytron tool

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

6

secret-key-credential-store attributes

1.2. CREDENTIAL TYPES IN ELYTRON

Elytron provides the following three credential types to suit your various security needs, and you can
store these credentials in one of Elytron’s credential stores.

PasswordCredential

With this credential type, you can securely store plain text, or unencrypted, passwords. For the JBoss
EAP resources that require a password, use a reference to the PasswordCredential instead of the
plain text password to maintain the secrecy of the password.

Example of connecting to a database

data-source add ... --user-name=db_user --password=StrongPassword

In this example database connection command, you can see the password: StrongPassword. This
means that others can also see it in the server configuration file.

Example of connecting to a database using a PasswordCredential

data-source add ... --user-name=db_user --credential-reference=
{store=exampleKeyStoreCredentialStore, alias=passwordCredentialAlias}

When you use a credential reference instead of a password to connect to a database, others can only
see the credential reference in the configuration file, not your password

KeyPairCredential

You can use both Secure Shell (SSH) and Public-Key Cryptography Standards (PKCS) key pairs as
KeyPairCredential. A key pair includes both a shared public key and a private key that only a given
user knows.
You can manage KeyPairCredential using only the WildFly Elytron tool.

SecretKeyCredential

A SecretKeyCredential is an Advanced Encryption Standard (AES) key that you can use to create
encrypted expressions in Elytron.

Additional resources

Credential stores provided by Elytron

Credential types supported by credential stores

1.3. CREDENTIAL TYPES SUPPORTED BY ELYTRON CREDENTIAL
STORES

The following table illustrates which credential type is supported by which credential store:

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

7

Credential type KeyStoreCredentialStore/crede
ntial-store

PropertiesCredentialStore/secr
et-key-credential-store

PasswordCredential Yes No

KeyPairCredential Yes No

SecretKeyCredential Yes Yes

Additional resources

Credential types in Elytron

Credential stores provided by Elytron

1.4. CREDENTIAL STORE OPERATIONS USING THE JBOSS EAP
MANAGEMENT CLI

To manage JBoss EAP credentials in a running JBoss EAP server, use the provided management CLI
operations. You can manage PasswordCredential and SecretKeyCredential using the JBoss EAP
management CLI.

NOTE

You can do these operation only on modifiable credential stores. All credential store
types are modifiable by default.

1.4.1. Creating a credential-store for a standalone server

Create a credential-store for a JBoss EAP running as a standalone server in any directory on the file
system. For security, the directory containing the store should be accessible to only limited users.

Prerequisites

You have provided at least read/write access to the directory containing the
KeyStoreCredentialStore for the user account under which JBoss EAP is running.

NOTE

You cannot have the same name for a credential-store and a secret-key-credential-
store because they implement the same Elytron capability:
org.wildfly.security.credential-store.

Procedure

Create a KeyStoreCredentialStore using the following management CLI command:

Syntax

/subsystem=elytron/credential-

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

8

store=<name_of_credential_store>:add(path="<path_to_store_file>", relative-
to=<base_path_to_store_file>, credential-reference={clear-text=<store_password>},
create=true)

Example

/subsystem=elytron/credential-
store=exampleKeyStoreCredentialStore:add(path="exampleKeyStoreCredentialStore.jceks",
relative-to=jboss.server.data.dir, credential-reference={clear-text=password}, create=true)
{"outcome" => "success"}

Additional resources

KeyStoreCredentialStore/credential-store in Elytron

Credential store operations using the JBoss EAP management CLI

credential-store attributes

1.4.2. Creating a credential-store for a managed domain

You can create a credential-store in a managed domain, but you must first use the WildFly Elytron tool
to prepare your KeyStoreCredentialStore. If you have multiple host controllers in a single managed
domain, choose one of the following options:

Create a credential-store in each host controller and add credentials to each credential-store.

Copy a populated credential-store from one host controller to all the other host controllers.

Save your credential-store file in your Network File System (NFS), then use that file for all the
credential-store resources you create.

Alternatively, you can create a credential-store file with credentials on a host controller without using
the WildFly Elytron tool.

NOTE

You don’t have to define a credential-store resource on every server, because every
server on the same profile contains your credential-store file. You can find the
credential-store file in the server data directory, relative-to=jboss.server.data.dir.

IMPORTANT

You cannot have the same name for a credential-store and a secret-key-credential-
store because they implement the same Elytron capability:
org.wildfly.security.credential-store.

The following procedure describes how to use the NFS to provide the credential-store file to all host
controllers.

Procedure

1. Use the WildFly Elytron tool to create a credential-store storage file. For more information on
this, see WildFly Elytron tool credential-store operations.

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

9

2. Distribute the storage file. For example, allocate it to each host controller by using the scp
command, or store it in your NFS and use it for all of your credential-store resources.

NOTE

To maintain consistency, for a credential-store file that multiple resources and
host controllers use and which you stored in your NFS, you must use the
credential-store in read-only mode. Additionally, make sure you provide an
absolute path for your credential-store file.

Syntax

/profile=<profile_name>/subsystem=elytron/credential-
store=<name_of_credential_store>:add(path=<absolute_path_to_store_keysto
re>,credential-reference={clear-
text="<store_password>"},create=false,modifiable=false)

Example

/profile=full-ha/subsystem=elytron/credential-
store=exampleCredentialStoreDomain:add(path=/usr/local/etc/example-cred-
store.cs,credential-reference={clear-
text="password"},create=false,modifiable=false)

3. Optional: If you need to define the credential-store resource in a profile, use the storage file to
create the resource.

Syntax

/profile=<profile_name>/subsystem=elytron/credential-
store=<name_of_credential_store>:add(path=<path_to_store_file>,credential-reference=
{clear-text="<store_password>"})

Example

/profile=full-ha/subsystem=elytron/credential-
store=exampleCredentialStoreHA:add(path=/usr/local/etc/example-cred-store-ha.cs,
credential-reference={clear-text="password"})

4. Optional: Create the credential-store resource for a host controller.

Syntax

/host=<host_controller_name>/subsystem=elytron/credential-
store=<name_of_credential_store>:add(path=<path_to_store_file>,credential-reference=
{clear-text="<store_password>"})

Example

/host=master/subsystem=elytron/credential-
store=exampleCredentialStoreHost:add(path=/usr/local/etc/example-cred-store-host.cs,
credential-reference={clear-text="password"})

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

10

Additional resources

KeyStoreCredentialStore/credential-store in Elytron

Credential store operations using the WlidFly Elytron tool

credential-store attributes

1.4.3. Creating a secret-key-credential-store for a standalone server

Create a secret-key-credential-store using the management CLI. When you create a secret-key-
credential-store, JBoss EAP generates a secret key by default. The name of the generated key is key
and its size is 256-bit.

Prerequisites

JBoss EAP is running.

You have provided at least read/write access to the directory containing the secret-key-
credential-store for the user account under which JBoss EAP is running.

Procedure

Use the following command to create a secret-key-credential-store using the management
CLI:

Syntax

/subsystem=elytron/secret-key-credential-
store=<name_of_credential_store>:add(path="<path_to_the_credential_store>", relative-
to=<path_to_store_file>)

Example

/subsystem=elytron/secret-key-credential-
store=examplePropertiesCredentialStore:add(path=examplePropertiesCredentialStore.cs,
relative-to=jboss.server.config.dir)
{"outcome" => "success"}

1.4.4. Adding a PasswordCredential to a credential-store

Add a plain text password for those resources that require one as a PasswordCredential to the
credential-store to hide that password in the configuration file. You can then reference this stored
credential to access those resources, without ever exposing your password.

Prerequisites

You have created a credential-store.
For information about creating a credential-store, see Creating a credential-store for a
standalone server.

Procedure

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

11

Add a new PasswordCredential to a credential-store:

Syntax

/subsystem=elytron/credential-store=<name_of_credential_store>:add-alias(alias=<alias>,
secret-value=<secret-value>)

Example

/subsystem=elytron/credential-store=exampleKeyStoreCredentialStore:add-
alias(alias=passwordCredentialAlias, secret-value=StrongPassword)
{"outcome" => "success"}

Verification

Issue the following command to verify that the PasswordCredential was added to the
credential-store:

Syntax

/subsystem=elytron/credential-store=<name_of_credential_store>:read-aliases()

Example

/subsystem=elytron/credential-store=exampleKeyStoreCredentialStore:read-aliases()
{
 "outcome" => "success",
 "result" => ["passwordcredentialalias"]
}

Additional resources

KeyStoreCredentialStore/credential-store in Elytron

credential-store attributes

1.4.5. Generating a SecretKeyCredential in a credential-store

Generate a SecretKeyCredential in a credential-store. By default, Elytron creates a 256-bit key. If you
want a different size, you can specify either a 128-bit or 192-bit key in the key-size attribute.

Prerequisites

You have created a credential-store.
For information about creating a credential-store, see Creating a credential-store for a
standalone server.

Procedure

Generate a SecretKeyCredential in a credential-store using the following management CLI
command:

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

12

Syntax

/subsystem=elytron/credential-store=<name_of_credential_store>:generate-secret-
key(alias=<alias>, key-size=<128_or_192>)

Example

/subsystem=elytron/credential-store=exampleKeyStoreCredentialStore:generate-secret-
key(alias=secretKeyCredentialAlias)

Verification

Issue the following command to verify that Elytron stored your SecretKeyCredential in the
credential-store:

Syntax

/subsystem=elytron/credential-store=<name_of_credential_store>:read-aliases()

Example

/subsystem=elytron/credential-store=exampleKeyStoreCredentialStore:read-aliases()
{
 "outcome" => "success",
 "result" => [
 "secretkeycredentialalias"
]
}

Additional resources

KeyStoreCredentialStore/credential-store in Elytron

credential-store attributes

1.4.6. Generating a SecretKeyCredential in a secret-key-credential-store

Generate a SecretKeyCredential in a secret-key-credential-store. By default, Elytron creates a 256-bit
key. If you want a different size, you can specify either a 128-bit or 192-bit key in the key-size attribute.

When you generate a SecretKeyCredential, Elytron generates a new random secret key and stores it as
the SecretKeyCredential. You can view the contents of the credential by using the export operation on
the secret-key-credential-store.

IMPORTANT

Make sure that you create a backup of either secret-key-credential-store,
SecretKeyCredential, or both, because JBoss EAP cannot decrypt or retrieve lost
Elytron credentials.

You can use the export operation on the secret-key-credential-store to get the value of the
SecretKeyCredential. You can then save this value as a backup.

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

13

Prerequisites

You have created a secret-key-credential-store.
For information about creating a secret-key-credential-store, see Creating a secret-key-
credential-store for a standalone server .

Procedure

Generate a SecretKeyCredential in a secret-key-credential-store using the following
management CLI command:

Syntax

/subsystem=elytron/secret-key-credential-
store=<name_of_the_properties_credential_store>:generate-secret-key(alias=<alias>, key-
size=<128_or_192>)

Example

/subsystem=elytron/secret-key-credential-store=examplePropertiesCredentialStore:generate-
secret-key(alias=secretKeyCredentialAlias)
{"outcome" => "success"}

Verification

Issue the following command to verify that Elytron created a SecretKeyCredential:

Syntax

/subsystem=elytron/secret-key-credential-
store=<name_of_the_properties_credential_store>:read-aliases()

Example

/subsystem=elytron/secret-key-credential-store=examplePropertiesCredentialStore:read-
aliases()
{
 "outcome" => "success",
 "result" => [
 "secretkeycredentialalias",
 "key"
]
}

Additional resources

PropertiesCredentialStore/secret-key-credential-store in Elytron

secret-key-credential-store attributes

1.4.7. Importing a SecretKeyCredential to a secret-key-credential-store

You can import a SecretKeyCredential created outside of the secret-key-credential-store into an

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

14

Elytron secret-key-credential-store. Suppose you exported a SecretKeyCredential from another
credential store — a credential-store, for example — you can import it to the secret-key-credential-
store.

Prerequisites

You have created a secret-key-credential-store.
For information about creating a secret-key-credential-store, see Creating a secret-key-
credential-store for a standalone server .

You have exported a SecretKeyCredential.
For information about exporting a SecretKeyCredential, see Exporting a SecretKeyCredential
from a secret-key-credential-store.

Procedure

1. Disable caching of commands in the management CLI using the following command:

IMPORTANT

If you do not disable caching, the secret key is visible to anyone who can access
the management CLI history file.

history --disable

2. Import the secret key using the following management CLI command:

Syntax

/subsystem=elytron/secret-key-credential-store=<name_of_credential_store>:import-secret-
key(alias=<alias>, key="<secret_key>")

Example

/subsystem=elytron/secret-key-credential-store=examplePropertiesCredentialStore:import-
secret-key(alias=imported,
key="RUxZAUs+Y1CzEPw0g2AHHOZ+oTKhT9osSabWQtoxR+O+42o11g==")

3. Re-enable the caching of commands using the following management CLI command:

history --enable

Additional resources

PropertiesCredentialStore/secret-key-credential-store in Elytron

secret-key-credential-store attributes

1.4.8. Listing the credentials in a credential-store

To view all the credentials stored in the credential-store, you can list them using the management CLI.

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

15

Procedure

List the credentials stored in a credential-store using the following management CLI command:

Syntax

/subsystem=elytron/credential-store=<name_of_credential_store>:read-aliases()

Example

{
 "outcome" => "success",
 "result" => [
 "passwordcredentialalias",
 "secretkeycredentialalias"
]
}

Additional resources

KeyStoreCredentialStore/credential-store in Elytron

credential-store attributes

1.4.9. Exporting a SecretKeyCredential from a credential-store

You can export an existing SecretKeyCredential from a credential-store to use the
SecretKeyCredential or to create a backup of the SecretKeyCredential.

Prerequisites

You have generated a SecretKeyCredential the credential-store.
For information about generating a SecretKeyCredential in a credential-store, see Generating
a SecretKeyCredential in a credential-store.

Procedure

Export a SecretKeyCredential from the credential-store using the following management CLI
command:

Syntax

/subsystem=elytron/credential-store=<name_of_credential_store>:export-secret-
key(alias=<alias>)

Example

/subsystem=elytron/credential-store=exampleKeyStoreCredentialStore:export-secret-
key(alias=secretKeyCredentialAlias)
{
 "outcome" => "success",

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

16

 "result" => {"key" =>
"RUxZAUui+8JkoDCE6mFyA3cCIbSAZaXq5wgYejj1scYgdDqWiw=="}
}

Additional resources

KeyStoreCredentialStore/credential-store in Elytron

credential-store attributes

1.4.10. Exporting a SecretKeyCredential from a secret-key-credential-store

You can export an existing SecretKeyCredential from a secret-key-credential-store to use the
SecretKeyCredential or to create a backup of the SecretKeyCredential.

Prerequisites

You have either generated a SecretKeyCredential in the secret-key-credential-store or
imported one to it.
For information on generating a SecretKeyCredential in a secret-key-credential-store,
Generating a SecretKeyCredential in a secret-key-credential-store.

For information on importing a SecretKeyCredential to a secret-key-credential-store, see
Importing a SecretKeyCredential to a secret-key-credential-store.

Procedure

Export a SecretKeyCredential from the secret-key-credential-store using the following
management CLI command:

Syntax

/subsystem=elytron/secret-key-credential-store=<name_of_credential_store>:export-secret-
key(alias=<alias>)

Example

/subsystem=elytron/secret-key-credential-store=examplePropertiesCredentialStore:export-
secret-key(alias=secretkeycredentialalias)
{
 "outcome" => "success",
 "result" => {"key" => "RUxZAUtxXcYvz0aukZu+odOynIr0ByLhC72iwzlJsi+ZPmONgA=="}
}

Additional resources

PropertiesCredentialStore/secret-key-credential-store in Elytron

secret-key-credential-store attributes

1.4.11. Removing a credential from credential-store

You can store every credential type in the credential-store but, by default, when you remove a

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

17

You can store every credential type in the credential-store but, by default, when you remove a
credential, Elytron assumes it’s a PasswordCredential. If you want to remove a different credential type,
specify it in the entry-type attribute.

Procedure

Remove a credential from the credential-store using the following management CLI command:

Syntax

/subsystem=elytron/credential-store=<name_of_credential_store>:remove-
alias(alias=<alias>, entry-type=<credential_type>)

Example removing a PasswordCredential

/subsystem=elytron/credential-store=exampleKeyStoreCredentialStore:remove-
alias(alias=passwordCredentialAlias)
{
 "outcome" => "success",
 "response-headers" => {"warnings" => [{
 "warning" => "Update dependent resources as alias 'passwordCredentialAlias' does not
exist anymore",
 "level" => "WARNING",
 "operation" => {
 "address" => [
 ("subsystem" => "elytron"),
 ("credential-store" => "exampleKeyStoreCredentialStore")
],
 "operation" => "remove-alias"
 }
 }]}
}

Example removing a SecretKeyCredential

/subsystem=elytron/credential-store=exampleKeyStoreCredentialStore:remove-
alias(alias=secretKeyCredentialAlias, entry-type=SecretKeyCredential)
{
 "outcome" => "success",
 "response-headers" => {"warnings" => [{
 "warning" => "Update dependent resources as alias 'secretKeyCredentialAl
ias' does not exist anymore",
 "level" => "WARNING",
 "operation" => {
 "address" => [
 ("subsystem" => "elytron"),
 ("credential-store" => "exampleKeyStoreCredentialStore")
],
 "operation" => "remove-alias"
 }
 }]}
}

Verification

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

18

Issue the following command to verify that Elytron removed the credential:

Syntax

/subsystem=elytron/credential-store=<name_of_credential_store>:read-aliases()

Example

/subsystem=elytron/credential-store=exampleKeyStoreCredentialStore:read-aliases()
{
 "outcome" => "success",
 "result" => []
}

The credential you removed is not listed.

Additional resources

KeyStoreCredentialStore/credential-store in Elytron

credential-store attributes

1.4.12. Removing a credential from the secret-key-credential-store

You can store only the SecretKeyCredential type in a secret-key-credential-store. This means that,
when you remove a credential from a secret-key-credential-store, you don’t have to specify an entry-
type.

Procedure

Remove a SecretKeyCredential from the secret-key-credential-store using the following
command:

Syntax

/subsystem=elytron/secret-key-credential-store=<name_of_credential_store>:remove-
alias(alias=<alias>)

Example

/subsystem=elytron/secret-key-credential-store=examplePropertiesCredentialStore:remove-
alias(alias=secretKeyCredentialAlias)
{
 "outcome" => "success",
 "response-headers" => {"warnings" => [{
 "warning" => "Update dependent resources as alias 'secretKeyCredentialAlias' does not
exist anymore",
 "level" => "WARNING",
 "operation" => {
 "address" => [
 ("subsystem" => "elytron"),
 ("secret-key-credential-store" => "examplePropertiesCredentialSt
ore")

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

19

],
 "operation" => "remove-alias"
 }
 }]}
}

Verification

Issue the following command to verify that Elytron removed the credential:

Syntax

/subsystem=elytron/secret-key-credential-store=<name_of_credential_store>:read-aliases()

Example

/subsystem=elytron/secret-key-credential-store=examplePropertiesCredentialStore:read-
aliases()
{
 "outcome" => "success",
 "result" => []
}

The credential you removed is not listed.

Additional resources

PropertiesCredentialStore/secret-key-credential-store in Elytron

secret-key-credential-store attributes

1.5. CREDENTIAL STORE OPERATIONS USING THE WILDFLY
ELYTRON TOOL

You can perform various operations on credential stores offline using the WildFly Elytron tool.

1.5.1. Creating a credential-store using the WildFly Elytron tool

In Elytron, you can create a credential-store offline where you can save all the credential types.

Procedure

Create a credential-store using the WildFly Elytron tool with the following command:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --create --location "<path_to_store_file>" --
password <store_password>

Example

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

20

$ EAP_HOME/bin/elytron-tool.sh credential-store --create --location "../cred_stores/example-
credential-store.jceks" --password storePassword
Credential Store has been successfully created

If you don’t want to include your store password in the command, omit that argument and then
enter the password manually at the prompt. You can also use a masked password generated by
the WildFly Elytron tool. For information about generating masked passwords, see Generating
masked encrypted strings using the WildFly Elytron tool.

Additional resources

KeyStoreCredentialStore/credential-store in Elytron

Generating masked encrypted strings using the WildFly Elytron tool

WildFly Elytron tool credential-store operations

1.5.2. Creating a credential-store using the Bouncy Castle provider

Create a credential-store using the Bouncy Castle provider.

Prerequisites

Make sure that your environment is configured to use Bouncy Castle.

NOTE

You cannot have the same name for a credential-store and a secret-key-credential-
store because they implement the same Elytron capability:
org.wildfly.security.credential-store.

Procedure

1. Define a Bouncy Castle FIPS Keystore (BCFKS) keystore. FIPS stands for Federal Information
Processing Standards. If you already have one, move on to the next step.

$ keytool -genkeypair -alias <key_pair_alias> -keyalg <key_algorithm> -keysize <key_size>
-storepass <key_pair_and_keystore_password> -keystore <path_to_keystore> -storetype
BCFKS -keypass <key_pair_and_keystore_password>

IMPORTANT

Make sure that the keystore keypass and storepass attributes are identical. If
they aren’t, the BCFKS keystore in the elytron subsystem can’t define them.

2. Generate a secret key for the credential-store.

$ keytool -genseckey -alias <key_alias> -keyalg <key_algorithm> -keysize <key_size> -
keystore <path_to_keystore> -storetype BCFKS -storepass <key_and_keystore_password> -
keypass <key_and_keystore_password>

3. Define the credential-store using the WildFly Elytron tool with the following command:

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

21

$ EAP_HOME/bin/elytron-tool.sh credential-store -c -a <alias> -x <alias_password> -p
<key_and_keystore_password> -l <path_to_keystore> -u
"keyStoreType=BCFKS;external=true;keyAlias=<key_alias>;externalPath=<path_to_credenti
al_store>"

Additional resources

KeyStoreCredentialStore/credential-store in Elytron

WildFly Elytron tool credential-store operations

1.5.3. Creating a secret-key-credential-store using WildFly Elytron tool

In Elytron, you can create a secret-key-credential-store offline where you can save
SecretKeyCredential instances.

Procedure

Create a PropertiesCredentialStore using the WildFly Elytron tool with the following command:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --create --location "<path_to_store_file>" --
type PropertiesCredentialStore

Example

$ bin/elytron-tool.sh credential-store --create --location=standalone/configuration/properties-
credential-store.cs --type PropertiesCredentialStore
Credential Store has been successfully created

Additional resources

PropertiesCredentialStore/secret-key-credential-store in Elytron

WildFly Elytron tool secret-key-credential-store operations

1.5.4. WildFly Elytron tool credential-store operations

You can do various credential-store tasks using the WildFly Elytron tool, including the following:

Add a PasswordCredential

You can add a PasswordCredential to a credential-store using the following WildFly Elytron tool
command:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "<path_to_store_file>" --password
<store_password> --add <alias> --secret <sensitive_string>

Example

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

22

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "../cred_stores/example-credential-
store.jceks" --password storePassword --add examplePasswordCredential --secret
speci@l_db_pa$$_01
Alias "examplePasswordCredential" has been successfully stored

If you don’t want to put your secret in the command, omit that argument, then enter the secret
manually when prompted.

Generate a SecretKeyCredential

You can add a SecretKeyCredential to a credential-store using the following WildFly Elytron tool
command:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --generate-secret-key=example --
location=<path_to_the_credential_store> --password <store_password>

Example

$ EAP_HOME/bin/elytron-tool.sh credential-store --generate-secret-key=example --location
"../cred_stores/example-credential-store.jceks" --password storePassword
Alias "example" has been successfully stored

If you don’t want to put your secret in the command, omit that argument, then enter the secret
manually when prompted.

By default, when you create a SecretKeyCredential in JBoss EAP, you create a 256-bit secret key. If
you want to change the size, you can specify --size=128 or --size=192 to create 128-bit or 192-bit
keys respectively.

Import a SecretKeyCredential

You can import a SecretKeyCredential using the following WildFLy Elytron tool command:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --import-secret-key=imported --
location=<path_to_credential_store> --password=<store_password>

Example

$ EAP_HOME/bin/elytron-tool.sh credential-store --import-secret-key=imported --
location=../cred_stores/example-credential-store.jceks --password=storePassword

Enter the secret key you want to import.

List all the credentials

You can list the credentials in the credential-store using the following WildFly Elytron tool
command:

Syntax

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

23

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "<path_to_store_file>" --password
<store_password> --aliases

Example:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "../cred_stores/example-credential-
store.jceks" --password storePassword --aliases
Credential store contains following aliases: examplepasswordcredential example

Check if an alias exists

Use the following command to check whether an alias exists in a credential store:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "<path_to_store_file>" --password
<store_password> --exists <alias>

Example

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "../cred_stores/example-credential-
store.jceks" --password storePassword --exists examplepasswordcredential
Alias "examplepasswordcredential" exists

Export a SecretKeyCredential

You can export a SecretKeyCredential from a credential-store using the following command:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --export-secret-key=<alias> --
location=<path_to_credential_store> --password=storePassword

Example

$ EAP_HOME/bin/elytron-tool.sh credential-store --export-secret-key=example --
location=../cred_stores/example-credential-store.jceks --password=storePassword
Exported SecretKey for alias
example=RUxZAUtBiAnoLP1CA+i6DtcbkZHfybBJxPeS9mlVOmEYwjjmEA==

Remove a credential

You can remove a credential from a credential store using the following command:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "<path_to_store_file>" --password
<store_password> --remove <alias>

Example

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

24

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "../cred_stores/example-credential-
store.jceks" --password storePassword --remove examplepasswordcredential
Alias "examplepasswordcredential" has been successfully removed

Additional resources

KeyStoreCredentialStore/credential-store in Elytron

Credential types in Elytron

1.5.5. WildFly Elytron tool secret-key-credential-store operations

You can do the following secret-key-credential-store operations for SecretKeyCredential using the
WildFly Elytron tool:

Generate a SecretKeyCredential

You can generate a SecteKeyCredential in a secret-key-credential-store using the following
WildFly Elytron tool command:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --generate-secret-key=example --location
"<path_to_the_credential_store>" --type PropertiesCredentialStore

Example

$ EAP_HOME/bin/elytron-tool.sh credential-store --generate-secret-key=example --location
"standalone/configuration/properties-credential-store.cs" --type PropertiesCredentialStore
Alias "example" has been successfully stored

Import a SecretKeyCredential

You can import a SecretKeyCredential using the following WildFLy Elytron tool command:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --import-secret-key=imported --
location=<path_to_credential_store> --type PropertiesCredentialStore

Example

$ EAP_HOME/bin/elytron-tool.sh credential-store --import-secret-key=imported --location
"standalone/configuration/properties-credential-store.cs" --type PropertiesCredentialStore

List all the credentials

You can list the credentials in the secret-key-credential-store using the following WildFly Elytron
tool command:

Syntax

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

25

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "<path_to_store_file>" --aliases --type
PropertiesCredentialStore

Example

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "standalone/configuration/properties-
credential-store.cs" --aliases --type PropertiesCredentialStore
Credential store contains following aliases: example

Export a SecretKeyCredential

You can export a SecretKeyCredential from a secret-key-credential-store using the following
command:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --export-secret-key=<alias> --location
"<path_to_credential_store>" --type PropertiesCredentialStore

Example

$ EAP_HOME/bin/elytron-tool.sh credential-store --export-secret-key=example --location
"standalone/configuration/properties-credential-store.cs" --type PropertiesCredentialStore
Exported SecretKey for alias
example=RUxZAUt1EZM7PsYRgMGypkGirSel+5Eix4aSgwop6jfxGYUQaQ==

Remove a credential

You can remove a credential from a credential store using the following command:

Syntax

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "<path_to_store_file>" --remove
<alias> --type PropertiesCredentialStore

Example

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "standalone/configuration/properties-
credential-store.cs" --remove example --type PropertiesCredentialStore
Alias "example" has been successfully removed

Additional resources

PropertiesCredentialStore/secret-key-credential-store in Elytron

Credential types in Elytron

1.5.6. Adding a credential-store created with the WildFly Elytron tool to a JBoss EAP
Server

After you have created a credential-store with the WildFly Elytron tool, you can add it to your running

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

26

After you have created a credential-store with the WildFly Elytron tool, you can add it to your running
JBoss EAP server.

Prerequisites

You have created a credential store with the WildFly Elytron tool.
For more information, see Creating a credential-store using the WildFly Elytron tool .

Procedure

Add the credential store to your running JBoss EAP server with the following management CLI
command:

Syntax

/subsystem=elytron/credential-
store=<store_name>:add(location="<path_to_store_file>",credential-reference={clear-
text=<store_password>})

Example

/subsystem=elytron/credential-store=my_store:add(location="../cred_stores/example-
credential-store.jceks",credential-reference={clear-text=storePassword})

After adding the credential store to the JBoss EAP configuration, you can then refer to a password or
sensitive string stored in the credential store using the credential-reference attribute.

For more information, use the EAP_HOME/bin/elytron-tool.sh credential-store --help command for a
detailed listing of available options.

Additional resources

credential-store attributes

1.5.7. WildFly Elytron tool key pair management operations

You can use the following arguments to operate the elytron-tool.sh to manipulate a credential store,
such as generating a new key pair that you can store under an alias in a credential store.

Generate a key pair

Use the generate-key-pair command to create a key pair. You can then store the key pair under an
alias in the credential store. The following example shows the creation of an RSA key pair, which has
an allocated size of 3072 bits that is stored in the location specified for the credential store. The alias
given to the key pair is example.

$ EAP_HOME/bin/elytron-tool.sh credential-store --location=<path_to_store_file> --generate-key-
pair example --algorithm RSA --size 3072

Import a key pair

Use the import-key-pair command to import an existing SSH key pair into a credential store with a
specified alias. The following example imports a key pair with the alias of example from the
/home/user/.ssh/id_rsa file containing the private key in the OpenSSH format:

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

27

$ EAP_HOME/bin/elytron-tool.sh credential-store --import-key-pair example --private-key-location
/home/user/.ssh/id_rsa --location=<path_to_store_file>

Export a key pair

Use the export-key-pair-public-key command to display the public key of a key pair. The public key
has a specified alias in the OpenSSH format. The following example displays the public key for the
alias example:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location=<path_to_store_file> --export-key-
pair-public-key example

Credential store password:
Confirm credential store password:
ecdsa-sha2-nistp256
AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBMfncZuHmR7uglb0M96ieAr
RFtp42xPn9+ugukbY8dyjOXoi
cZrYRyy9+X68fylEWBMzyg+nhjWkxJlJ2M2LAGY=

NOTE

After issuing the export-key-pair-public-key command, you are prompted to enter
the credential store passphrase. If no passphrase exists, leave the prompt blank.

1.5.8. Example use of stored key pair in the Elytron configuration files

A key pair consists of two separate, but matching, cryptographic keys: a public key and a private key.
You need to store a key pair in a credential store before you can reference the key pair in an elytron
configuration file. You can then provide Git with access to manage your standalone server configuration
data.

The following example references a credential store and its properties in the <credential-stores>
element of an elytron configuration file. The <credential> element references the credential store and
the alias, which stores the key pair.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <authentication-client xmlns="urn:elytron:client:1.6">

 <credential-stores>
 <credential-store name="${credential_store_name}">
 <protection-parameter-credentials>
 <clear-password password="${credential_store_password}"/>
 </protection-parameter-credentials>
 <attributes>
 <attribute name="path" value="${path_to_credential_store}"/>
 </attributes>
 </credential-store>
 </credential-stores>

 <authentication-rules>
 <rule use-configuration="${configuration_file_name}"/>
 </authentication-rules>

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

28

After you configure the elytron configuration file, the key pair can be used for SSH authentication.

Additional resources

WildFly Elytron tool key pair management operations

1.5.9. Generating masked encrypted strings using the WildFly Elytron tool

You can use the WildFly Elytron tool to generate encrypted strings to use instead of a plain text
password for a credential store.

Procedure

To generate a masked string, use the following command and provide values for the salt and the
iteration count:

$ EAP_HOME/bin/elytron-tool.sh mask --salt <salt> --iteration <iteration_count> --secret
<password>

For example:

$ EAP_HOME/bin/elytron-tool.sh mask --salt 12345678 --iteration 123 --secret
supersecretstorepassword

MASK-8VzWsSNwBaR676g8ujiIDdFKwSjOBHCHgnKf17nun3v;12345678;123

If you do not want to provide the secret in the command, you can omit that argument and you
will be prompted to enter the secret manually using standard input.

For more information, use the EAP_HOME/bin/elytron-tool.sh mask --help command for a detailed
listing of available options.

1.6. AUTOMATIC UPDATE OF CREDENTIALS IN CREDENTIAL STORE

If you have a credential store, you are not required to add credentials or update existing credentials
before you can reference them from a credential reference. Elytron automates this process. When
configuring a credential reference, specify both the store and clear-text attributes. Elytron
automatically adds or updates a credential in the credential store specified by the store attribute.
Optionally, you can specify the alias attribute.

Elytron updates the credential store as follows:

 <authentication-configurations>
 <configuration name="${configuration_file_name}">
 <credentials>
 <credential-store-reference store="${credential_store_name}" alias="${alias_of_key_pair}"/>
 </credentials>
 </configuration>
 </authentication-configurations>

 </authentication-client>
</configuration>

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

29

If you specify an alias:

If an entry for the alias exists, the existing credential is replaced with the specified clear text
password.

If an entry for the alias does not exist, a new entry is added to the credential store with the
specified alias and the clear text password.

If you do not specify an alias, Elytron generates an alias and adds a new entry to the credential
store with the generated alias and the specified clear text password.

The clear-text attribute is removed from the management model when the credential store is updated.

The following example illustrates how to create a credential reference that specifies the store, clear-
text, and alias attributes:

/subsystem=elytron/key-store=exampleKS:add(relative-to=jboss.server.config.dir,
path=example.keystore, type=JCEKS, credential-reference=
{store=exampleKeyStoreCredentialStore, alias=myNewAlias, clear-text=myNewPassword})
{
 "outcome" => "success",
 "result" => {"credential-store-update" => {
 "status" => "new-entry-added",
 "new-alias" => "myNewAlias"
 }}
}

You can update the credential for the myNewAlias entry that was added to the previously defined
credential store with the following command:

/subsystem=elytron/key-store=exampleKS:write-attribute(name=credential-reference.clear-
text,value=myUpdatedPassword)
{
 "outcome" => "success",
 "result" => {"credential-store-update" => {"status" => "existing-entry-updated"}},
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

NOTE

If an operation that includes a credential-reference parameter fails, no automatic
credential store update occurs.

The credential store that was specified by the credential-reference attribute does not
change.

1.7. EXAMPLE OF USING A CREDENTIAL STORE WITH ELYTRON
CLIENT

Clients connecting to JBoss EAP, such as Jakarta Enterprise Beans, can authenticate using Elytron
Client. Users without access to a running JBoss EAP server can create and modify credential stores

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

30

1

2

3

4

using the WildFly Elytron tool, and then clients can use Elytron Client to access sensitive strings inside a
credential store.

The following example shows you how to use a credential store in an Elytron Client configuration file.

Example custom-config.xml with a Credential Store

A name for the credential store for use within the Elytron Client configuration file.

The password for the credential store.

The path to the credential store file.

The credential reference for a sensitive string stored in the credential store.

Additional resources

Credential store operations using the WildFly Elytron tool .

1.8. CREATING FIPS 140-2 COMPLIANT CREDENTIAL STORES

You can configure Federal Information Processing Standard (FIPS) 140-2 compliant credential store in
Elytron. FIPS 140-2, is a computer security standard, developed by a U.S. Government industry working
group to validate the quality of cryptographic modules. FIPS publications (including 140-2) can be found

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.7">
 ...
 <credential-stores>
 <credential-store name="my_store"> 1
 <protection-parameter-credentials>
 <credential-store-reference clear-text="pass123"/> 2
 </protection-parameter-credentials>
 <attributes>
 <attribute name="location" value="/path/to/my_store.jceks"/> 3
 </attributes>
 </credential-store>
 </credential-stores>
 ...
 <authentication-configurations>
 <configuration name="my_user">
 <set-host name="localhost"/>
 <set-user-name name="my_user"/>
 <set-mechanism-realm name="ManagementRealm"/>
 <use-provider-sasl-factory/>
 <credentials>
 <credential-store-reference store="my_store" alias="my_user"/> 4
 </credentials>
 </configuration>
 </authentication-configurations>
 ...
 </authentication-client>
</configuration>

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

31

at the URL: http://csrc.nist.gov/publications/PubsFIPS.html.

You can configure FIPS 140-2 compliant credential store in Elytron using two different providers:

SunPKCS#11 provider and Network Security Services (NSS) database.
For more information, see Creating FIPS 140-2 compliant credential store using a SunPKCS#11
provider and NSS database.

BouncyCastle providers.
For more information, see Creating FIPS 140-2 compliant credential store using BouncyCastle
providers.

IMPORTANT

JBoss EAP itself is not FIPS-certified. The level of FIPS support in JBoss EAP is that
JBoss EAP can be used with FIPS-certified cryptographic implementations. The
implementations tested are BouncyCastle and SunPKCS#11.

1.8.1. Creating FIPS 140-2 compliant credential store using a SunPKCS#11 provider
and NSS database

NSS is a set of libraries that support cross-platform security-enabled client and server applications. You
can use SunPKCS#11 provider with NSS library in JBoss EAP to implement FIPS 140-2 compliant
cryptography. For information about NSS, see Mozilla docs - Network Security Services (NSS) . For
information about SunPKCS#11 provider, see PKCS#11 Reference Guide.

1.8.1.1. JDKs that support FIPS when using a SunPKCS#11 provider and NSS database

Not all Java Development Kit (JDK) vendors support configuring the SunPKCS#11 security provider with
a Network Security Services (NSS) software token, implemented by the NSS library, required for Federal
Information Processing Standard (FIPS) 140-2 compliance. Ensure that your JDK supports it before
configuring FIPS with the SunPKCS#11 provider and NSS database in JBoss EAP.

The following is a list of supported JDKs for JBoss EAP that support configuring SunPKCS#11 security:

OpenJDK 11

OpenJDK 17

Additional resources

Configuring OpenJDK 11 on RHEL with FIPS

Configuring OpenJDK 17 on RHEL with FIPS

1.8.1.2. Creating FIPS 140-2 compliant credential store using a SUNPKCS#11 provider and
NSS database in FIPS enabled RHEL

Starting with Red Hat Enterprise Linux 8.4, if you enable the Federal Information Processing Standard
(FIPS) system-wide crypto policy, FIPS for Java is also enabled automatically. You can use the default
Network Security Services (NSS) database to create a FIPS 140-2 compliant credential store.

In this procedure $JAVA_HOME refers to the JDK installation path. Run the commands in this
procedure as the root user.

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

32

http://csrc.nist.gov/publications/PubsFIPS.html
https://firefox-source-docs.mozilla.org/security/nss/index.html
https://docs.oracle.com/en/java/javase/11/security/pkcs11-reference-guide1.html
https://access.redhat.com/documentation/en-us/openjdk/11/html-single/configuring_openjdk_11_on_rhel_with_fips/index
https://access.redhat.com/documentation/en-us/openjdk/17/html-single/configuring_openjdk_17_on_rhel_with_fips/index

Prerequisites

FIPS is enabled in RHEL.
You can check whether FIPS is enabled using the following command:

fips-mode-setup --check

For information about enabling FIPS in RHEL, see the following resources:

Installing the system in FIPS mode in the Red Hat Enterprise Linux documentation.

Switching the system to FIPS mode in the Red Hat Enterprise Linux documentation.

NSS tools are installed.
In Red Hat Enterprise Linux you can install NSS tools using the DNF package manager as
follows:

dnf install -y nss-tools

Your Java Development Kit (JDK) supports configuration of PKCS#11 with an NSS library.
For information about JDKs that support FIPS, see JDKs that support FIPS.

JBoss EAP is running.

Procedure

1. Update the value of nssDbMode in the $JAVA_HOME/conf/security/nss.fips.cfg file to
readWrite.

Example nss.fips.cfg contents

name = NSS-FIPS
nssLibraryDirectory = /usr/lib64
nssSecmodDirectory = sql:/etc/pki/nssdb
nssDbMode = readWrite
nssModule = fips

attributes(*,CKO_SECRET_KEY,CKK_GENERIC_SECRET)={ CKA_SIGN=true }

2. Generate an AES secret key to encrypt the credential stores.

NOTE

You must use store password NONE in the command.

Syntax

keytool -genseckey -keystore NONE -storetype PKCS11 -storepass NONE -alias
<key_alias> -keyalg <symmetric_key_algorithm> -keysize <key_size>

Example

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

33

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/security_hardening/index#assembly_installing-the-system-in-fips-mode_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies

keytool -genseckey -keystore NONE -storetype PKCS11 -storepass NONE -alias
exampleKeyAlias -keyalg AES -keysize 256

3. Verify that you can read the secret key.

keytool -list -storetype pkcs11 -storepass NONE

Keystore type: PKCS11
Keystore provider: SunPKCS11-NSS-FIPS

Your keystore contains 1 entry

exampleKeyAlias, SecretKeyEntry,

4. Update the value of nssDbMode in the $JAVA_HOME/conf/security/nss.fips.cfg file to
readOnly.

Example nss.fips.cfg contents

name = NSS-FIPS
nssLibraryDirectory = /usr/lib64
nssSecmodDirectory = sql:/etc/pki/nssdb
nssDbMode = readOnly
nssModule = fips

attributes(*,CKO_SECRET_KEY,CKK_GENERIC_SECRET)={ CKA_SIGN=true }

5. Add the SunJCE provider to the list of providers in the management CLI.

a. Add a provider loader for SunJCE.

/subsystem=elytron/provider-loader=SunJCE:add(class-names=
[com.sun.crypto.provider.SunJCE])
{"outcome" => "success"}

b. Configure Elytron and SunJCE in an aggregate provider.

Syntax

/subsystem=elytron/aggregate-providers=<aggregate_provider_name>:add(providers=
[elytron,SunJCE])

Example

/subsystem=elytron/aggregate-providers=exampleAggregateProvider:add(providers=
[elytron,SunJCE])
{"outcome" => "success"}

NOTE

The providers are called in the order that they are defined in the command.

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

34

6. Use the SunJCE provider to create a credential store in Elytron.

Syntax

/subsystem=elytron/credential-store=<credential_store_name>:add(implementation-
properties={keyStoreType => PKCS11, external => true, keyAlias => <key_alias>,
externalPath => <path_where_credential_store_is_to_be_saved>}, modifiable=true,
credential-reference={clear-text=<password>}, create=true, other-
providers=<aggregate_provider_name>)

Example

/subsystem=elytron/credential-store=exampleFipsCredentialStore:add(implementation-
properties={keyStoreType => PKCS11, external => true, keyAlias => exampleKeyAlias,
externalPath => /home/ashwin/example.store}, modifiable=true, credential-reference={clear-
text=secret}, create=true, other-providers=exampleAggregateProvider)
{"outcome" => "success"}

Verification

1. Add an alias to the credential store.

Syntax

/subsystem=elytron/credential-store=<credential_store_name>:add-alias(alias=<alias>,
secret-value=<secret_value>)

Example

/subsystem=elytron/credential-store=exampleFipsCredentialStore:add-
alias(alias=exampleAlias, secret-value=secret)
{"outcome" => "success"}

2. List the aliases in the credential store.

Syntax

/subsystem=elytron/credential-store=<credential_store_name>:read-aliases()

Example

/subsystem=elytron/credential-store=exampleFipsCredentialStore:read-aliases()
{
 "outcome" => "success",
 "result" => ["examplealias"]
}

The created credential store is FIPS 140-2 compliant.

Additional resources

aggregate-providers attributes

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

35

credential-store attributes

credential-store implementation properties

1.8.2. Creating FIPS 140-2 compliant credential store using BouncyCastle providers

BouncyCastle provides lightweight cryptography APIs for Java and C#. You can use the following
BouncyCastle providers with JBoss EAP for creating FIPS 140-2 compliant credential stores:

BouncyCastle FIPS provider for the Java Cryptography Extension (JCE) and the Java
Cryptography Architecture (JCA).

BouncyCastle FIPS provider for the Java Secure Socket Extension (JSSE).

For information about BouncyCastle, see The Legion of the Bouncy Castle.

1.8.2.1. Creating FIPS 140-2 compliant credential store using BouncyCastle providers

Starting with Red Hat Enterprise Linux 8.4, if you enable the Federal Information Processing Standard
(FIPS) system-wide crypto policy, OpenJDK automatically enables different security providers. One of
the security providers is the SunPKCS11 provider configured in FIPS mode. You can instead use the
BouncyCastle providers to create a Federal Information Processing Standard (FIPS) 140-2 compliant
credential store by following the below steps.

Prerequisites

FIPS is enabled in RHEL.
You can check whether FIPS is enabled using the following command:

fips-mode-setup --check

For information about enabling FIPS in RHEL, see the following resources:

Installing the system in FIPS mode in the Red Hat Enterprise Linux documentation.

Switching the system to FIPS mode in the Red Hat Enterprise Linux documentation.

Your Java Development Kit (JDK) supports the configuration of FIPS using BouncyCastle
providers.
For more information, see Java Related Questions on the Legion of the Bouncy Castle - FIPS
Resources Page.

Procedure

1. Download the BouncyCastle jars from the following links:

bc-fips-N jar: Bouncy Castle Provider (FIPS Distribution) Maven .

bctls-fips-N jar: Bouncy Castle TLS/JSSE APIs (FIPS Distribution) .
Where N stands for the BouncyCastle FIPS provider version.

You can find information about the latest certified version of BouncyCastle FIPS provider
that conforms to your environment at The Legion of the Bouncy Castle.

2. Create a configuration file called java.security with the following contents:

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

36

https://www.bouncycastle.org/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/security_hardening/index#assembly_installing-the-system-in-fips-mode_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies
https://www.bouncycastle.org/fips_faq.html#JAVA
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bctls-fips
https://www.bouncycastle.org/fips-java/

fips.provider.1=org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider
fips.provider.2=org.bouncycastle.jsse.provider.BouncyCastleJsseProvider fips:BCFIPS
fips.provider.3=SUN
fips.provider.4=SunEC
fips.provider.5=com.sun.net.ssl.internal.ssl.Provider

NOTE

Do not modify the FIPS providers in the default java.security file. It is
recommended to use your own java.security properties file as described in this
procedure.

3. Generate an AES secret key to encrypt the credential stores.

Syntax

$ keytool -J-Djava.security.properties=<java_security_file> -genseckey -keystore
"<keystore_name>" -storetype BCFKS -storepass <store_password> -alias <key_alias> -
keyalg <symmetric_key_algorithm> -keysize <key_size> -keypass <key_password> -
provider org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider -providerpath
<path_to_bc-fips_jar> -dname "<certificate_contents>" -validity <validity_in_days>

Example

$ keytool -J-Djava.security.properties=<path_to_java_security_file>/java.security -genseckey
-keystore "examplekeystore.bcfks" -storetype BCFKS -storepass password -alias
exampleKeyAlias -keyalg AES -keysize 256 -keypass password -provider
org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider -providerpath <path_to_bc-
fips_jar>/bc-fips-1.0.2.jar -dname "CN=localhost" -validity 365

4. Verify that you can read the secret key.

Syntax

$ keytool -J-Djava.security.properties=<java_security_file> -list -keystore <keystore_name> -
storetype BCFKS -storepass <store_password> -provider
org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider -providerpath <path_to_bc-
fips_jar>

Example

$ keytool -J-Djava.security.properties=<path_to_java_security_file>/java.security -list -
keystore examplekeystore.bcfks -storetype BCFKS -storepass password -provider
org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider -providerpath <path_to_bc-
fips_jar>/bc-fips-1.0.2.jar

Example output

Keystore type: BCFKS
Keystore provider: BCFIPS

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

37

Your keystore contains 1 entry

exampleKeyAlias, Mar 1, 2023, SecretKeyEntry,

5. Start the server.

6. Configure JBoss EAP to use BouncyCastle providers using the management CLI.

a. Add SunJCE provider to the list of providers.

/subsystem=elytron/provider-loader=SunJCE:add(class-names=
[com.sun.crypto.provider.SunJCE])

b. Add BouncyCastle provider jar as a module in JBoss EAP.

Syntax

module add --name=org.bouncycastle.fips --resources=<path_to_bc-
fips_jar>:<path_to_bctls-fips_jar>

Example

module add --name=org.bouncycastle.fips --resources=<path_to_bc-fips_jar>/bc-fips-
1.0.2.jar:<path_to_bctls-fips_jar>/bctls-fips-1.0.2.jar

c. Add the provider loader for the BouncyCastle providers.

Syntax

/subsystem=elytron/provider-
loader=<provider_loader_name>:add(module=org.bouncycastle.fips)

Example

/subsystem=elytron/provider-
loader=exampleProviderLoader:add(module=org.bouncycastle.fips)

d. Configure BouncyCastle, SunJCE and combined-providers in an aggregate provider.

Syntax

/subsystem=elytron/aggregate-providers=<aggregate_provider_name>:add(providers=
[<provider_loader_name>,SunJCE,combined-providers])

Example

/subsystem=elytron/aggregate-providers=exampleAggregateProvider:add(providers=
[exampleProviderLoader,SunJCE,combined-providers])

NOTE

The providers are called in the order that they are defined in the command.

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

38

e. Reload the server.

reload

7. Use the BouncyCastle providers to create a credential store in Elytron.

Syntax

/subsystem=elytron/credential-store=<credential_store_name>:add(credential-reference=
{clear-text=<key_and_keystore_password>},implementation-properties=
{keyAlias=<key_alias>,external=true,externalPath=<path_to_BCFKS_credential_store>,keyS
toreType=BCFKS},create=true,path=<path_to_keystore>,modifiable=true, other-
providers=<aggregate_provider_name>)

Example

/subsystem=elytron/credential-store=exampleFipsCredentialStore:add(credential-reference=
{clear-text=password},implementation-properties={keyAlias=exampleKeyAlias,external=true,
externalPath=credentialStore.bcfks, keyStoreType=BCFKS}, create=true,
path=__<path_to_keystore>__/examplekeystore.bcfks, modifiable=true, other-
providers=exampleAggregateProvider)

Verification

1. Add an alias to the credential store.

Syntax

/subsystem=elytron/credential-store=<credential_store_name>:add-alias(alias=<alias>,
secret-value=<secret_value>)

Example

/subsystem=elytron/credential-store=exampleFipsCredentialStore:add-
alias(alias=exampleAlias, secret-value=secret)

2. List the aliases in the credential store.

Syntax

/subsystem=elytron/credential-store=<credential_store_name>:read-aliases()

Example

/subsystem=elytron/credential-store=exampleFipsCredentialStore:read-aliases()
{
 "outcome" => "success",
 "result" => ["examplealias"]
}

The created credential store is FIPS 140-2 compliant.

CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON

39

Additional resources

aggregate-providers attributes

credential-store attributes

credential-store implementation properties

provider-loader attributes

To learn more about the module add command, you can run the --help command in the JBoss
EAP management CLI:

module add --help

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

40

CHAPTER 2. PROVIDING AN INITIAL KEY TO JBOSS EAP TO
UNLOCK SECURED RESOURCES

2.1. ENCRYPTED EXPRESSIONS IN ELYTRON

To maintain the secrecy of your sensitive strings, you can use encrypted expressions instead of the
sensitive strings in the server configuration file.

An encrypted expression is one that results from encrypting a string with a SecretKeyCredential, then
combining it with its encoding prefix and resolver name. The encoding prefix tells Elytron that the
expression is an encrypted expression. The resolver maps the encrypted expression to its corresponding
SecretKeyCredential in a credential store.

The expression=encryption resource in Elytron uses an encrypted expression to decode the
encrypted string inside it at run time. By using an encrypted expression instead of the sensitive string
itself in the configuration file, you protect the secrecy of the string. An encrypted expression takes the
following format:

Syntax when using a specific resolver

${ENC::RESOLVER_NAME:ENCRYPTED_STRING}

ENC is the prefix that denotes an encrypted expression.

RESOLVER_NAME is the resolver Elytron uses to decrypt the encrypted string.

Example

${ENC::initialresolver:RUxZAUMQE+L5zx9LmCRLyh5fjdfl1WM7lhfthKjeoEU+x+RMi6s=}

If you create an encrypted expression with a default resolver, it looks like this:

Syntax when using the default resolver

${ENC::ENCRYPTED_STRING}

Example

${ENC::RUxZAUMQE+L5zx9LmCRLyh5fjdfl1WM7lhfthKjeoEU+x+RMi6s=}

In this case, Elytron uses the default resolver you defined in the expression=encryption resource to
decrypt an expression. You can use an encrypted expression on any resource attribute that supports it.
To find out whether an attribute supports encrypted expression, use the read-resource-description
operation, for example:

Example read-resource-description on mail/mail-session

/subsystem=mail/mail-session=*/:read-resource-description(recursive=true,access-control=none)
{
 "outcome"=>"success",
 "result"=>[{
 ...

CHAPTER 2. PROVIDING AN INITIAL KEY TO JBOSS EAP TO UNLOCK SECURED RESOURCES

41

 "from"=>{
 ...
 "expression-allowed"=>true,
 ...
 }]
}

In this example, the attribute from supports encrypted expressions. This means that you can hide your
email address in the from field by encrypting it and then using the encrypted expression instead.

Additional resources

Creating an encrypted expression in Elytron

expression=encryption attributes

2.2. CREATING AN ENCRYPTED EXPRESSION IN ELYTRON

Create an encrypted expression from a sensitive string and a SecretKeyCredential. Use this encrypted
expression instead of the sensitive string in the management model - the server configuration file, to
maintain the secrecy of the sensitive string.

Prerequisites

You have created a PropertiesCredentialStore and a secret key in it.
For more information, see Creating a PropertiesCredentialStore/secret-key-credential-store
for a standalone server.

Procedure

1. Create a resolver that references the alias of an existing SecretKeyCredential in a credential
store using the following management CLI command:

Syntax

/subsystem=elytron/expression=encryption:add(resolvers=[{name=<name_of_the_resolver>,
credential-store=<name_of_credential_store>, secret-key=<secret_key_alias>}])

Example

/subsystem=elytron/expression=encryption:add(resolvers=[{name=exampleResolver,
credential-store=examplePropertiesCredentialStore, secret-key=key}])

If an error message about a duplicate resource displays, use the list-add operation instead of
add, as follows:

Syntax

/subsystem=elytron/expression=encryption:list-add(name=resolvers, value=
{name=<name_of_the_resolver>, credential-store=<name_of_credential_store>, secret-
key=<secret_key_alias>})

Example

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

42

/subsystem=elytron/expression=encryption:list-add(name=resolvers,value=
{name=exampleResolver, credential-store=examplePropertiesCredentialStore, secret-
key=key})
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

2. Reload the server.

reload

3. Disable caching of commands in the management CLI:

IMPORTANT

If you do not disable caching, the secret key is visible to anyone who can access
the management CLI history file.

history --disable

4. Create an encrypted expression using the following management CLI command:

Syntax

/subsystem=elytron/expression=encryption:create-expression(resolver=<existing_resolver>,
clear-text=<sensitive_string_to_protect>)

Example

/subsystem=elytron/expression=encryption:create-expression(resolver=exampleResolver,
clear-text=TestPassword)
{
 "outcome" => "success",
 "result" => {"expression" =>
"${ENC::exampleResolver:RUxZAUMQgtpG7oFlHR2j1Gkn3GKIHff+HR8GcMX1QXHvx2uGur
I=}"}
}

${ENC::exampleResolver:RUxZAUMQgtpG7oFlHR2j1Gkn3GKIHff+HR8GcMX1QXHvx2uGu
rI=} is the encrypted expression you use instead of TestPassword in the management model.

If you use the same plain text in different locations, repeat this command each time before you
use the encrypted expression instead of the plain text in that location. When you repeat the
same command for the same plain text, you get a different result for the same key because
Elytron uses a unique initialization vector for each call.

By using different encrypted expressions you make sure that, if one encrypted expression on a
string is somehow compromised, users cannot discover that any other encrypted expressions
might also contain the same string.

CHAPTER 2. PROVIDING AN INITIAL KEY TO JBOSS EAP TO UNLOCK SECURED RESOURCES

43

5. Re-enable the command caching using the following management CLI command:

history --enable

Additional resources

Using an encrypted expression to secure a KeyStoreCredentialStore/ credential-store

expression=encryption attributes

2.3. USING AN ENCRYPTED EXPRESSION TO SECURE A
KEYSTORECREDENTIALSTORE/CREDENTIAL-STORE

You can use an encrypted expression to secure a KeyStoreCredentialStore.

Prerequisites

You have created an encrypted expression.
For information about creating an encrypted expression, see Creating an encrypted expression
in Elytron.

Procedure

Create a KeyStoreCredentialStore that uses an encrypted expression as the clear-text:

Syntax

/subsystem=elytron/credential-
store=<name_of_credential_store>:add(path=<path_to_the_credential_store>, create=true,
modifiable=true, credential-reference={clear-text=<encrypted_expression>})

Example

/subsystem=elytron/credential-
store=secureKeyStoreCredentialStore:add(path="secureKeyStoreCredentialStore.jceks",
relative-to=jboss.server.data.dir, create=true, modifiable=true, credential-reference={clear-
text=${ENC::exampleResolver:RUxZAUMQgtpG7oFlHR2j1Gkn3GKIHff+HR8GcMX1QXHvx2u
GurI=}})
{"outcome" => "success"}

Additional resources

expression=encryption attributes

credential-store attributes

After you have secured a KeyStoreCredentialStore with an encrypted expression, you can generate a
SecretKeyCredential in the KeyStoreCredentialStore and use the secret key to create another
encrypted expression. You can then use this new encrypted expression instead of a sensitive string in the
management model - the server configuration file. You can create an entire chain of credential stores
for security. Such a chain makes it harder to guess the sensitive string because the string is protected as
follows:

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

44

The first encrypted expression secures a KeyStoreCredentialStore.

Another encrypted expression secures a sensitive string.

To decode the sensitive string, you would need to decrypt both the encrypted expressions.

As the chain of encrypted expressions becomes longer, it gets harder to decrypt the sensitive string.

CHAPTER 2. PROVIDING AN INITIAL KEY TO JBOSS EAP TO UNLOCK SECURED RESOURCES

45

CHAPTER 3. REFERENCE

3.1. AGGREGATE-PROVIDERS ATTRIBUTES

You can configure aggregate-providers by setting the providers attributes.

Table 3.1. aggregate-providers Attributes

Attribute Description

providers The list of providers to aggregate. Elytron uses the first suitable
provider found on the list.

3.2. CREDENTIAL-STORE ATTRIBUTES

You can configure credential-store by setting its attributes.

Table 3.2. credential-store Attributes

Attribute Description

create Specifies whether the credential store should create storage
when it does not exist. The default values is false.

credential-reference The reference to the credential used to create protection
parameter. This can be in clear text or as a reference to a
credential stored in a credential-store.

implementation-properties Map of credentials store implementation-specific properties.

modifiable Whether you can modify the credential store. The default value
is true.

other-providers The name of the providers to obtain the providers to search for
the one that can create the required Jakarta Connectors objects
within the credential store. This is valid only for keystore-based
credential store. If this is not specified, then the global list of
providers is used instead.

path The file name of the credential store.

provider-name The name of the provider to use to instantiate the
CredentialStoreSpi. If the provider is not specified, then the
first provider found that can create an instance of the specified
type will be used.

providers The name of the providers to obtain the providers to search for
the one that can create the required credential store type. If this
is not specified, then the global list of providers is used instead.

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

46

relative-to The base path this credential store path is relative to.

type Type of the credential store, for example,
KeyStoreCredentialStore.

Attribute Description

3.3. CREDENTIAL-STORE IMPLEMENTATION PROPERTIES

You can configure the credential-store implementation by setting its attributes.

Table 3.3. credential-store implementation properties

Attribute Description

cryptoAlg Cryptographic algorithm name to be used to encrypt decrypt
entries at external storage. This attribute is only valid if
external is enabled. Defaults to AES.

external Whether data is stored to external storage and encrypted by the
keyAlias. Defaults to false.

externalPath Specifies path to external storage. This attribute is only valid if
external is enabled.

keyAlias The secret key alias within the credential store that is used to
encrypt or decrypt data to the external storage.

keyStoreType The keystore type, such as PKCS11. Defaults to
KeyStore.getDefaultType().

3.4. EXPRESSION=ENCRYPTION ATTRIBUTES

You can configure expression=encryption by setting its attributes.

Table 3.4. expression=encryption Attributes

Attribute Description

default-resolver Optional attribute. The resolver to use when an encrypted
expression is defined without one. For example if you set
"exampleResolver" as the default-resolver and you create an
encrypted expression with the command
/subsystem=elytron/expression=encryption:create-
expression(clear-text=TestPassword), Elytron uses
"exampleResolver" as the resolver for this encrypted expression.

CHAPTER 3. REFERENCE

47

prefix The prefix to use within an encrypted expression. Default is
ENC. This attribute is provided for those cases where ENC
might already be defined. You shouldn’t change this value unless
it conflicts with an already defined ENC prefix.

resolvers A list of defined resolvers. A resolver has the following
attributes:

name - The name of the individual configuration used
to reference it.

credential-store - Reference to the credential store
instance that contains the secret key this resolver uses.

secret-key - The alias of the secret key Elytron should
use from within a given credential store.

Attribute Description

3.5. PROVIDER-LOADER ATTRIBUTES

You can configure provider-loader by setting its attributes.

Table 3.5. provider-loader attributes

Attribute Description

argument An argument to be passed into the constructor as the Provider
is instantiated.

class-names The list of the fully qualified class names of providers to load.
These are loaded after the service-loader discovered providers,
and any duplicates will be skipped.

configuration The key and value configuration to be passed to the provider to
initialize it.

module The name of the module to load the provider from.

path The path of the file to use to initialize the providers.

relative-to The base path of the configuration file.

3.6. SECRET-KEY-CREDENTIAL-STORE ATTRIBUTES

You can configure secret-key-credential-store by setting its attributes.

Table 3.6. secret-key-credential-store Attributes

Red Hat JBoss Enterprise Application Platform 8.0 Secure storage of credentials in JBoss EAP

48

Attribute Description

create Set the value to false if you do not want Elytron to create one if
it doesn’t already exist. Defaults to true.

default-alias The alias name for a key generated by default. The default value
is key.

key-size The size of a generated key. The default size is 256 bits. You can
set the value to one of the following:

128

192

256

path The path to the credential store.

populate If a credential store does not contain a default-alias, this
attribute indicates whether Elytron should create one. The
default is true.

relative-to A reference to a previously defined path that the attribute path
is relative to.

CHAPTER 3. REFERENCE

49

	Table of Contents
	PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. CREDENTIALS AND CREDENTIAL STORES IN ELYTRON
	1.1. TYPES OF CREDENTIAL STORES PROVIDED BY ELYTRON
	1.1.1. KeyStoreCredentialStore/credential-store in Elytron
	1.1.2. PropertiesCredentialStore/secret-key-credential-store in Elytron

	1.2. CREDENTIAL TYPES IN ELYTRON
	1.3. CREDENTIAL TYPES SUPPORTED BY ELYTRON CREDENTIAL STORES
	1.4. CREDENTIAL STORE OPERATIONS USING THE JBOSS EAP MANAGEMENT CLI
	1.4.1. Creating a credential-store for a standalone server
	1.4.2. Creating a credential-store for a managed domain
	1.4.3. Creating a secret-key-credential-store for a standalone server
	1.4.4. Adding a PasswordCredential to a credential-store
	1.4.5. Generating a SecretKeyCredential in a credential-store
	1.4.6. Generating a SecretKeyCredential in a secret-key-credential-store
	1.4.7. Importing a SecretKeyCredential to a secret-key-credential-store
	1.4.8. Listing the credentials in a credential-store
	1.4.9. Exporting a SecretKeyCredential from a credential-store
	1.4.10. Exporting a SecretKeyCredential from a secret-key-credential-store
	1.4.11. Removing a credential from credential-store
	1.4.12. Removing a credential from the secret-key-credential-store

	1.5. CREDENTIAL STORE OPERATIONS USING THE WILDFLY ELYTRON TOOL
	1.5.1. Creating a credential-store using the WildFly Elytron tool
	1.5.2. Creating a credential-store using the Bouncy Castle provider
	1.5.3. Creating a secret-key-credential-store using WildFly Elytron tool
	1.5.4. WildFly Elytron tool credential-store operations
	1.5.5. WildFly Elytron tool secret-key-credential-store operations
	1.5.6. Adding a credential-store created with the WildFly Elytron tool to a JBoss EAP Server
	1.5.7. WildFly Elytron tool key pair management operations
	1.5.8. Example use of stored key pair in the Elytron configuration files
	1.5.9. Generating masked encrypted strings using the WildFly Elytron tool

	1.6. AUTOMATIC UPDATE OF CREDENTIALS IN CREDENTIAL STORE
	1.7. EXAMPLE OF USING A CREDENTIAL STORE WITH ELYTRON CLIENT
	1.8. CREATING FIPS 140-2 COMPLIANT CREDENTIAL STORES
	1.8.1. Creating FIPS 140-2 compliant credential store using a SunPKCS#11 provider and NSS database
	1.8.1.1. JDKs that support FIPS when using a SunPKCS#11 provider and NSS database
	1.8.1.2. Creating FIPS 140-2 compliant credential store using a SUNPKCS#11 provider and NSS database in FIPS enabled RHEL

	1.8.2. Creating FIPS 140-2 compliant credential store using BouncyCastle providers
	1.8.2.1. Creating FIPS 140-2 compliant credential store using BouncyCastle providers

	CHAPTER 2. PROVIDING AN INITIAL KEY TO JBOSS EAP TO UNLOCK SECURED RESOURCES
	2.1. ENCRYPTED EXPRESSIONS IN ELYTRON
	2.2. CREATING AN ENCRYPTED EXPRESSION IN ELYTRON
	2.3. USING AN ENCRYPTED EXPRESSION TO SECURE A KEYSTORECREDENTIALSTORE/CREDENTIAL-STORE

	CHAPTER 3. REFERENCE
	3.1. AGGREGATE-PROVIDERS ATTRIBUTES
	3.2. CREDENTIAL-STORE ATTRIBUTES
	3.3. CREDENTIAL-STORE IMPLEMENTATION PROPERTIES
	3.4. EXPRESSION=ENCRYPTION ATTRIBUTES
	3.5. PROVIDER-LOADER ATTRIBUTES
	3.6. SECRET-KEY-CREDENTIAL-STORE ATTRIBUTES

