
Red Hat JBoss Enterprise Application
Platform 8.0

Migration Guide

Instructions for upgrading to a major version of Red Hat JBoss Enterprise Application
Platform

Last Updated: 2024-02-21

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

Instructions for upgrading to a major version of Red Hat JBoss Enterprise Application Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information about how to migrate from previous versions of Red Hat JBoss
Enterprise Application Platform.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM MIGRATION OVERVIEW
1.1. UNDERSTANDING MIGRATIONS AND UPGRADES

1.1.1. Major upgrades in JBoss EAP
1.1.2. Minor updates in JBoss EAP
1.1.3. Cumulative patches in JBoss EAP

1.2. USE OF <EAP_HOME> VARIABLE

CHAPTER 2. PREPARING FOR MIGRATION TO JBOSS EAP 8.0
2.1. REVIEW THE JAKARTA EE 10 FEATURES
2.2. REVIEW THE FEATURES OF JBOSS EAP 8.0
2.3. REVIEW THE JBOSS EAP GETTING STARTED MATERIAL
2.4. BACK UP YOUR DATA AND REVIEW SERVER STATE
2.5. MIGRATE JBOSS EAP WITH RPM INSTALLATION
2.6. MIGRATE JBOSS EAP AS A SERVICE
2.7. MIGRATE A CLUSTER

CHAPTER 3. SIMPLIFY YOUR JBOSS EAP 8.0 MIGRATION WITH EFFECTIVE TOOLS
3.1. ANALYZING YOUR APPLICATIONS BEFORE MIGRATION
3.2. SIMPLIFY YOUR SERVER CONFIGURATION MIGRATION

3.2.1. Migrating to JBoss EAP 8.0

CHAPTER 4. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM APPLICATION MIGRATION FROM
JAKARTA EE 8 TO 10

4.1. THE JAVAX TO JAKARTA PACKAGE NAMESPACE CHANGE
4.2. OTHER CHANGES

4.2.1. Jakarta Contexts and Dependency Injection Bean Discovery
4.2.2. CDI API Changes
4.2.3. Jakarta Enterprise Beans
4.2.4. Jakarta Expression Language
4.2.5. Jakarta JSON Binding
4.2.6. Jakarta Faces

4.2.6.1. Jakarta Faces and Java Server Pages
4.2.6.2. Faces Managed-Beans
4.2.6.3. Other Faces API Changes

4.2.7. Jakarta Servlet
4.2.8. Jakarta Soap with Attachments
4.2.9. Jakarta XML Binding

CHAPTER 5. MIGRATE A JBOSS EAP APPLICATION’S MAVEN PROJECT TO JBOSS EAP 8.0
5.1. RENAMING OF JBOSS EAP JAKARTA EE 8
5.2. RENAMING OF JBOSS EAP JAKARTA EE 8 WITH TOOLS
5.3. REMOVAL OF JBOSS EAP JAKARTA EE 8 APIS
5.4. REMOVAL OF THE JBOSS EAP RUNTIME BOM
5.5. JAKARTA EE AND JBOSS APIS MAVEN COORDINATES CHANGES
5.6. REMOVAL OF JBOSS EJB CLIENT LEGACY BOM

CHAPTER 6. SERVER MIGRATION CHANGES
6.1. WEB SERVER CONFIGURATION CHANGES

6.1.1. Default web module behavior changes

8

9

10
10
10
10
10
10

12
12
12
13
13
13
14
14

15
15
15
15

17
17
17
18
18
18
19
19
19
19
19

20
20
22
23

25
25
25
26
27
27
31

33
33
33

Table of Contents

1

. .

6.1.2. Undertow subsystem default configuration changes
6.2. INFINISPAN SERVER CONFIGURATION CHANGES

6.2.1. Configuring custom stateful session bean cache for passivation
6.2.2. Infinispan cache container transport changes
6.2.3. EJB subsystem configuration changes from version 8.0 and later

6.3. JAKARTA ENTERPRISE BEANS SERVER CONFIGURATION CHANGES
6.3.1. Resolving DuplicateServiceException due to caching changes

6.4. MESSAGING SERVER CONFIGURATION CHANGES
6.4.1. Migrate messaging data

6.4.1.1. Migrate messaging data by using export and import approaches
6.4.1.1.1. Export messaging data from JBoss EAP 7.x release
6.4.1.1.2. Import the XML formatted messaging data
6.4.1.1.3. Recovering from an import messaging data failure

6.4.1.2. Migrate messaging data using a messaging bridge
6.4.1.2.1. Configuring JBoss EAP 8.0 server
6.4.1.2.2. Migrating the messaging data

6.4.1.3. Backing up messaging folder data
6.4.2. Configure the Jakarta Messaging resource adapter
6.4.3. Messaging configuration changes
6.4.4. Galleon layer for embedded broker messaging

6.5. SECURITY ENHANCEMENTS IN JBOSS EAP 8.0
6.5.1. Vaults migration
6.5.2. Legacy security subsystem and security realms removal
6.5.3. PicketLink subsystem removal
6.5.4. Migrate from Red Hat build of Keycloak OIDC client adapter to JBoss EAP subsystem
6.5.5. Custom login modules migration
6.5.6. FIPS mode changes

6.6. MOD_CLUSTER CONFIGURATION CHANGES
6.7. VIEWING CONFIGURATION CHANGES

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES
7.1. WEB SERVICES APPLICATION CHANGES

7.1.1. JAX-RPC support changes
7.1.2. Apache CXF Spring web services changes

7.1.2.1. Apache CXF interceptors
7.1.2.2. Apache CXF features
7.1.2.3. Apache CXF HTTP transport

7.1.3. WS-Security changes
7.1.4. JBoss modules structure change
7.1.5. Bouncy Castle requirements and changes
7.1.6. Apache CXF bus selection strategy
7.1.7. Jakarta XML Web Services 2.2 requirements for WebServiceRef
7.1.8. IgnoreHttpsHost CN check change
7.1.9. Server-side configuration and class loading
7.1.10. Deprecation of Java-endorsed standards override mechanism
7.1.11. Specification of descriptor in EAR archive

7.2. UPDATE THE REMOTE URL CONNECTOR AND PORT
7.3. MESSAGING APPLICATION CHANGES

7.3.1. Replace or update Jakarta Messaging deployment descriptors
7.3.2. Replace the HornetQ API
7.3.3. Replace Deprecated Address Setting Attributes
7.3.4. Messaging application changes required for JBoss EAP 7

7.4. JAKARTA RESTFUL WEB SERVICES AND RESTEASY APPLICATION CHANGES

33
35
35
36
36
37
38
38
38
39
39
39
40
41
41

42
43
43
43
44
44
44
44
45
45
45
46
46
46

48
48
48
48
49
49
50
50
51
51
51
52
52
52
52
52
52
53
53
54
54
55
55

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

2

7.4.1. RESTEasy deprecated classes
Interceptor and MessageBody Classes
Client API
StringConverter

7.4.2. Removed or Protected RESTEasy classes
ResteasyProviderFactory Add methods
Additional Classes Removed From RESTEasy 3

7.4.3. Additional RESTEasy changes
SignedInput and SignedOuput
Security Filters
Client-side Filters
Asynchronous HTTP Support
Server-side Cache
YAML Provider Setting Changes
Default Charset UTF-8 in Content-Type Header
SerializableProvider
Matching Requests to Resource Methods

7.4.4. RESTEasy SPI changes
SPI Exceptions
InjectorFactory and Registry

7.4.5. Jackson provider changes
7.4.6. Spring RESTEasy integration changes
7.4.7. RESTEasy Jettison JSON provider changes
7.4.8. MicroProfile for JBoss EAP

7.5. CDI APPLICATION CHANGES
7.5.1. Bean Archives
7.5.2. Clarification of Conversation Resolution
7.5.3. Observer Resolution

7.6. HTTP SESSION ID CHANGE
7.7. MIGRATE EXPLICIT MODULE DEPENDENCIES

Review Dependencies for Availability
Dependencies That Require Annotation Scanning

7.8. HIBERNATE CHANGES
7.8.1. Migrating from Hibernate ORM 5.3 to 5.4

Known Changes
7.8.1.1. Overriding Delayed Identity Insert Behavior
7.8.1.2. SQL Server JDBC Driver version upgrade to at least 6.1.2

7.8.2. Migrating from Hibernate ORM 5.4 to 5.5
Known Changes
7.8.2.1. Dom4J based XML mapping
7.8.2.2. Removed the ability to disable "enhanced proxies"

7.8.3. Migrating from Hibernate ORM 5.5 to 5.6
Deprecated features
7.8.3.1. Removal of Javassist

7.8.4. Migrating from Hibernate ORM 5.6 to 6.0
7.8.5. Migrating from Hibernate ORM 6.0 to 6.1
7.8.6. Migrating from Hibernate ORM 6.1 to 6.2
7.8.7. Migrating from Hibernate ORM 4.3 to Hibernate ORM 5.0

Removed and deprecated classes
Other changes to classes and packages
Type handling
Transaction management
Other Hibernate ORM 5 changes

55
55
58
59
59
59
59
59
59
59
60
60
60
60
60
60
60
61
61
61
61

62
62
62
62
63
64
64
64
64
64
64
65
66
66
66
66
66
66
66
67
67
67
67
67
69
69
71
71
71
71
72
72

Table of Contents

3

7.8.8. Migrating from Hibernate ORM 5.0 to Hibernate ORM 5.1
Hibernate ORM 5.1 features
Schema management tooling changes
Schema management tooling changes in JBoss EAP 7
Schema management tooling changes in JBoss EAP 7.1

7.8.9. Migrating from Hibernate ORM 5.1 and Hibernate ORM 5.2 to Hibernate ORM 5.3
Hibernate ORM 5.2 features
Hibernate ORM 5.3 features
Exception handling changes between Hibernate 5.1 and Hibernate 5.3
Compatibility transformer

7.9. HIBERNATE SEARCH CHANGES
7.9.1. Hibernate Search 6 replaces Hibernate Search 5 APIs
7.9.2. Hibernate Search 6 supports Elasticsearch

7.10. MIGRATE ENTITY BEANS TO JAKARTA PERSISTENCE
7.11. JAKARTA PERSISTENCE PROPERTY CHANGES

Jakarta Persistence property changes introduced in JBoss EAP 7.0
Jakarta Persistence property changes introduced in JBoss EAP 7.1

7.12. MIGRATE JAKARTA ENTERPRISE BEANS CLIENT CODE
7.12.1. Jakarta Enterprise Beans client changes in JBoss EAP 7

7.12.1.1. Update the default remote connection port
7.12.1.2. Update the default connector

7.12.2. Migrate remote naming client code
7.12.3. Additional JBoss EJB client changes introduced in JBoss EAP 7.1

7.13. MIGRATE CLIENTS TO USE THE WILDFLY CONFIGURATION FILE
7.14. MIGRATE DEPLOYMENT PLAN CONFIGURATIONS
7.15. MIGRATE CUSTOM APPLICATION VALVES

Migrate Valves Configured in Deployments
Migrate Custom Authenticator Valves

7.16. SECURITY APPLICATION CHANGES
7.16.1. Migrate authenticator valves
7.16.2. PicketLink removal

PicketLink SP
PicketLink IDP
PicketLink STS

7.16.3. Vault removal
7.16.4. OIDC client migration
7.16.5. Custom login modules migration
7.16.6. Other security application changes

7.17. JBOSS LOGGING CHANGES
7.18. JAKARTA FACES CODE CHANGES

Dropped support for Jakarta Server Faces prior to 4.0
7.19. INTEGRATE MYFACES FOR ALTERNATIVE FACES
7.20. MODULE CLASS LOADING CHANGES
7.21. APPLICATION CLUSTERING CHANGES

7.21.1. Overview of new clustering features
7.21.2. Web Session Clustering Changes
7.21.3. Overriding the default distributable session management behavior

Referencing an existing session management profile
Using a Deployment-specific Session Management Profile

7.21.4. Stateful session EJB clustering changes
7.21.5. Clustering services changes
7.21.6. Migrate Clustering HA Singleton

7.22. CONTEXTSERVICE CUSTOMIZATION BY USING CONTEXT TYPES

73
73
73
73
74
74
74
74
76
76
77
77
78
78
79
79
80
81
81
81

82
82
82
86
87
87
87
88
88
88
88
88
88
88
89
89
89
89
90
90
90
91
91

92
92
92
94
95
95
96
96
97
97

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

4

. .

. .

7.23. REMOVAL OF DEPRECATED INITIALCONTEXT CLASS
7.24. RESOURCE ADAPTERS

7.24.1. Deploying the IBM MQ Resource Adapter
Summary
7.24.1.1. Limitations and known issues of IBM MQ resource adapters

7.24.2. Removal of Apache Log4j version 1 APIs

CHAPTER 8. MISCELLANEOUS CHANGES
8.1. CHANGES TO DELIVERY OF JBOSS EAP NATIVES AND APACHE HTTP SERVER

Additional changes for JBoss EAP Natives and Apache HTTP Server
8.2. CHANGES TO DEPLOYMENTS ON AMAZON EC2
8.3. REMOVE APPLICATIONS THAT INCLUDE SHARED MODULES
8.4. CHANGES TO THE ADD-USER SCRIPT
8.5. REMOVAL OF OSGI SUPPORT
8.6. CHANGES IN SOAP WITH ATTACHMENTS API FOR JAVA

CHAPTER 9. MIGRATING TO ELYTRON
9.1. OVERVIEW OF ELYTRON
9.2. MIGRATE SECURE VAULTS AND PROPERTIES

9.2.1. Migrate Secure Vaults to Secure Credential Storage
9.2.1.1. Migrate vault data using the WildFly Elytron tool

9.2.1.1.1. Migrating an Individual Security Vault to a Credential Store
9.2.1.1.2. Migrating multiple security vaults to a credential store in bulk

9.2.2. Migrating Security Properties to Elytron
9.3. MIGRATE AUTHENTICATION CONFIGURATION

9.3.1. Migrate PicketBox Properties-based Configuration to Elytron
9.3.1.1. Migrating Properties-based Authentication to Elytron

9.3.2. Migrating legacy security realm properties-based configuration to Elytron
9.3.3. Migrating to Filesystem-based Security Realm Using the filesystem-realm Command
9.3.4. Migrating LDAP Authentication Configuration to Elytron

9.3.4.1. Migrating the Legacy LDAP Authentication to Elytron
9.3.5. Migrate Database Authentication Configuration to Elytron

9.3.5.1. Migrating the legacy database authentication to Elytron
9.3.6. Migrate Kerberos Authentication to Elytron

9.3.6.1. Migrating Kerberos HTTP Authentication
9.3.6.1.1. Migrate the Kerberos HTTP Authentication to Elytron

9.3.6.2. Migrating Kerberos Remoting SASL Authentication
9.3.6.2.1. Migrate the Kerberos Remoting SASL Authentication to Elytron

9.3.7. Migrate Composite Stores to Elytron
9.3.7.1. PicketBox Composite Store Configuration
9.3.7.2. Legacy Security Realm Composite Store Configuration
9.3.7.3. Elytron Aggregate Security Realm Configuration

9.3.8. Migrate security domains that use caching to Elytron
9.3.8.1. PicketBox Cached Security Domain Configuration
9.3.8.2. Configuring an Elytron cached security domain

9.3.9. Migrate Jakarta authorization security to Elytron
9.4. MIGRATE APPLICATION CLIENTS

Migrate a Naming Client Configuration to Elytron
9.4.1. Migrating the Naming Client Using the Configuration File Approach
9.4.2. Migrating the Naming Client Using the Programmatic Approach
9.4.3. Migrate a Jakarta Enterprise Beans client to Elytron

9.4.3.1. Migrate the Jakarta Enterprise Beans client using a configuration file
9.4.3.2. Migrate the Jakarta Enterprise Beans client programmatically

97
98
98
98
101
105

108
108
108
109
109
110
110
110

111
111
111
111

112
112
113
114
115
115
116
117

120
121

124
125
126
127
128
130
131
132
133
134
134
136
137
137
138
140
140
140
141
141

142
143
144

Table of Contents

5

. .

9.5. MIGRATE SSL CONFIGURATIONS
Migrate a Simple SSL Configuration to Elytron
9.5.1. Migrate CLIENT-CERT SSL Authentication to Elytron

9.5.1.1. Legacy truststore Containing Only CA
9.5.1.2. Security Realms and Domains
9.5.1.3. Principal Decoder
9.5.1.4. HTTP Authentication Factory

9.6. LEGACY SECURITY BEHAVIOR CHANGES IN LDAP

APPENDIX A. REFERENCE MATERIAL
A.1. COMPATIBILITY AND INTEROPERABILITY BETWEEN RELEASES

A.1.1. Enterprise beans remoting over Internet Inter-ORB Protocol
A.1.2. Enterprise beans remoting using Java Naming and Directory Interface
A.1.3. Enterprise beans remoting using @WebService
A.1.4. Messaging standalone client
A.1.5. Messaging MDBs
A.1.6. Messaging bridges

144
145
146
147
149
149
149
150

152
152
152
152
152
152
153
153

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

6

Table of Contents

7

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket.

2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

8

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12316621&summary=(userfeedback)&issuetype=13&description=[Please+include+the+Document+URL,+the+section+number+and +describe+the+issue]&priority=3&labels=[ddf]&components=12391723&customfield_10010

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

9

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. RED HAT JBOSS ENTERPRISE APPLICATION
PLATFORM MIGRATION OVERVIEW

As a system administrator, you can upgrade from Red Hat JBoss Enterprise Application Platform 7 to
Red Hat JBoss Enterprise Application Platform 8.0. This guide covers new features available in the
release, deprecated and unsupported features, and any necessary application and server configuration
updates to maintain consistent behavior.

It also provides information about tools that can help with the migration, such as Migration Toolkit for
Runtimes, which simplifies migration of Java applications, and the JBoss Server Migration Tool, which
updates the server configuration.

After successfully deploying and running JBoss EAP 8.0, you can upgrade individual components to use
the new functions and features of JBoss EAP 8.0.

NOTE

If you want to migrate from older releases of JBoss EAP, you must first migrate to JBoss
EAP 7.4. For more information, see JBoss EAP 7.4 Migration Guide.

1.1. UNDERSTANDING MIGRATIONS AND UPGRADES

This section provides explanations and guidelines for upgrading and patching JBoss EAP, including
major upgrades, minor updates, and cumulative patches.

1.1.1. Major upgrades in JBoss EAP

A major upgrade or migration is necessary when an application is moved from one major release to
another, such as from JBoss EAP 7 to JBoss EAP 8.0. Applications that comply with the Jakarta EE 8
specification, contain proprietary code, or use deprecated APIs might require modifications to their
application code to run on JBoss EAP 8.0. The introduction of Jakarta EE 10 involves changes in Java
package names and other aspects that require adjustments to Jakarta EE application code for
compatibility with JBoss EAP 8.0. Additionally, the server configuration has changed in JBoss EAP 8.0
and requires migration. This type of migration is addressed in this guide.

1.1.2. Minor updates in JBoss EAP

Minor Updates in JBoss EAP are point releases that provide bug fixes, security fixes, and new features.
The changes made in each point release are documented in the Release notes for Red Hat JBoss
Enterprise Application Platform 8.0.

Use the JBoss Server Migration Tool to automatically upgrade from one point release to another, for
example from JBoss EAP 7.0 to JBoss EAP 7.1. For more information, see Using the JBoss Server
Migration Tool.

1.1.3. Cumulative patches in JBoss EAP

JBoss EAP periodically provides cumulative patches that contain bug and security fixes. Cumulative
patches increment the release by the last digit, for example, upgrading from version 7.1.0 to 7.1.1.

1.2. USE OF <EAP_HOME> VARIABLE

In this document, the <EAP_HOME> variable denotes the path to the JBoss EAP installation. Replace

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

10

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/migration_guide/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/release_notes_for_red_hat_jboss_enterprise_application_platform_8.0/index
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_the_jboss_server_migration_tool

In this document, the <EAP_HOME> variable denotes the path to the JBoss EAP installation. Replace
this variable with the actual path to your JBoss EAP installation.

NOTE

<EAP_HOME> is not an environment variable. Use the JBOSS_HOME environment
variable in scripts.

Depending on the installation option you choose to install JBoss EAP, you can locate the installation
directory or the default path as follows:

If you installed JBoss EAP by using the archive installation method, the installation directory is
the jboss-eap-8.0 directory where you extracted the archive.

If you installed JBoss EAP by using the RPM installation method, the installation directory is the
/opt/rh/eap8/root/usr/share/wildfly/.

If you installed JBoss EAP by using the installer application, the default path for <EAP_HOME>
is ${user.home}/EAP-8.0.0:

For Red Hat Enterprise Linux and Oracle Solaris: /home/USER_NAME/EAP-8.0.0/

For Microsoft Windows: C:\Users\USER_NAME\EAP-8.0.0\

If you installed and configured the JBoss EAP server by using the Red Hat CodeReady Studio
installer application, the default path for <EAP_HOME> is
${user.home}/devstudio/runtimes/jboss-eap:

For Red Hat Enterprise Linux: /home/USER_NAME/devstudio/runtimes/jboss-eap/

For Microsoft Windows: C:\Users\USER_NAME\devstudio\runtimes\jboss-eap or
C:\Documents and Settings\USER_NAME\devstudio\runtimes\jboss-eap\

NOTE

If you set the Target runtime to 8.0 or a later runtime version in Red Hat CodeReady
Studio, your project is compatible with the Jakarta EE 10 specification.

CHAPTER 1. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM MIGRATION OVERVIEW

11

CHAPTER 2. PREPARING FOR MIGRATION TO JBOSS EAP 8.0
As a system administrator, you need to plan the migration to JBoss EAP 8.0. This upgrade is essential
for improved performance, enhanced security, and increased stability of Java applications.

JBoss EAP 8.0 provides backward compatibility for JBoss EAP 7 applications. However, if your
application uses features that JBoss EAP 8.0 has deprecated or removed, you might need to modify
your application code.

The JBoss EAP 8.0 release introduces several changes that might impact your application deployment.
To ensure a successful migration, conduct research and planning before attempting to migrate your
application.

Before beginning the migration process, follow these initial steps:

Familiarize yourself with the features of Jakarta EE 10 .

Review features of JBoss EAP 8.0.

Review the JBoss EAP getting started material .

Ensure a seamless migration process by backing up your data and reviewing server state .

Streamline your installation process by migrating JBoss EAP with RPM installation .

Improve manageability and automation by migrating JBoss EAP as a service .

After becoming familiar with the feature changes, the development materials, and the tools that can
assist your migration efforts, evaluate your applications and server configuration to determine the
necessary changes for running them on JBoss EAP 8.0.

2.1. REVIEW THE JAKARTA EE 10 FEATURES

Jakarta EE 10 introduces numerous enhancements that simplify the development and deployment of
feature-rich applications in both private and public clouds. It incorporates new features and the latest
standards such as HTML5, WebSocket, JSON, Batch, and Concurrency Utilities. Updates include
Jakarta Persistence 3.1, Jakarta RESTful Web Services 3.1, Jakarta Servlet 6.0, Jakarta Expression
Language 5.0, Java Message Service 3.1. Jakarta Server Faces 4.0, Jakarta Enterprise Beans 4.0,
Contexts and Dependency Injection 2.0, and Jakarta Bean Validation 3.0.

Additional resources

Jakarta EE Platform 10

2.2. REVIEW THE FEATURES OF JBOSS EAP 8.0

JBoss EAP 8.0 includes upgrades and improvements over previous releases. For the complete list of
new features introduced in JBoss EAP 8.0, see New features and enhancements in the Release notes
for Red Hat JBoss Enterprise Application Platform 8.0 on the Red Hat Customer Portal.

Before migrating your application to JBoss EAP 8.0, note that some features from previous releases
may no longer be supported or have been deprecated due to high maintenance costs, low community
interest, or availability of better alternatives. For a complete list of deprecated and unsupported
features in JBoss EAP 8.0, see Unsupported, deprecated, and removed functionality in the Release
notes for Red Hat JBoss Enterprise Application Platform 8.0 on the Red Hat Customer Portal.

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

12

https://jakarta.ee/specifications/platform/10
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/release_notes_for_red_hat_jboss_enterprise_application_platform_8.0/index#new_features_and_enhancements
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/release_notes_for_red_hat_jboss_enterprise_application_platform_8.0/index#unsupported_deprecated_and_removed_functionality

2.3. REVIEW THE JBOSS EAP GETTING STARTED MATERIAL

This section explains the key components of the JBoss EAP Getting Started material, providing a
concise overview of essential information to help you start with JBoss EAP.

Review the JBoss EAP Getting Started Guide for essential information on:

Downloading and installing JBoss EAP 8.0 to set up your environment effectively.

Downloading and installing JBoss Tools to improve your development environment.

IMPORTANT

JBoss Tools is a community project and is not supported by Red Hat. Please reference
the community website for assistance with setting up and running your instance of JBoss
Tools. To download JBoss Tools, see JBoss Tools Downloads.

Configuring Maven for your development environment and managing project dependencies.

Downloading and running the quick-start example applications that come with the product.

Additional resources

Developing applications using JBoss EAP

2.4. BACK UP YOUR DATA AND REVIEW SERVER STATE

This section emphasizes the need to back up data, review server state, and handle potential issues
before migrating your application. By safeguarding deployments, managing open transactions, and
assessing timer data, you can ensure a smooth migration.

Consider the following potential issues before you start the migration:

The migration process might remove temporary folders. Make sure you backup any
deployments within the data/content/ directory before migrating. Later, restore the data after
completion to avoid server failure due to missing content.

Before migration, handle open transactions and delete the data/tx-object-store/ transaction
directory.

Review the persistent timer data in data/timer-service-data before proceeding with the
migration to determine its applicability post-upgrade. Before the upgrade, check the
deployment-* files in that directory to identify which timers are still in use.

Make sure to back up the current server configuration and applications before you start the migration.

2.5. MIGRATE JBOSS EAP WITH RPM INSTALLATION

The migration advice in this guide also applies to migrating RPM installations of JBoss EAP, but you
might need to alter some steps, such as how to start JBoss EAP to suit an RPM installation compared to
an archive or the jboss-eap-installation-manager installation.

IMPORTANT

CHAPTER 2. PREPARING FOR MIGRATION TO JBOSS EAP 8.0

13

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/getting_started_with_red_hat_jboss_enterprise_application_platform/
https://tools.jboss.org/documentation/
https://tools.jboss.org/downloads/jbosstools/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/getting_started_with_red_hat_jboss_enterprise_application_platform/#assembly-develop-applications-jboss-eap_assembly-getting-started

IMPORTANT

It is not supported to have more than one RPM-installed instance of JBoss EAP on a
single Red Hat Enterprise Linux server. Therefore, it is recommended to migrate the
JBoss EAP installation to a new machine when migrating to JBoss EAP 8.0.

Additional resources

Installing JBoss EAP by using the RPM installation method

2.6. MIGRATE JBOSS EAP AS A SERVICE

If you run JBoss EAP 7 as a service, review the updated configuration instructions for JBoss EAP 8.0 in
the Red Hat JBoss Enterprise Application Platform Installation Methods .

2.7. MIGRATE A CLUSTER

If you run a JBoss EAP cluster, follow the instruction in the Upgrading a cluster section in the JBoss EAP
7.4 Patching and Upgrading Guide .

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

14

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/red_hat_jboss_enterprise_application_platform_installation_methods/#assembly_installing-jboss-eap-using-the-rpm-installtion-method_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/red_hat_jboss_enterprise_application_platform_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/patching_and_upgrading_guide/#proc_upgrading-a-cluster_default

CHAPTER 3. SIMPLIFY YOUR JBOSS EAP 8.0 MIGRATION
WITH EFFECTIVE TOOLS

As a system administrator, you can simplify your migration process to JBoss EAP 8.0 with the help of
two essential tools. The Migration Toolkit for Runtimes (MTR) analyzes your applications and provides
detailed migration reports, whereas the JBoss Server Migration Tool updates your server configuration
to include new features and settings.

3.1. ANALYZING YOUR APPLICATIONS BEFORE MIGRATION

You can use Migration Toolkit for Runtimes (MTR) to analyze the code and architecture of your JBoss
EAP 6.4 and 7 applications before you migrate them to JBoss EAP 8.0. The MTR rule set for migration
to JBoss EAP 8.0 provides reports on XML descriptors, specific application code, and parameters that
need to be replaced by an alternative configuration when migrating to JBoss EAP 8.0.

MTR is an extensible and customizable rule-based set of tools that helps simplify migration of Java
applications. MTR analyzes the APIs, technologies, and architectures used by the applications you plan to
migrate, providing detailed migration reports for each application. These reports provide the following
information:

Detailed explanations of the necessary migration changes

Whether the reported change is mandatory or optional

Whether the reported change is complex or trivial

Links to the code requiring the migration change

Hints and links to information about how to make the required changes

An estimate of the level of effort for each migration issue found and the total estimated effort
to migrate the application

Additional resources

Migration Toolkit for Runtimes

3.2. SIMPLIFY YOUR SERVER CONFIGURATION MIGRATION

The JBoss Server Migration Tool is the preferred method for updating your server configuration to
include the new features and settings in JBoss EAP 8.0 while keeping your existing configuration. The
JBoss Server Migration Tool reads your existing JBoss EAP server configuration files and adds
configurations for any new subsystems, updates the existing subsystem configurations with new
features, and removes any obsolete subsystem configurations.

You can use the JBoss Server Migration Tool to migrate standalone servers and manage domains.

3.2.1. Migrating to JBoss EAP 8.0

The JBoss Server Migration Tool supports migration from all releases of JBoss EAP version 7, to JBoss
EAP 8.0.

NOTE

CHAPTER 3. SIMPLIFY YOUR JBOSS EAP 8.0 MIGRATION WITH EFFECTIVE TOOLS

15

https://access.redhat.com/documentation/en-us/migration_toolkit_for_runtimes

NOTE

If you want to migrate from JBoss EAP 6.4, you must first migrate to the latest
Cumulative Patch (CP) version of JBoss EAP 7.4. For more information, see JBoss EAP
7.4 Migration Guide. Subsequently, you can migrate from JBoss EAP 7.4 CP version to
JBoss EAP 8.0.

Prerequisites

JBoss EAP is not running.

Procedure

1. Download the tool from the JBoss EAP download page .

2. Extract the downloaded archive.

$ unzip <NAME_OF_THE_FILE>

3. Navigate to the MIGRATION_TOOL_HOME/bin directory.

4. Execute the jboss-server-migration script.

For Red Hat Enterprise Linux:

$./jboss-server-migration.sh --source EAP_PREVIOUS_HOME --target
EAP_NEW_HOME

For Microsoft Windows:

jboss-server-migration.bat --source EAP_PREVIOUS_HOME --target EAP_NEW_HOME

NOTE

Replace EAP_PREVIOUS_HOME and EAP_NEW_HOME with the actual
paths to the previous and new installations of JBoss EAP.

Additional resources

Using the JBoss Server Migration Tool

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

16

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/migration_guide/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform&downloadType=distributions
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_the_jboss_server_migration_tool

CHAPTER 4. RED HAT JBOSS ENTERPRISE APPLICATION
PLATFORM APPLICATION MIGRATION FROM JAKARTA EE 8

TO 10
JBoss EAP 8.0 provides support for Jakarta EE 10. Jakarta EE 10 brings a large change to Jakarta EE
compared to the Jakarta EE 8 specifications supported by JBoss EAP 7. In this chapter, the
compatibility-impacting differences in the Jakarta EE APIs that application developers must be aware of
when preparing to migrate their applications from JBoss EAP 7 to JBoss EAP 8.0 are discussed.

NOTE

The focus of this chapter is on the differences between Jakarta EE 8 and Jakarta EE 10
that an application developer migrating their application to JBoss EAP 8.0 might need to
deal with, and not on how to do the migration. For more information on JBoss EAP 7 to
JBoss EAP 8.0 application migration and the tools provided by Red Hat to assist with this,
see Simplify your JBoss EAP 8.0 migration with effective tools and Understanding
application migration changes.

4.1. THE JAVAX TO JAKARTA PACKAGE NAMESPACE CHANGE

By far the largest compatibility-impacting difference between Jakarta EE 8 and EE 10 is the renaming of
the EE API Java packages from javax.* to jakarta.*.

Following the move of Java EE to the Eclipse Foundation and the establishment of Jakarta EE, Eclipse
and Oracle agreed that the Jakarta EE community cannot evolve the javax. package namespace.
Therefore, in order to continue to evolve the EE APIs, beginning with Jakarta EE 9, the packages used
for all EE APIs have changed from javax.* to jakarta.*. This change does not affect javax packages that
are part of Java SE.

Adapting to this namespace change is the biggest change involved in migrating an application from
JBoss EAP 7 to JBoss EAP 8. Applications migrating to Jakarta EE 10 need to:

Update any import statements or other source code uses of EE API classes from the javax
package to jakarta

Update the names of any EE-specified system properties or other configuration properties
whose names that begin with javax. to instead begin with jakarta.

Change the name of the resource that identifies the implementation class from META-
INF/services/javax.[rest_of_name] to META-INF/services/jakarta.[rest_of_name] for any
application-provided implementations of EE interfaces or abstract classes that are
bootstrapped using the java.util.ServiceLoader mechanism.

NOTE

The Red Hat Migration Toolkit can assist in updating the namespaces in the application
source code. For more information, see How to use Red Hat Migration Toolkit for Auto-
Migration of an Application to the Jakarta EE 10 Namespace. For cases where source
code migration is not an option, the open source Eclipse Transformer project provides
bytecode transformation tooling to transform existing Java archives from the javax
namespace to jakarta.

4.2. OTHER CHANGES

CHAPTER 4. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM APPLICATION MIGRATION FROM JAKARTA EE 8 TO 10

17

https://access.redhat.com/articles/6987195

Besides the package namespace change, applications written for earlier EE versions may need to adapt
to changes made in a number of specifications included in Jakarta EE 10. The following sections
describe these changes, which are mostly removals of long-deprecated API elements.

In the following sections, for any instances of API elements that have been removed that use the javax
namespace, the equivalent removal has been done in the jakarta namespace used in Jakarta EE 9.
Therefore, if you have updated your application to replace the javax namespace with jakarta, assume
that the items that mention javax are applicable for your application.

4.2.1. Jakarta Contexts and Dependency Injection Bean Discovery

As per the CDI 4.0 spec change notes , the default behavior for discovering Contexts and Dependency
Injection or CDI beans in a deployment with an empty beans.xml file has changed from all to
annotated. This means that for such a deployment only deployment classes with a bean defining
annotation is discovered by CDI. If all application classes using beans have such an annotation, this CDI
change will have no impact. Otherwise, an application deployment might fail when CDI cannot find a type
that provides a particular bean.

If your application is impacted by this change, you have several options:

Leave the beans.xml file empty but add a bean defining annotation to all classes that need it.

Leave the classes unchanged but change the beans.xml file from being empty to one with the
following content: <beans bean-discovery-mode="all"></beans>

Leave the application unchanged, but change the server’s weld subsystem configuration to
restore handling of empty beans.xml files back to the JBoss EAP 7 behavior. This setting
affects all deployments on the server. For example, with the CLI: /subsystem=weld:write-
attribute(name=legacy-empty-beans-xml-treatment,value=true)

4.2.2. CDI API Changes

Jakarta Contexts and Dependency Injection 4.0 removed the following deprecated API elements:

The javax.enterprise.inject.spi.Bean.isNullable() method has been removed. This method has
always returned false for many years now, so applications that call it can replace the call with
false or remove any branching logic and just retain the contents of the false branch.

The javax.enterprise.inject.spi.BeanManager.createInjectionTarget(AnnotatedType)
method has been removed. Replace this method call with with
BeanManager.getInjectionTargetFactory(AnnotatedType) and use the returned factory to
create injection targets. See Obtaining an InjectionTarget for a class in the Jakarta Contexts
and Dependency injection specification for more information.

The javax.enterprise.inject.spi.BeanManager.fireEvent(Object, Annotation) method has
been removed. Use BeanManager.getEvent() as an entry point to a similar API. See Firing an
event in the Jakarta Contexts and Dependency injection specification for more information.

The javax.enterprise.inject.spi.BeforeBeanDiscovery.addAnnotatedType(AnnotatedType)
method has been removed. If your application is calling this method, you can replace it with a call
to BeforeBeanDiscovery.addAnnotatedType(AnnotatedType, (String) null).

4.2.3. Jakarta Enterprise Beans

Java SE 14 has removed the java.security.Identity class, so it’s usage has been removed from the
Jakarta Enterprise Beans 4.0 API.

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

18

https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0.html#_jakarta_contexts_and_dependency_injection_4_0
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0.html#bean_defining_annotations
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#bm_obtain_injectiontarget
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#bm_fire_event

The deprecated javax.ejb.EJBContext.getCallerIdentity() method has been removed. You can
use EJBContext.getCallerPrincipal() instead, which returns java.security.Principal.

The deprecated javax.ejb.EJBContext.isCallerInRole(Identity role) method has been
removed. You can use EJBContext.isCallerInRole(String roleName) instead.

The Jakarta XML RPC specification has been removed from the Jakarta EE 10 Full Platform, so
the javax.ejb.SessionContext.getMessageContext() method that returned
javax.xml.rpc.handler.MessageContext has been removed.

The Jakarta XML RPC specification was optional in Jakarta EE 8, and Red Hat JBoss EAP 7
does not support it. Any usage of this specification would have thrown an
IllegalStateException, so this EJB API change is not expected to affect any existing
applications running on JBoss EAP 7.

The deprecated javax.ejb.EJBContext.getEnvironment() method has been removed. Use the
JNDI naming context java:comp/env to access the enterprise bean’s environment.

4.2.4. Jakarta Expression Language

The incorrectly spelled javax.el.MethodExpression.isParmetersProvided() method has been
removed. You can use MethodExpression.isParametersProvided() instead.

4.2.5. Jakarta JSON Binding

By default, types annotated with the jakarta.json.bind.annotation.JsonbCreator annotation does not
require all parameters to be available in the JSON content. Default values will be used if the JSON being
parsed is missing one of the parameters. The EE 8 behavior that requires all the parameters to be
present in the JSON can be turned on by calling
jakarta.json.bind.JsonbConfig().withCreatorParametersRequired(true).

4.2.6. Jakarta Faces

The following deprecated functionality has been removed in Jakarta Faces 4.0.

4.2.6.1. Jakarta Faces and Java Server Pages

Jakarta Server Pages (JSP) support is deprecated in Jakarta Faces 2.0 and later versions. JSP support
is removed in Jakarta Faces 4.0. Facelets replaces JSP as the preferred View Definition Language
(VDL). Applications using JSP for Faces views can be modified using Facelets. You can identify the
applications by mapping FacesServlet to the *.jsp suffix in web.xml.

4.2.6.2. Faces Managed-Beans

The deprecated Jakarta Faces-specific managed-bean concept has been removed in Faces 4.0, for
Jakarta Contexts and Dependency Injection (CDI) beans. Applications using Faces managed-beans (i.e.
classes annotated with javax.faces.bean.ManagedBean or referenced in a managed-bean element in
faces-config.xml) might need to make the following changes:

Classes annotated with javax.faces.bean.ManagedBean or referenced in a managed-bean
element in faces-config.xml should instead be annotated with jakarta.inject.Named, and any
managed-bean element in faces-config.xml should be removed.

Members annotated with the javax.faces.bean.ManagedProperty annotation should use
jakarta.faces.annotation.ManagedProperty instead, along with the jakarta.inject.Inject

CHAPTER 4. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM APPLICATION MIGRATION FROM JAKARTA EE 8 TO 10

19

annotation. To get a startup semantic similar to the old
javax.faces.bean.ManagedBean(name=“foo”, eager=true), add a public void
xxx(@Observes jakarta.enterprise.event.Startup event) method or a public void
xxx(@Observes @Initialized(ApplicationScoped.class) Object context) method. The
jakarta.enterprise.event.Startup option is new in CDI 4.0.

Use of the javax.faces.bean.ApplicationScoped annotation should be replaced with
jakarta.enterprise.context.ApplicationScoped.

Use of the javax.faces.bean.CustomScoped annotation should be replaced with CDI custom
scopes and jakarta.enterprise.context.spi.Context. See Defining new scope types and The
Context Interface in the CDI 4.0 specification for more details.

Use of the javax.faces.bean.NoneScoped annotation should be replaced with
jakarta.enterprise.context.Dependent, which is a CDI built-in scope with approximately similar
semantics.

Use of the javax.faces.bean.RequestScoped annotation should be replaced with
jakarta.enterprise.context.RequestScoped.

Use of the javax.faces.bean.SessionScoped annotation should be replaced with
jakarta.enterprise.context.SessionScoped.

4.2.6.3. Other Faces API Changes

The javax.faces.bean.ViewScoped annotation has been removed. You can use
jakarta.faces.view.ViewScoped instead.

The javax.faces.view.facelets.ResourceResolver and
javax.faces.view.facelets.FaceletsResourceResolver annotations have been removed. For any
ResourceResolvers in your application, implement the jakarta.faces.application.ResourceHandler
interface and register the fully qualified class name of the implementation in the application/resource-
handler element in faces-config.xml.

4.2.7. Jakarta Servlet

Jakarta Servlet 6.0 removes a number API classes and methods that were deprecated in Servlet 5.0 and
earlier, mostly in the Servlet 2.x releases.

The javax.servlet.SingleThreadModel marker interface has been removed and servlets that implement
this interface must remove the interface declaration and ensure that the servlet code properly guards
state and other resource access against concurrent access. For example, by avoiding the usage of an
instance variable or synchronizing the block of code accessing resources. However, it is recommended
that developers do not synchronize the service method (or methods like doGet and doPost that it
dispatches to) because of the detrimental effect of such synchronization on performance.

The javax.servlet.http.HttpSessionContext interface has been removed, along with the
javax.servlet.http.HttpSession.getSessionContext() method. There have been no use cases for this
interface since Servlet 2.1 as its implementations were required by specifications not to provide any
usable data.

The javax.servlet.http.HttpUtils utility class has been removed. Applications should use the
ServletRequest and HttpServletRequest interfaces instead of the following methods:

parseQueryString(String s) and parsePostData(int len, ServletInputStream in) - Use
ServletRequest.getParameterMap(). If an application needs to differentiate between query

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

20

https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0.html#defining_new_scope_type
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0.html#context

string parameters and request body parameters, the application must implement the code to do
that by parsing the query string itself.

getRequestURL(HttpServletRequest req)- Use HttpServletRequest.getRequestURL().

Also, the following miscellaneous methods and constructors have been removed:

Class/Interface Removed Use Instead

javax.servlet.ServletContext getServlet(
String
name)

no replacement

 getServlets
()

no replacement

 getServletN
ames()

no replacement

 log(Excepti
on
exception,
String msg)

log(String message, Throwable throwable)

javax.servlet.ServletRequest getRealPat
h(String
path)

ServletContext.getRealPath(String path)

javax.servlet.ServletRequest
Wrapper

getRealPat
h(String
path)

ServletContext.getRealPath(String path)

javax.servlet.UnavailableExce
ption

getServlet(
)

no replacement

 Unavailable
Exception(
Servlet
servlet,
String msg)

UnavailableException(String)

 Unavailable
Exception(i
nt seconds,
Servlet
servlet,
String msg)

UnavailableException(String, int)

javax.servlet.http.HttpServlet
Request

isRequeste
dSessionId
FromUrl()

isRequestedSessionIdFromURL()

CHAPTER 4. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM APPLICATION MIGRATION FROM JAKARTA EE 8 TO 10

21

javax.servlet.http.HttpServlet
RequestWrapper

isRequeste
dSessionId
FromUrl()

isRequestedSessionIdFromURL()

javax.servlet.http.HttpServlet
Response

encodeUrl(
String url)

encodeURL(String url)

 encodeRedi
rectUrl(Stri
ng url)

encodeRedirectURL(String url)

 setStatus(i
nt sc, String
sm)

sendError(int, String)

javax.servlet.http.HttpServlet
ResponseWrapper

encodeUrl(
String url)

encodeURL(String url)

 encodeRedi
rectUrl(Stri
ng url)

encodeRedirectURL(String url)

 setStatus(i
nt sc, String
sm)

sendError(int, String)

javax.servlet.http.HttpSessio
n

getValue(St
ring name)

getAttribute(String name)

 getValueNa
mes()

getAttributeNames()

 putValue(St
ring name,
Object
value)

setAttribute(String name, Object value)

 removeValu
e(String
name)

removeAttribute(String name)

Class/Interface Removed Use Instead

4.2.8. Jakarta Soap with Attachments

Support for provider lookup through a jaxm.properties file has been removed.

The deprecated javax.xml.soap.SOAPElementFactory class has been removed. Use
jakarta.xml.soap.SOAPFactory for creating SOAPElements.

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

22

SOAPElementFactory method SOAPFactory equivalent

newInstance() newInstance()

create(Name) createElement(Name)

create(String) createElement(String)

create(String, String, String) createElement(String, String,
String)

4.2.9. Jakarta XML Binding

The XML namespace that should be used in xml binding files has changed. The
http://java.sun.com/xml/ns/jaxb namespace should be replaced with https://jakarta.ee/xml/ns/jaxb.

The deprecated javax.xml.bind.Validator interface has been removed, as has the associated
javax.xml.bind.JAXBContext.createValidator() method. To validate marshalling and unmarshalling
operations, provide a javax.xml.validation.Schema to
jakarta.xml.bind.Marshaller.setSchema(Schema).

Support for compatibility with JAXB 1.0 has been removed.

Some of the deprecated steps in the JAXBContext implementation lookup algorithm have been
removed. Searches for implementation class names through jaxb.properties files,
javax.xml.bind.context.factory or jakarta.xml.bind.JAXBContext properties and /META-
INF/services/javax.xml.bind.JAXBContext resource files have been dropped. For more informatoin
about the current implementation discovery algorithm, see the Jakarta XML Binding 4.0 specification.

The generic requirements for a number of methods in the javax.xml.bind.Marshaller interface have
changed as follows:

Jakarta XML Binding 2.3 / 3.0 Jakarta XML Binding 4.0

<A extends XmlAdapter> void setAdapter(A adapter) <A extends XmlAdapter<?, ?>>
void setAdapter(A adapter)

<A extends XmlAdapter> void setAdapter(Class<A> type, A adapter) <A extends XmlAdapter<?, ?>>
void setAdapter(Class<A> type, A
adapter)

<A extends XmlAdapter> A getAdapter(Class<A> type) <A extends XmlAdapter<?, ?>> A
getAdapter(Class<A> type)

Apart from the changes in the Jakarta XML Binding API, there have been significant package name
changes in the implementation library EAP 8, which might affect some applications that access the
implementation library directly:

Any use of classes in the com.sun.xml.bind package should be replaced by classes in the
org.glassfish.jaxb.runtime package. Classes in sub-packages of com.sun.xml.bind should be
replaced with classes in corresponding org.glassfish.jaxb.runtime sub-packages.

CHAPTER 4. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM APPLICATION MIGRATION FROM JAKARTA EE 8 TO 10

23

http://java.sun.com/xml/ns/jaxb
https://jakarta.ee/xml/ns/jaxb
https://jakarta.ee/specifications/xml-binding/4.0/jakarta-xml-binding-spec-4.0.html#implementation-discovery

For jakarta.xml.bind.Marshaller property settings, change the property constant name from
com.sun.xml.bind.* to org.glassfish.jaxb.*. For example,
marshaller.setProperty("com.sun.xml.bind.namespacePrefixMapper", mapper) becomes
marshaller.setProperty("org.glassfish.jaxb.namespacePrefixMapper", mapper).

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

24

CHAPTER 5. MIGRATE A JBOSS EAP APPLICATION’S MAVEN
PROJECT TO JBOSS EAP 8.0

When migrating an application’s Maven project to JBoss EAP 8.0, which uses JBoss EAP BOMs to
manage dependencies, you must update the pom.xml files due to the following significant changes
introduced with the JBoss EAP 8.0 BOMs.

NOTE

If an application is migrated to JBoss EAP 8.0 without any changes, the application will
build with incorrect dependencies and may fail to deploy on JBoss EAP 8.0.

5.1. RENAMING OF JBOSS EAP JAKARTA EE 8

The JBoss EAP Jakarta EE 8 BOM has been renamed to JBoss EAP EE and its Maven Coordinates
have been changed from org.jboss.bom:jboss-eap-jakartaee8 to org.jboss.bom:jboss-eap-ee. The
usage of this BOM in a Maven project (pom.xml) may be identified with the following dependency
management import:

The Maven project (pom.xml) should instead import the new “JBoss EAP EE” BOM to its dependency
management:

5.2. RENAMING OF JBOSS EAP JAKARTA EE 8 WITH TOOLS

The JBoss EAP Jakarta EE 8 With Tools BOM has been renamed to JBoss EAP EE with tools, and its
Maven Coordinates have been changed from org.jboss.bom:jboss-eap-jakartaee8-with-tools to
org.jboss.bom:jboss-eap-ee-with-tools. The usage of this BOM in a Maven project (pom.xml) may be
identified with the following dependency management import:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-jakartaee8</artifactId>
 <version>${version.bom}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-ee</artifactId>
 <version>${version.bom}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

CHAPTER 5. MIGRATE A JBOSS EAP APPLICATION’S MAVEN PROJECT TO JBOSS EAP 8.0

25

The Maven project (pom.xml) must import the new “JBoss EAP EE With Tools” BOM to its dependency
management instead:

5.3. REMOVAL OF JBOSS EAP JAKARTA EE 8 APIS

The JBoss EAP Jakarta EE 8 APIs BOMs have been removed in JBoss EAP 8.0 and the new JBoss
EAP EE BOM must be used instead. The usage of this BOM in a Maven project (pom.xml) may be
identified with the following dependency management import:

The Maven project (pom.xml) must import the new JBoss EAP EE BOM to its dependency
management:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-jakartaee8-with-tools</artifactId>
 <version>${version.bom}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-ee-with-tools</artifactId>
 <version>${version.bom}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.spec</groupId>
 <artifactId>jboss-jakartaee-8.0</artifactId>
 <version>${version.bom}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.spec</groupId>
 <artifactId>jboss-jakartaee-web-8.0</artifactId>
 <version>${version.bom}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

26

5.4. REMOVAL OF THE JBOSS EAP RUNTIME BOM

The JBoss EAP Runtime BOM is no longer distributed with JBoss EAP 8.0 and you must use the new
JBoss EAP EE BOM instead. The usage of this BOM in a Maven project (pom.xml) may be identified
with the following dependency management import:

The Maven project (pom.xml) must import the new JBoss EAP EE BOM to its dependency
management instead:

5.5. JAKARTA EE AND JBOSS APIS MAVEN COORDINATES CHANGES

The following Jakarta EE and JBoss APIs artifacts, which were provided by the JBoss EAP BOMs, have
changed Maven Coordinates, or were replaced by other artifacts:

com.sun.activation:jakarta.activation

org.jboss.spec.javax.annotation:jboss-annotations-api_1.3_spec

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-ee</artifactId>
 <version>${version.bom}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>eap-runtime-artifacts</artifactId>
 <version>${version.bom}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-ee</artifactId>
 <version>${version.bom}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

CHAPTER 5. MIGRATE A JBOSS EAP APPLICATION’S MAVEN PROJECT TO JBOSS EAP 8.0

27

org.jboss.spec.javax.security.auth.message:jboss-jaspi-api_1.0_spec

org.jboss.spec.javax.security.jacc:jboss-jacc-api_1.5_spec

org.jboss.spec.javax.batch:jboss-batch-api_1.0_spec

org.jboss.spec.javax.ejb:jboss-ejb-api_3.2_spec

org.jboss.spec.javax.el:jboss-el-api_3.0_spec

org.jboss.spec.javax.enterprise.concurrent:jboss-concurrency-api_1.0_spec

org.jboss.spec.javax.faces:jboss-jsf-api_2.3_spec

org.jboss.spec.javax.interceptor:jboss-interceptors-api_1.2_spec

org.jboss.spec.javax.jms:jboss-jms-api_2.0_spec

com.sun.mail:jakarta.mail

org.jboss.spec.javax.resource:jboss-connector-api_1.7_spec

org.jboss.spec.javax.servlet:jboss-servlet-api_4.0_spec

org.jboss.spec.javax.servlet.jsp:jboss-jsp-api_2.3_spec

org.apache.taglibs:taglibs-standard-spec

org.jboss.spec.javax.transaction:jboss-transaction-api_1.3_spec

org.jboss.spec.javax.xml.bind:jboss-jaxb-api_2.3_spec

org.jboss.spec.javax.xml.ws:jboss-jaxws-api_2.3_spec

javax.jws:jsr181-api

org.jboss.spec.javax.websocket:jboss-websocket-api_1.1_spec

org.jboss.spec.javax.ws.rs:jboss-jaxrs-api_2.1_spec

org.jboss.spec.javax.xml.soap:jboss-saaj-api_1.4_spec

org.hibernate:hibernate-core

org.hibernate:hibernate-jpamodelgen

org.jboss.narayana.xts:jbossxts

The Maven Project (pom.xml) should update the dependency’s Maven Coordinates if the artifact was
changed or replaced, or remove the dependency if the artifact is no longer supported.

<dependencies>
 <!-- replaces com.sun.activation:jakarta.activation -->
 <dependency>
 <groupId>jakarta.activation</groupId>
 <artifactId>jakarta.activation-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.annotation:jboss-annotations-api_1.3_spec -->

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

28

 <dependency>
 <groupId>jakarta.annotation</groupId>
 <artifactId>jakarta.annotation-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.security.auth.message:jboss-jaspi-api_1.0_spec -->
 <dependency>
 <groupId>jakarta.authentication</groupId>
 <artifactId>jakarta.authentication-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.security.jacc:jboss-jacc-api_1.5_spec -->
 <dependency>
 <groupId>jakarta.authorization</groupId>
 <artifactId>jakarta.authorization-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.batch:jboss-batch-api_1.0_spec -->
 <dependency>
 <groupId>jakarta.batch</groupId>
 <artifactId>jakarta.batch-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.ejb:jboss-ejb-api_3.2_spec -->
 <dependency>
 <groupId>jakarta.ejb</groupId>
 <artifactId>jakarta.ejb-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.el:jboss-el-api_3.0_spec -->
 <dependency>
 <groupId>org.jboss.spec.jakarta.el</groupId>
 <artifactId>jboss-el-api_5.0_spec</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.enterprise.concurrent:jboss-concurrency-api_1.0_spec -->
 <dependency>
 <groupId>jakarta.enterprise.concurrent</groupId>
 <artifactId>jakarta.enterprise.concurrent-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.faces:jboss-jsf-api_2.3_spec -->
 <dependency>
 <groupId>jakarta.faces</groupId>
 <artifactId>jakarta.faces-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.interceptor:jboss-interceptors-api_1.2_spec -->
 <dependency>
 <groupId>jakarta.interceptor</groupId>
 <artifactId>jakarta.interceptor-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.jms:jboss-jms-api_2.0_spec -->
 <dependency>
 <groupId>jakarta.jms</groupId>
 <artifactId>jakarta.jms-api</artifactId>
 </dependency>
 <!-- replaces com.sun.mail:jakarta.mail -->
 <dependency>
 <groupId>jakarta.mail</groupId>
 <artifactId>jakarta.mail-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.resource:jboss-connector-api_1.7_spec -->
 <dependency>

CHAPTER 5. MIGRATE A JBOSS EAP APPLICATION’S MAVEN PROJECT TO JBOSS EAP 8.0

29

 <groupId>jakarta.resource</groupId>
 <artifactId>jakarta.resource-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.servlet:jboss-servlet-api_4.0_spec -->
 <dependency>
 <groupId>jakarta.servlet</groupId>
 <artifactId>jakarta.servlet-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.servlet.jsp:jboss-jsp-api_2.3_spec -->
 <dependency>
 <groupId>jakarta.servlet.jsp</groupId>
 <artifactId>jakarta.servlet.jsp-api</artifactId>
 </dependency>
 <!-- replaces org.apache.taglibs:taglibs-standard-spec -->
 <dependency>
 <groupId>jakarta.servlet.jsp.jstl</groupId>
 <artifactId>jakarta.servlet.jsp.jstl-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.transaction:jboss-transaction-api_1.3_spec -->
 <dependency>
 <groupId>jakarta.transaction</groupId>
 <artifactId>jakarta.transaction-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.xml.bind:jboss-jaxb-api_2.3_spec -->
 <dependency>
 <groupId>jakarta.xml.bind</groupId>
 <artifactId>jakarta.xml.bind-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.xml.ws:jboss-jaxws-api_2.3_spec and javax.jws:jsr181-api -->
 <dependency>
 <groupId>org.jboss.spec.jakarta.xml.ws</groupId>
 <artifactId>jboss-jakarta-xml-ws-api_4.0_spec</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.websocket:jboss-websocket-api_1.1_spec -->
 <dependency>
 <groupId>jakarta.websocket</groupId>
 <artifactId>jakarta.websocket-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.ws.rs:jboss-jaxrs-api_2.1_spec -->
 <dependency>
 <groupId>jakarta.ws.rs</groupId>
 <artifactId>jakarta.ws.rs-api</artifactId>
 </dependency>
 <!-- replaces org.jboss.spec.javax.xml.soap:jboss-saaj-api_1.4_spec -->
 <dependency>
 <groupId>org.jboss.spec.jakarta.xml.soap</groupId>
 <artifactId>jboss-saaj-api_3.0_spec</artifactId>
 </dependency>
 <!-- replaces org.hibernate:hibernate-core -->
 <dependency>
 <groupId>org.hibernate.orm</groupId>
 <artifactId>hibernate-core</artifactId>
 </dependency>
 <!-- replaces org.hibernate:hibernate-jpamodelgen -->
 <dependency>
 <groupId>org.hibernate.orm</groupId>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

30

5.6. REMOVAL OF JBOSS EJB CLIENT LEGACY BOM

The JBoss EJB Client Legacy BOM, with Maven groupId:artifactId coordinates org.jboss.eap:wildfly-
ejb-client-legacy-bom, is no longer provided with JBoss EAP.

You can identify this BOM used as dependency management import or as dependency reference in a
Maven project pom.xml configuration file as illustrated in the following examples:

Example dependency management import

Example dependency reference

Stand-alone client Java applications can continue to use the same version of the removed BOM, for
example, version 7.4.0.GA, to work with JBoss EAP 8. However, it is recommended to replace the EJB
Client Legacy API. For information about configuring an EJB Client, see How configure an EJB client in
EAP 7.1+ / 8.0+. For information about deprecation of EJB Client Legacy API in JBoss EAP 7.4, see
Deprecated in Red Hat JBoss Enterprise Application Platform Platform (EAP) 7 .

IMPORTANT

 <artifactId>hibernate-jpamodelgen</artifactId>
 </dependency>
 <!-- replaces org.jboss.narayana.xts:jbossxts -->
 <dependency>
 <groupId>org.jboss.narayana.xts</groupId>
 <artifactId>jbossxts-jakarta</artifactId>
 <classifier>api</classifier>
 </dependency>
</dependencies>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>wildfly-ejb-client-legacy-bom</artifactId>
 <version>${version.bom}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
...
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>wildfly-ejb-client-legacy-bom</artifactId>
 <version>${version.bom}</version>
 <type>pom</type>
 </dependency>
...
</dependencies>

CHAPTER 5. MIGRATE A JBOSS EAP APPLICATION’S MAVEN PROJECT TO JBOSS EAP 8.0

31

https://access.redhat.com/solutions/2972861
https://access.redhat.com/articles/6978412

IMPORTANT

The JBoss EAP 7.4 client and JBoss EAP 8.x server follow different product lifecycle. For
more information, see Product lifecycle for JBoss EAP.

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

32

https://access.redhat.com/support/policy/updates/jboss_notes#p_eap

CHAPTER 6. SERVER MIGRATION CHANGES
Before migrating, ensure you understand the migration changes necessary for deploying applications on
a server and upgrading them in Red Hat JBoss Enterprise Application Platform 8.0.

6.1. WEB SERVER CONFIGURATION CHANGES

Learn about changes in mod_cluster and Undertow within Red Hat JBoss Enterprise Application
Platform that impact root context behavior and enhance the security of your server information.

6.1.1. Default web module behavior changes

In JBoss EAP 7.0, the root context of a web application was disabled by default in mod_cluster.

As of JBoss EAP 7.1, this is no longer the case. This can have unexpected consequences if you are
expecting the root context to be disabled. For example, requests can be misrouted to undesired nodes
or a private application that should not be exposed can be inadvertently accessible through a public
proxy. Undertow locations are also now registered with the mod_cluster load balancer automatically
unless they are explicitly excluded.

Use the following management CLI command to exclude ROOT from the modcluster subsystem
configuration.

Use the following management CLI command to disable the default welcome web application.

Additional resources

Configure the Default Welcome Web Application

6.1.2. Undertow subsystem default configuration changes

Prior to Red Hat JBoss Enterprise Application Platform 7.2, the default undertow subsystem
configuration included two response header filters that were appended to each HTTP response by the
default-host:

Server was previously set to JBoss EAP/7.

X-Powered-By was previously set to Undertow/1.

These response header filters were removed from the default JBoss EAP 7.2 configuration to prevent
inadvertent disclosure of information about the server in use.

The following is an example of the default undertow subsystem configuration in JBoss EAP 7.1.

/subsystem=modcluster/mod-cluster-config=configuration:write-attribute(name=excluded-
contexts,value=ROOT)

/subsystem=undertow/server=default-server/host=default-host/location=\/:remove
/subsystem=undertow/configuration=handler/file=welcome-content:remove
reload

<subsystem xmlns="urn:jboss:domain:undertow:4.0">
 <buffer-cache name="default"/>

CHAPTER 6. SERVER MIGRATION CHANGES

33

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#configure_the_default_welcome_Web_application

The following is an example of the default undertow subsystem configuration in JBoss EAP 7.4.

The following is an example of the default undertow subsystem configuration in JBoss EAP 8.0.

 <server name="default-server">
 <http-listener name="default" socket-binding="http" redirect-socket="https"/>
 <https-listener name="https" socket-binding="https" security-realm="ApplicationRealm" enable-
http2="true"/>
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <filter-ref name="server-header"/>
 <filter-ref name="x-powered-by-header"/>
 <http-invoker security-realm="ApplicationRealm"/>
 </host>
 </server>
 <servlet-container name="default">
 <jsp-config/>
 <websockets/>
 </servlet-container>
 <handlers>
 <file name="welcome-content" path="${jboss.home.dir}/welcome-content"/>
 </handlers>
 <filters>
 <response-header name="server-header" header-name="Server" header-value="JBoss-EAP/7"/>
 <response-header name="x-powered-by-header" header-name="X-Powered-By" header-
value="Undertow/1"/>
 </filters>
</subsystem>

<subsystem xmlns="urn:jboss:domain:undertow:12.0" default-server="default-server" default-virtual-
host="default-host" default-servlet-container="default" default-security-domain="other">
 <buffer-cache name="default"/>
 <server name="default-server">
 <http-listener name="default" socket-binding="http" redirect-socket="https" enable-http2="true"/>
 <https-listener name="https" socket-binding="https" security-realm="ApplicationRealm" enable-
http2="true"/>
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <http-invoker security-realm="ApplicationRealm"/>
 </host>
 </server>
 <servlet-container name="default">
 <jsp-config/>
 <websockets/>
 </servlet-container>
 <handlers>
 <file name="welcome-content" path="${jboss.home.dir}/welcome-content"/>
 </handlers>
</subsystem>

<subsystem xmlns="urn:jboss:domain:undertow:14.0" default-virtual-host="default-host" default-
servlet-container="default" default-server="default-server" statistics-
enabled="${wildfly.undertow.statistics-enabled:${wildfly.statistics-enabled:false}}" default-security-
domain="other">
 <byte-buffer-pool name="default"/>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

34

6.2. INFINISPAN SERVER CONFIGURATION CHANGES

Configure a custom stateful session bean (SFSB) cache for passivation in Red Hat JBoss Enterprise
Application Platform 7.1 and later while considering the following aspects:

Deprecation of the idle-timeout attribute

Implementation of lazy passivation

Determination of cluster name

Appropriate configuration of eviction and expiration

Modifications in the cache container transport protocol for enhanced performance.

By adhering to these considerations, you can optimize your SFSB cache configuration for improved
passivation in JBoss EAP 7.1 and beyond.

6.2.1. Configuring custom stateful session bean cache for passivation

In JBoss EAP 7.1 and later versions, a custom stateful session beans (SFSB) cache with passivation
enabled has changed. When configuring SFSB cache with passivation, consider the following key
changes:

Deprecation of the idle-timeout attribute

A shift from eager to lazy passivation

Determining the cluster name

Configuring eviction and expiration in the Jakarta Enterprise Beans cache

When configuring a custom SFSB cache for passivation in JBoss EAP 7.1 and later versions, consider the
following restrictions:

 <buffer-cache name="default"/>
 <server name="default-server">
 <http-listener name="default" socket-binding="http" redirect-socket="https" enable-http2="true"/>
 <https-listener name="https" socket-binding="https" ssl-context="applicationSSC" enable-
http2="true"/>
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <http-invoker http-authentication-factory="application-http-authentication"/>
 </host>
 </server>
 <servlet-container name="default">
 <jsp-config/>
 <websockets/>
 </servlet-container>
 <handlers>
 <file name="welcome-content" path="${jboss.home.dir}/welcome-content"/>
 </handlers>
 <application-security-domains>
 <application-security-domain name="other" security-domain="ApplicationDomain"/>
 </application-security-domains>
</subsystem>

CHAPTER 6. SERVER MIGRATION CHANGES

35

The idle-timeout attribute, which is configured in the infinispan passivation-store of the ejb3
subsystem, is deprecated in JBoss EAP 7.1 and later. JBoss EAP 7.1 and later only support lazy
passivation, which occurs when the max-size threshold is reached.

NOTE

Eager passivation through idle-timeout is no longer supported in these versions.

In JBoss EAP 7.1 and later, the cluster name used by the Jakarta Enterprise Beans client is
determined by the actual cluster name of the channel, as configured in the jgroups subsystem.

JBoss EAP 7.1 and later still allow you to set the max-size attribute to control the passivation
threshold.

6.2.2. Infinispan cache container transport changes

A behavior change between JBoss EAP 7.0 and later versions requires performing updates to the cache
container transport protocol in batch mode or using a special header. This change also affects tools used
for managing the JBoss EAP server.

The following is an example of the management CLI commands used to configure the cache container
transport protocol in JBoss EAP 7.0.

The following is an example of the management CLI commands needed to perform the same
configuration in JBoss EAP 7.1. Note that the commands are executed in batch mode.

If you prefer not to use batch mode, you can instead specify the operation header allow-resource-
service-restart=true when defining the transport.

If you use scripts to update the cache container transport protocol, be sure to review them and add
batch mode.

6.2.3. EJB subsystem configuration changes from version 8.0 and later

JBoss EAP 8.0 introduces changes to the Enterprise JavaBeans (EJB) subsystem configuration for
distributable stateful session beans (SFSB), including a new subsystem and updates to several
resources. Several resources used in JBoss EAP 6 and 7 are also deprecated. These changes enable
server configuration migration to ensure that your applications are compatible with future major
releases.

JBoss EAP 8.0 replaces the deprecated resources used in JBoss EAP 6 and 7 with two new resources
and a distributable-ejb subsystem for configuring SFSB caching distributively. The following table
outlines the deprecated resources and the new resources that replace them.

/subsystem=infinispan/cache-container=my:add()
/subsystem=infinispan/cache-container=my/transport=jgroups:add()
/subsystem=infinispan/cache-container=my/invalidation-cache=mycache:add(mode=SYNC)

batch
/subsystem=infinispan/cache-container=my:add()
/subsystem=infinispan/cache-container=my/transport=jgroups:add()
/subsystem=infinispan/cache-container=my/invalidation-cache=mycache:add(mode=SYNC)
run-batch

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

36

Table 6.1. SFSB cache configuration changes

Deprecated resources New non-distributable SFSB
cache

New distributable SFSB cache

/subsystem=ejb3/cache /subsystem=ejb3/simple-
cache

/subsystem=ejb3/distributabl
e-cache

/subsystem=ejb3/passivation
-store

NA /subsystem=ejb3/distributabl
e-cache=”name”/bean-
management"=..

Non-distributable SFSB cache, /subsystem=ejb3/simple-cache, is equivalent to the SFSB cache,
/subsystem=ejb3/cache, used in JBoss EAP 7, where no passivation store was defined.

Distributable SFSB cache, /subsystem=ejb3/distributable-cache, includes an optional bean-
management attribute that refers to a corresponding resource from the distributable-ejb subsystem.
If you do not define the resource, it defaults to the bean-management resource within the
distributable-ejb subsystem.

Consider migrating your server configuration to the updated approach in JBoss EAP 8.0. Although the
current release continues to function with the deprecated resources, this might not be the case with
future releases when they get removed.

An example of a comparison between JBoss EAP 7 and preferred JBoss EAP 8.0 configurations is as
follows:

JBoss EAP 7 configuration:

/subsystem=ejb3/cache=example-simple-cache:add()
/subsystem=ejb3/passivation-store=infinispan:add(cache-container=ejb, bean-cache=default, max-
size=1024)
/subsystem=ejb3/cache=example-distributed-cache:add(passivation-store=infinispan)

Preferred JBoss EAP 8.0 configuration:

/subsystem=ejb3/simple-cache=example-simple-cache:add()
/subsystem=distributable-ejb=example-distributed-cache/infinispan-bean-management=example-
bean-cache:add(cache-container=ejb, cache=default, max-active-beans=1024)
/subsystem=ejb3/distributable-cache=example-distributed-cache:add(bean-management=example-
bean-cache)

Adopting the preferred JBoss EAP 8.0 configuration ensures that your servers are compatible with the
latest version and future major releases. You will also benefit from improved resources and subsystems
for distributable SFSBs.

6.3. JAKARTA ENTERPRISE BEANS SERVER CONFIGURATION
CHANGES

While configuring the ejb3 subsystem in JBoss EAP 7, exceptions may appear in the server log during
deployment of enterprise bean applications.

IMPORTANT

CHAPTER 6. SERVER MIGRATION CHANGES

37

IMPORTANT

If you use the JBoss Server Migration Tool to update your server configuration, ensure
that the ejb3 subsystem is properly configured and no issues arise when deploying your
Jakarta Enterprise Beans applications. For information about configuring and running the
tool, see Using the JBoss Server Migration Tool .

6.3.1. Resolving DuplicateServiceException due to caching changes

The following DuplicateServiceException error is caused by caching changes in JBoss EAP 7.

DuplicateServiceException in server log

To resolve the DuplicateServiceException caused by caching changes in JBoss EAP 7, run the
following commands to reconfigure caching in the ejb3 subsystem.

By reconfiguring the cache, you can resolve this error and prevent the DuplicateServiceException
from occurring.

6.4. MESSAGING SERVER CONFIGURATION CHANGES

Learn how to migrate both your configuration and associated messaging data to ActiveMQ Artemis,
which serves as the Jakarta Messaging support provider in Red Hat JBoss Enterprise Application
Platform 8.0.

6.4.1. Migrate messaging data

Review the approaches you can take to migrate messaging data in Red Hat JBoss Enterprise
Application Platform.

To migrate messaging data from a previous JBoss EAP 7.x release to JBoss EAP 8.0, you can Migrate
messaging data by using export and import approaches. This method involves exporting messaging data
from the previous release and importing it into JBoss EAP 8.0 using the management CLI import-
journal operation. Note that this approach is specifically applicable to file-based messaging systems.

As with version 7, JBoss EAP 8.0 continues to use ActiveMQ Artemis as the Jakarta Messaging support
provider, which helps to make the migration process smoother.

ERROR [org.jboss.msc.service.fail] (MSC service thread 1-3) MSC000001: Failed to start service
jboss.deployment.unit."mdb-1.0-SNAPSHOT.jar".cache-dependencies-installer:
org.jboss.msc.service.StartException in service jboss.deployment.unit."mdb-1.0-
SNAPSHOT.jar".cache-dependencies-installer: Failed to start service
...
Caused by: org.jboss.msc.service.DuplicateServiceException: Service jboss.infinispan.ejb."mdb-1.0-
SNAPSHOT.jar".config is already registered

/subsystem=ejb3/file-passivation-store=file:remove
/subsystem=ejb3/cluster-passivation-store=infinispan:remove
/subsystem=ejb3/passivation-store=infinispan:add(cache-container=ejb, max-size=10000)

/subsystem=ejb3/cache=passivating:remove
/subsystem=ejb3/cache=clustered:remove
/subsystem=ejb3/cache=distributable:add(passivation-store=infinispan, aliases=[passivating,
clustered])

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

38

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_the_jboss_server_migration_tool

6.4.1.1. Migrate messaging data by using export and import approaches

Use the following approach to export the messaging data from a previous release to an XML file, and
then import that file using the import-journal operation:

1. Export messaging data from JBoss EAP 7.x. release

2. Import the XML formatted messaging data

IMPORTANT

You cannot use the export and import method to move messaging data between
systems that use a JDBC-based journal for storage.

6.4.1.1.1. Export messaging data from JBoss EAP 7.x release

To export messaging data from Red Hat JBoss Enterprise Application Platform 7.x release, follow the
outlined procedure.

Prerequisites

JBoss EAP 7.x is installed on your system.

You have access to a terminal or command line interface.

You have the necessary permissions to navigate directories and execute commands.

Procedure

1. Open a terminal, navigate to the JBoss EAP 7.x install directory, and start the server in admin-
only mode.

2. Open a new terminal, navigate to the JBoss EAP 7.x install directory, and connect to the
management CLI.

3. Use the following management CLI command to export the messaging journal data.

Verification

Make sure there are no errors or warning messages in the log at the completion of the
command.

Use tool compatible with your operating system to validate the XML in the generated output
file.

6.4.1.1.2. Import the XML formatted messaging data

After exporting messaging data from a JBoss EAP 8.0, you need to import the XML file into JBoss EAP

$ EAP_HOME/bin/standalone.sh -c standalone-full.xml --start-mode=admin-only

$ EAP_HOME/bin/jboss-cli.sh --connect

/subsystem=messaging-activemq/server=default:export-journal()

CHAPTER 6. SERVER MIGRATION CHANGES

39

After exporting messaging data from a JBoss EAP 8.0, you need to import the XML file into JBoss EAP
8.0 or later using the import-journal operation.

Prerequisites

Complete the migration of your JBoss EAP 8.0 by using either the management CLI migrate
operation or the JBoss Server Migration Tool.

Start the JBoss EAP 8.0 server in normal mode without any connected Jakarta Messaging
clients.

Procedure

To import the XML file into JBoss EAP 8.0 or a later version, follow these steps using the import-
journal operation:

IMPORTANT

If your target server has already performed some messaging tasks, make sure to back up
your messaging folders before you begin the import-journal operation to prevent data
loss in the event of an import failure. For more information, see Backing up messaging
folder data.

1. Start the JBoss EAP 8.0 server in normal mode with no Jakarta Messaging clients connected.

IMPORTANT

It is important that you start the server with no Jakarta Messaging clients
connected. This is because the import-journal operation behaves like a Jakarta
Messaging producer. Messages are immediately available when the operation is in
progress. If this operation fails in the middle of the import and Jakarta Messaging
clients are connected, there is no way to recover because Jakarta Messaging
clients might have already consumed some of the messages.

2. Open a new terminal, navigate to the JBoss EAP 8.0 install directory, and connect to the
management CLI.

$ EAP_HOME/bin/jboss-cli.sh --connect

3. Use the following management CLI command to import the messaging data:

/subsystem=messaging-activemq/server=default:import-
journal(file=OUTPUT_DIRECTORY/OldMessagingData.xml)

IMPORTANT

Do not run this command more than one time as doing so will result in duplicate
messages.

6.4.1.1.3. Recovering from an import messaging data failure

You can recover from an import messaging data failure if the import-journal operation fails.

Prerequisites

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

40

Prerequisites

Familiarity with the JBoss EAP 8.0 server and its management CLI commands.

Knowledge of the directory location of messaging journal folders.

Prior backup of target server messaging data if available.

Procedure

1. Shut down the JBoss EAP 8.0 server.

2. Delete all of the messaging journal folders. See Backing up messaging folder data for the
management CLI commands to determine the correct directory location for the messaging
journal folders.

3. If you backed up the target server messaging data prior to the import, copy the messaging
folders from the backup location to the messaging journal directory determined in the prior
step.

4. Repeat the steps to Import the XML formatted messaging data.

6.4.1.2. Migrate messaging data using a messaging bridge

A Jakarta Messaging bridge consumes messages from a source Jakarta Messaging queue or topic and
sends them to a target Jakarta Messaging queue or topic, located on a different server. It enables
message bridging between messaging servers that adhere to the Jakarta Messaging 3.1 standards. Look
up the source and destination Jakarta Messaging resources using Java Naming and Directory Interface,
ensuring that the client classes for Java Naming and Directory Interface lookup are bundled in a module
and declare the module name in the Jakarta Messaging bridge configuration.

This section provides instructions on how to configure the servers and deploy a messaging bridge for
moving messaging data from JBoss EAP 7 to JBoss EAP 8.0. To achieve this, proceed with the
following steps:

1. Configuring JBoss EAP 8.0 server

2. Migrating the messaging data

6.4.1.2.1. Configuring JBoss EAP 8.0 server

To configure the Jakarta Messaging bridge in JBoss EAP 8.0 for seamless migration of messaging data,
including module dependencies and queue configuration, follow the outlined procedure.

Prerequisites

JBoss EAP 8.0 server installed and running.

Procedure

1. Create the following jms-queue configuration for the default server in the messaging-
activemq subsystem of the JBoss EAP 8.0 server.

2. Make sure that messaging-activemq subsystem default server contains a configuration for the

jms-queue add --queue-address=MigratedMessagesQueue --entries=
[jms/queue/MigratedMessagesQueue
java:jboss/exported/jms/queue/MigratedMessagesQueue]

CHAPTER 6. SERVER MIGRATION CHANGES

41

2. Make sure that messaging-activemq subsystem default server contains a configuration for the
InVmConnectionFactory connection-factory similar to the following:

If it does not contain the entry, create one using the following management CLI command:

3. Create and deploy a Jakarta Messaging bridge that reads messages from the InQueue JMS
queue and transfers them to the MigratedMessagesQueue configured on the JBoss EAP 7.x
server.

This creates the following jms-bridge configuration in the messaging-activemq subsystem of
the JBoss EAP 8.0 server.

6.4.1.2.2. Migrating the messaging data

To migrate messaging data from Red Hat JBoss Enterprise Application Platform 8.0 to Red Hat JBoss
Enterprise Application Platform 8.0, follow the outlined procedure.

Prerequisites

JBoss EAP 8.0 server installed and running.

Procedure

<connection-factory name="InVmConnectionFactory" factory-type="XA_GENERIC"
entries="java:/ConnectionFactory" connectors="in-vm"/>

/subsystem=messaging-activemq/server=default/connection-
factory=InVmConnectionFactory:add(factory-type=XA_GENERIC, connectors=[in-vm],
entries=[java:/ConnectionFactory])

/subsystem=messaging-activemq/jms-bridge=myBridge:add(add-messageID-in-
header=true,max-batch-time=100,max-batch-size=10,max-retries=-1,failure-retry-
interval=1000,quality-of-service=AT_MOST_ONCE,module=org.hornetq,source-
destination=jms/queue/InQueue,source-connection-
factory=jms/RemoteConnectionFactory,source-context=
[("java.naming.factory.initial"=>"org.wildfly.naming.client.WildFlyInitialContextFactory"),
("java.naming.provider.url"=>"http-remoting://legacy-host:8080")],target-
destination=jms/queue/MigratedMessagesQueue,target-connection-
factory=java:/ConnectionFactory)

<jms-bridge name="myBridge" add-messageID-in-header="true" max-batch-time="100" max-
batch-size="10" max-retries="-1" failure-retry-interval="1000" quality-of-
service="AT_MOST_ONCE">
 <source destination="jms/queue/InQueue" connection-
factory="jms/RemoteConnectionFactory">
 <source-context>
 <property name="java.naming.factory.initial"
value="org.wildfly.naming.client.WildFlyInitialContextFactory"/>
 <property name="java.naming.provider.url" value="http-remoting://legacy-host:8080"/>
 </source-context>
 </source>
 <target destination="jms/queue/MigratedMessagesQueue" connection-
factory="java:/ConnectionFactory"/>
</jms-bridge>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

42

1. Verify that the information you provided for the following configurations is correct.

Any queue and topic names.

The java.naming.provider.url for Java Naming and Directory Interface lookup.

2. Make sure that you have deployed the target Jakarta Messaging destination to the JBoss EAP
8.0 server.

3. Start the JBoss EAP 8.0 servers, including the JBoss EAP 7 servers involved in the migration
process.

6.4.1.3. Backing up messaging folder data

To ensure data integrity, it is recommended to back up the target message folders before making any
changes if your server has already processed messages. You can find the default location of the
messaging folders at EAP_HOME/standalone/data/activemq/; however, it might be configurable. If you
are unsure about the location of your messaging data, you can use the following management CLI
commands to determine it.

Procedure

1. Determine the location of your messaging data by using the following management CLI
commands:

NOTE

Ensure that you stop the server before copying the data.

2. Copy each messaging folder to a secure backup location after you identify their respective
locations.

6.4.2. Configure the Jakarta Messaging resource adapter

The way you configure a generic Jakarta Messaging resource adapter for use with a third-party Jakarta
Messaging provider has changed in Red Hat JBoss Enterprise Application Platform 8.0. For more
information, see Deploying a generic Java Message Service resource adapter in the JBoss EAP 7.4
Configuring Messaging guide.

6.4.3. Messaging configuration changes

In Red Hat JBoss Enterprise Application Platform 7.0, if you configured the replication-primary policy
without specifying the check-for-live-server attribute, its default value was set to false. This has
changed in JBoss EAP 7.1 and later. The default value for the check-for-live-server attribute is now set
to true.

The following is an example of a management CLI command that configures the replication-primary
policy without specifying the check-for-live-server attribute.

/subsystem=messaging-activemq/server=default/path=journal-directory:resolve-path
/subsystem=messaging-activemq/server=default/path=paging-directory:resolve-path
/subsystem=messaging-activemq/server=default/path=bindings-directory:resolve-path
/subsystem=messaging-activemq/server=default/path=large-messages-directory:resolve-
path

CHAPTER 6. SERVER MIGRATION CHANGES

43

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuring_messaging/#deploy_configure_generic_jakarta_messaging_resource_adapter

When you read the resource using the management CLI, note that the check-for-live-server attribute
value is set to true.

6.4.4. Galleon layer for embedded broker messaging

In JBoss EAP 7, an embedded messaging broker was part of the default installation. In JBoss EAP 8, this
functionality was added to a new Galleon layer called as embedded-activemq.

This new layer is not a part of the default configuration so users who want to rely on having a broker
embedded in JBoss EAP must include it explicitly in their configuration.

The layer provides a messaging-activemq subsystem with an embedded broker even if it is
recommended for customers to use a dedicated AMQ cluster on OpenShift. It also provisions ancillary
resources, for example, socket-bindings and necessary dependencies needed to support this use case.

6.5. SECURITY ENHANCEMENTS IN JBOSS EAP 8.0

Starting with JBoss EAP 8.0, you must use Elytron since the legacy security subsystem and legacy
security realms are no longer available. You can only configure Elytron defaults by using the JBoss
Server Migration Tool. Therefore, legacy security configurations must be manually migrated.

Additional resources

Migrating to Elytron

6.5.1. Vaults migration

Vaults has been removed from JBoss EAP 8.0. Use the credential store provided by the elytron
subsystem to store sensitive strings.

Additional resources

Migrate secure vaults and properties

Credentials and credential stores in Elytron

6.5.2. Legacy security subsystem and security realms removal

/subsystem=messaging-activemq/server=default/ha-policy=replication-primary:add(cluster-name=my-
cluster,group-name=group1)

/subsystem=messaging-activemq/server=default/ha-policy=replication-primary:read-
resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "check-for-live-server" => true,
 "cluster-name" => "my-cluster",
 "group-name" => "group1",
 "initial-replication-sync-timeout" => 30000L
 },
 "response-headers" => {"process-state" => "reload-required"}
}

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

44

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/secure_storage_of_credentials_in_jboss_eap/#credentials_and_credential_stores_in_elytron

The legacy security subsystem and legacy security realms have been removed from JBoss EAP 8.0. Use
the security realms provided by the elytron subsystem.

Additional resources

Migrate Authentication Configuration

Migrate Database Authentication Configuration to Elytron

Migrate Composite Stores to Elytron

Migrate Security Domains That Use Caching to Elytron

Migrating Legacy Properties-based Configuration to Elytron

Migrating LDAP Authentication Configuration to Elytron

Migrate Kerberos Authentication to Elytron

Migrate SSL Configurations

Securing applications and management interfaces using an identity store

Securing applications and management interfaces using multiple identity stores

6.5.3. PicketLink subsystem removal

The PicketLink subsystem has been removed from JBoss EAP 8.0. Use Red Hat build of Keycloak
instead of the PicketLink identity provider, and the Red Hat build of Keycloak SAML adapter instead of
the PicketLink service provider.

Additional resources

PicketLink removal

Red Hat build of Keycloak

6.5.4. Migrate from Red Hat build of Keycloak OIDC client adapter to JBoss EAP
subsystem

The keycloak subsystem is not supported in JBoss EAP 8.0 and is replaced by the elytron-oidc-client
subsystem. JBoss Server Migration Tool performs the migration by default.

Additional resources

Migrate keycloak subsystem

OpenID Connect configuration in JBoss EAP

6.5.5. Custom login modules migration

In JBoss EAP 8.0, the legacy security subsystem has been removed. To continue using your custom login
modules with the elytron subsystem, use the new Java Authentication and Authorization Service
(JAAS) security realm and jaas-realm.

Additional resources

CHAPTER 6. SERVER MIGRATION CHANGES

45

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/securing_applications_and_management_interfaces_using_an_identity_store/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/securing_applications_and_management_interfaces_using_multiple_identity_stores/
https://access.redhat.com/products/red-hat-build-of-keycloak/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_the_jboss_server_migration_tool#migrate-keycloak-subsystem_standalone-current
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_single_sign-on_with_jboss_eap/#con_openid-connect-configuration-in-jboss-eap_default

Additional resources

JAAS realm in the elytron subsystem

6.5.6. FIPS mode changes

Starting from JBoss EAP 7.1, automatic generation of a self-signed certificate is enabled by default for
development purposes. If you are running in FIPS mode, configure the server to disable automatic self-
signed certificate creation. Failure to do so may lead to the following error upon starting the server:

Additional resources

Enabling SSL/TLS for applications by using the automatically generated self-signed certificate

6.6. MOD_CLUSTER CONFIGURATION CHANGES

The configuration for static proxy lists in mod_cluster has changed in Red Hat JBoss Enterprise
Application Platform 7.4.

Starting from JBoss EAP 7.4, the proxy-list attribute was deprecated and subsequently removed in
JBoss EAP 8.0.

It has been replaced by the proxies attribute, which is a list of outbound socket binding names.

This change impacts how you define a static proxy list, for example, when disabling advertising for
mod_cluster. For information about how to disable advertising for mod_cluster, see Disable advertising
for mod_cluster in the JBoss EAP 7.4 Configuration Guide.

To ensure compatibility with JBoss EAP 8.0, update user scripts and legacy user CLI script as follows:

Replace the deprecated ssl=configuration with the appropriate elytron-based configuration.

Update the mod_cluster configuration path from /mod-cluster-config=CONFIGURATION to
/proxy=default.

Update the dynamic load provider path in user scripts, replacing the deprecated path with
provider=dynamic.

The deprecated connector attribute, which referred to an Undertow listener, has been
removed. Update your user scripts to use the listener attribute as a replacement.

For more information about mod_cluster attributes, see ModCluster subsystem attributes in the JBoss
EAP 7.4 Configuration Guide.

6.7. VIEWING CONFIGURATION CHANGES

With Red Hat JBoss Enterprise Application Platform 7, you can track the configuration changes that

ERROR [org.xnio.listener] (default I/O-6) XNIO001007: A channel event listener threw an exception:
java.lang.RuntimeException: WFLYDM0114: Failed to lazily initialize SSL context
...
Caused by: java.lang.RuntimeException: WFLYDM0112: Failed to generate self signed certificate
...
Caused by: java.security.KeyStoreException: Cannot get key bytes, not PKCS#8 encoded

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

46

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/release_notes_for_red_hat_jboss_enterprise_application_platform_8.0/index#ref-security_assembly-release-notes
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/configuring_ssltls_in_jboss_eap/#enabling-ssl-tls-for-applications-by-using-the-automatically-generated-self-signed-certificate_enabling-one-way-ssl-tls-for-applications-deployed-on-server
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#disable_advertising_mod_cluster
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#mod_cluster-reference

With Red Hat JBoss Enterprise Application Platform 7, you can track the configuration changes that
were made to a running server. You can also view the history of configuration changes made by
authorized users.

Whereas with JBoss EAP 7.0, you had to use the core-service management CLI command to configure
options and to retrieve a list of recent configuration changes.

Example: List configuration changes in JBoss EAP 7.0

/core-service=management/service=configuration-changes:add(max-history=10)
/core-service=management/service=configuration-changes:list-changes

JBoss EAP 7.1 introduced a new core-management subsystem that can be configured to track
configuration changes made to the running server. This is the preferred method of configuring and
viewing configuration changes in JBoss EAP 7.1 and later.

Example: List configuration changes in JBoss EAP 7.1 and later

/subsystem=core-management/service=configuration-changes:add(max-history=20)
/subsystem=core-management/service=configuration-changes:list-changes

For more information about using the new core-management subsystem introduced in JBoss EAP 7.1,
see View configuration changes in the JBoss EAP 7.4 Configuration Guide.

CHAPTER 6. SERVER MIGRATION CHANGES

47

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#view_config_changes

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION
CHANGES

This section describes the changes required for migrating an application from JBoss EAP 6.4 or 7.x to
JBoss EAP 8.0.

7.1. WEB SERVICES APPLICATION CHANGES

JBossWS 5 brings new features and performance improvements to JBoss EAP 7 web services, mainly
through upgrades of the Apache CXF, Apache WSS4J, and Apache Santuario components. JBoss EAP
8.0 then uses JBossWS 7 to support its features.

7.1.1. JAX-RPC support changes

The Java API for XML-based RPC (JAX-RPC) was deprecated in Java EE 6 and was optional in Java EE
7. Starting with JBoss EAP 7, it is no longer supported. Applications that use JAX-RPC must be
migrated to use Jakarta XML Web Services, which is the current Jakarta EE standard web services
framework.

Use of JAX-RPC web services can be identified in any of the following ways:

The presence of a JAX-RPC mapping file, which is an XML file with the root element <java-
wsdl-mapping>.

The presence of a webservices.xml XML descriptor file that contains a <webservice-
description> element, which includes a <jaxrpc-mapping-file> child element. The following is
an example of webservices.xml descriptor file that defines a JAX-RPC web service.

The presence of an ejb-jar.xml file, which contains a <service-ref> that references a JAX-RPC
mapping file.

7.1.2. Apache CXF Spring web services changes

In previous releases of JBoss EAP, you could customize the JBossWS and Apache CXF integration by
including a jbossws-cxf.xml configuration file with the endpoint deployment archive. One use case for

<webservices xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd" version="1.1">
 <webservice-description>
 <webservice-description-name>HelloService</webservice-description-name>
 <wsdl-file>WEB-INF/wsdl/HelloService.wsdl</wsdl-file>
 <jaxrpc-mapping-file>WEB-INF/mapping.xml</jaxrpc-mapping-file>
 <port-component>
 <port-component-name>Hello</port-component-name>
 <wsdl-port>HelloPort</wsdl-port>
 <service-endpoint-interface>org.jboss.chap12.hello.Hello</service-endpoint-interface>
 <service-impl-bean>
 <servlet-link>HelloWorldServlet</servlet-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

48

http://cxf.apache.org/docs/30-migration-guide.html
http://ws.apache.org/wss4j/
http://santuario.apache.org/
https://projects.eclipse.org/projects/ee4j.metro

this was to configure interceptor chains for web service client and server endpoints on the Apache CXF
bus. This integration required Spring to be deployed in the JBoss EAP server.

Spring integration is no longer supported in JBoss EAP 8. Any application that contains a jbossws-
cxf.xml descriptor configuration file must be modified to replace the custom configuration defined in
that file. While it is still possible to directly access the Apache CXF API, be aware that the application will
not be portable.

The suggested approach is to replace Spring custom configurations with the new JBossWS descriptor
configuration options where possible. The JBossWS descriptor-based approach provides similar
functionality without requiring modification of the client endpoint code. In some cases, you can replace
Spring with Context Dependency Injection (CDI).

7.1.2.1. Apache CXF interceptors

The JBossWS descriptor provides new configuration options that allow you to declare the interceptors
without modifying the client endpoint code. Instead you declare interceptors within predefined client
and endpoint configurations by specifying a list of interceptor class names for the cxf.interceptors.in
and cxf.interceptors.out properties.

The following is an example of a jaxws-endpoint-config.xml file that declares interceptors using these
properties.

7.1.2.2. Apache CXF features

The JBossWS descriptor allows you to declare features within predefined client and endpoint
configurations by specifying a list of feature class names for the cxf.features property.

The following is an example of a jaxws-endpoint-config.xml file that declares a feature using this
property.

<?xml version="1.0" encoding="UTF-8"?>
<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:5.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jakartaee="https://jakarta.ee/xml/ns/jakartaee"
 xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:5.0 schema/jbossws-jaxws-config_5_0.xsd">
 <endpoint-config>
 <config-name>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointImpl</config-name>
 <property>
 <property-name>cxf.interceptors.in</property-name>
 <property-
value>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointInterceptor,org.jboss.test.ws.jaxws.cxf.interceptor
s.FooInterceptor</property-value>
 </property>
 <property>
 <property-name>cxf.interceptors.out</property-name>
 <property-value>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointCounterInterceptor</property-
value>
 </property>
 </endpoint-config>
</jaxws-config>

<?xml version="1.0" encoding="UTF-8"?>
<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:5.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

49

7.1.2.3. Apache CXF HTTP transport

In Apache CXF, HTTP transport configuration is achieved by specifying
org.apache.cxf.transport.http.HTTPConduit options. JBossWS integration allows conduits to be
modified programmatically using the Apache CXF API as follows.

You can also control and override the Apache CXF HTTPConduit default values by setting system
properties.

Property Type Description

cxf.client.allowChunking Boolean Specifies whether to send requests using chunking.

cxf.client.chunkingThreshold Integer Sets the threshold at which switching from non-chunking to
chunking mode.

cxf.client.connectionTimeout Long Sets the number of milliseconds for the connection timeout.

cxf.client.receiveTimeout Long Sets the number of milliseconds for the receive timeout.

cxf.client.connection String Specifies whether to use the Keep-Alive or close
connection type.

cxf.tls-
client.disableCNCheck

Boolean Specifies whether to disable the CN host name check.

7.1.3. WS-Security changes

This section describes the various WS-Security changes for your application in JBoss EAP 6.4 and

xmlns:jakartaee="https://jakarta.ee/xml/ns/jakartaee"
 xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:5.0 schema/jbossws-jaxws-config_5_0.xsd">
 <endpoint-config>
 <config-name>Custom FI Config</config-name>
 <property>
 <property-name>cxf.features</property-name>
 <property-value>org.apache.cxf.feature.FastInfosetFeature</property-value>
 </property>
 </endpoint-config>
</jaxws-config>

import org.apache.cxf.frontend.ClientProxy;
import org.apache.cxf.transport.http.HTTPConduit;
import org.apache.cxf.transports.http.configuration.HTTPClientPolicy;

// Set chunking threshold before using a JAX-WS port client
...
HTTPConduit conduit = (HTTPConduit)ClientProxy.getClient(port).getConduit();
HTTPClientPolicy client = conduit.getClient();

client.setChunkingThreshold(8192);
...

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

50

This section describes the various WS-Security changes for your application in JBoss EAP 6.4 and
JBoss EAP 7.0.

If your application contains a custom callback handler that accesses the
org.apache.ws.security.WSPasswordCallback class, be aware that this class has moved to
package org.apache.wss4j.common.ext.

Most of the SAML bean objects from the org.apache.ws.security.saml.ext package have
been moved to the org.apache.wss4j.common.saml package.

Usage of the RSA v1.5 key transport and all related algorithms are disallowed by default.

The Security Token Service (STS) previously only validated onBehalfOf tokens. It now also
validates ActAs tokens. As a consequence, a valid username and password must be specified in
the UsernameToken that is provided for the ActAs token.

SAML Bearer tokens are now required to have an internal signature. The
org.apache.wss4j.dom.validate.SamlAssertionValidator class now has a
setRequireBearerSignature() method to enable or disable the signature verification.

7.1.4. JBoss modules structure change

The cxf-api and cxf-rt-core JARs have been merged into one cxf-core JAR. As a consequence, the
org.apache.cxf module in JBoss EAP now contains the cxf-core JAR and exposes more classes than in
the previous release.

7.1.5. Bouncy Castle requirements and changes

If you want to use AES encryption with Galois/Counter Mode (GCM) for symmetric encryption in
XML/WS-Security, you need the BouncyCastle Security Provider.

Starting with JBoss EAP 7, it was included with the org.bouncycastle module and JBossWS was able to
rely on its class loader to get and use the BouncyCastle Security Provider. Therefore it is no longer
necessary to statically install BouncyCastle in the current JVM. For applications running outside of the
container, the security provider can be made available to JBossWS by adding a BouncyCastle library to
the class path.

You can disable this behavior by setting the org.jboss.ws.cxf.noLocalBC property value to true in the
jaxws-endpoint-config.xml deployment descriptor file for the server or the jaxws-client-config.xml
descriptor file for clients.

If you want to use a different version than the one that ships with JBoss EAP, you can still statically
install BouncyCastle to the JVM. In that case, the statically installed BouncyCastle Security Provider is
chosen over the provider present in the class path. To avoid any issues, you must use BouncyCastle 1.72
or greater.

7.1.6. Apache CXF bus selection strategy

The default bus selection strategy for clients running in-container has changed from THREAD_BUS to
TCCL_BUS. For clients running out-of container, the default strategy is still THREAD_BUS. You can
restore the behavior to that of the previous release by using either of the following methods.

Boot the JBoss EAP server with the system property org.jboss.ws.cxf.jaxws-
client.bus.strategy value set to THREAD_BUS.

Explicitly set the selection strategy in the client code.

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

51

7.1.7. Jakarta XML Web Services 2.2 requirements for WebServiceRef

Containers must use Jakarta XML Web Services 2.2 style constructors, which include the
WebServiceFeature class as an argument in the constructor, to build clients that are injected into web
service references. JBoss EAP 6.4, which ships with JBossWS 4, hides that requirement. Starting with
JBoss EAP 7 that included JBossWS 5, this requirement is not hidden. This states that user provided
service classes injected by the container must implement Jakarta XML Web Services 2.2 or later by
updating the existing code to use the jakarta.xml.ws.Service constructor that includes one or more
WebServiceFeature arguments.

7.1.8. IgnoreHttpsHost CN check change

In previous releases, you could disable the HTTPS URL hostname check against a service’s Common
Name (CN) given in its certificate by setting the system property org.jboss.security.ignoreHttpsHost
to true. This system property name has been replaced with cxf.tls-client.disableCNCheck.

7.1.9. Server-side configuration and class loading

As a consequence of enabling injections into service endpoint and service client handlers, it is no longer
possible to automatically load handler classes from the org.jboss.as.webservices.server.integration
JBoss module. If your application depends on a given predefined configuration, you might need to
explicitly define new module dependencies for your deployment. For more information, see Migrate
explicit module dependencies.

7.1.10. Deprecation of Java-endorsed standards override mechanism

The Java-endorsed standards override mechanism was deprecated in JDK 1.8_40 with intent to remove
it in JDK 9. This mechanism allowed developers to make libraries available to all deployed applications by
placing JARs into an endorsed directory within the JRE.

Starting with the JBoss EAP 7 release, if your application used the JBossWS implementation of Apache
CXF, it ensured that the required dependencies are added in the correct order and you should not be
impacted by this change. If your application accesses Apache CXF directly, you must now provide the
Apache CXF dependencies after the JBossWS dependencies as part of your application deployment.

7.1.11. Specification of descriptor in EAR archive

In previous releases of JBoss EAP, you could configure the jboss-webservices.xml deployment
descriptor file for Jakarta Enterprise Beans web service deployments in the META-INF/ directory of
JAR archives or in the WEB-INF/ directory for POJO web service deployments and Jakarta Enterprise
Beans web service endpoints bundled in WAR archives.

Starting with JBoss EAP 7, you can configure the jboss-webservices.xml deployment descriptor file in
the META-INF/ directory of an EAR archive. If a jboss-webservices.xml file is found in the EAR archive
and the JAR or WAR archive, the configuration data in the jboss-webservices.xml file for the JAR or
WAR overrides the corresponding data in the EAR descriptor file.

7.2. UPDATE THE REMOTE URL CONNECTOR AND PORT

Starting with JBoss EAP 7, the default connector has been changed from remote to http-remoting and

protected Service(URL wsdlDocumentLocation,
 QName serviceName,
 WebServiceFeature... features)

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

52

https://jakarta.ee/specifications/platform/10/apidocs/jakarta/xml/ws/webservicefeature
https://jakarta.ee/specifications/platform/10/apidocs/jakarta/xml/ws/service
https://docs.oracle.com/javase/8/docs/technotes/guides/standards/

Starting with JBoss EAP 7, the default connector has been changed from remote to http-remoting and
the default remote connection port has changed from 4447 to 8080. The JNDI provider URL for the
default configuration has changed from remote://localhost:4447 to http-remoting://localhost:8080.

7.3. MESSAGING APPLICATION CHANGES

This section describes the various messaging application changes in JBoss EAP 7. In addition, you can
learn more about how to:

Change Jakarta Messaging deployment descriptors

Update external Jakarta Messaging clients

Replace deprecated address setting attributes

Configure the required messaging application changes

7.3.1. Replace or update Jakarta Messaging deployment descriptors

Starting with JBoss EAP 7, the proprietary HornetQ messaging resource deployment descriptor files
identified by the naming pattern -jms.xml does not work. The following is an example of a Java Message
Service resource deployment descriptor file in JBoss EAP 6:

If you used -jms.xml Java Message Service deployment descriptors in your application in the previous
release, you can either convert your application to use the standard deployment descriptor as specified
in the Resource Definition and Configuration section of the Jakarta EE platform, or you can update the
deployment descriptor to use the messaging-activemq-deployment schema instead. If you choose to
update the descriptor, you need to make the following modifications:

Change the namespace from "urn:jboss:messaging-deployment:1.0" to "urn:jboss:messaging-
activemq-deployment:1.0".

Change the <hornetq-server> element name to <server>.

The modified file should look like the following example.

<?xml version="1.0" encoding="UTF-8"?>
<messaging-deployment xmlns="urn:jboss:messaging-deployment:1.0">
 <hornetq-server>
 <jms-destinations>
 <jms-queue name="testQueue">
 <entry name="queue/test"/>
 <entry name="java:jboss/exported/jms/queue/test"/>
 </jms-queue>
 <jms-topic name="testTopic">
 <entry name="topic/test"/>
 <entry name="java:jboss/exported/jms/topic/test"/>
 </jms-topic>
 </jms-destinations>
 </hornetq-server>
</messaging-deployment>

<?xml version="1.0" encoding="UTF-8"?>
<messaging-deployment xmlns="urn:jboss:messaging-activemq-deployment:1.0">
 <server>

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

53

https://jakarta.ee/specifications/platform/10/jakarta-platform-spec-10.0#a1652
https://jakarta.ee/specifications/platform/10/jakarta-platform-spec-10.0#a1652

7.3.2. Replace the HornetQ API

JBoss EAP 6 included the org.hornetq module, which allowed you to use the HornetQ API in your
application source code.

Apache ActiveMQ Artemis replaces HornetQ in JBoss EAP 7, so you must migrate any code that used
the HornetQ API to use the Apache ActiveMQ Artemis API. The libraries for this API are included in the
org.apache.activemq.artemis module.

ActiveMQ Artemis is an evolution of HornetQ, so many of the concepts still apply.

7.3.3. Replace Deprecated Address Setting Attributes

The ability to auto-create and auto-delete topics and queues using the auto-create-jms-queues, auto-
delete-jms-queues, auto-create-jms-topics, and auto-delete-jms-topics attributes was only partially
implemented and not fully configurable in JBoss EAP 7. These attributes, which are deprecated, were
provided as a technology preview feature only and were not supported.

You must replace any usage of these deprecated attributes with the following replacement attributes.

NOTE

The deprecated attributes no longer configure this functionality since JBoss EAP 8.0
and do not take effect. The replacement attributes are not supported either. They are
provided only as a way to migrate on the best effort basis.

Deprecated Attribute Replacement Attribute

auto-create-jms-queues auto-create-queues

auto-delete-jms-queues auto-delete-queues

auto-create-jms-topics auto-create-addresses

auto-delete-jms-topics auto-delete-addresses

In JBoss EAP 6, the default address setting attributes were set to false. Starting with JBoss EAP 7, the
replacement attributes are set to true by default.

 <jms-destinations>
 <jms-queue name="testQueue">
 <entry name="queue/test"/>
 <entry name="java:jboss/exported/jms/queue/test"/>
 </jms-queue>
 <jms-topic name="testTopic">
 <entry name="topic/test"/>
 <entry name="java:jboss/exported/jms/topic/test"/>
 </jms-topic>
 </jms-destinations>
 </server>
</messaging-deployment>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

54

https://activemq.apache.org/components/artemis/documentation/
https://access.redhat.com/support/offerings/techpreview

If you prefer to preserve the JBoss EAP 6 behavior, you must set the replacement attributes to false.

For more information about these replacement attributes, see Address Setting Attributes in the JBoss
EAP 7.4 Configuring Messaging Guide.

7.3.4. Messaging application changes required for JBoss EAP 7

Starting with JBoss EAP 7.2, if a client application directly depends on Artemis client JARs, for example,
artemis-jms-client, artemis-commons, artemis-core-client, or artemis-selector, then you must add
the following dependency in your pom.xml file for wildfly-client-properties.

This is to avoid a JMSRuntimeException when calling message.getJMSReplyTo() from an older JBoss
EAP 7 client as described in JBEAP-15889.

7.4. JAKARTA RESTFUL WEB SERVICES AND RESTEASY
APPLICATION CHANGES

JBoss EAP 6 bundled RESTEasy 2, which was an implementation of JAX-RS 1.x.

JBoss EAP 7 and JBoss EAP 7.1 included RESTEasy 3.0.x, which is an implementation of JAX-RS 2.0 as
defined by the JSR 339: JAX-RS 2.0: The Java API for RESTful Web Services specification.

JBoss EAP 7.4 includes RESTEasy 3.15, which is an implementation of Jakarta RESTful Web Services 2.1.
This release also adds support for JDK 11. While providing some of the RESTEasy 4 key features, this
release is based on RESTEasy 3.0, ensuring full backward compatibility. As a result, you should
encounter few issues when migrating from RESTEasy 3.0 to RESTEasy 3.15. For more information about
the Java API for RESTEasy RESTEasy 3.15, see RESTEasy Jakarta RESTful Web Services 3.15.0.Final
API.

JBoss EAP 8.0 provides support for RESTEasy 6.2, which implements the Jakarta RESTful Web
Services 3.1 specification.

If you are migrating from JBoss EAP 6.4, be aware that the version of Jackson included in JBoss EAP
has changed. JBoss EAP 6.4 included Jackson 1.9.9. JBoss EAP 7 and later now include Jackson 2.6.3 or
greater.

This section describes how these changes might impact applications that use RESTEasy or Jakarta
RESTful Web Services.

7.4.1. RESTEasy deprecated classes

Interceptor and MessageBody Classes
JSR 311: JAX-RS: The Java™ API for RESTful Web Services did not include an interceptor framework, so
RESTEasy 2 provided one. JSR 339: JAX-RS 2.0: The Java API for RESTful Web Services introduced
an official interceptor and filter framework, so the interceptor framework included in RESTEasy 2 is now
deprecated, and was replaced by the Jakarta REST compliant interceptor facility in RESTEasy 3.x. The
relevant interfaces are defined in the jakarta.ws.rs.ext package of the jakarta.ws.rs.api module.

The following providers have been removed in JBoss EAP 8.0:

<dependency>
 <groupId>org.jboss.eap</groupId>
 <artifactId>wildfly-client-properties</artifactId>
</dependency>

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

55

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuring_messaging/#address_setting_attributes
https://issues.jboss.org/browse/JBEAP-15889
https://jcp.org/en/jsr/detail?id=339
https://jakarta.ee/specifications/restful-ws/2.1/
https://docs.jboss.org/resteasy/docs/3.15.0.Final/javadocs/
https://jakarta.ee/specifications/restful-ws/3.1/jakarta-restful-ws-spec-3.1
https://jcp.org/en/jsr/detail?id=311
https://jcp.org/en/jsr/detail?id=339

org.jboss.resteasy:resteasy-jackson-provider

org.jboss.resteasy:resteasy-jettison-provider

org.jboss.resteasy:resteasy-yaml-provider

The following has been removed in JBoss EAP 8.0 as they now have Jakarta RESTful Web Services
replacements.

@Suspend and org.jboss.resteasy.spi.AsynchronousResponse have been removed and
replaced with @Suspended and javax.ws.rs.container.AsyncResponse respectively.

StringConverter is replaced by a ParamConverter.

org.jboss.resteasy.plugins.providers.SerializableProvider was deprecated and has been
removed.

The following interceptor interfaces deprecated in RESTEasy 3.x has been removed.

org.jboss.resteasy.spi.interception.PreProcessInterceptor

org.jboss.resteasy.spi.interception.PostProcessInterceptor

org.jboss.resteasy.spi.interception.ClientExecutionInterceptor

org.jboss.resteasy.spi.interception.ClientExecutionContext

org.jboss.resteasy.spi.interception.AcceptedByMethod

The org.jboss.resteasy.spi.interception.PreProcessInterceptor interface was replaced by
the jakarta.ws.rs.container.ContainerRequestFilter interface in RESTEasy 3.x.

The following interfaces and classes have been removed from RESTEasy 3.x and JBoss EAP
8.0.

org.jboss.resteasy.spi.interception.MessageBodyReaderInterceptor

org.jboss.resteasy.spi.interception.MessageBodyWriterInterceptor

org.jboss.resteasy.spi.interception.MessageBodyWriterContext

org.jboss.resteasy.spi.interception.MessageBodyReaderContext

org.jboss.resteasy.core.interception.InterceptorRegistry

org.jboss.resteasy.core.interception.InterceptorRegistryListener

org.jboss.resteasy.core.interception.ClientExecutionContextImpl

The org.jboss.resteasy.spi.interception.MessageBodyWriterInterceptor interface was
replaced by the jakarta.ws.rs.ext.WriterInterceptor interface.

In addition, some changes to the jakarta.ws.rs.ext.MessageBodyWriter interface might not be
backward compatible with respect to JAX-RS 1.x. If your application used JAX-RS 1.x, review
your application code to make sure you define @Produces or @Consumes for your endpoints.
Failure to do so might result in an error similar to the following.

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

56

https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/PreProcessInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/PostProcessInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/ClientExecutionInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/ClientExecutionContext.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/AcceptedByMethod.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/PreProcessInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/MessageBodyReaderInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/MessageBodyWriterInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/MessageBodyWriterContext.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/MessageBodyReaderContext.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/core/interception/InterceptorRegistry.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/core/interception/InterceptorRegistryListener.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/core/interception/ClientExecutionContextImpl.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/MessageBodyWriterInterceptor.html
https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/ext/messagebodywriter

org.jboss.resteasy.core.NoMessageBodyWriterFoundFailure: Could not find
MessageBodyWriter for response object of type: <OBJECT> of media type:

The following is an example of a REST endpoint that can cause this error.

To fix the issue, add the import for jakarta.ws.rs.Produces and the @Produces annotation as
follows.

@Path("dates")
public class DateService {

 @GET
 @Path("daysuntil/{targetdate}")
 public long showDaysUntil(@PathParam("targetdate") String targetDate) {
 DateLogger.LOGGER.logDaysUntilRequest(targetDate);
 final long days;

 try {
 final LocalDate date = LocalDate.parse(targetDate, DateTimeFormatter.ISO_DATE);
 days = ChronoUnit.DAYS.between(LocalDate.now(), date);
 } catch (DateTimeParseException ex) {
 // ** DISCLAIMER **. This example is contrived.
 throw new
WebApplicationException(Response.status(400).entity(ex.getLocalizedMessage()).type(Media
Type.TEXT_PLAIN)
 .build());
 }
 return days;
 }
}

...
import jakarta.ws.rs.Produces;
...

@Path("dates")
public class DateService {

 @GET
 @Path("daysuntil/{targetdate}")
 @Produces(MediaType.TEXT_PLAIN)
 public long showDaysUntil(@PathParam("targetdate") String targetDate) {
 DateLogger.LOGGER.logDaysUntilRequest(targetDate);
 final long days;

 try {
 final LocalDate date = LocalDate.parse(targetDate, DateTimeFormatter.ISO_DATE);
 days = ChronoUnit.DAYS.between(LocalDate.now(), date);
 } catch (DateTimeParseException ex) {
 // ** DISCLAIMER **. This example is contrived.
 throw new
WebApplicationException(Response.status(400).entity(ex.getLocalizedMessage()).type(Media
Type.TEXT_PLAIN)
 .build());
 }

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

57

NOTE

All interceptors from the previous release of RESTEasy can run in parallel with the new
Jakarta REST filter and interceptor interfaces.

Additional resources

RESTEasy Interceptors

RESTEasy Jakarta RESTful Web Services 3.15.0.Final API

Client API
The RESTEasy client framework in resteasy-jaxrs was replaced by the JAX-RS 2.0 compliant resteasy-
client module in JBoss EAP 7.0. As a result, some RESTEasy client API classes and methods are
deprecated.

The following classes have been removed from JBoss EAP 8.0.

org.jboss.resteasy.client.ClientRequest

org.jboss.resteasy.client.ClientRequestFactory

org.jboss.resteasy.client.ClientResponse

org.jboss.resteasy.client.ProxyBuilder

org.jboss.resteasy.client.ProxyConfig

org.jboss.resteasy.client.ProxyFactory

The org.jboss.resteasy.client.ClientResponseFailure exception and the
org.jboss.resteasy.client.ClientExecutor and org.jboss.resteasy.client.EntityTypeFactory
interfaces are also deprecated.

You must replace the org.jboss.resteasy.client.ClientRequest and
org.jboss.resteasy.client.ClientResponse classes with
org.jboss.resteasy.client.jaxrs.ResteasyClient and jakarta.ws.rs.core.Response
respectively.
The following is an example of how to send a link header with the RESTEasy client in RESTEasy
2.3.x.

The following is an example of how to accomplish the same task with the RESTEasy client in
RESTEasy 3.

 return days;
 }
}

ClientRequest request = new ClientRequest(generateURL("/linkheader/str"));
request.addLink("previous chapter", "previous", "http://example.com/TheBook/chapter2",
null);
ClientResponse response = request.post();
LinkHeader header = response.getLinkHeader();

ResteasyClient client = new ResteasyClientBuilder().build();

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

58

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/developing_web_services_applications/#resteasy_interceptors
https://docs.jboss.org/resteasy/docs/3.15.0.Final/javadocs/
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientRequest.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientRequestFactory.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientResponse.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ProxyBuilder.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ProxyConfig.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ProxyFactory.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientResponseFailure.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientExecutor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/EntityTypeFactory.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientRequest.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientResponse.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/jaxrs/ResteasyClient.html
https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/core/response

See the resteasy-jaxrs-client quickstart for an example of an external Jakarta REST RESTEasy
client that interacts with a Jakarta REST Web service.

The classes and interfaces in the org.jboss.resteasy.client.cache package are also
deprecated. They are replaced by equivalent classes and interfaces in the
org.jboss.resteasy.annotations.cache package.

NOTE

For more information about the org.jboss.resteasy.client.jaxrs API classes, see the
RESTEasy Jakarta REST JavaDoc .

StringConverter
The org.jboss.resteasy.spi.StringConverter class is deprecated in RESTEasy 3.x and JBoss EAP 8.0.
This functionality can be replaced using the Jakarta REST jakarta.ws.rs.ext.ParamConverterProvider
class.

7.4.2. Removed or Protected RESTEasy classes

ResteasyProviderFactory Add methods
Most of the org.jboss.resteasy.spi.ResteasyProviderFactory add() methods have been removed or
made protected in RESTEasy 3.0. For example, the addBuiltInMessageBodyReader() and
addBuiltInMessageBodyWriter() methods have been removed and the addMessageBodyReader()
and addMessageBodyWriter() methods have been made protected.

You should now use the registerProvider() and registerProviderInstance() methods.

Additional Classes Removed From RESTEasy 3
The @org.jboss.resteasy.annotations.cache.ServerCached annotation, which specified the response
to the Jakarta REST method should be cached on the server, was removed from RESTEasy 3 and must
be removed from the application code.

7.4.3. Additional RESTEasy changes

This section provides information about some additional changes in RESTEasy for JBoss EAP.

SignedInput and SignedOuput

SignedInput and SignedOutput for resteasy-crypto must have the Content-Type set to
multipart/signed in either the Request or Response object, or by using the @Consumes or
@Produces annotation.

You can use SignedOutput and SignedInput to return the application/pkcs7-signature MIME
type format in binary form by setting that type in the @Produces or @Consumes annotations.

If the @Produces or @Consumes is text/plain MIME type, SignedOutput will be base64
encoded and sent as a String.

Security Filters

The security filters for @RolesAllowed, @PermitAll, and @DenyAll now return "403 Forbidden"

Response response = client.target(generateURL("/linkheader/str")).request()
 .header("Link", "<http://example.com/TheBook/chapter2>; rel=\"previous\";
title=\"previous chapter\"").post(Entity.text(new String()));
jakarta.ws.rs.core.Link link = response.getLink("previous");

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

59

https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/cache/package-frame.html
https://docs.jboss.org/resteasy/docs/6.2.5.Final/userguide/html/ch34.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/
https://docs.jboss.org/resteasy/docs/3.15.0.Final/javadocs/org/jboss/resteasy/spi/StringConverter.html
https://jakarta.ee/specifications/restful-ws/3.0/apidocs/jakarta/ws/rs/ext/paramconverterprovider
https://docs.jboss.org/resteasy/docs/3.15.0.Final/javadocs/org/jboss/resteasy/spi/ResteasyProviderFactory.html

The security filters for @RolesAllowed, @PermitAll, and @DenyAll now return "403 Forbidden"
instead of "401 Unauthorized".

Client-side Filters
The client-side filters that were introduced in JAX-RS 2.0 will not be bound and run when you are using
the RESTEasy client API from a release prior to RESTEasy 3.0.

Asynchronous HTTP Support
Because the JAX-RS 2.0 specification added asynchronous HTTP support using the @Suspended
annotation and the AsynResponse interface, the RESTEasy proprietary API for asynchronous HTTP
was deprecated and might be removed in a future RESTEasy release. The asynchronous Tomcat and
asynchronous JBoss Web modules have also been removed from the server installation. If you are not
using the Servlet 3.0 container or higher, asynchronous HTTP server-side processing will be simulated
and run synchronously in same request thread.

Server-side Cache
Server-side cache setup has changed. Please see the RESTEasy Documentation for more information.

YAML Provider Setting Changes
In previous releases of JBoss EAP, the RESTEasy YAML provider setting was enabled by default. This
has changed in JBoss EAP 7. The YAML provider is now disabled by default. Its use is not supported due
to a security issue in the SnakeYAML library used by RESTEasy for unmarshalling and it must be
explicitly enabled in the application. For information about how to enable the YAML provider in your
application and add the Maven dependencies, see YAML Provider in JBoss EAP 7.4 Developing Web
Services Applications.

Default Charset UTF-8 in Content-Type Header
As of JBoss EAP 7.1, the resteasy.add.charset parameter is set to true by default. You can set the
resteasy.add.charset parameter to false if you do not want RESTEasy to add charset=UTF-8 to the
returned content-type header when the resource method returns a text/* or application/xml* media
type without an explicit charset.

For more information about text media types and character sets, see Text Media Types and Character
Sets in JBoss EAP 7.4 Developing Web Services Applications .

SerializableProvider
Deserializing Java objects from untrusted sources is not safe. For this reason, starting with JBoss EAP 7,
the org.jboss.resteasy.plugins.providers.SerializableProvider class is disabled by default, and it is
not recommended to use this provider.

Matching Requests to Resource Methods
In RESTEasy 3, improvements and corrections were made to the implementation of matching rules, as
defined in the JAX-RS specification. In particular, a change was made to how an ambiguous URI on a
sub-resource method and a sub-resource locator is handled.

In RESTEasy 2, it was possible for a sub-resource locator to execute successfully even when there was
another sub-resource with the same URI. This behavior was incorrect according to the specification.

In RESTEasy 3, when there is an ambiguous URI for a sub-resource and a sub-resource locator, calling
the sub-resource will be successful; however, calling the sub-resource locator will result in an HTTP
status 405 Method Not Allowed error.

The following example contains an ambiguous @Path annotation on a sub-resource method and a sub-
resource locator. Notice that the URI to both endpoints, anotherResource and
anotherResourceLocator, is the same. The difference between the two endpoints is that the

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

60

https://docs.jboss.org/resteasy/docs/6.2.4.Final/userguide/html_single/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/developing_web_services_applications/#jakarta-restful-web-services_yaml_provider
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/developing_web_services_applications/#text_media_types_charsets

anotherResource method is associated with the REST verb, POST. The anotherResourceLocator
method is not associated with any REST verb. According to the specification, the endpoint with the
REST verb, in this case the anotherResource method, will always be selected.

7.4.4. RESTEasy SPI changes

The RESTEasy SPI provider has been removed in JBoss EAP 8.

SPI Exceptions
All SPI failure exceptions were deprecated and are no longer used internally. They have been replaced
with the corresponding Jakarta REST exception.

Deprecated Exception Replacement Exception in jaxrs-api module

org.jboss.resteasy.spi.ForbiddenException jakarta.ws.rs.ForbiddenException

org.jboss.resteasy.spi.MethodNotAllowedException jakarta.ws.rs.NotAllowedException

org.jboss.resteasy.spi.NotAcceptableException jakarta.ws.rs.NotAcceptableException

org.jboss.resteasy.spi.NotFoundException jakarta.ws.rs.NotFoundException

org.jboss.resteasy.spi.UnauthorizedException jakarta.ws.rs.NotAuthorizedException

org.jboss.resteasy.spi.UnsupportedMediaTypeExcept
ion

jakarta.ws.rs.NotSupportedException

InjectorFactory and Registry
The InjectorFactory and Registry SPIs have changed. This should not be an issue if you use RESTEasy
as documented and supported.

7.4.5. Jackson provider changes

The version of Jackson included in JBoss EAP 6.4 has changed. Starting with JBoss EAP 7, the Jackson
provider has changed from resteasy-jackson-provider to resteasy-jackson2-provider.

@Path("myResource")
public class ExampleSubResources {
 @POST
 @Path("items")
 @Produces("text/plain")
 public Response anotherResource(String text) {
 return Response.ok("ok").build();
 }

 @Path("items")
 @Produces("text/plain")
 public SubResource anotherResourceLocator() {
 return new SubResource();
 }
}

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

61

The upgrade to the resteasy-jackson2-provider requires some package changes. For example, the
Jackson annotation package has changed from org.codehaus.jackson.annotate to
com.fasterxml.jackson.annotation.

7.4.6. Spring RESTEasy integration changes

JBoss EAP 8.0 provides support for RESTEasy 6.2. If you plan to use the Spring 6.0 framework with
JBoss EAP 8.0, you must use Java 17.

The Spring 4.0 framework introduced support for Java 8. If you plan to use the RESTEasy 3.x
integration with Spring, be sure to specify 4.2.x as the minimum Spring version in your deployment as
this is the earliest stable version supported by JBoss EAP 7.

7.4.7. RESTEasy Jettison JSON provider changes

The RESTEasy Jettison JSON provider is deprecated since JBoss EAP 7 and is no longer added to
deployments by default. You are encouraged to switch to the recommended RESTEasy Jackson
provider. If you prefer to continue to use the Jettison provider, you must define an explicit dependency
for it in the jboss-deployment-descriptor.xml file as demonstrated in the following example.

For more information about how to define explicit dependencies, see Add an Explicit Module
Dependency to a Deployment in the JBoss EAP 7.4 Development Guide.

7.4.8. MicroProfile for JBoss EAP

MicroProfile is the name of a specification that developers can use to configure applications and
microservices to run in multiple environments without having to modify or repackage those apps.
Previously, MicroProfile was available for JBoss EAP 7.3 as a technology preview, but it has since been
removed. MicroProfile is now available only on JBoss EAP XP.

Additional resources

Understand MicroProfile

7.5. CDI APPLICATION CHANGES

JBoss EAP 8.0 includes support for CDI 4.0. As a result, applications written using older CDI releases
might see some changes in behavior when migrating to JBoss EAP 8.0. This section summarizes only a
few of these changes.

For more information about Weld and CDI 4.0, see:

<?xml version="1.0" encoding="UTF-8"?>
<jboss-deployment-structure>
 <deployment>
 <exclusions>
 <module name="org.jboss.resteasy.resteasy-jackson2-provider"/>
 <module name="org.jboss.resteasy.resteasy-jackson-provider"/>
 </exclusions>
 <dependencies>
 <module name="org.jboss.resteasy.resteasy-jettison-provider" services="import"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

62

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#add_an_explicit_module_dependency_to_a_deployment
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_3.0.0/#understand_microprofile

Jakarta Context Dependency Injection 4.0

Weld 5.1.1.Final - CDI Reference Implementation

7.5.1. Bean Archives

Bean classes of enabled beans must be deployed in bean archives to ensure they are discovered by CDI
and processed as beans.

CDI 1.1 introduced implicit bean archives, which are archives that contain one or more bean classes with a
bean defining annotation, or one or more session beans. Implicit bean archives are scanned by CDI and,
during type discovery, only classes with bean defining annotations are discovered. For more information,
see Type and Bean Discovery in JSR 365: Contexts and Dependency Injection for Java ™ 2.0. The
Jakarta equivalents for bean defining annotations are defined in the Jakarta Context Dependency
Injection 2.0 specification.

In CDI 4.0:

An archive does not differentiate whether beans.xml has a version number.

In addition to build-compatible extensions, an archive also contains archives without the
beans.xml file. The build compatible extensions are not bean archives.

The default discovery mode of an archive with an empty beans.xml file is set to annotated
instead of all. For example, if the beans.xml file is empty, it is an implicit bean archive instead of
an explicit bean archive.

In both cases, the bean discovery element is unaffected between archives with and without
beans.xml files.

For more information about CDI 4.0, see Jakarta Contexts and Dependency Injection 4.0.

A bean archive has a bean discovery mode of all, annotated or none. A bean archive which contains
non-empty beans.xml must specify the bean-discovery-mode attribute. The default value for the
attribute is annotated.

An archive is not a bean archive in the following cases:

It contains a beans.xml file with a bean-discovery-mode of none.

It contains a portable extension or a build compatible extension and no beans.xml file.

An archive is an explicit bean archive in the following case:

The archive contains a beans.xml file with bean-discovery-mode of all.

An archive is an implicit bean archive in the following cases:

The archive contains a beans.xml file that is empty.

The archive contains one or more bean classes with a bean defining annotation, or one or more
session beans, even if it does not contain a beans.xml file.

CDI 1.2 limited bean defining annotations to the following:

@ApplicationScoped, @SessionScoped, @ConversationScoped, and @RequestScoped
annotations

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

63

https://jakarta.ee/specifications/cdi/4.0/
https://docs.jboss.org/weld/reference/5.1.1.Final/en-US/html_single/
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#type_bean_discovery
https://jcp.org/en/jsr/detail?id=365
https://jakarta.ee/specifications/cdi/2.0/
https://jakarta.ee/specifications/cdi/4.0/
http://docs.jboss.org/cdi/spec/2.0/cdi-spec-with-assertions.html#bean_defining_annotations

All other normal scope types

@Interceptor and @Decorator annotations

All stereotype annotations, which are annotations annotated with @Stereotype

@Dependent scope annotation

7.5.2. Clarification of Conversation Resolution

The conversation context lifecycle was changed in CDI 1.2 to prevent conflicts with the Servlet
specification as described in CDI Specification Issue CDI-411 . The conversation scope is active during all
servlet requests and should not prevent other servlets or servlet filters from setting the request body or
character encoding. For more information, see Conversation context lifecycle in Jakarta EE .

7.5.3. Observer Resolution

Event resolution was partly rewritten in CDI 1.2. In CDI 1.0, an event is delivered to an observer method if
the observer method has all the event qualifiers. In CDI 1.2, an event is delivered to an observer method
if the observer method has no event qualifiers or has a subset of the event qualifiers. For more
information, see Observer resolution.

7.6. HTTP SESSION ID CHANGE

The string returned by the request.getSession().getId() call to get the unique identifier assigned to an
HTTP session has changed between JBoss EAP 6.4 and JBoss EAP 7.

JBoss EAP 6.4 returned both the session ID and the instance ID in the session-id.instance-id format.

JBoss EAP 7 and EAP 8 returns only the session ID.

This change can create issues with routeless cookies for some upgrades from JBoss EAP 6 to JBoss
EAP 8. If your application recreates JSESSIONID cookies based upon the return value from this method
call, you might need to update the application code to provide the desired behavior.

7.7. MIGRATE EXPLICIT MODULE DEPENDENCIES

The introduction of the modular class loading system and JBoss Modules in the previous release of
JBoss EAP allowed for fine-grained control of the classes available to applications. This feature allowed
you to configure explicit module dependencies using the application’s MANIFEST.MF file or the jboss-
deployment-structure.xml deployment descriptor file.

If you defined explicit module dependencies in your application, you should be aware of the following
changes in JBoss EAP 7.

Review Dependencies for Availability
The modules that are included in JBoss EAP have changed. When you migrate your application to JBoss
EAP 7, review your MANIFEST.MF and jboss-deployment-structure.xml file entries to make sure they
do not refer to any modules that were removed or are deprecated in this release of the product.

Dependencies That Require Annotation Scanning
In the previous release of JBoss EAP, if your dependency contained annotations that needed to be
processed during annotation scanning, such as when declaring EJB Interceptors, you were required to
generate and include a Jandex index in a new JAR file and then set a flag in the MANIFEST.MF or
jboss-deployment-structure.xml deployment descriptor file.

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

64

https://issues.jboss.org/browse/CDI-411
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#conversation_context_ee
https://jakarta.ee/specifications/cdi/4.0/jakarta-cdi-spec-4.0#observer_resolution

JBoss EAP 7 now provides automatic runtime generation of annotation indexes for static modules, so
you no longer need to generate them manually. However, you still need to add the annotations flag to
the application’s MANIFEST.MF file or the jboss-deployment-structure.xml deployment descriptor
file as demonstrated below.

Example: Annotation Flag in the MANIFEST.MF File

Dependencies: com.company.my-ejb annotations, com.company.other

Example: Annotation Flag in the jboss-deployment-structure.xml File

7.8. HIBERNATE CHANGES

JBoss EAP 8 includes support for Hibernate ORM 6.2, an object-relational mapping tool for the Java
programming language. For more information about the Hibernate ORM 6.2 documentation, see
Hibernate ORM 6.2.

When migrating from JBoss EAP 7.4 to JBoss EAP EAP 8.0, refer to the specific Hibernate ORM
migration documentation for your Hibernate ORM version.

For migrating from JBoss EAP 7.4 to JBoss EAP 8, you must complete the following steps.

Migrating from Hibernate ORM 5.3 to 5.4

Migrating from Hibernate ORM 5.4 to 5.5

Migrating from Hibernate ORM 5.5 to 5.6

Migrating from Hibernate ORM 5.6 to 6.0

Migrating from Hibernate ORM 6.0 to 6.1

Migrating from Hibernate ORM 6.1 to 6.2

Hibernate ORM dialects

Deprecated Hibernate ORM classes

Incubating Hibernate ORM classes

Hibernate ORM internals

For migrating from older versions of JBoss EAP and Hibernate, you must complete the
following steps.

Migrating from Hibernate ORM 4.3 to Hibernate ORM 5.0

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="com.company.my-ejb" annotations="true"/>
 <module name="com.company.other"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

65

https://hibernate.org/orm/documentation/6.2/

Migrating from Hibernate ORM 5.0 to Hibernate ORM 5.1

Migrating from Hibernate ORM 5.1 and Hibernate ORM 5.2 to Hibernate ORM 5.3

Additional resources

Hibernate ORM 6.2 Dialects

Deprecated Hibernate ORM classes

Incubating Hibernate ORM classes

Hibernate ORM internals

7.8.1. Migrating from Hibernate ORM 5.3 to 5.4

This section highlights the changes required when migrating from Hibernate ORM version 5.3 to 5.4. For
more information about the changes implemented between Hibernate ORM 5.3 and Hibernate ORM
5.4, see the Hibernate ORM 5.4 Migration Guide.

Known Changes
The following describes some of the changes when migrating from Hibernate ORM version 5.3 to 5.4.

7.8.1.1. Overriding Delayed Identity Insert Behavior

In Hibernate 5.3, support was provided for DelayedPostInsertIdentifier behavior to be
influenced based on the FlushMode or FlushModeType values, in short enhancing Extended
PersistenceContext support. Unfortunately, there were a few issues that were included in this
change.

In Hibernate 5.4, it was decided to preserve as much of the Hibernate 5.3 behavior as possible
and only restore very specific DelayedPostInsertIdentifier behavior for selected use cases.

In order to make Hibernate 5.4 more flexible, a configuration option was added to be used as a
temporary solution to completely disable the Hibernate 5.3 behavior, reverting it back to
Hibernate 5.2 and earlier.

7.8.1.2. SQL Server JDBC Driver version upgrade to at least 6.1.2

Due to fixing HHH-12973, you must upgrade the JDBC Driver version to 6.1.2. Due to this issue, the older
versions of the SQL Server JDBC Driver cannot introspect the
INFORMATION_SCHEMA.SEQUENCES without closing the database connection.

7.8.2. Migrating from Hibernate ORM 5.4 to 5.5

This section highlights the changes required when migrating from Hibernate ORM version 5.4 to 5.5. For
more information about the changes implemented between Hibernate ORM 5.4 and Hibernate ORM
5.5, see the Hibernate ORM 5.5 Migration Guide .

Known Changes
The Hibernate ORM 5.5 version is similar to Hibernate ORM 5.4 as it includes all bugfixes applied to the
5.4 maintenance releases and introduces support for Jakarta Persistence API.

7.8.2.1. Dom4J based XML mapping

The implementation of Hibernate’s parsing of XML mapping definitions has been compleltey reworked

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

66

https://docs.jboss.org/hibernate/orm/6.2/dialect/
https://docs.jboss.org/hibernate/orm/6.2/deprecated/deprecated.txt
https://docs.jboss.org/hibernate/orm/6.2/incubating/incubating.txt
https://docs.jboss.org/hibernate/orm/6.2/internals/internal.txt
https://github.com/hibernate/hibernate-orm/blob/5.4/migration-guide.adoc
https://hibernate.atlassian.net/browse/HHH-12973
https://github.com/hibernate/hibernate-orm/blob/5.5/migration-guide.adoc

The implementation of Hibernate’s parsing of XML mapping definitions has been compleltey reworked
based on JAXB rather than DOM4J, to ensure continous progress for removing this dependecy.

7.8.2.2. Removed the ability to disable "enhanced proxies"

The "enhanced proxies" feature had been introduced as an optional performance improvement feature
for Hibernate 5.3. This feature is now enabled permanently.

7.8.3. Migrating from Hibernate ORM 5.5 to 5.6

This section highlights the changes required when migrating from Hibernate ORM version 5.5 to 5.6. For
more information about the changes implemented between Hibernate ORM 5.5 and Hibernate ORM
5.6, see the Hibernate ORM 5.6 Migration Guide.

Deprecated features
The Hibernate 5.6 version is very similar to the previous Hibernate 5.5 version, with the exception of
removal of some of the deprecated features from previous Hibernate releases.

7.8.3.1. Removal of Javassist

You can no longer choose javassist as an implementation to be used for the bytecode enhancement of
entities. Byte Buddy is the default, and javassist has been deprecated for some time and now
removed. This does not have any functional impact on applications; the only exception being that it’s not
longer valid to configure the hibernate.bytecode.provider=javassist property. You can remove this
property if you are using this feautre. It can cause an issue where Hibenate ORM no longer lists javassist
among its dependencies.

7.8.4. Migrating from Hibernate ORM 5.6 to 6.0

This section highlights the changes required when migrating from Hibernate ORM version 5.6 to 6.0. For
more information about the changes implemented between Hibernate ORM 5.6 and Hibernate ORM
6.0, see the Hibernate ORM 6.0 Migration Guide.

The Hibernate 6.0 release includes the following changes:

Java 11 is the minimum compatible baseline version for Hibernate 6.0.

Jakarta Persistence: Another important change in the Hibernate ORM 6.0 release includes
moving from the Java Persistence as defined by the Java EE specs to Jakarta Persistence as
defined by the Jakarta EE spec. The most important impact resulting from this change includes
the use of the Jakarata Persistence classes jakarta.persistence.* instead of the Java
Persistence ones javax.persistence.*.

Reading from JDBC: Another reason for the development of the Hibernate ORM 6.0 version
was to move from reading results from the JDBC ResultSet by name (read-by-name) to
reading the results by position (read-by-position). This change was made to improve the scaling
by undertaking throughput testing.

Generated SQL: This feature resulted in the following enhancements:

Column aliases are no longer generated

Column references are "unique-d".

Better definition of joins and better determination of unnecessary joins (secondary tables,
inheritance tables)

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

67

https://github.com/hibernate/hibernate-orm/blob/5.6/migration-guide.adoc
https://docs.jboss.org/hibernate/orm/6.0/migration-guide/migration-guide.html

Identifier as Object - The earlier versions of Hibernate required that all identifier types
implement Serializable, Hibernate 6.0 has removed this restriction as identifiers can be any
Object. This change affects many API and SPI methods previously defined using Serializable.

@IdGeneratorType: With this release, you can use the @IdGeneratorType annotation for better
type-safe way to define custom generators for identifier generation.

Implicit Identifier Sequence and Table Name: The method by which Hibernate determines
implicit names for sequences and tables associated with identifier generation has been modified
in Hibernate 6.0, This may affect the user migrating applications. In this release, Hibernate
creates a sequence per entity hierarchy instead of a single sequence hibernate_sequence by
default.

Defaults for implicit sequence generators: Implicit sequences, like the hibernate_sequence
earlier now adhere to the default value of the JPA @SequenceGenerator annotation, which
means that the sequences have an allocation size of 50.

Type system: As Hibernate 6.0 is a major release, another important change was to modify
Hibernate’s mapping annotations and make them more type-safe. This feature was decided to
be provided in this release as type-related contracts were already changing to implement the
read-by-position changes.

Query: A lot of changes have been introduced in the functionality for Query. Query features
such as moving to a dedicated tree structure to model HQL and Criteria queries, improving the
implementations for bulk SQM DML statements like insert, update, and delete, as well as
changing the behavior of the hibernate.criteria.copy_tree property, and the inclusion of pass-
through tokens have been introduced in this release.

Signature change of the #onSave method: The signature of the #onSave method has been
changed from boolean onSave(Object entity, Serializable id, Object[] state, String[]
propertyNames, Type[] types) to boolean onSave(Object entity, Object id, Object[] state,
String[] propertyNames, Type[] types) to accomadate the change of expected identifier type
from Serializable to Object.

Fetch circularity determination: Previous versions of Hibernate determined fetches using a
depth-first approach, which occasionally led to odd "circularity" determination. Starting with
Hibernate 6.0, now fetch determination is performed using a width first approach.

Restructuring of org.hibernate.loader: The contents of the loader.collection package were
restructured into loader.ast.spi and loader.ast.internal as well as adapted to the SQM API.

Restructuring of the SQL package: The contents of sql.ordering were moved to
metamodel.mapping.ordering.ast.

Deprecation of hbm.xml mappings: Legacy hbm.xml mapping format is deprecated and will no
longer supported beyond 6.x.

Lazy association adherance: Prior to Hibernate 6.0, lazy associations that used fetch="join" or
@Fetch(FetchMode.JOIN) were considered eager when loaded by id i.e. through
Session#get/EntityManager#find, even though for queries the association was treated as lazy.
Starting with Hibernate 6.0, the laziness of such associations is properly respected, regardless
of the fetch mechanism. Backwards compatibility can be achieved by specifying lazy="false" or
@ManyToOne(fetch = EAGER)/@OneToOne(fetch = EAGER)/@OneToMany(fetch =
EAGER)/@ManyToMany(fetch = EAGER).

Change of behavior for hbm.xml <return-join/>: As per Hibernate 6.0, a <return-join/> ̀cause
an association to be fetched, rather than adding a selection item.

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

68

For more information about these features, see Hibernate ORM 6.0 Migration Guide.

The Hibernate 6.0 release contains also contains lot of feature removals from previous Hibernate
releases, which are listed as follows:

hbm.xml multiple <column/> is now disallowed - In 6.0 the support for basic property
mappings with multiple columns was removed. The component class attribute now supports
interpreting a CompositeUserType class properly.

Legacy Hibernate Criteria API - The legacy Hibernate Criteria API which was deprecated back
in Hibernate 5.x has been removed in Hibernate 6.0.

Callable via NativeQuery - Using NativeQuery to call SQL functions and procedures is no longer
supported. Use methods such as org.hibernate.procedure.ProcedureCall or
jakarta.persistence.StoredProcedureQuery instead.

HQL fetch all properties clause - The fetch all properties clause was removed from the HQL
language.

JMX integration - Hibernate no longer provides built-in support for integrating itself with JMX
environments.

JACC integration - Hibernate no longer provides built-in support for integrating itself with
JACC environments.

For more information about features removed in Hibernate 6.0, see Hibernate ORM 6.0 Migration
Guide.

7.8.5. Migrating from Hibernate ORM 6.0 to 6.1

This section highlights the changes required when migrating from Hibernate ORM version 6.0 to 6.1. For
more information about the changes implemented between Hibernate ORM 6.0 and Hibernate ORM 6.1,
see the Hibernate ORM 6.1 Migration Guide .

The Hibernate 6.1 release contains the following changes:

Basic arrays: Basic arrays other than byte[]/Byte[] and char[]/Character[], and basic collections
(only subtypes of Collection) now map to the type code SqlTypes.ARRAY by default, which
maps to the SQL standard array type as determined by the new methods getArrayTypeName
and supportsStandardArrays of org.hibernate.dialect.Dialect.

Enum mapping changes: Enums now map to the type code SqlType.SMALLINT by default, as
before it mapped to TINYINT. This mapping was not quite correct as Java effectively allows up
to 32K enum entries, but TINYINT is only a 1 byte type.

For more detailed information about features included in the Hibernate 6.1, see the Hibernate ORM 6.1
Migration Guide.

7.8.6. Migrating from Hibernate ORM 6.1 to 6.2

This section highlights the changes required when migrating from Hibernate ORM version 6.1 to 6.2. For
more information about the changes implemented between Hibernate ORM 6.1 and Hibernate ORM 6.2,
see the Hibernate ORM 6.2 Migration Guide .

The Hibernate 6.2 release contains the following enhancements, which are listed as follows:

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

69

https://docs.jboss.org/hibernate/orm/6.0/migration-guide/migration-guide.html
https://docs.jboss.org/hibernate/orm/6.0/migration-guide/migration-guide.html
https://docs.jboss.org/hibernate/orm/6.1/migration-guide/migration-guide.html
https://docs.jboss.org/hibernate/orm/6.1/migration-guide/migration-guide.html
https://docs.jboss.org/hibernate/orm/6.2/migration-guide/migration-guide.html

DDL type changes:

OffsetTime mapping changes - In this release, OffsetTime depends on @TimeZoneStorage
and the hibernate.timezone.default_storage setting. As the default setting is
TimeZoneStorageType.DEFAULT, it means that the DDL expectations for such columns have
changed.

UUID mapping changes on MariaDB - On MariaDB, the type code SqlTypes.UUID by default
refers to the DDL type uuid, as compared to before where it was using binary(16). Due to this
change, schema validation errors can occur on existing databases.

UUID mapping changes on SQL Server - On SQL Server, the type code SqlTypes.UUID by
default refers to the DDL type uniqueidentifier, as compared to before where it was using
binary(16). Due to this change, schema validation errors can occur on existing databases.

JSON mapping changes on Oracle - On Oracle 12.1+, the type code SqlTypes.JSON by default
refers to the DDL type blob and on 21+ to json, as compared to before where it was using clob.
Due to this change, schema validation errors can occur on existing databases.

JSON mapping changes on H2 - On H2 1.4.200+, the type code SqlTypes.JSON by default
refers to the DDL type JSON, as compared to before where it was using clob. Due to this
change, schema validation errors can occur on existing databases.

Datatype for enums - Starting from Hibernate 6.2, the choice of implicit SQL datatype for
storing enums is sensitive to the number of entries defined on the enum class.

Timezone and offset storage - hibernate.timezone.default_storage now defaults to
DEFAULT.

Byte[]/Character[] mapping changes - Hibernate 6.2 makes it configurable to handle mapping
of Byte[] and Character[] mapping changes in a domain model.

UNIQUE constraint for optional one-to-one mappings - Earlier versions of Hibernate did not
create a UNIQUE constraint on the database for logical one-to-one associations marked as
optional. Starting in Hibernate 6.2, those UNIQUE constraints are now created.

Column type inference for number(n,0) in native SQL queries on Oracle - Since Hibernate 6.0,
columns of type number with scale 0 on Oracle were interpreted as boolean, tinyint, smallint,
int, or bigint, depending on the precision. Now, columns of type number with scale 0 are
interpreted as int or bigint depending on the precision.

Removal of support for legacy database versions - Hibernate 6.2 introduces the concept of
minimum supported database version for most of the database dialects that are supported by
Hibernate.

Changes to CDI handling - When CDI is available and configured, Hibernate can use the CDI
BeanManager to resolve various bean references. Starting with Hibernate 6.2, these extensions
will only be resolved from the CDI BeanManager if hibernate.cdi.extensions is set to true.

Change in enhancement defaults and deprecation - The enableLazyInitialization and
enableDirtyTracking enhancement tooling options, the global property
hibernate.bytecode.use_reflection_optimizer as well as the respective
hibernate.enhancer.enableLazyInitialization and hibernate.enhancer.enableDirtyTracking
configuration settings, switched their default values to true and these settings are now
deprecated.

Package updates for org.hibernate.cfg and org.hibernate.loader: The org.hibernate.cfg and

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

70

Package updates for org.hibernate.cfg and org.hibernate.loader: The org.hibernate.cfg and
org.hibernate.loader packages have been updated to clearly display a distinction between
contracts which are considered an API, SPI and internal.

Changes in integration contracts (SPIs) - During the development of Hibernate ORM 6.2, the
following SPIs have been modified: EntityPersister#lock, EntityPersister#multiLoad,
Executable#afterDeserialize, and JdbcType#getJdbcRecommendedJavaTypeMapping().

Query Path comparison: As per Hibernate 6.2, comparisons of paths are type checked early.

Batch Fetching and LockMode - When LockMode is greater than READ, Hibernate does not
execute the batch fetching so existing uninitialized proxies will not be initialized. This is because
the lock mode is different from one of the proxies in the batch fetch queue.

7.8.7. Migrating from Hibernate ORM 4.3 to Hibernate ORM 5.0

JBoss EAP 7.0 included Hibernate ORM 5.0. This section highlights the changes you need to make when
migrating from Hibernate ORM version 4.3 to version 5. For more information about the changes
implemented between Hibernate ORM 4 and Hibernate ORM 5, see the Hibernate ORM 5.0 Migration
Guide.

Removed and deprecated classes
The following deprecated classes were removed from Hibernate ORM 5:

org.hibernate.cfg.AnnotationConfiguration

org.hibernate.id.TableGenerator

org.hibernate.id.TableHiLoGenerator

org.hibernate.id.SequenceGenerator

Other changes to classes and packages

The org.hibernate.integrator.spi.Integrator interface changed to account for bootstrap
redesign.

A new package org.hibernate.engine.jdbc.env.spi was created. It contains the
org.hibernate.engine.jdbc.env.spi.JdbcEnvironment interface, which was extracted from the
org.hibernate.engine.jdbc.spi.JdbcServices interface.

A new org.hibernate.boot.model.relational.ExportableProducer interface was introduced
that will affect org.hibernate.id.PersistentIdentifierGenerator implementations.

The signature of org.hibernate.id.Configurable was changed to accept
org.hibernate.service.ServiceRegistry rather than just org.hibernate.dialect.Dialect.

The org.hibernate.metamodel.spi.TypeContributor interface has migrated to
org.hibernate.boot.model.TypeContributor.

The org.hibernate.metamodel.spi.TypeContributions interface has migrated to
org.hibernate.boot.model.TypeContributions.

Type handling

Built-in org.hibernate.type.descriptor.sql.SqlTypeDescriptor implementations no longer
auto-register themselves with org.hibernate.type.descriptor.sql.SqlTypeDescriptorRegistry.

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

71

https://github.com/hibernate/hibernate-orm/blob/5.0/migration-guide.adoc
https://docs.jboss.org/hibernate/orm/3.5/api/org/hibernate/cfg/AnnotationConfiguration.html
https://docs.jboss.org/hibernate/orm/3.5/api/org/hibernate/id/TableGenerator.html
https://docs.jboss.org/hibernate/orm/3.5/api/org/hibernate/id/TableHiLoGenerator.html
https://docs.jboss.org/hibernate/orm/3.5/api/org/hibernate/id/SequenceGenerator.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/integrator/spi/Integrator.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/engine/jdbc/spi/package-frame.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/engine/jdbc/env/spi/JdbcEnvironment.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/engine/jdbc/spi/JdbcServices.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/boot/model/relational/ExportableProducer.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/id/PersistentIdentifierGenerator.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/id/Configurable.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/service/ServiceRegistry.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/dialect/Dialect.html
https://docs.jboss.org/hibernate/orm/4.3/javadocs/org/hibernate/metamodel/spi/TypeContributor.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/boot/model/TypeContributor.html
https://docs.jboss.org/hibernate/orm/4.3/javadocs/org/hibernate/metamodel/spi/TypeContributions.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/boot/model/TypeContributions.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/type/descriptor/sql/SqlTypeDescriptor.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/type/descriptor/sql/SqlTypeDescriptorRegistry.html

Applications using custom SqlTypeDescriptor implementations that extend the built-in
implementations and rely on that behavior must be updated to call
SqlTypeDescriptorRegistry.addDescriptor() themselves.

For IDs defined as generated UUIDs, some databases require you to explicitly set the
@Column(length=16) in order to generate BINARY(16) so that comparisons work properly.

For EnumType mappings defined in the hbm.xml, where you want
javax.persistence.EnumType.STRING name-mapping, this configuration must be explicitly
stated by using either the useNamed(true) setting or by specifying a VARCHAR value of 12.

Transaction management

The transaction SPI underwent a major redesign in Hibernate ORM 5. In Hibernate ORM 4.3, you
used the org.hibernate.Transaction API to directly access different back-end transaction
strategies. Hibernate ORM 5 introduced a level of indirection. On the back end, the
org.hibernate.Transaction implementation now talks to a
org.hibernate.resource.transaction.TransactionCoordinator, which represents the
transactional context for a given session according to the back-end strategy. While this does not
have a direct impact on developers, it could affect the bootstrap configuration. Previously
applications would specify hibernate.transaction.factory_class property, which is now
deprecated, and refer to a org.hibernate.engine.transaction.spi.TransactionFactory FQN
(fully qualified name). With Hibernate ORM 5, you specify the
hibernate.transaction.coordinator_class setting and refer to a
org.hibernate.resource.transaction.TransactionCoordinatorBuilder. See
org.hibernate.cfg.AvailableSettings.TRANSACTION_COORDINATOR_STRATEGY for
additional details.

The following short names are now recognized:

jdbc: Manage transactions using the JDBC java.sql.Connection. This is the default for
non-Jakarta Persistence transactions.

jta: Manage transactions using Jakarta Transactions.

IMPORTANT

If a Jakarta Persistence application does not provide a setting for the
hibernate.transaction.coordinator_class property, Hibernate will
automatically build the proper transaction coordinator based on the
transaction type for the persistence unit.

If a non-Jakarta Persistence application does not provide a setting for the
hibernate.transaction.coordinator_class property, Hibernate will default
to jdbc to manage the transactions. This default will cause problems if the
application actually uses Jakarta Transactions. A non-Jakarta Persistence
application that uses Jakarta Transactions should explicitly set the
hibernate.transaction.coordinator_class property value to jta or provide a
custom
org.hibernate.resource.transaction.TransactionCoordinatorBuilder that
builds a org.hibernate.resource.transaction.TransactionCoordinator that
properly coordinates with Jakarta Transactions.

Other Hibernate ORM 5 changes

The cfg.xml files are again fully parsed and integrated with events, security, and other

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

72

{LinkJavaEESpec8Api}javax/persistence/EnumType.html#STRING
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Types.html#VARCHAR
https://docs.jboss.org/hibernate/orm/4.3/javadocs/org/hibernate/Transaction.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/Transaction.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/resource/transaction/TransactionCoordinator.html
https://docs.jboss.org/hibernate/orm/4.3/javadocs/org/hibernate/engine/transaction/spi/TransactionFactory.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/resource/transaction/TransactionCoordinatorBuilder.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/cfg/AvailableSettings.html#TRANSACTION_COORDINATOR_STRATEGY
{LinkJava8Api}java/sql/Connection.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/resource/transaction/TransactionCoordinatorBuilder.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/resource/transaction/TransactionCoordinator.html

The cfg.xml files are again fully parsed and integrated with events, security, and other
functions.

The properties loaded from the cfg.xml using the EntityManagerFactory did not previously
prefix names with hibernate. This has now been made consistent.

The configuration is no longer serializable.

The org.hibernate.dialect.Dialect.getQuerySequencesString() method now retrieves catalog,
schema, and increment values.

The AuditConfiguration modifier was removed from
org.hibernate.envers.boot.internal.EnversService.

The AuditStrategy method parameters were changed to remove the obsolete
AuditConfiguration and use the new EnversService.

Various classes and interfaces in the org.hibernate.hql.spi package and subpackages have
been moved to the new org.hibernate.hql.spi.id package. This includes the
MultiTableBulkIdStrategy class and the AbstractTableBasedBulkIdHandler,
TableBasedDeleteHandlerImpl, and TableBasedUpdateHandlerImpl interfaces and their
subclasses.

There was a complete redesign of property access contracts.

Valid hibernate.cache.default_cache_concurrency_strategy setting values are now defined
using the org.hibernate.cache.spi.access.AccessType.getExternalName() method rather
than the org.hibernate.cache.spi.access.AccessType enum constants. This is more
consistent with other Hibernate settings.

7.8.8. Migrating from Hibernate ORM 5.0 to Hibernate ORM 5.1

JBoss EAP 7.1 included Hibernate ORM 5.1. This section highlights the differences and the changes
needed when migrating from Hibernate ORM version 5.0 to version 5.1.

Hibernate ORM 5.1 features
This release of Hibernate includes performance improvements and bug fixes. For more information, see
Hibernate ORM 5.1 Features in the JBoss EAP Release notes for 7.1.0 . For additional information about
the changes implemented between Hibernate ORM 5.0 and Hibernate ORM 5.1, see the Hibernate ORM
5.1 Migration Guide.

Schema management tooling changes
Schema management tooling changes in JBoss EAP 7
Schema management tooling changes in Hibernate ORM 5.1 are focused on the following areas:

Unifying the handling of hbm2ddl.auto and support for hibernate’s Jakarta Persistence
schema-generation.

Removing JDBC concerns from the SPI to facilitate true replacement for Hibernate OGM, a
persistence engine that provides Jakarta Persistence support for NoSQL data stores.

The schema management tooling changes are only a migration concern for applications that directly use
the following classes:

org.hibernate.tool.hbm2ddl.SchemaExport

org.hibernate.tool.hbm2ddl.SchemaUpdate

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

73

https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/dialect/Dialect.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/envers/boot/internal/EnversService.html
https://docs.jboss.org/hibernate/orm/4.3/javadocs/org/hibernate/hql/spi/package-frame.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/hql/spi/id/package-frame.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/cache/spi/access/AccessType.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/cache/spi/access/AccessType.html
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/7.1.0_release_notes/#hibernate_5_1_features
https://github.com/hibernate/hibernate-orm/blob/5.1/migration-guide.adoc

org.hibernate.tool.hbm2ddl.SchemaValidator

org.hibernate.tool.schema.spi.SchemaManagementTool, or its delegates

Schema management tooling changes in JBoss EAP 7.1
Hibernate ORM 5.1.10, included in JBoss EAP 7.1, introduced a strategy for retrieving database tables
that improve SchemaMigrator and SchemaValidator performance. This strategy executes a single
java.sql.DatabaseMetaData#getTables(String, String, String, String[]) call to determine if each
javax.persistence.Entity has a mapped database table. This is the default strategy, and it uses the
hibernate.hbm2ddl.jdbc_metadata_extraction_strategy=grouped property setting. This strategy
might require hibernate.default_schema and/or hibernate.default_catalog to be provided.

To use the old strategy of executing a java.sql.DatabaseMetaData#getTables(String, String, String,
String[]) call for each javax.persistence.Entity, use the
hibernate.hbm2ddl.jdbc_metadata_extraction_strategy=individually property setting.

7.8.9. Migrating from Hibernate ORM 5.1 and Hibernate ORM 5.2 to Hibernate ORM
5.3

JBoss EAP 7.4 includes Hibernate ORM 5.3. This section highlights some of the changes needed when
migrating from Hibernate ORM 5.1 to Hibernate ORM 5.2 and then to Hibernate ORM 5.3.

Hibernate ORM 5.2 features
Hibernate ORM 5.2 is built using the Java 8 JDK and requires the Java 8 JRE at runtime. The following is
a list of some of the changes made in this release:

The hibernate-java8 module was merged into hibernate-core, and the Java 8 date/time
datatypes are now natively supported.

The hibernate-entitymanager module was merged into hibernate-core.
HibernateEntityManager and HibernateEntityManagerFactory are deprecated.

The Session, StatelessSession, and SessionFactory class hierarchies were refactored to
remove deprecated classes and to better align with the Jakarta Persistence Metamodel API.

The SPIs in the org.hibernate.persister and org.hibernate.tuple packages have changed. Any
custom classes using those SPIs will need to be reviewed and updated.

LimitHandler changes introduced a new hibernate.legacy_limit_handler setting, which is set
to false by default, that is designed to allow you to enable the legacy Hibernate 4.3 limit handler
behavior. This impacts a limited list of dialects.

A new strategy for retrieving database tables was introduced that improves SchemaMigrator
and SchemaValidator performance.

This release changes how CLOB values for String, character[], and Character[] attributes that
are annotated with @Lob are processed when using PostgreSQL81Dialect and its subclasses.

The scope of @TableGenerator and @SequenceGenerator names has changed from global to
local.

For the complete list of changes implemented in Hibernate 5.2, see Hibernate ORM 5.2 Migration
Guide.

Hibernate ORM 5.3 features

Hibernate ORM 5.3 adds support for the Jakarta Persistence 2.2 specification. This release contains

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

74

https://github.com/hibernate/hibernate-orm/blob/5.2/migration-guide.adoc

Hibernate ORM 5.3 adds support for the Jakarta Persistence 2.2 specification. This release contains
changes to comply with this specification along with other improvements. The following is a list of some
of these changes:

Changes to positional query parameter handling has resulted in the following changes:

Removal of support for JDBC-style parameter declarations in HQL/JPQL queries.

Jakarta Persistence positional parameters behave more like named parameters.

JDBC-style parameter declarations in native queries use one-based instead of zero-based
parameter binding to be consistent with Jakarta Persistence. You can revert back to zero-
based binding by setting the hibernate.query.sql.jdbc_style_params_base property to
true.

To comply with the Jakarta Persistence specification, the sequence value stored by the
@TableGenerator stored value is that last generated value. Previously, Hibernate stored the
next sequence value. You can use the hibernate.id.generator.stored_last_used property to
enable the legacy Hibernate behavior. Existing applications that use @TableGenerator and
migrate to Hibernate 5.3 must set the hibernate.id.generator.stored_last_used
configuration property to false.

The getType() method in the org.hibernate.query.QueryParameter class was renamed to
getHibernateType().

Hibernate’s second-level cache SPI was redesigned to better meet the requirements of the
various caching providers. Details can be found in HHH-11356.

Changes for HHH-11356 also required changes in consumers, which impacts the Hibernate
Statistics system.

Some methods were temporarily added to the org.hibernate.Query class to make it easier to
migrate native applications from Hibernate ORM 5.1 to 5.3 and maintain the Hibernate 5.1
pagination behavior. These methods are deprecated, and to be portable with future versions of
Hibernate, applications should be updated to use the Jakarta Persistence methods.

Support for using Infinispan as a Hibernate 2nd-level cache provider has been moved to the
Infinispan project. As a result, the hibernate-infinispan module has been dropped.

The API of the org.hibernate.tool.enhance.EnhancementTask Ant task was changed. The
addFileset() method was dropped in favor of the setBase() and the setDir() methods. Details
can be found in HHH-11795.

A bug introduced in Hibernate 4.3 caused many-to-one associations in embeddable collection
elements and composite IDs to be eagerly fetched, even when explicitly mapped as lazy. In
Hibernate 5.3.2, this bug was fixed. As a result, these associations are fetched as specified by
their mappings. Details can be found in HHH-12687.

Jakarta Persistence and native implementations of Hibernate event listeners were unified in this
release. As a result, the JpaIntegrator class is obsolete. Classes that extend
org.hibernate.jpa.event.spi.JpaIntegrator must be modified to have to change these classes
to implement the org.hibernate.integrator.spi.Integrator interface. Details can be found in
HHH-11264.

The SPIs in the org.hibernate.persister package have changed. Any custom classes using those
SPIs will need to be reviewed and updated.

For the complete list of these and other changes implemented in Hibernate 5.3, see the Hibernate ORM

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

75

https://hibernate.atlassian.net/browse/HHH-11356
https://hibernate.atlassian.net/browse/HHH-11356
https://hibernate.atlassian.net/browse/HHH-11795
https://hibernate.atlassian.net/browse/HHH-12687
https://hibernate.atlassian.net/browse/HHH-11264

For the complete list of these and other changes implemented in Hibernate 5.3, see the Hibernate ORM
5.3 Migration Guide.

Exception handling changes between Hibernate 5.1 and Hibernate 5.3
In Hibernate 5.2 and 5.3, exception handling for a SessionFactory that is built using Hibernate’s native
bootstrapping, wraps or converts HibernateException according to the Jakarta Persistence
specification. The only exception to this behavior is when the operation is Hibernate-specific, for
example Session.save() or Session.saveOrUpdate().

In Hibernate 5.3.3, the hibernate.native_exception_handling_51_compliance property was added.
This property indicates whether exception handling for a SessionFactory built using Hibernate’s native
bootstrapping should behave the same as native exception handling in Hibernate ORM 5.1. When set to
true, HibernateException is not wrapped or converted according to the Jakarta Persistence
specification. This setting is ignored for a SessionFactory built using Jakarta Persistence
bootstrapping.

Compatibility transformer
JBoss EAP 7.4 includes a compatibility transformer that addresses Hibernate ORM 5.3 API methods
that are no longer compatible with Hibernate ORM 5.1. The transformer is a temporary measure to allow
applications built using Hibernate ORM 5.1 to exhibit the same behavior with Hibernate 5.3 in JBoss EAP
7.4. This is a temporary solution and you should replace these method calls with the recommended
Jakarta Persistence method calls.

You can enable the transformer in one of the following ways:

You can enable the transformer globally for all applications by setting the
Hibernate51CompatibilityTransformer system property to true.

You can use the jboss-deployment-structure.xml file to enable the transformer at the
application level.

The following table lists the Hibernate 5.1 methods that are transformed and the Hibernate 5.3 method
it is converted to:

Hibernate 5.1 Reference or Method Transformed to Hibernate 5.3 Reference or
Method

org.hibernate.BasicQueryContract.getFlushMode() org.hibernate.BasicQueryContract.getHibernateFlus
hMode()

org.hibernate.Session.getFlushMode() org.hibernate.Session.getHibernateFlushMode()

<jboss-deployment-structure>
 <deployment>
 <transformers>
 <transformer class="org.jboss.as.hibernate.Hibernate51CompatibilityTransformer"/>
 </transformers>
 </deployment>
 <sub-deployment name="main.war">
 <transformers>
 <transformer class="org.jboss.as.hibernate.Hibernate51CompatibilityTransformer"/>
 </transformers>
 </sub-deployment>
</jboss-deployment-structure>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

76

https://github.com/hibernate/hibernate-orm/blob/5.3/migration-guide.adoc
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/BasicQueryContract.html#getFlushMode--
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/BasicQueryContract.html#getHibernateFlushMode()
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/Session.html#getFlushMode--
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/Session.html#getFlushMode()

Enum org.hibernate.FlushMode.NEVER (0) Enum org.hibernate.FlushMode.MANUAL (0)

org.hibernate.Query.getMaxResults() org.hibernate.Query.getHibernateMaxResults()

org.hibernate.Query.setMaxResults(int) org.hibernate.Query.setHibernateMaxResults(int)

org.hibernate.Query.getFirstResult(int) org.hibernate.Query.getHibernateFirstResult()

org.hibernate.Query.setFirstResult(int) org.hibernate.Query.setHibernateFirstResult(int)

Hibernate 5.1 Reference or Method Transformed to Hibernate 5.3 Reference or
Method

7.9. HIBERNATE SEARCH CHANGES

The version of Hibernate Search that is included with JBoss EAP 7 has changed. The previous release of
JBoss EAP included Hibernate Search 4.6.x. JBoss EAP 7 is included with Hibernate Search 5.5.x.

Hibernate Search 5.5 is built upon Apache Lucene 5.3.1. If you use any native Lucene APIs, be sure to
align with this version. The Hibernate Search 5.5.8.Final wraps and hides the complexity of many of the
Lucene API changes made between version 3 and version 5; however, some classes are now deprecated,
renamed, or repackaged. This section describes how these changes might impact your application code.

In JBoss EAP 8.0, Hibernate Search 5 APIs have been removed and are replaced with Hibernate Search
6 APIs.

Additional resources

Hibernate search changes

7.9.1. Hibernate Search 6 replaces Hibernate Search 5 APIs

Hibernate Search 5 APIs have been removed and are replaced with Hibernate Search 6 APIs in JBoss
EAP 8.0.

To view a list of the removed features, see Hibernate Search 5 APIs Deprecated in JBoss EAP 7.4 and
removed in EAP 8.0.

NOTE

Hibernate Search 6 APIs are backwards-incompatible with Hibernate Search 5 APIs.
You will need to migrate your applications to Hibernate Search 6.

The latest version of Hibernate Search 6 included in JBoss EAP 8.0 is 6.2. If you are migrating from
Hibernate Search 5, you should take into account the migration to version 6.0, 6.1, and 6.2.

See the following migrations guides for more information:

To migrate your applications from Hibernate Search 5, see the Hibernate Search 6.0 migration
guide.

To migrate your applications from Hibernate Search 6.0 to 6.1, see the Hibernate Search 6.1

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

77

http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/FlushMode.html#NEVER
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/FlushMode.html#MANUAL
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/Query.html#getMaxResults--
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/Query.html#getHibernateMaxResults()
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/Query.html#setMaxResults-int-
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/Query.html#setHibernateMaxResults(int)
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/Query.html#getFirstResult--
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/Query.html#getHibernateFirstResult()
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/Query.html#setFirstResult-int-
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/Query.html#setHibernateFirstResult(int)
https://docs.jboss.org/hibernate/search/5.5/api/index.html
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/migration_guide/#migrate_hibernate_search_changes
https://access.redhat.com/articles/6765901
https://docs.jboss.org/hibernate/search/6.0/migration/html_single/

To migrate your applications from Hibernate Search 6.0 to 6.1, see the Hibernate Search 6.1
migration guide.

To migrate your applications from Hibernate Search 6.1 to 6.2, see the Hibernate Search 6.2
migration guide

NOTE

Hibernate Search 6.2 is compatible with Hibernate ORM 6.2. For more information, see
the section Hibernate ORM 6 in the Hibernate Search 6.2 Reference documentation.

7.9.2. Hibernate Search 6 supports Elasticsearch

JBoss EAP 8.0 also provides support for using an Elasticsearch backend in Hibernate Search 6 to index
data into remote Elasticsearch or OpenSearch clusters.

To see a list of possible Hibernate Search architectures and backends, see Table 2. Comparison of
architectures in the Hibernate Search 6.2 reference documentation.

For more information about configuring Hibernate Search 6, see Using Hibernate Search in the WildFly
Developer guide.

Additional resources

Hibernate changes

7.10. MIGRATE ENTITY BEANS TO JAKARTA PERSISTENCE

Support for Enterprise Java Beans entity beans is optional in Java EE 8 and they are not supported
starting with JBoss EAP 7.

In previous releases of JBoss EAP, entity beans were created in application source code by extending
the javax.ejb.EntityBean class and implementing the required methods. They were then configured in
the ejb-jar.xml file. A CMP entity bean was specified using an <entity> element that contained a
<persistence-type> child element with a value of Container. A BMP entity bean was specified using an
<entity> element that contained a <persistence-type> child element with a value of Bean.

Starting with JBoss EAP 7, you must replace any CMP and BMP entity beans in your code with Jakarta
Persistence entities. Jakarta Persistence entities are created using the jakarta.persistence.* classes and
are defined in the persistence.xml file.

The following is an example of a Jakarta Persistence entity class:

import jakarta.persistence.Column;
import jakarta.persistence.Entity;
import jakarta.persistence.GeneratedValue;
import jakarta.persistence.Id;
import jakarta.persistence.Table;

@Entity
// User is a keyword in some SQL dialects!
@Table(name = "MyUsers")
public class MyUser {
 @Id
 @GeneratedValue

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

78

https://docs.jboss.org/hibernate/search/6.1/migration/html_single/
https://docs.jboss.org/hibernate/search/6.2/migration/html_single/
https://docs.jboss.org/hibernate/search/6.2/reference/en-US/html_single/#other-integrations-orm6
https://docs.jboss.org/hibernate/search/6.2/reference/en-US/html_single/#_backend
https://docs.wildfly.org/30/Developer_Guide.html#using-hibernate-search
https://jakarta.ee/specifications/persistence/3.1/apidocs/jakarta.persistence/jakarta/persistence/package-summary

The following is an example of a persistence.xml file.

For working examples of Jakarta Persistence entities, see the cmt quickstart that is included with JBoss
EAP 8.0.

7.11. JAKARTA PERSISTENCE PROPERTY CHANGES

This section describes the Jakarta Persistence property changes introduced in JBoss EAP 7.0 and 7.1.

Jakarta Persistence property changes introduced in JBoss EAP 7.0
A new persistence property, jboss.as.jpa.deferdetach, was added to provide compatibility with the
persistence behavior in previous releases of JBoss EAP.

The jboss.as.jpa.deferdetach property controls whether the transaction-scoped persistence context

 private Long id;

 @Column(unique = true)
 private String username;
 private String firstName;
 private String lastName;

 public Long getId() {
 return id;
 }
 public String getUsername() {
 return username;
 }
 public void setUsername(String username) {
 this.username = username;
 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

<persistence xmlns="https://jakarta.ee/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/persistence
 https://jakarta.ee/xml/ns/persistence/persistence_3_0.xsd"
 version="3.0">
 <persistence-unit name="my-unique-persistence-unit-name">
 <properties>
 // properties...
 </properties>
 </persistence-unit>
</persistence>

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

79

used in a non-Jakarta Transactions thread detaches loaded entities after each EntityManager
invocation or whether it waits until the persistence context is closed, for example, when the session bean
invocation ends. The property value defaults to false, meaning entities are detached or cleared after
each EntityManager invocation. This is the correct default behavior as defined in the Jakarta
Persistence specification. If the property value is set to true, the entities are not detached until the
persistence context is closed.

In JBoss EAP 5, persistence behaved as if the jboss.as.jpa.deferdetach property was set to true. To
get this same behavior when migrating your application from JBoss EAP 5 to JBoss EAP 7, you must set
the jboss.as.jpa.deferdetach property value to true in your persistence.xml as shown in the following
example.

In JBoss EAP 6, persistence behaved as if the jboss.as.jpa.deferdetach property was set to false. This
is the same behavior as seen in JBoss EAP 7, so no changes are necessary when you migrate your
application.

Jakarta Persistence property changes introduced in JBoss EAP 7.1
In JBoss EAP 7.0, unsynchronized persistence context error checking was not as strict as it should have
been in the following areas.

A synchronized container-managed persistence context was allowed to use an unsynchronized
extended persistence context that was associated with a Jakarta Transactions. Instead, it should
have thrown an IllegalStateException to prevent the unsynchronized persistence context from
being used.

An unsynchronized persistence context specified in a deployment descriptor was treated as
synchronized.

In addition, PersistenceProperty hints in the @PersistenceContext were mistakenly ignored in JBoss
EAP 7.0.

These issues were addressed and fixed in JBoss EAP 7.1 and later. Because these updates can result in
an unwanted change in application behavior, two new persistence unit properties were introduced in
JBoss EAP 7.1 to provide backward compatibility and preserve the previous behavior.

Property Description

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">
 <persistence-unit name="EAP5_COMPAT_PU">
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <properties>
 <property name="jboss.as.jpa.deferdetach" value="true" />
 </properties>
 </persistence-unit>
</persistence>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

80

https://jakarta.ee/specifications/persistence/3.1/

wildfly.jpa.skipmixedsynctypechecking This property disables the error checking. It should
only be used as a temporary measure for backward
compatibility in situations where applications worked
in JBoss EAP 7.0 and fail in JBoss EAP 7.1 and later.
Because this property might be deprecated in a
future release, it is recommended that you correct
your application code as soon as you are able to do
so.

wildfly.jpa.allowjoinedunsync This property is an alternative to
wildfly.jpa.skipmixedsynctypechecking. It
allows the application to treat unsynchronized
persistence contexts that are associated with a
Jakarta Transactions as if they are synchronized
persistence contexts.

Property Description

7.12. MIGRATE JAKARTA ENTERPRISE BEANS CLIENT CODE

This section discusses the changes in Jakarta Enterprise Beans client in JBoss EAP 7.0. It also explains
how to modify your client code to use the new default remote port and connector in JBoss EAP 7.0. In
addition, it describes the required JBoss EJB client changes introduced in JBoss EAP 7.1 and JBoss EAP
7.0.

NOTE

Starting with JBoss EAP 7.0, enterprise entity beans are not supported. For more
information, see Migrate Entity Beans to Jakarta Persistence .

7.12.1. Jakarta Enterprise Beans client changes in JBoss EAP 7

Starting with JBoss EAP 7, the default remote connector and port have been changed. For details
about this change, see Update the Remote URL connector and port .

If you used the JBoss Server Migration Tool to migrate your server configuration, the old settings are
preserved and you do not need to make the changes detailed here. However, if you use the new JBoss
EAP 8.0 default configuration, you must make the following changes.

7.12.1.1. Update the default remote connection port

Change the remote connection port value from 4447 to 8080 in the jboss-ejb-client.properties file. The
following are examples of a jboss-ejb-client.properties file in the previous and the current release:

Example: JBoss EAP 6 jboss-ejb-client.properties file

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connections=default
remote.connection.default.host=localhost

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

81

remote.connection.default.port=4447
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

Example: JBoss EAP 8 jboss-ejb-client.properties file

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connections=default
remote.connection.default.host=localhost
remote.connection.default.port=8080
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

7.12.1.2. Update the default connector

If you use the new JBoss EAP 7 configuration, the default connector has changed from remote to http-
remoting. This change impacts clients using libraries from one release of JBoss EAP to connect to a
server in a different release.

If a client application uses the Jakarta Enterprise Beans client library from JBoss EAP 6 and
wants to connect to JBoss EAP 7 server, the server must be configured to expose a remote
connector on a port other than 8080. The client must then connect using that newly configured
connector.

A client application that uses the Jakarta Enterprise Beans client library from JBoss EAP 7 and
wants to connect to JBoss EAP 6 server must be aware that the server instance does not use
the http-remoting connector and instead uses a remote connector. This is achieved by defining
a new client-side connection property.

Example: remote connection property

remote.connection.default.protocol=remote

7.12.2. Migrate remote naming client code

If you are running with the new default JBoss EAP 7 configuration, you must modify your client code to
use the new default remote port and connector.

The following is an example of how remote naming properties were specified in the client code in JBoss
EAP 6.

java.naming.factory.initial=org.jboss.naming.remote.client.InitialContextFactory
java.naming.provider.url=remote://localhost:4447

The following is an example of how to specify the remote naming properties in the client code in JBoss
EAP 7.

java.naming.factory.initial=org.wildfly.naming.client.WildFlyInitialContextFactory
java.naming.provider.url=http-remoting://localhost:8080

7.12.3. Additional JBoss EJB client changes introduced in JBoss EAP 7.1

JBoss EAP 7.0 is included with JBoss Enterprise Java Beans client 2.1.4, JBoss EAP 7.1 and later was
included with JBoss Enterprise Java Beans client 4.0.x, which includes a number of changes to the API.

NOTE

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

82

NOTE

Starting with JBoss EAP 7, enterprise entity beans are not supported. For information
about how to migrate entity beans to Jakarta Persistence, see Migrate Entity Beans to
Jakarta Persistence.

The org.ejb.client.EJBClientInvocationContext class adds the following new methods:

Method Type Description

isBlockingCaller() boolean Determine whether this invocation is currently
blocking the calling thread.

isClientAsync() boolean Determine whether the method is marked client-
asynchronous, meaning that invocation must be
asynchronous regardless of whether the server-
side method is asynchronous.

isIdempotent() boolean Determine whether the method is marked
idempotent, meaning that the method method
be invoked more than one time with no
additional effect.

setBlockingCaller(bool
ean)

void Establish whether this invocation is currently
blocking the calling thread.

setLocator(EJBLocator
<T>)

<T> void Set the locator for the invocation target.

The org.ejb.client.EJBLocator class has added the following new methods:

Method Type Description

asStateful() StatefulEJBLo
cator<T>

Return this locator as a stateful locator, if it is
one.

asStateless() StatelessEJBL
ocator<T>

Return this locator as a stateless locator, if it is
one.

isEntity() boolean Determine if this is an entity locator.

isHome() boolean Determine if this is a home locator.

isStateful() boolean Determine if this is a stateful locator.

isStateless() boolean Determine if this is a stateless locator.

withNewAffinity(Affinity
)

abstract
EJBLocator<T
>

Create a copy of this locator, but with the new
given affinity.

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

83

A new org.ejb.client.EJBClientPermission class, which is a subclass of java.security.Permission, is
introduced for controlling access to privileged Enterprise Java Beans operations. It provides the
following constructors:

EJBClientPermission(String name)

EJBClientPermission(String name, String actions)

It provides the following methods:

Method Type Description

equals(EJBClientPermi
ssion obj)

boolean Checks two EJBClientPermission objects for
equality.

equals(Object obj) boolean Checks two Permission objects for equality.

equals(Permission obj) boolean Checks two Permission objects for equality.

getActions() String Returns the actions as a string.

hashcode() int Returns the hash code value for this
Permission object.

implies(EJBClientPermi
ssion permission)

boolean Checks if the specified permission’s actions are
implied by this EJBClientPermission object’s
actions.

implies(Permission
permission)

boolean Checks if the specified permission’s actions are
implied by this Permission object’s actions.

A new org.ejb.client.EJBMethodLocator class is introduced for locating a specific Enterprise
Java Beans method. It provides the following constructor:

EJBMethodLocator(String methodName, String… parameterTypeNames)

It provides the following methods:

Method Type Description

equals(EJBMethodLoc
ator other)

boolean Determine whether this object is equal to
another.

equals(Object other) boolean Determine whether this object is equal to
another.

forMethod(Method
method)

static
EJBMethodLo
cator

Get a method locator for the given reflection
method.

getMethodName() String Get the method name.

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

84

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/security/Permission.html

getParameterCount() int Get the parameter count.

getParameterTypeNam
e(int index)

String Get the name of the parameter at the given
index.

hashCode() int Get the hash code.

Method Type Description

A new org.jboss.ejb.client.EJBReceiverInvocationContext.ResultProducer.Failed class is
introduced for failure cases. It provides the following constructor:

Failed(Exception cause)

It provides the following methods:

Method Type Description

discardResult() void Discard the result, indicating that it will not be
used.

getResult() Object Get the result.

A new org.jboss.ejb.client.EJBReceiverInvocationContext.ResultProducer.Immediate class
is introduced for immediate results. It provides the following constructor:

Failed(Exception cause)

It provides the following methods:

Method Type Description

discardResult() void Discard the result, indicating that it will not be
used.

getResult() Object Get the result.

A new org.jboss.ejb.client.URIAffinity class, which is a subclass of
org.jboss.ejb.client.Affinity is introduced for URI affinity specification. It is created using
Affinity.forUri(URI).

It provides the following methods:

Method Type Description

equals(Affinity other) boolean Indicates whether another object is equal to this
one.

equals(Object other) boolean Indicates whether another object is equal to this
one.

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

85

equals(URIAffinity
other)

boolean Indicates whether another object is equal to this
one.

getURI() URI Get the associated URI.

hashCode() int Get the hash code.

toString() String Returns a string representation of the object.

Method Type Description

The org.jboss.ejb.client.EJBMetaDataImpl class deprecates the following methods:

toAbstractEJBMetaData()

EJBMetaDataImpl(AbstractEJBMetaData<?,?>)

7.13. MIGRATE CLIENTS TO USE THE WILDFLY CONFIGURATION FILE

Prior to release JBoss EAP 7.1, JBoss EAP client libraries, such as Enterprise Java Beans and naming,
used different configuration strategies. JBoss EAP 7.1 introduced the wildfly-config.xml file with the
purpose of unifying all client configurations into one single configuration file, in a similar manner to the
way the server configuration is handled.

For example, prior to JBoss EAP 7.1, you might create a new InitialContext for an Enterprise Java Beans
client using a jboss-ejb-client.properties file, or by programmatically setting the properties using a
Properties class.

Example: jboss-ejb-client.properties properties file

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connections=one
remote.connection.one.port=8080
remote.connection.one.host=127.0.0.1
remote.connection.one.username=quickuser
remote.connection.one.password=quick-123

In JBoss EAP 7.1 and later, you create a wildfly-config.xml file in the META-INF/ directory of the client
archive. This is the equivalent configuration using a wildfly-config.xml file.

Example: Equivalent configuration using the wildfly-config.xml file

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.7">
 <authentication-rules>
 <rule use-configuration="ejb"/>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="ejb">
 <set-user-name name="quickuser"/>
 <credentials>
 <clear-password password="quick-123"/>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

86

Additional resources

Configure Client Authentication with Elytron Client .

Client Configuration Using the wildfly-config.xml File.

7.14. MIGRATE DEPLOYMENT PLAN CONFIGURATIONS

The Java EE Application Deployment specification (JSR-88) was intended to define a standard
contract to enable tools from multiple providers to configure and deploy applications on any Java EE
platform product. The contract required Java EE Product Providers to implement the
DeploymentManager and other javax.enterprise.deploy.spi interfaces to be accessed by the Tool
Providers. In case of JBoss EAP 6, a deployment plan is identified by an XML descriptor named
deployment-plan.xml that is bundled in a archive or JAR archive.

This specification saw very little adoption because most application server products provide their own
more "feature rich" deployment solutions. For this reason, JSR-88 support was dropped from Java EE 7
and, in turn, from JBoss EAP 7.

If you used JSR-88 to deploy your application, you must now use another method to deploy the
application. The JBoss EAP management CLI deploy command provides a standard way to deploy
archives to standalone servers or to server groups in a managed domain. For more information about the
management CLI, see the Management CLI Guide.

7.15. MIGRATE CUSTOM APPLICATION VALVES

You must manually migrate custom valves or any valves that are defined in the jboss-web.xml XML file.
This includes valves created by extending the org.apache.catalina.valves.ValveBase class and
configured in the <valve> element of the jboss-web.xml descriptor file.

Migrate Valves Configured in Deployments
In JBoss EAP 6, you could define custom valves at the application level by configuring them in the
jboss-web.xml web application descriptor file. Since JBoss EAP 7, it is possible to do this with Undertow
handlers as well.

The following is an example of a valve configured in the jboss-web.xml file in JBoss EAP 6.

 </credentials>
 </configuration>
 </authentication-configurations>
 </authentication-client>
 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.2">
 <connections>
 <connection uri="remote+http://127.0.0.1:8080" />
 </connections>
 </jboss-ejb-client>
</configuration>

<jboss-web>
 <valve>
 <class-name>org.jboss.examples.MyValve</class-name>
 <param>
 <param-name>myParam</param-name>
 <param-value>foobar</param-value>

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

87

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/how_to_configure_identity_management/index#elytron_client_authentication
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#client_configuration_using_the_wildfly_config_file
https://jcp.org/en/jsr/detail?id=88
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/management_cli_guide/#management_cli_guide/

For more information about how to create and configure custom handlers in JBoss EAP, see Creating
Custom Handlers in the JBoss EAP 7.4 Development Guide.

Migrate Custom Authenticator Valves
For information about how to migrate authenticator valves, see Migrate authenticator valves.

7.16. SECURITY APPLICATION CHANGES

The replacement of JBoss Web with Undertow requires changes to security configuration since JBoss
EAP 7. Starting with JBoss EAP 8.0, you must use Elytron as the legacy security since PicketBox is no
longer available.

7.16.1. Migrate authenticator valves

If you created a custom authenticator valve that extended AuthenticatorBase in JBoss EAP 6.4, you
must manually replace it with a custom HTTP authentication implementation in JBoss EAP 7. The HTTP
authentication mechanism is created in the elytron subsystem and then registered with the undertow
subsystem. For information about how to implement a custom HTTP authentication mechanism, see
Developing a Custom HTTP Mechanism in the JBoss EAP 7.4 Development Guide.

7.16.2. PicketLink removal

PicketLink has been removed from JBoss EAP 8.0.

PicketLink SP
Use Keycloak SAML adapter instead of the PicketLink service provider.

To migrate from PicketLink by configuring the Keycloak SAML adapter, perform the following tasks:

Install Keycloak SAML client to JBoss EAP 8.0. For more information, see

Installing JBoss EAP 8.0 using the jboss-eap-installation-manager

Keycloak SAML adapter feature pack for securing applications using SAML

Configure a Keycloak SAML instead of PicketLink IdP if needed. To secure the SP application
using Keycloak SAML, a SAML client needs to be created. For more information on creating an
Keycloak SAML client, see Creating a SAML client in the JBoss EAP 7.5 Server Administration
Guide.

Update the applications to use the Keycloak SAML adapter. For more information on updating
the applications, see Securing web applications using SAML.

PicketLink IDP
PicketLink IDP is not available since JBoss EAP 8.0 and you can configure Red Hat build of Keycloak
instead. For more information, see Configuring Red Hat build of Keycloak .

PicketLink STS
In previous releases, you could configure PicketLink STS as an alternative to the Apache CXF Security
Token Service implementation. PicketLink STS configuration involved a legacy security domain. Any
references to legacy security domains and PicketLink in the STS application needs to be removed, so
you must configure Apache CXF STS instead.

 </param>
 </valve>
</jboss-web>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

88

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#creating_custom_handler
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#custom_http_mechanism
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/red_hat_jboss_enterprise_application_platform_installation_methods/#assembly_installing-jboss-eap-8-using-the-cli-installer-method_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_single_sign-on_with_jboss_eap/#keycloak-saml-adapter-feature-pack-for-securing-applications-using-saml_securing-applications-with-saml
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.5/html-single/server_administration_guide/index#client-saml-configuration
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_single_sign-on_with_jboss_eap/#securing-web-applications-using-saml_securing-applications-with-saml
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0

For more information on how to configure Apache CXF STS, see Security Token Service (STS) in the
JBoss EAP 7.4 Developing Web Services Applications .

7.16.3. Vault removal

Vaults has been removed from JBoss EAP 8.0. If your applications use legacy vault expressions, you
must migrate and use Elytron encrypted expressions.

Check for instances of ${VAULT:: in your deployment files, which could be in annotations or deployment
descriptors, and replace them with the corresponding encrypted expressions.

Additional resources

Encrypted expressions in Elytron

7.16.4. OIDC client migration

The Keycloak OIDC client adapter is not supported in JBoss EAP 8.0 and is replaced by the native
Elytron OIDC client, providing similar functionality and configuration.

To migrate from the Keycloak OIDC client adapter to the native Elytron OIDC client, follow these steps:

Check for <auth-method>KEYCLOAK</auth-method> in the web.xml file of the application
and replace it with <auth-method>OIDC</auth-method> in the web.xml file of the
deployment.

Check for the presence of WEB-INF/keycloak.json and rename it to WEB-INF/oidc.json.

Additional resources

OpenID Connect configuration in JBoss EAP

Migrate keycloak subsystem

7.16.5. Custom login modules migration

In JBoss EAP 8.0, the legacy security subsystem has been removed. To continue using your custom login
modules with the elytron subsystem, use the new Java Authentication and Authorization Service
(JAAS) security realm and jaas-realm.

Additional resources

JAAS realm in the elytron subsystem

7.16.6. Other security application changes

There are a few noticeable differences between JBoss EAP 7.2 or higher and earlier versions:

The NegotiationAuthenticator valve is not required in the jboss-web.xml, but there still must
be <security-constraint> and <login-config> elements defined in the web.xml. These are
used to decide which resources are secured.

The auth-method element in the <login-config> element is now a comma-separated list. The
exact value SPNEGO must be there and should appear first in that list. In cases where FORM
authentication is desired as a fallback, the exact value would be SPNEGO,FORM.

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

89

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/developing_web_services_applications/#about_sts
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/secure_storage_of_credentials_in_jboss_eap/#con_enrypted-expressions-in-elytron_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_single_sign-on_with_jboss_eap/#con_openid-connect-configuration-in-jboss-eap_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_the_jboss_server_migration_tool#migrate-keycloak-subsystem_standalone-current
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/release_notes_for_red_hat_jboss_enterprise_application_platform_8.0/index#ref-security_assembly-release-notes

The jboss-deployment-structure.xml file is not required.

7.17. JBOSS LOGGING CHANGES

Starting with JBoss EAP 7, if your application uses JBoss Logging, be aware that the annotations in the
org.jboss.logging package are deprecated. They have been moved to the
org.jboss.logging.annotations package, so you must update your source code to import the new
package.

The annotations have also moved to a separate Maven groupId:artifactId:version (GAV) ID so you
need to add a new project dependency for org.jboss.logging:jboss-logging-annotations in your
project pom.xml file.

NOTE

Only the logging annotations have moved. The org.jboss.logging.BasicLogger and
org.jboss.logging.Logger still exist in the org.jboss.logging package.

The following table lists the deprecated annotation classes and corresponding replacements.

Table 7.1. Deprecated Logging Annotation Replacements

Deprecated Class Replacement Class

org.jboss.logging.Cause org.jboss.logging.annotations.Cause

org.jboss.logging.Field org.jboss.logging.annotations.Field

org.jboss.logging.FormatWith org.jboss.logging.annotations.FormatWith

org.jboss.logging.LoggingClass org.jboss.logging.annotations.LoggingClass

org.jboss.logging.LogMessage org.jboss.logging.annotations.LogMessage

org.jboss.logging.Message org.jboss.logging.annotations.Message

org.jboss.logging.MessageBundle org.jboss.logging.annotations.MessageBundle

org.jboss.logging.MessageLogger org.jboss.logging.annotations.MessageLogger

org.jboss.logging.Param org.jboss.logging.annotations.Param

org.jboss.logging.Property org.jboss.logging.annotations.Property

7.18. JAKARTA FACES CODE CHANGES

This section describes the impact of the Jakarta Faces code changes in migrating your application to
JBoss EAP.

Dropped support for Jakarta Server Faces prior to 4.0

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

90

NOTE

Jakarta Server Faces is the new name for JavaServer Faces.

With JBoss EAP 6.4, you could continue to use Jakarta Server Faces 1.2 with your application
deployment by creating a jboss-deployment-structure.xml file. JBoss EAP 7.4 includes Jakarta Server
Faces 2.3 and no longer supports the Jakarta Server Faces 1.2 API. If your application uses Jakarta
Server Faces 1.2, you must rewrite it to use Jakarta Server Faces 2.3.

JBoss EAP 8.0 no longer supports any version of JSF prior to 4.0.

7.19. INTEGRATE MYFACES FOR ALTERNATIVE FACES

You can simplify the installation of an alternative Jakarta Faces implementation, MyFaces, as an
alternative to the default Mojarra Jakarta Faces implementation within the JBoss EAP by introducing
the Galleon feature pack, eap-myfaces-feature-pack. You can use this feature pack to provision a
different Jakarta Faces implementation within JBoss EAP.

You can use the eap-myfaces-feature-pack to select the MyFaces version by using the
MYFACES_VERSION environment variable. This feature pack introduces a single layer named
MyFaces, providing the option to install and select MyFaces as an alternative. For more information, see
How to configure the Multi-JSF feature in EAP 8 .

NOTE

Compatibility with JBoss EAP 8.0 is limited to versions 4.x and above.

7.20. MODULE CLASS LOADING CHANGES

In JBoss EAP 7, the class loading behavior has changed in cases where multiple modules contain the
same classes or packages.

Assume there are two modules, MODULE_A and MODULE_B, that depend upon each other and
contain some of the same packages. In JBoss EAP 6, the classes or packages that were loaded from the
dependencies took precedence over those specified in the resource-root of the module.xml file. This
meant MODULE_A saw the packages for MODULE_B and MODULE_B saw the packages for
MODULE_A. This behavior was confusing and could cause conflicts. This behavior has changed in JBoss
EAP 7. Now the classes or packages specified by the resource-root in the module.xml file take
precedence over those specified by the dependency. This means MODULE_A sees the packages for
MODULE_A and MODULE_B sees the packages for MODULE_B. This prevents conflicts and provides
a more appropriate behavior.

If you have defined custom modules that include resource-root libraries or packages that contain
classes that are duplicated in their module dependencies, you might see ClassCastException,
LinkageError, class loading errors, or other changes in behavior when you migrate to JBoss EAP 7. To
resolve these issues, you must configure your module.xml file to ensure only one version of a class is
used. This can be accomplished by using either of the following approaches.

You can avoid specifying a resource-root that duplicates classes in the module dependency.

You can use the include and exclude sub-elements of the imports and exports elements to
control class loading in the module.xml file. The following is an export element that excludes
classes is in the specified package.

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

91

https://access.redhat.com/solutions/7028403

If you prefer to preserve your existing behavior, you must filter the dependency packages from the
dependent resource-root in the module.xml file using the filter element. This allows you to retain the
existing behavior without the odd looping that you would see under JBoss EAP 6. The following is an
example of a root-resource that filters classes in a specified package.

For more information about modules and class loading, see Class Loading and Modules in the JBoss
EAP 7.4 Development Guide.

7.21. APPLICATION CLUSTERING CHANGES

This section provides an overview of the clustering changes required for migrating your application from
JBoss EAP 6 to JBoss EAP 8. In addition, this section describes how clustering changes might impact
the migration of your applications to JBoss EAP 8.0.

7.21.1. Overview of new clustering features

The following list describes some of the new clustering features to be aware of when migrating your
application from JBoss EAP 6 to JBoss EAP 8.0.

JBoss EAP 7 introduces a new public API for building singleton services that significantly
simplifies the process. For information on singleton services, see HA Singleton Service in the
JBoss EAP 7.4 Development Guide

A singleton deployment can be configured to deploy and start on only a single node in the
cluster at a time. For more information, see HA Singleton Deployments in the JBoss EAP 7.4
Development Guide.

You can now define clustered singleton MDBs. For more information, see Clustered Singleton
MDBs in the JBoss EAP 7.4 Developing Jakarta Enterprise Beans Applications .

JBoss EAP 8.0 includes the Undertow mod_cluster implementation. This offers a pure Java load
balancing solution that does not require an httpd web server. For more information, see
Configuring JBoss EAP as a Front-end Load Balancer in the JBoss EAP 7.4 Configuration
Guide.

7.21.2. Web Session Clustering Changes

JBoss EAP 7 introduces a new web session clustering implementation. It replaces the previous
implementation, which was tightly coupled to the legacy JBoss Web subsystem source code.

The new web session clustering implementation impacts how the application is configured in the jboss-
web.xml JBoss EAP proprietary web application XML descriptor file. The following are the only
clustering configuration elements that remain in this file.

<exports>
 <exclude path="com/mycompany/duplicateclassespath/"/>
</exports>

<resource-root path="mycompany.jar">
 <filter>
 <exclude path="com/mycompany/duplicateclassespath"/>
 </filter>
</resource-root>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

92

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#class_loading_and_modules
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#clustered_ha_singleton_service
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#ha_singleton_deployments
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/developing_jakarta_enterprise_beans_applications/#clustered_singleton_mdbs
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configuring_jboss_eap_load_balancer

The distributable-web subsystem deprecates the <replication-config> element of jboss-web.xml. It
enhances the usage of <replication-config> by generating an ad hoc distributable web session profile.

You can override the default distributable session management behavior by referencing a session
management profile by name or by providing a deployment-specific session management configuration.
For more information, see Overriding the default distributable session management behavior .

The following table describes how to achieve similar behavior for elements in the jboss-web.xml file
that are now obsolete.

Configuration Element Description of Change

<max-active-sessions/> Previously, the session creation would fail if it caused the number of active
sessions to exceed the value specified by <max-active-sessions/>.

In the new implementation, <max-active-sessions/> is used to enable
session passivation. If session creation will cause the number of active
sessions to exceed the <max-active-sessions/>, then the oldest session
known to the session manager will passivate to make room for the new
session.

<passivation-config/> Starting with JBoss EAP 7, this configuration element and its sub-elements
are no longer used.

<use-session-passivation/> Previously, passivation was enabled using this attribute.

In the new implementation, passivation is enabled by specifying a non-
negative value for <max-active-sessions/>.

<passivation-min-idle-time/> Previously, sessions needed to be active for a minimum amount of time
before becoming a candidate for passivation. This could cause session
creation to fail, even when passivation was enabled.

The new implementation does not support this logic and thus avoids this
Denial of Service (DoS) vulnerability.

<passivation-max-idle-time/> Previously, a session would be passivated after it was idle for a specific
amount of time.

The new implementation only supports lazy passivation. It does not support
eager passivation. Sessions are only passivated when necessary to comply
with <max-active-sessions/>.

<jboss-web>
 ...
 <max-active-sessions>...</max-active-sessions>
 ...
 <replication-config>
 <replication-granularity>...</replication-granularity>
 <cache-name>...</cache-name>
 </replication-config>
 ...
</jboss-web>

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

93

<replication-config/> The distributable-web subsystem deprecates this element. For more
information, see The distributable-web subsystem for Distributable Web
Session Configurations in the JBoss EAP 7.4 Development Guide and
Overriding the default distributable session management behavior.

<replication-trigger/> Previously, this element was used to determine when session replication was
triggered. The new implementation replaces this configuration option with a
single, robust strategy. For more information, see Immutable Session
Attributes in the JBoss EAP 7.4 Development Guide.

<use-jk/> Previously, the instance-id of the node handling a given request was
appended to the jsessionid, for use by load balancers such as mod_jk,
mod_proxy_balancer, mod_cluster, depending on the value specified for
<use-jk/>.

In the new implementation, the instance-id, if defined, is always appended
to the jsessionid.

<max-unreplicated-interval/> Previously, this configuration option was intended as an optimization to
prevent the replication of a session’s timestamp if no session attribute was
changed. While this sounds nice, in practice it does not prevent any RPCs,
since session access requires cache transaction RPCs regardless of whether
any session attributes changed.

In the new implementation, the timestamp of a session is replicated on
every request. This prevents stale session metadata following a failover.

<snapshot-mode/> Previously, one could configure <snapshot-mode/> as INSTANT or
INTERVAL. Infinispan’s asynchronous replication makes this configuration
option obsolete.

<snapshot-interval/> This was only relevant for <snapshot-mode>INTERVAL</snapshot-
mode>. Since <snapshot-mode/> is obsolete, this option is now obsolete
as well.

<session-notification-policy/> Previously, the value specified by this attribute defined a policy for
triggering session events.

In the new implementation, this behavior is specification-driven and not
configurable.

Configuration Element Description of Change

This new implementation also supports write-through cache stores as well as passivation-only cache
stores. Typically, a write-through cache store is used in conjunction with an invalidation cache. The web
session clustering implementation in JBoss EAP 6 did not operate correctly when used with an
invalidation cache.

7.21.3. Overriding the default distributable session management behavior

You can override the default distributable session management behavior in one of the following ways:

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

94

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#distributable_web_subsystem
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#immutable_session_attributes

Referencing a session management profile by name

Providing a deployment-specific session management configuration

Referencing an existing session management profile

To use an existing distributed session management profile, include a distributable-web.xml
deployment descriptor located in the application’s /WEB-INF directory. For example:

/WEB-INF/distributable-web.xml

Alternatively, define the target distributed session management profile within an existing jboss-
all.xml deployment descriptor:

/META-INF/jboss-all.xml

Using a Deployment-specific Session Management Profile
If only a single web application uses the custom session management configuration, you can define the
configuration within the deployment descriptor itself. Ad hoc configuration looks identical to the
configuration used by the distributable-web subsystem.

Define the custom session management configuration within the deployment descriptor. For
example:

/WEB-INF/distributable-web.xml

Alternatively, define the session management configuration within an existing jboss-all.xml
deployment descriptor:

/META-INF/jboss-all.xml

<?xml version="1.0" encoding="UTF-8"?>
<distributable-web xmlns="urn:jboss:distributable-web:1.0">
 <session-management name="foo"/>
</distributable-web>

<?xml version="1.0" encoding="UTF-8"?>
<jboss xmlns="urn:jboss:1.0">
 <distributable-web xmlns="urn:jboss:distributable-web:1.0">
 <session-management name="foo"/>
 </distributable-web>
</jboss>

<?xml version="1.0" encoding="UTF-8"?>
<distributable-web xmlns="urn:jboss:distributable-web:1.0">
 <infinispan-session-management cache-container="foo" cache="bar" granularity="SESSION">
 <primary-owner-affinity/>
 </infinispan-session-management>
</distributable-web>

<?xml version="1.0" encoding="UTF-8"?>
<jboss xmlns="urn:jboss:1.0">
 <distributable-web xmlns="urn:jboss:distributable-web:1.0">
 <infinispan-session-management cache-container="foo" cache="bar" granularity="ATTRIBUTE">
 <local-affinity/>

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

95

7.21.4. Stateful session EJB clustering changes

In JBoss EAP 6, you were required to enabled the clustering behavior for stateful session beans (SFSBs)
in one of the following ways:

You could add the org.jboss.ejb3.annotation.Clustered annotation in the session bean.

You could add the <clustered> element to the jboss-ejb3.xml file.

Starting with JBoss EAP 7, you no longer need to enable the clustering behavior. By default, if the
server is started using an HA profile, the state of SFSBs will be replicated automatically. You can disable
this default behavior in one of the following ways:

You can disable the default behavior for a single stateful session bean by using
@Stateful(passivationCapable=false), which is new to the Enterprise Java Beans 3.2
specification.

You can disable this behavior globally in the configuration of the ejb3 subsystem in the server
configuration.

NOTE

If the @Clustered annotation is not removed from the application, it is simply ignored
and does not affect the deployment of the application.

7.21.5. Clustering services changes

In JBoss EAP 6, the APIs for clustering services were in private modules and were not supported.

JBoss EAP 7 introduces a public clustering services API for use by applications. The new services are
designed to be lightweight, easily injectable, and require no external dependencies.

The new org.wildfly.clustering.group.Group interface provides access to the current cluster
status and allows listening for cluster membership changes.

The new org.wildfly.clustering.dispatcher.CommandDispatcher interface allows running

 </infinispan-session-management>
 </distributable-web>
</jboss>

@Stateful
@Clustered
public class MyBean implements MySessionInt {

 public void myMethod() {
 //
 }
}

<c:clustering>
 <ejb-name>DDBasedClusteredSFSB</ejb-name>
 <c:clustered>true</c:clustered>
</c:clustering>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

96

The new org.wildfly.clustering.dispatcher.CommandDispatcher interface allows running
code in the cluster, on all or a selected subset of nodes.

These services replace similar APIs that were available in previous releases, namely HAPartition from
JBoss EAP 5 and GroupCommunicationService, GroupMembershipNotifier, and
GroupRpcDispatcher in JBoss EAP 6.

For more information, see Public API for Clustering Services in the JBoss EAP 7.4 Development Guide.

7.21.6. Migrate Clustering HA Singleton

In JBoss EAP 6, there was no public API available for the cluster-wide HA singleton service. If you used
the private org.jboss.as.clustering.singleton.* classes, you must change your code to use the new
public org.wildfly.clustering.singleton.* packages when you migrate your application to JBoss EAP 8.

For more information about HA singleton services, see HA Singleton Service in the JBoss EAP 7.4
Development Guide. For information about HA singleton deployments, see HA Singleton Deployments
in the JBoss EAP 7.4 Development Guide.

7.22. CONTEXTSERVICE CUSTOMIZATION BY USING CONTEXT
TYPES

As part of Jakarta EE Concurrency 3.0, you can customize the ContextService property by using
context types. The Transaction context is one such type. The Transaction context replaces the use of
the use-transaction-setup-provider resource-definition attribute. When the use-transaction-setup-
provider attribute is set to true, the transaction context is cleared and when this attribute is set to false,
the transaction context is unchanged.

Red Hat no longer supports vendor-specific configurations and therefore, such resource-definition
attributes have been deprecated. In JBoss EAP 7, the default configurations defined the use-
transaction-setup-provider attribute as false, which means that the transaction context was
unchanged when a contextual task was run on a thread. By default, in JBoss EAP 8, the default
ContextService property is aligned with the Jakarta EE Concurrency 3.0 specification, and clears the
transaction context before a contextual task is executed.

To use a different ContextService, you must define it on the deployment by using the
ContextServiceDefinition annotation or by specifying it in XML.

7.23. REMOVAL OF DEPRECATED INITIALCONTEXT CLASS

The org.jboss.naming.remote.client.InitialContextFactory class is removed in JBoss EAP 8. In JBoss
EAP 7, the org.jboss.naming.remote.client.InitialContextFactory class had been deprecated and
replaced with the org.wildfly.naming.client.WildFlyInitialContextFactory class. You must migrate
your source code or configuration files to reflect this change.

Naming configuration changes:

If a user application is using system or environment properties, then java.naming.factory.initial
property must be migrated from
java.naming.factory.initial=org.jboss.naming.remote.client.InitialContextFactory to
java.naming.factory.initial=org.wildfly.naming.client.WildFlyInitialContextFactory.

If a user application is using WSDL contracts that contain
<soapjms:jndiInitialContextFactory>, then their values must be migrated from
<soapjms:jndiInitialContextFactory>org.jboss.naming.remote.client.InitialContextFactory

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

97

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#public_API_for_clustering-services
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#clustered_ha_singleton_service
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#ha_singleton_deployments

<soapjms:jndiInitialContextFactory> to
<soapjms:jndiInitialContextFactory>org.wildfly.naming.client.WildFlyInitialContextFactor
y<soapjms:jndiInitialContextFactory>.

If a user application is using Java code to configure remote naming, then it must be updated
from Properties env = new Properties();env.put(Context.INITIAL_CONTEXT_FACTORY,
org.jboss.naming.remote.client.InitialContextFactory.class.getName()); to
env.put(Context.INITIAL_CONTEXT_FACTORY,
org.wildfly.naming.client.WildFlyInitialContextFactory.class.getName());.

The methods listed below, from the org.wildfly.naming.client.ProviderEnvironment class, have been
deprecated in JBoss EAP 7 and are now removed in JBoss EAP 8 as part of Red Hat’s commitment to
replacing problematic language in our code, documentation, and web properties. For more details, see
our CTO Chris Wright’s message .

Any code containing a removed method must be refactored using the corresponding replacement:

getBlackList() replaced by getBlockList()

updateBlacklist(URI) replaced by updateBlockList(URI)

dropFromBlacklist(URI) replaced by dropFromBlocklist(URI)

7.24. RESOURCE ADAPTERS

A Jakarta Connectors Resource Adapter lets your applications communicate with any messaging
provider. It configures how Jakarta EE components such as MDBs and other Jakarta Enterprise Beans,
and even Servlets, can send or receive messages.

7.24.1. Deploying the IBM MQ Resource Adapter

IBM MQ is the Messaging Oriented Middleware (MOM) product offering from IBM that allows
applications on distributed systems to communicate with each other. This is accomplished through the
use of messages and message queues. IBM MQ is responsible for delivering messages to the message
queues and for transferring data to other queue managers using message channels. For more
information about IBM MQ, see IBM MQ on the IBM products website.

Summary
IBM MQ can be configured as an external Java Message Service provider for JBoss EAP 8.0. This
section covers the steps to deploy and configure the IBM MQ resource adapter in JBoss EAP. This
deployment and configuration can be accomplished by using the management CLI tool or the web-
based management console. See JBoss EAP supported configurations for the most current information
about the supported configurations of IBM MQ.

NOTE

You must restart your system after configuring your IBM MQ resource adapter for the
configuration changes to take effect.

JBoss EAP 8.0 is a Jakarta EE 10 implementation, so the packages used for all EE APIs have changed
from javax to jakarta, which requires a Jakarta EE 10 compliant resource adapter. If you were using the
IBM MQ Resource adapter in JBoss EAP 7.x or earlier, you must use wmq.jakarta.jmsra.rar, the IBM
MQ Resource Adapter that uses this jakarta namespace.

Remove and undeploy the previous resource adapter configuration for wmq.jmsra.rar and use

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

98

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://www.ibm.com/products/mq
https://access.redhat.com/articles/6961381

Remove and undeploy the previous resource adapter configuration for wmq.jmsra.rar and use
wmq.jakarta.jmsra.rar

Deploy wmq.jakarta.jmsra.rar and configure as per the steps provided in this section.

Prerequisites

Before you get started, you must verify the version of the IBM MQ resource adapter and understand its
configuration properties.

The IBM MQ resource adapter is supplied as a Resource Archive (RAR) file called
wmq.jakarta.jmsra.rar. You can obtain the wmq.jakarta.jmsra.rar file from
/opt/mqm/java/lib/jca/wmq.jakarta.jmsra.rar. See JBoss EAP supported configurations for
information about the specific versions that are supported for each release of JBoss EAP.

You must know the following IBM MQ configuration values. Refer to the IBM MQ product
documentation for details about these values.

MQ_QUEUE_MANAGER: The name of the IBM MQ queue manager

MQ_HOST_NAME: The host name used to connect to the IBM MQ queue manager

MQ_CHANNEL_NAME: The server channel used to connect to the IBM MQ queue manager

MQ_QUEUE_NAME: The name of the destination queue

MQ_TOPIC_NAME: The name of the destination topic

MQ_PORT: The port used to connect to the IBM MQ queue manager

MQ_CLIENT: The transport type

For outbound connections, you must also be familiar with the following configuration value:

MQ_CONNECTIONFACTORY_NAME: The name of the connection factory instance that will
provide the connection to the remote system

Procedure

The following are default configurations provided by IBM and are subject to change. Refer to the IBM
MQ documentation for more information.

1. First, deploy the resource adapter manually by copying the wmq.jakarta.jmsra.rar file to the
EAP_HOME/standalone/deployments/ directory.

2. Next, use the management CLI to add the resource adapter and configure it.

/subsystem=resource-adapters/resource-
adapter=wmq.jakarta.jmsra.rar:add(archive=wmq.jakarta.jmsra.rar, transaction-
support=XATransaction)

Note that the transaction-support element was set to XATransaction. When using
transactions, be sure to supply the security domain of the XA recovery datasource, as in the
example below.

/subsystem=resource-adapters/resource-adapter=test/connection-definitions=test:write-
attribute(name=recovery-security-domain,value=myDomain)

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

99

https://access.redhat.com/articles/6961381

For more information about XA Recovery, see Configuring XA Recovery in the JBoss EAP 7.4
Configuration Guide.

For non-transactional deployments, change the value of transaction-support to
NoTransaction.

/subsystem=resource-adapters/resource-
adapter=wmq.jakarta.jmsra.rar:add(archive=wmq.jakarta.jmsra.rar, transaction-
support=NoTransaction)

3. Now that the resource adapter is created, you can add the necessary configuration elements to
it.

a. Add an admin-object for queues and configure its properties.

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/admin-
objects=queue-ao:add(class-
name=com.ibm.mq.jakarta.connector.outbound.MQQueueProxy, jndi-
name=java:jboss/MQ_QUEUE_NAME)

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/admin-
objects=queue-ao/config-properties=baseQueueName:add(value=MQ_QUEUE_NAME)

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/admin-
objects=queue-ao/config-
properties=baseQueueManagerName:add(value=MQ_QUEUE_MANAGER)

b. Add an admin-object for topics and configure its properties.

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/admin-
objects=topic-ao:add(class-
name=com.ibm.mq.jakarta.connector.outbound.MQTopicProxy, jndi-
name=java:jboss/MQ_TOPIC_NAME)

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/admin-
objects=topic-ao/config-properties=baseTopicName:add(value=MQ_TOPIC_NAME)

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/admin-
objects=topic-ao/config-
properties=brokerPubQueueManager:add(value=MQ_QUEUE_MANAGER)

c. Add a connection definition for a managed connection factory and configure its properties.

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/connection-
definitions=mq-cd:add(class-
name=com.ibm.mq.jakarta.connector.outbound.ManagedConnectionFactoryImpl, jndi-
name=java:jboss/MQ_CONNECTIONFACTORY_NAME, tracking=false)

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/connection-
definitions=mq-cd/config-properties=hostName:add(value=MQ_HOST_NAME)

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/connection-
definitions=mq-cd/config-properties=port:add(value=MQ_PORT)

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/connection-

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

100

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configuring_xa_recovery

definitions=mq-cd/config-properties=channel:add(value=MQ_CHANNEL_NAME)

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/connection-
definitions=mq-cd/config-properties=transportType:add(value=MQ_CLIENT)

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar/connection-
definitions=mq-cd/config-
properties=queueManager:add(value=MQ_QUEUE_MANAGER)

4. If you want to change the default provider for the EJB3 messaging system in JBoss EAP from
JBoss EAP 8.0 messaging to IBM MQ, use the management CLI to modify the ejb3 subsystem
as follows:

/subsystem=ejb3:write-attribute(name=default-resource-adapter-
name,value=wmq.jakarta.jmsra.rar)

5. Configure the @ActivationConfigProperty and @ResourceAdapter annotations in the MDB
code as follows:

Be sure to replace the VERSION in the @ResourceAdapter value with the actual version in the
name of the RAR.

6. Activate your resource adapter:

/subsystem=resource-adapters/resource-adapter=wmq.jakarta.jmsra.rar:activate()

7.24.1.1. Limitations and known issues of IBM MQ resource adapters

The following table lists known issues with the IBM MQ resource adapters. A checkmark (✔) in the
version column indicates the issue is a problem for that version of the resource adapter.

Table 7.2. Known Issues with the IBM MQ Resource Adapters

@MessageDriven(name="IbmMqMdb", activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType",propertyValue =
"jakarta.jms.Queue"),
 @ActivationConfigProperty(propertyName = "useJNDI", propertyValue = "false"),
 @ActivationConfigProperty(propertyName = "hostName", propertyValue =
"MQ_HOST_NAME"),
 @ActivationConfigProperty(propertyName = "port", propertyValue = "MQ_PORT"),
 @ActivationConfigProperty(propertyName = "channel", propertyValue =
"MQ_CHANNEL_NAME"),
 @ActivationConfigProperty(propertyName = "queueManager", propertyValue =
"MQ_QUEUE_MANAGER"),
 @ActivationConfigProperty(propertyName = "destination", propertyValue =
"MQ_QUEUE_NAME"),
 @ActivationConfigProperty(propertyName = "transportType", propertyValue =
"MQ_CLIENT")
})

@ResourceAdapter(value = "wmq.jakarta.jmsra-VERSION.rar")
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public class IbmMqMdb implements MessageListener {
}

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

101

JIRA Description of Issue IBM MQ
9

JBEAP-503 The IBM MQ resource adapter returns different String values for the
Queue.toString() and QueueBrowser.getQueue().toString() methods.
Queue is instance of the
com.ibm.mq.connector.outbound.MQQueueProxy class, which is
different from the com.ibm.mq.jms.MQQueue class that is returned by the
QueueBrowser.htmlQueueBrowser.getQueue() method. These classes
contain different implementations of the toString() method. Be aware that
you cannot rely on these toString() methods to return the same value.

✔

JBEAP-511,
JBEAP-550,
JBEAP-3686

The following restrictions apply to message property names for IBM MQ.

In the activation-config section of the deployment descriptor, you
must not configure the destinationName property using special
characters such as _, &, or |. Use of these characters causes the MDB
deployment to fail with a
com.ibm.msg.client.jms.DetailedInvalidDestinationExcepti
on exception.

In the activation-config section of the deployment descriptor, you
must not configure the destinationName property using the java:/
prefix. Use of this prefix causes the MDB deployment to fail with a
com.ibm.msg.client.jms.DetailedInvalidDestinationExcepti
on exception.

A property must not begin with "JMS" or "usr.JMS" as they are
reserved for use by IBM MQ JMS classes. Exceptions are noted on
the IBM Knowledge Center website.

See Property name restrictions for IBM MQ, Version 9.0 on the IBM Knowledge
Center website for the complete list of message property name restrictions.

✔

JBEAP-549 When specifying the destination property name value for an MDB using the
@ActivationConfigProperty annotation, you must use all upper case
letters. For example:

✔

@ActivationConfigProperty(propertyName = "destination",
propertyValue = "QUEUE")

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

102

https://issues.jboss.org/browse/JBEAP-503
https://issues.jboss.org/browse/JBEAP-511
https://issues.jboss.org/browse/JBEAP-550
https://issues.jboss.org/browse/JBEAP-3686
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.dev.doc/q022950_.html
https://issues.jboss.org/browse/JBEAP-549

JBEAP-624 If the IBM MQ resource adapter is used to create a connection factory in a
Jakarta EE deployment using the @JMSConnectionFactoryDefinition
annotation, you must specify the resourceAdapter property. Otherwise, the
deployment will fail.

✔

JBEAP-2339 The IBM MQ resource adapter is able to read messages from queues and
topics even before the connection has started. This means a consumer can
consume messages before the connection is started. To avoid hitting this
issue, use connection factories created by the remote IBM MQ broker using
the external-context and not connection factories created by IBM MQ
resource adapter.

✔

JBEAP-3685 Once <transaction-support>XATransaction</transaction-support> is
set, a JMSContext is always JMSContext.SESSION_TRANSACTED,
whether it was created using injection or manually.

In the following code example, the
@JMSSessionMode(JMSContext.DUPS_OK_ACKNOWLEDGE) is
ignored and the JMSContext remains at
JMSContext.SESSION_TRANSACTED.

✔

JBEAP-14633 According to the JMS specification, the QueueSession interface cannot be
used to create objects specific to the publish/subscribe domain and certain
methods that inherit from Session should throw an
javax.jms.IllegalStateException. One such method is such
QueueSession.createTemporaryTopic(). Instead of throwing an
javax.jms.IllegalStateException, the IBM MQ resource adapter throws a
java.lang.NullPointerException.

✔

JIRA Description of Issue IBM MQ
9

@JMSConnectionFactoryDefinition(
 name = "java:/jms/WMQConnectionFactory",
 interfaceName = "javax.jms.ConnectionFactory",
 resourceAdapter = "wmq.jmsra",
 properties = {
 "channel=<channel>",
 "hostName=<hostname_wmq_broker>",
 "transportType=<transport_type>",
 "queueManager=<queue_manager>"
 }
)

@Inject
@JMSConnectionFactory("jms/CF")
@JMSPasswordCredential(userName="myusername",
password="mypassword")
@JMSSessionMode(JMSContext.DUPS_OK_ACKNOWLEDGE)
transient JMSContext context3;

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

103

https://issues.jboss.org/browse/JBEAP-624
https://issues.jboss.org/browse/JBEAP-2339
https://issues.jboss.org/browse/JBEAP-3685
https://issues.jboss.org/browse/JBEAP-14633
https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/8.0/javadocs/javax/jms/QueueSession.html

JBEAP-14634 The MQTopicProxy.getTopicName() returns different topic name than
was set by the IBM MQ broker. For example, if the topic name was set to
topic://MYTOPIC?XMSC_WMQ_BROKER_PUBQ_QMGR=QM, the
MQTopicProxy returns topic://MYTOPIC.

✔

JBEAP-14636 The default autoStart setting for the JMSContext is false, meaning the
underlying connection used by the JMSContext is not started automatically
when a consumer is created. This setting should default to true.

✔

JBEAP-14640 The IBM MQ resource adapter throws DetailedJMSException instead of a
JMSSecurityException when invalid credentials are used and logs the
following error to the server console.

WARN
[org.jboss.jca.core.connectionmanager.pool.strategy.PoolByCri]
(EJB default - 7) IJ000604: Throwable while attempting to get a new
connection: null:
com.ibm.mq.connector.DetailedResourceException: MQJCA1011:
Failed to allocate a JMS connection., error code: MQJCA1011 An
internal error caused an attempt to allocate a connection to fail. See
the linked exception for details of the failure.

The following is an example of code that can cause this issue.

✔

JBEAP-14642 Due to an invalid class cast conversion by the resource adapter in the
MQMessageProducer.send(Destination destination, Message
message) and MQMessageProducer.send(Destination destination,
Message message, int deliveryMode, int priority, long timeToLive,
CompletionListener completionListener) methods, the IBM MQ
resource adapter throws a JMSException and logs the following error
message to the server console.

SVR-ERROR: Expected JMSException, received
com.ibm.mq.connector.outbound.MQQueueProxy cannot be cast to
com.ibm.mq.jms.MQDestination

This is because the JNDI name used in the queue or topic lookup is
com.ibm.mq.connector.outbound.MQQueueProxy/MQTopicProxy.

✔

JBEAP-14643 The setDeliveryDelay(expDeliveryDelay) method on the JMSProducer
interface does not change the setting. After calling this method, it remains at
the default setting of 0.

✔

JIRA Description of Issue IBM MQ
9

QueueConnection qc =
queueConnectionFactory.createQueueConnection("invalidUserName
", "invalidPassword");

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

104

https://issues.jboss.org/browse/JBEAP-14634
https://issues.jboss.org/browse/JBEAP-14636
https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/8.0/javadocs/javax/jms/JMSContext.html
https://issues.jboss.org/browse/JBEAP-14640
https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/8.0/javadocs/javax/jms/JMSSecurityException.html
https://issues.jboss.org/browse/JBEAP-14642
https://issues.jboss.org/browse/JBEAP-14643
https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/8.0/javadocs/javax/jms/JMSProducer.html

JBEAP-14670 If work is done on a QueueSession that was created prior to a
UserTransaction.begin(), that work is not considered part of the
transaction. This means that any message sent to the queue using this session
is not committed by a UserTransaction.commit(), and after a
UserTransaction.rollback(), the message remains on the queue.

✔

JBEAP-14675 If you close a connection and then immediately create a JMSContext with
the same clientID, the IBM MQ resource adapter intermittently logs the
following error to the server console.

ERROR [io.undertow.request] (default task-1) UT005023: Exception
handling request to /jmsServlet-1.0-SNAPSHOT/:
com.ibm.msg.client.jms.DetailedJMSRuntimeException:
MQJCA0002: An exception occurred in the IBM MQ layer. See the
linked exception for details.
A call to IBM MQ classes for Java(tm) caused an exception to be
thrown.

This issue does not occur when there is a delay in creating the new
JMSContext after the connection with the same clientID is closed.

✔

JBEAP-15535 If a stateful session bean tries to send a message to a topic while in a
container managed transaction (CMT), the message send fails with the
following message.

SVR-ERROR: com.ibm.msg.client.jms.DetailedJMSException:
JMSWMQ2007: Failed to send a message to destination
'MDB_NAME TOPIC_NAME'

The stack trace shows it to be caused by the following exception.

com.ibm.mq.MQException: JMSCMQ0001: IBM MQ call failed with
compcode '2' ('MQCC_FAILED') reason '2072'
('MQRC_SYNCPOINT_NOT_AVAILABLE')

JBEAP-25561 When a message is sent to the destination with the JMSReplyTo header set,
it is modified after reaching the IBM MQ 9 broker. As a result, the reply
message of the response is directed to the destination defined in the modified
JMS_REPLY header.

For example, if the JMSReplyTo header is set to queue with the name
queue:///MYQUEUE using the header
message.setJMSReplyTo(queue); and sent to a IBM MQ 9.3 broker with
queue manager named QM, then its name is changed to
queue://QM/MYQUEUE.

✔

JIRA Description of Issue IBM MQ
9

7.24.2. Removal of Apache Log4j version 1 APIs

Starting with JBoss EAP 8, support for Apache Log4j version 1 APIs has been stopped. Any application

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

105

https://issues.jboss.org/browse/JBEAP-14670
https://issues.jboss.org/browse/JBEAP-14675
https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/8.0/javadocs/javax/jms/JMSContext.html
https://issues.jboss.org/browse/JBEAP-15535
https://issues.redhat.com/browse/JBEAP-25561

Starting with JBoss EAP 8, support for Apache Log4j version 1 APIs has been stopped. Any application
that is not packaging log4j.jar and log4j configuration must be updated.

Impact:

Log messages will no longer be routed based on the logging subsystem. If an application is not
packaging log4j.jar and any of the following statements are true, then migration changes are required:

If you use log4j in your deployment and do not include a log4j configuration file, then you must
either migrate to a new logging facade or add a log4j configuration to your deployment.

If you use a log4j.xml, log4j.properties, or jboss-log4j.xml file in your deployment and are not
packaging the log4j.jar in your application. If it is a jboss-log4j.xml file, then you must rename
the file to log4j.xml.

If you use log4j v1 appenders in the JBoss EAP Logging subsystem in a custom-handler, it will
be no longer supported.

If an application classes import classes such as org.apache.log4j.Logger.

If the application includes a jboss-deployment-structure.xml or has Dependencies: specified
in the MANIFEST.MF declaring a module dependency on org.jboss.log4j.logmanager, these
dependencies will need to be removed.

Migration:

Update the application classes to use Apache Log4jv2 classes or use one of the other Logging
APIs provided by JBoss EAP 8.

Change the org.apache.log4j.Logger (log4j v1) class to org.apache.logging.log4j.Logger
(log4j v2).

If an application packages log4j.properties, log4j.xml, or jboss-log4j.xml, you must::

Configure the logging in the JBoss EAP configuration.

Configure logging.properties in an application as the log4jv2 configuration files are not
supported in an application.

OR

Package the Apache Log4j version 1 JAR in the application instead of depending on JBoss
EAP 8 for the Logging APIs. You can also exclude the JBoss Logging APIs from the application
by the jboss-deployment-structure.xml exclude-subsystems on the logging subsystem.

Additional Details:

Disabling implicit logging dependencies for a specific deployment

In an application’s jboss-deployment-structure.xml, configure exclude-subsystems to
exclude the logging subsystem such as:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <deployment>
 <exclude-subsystems>
 <subsystem name="logging"/>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

106

If the application is an EAR file and has a sub-deployment named example.war, the jboss-
deployment-structure.xml file is located in the EAR file location / META-INF/jboss-
deployment-structure.xml and the logging subsystem will be excluded by declaring it in the
sub-deployment such as:

Disabling implicit logging dependencies for all deployments

To make logging APIs unavailable to deployments by default, set add-logging-api-dependencies to
false by using the following CLI command:

To set the JBoss Module and Logging API as a dependency, modify the jboss-deployment-
structure.xml or MANIFEST.MF configuration files:

NOTE

If an application packages Apache Log4j v1 JARs and log4j configuration in an
application: * Application logging is no longer managed by EAP, it is application managed.
* An application should not attempt to write to the server.log as unexpected results can
occur because logging frameworks are expected to be writing to specific log files.

For more information, see Apache Log4j version 1 is no longer provided in JBoss EAP 8.0 .

 </exclude-subsystems>
 </deployment>
</jboss-deployment-structure>

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <sub-deployment name="example.war">
 <exclude-subsystems>
 <subsystem name="logging"/>
 </exclude-subsystems>
 </sub-deployment>
</jboss-deployment-structure>

/subsystem=logging:write-attribute(name="add-logging-api-dependencies", value="false")

<subsystem xmlns="urn:jboss:domain:logging:8.0">
 <add-logging-api-dependencies value="false"/>
 ...
</subsystem>

CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES

107

https://access.redhat.com/articles/6973120

CHAPTER 8. MISCELLANEOUS CHANGES
This section provides an overview of the various miscellaneous changes happening in this release.

8.1. CHANGES TO DELIVERY OF JBOSS EAP NATIVES AND APACHE
HTTP SERVER

JBoss EAP 8.0 natives are delivered differently in this release than in JBoss EAP 6. Some components
include Red Hat JBoss Core Services product, which is a set of supplementary software that is common
to many of the Red Hat JBoss middleware products. The new product allows for faster distribution of
updates and a more consistent update experience. The JBoss Core Services product is available for
download in a dedicated location on the Red Hat Customer Portal.

The following table lists the differences in the delivery methods between the releases.

Package JBoss EAP 6 JBoss EAP 8.0

AIO Natives for
Messaging

Delivered with the product in a
separate "Native Utilities" download

Included within the JBoss EAP
distribution.

Apache HTTP
Server

Delivered with the product in a
separate "Apache HTTP Server"
download

Delivered with the new JBoss Core
Services product

mod_cluster,
mod_jk, isapi,
and nsapi
connectors

Delivered with the product in a
separate "Webserver Connector
Natives" download

Delivered with the new JBoss Core
Services product

JSVC Delivered with the product in a
separate "Native Utilities" download

Delivered with the new JBoss Core
Services product

OpenSSL Delivered with the product in a
separate "Native Utilities" download

Delivered with the new JBoss Core
Services product

tcnatives Delivered with the product in a
separate "Native Components"
download

Support for tcnatives was removed in
JBoss EAP 7

Additional changes for JBoss EAP Natives and Apache HTTP Server

You should also be aware of the following changes:

Support was dropped for mod_cluster and mod_jk connectors used with Apache HTTP
Server from Red Hat Enterprise Linux RPM channels. If you run Apache HTTP Server from
Red Hat Enterprise Linux RPM channels and need to configure load balancing for JBoss
EAP 8.0 servers, you can do one of the following:

Use the Apache HTTP Server provided by JBoss Core Services.

You can configure JBoss EAP 8.0 to act as a front-end load balancer. For more
information, see Configuring JBoss EAP as a Front-end Load Balancer in the JBoss
EAP 7.4 Configuration Guide.
You can deploy Apache HTTP Server on a machine that is supported and certified and

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

108

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configuring_jboss_eap_load_balancer

You can deploy Apache HTTP Server on a machine that is supported and certified and
then run the load balancer on that machine. For the list of supported configurations,
see Overview of HTTP Connectors in the JBoss EAP 7.4 Configuration Guide.

You can find more information about JBoss Core Services in the Apache HTTP Server
Installation Guide.

You can configure JBoss EAP 8.0 to act as a front-end load balancer. For more
information, see Configuring JBoss EAP as a Front-end Load Balancer in the JBoss EAP
Configuration Guide.

You can deploy Apache HTTP Server on a machine that is supported and certified and then
run the load balancer on that machine. For the list of supported configurations.

You can find more information about JBoss Core Services in the Apache HTTP Server
Installation Guide.

8.2. CHANGES TO DEPLOYMENTS ON AMAZON EC2

Several changes have been made to the Amazon Machine Images (AMI) in JBoss EAP 7. This section
briefly summarizes some of those changes.

The way you start non-clustered and clustered JBoss EAP instances and domains in Amazon
EC2 has changed significantly.

In JBoss EAP 6, configuration depended on the User Data: field. In JBoss EAP 7, the AMI
scripts that parsed the configuration in the User Data: field and started the servers
automatically on instance startup have been removed.

Red Hat JBoss Operations Network agent was installed in the JBoss EAP 6. Starting with JBoss
EAP 7.0, you must install it separately.

For details on deploying JBoss EAP 7 on Amazon EC2, see Deploying JBoss EAP on Amazon Web
Services.

8.3. REMOVE APPLICATIONS THAT INCLUDE SHARED MODULES

Changes introduced in the JBoss EAP 7.1 server and the Maven plug-in can result in the following failure
when you attempt to remove your application. This error can occur if your application contains modules
that interact with or depend on each other.

WFLYCTL0184: New missing/unsatisfied dependencies

For example, assume you have an application that contains two Maven WAR project modules,
application-A and application-B, that share data managed by the data-sharing module.

When you deploy this application, you must deploy the shared data-sharing module first, and then
deploy the modules that depend on it. The deployment order is specified in the <modules> element of
the parent pom.xml file. This is true in JBoss EAP 6.4 through JBoss EAP 8.0.

In releases prior to JBoss EAP 7.1, you could undeploy all of the archives for this application from the
root of the parent project using the following command.

$ mvn wildfly:undeploy

In JBoss EAP 7.1 and later, you must first undeploy the archives that use the shared modules, and then

CHAPTER 8. MISCELLANEOUS CHANGES

109

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#overview_http_connectors
https://access.redhat.com/documentation/en-us/red_hat_jboss_core_services/2.4.29/html/apache_http_server_installation_guide/introduction#about_red_hat_jboss_core_services
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configuring_jboss_eap_load_balancer
https://access.redhat.com/documentation/en-us/red_hat_jboss_core_services/2.4.29/html/apache_http_server_installation_guide/#about_red_hat_jboss_core_services
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/deploying_jboss_eap_on_amazon_web_services/

In JBoss EAP 7.1 and later, you must first undeploy the archives that use the shared modules, and then
undeploy the shared modules. Since there is no way to specify the order of undeployment in the project
pom.xml file, you must undeploy the modules manually. You can accomplish this by running the
following commands from the root of the parent directory.

$ mvn wildfly:undeploy -pl application-A,application-B
$ mvn wildfly:undeploy -pl data-shared

This updated undeploy behavior is more accurate and ensures that you do not end up in an unstable
deployment state.

8.4. CHANGES TO THE ADD-USER SCRIPT

The add-user script behavior has changed in JBoss EAP 7 due to a change in password policy. JBoss
EAP 6 had a strict password policy. As a result, the add-user script rejected weak passwords that did not
satisfy the minimum requirements. Starting with JBoss EAP 7, weak passwords are accepted and a
warning is issued. For more information, see Setting Add-User Utility Password Restrictions in the JBoss
EAP 7.4 Configuration Guide.

8.5. REMOVAL OF OSGI SUPPORT

When JBoss EAP 6.0 GA was first released, JBoss OSGi, an implementation of the OSGi specification,
was included as a Technology Preview feature. With the release of JBoss EAP 6.1.0, JBoss OSGi was
demoted from Technology Preview to Unsupported.

In JBoss EAP 6.1.0, the configadmin and osgi extension modules and subsystem configuration for a
standalone server were moved to a separate EAP_HOME/standalone/configuration/standalone-
osgi.xml configuration file. Because you should not migrate this unsupported configuration file, the
removal of JBoss OSGi support should not impact the migration of a standalone server configuration. If
you modified any of the other standalone configuration files to configure osgi or configadmin, those
configurations must be removed.

For a managed domain, the osgi extension and subsystem configuration were removed from the
EAP_HOME/domain/configuration/domain.xml file in the JBoss EAP 6.1.0 release. However, the
configadmin module extension and subsystem configuration remain in the
EAP_HOME/domain/configuration/domain.xml file. Starting with JBoss EAP 7, this configuration is no
longer supported and must be removed.

8.6. CHANGES IN SOAP WITH ATTACHMENTS API FOR JAVA

Update the user-defined SOAP handlers to comply with the SAAJ 3.0 specification when migrating to
JBoss EAP 8.0.

Additional resources

Jakarta Soap with Attachments

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

110

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#add_user_password_restrictions
https://eclipse-ee4j.github.io/metro-saaj/

CHAPTER 9. MIGRATING TO ELYTRON
JBoss EAP 7.1 introduced Elytron, which provides a single unified framework that can manage and
configure access for both standalone servers and managed domains. It can also be used to configure
security access for applications deployed to JBoss EAP servers.

Starting with JBoss EAP 8.0, you must use Elytron as the legacy security subsystem is not available for
migrating your application.

9.1. OVERVIEW OF ELYTRON

IMPORTANT

The architectures of Elytron and the legacy security subsystem that is based on
PicketBox are very different. With Elytron, an attempt was made to create a solution that
allows you to operate in the same security environments in which you currently operate;
however, this does not mean that every PicketBox configuration option has an equivalent
configuration option in Elytron.

If you are not able to find information in the documentation to help you achieve similar
functionality using Elytron that you had when using the legacy security implementation,
you can find help in one of the following ways.

If you have a Red Hat Development subscription , you have access to Support
Cases, Solutions, and Knowledge Articles on the Red Hat Customer Portal. You
can also open a case with Technical Support and get help from the WildFly
community as described below.

If you do not have a Red Hat Development subscription, you can still access
Knowledge Articles on the Red Hat Customer Portal. You can also join the user
forums and live chat to ask questions of the WildFly community. The WildFly
community offerings are actively monitored by the Elytron engineering team.

For an overview of the new resources that are available in the elytron subsystem, see Resources in the
Elytron Subsystem in the JBoss EAP 7.4 Security Architecture .

9.2. MIGRATE SECURE VAULTS AND PROPERTIES

To use Elytron, you must migrate secure vaults to secure credential storage and migrate legacy security
properties to Elytron security properties.

9.2.1. Migrate Secure Vaults to Secure Credential Storage

The secure vault used to store plain text string encryption in the legacy security subsystem in JBoss
EAP 7.0 is not compatible with Elytron in JBoss EAP 7.1 or later. JBoss EAP 7.1 or later uses a credential
store to store strings. Credential stores encrypt credentials in a storage file outside of the JBoss EAP
configuration files. You can use the implementation provided by Elytron or you can customize the
configuration using the credential store APIs and SPIs. Each JBoss EAP server can contain multiple
credential stores.

NOTE

CHAPTER 9. MIGRATING TO ELYTRON

111

https://access.redhat.com/support/offerings/developer/
https://access.redhat.com/support/cases/#/case/list
https://access.redhat.com/solutions
https://access.redhat.com/articles
https://access.redhat.com/support
https://access.redhat.com/articles
http://wildfly.org/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/security_architecture/#resources_in_the_elytron_subsystem

NOTE

If you previously used vault expressions to parameterize nonsensitive data, you must
replace the data with Elytron security properties. For more information about Elytron
security properties, see Elytron security properties .

For more information about credential stores, see Credential Stores in the JBoss EAP 7.4 How to
Configure Server Security.

9.2.1.1. Migrate vault data using the WildFly Elytron tool

The WildFly Elytron Tool that ships with JBoss EAP provides a vault command to help you migrate vault
content to credential stores. To execute the vault command, run the elytron-tool script in the
EAP_HOME/bin directory.

$ EAP_HOME/bin/elytron-tool.sh vault VAULT_ARGUMENTS

You can use the following command to get a description of all of the available arguments.

$ EAP_HOME/bin/elytron-tool.sh vault --help

IMPORTANT

Credential stores are only used for securing passwords. The vault expression feature used
in the management model is not supported. For more information, see Creating an
encrypted expression in Elytron

Choose one of the following migration options:

Migrating an Individual Security Vault to a Credential Store

Migrating multiple security vaults to a credential store in bulk

NOTE

The WildFly Elytron Tool cannot handle the first version of the security vault data
files.

You can enter the --keystore-password argument in the masked format, as
shown in the following example to migrate a single vault, or in clear text.

The --salt and --iteration arguments are provided to supply information to
decrypt the masked password or to generate a masked password in the output. If
the --salt and --iteration arguments are omitted, default values are used.

The --summary argument produces formatted management CLI commands that
can be used to add the converted credential stores to the JBoss EAP
configuration. Plain text passwords are masked in the summary output.

9.2.1.1.1. Migrating an Individual Security Vault to a Credential Store

Migrate individual security vaults to a credential store using the following example:

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

112

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/how_to_configure_server_security/#credential_store
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/secure_storage_of_credentials_in_jboss_eap/#proc_creating-an-encrypted-expression-in-elytron_default

Example: Converting a single security vault to a credential store command

$ EAP_HOME/bin/elytron-tool.sh vault --enc-dir vault_data/ --keystore vault-jceks.keystore --
keystore-password MASK-2hKo56F1a3jYGnJwhPmiF5 --iteration 34 --salt 12345678 --alias test --
location cs-v1.store --summary

This command converts the security vault to a credential store and prints the summary of the
management CLI commands that were used to convert it in the output.

Vault (enc-dir="vault_data/";keystore="vault-jceks.keystore") converted to credential store "cs-
v1.store"
Vault Conversion summary:

Vault Conversion Successful
CLI command to add new credential store:
/subsystem=elytron/credential-store=test:add(relative-
to=jboss.server.data.dir,create=true,modifiable=true,location="cs-v1.store",implementation-
properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="MASK-
2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

9.2.1.1.2. Migrating multiple security vaults to a credential store in bulk

You can convert multiple vaults to a credential store using the --bulk-convert argument and pointing to
a bulk conversion descriptor file.

Prerequisites

The examples in this section use the following bulk conversion descriptor file.

Example: bulk-vault-conversion-descriptor.txt File

keystore:vault-v1/vault-jceks.keystore
keystore-password:MASK-2hKo56F1a3jYGnJwhPmiF5
enc-dir:vault-v1/vault_data/
salt:12345678
iteration:34
location:v1-cs-1.store
alias:test

keystore:vault-v1/vault-jceks.keystore
keystore-password:secretsecret
enc-dir:vault-v1/vault_data/
location:v1-cs-2.store
alias:test

different vault vault-v1-more
keystore:vault-v1-more/vault-jceks.keystore
keystore-password:MASK-2hKo56F1a3jYGnJwhPmiF5
enc-dir:vault-v1-more/vault_data/
salt:12345678
iteration:34
location:v1-cs-more.store
alias:test

CHAPTER 9. MIGRATING TO ELYTRON

113

A new conversion starts when each new keystore: line is encountered. All options are mandatory except
for salt, iteration, and properties.

Procedure

1. To perform the bulk conversion and generate output that formats the management CLI
commands, execute the following command.

$ EAP_HOME/bin/elytron-tool.sh vault --bulk-convert path/to/bulk-vault-conversion-descriptor.txt --
summary

This command converts all of the security vaults specified in the file to a credential store and prints the
summary of the management CLI commands that were used to convert them in the output.

Vault (enc-dir="vault-v1/vault_data/";keystore="vault-v1/vault-jceks.keystore") converted to credential
store "v1-cs-1.store"
Vault Conversion summary:

Vault Conversion Successful
CLI command to add new credential store:
/subsystem=elytron/credential-store=test:add(relative-
to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-1.store",implementation-
properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="MASK-
2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

Vault (enc-dir="vault-v1/vault_data/";keystore="vault-v1/vault-jceks.keystore") converted to credential
store "v1-cs-2.store"
Vault Conversion summary:

Vault Conversion Successful
CLI command to add new credential store:
/subsystem=elytron/credential-store=test:add(relative-
to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-2.store",implementation-
properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="secretsecret"})

Vault (enc-dir="vault-v1-more/vault_data/";keystore="vault-v1-more/vault-jceks.keystore") converted
to credential store "v1-cs-more.store"
Vault Conversion summary:

Vault Conversion Successful
CLI command to add new credential store:
/subsystem=elytron/credential-store=test:add(relative-
to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-more.store",implementation-
properties={"keyStoreType"=>"JCEKS"},credential-reference={clear-text="MASK-
2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

9.2.2. Migrating Security Properties to Elytron

The following examples assume that the group.name and encoding.algorithm security properties are
defined as security-properties in the legacy security subsystem.

Security Properties Defined in the security Subsystem:

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

114

To define these security properties in the elytron subsystem, set the security-properties attribute of
the elytron subsystem using the following management CLI command:

/subsystem=elytron:write-attribute(name=security-properties, value={ group.name = "engineering-
group", encoding.algorithm = "BASE64" })

This defines the security-properties in the elytron subsystem in the server configuration file.

The write-attribute operation in the previous command overwrites the existing properties. To add or
change a security property without impacting other security properties, use the map operation in the
management CLI command:

/subsystem=elytron:map-put(name=security-properties, key=group.name, value=technical-support)

In a similar manner, you can remove a specific security property by using the map-remove operation:

/subsystem=elytron:map-remove(name=security-properties, key=group.name)

9.3. MIGRATE AUTHENTICATION CONFIGURATION

This section provides information on migration of properties-based authentication and authorization to
Elytron. In addition, it also includes information for migration of LDAP authentication, database
authentication configuration, kerberos authentication, composite stores, JACC security, and security
domains that use caching to Elytron.

9.3.1. Migrate PicketBox Properties-based Configuration to Elytron

Migrate PicketBox properties-based authentication to Elytron using the following example.

Example: PicketBox Properties-based Configuration Commands

/subsystem=security/security-domain=application-security:add
/subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=
[{code=UsersRoles, flag=Required, module-options=
{usersProperties=file://${jboss.server.config.dir}/example-users.properties,
rolesProperties=file://${jboss.server.config.dir}/example-roles.properties}}])

<subsystem xmlns="urn:jboss:domain:security:2.0">
 ...
 <security-properties>
 <property name="group.name" value="engineering-group" />
 <property name="encoding.algorithm" value="BASE64" />
 </security-properties>
</subsystem>

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 <security-properties>
 <security-property name="group.name" value="engineering-group"/>
 <security-property name="encoding.algorithm" value="BASE64"/>
 </security-properties>
 ...
</subsystem>

CHAPTER 9. MIGRATING TO ELYTRON

115

This results in the following server configuration.

Example: PicketBox Properties-based Security Domain Configuration

9.3.1.1. Migrating Properties-based Authentication to Elytron

Follow these steps to migrate the PicketBox properties-based authentication to Elytron.

Prerequisite

The deployed web application you plan to migrate must be configured to require form-based
authentication. The application is referencing a PicketBox security domain and is using the
UsersRolesLoginModule to load user information from the example-users.properties and example-
roles.properties files. This procedure also assumes that the security domain is defined in the legacy
security subsystem using the following management CLI commands.

Ensure that you are starting with the PicketBox properties-based authentication configured.

Procedure

1. Define a new security realm in the elytron subsystem that references the PicketBox properties
files.

/subsystem=elytron/properties-realm=application-properties:add(users-properties=
{path=example-users.properties, relative-to=jboss.server.config.dir, plain-text=true, digest-
realm-name="Application Security"}, groups-properties={path=example-roles.properties,
relative-to=jboss.server.config.dir}, groups-attribute=Roles)

2. Define a security domain subsystem in the elytron subsystem.

/subsystem=elytron/security-domain=application-security:add(realms=[{realm=application-
properties}], default-realm=application-properties, permission-mapper=default-permission-
mapper)

This results in the following elytron subsystem configuration in the server configuration file.

<security-domain name="application-security">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 <module-option name="usersProperties" value="file://${jboss.server.config.dir}/example-
users.properties"/>
 <module-option name="rolesProperties" value="file://${jboss.server.config.dir}/example-
roles.properties"/>
 </login-module>
 </authentication>
</security-domain>

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="application-security" default-realm="application-properties"

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

116

3. Map the application security domain referenced by the deployment to the newly defined HTTP
authentication factory in the undertow subsystem.

/subsystem=undertow/application-security-domain=application-security:add(security-
domain=application-security)

This results in the following undertow subsystem configuration in the server configuration file.

4. You must reload the server or redeploy the application for the new application security domain
mapping to take effect.

Authentication is now configured to be equivalent to the PicketBox configuration.

9.3.2. Migrating legacy security realm properties-based configuration to Elytron

This section describes how to migrate a legacy security realm that loads user, password, and group
information from properties files to Elytron in JBoss EAP 7.4 and earlier. This type of legacy security
realm was typically used to secure either the management interfaces or remoting connectors.

In JBoss EAP 8.0, filesystem-realm is preferred over properties-realm.

Prerequisites

The deployed web application you plan to migrate must be configured to require form-based
authentication. The application is referencing a PicketBox security domain and is using the
UsersRolesLoginModule to load user information from the example-users.properties and example-
roles.properties files. This procedure also assumes that the security domain is defined in the legacy
security subsystem using the following management CLI commands.

Example: Legacy Security Realm Commands

permission-mapper="default-permission-mapper">
 <realm name="application-properties"/>
 </security-domain>
 </security-domains>
 <security-realms>
 ...
 <properties-realm name="application-properties" groups-attribute="Roles">
 <users-properties path="example-users.properties" relative-to="jboss.server.config.dir"
digest-realm-name="Application Security" plain-text="true"/>
 <groups-properties path="example-roles.properties" relative-to="jboss.server.config.dir"/>
 </properties-realm>
 </security-realms>
 ...
</subsystem>

<subsystem xmlns="urn:jboss:domain:undertow:12.0">
 ...
 <application-security-domains>
 <application-security-domain name="application-security" security-domain="application-
security"/>
 </application-security-domains>
 ...
</subsystem>

CHAPTER 9. MIGRATING TO ELYTRON

117

/core-service=management/security-realm=ApplicationSecurity:add
/core-service=management/security-
realm=ApplicationSecurity/authentication=properties:add(relative-to=jboss.server.config.dir,
path=example-users.properties, plain-text=true)
/core-service=management/security-realm=ApplicationSecurity/authorization=properties:add(relative-
to=jboss.server.config.dir, path=example-roles.properties)

This results in the following server configuration.

Example: Legacy Security Realm Configuration

One of the reasons for adding the Elytron security to the application server was to allow a consistent
security solution to be used across the server. The initial steps to migrate a properties-based legacy
security realm to Elytron are similar to those used to migrate a PicketBox properties-based
authentication to Elytron. Follow these steps to migrate a properties-based legacy security realm to
Elytron.

Procedure

1. Define a new security realm in the elytron subsystem that references the properties files.

/subsystem=elytron/properties-realm=application-properties:add(users-properties=
{path=example-users.properties, relative-to=jboss.server.config.dir, plain-text=true, digest-
realm-name="Application Security"}, groups-properties={path=example-roles.properties,
relative-to=jboss.server.config.dir}, groups-attribute=Roles)

2. Define a security domain subsystem in the elytron subsystem.

/subsystem=elytron/security-domain=application-security:add(realms=[{realm=application-
properties}], default-realm=application-properties, permission-mapper=default-permission-
mapper)

This results in the following Elytron configuration.

<security-realm name="ApplicationSecurity">
 <authentication>
 <properties path="example-users.properties" relative-to="jboss.server.config.dir" plain-text="true"/>
 </authentication>
 <authorization>
 <properties path="example-roles.properties" relative-to="jboss.server.config.dir"/>
 </authorization>
</security-realm>

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="application-security" default-realm="application-properties"
permission-mapper="default-permission-mapper">
 <realm name="application-properties"/>
 </security-domain>
 </security-domains>
 <security-realms>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

118

3. Define a sasl-authentication-factory so that the legacy security realm can also be used for
Simple Authentication Security Layer (SASL) authentication.

/subsystem=elytron/sasl-authentication-factory=application-security-sasl:add(sasl-server-
factory=elytron, security-domain=application-security, mechanism-configurations=
[{mechanism-name=PLAIN}])

This results in the following Elytron configuration.

4. Configure a remoting connector for the SASL authentication and remove the association with
the legacy security realm.

/subsystem=remoting/http-connector=http-remoting-connector:write-attribute(name=sasl-
authentication-factory, value=application-security-sasl)

This results in the following configuration in the remoting subsystem of the server configuration
file.

5. Add the two authentication factories to secure the http-interface with Elytron.

/subsystem=elytron/http-authentication-factory=application-security-http:add(http-server-
mechanism-factory=global, security-domain=application-security, mechanism-
configurations=[{mechanism-name=BASIC}])

 ...
 <properties-realm name="application-properties" groups-attribute="Roles">
 <users-properties path="example-users.properties" relative-to="jboss.server.config.dir"
digest-realm-name="Application Security" plain-text="true"/>
 <groups-properties path="example-roles.properties" relative-to="jboss.server.config.dir"/>
 </properties-realm>
 </security-realms>
 ...
</subsystem>

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 ...
 <sasl>
 ...
 <sasl-authentication-factory name="application-security-sasl" sasl-server-factory="elytron"
security-domain="application-security">
 <mechanism-configuration>
 <mechanism mechanism-name="PLAIN"/>
 </mechanism-configuration>
 </sasl-authentication-factory>
 ...
 </sasl>
</subsystem>

<subsystem xmlns="urn:jboss:domain:remoting:4.0">
 ...
 <http-connector name="http-remoting-connector" connector-ref="default" sasl-
authentication-factory="application-security-sasl"/>
</subsystem>

CHAPTER 9. MIGRATING TO ELYTRON

119

/core-service=management/management-interface=http-interface:write-attribute(name=http-
upgrade.sasl-authentication-factory, value=application-security-sasl)

This results in the following configuration.

NOTE

You should replace the names with those used in these examples when securing
management interfaces.

The migration of the legacy properties-based configuration to Elytron is now complete.

9.3.3. Migrating to Filesystem-based Security Realm Using the filesystem-realm
Command

Migrate the legacy properties-based security realm to a filesystem-based realm in Elytron using the
filesystem-realm command of the elytron.sh tool.

A filesystem-based realm is a filesystem-based identity store used by Elytron for storing user identities.
The filesystem-realm command converts the properties-realm files to filesystem-realm. It also
generates commands for adding this realm and a security domain to the elytron subsystem.

Procedure

1. Migrate the properties file.
You can migrate a single user-properties file at a time, or migrate the properties files in bulk.
The following examples illustrate the procedures for both types of migration.

To migrate a single properties file, do this.
The following example converts a single users-properties file with the associated roles-
properties file to filesystem-realm. The example assumes that the legacy security domain
has the following user-properties and role-properties files:

example-users.properties
example-roles.properties

Example: Single user-property file migration

$./bin/elytron-tool.sh filesystem-realm --users-file example-users.properties --roles-file
example-roles.properties --output-location realms/example

This creates filesystem-realm files and a script containing management CLI commands. The
script is stored in the realms/example directory.

To migrate multiple properties files do.

The following example converts the users-properties files with the associated roles-

<management-interfaces>
 <http-interface http-authentication-factory="application-security-http">
 <http-upgrade enabled="true" sasl-authentication-factory="application-security-sasl"/>
 <socket-binding http="management-http"/>
 </http-interface>
</management-interfaces>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

120

The following example converts the users-properties files with the associated roles-
properties files in bulk to filesystem-realm. The example assumes that the legacy security
domain has the following properties files:

users-1.properties
users-2.properties
roles-1.properties
roles-2.properties

To convert users-roles files in bulk, you must create a descriptor file to use with the
filesystem-realm command. For this example, a descriptor file example-descriptor-file
located in the /bin directory is created with the following content:

Example: descriptor file

users-file:/full/path/to/users-1.properties
roles-file:/full/path/to/roles-1.properties
output-location:./realms/bulk-1-example
filesystem-realm-name:exampleFileSystemRealm1
security-domain-name:exampleSecurityDomain1

users-file:/full/path/to/users-2.properties
roles-file:/full/path/to/roles-2.properties
output-location:./realms/bulk-2-example
filesystem-realm-name:exampleFileSystemRealm2
security-domain-name:exampleSecurityDomain2

A blank line in the descriptor file is used to separate the operations for each users-
properties file.

The following example converts two users-properties files with the associated roles-
properties file using a descriptor file to filesystem-realm.

Example: Bulk migration

$./bin/elytron-tool.sh filesystem-realm --bulk-convert example-descriptor-file

This creates the filesystem-realm files and scripts containing the management CLI
commands. The scripts are stored in directories specified in the descriptor file’s output-
location attribute.

2. Add the new security realm and the security domain to the elytron subsystem using the CLI
commands generated by the Elytron tool.

Example: Adding the filesystem-realm

/subsystem=elytron/filesystem-realm=converted-properties-filesystem-
realm:add(path=/full/path/to/realms/example)

/subsystem=elytron/security-domain=converted-properties-security-domain:add(realms=
[{realm=converted-properties-filesystem-realm}],default-realm=converted-properties-
filesystem-realm,permission-mapper=default-permission-mapper)

9.3.4. Migrating LDAP Authentication Configuration to Elytron

CHAPTER 9. MIGRATING TO ELYTRON

121

Migrate legacy LDAP authentication to Elytron so that it can manage the information as identity
attributes.

Prerequisites

Before you migrate legacy LDAP authentication to Elytron, you must read the content in the Migrate
Properties-based Authentication and Authorization to Elytron section applies, which is also applicable
here. You must focus on regarding how to define security domains and authentication factories, and
how to map them to be used for authentication. This section does not repeat those instructions, so
ensure that you read through that section before you continue.

The following examples assume that group or role information is loaded directly from LDAP and that the
legacy LDAP authentication is configured as follows.

Procedure

1. The LDAP server contains the following user and group entries.

Example: LDAP Server User Entries

dn: uid=TestUserOne,ou=users,dc=group-to-principal,dc=wildfly,dc=org
objectClass: top
objectClass: inetOrgPerson
objectClass: uidObject
objectClass: person
objectClass: organizationalPerson
cn: Test User One
sn: Test User One
uid: TestUserOne
userPassword: {SSHA}UG8ov2rnrnBKakcARVvraZHqTa7mFWJZlWt2HA==

Example: LDAP Server Group Entries

dn: uid=GroupOne,ou=groups,dc=group-to-principal,dc=wildfly,dc=org
objectClass: top
objectClass: groupOfUniqueNames
objectClass: uidObject
cn: Group One
uid: GroupOne
uniqueMember: uid=TestUserOne,ou=users,dc=group-to-principal,dc=wildfly,dc=org

For authentication purposes the user name is matched against the uid attribute and the
resulting group name is taken from the uid attribute of the group entry.

2. The connection to the LDAP server and related security realm is defined using the following
management CLI commands.

Example: LDAP Security Realm Configuration Commands

batch
/core-service=management/ldap-
connection=MyLdapConnection:add(url="ldap://localhost:10389", search-
dn="uid=admin,ou=system", search-credential="secret")

/core-service=management/security-realm=LDAPRealm:add

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

122

/core-service=management/security-
realm=LDAPRealm/authentication=ldap:add(connection="MyLdapConnection", username-
attribute=uid, base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org")

/core-service=management/security-
realm=LDAPRealm/authorization=ldap:add(connection=MyLdapConnection)
/core-service=management/security-realm=LDAPRealm/authorization=ldap/username-to-
dn=username-filter:add(attribute=uid, base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org")
/core-service=management/security-realm=LDAPRealm/authorization=ldap/group-
search=group-to-principal:add(base-dn="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org", iterative=true, prefer-original-connection=true, principal-
attribute=uniqueMember, search-by=DISTINGUISHED_NAME, group-name=SIMPLE,
group-name-attribute=uid)
run-batch

This results in the following server configuration.

Example: LDAP Security Realm Configuration

3. The following management CLI commands are used to configure a PicketBox security domain,
which uses the LdapExtLoginModule to verify a user name and password.

<management>
 <security-realms>
 ...
 <security-realm name="LDAPRealm">
 <authentication>
 <ldap connection="MyLdapConnection" base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org">
 <username-filter attribute="uid"/>
 </ldap>
 </authentication>
 <authorization>
 <ldap connection="MyLdapConnection">
 <username-to-dn>
 <username-filter base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org"
attribute="uid"/>
 </username-to-dn>
 <group-search group-name="SIMPLE" iterative="true" group-name-attribute="uid">
 <group-to-principal search-by="DISTINGUISHED_NAME" base-
dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org" prefer-original-connection="true">
 <membership-filter principal-attribute="uniqueMember"/>
 </group-to-principal>
 </group-search>
 </ldap>
 </authorization>
 </security-realm>
 </security-realms>
 <outbound-connections>
 <ldap name="MyLdapConnection" url="ldap://localhost:10389" search-
dn="uid=admin,ou=system" search-credential="secret"/>
 </outbound-connections>
 ...
</management>

CHAPTER 9. MIGRATING TO ELYTRON

123

Example: Security Domain Configuration Commands

/subsystem=security/security-domain=application-security:add
/subsystem=security/security-domain=application-security/authentication=classic:add(login-
modules=[{code=LdapExtended, flag=Required, module-options={
java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory,
java.naming.provider.url=ldap://localhost:10389, java.naming.security.authentication=simple,
bindDN="uid=admin,ou=system", bindCredential=secret, baseCtxDN="ou=users,dc=group-
to-principal,dc=wildfly,dc=org", baseFilter="(uid={0})", rolesCtxDN="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org", roleFilter="(uniqueMember={1})", roleAttributeID="uid" }}])

This results in the following server configuration.

Example: Security Domain Configuration

9.3.4.1. Migrating the Legacy LDAP Authentication to Elytron

Follow these steps to migrate the previous LDAP authentication example configuration to Elytron in
JBoss EAP 7.4 and earlier. This section applies to the migration of a legacy security LDAP realm as well
as a PicketBox LDAP security domain .

Procedure

1. Define a connection to LDAP in the elytron subsystem.

/subsystem=elytron/dir-context=ldap-connection:add(url=ldap://localhost:10389,
principal="uid=admin, ou=system", credential-reference={clear-text=secret})

<subsystem xmlns="urn:jboss:domain:security:2.0">
 ...
 <security-domains>
 ...
 <security-domain name="application-security">
 <authentication>
 <login-module code="LdapExtended" flag="required">
 <module-option name="java.naming.factory.initial"
value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <module-option name="java.naming.provider.url" value="ldap://localhost:10389"/>
 <module-option name="java.naming.security.authentication" value="simple"/>
 <module-option name="bindDN" value="uid=admin,ou=system"/>
 <module-option name="bindCredential" value="secret"/>
 <module-option name="baseCtxDN" value="ou=users,dc=group-to-
principal,dc=wildfly,dc=org"/>
 <module-option name="baseFilter" value="(uid={0})"/>
 <module-option name="rolesCtxDN" value="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org"/>
 <module-option name="roleFilter" value="(uniqueMember={1})"/>
 <module-option name="roleAttributeID" value="uid"/>
 </login-module>
 </authentication>
 </security-domain>
 </security-domains>
</subsystem>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

124

2. Create a security realm to search LDAP and verify the supplied password.

/subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-connection, direct-
verification=true, identity-mapping={search-base-dn="ou=users, dc=group-to-principal,
dc=wildfly, dc=org", rdn-identifier="uid", attribute-mapping=[{filter-base-dn="ou=groups,
dc=group-to-principal, dc=wildfly, dc=org", filter="(uniqueMember={1})", from="uid",
to="Roles"}]})

These steps result in the following elytron subsystem configuration in the server configuration file.

NOTE

By default, if no role-decoder is defined for a given security-domain, the "Roles" identity
attribute is mapped to the identity roles.

Information loaded from LDAP can now be associated with identities as attributes. These attributes can
be mapped to roles, but they can also be loaded and used for other purposes. The newly created
security realm can be used in a security domain in the same way as it is described in the Migrate
Properties-based Authentication and Authorization to Elytron section of this guide.

9.3.5. Migrate Database Authentication Configuration to Elytron

Migrate JDBC datasource-based PicketBox authentication to Elytron. For instructions on defining
security domains, authentication factories, and mapping them for authentication, see Migrate
Properties-based Authentication and Authorization to Elytron.

The following examples assume that the user authentication data is stored in a database table created
using syntax similar to the following example.

Example: Syntax to Create the Database User Table

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 ...
 <security-realms>
 ...
 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-verification="true">
 <identity-mapping rdn-identifier="uid" search-base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org">
 <attribute-mapping>
 <attribute from="uid" to="Roles" filter="(uniqueMember={1})" filter-base-
dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>
 </attribute-mapping>
 </identity-mapping>
 </ldap-realm>
 </security-realms>
 ...
 <dir-contexts>
 <dir-context name="ldap-connection" url="ldap://localhost:10389"
principal="uid=admin,ou=system">
 <credential-reference clear-text="secret"/>
 </dir-context>
 </dir-contexts>
</subsystem>

CHAPTER 9. MIGRATING TO ELYTRON

125

CREATE TABLE User (
 id BIGINT NOT NULL,
 username VARCHAR(255),
 password VARCHAR(255),
 role ENUM('admin', 'manager', 'user'),
 PRIMARY KEY (id),
 UNIQUE (username)
)

For authentication purposes the username is matched against data stored in the username column, the
password is expected to be stored as a hex-encoded MD5 hash in the password column, and the user
role for authorization purposes is stored in the role column.

The PicketBox security domain is configured to use a JBDC datasource to retrieve data from the
database table, and then use it to verify the username and password, and to assign roles. Assume the
PicketBox security domain is configured using the following management CLI commands.

Example: PicketBox Database LoginModule Configuration Commands

/subsystem=security/security-domain=application-security:add
/subsystem=security/security-domain=application-security/authentication=classic:add(login-
modules=[{ code=Database, flag=Required, module-options={
dsJndiName="java:jboss/datasources/ExampleDS", principalsQuery="SELECT password FROM
User WHERE username = ?", rolesQuery="SELECT role, 'Roles' FROM User WHERE username =
?", hashAlgorithm=MD5, hashEncoding=base64 } }])

This results in the following login-module configuration in the legacy security subsystem.

Example: PicketBox LoginModule Configuration

9.3.5.1. Migrating the legacy database authentication to Elytron

For JBoss EAP 7.4 and earlier releases, you must define a JDBC realm to enable JDBC datasource
access by Elytron to migrate the previous database authentication example configuration to Elytron.

Procedure

<subsystem xmlns="urn:jboss:domain:security:2.0">
 <security-domains>
 ...
 <security-domain name="application-security">
 <authentication>
 <login-module code="Database" flag="required">
 <module-option name="dsJndiName" value="java:jboss/datasources/ExampleDS"/>
 <module-option name="principalsQuery" value="SELECT password FROM User WHERE
username = ?"/>
 <module-option name="rolesQuery" value="SELECT role, 'Roles' FROM User WHERE
username = ?"/>
 <module-option name="hashAlgorithm" value="MD5"/>
 <module-option name="hashEncoding" value="base64"/>
 </login-module>
 </authentication>
 </security-domain>
 </security-domains>
</subsystem>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

126

Procedure

1. Use the following management command to define the jdbc-realm.

/subsystem=elytron/jdbc-realm=jdbc-realm:add(principal-query=[{ data-source=ExampleDS,
sql="SELECT role, password FROM User WHERE username = ?", attribute-mapping=[{index=1,
to=Roles }] simple-digest-mapper={algorithm=simple-digest-md5, password-index=2} }])

This results in the following jdbc-realm configuration in the elytron subsystem of the server
configuration file.

Elytron now manages the database authentication using the JDBC realm configuration. Elytron is more
efficient than PicketBox because it uses one SQL query to obtain all of the user attributes and
credentials, and then extracts data from the SQL results and creates a mapping of the attributes to use
for authentication.

9.3.6. Migrate Kerberos Authentication to Elytron

When working with a Kerberos configuration, the JBoss EAP server can rely on configuration information
from the environment, or the key configuration can be specified using system properties.

These system properties are applicable to both the legacy configuration and the migrated Elytron
configuration.

Example: Kerberos System Properties Management CLI Commands

Enable debugging
/system-property=sun.security.krb5.debug:add(value=true)
Identify the Kerberos realm to use
/system-property=java.security.krb5.realm:add(value=ELYTRON.ORG)
Identify the address of the KDC
/system-property=java.security.krb5.kdc:add(value=kdc.elytron.org)

Example: Kerberos System Properties Server Configuration

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 ...
 <security-realms>
 ...
 <jdbc-realm name="jdbc-realm">
 <principal-query sql="SELECT role, password FROM User WHERE username = ?" data-
source="ExampleDS">
 <attribute-mapping>
 <attribute to="Roles" index="1"/>
 </attribute-mapping>
 <simple-digest-mapper password-index="2"/>
 </principal-query>
 </jdbc-realm>
 ...
 </security-realms>
 ...
</subsystem>

<system-properties>

CHAPTER 9. MIGRATING TO ELYTRON

127

Depending on your authentication mechanisms, choose one of the following migration options:

Migrate Kerberos HTTP Authentication

Migrate Kerberos Remoting SASL Authentication

9.3.6.1. Migrating Kerberos HTTP Authentication

In legacy security configurations, you can define a security realm to enable SPNEGO authentication for
the HTTP management interface as follows.

Prerequisite

The examples that follow assume that Kerberos is configured using the system properties.

Example: Enable SPNEGO authentication for the HTTP management interface

/core-service=management/security-realm=Kerberos:add
/core-service=management/security-realm=Kerberos/server-identity=kerberos:add
/core-service=management/security-realm=Kerberos/server-identity=kerberos/keytab=HTTP\/test-
server.elytron.org@ELYTRON.ORG:add(path=/path/to/test-server.keytab, debug=true)
/core-service=management/security-realm=Kerberos/authentication=kerberos:add(remove-
realm=true)

Example: Kerberos Security Realm Configuration

You can also define a pair of legacy security domains to allow applications to use Kerberos HTTP
authentication.

Example: Define Multiple Security Domains

Define the first security domain
/subsystem=security/security-domain=host:add
/subsystem=security/security-domain=host/authentication=classic:add
/subsystem=security/security-domain=host/authentication=classic/login-

 <property name="sun.security.krb5.debug" value="true"/>
 <property name="java.security.krb5.realm" value="ELYTRON.ORG"/>
 <property name="java.security.krb5.kdc" value="kdc.elytron.org"/>
</system-properties>

<security-realms>
 ...
 <security-realm name="Kerberos">
 <server-identities>
 <kerberos>
 <keytab principal="HTTP/test-server.elytron.org@ELYTRON.ORG" path="/path/to/test-
server.keytab" debug="true"/>
 </kerberos>
 </server-identities>
 <authentication>
 <kerberos remove-realm="true"/>
 </authentication>
 </security-realm>
</security-realms>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

128

module=1:add(code=Kerberos, flag=Required, module-options={storeKey=true, useKeyTab=true,
principal=HTTP/test-server.elytron.org@ELYTRON.ORG, keyTab=path/to/test-server.keytab,
debug=true}

Define the second SPNEGO security domain
/subsystem=security/security-domain=SPNEGO:add
/subsystem=security/security-domain=SPNEGO/authentication=classic:add
/subsystem=security/security-domain=SPNEGO/authentication=classic/login-
module=1:add(code=SPNEGO, flag=requisite, module-options={password-stacking=useFirstPass,
serverSecurityDomain=host})
/subsystem=security/security-domain=SPNEGO/authentication=classic/login-module=1:write-
attribute(name=module, value=org.jboss.security.negotiation)
/subsystem=security/security-domain=SPNEGO/authentication=classic/login-
module=2:add(code=UsersRoles, flag=required, module-options={password-stacking=useFirstPass,
usersProperties= /path/to/kerberos/spnego-users.properties, rolesProperties=
/path/to/kerberos/spnego-roles.properties, defaultUsersProperties= /path/to/kerberos/spnego-
users.properties, defaultRolesProperties= /path/to/kerberos/spnego-roles.properties})

Example: Configuration Using a Pair of Security Domains

<subsystem xmlns="urn:jboss:domain:security:2.0">
 <security-domains>
 ...
 <security-domain name="host">
 <authentication>
 <login-module name="1" code="Kerberos" flag="required">
 <module-option name="storeKey" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="principal" value="HTTP/test-server.elytron.org@ELYTRON.ORG"/>
 <module-option name="keyTab" value="/path/to/test-server.keytab"/>
 <module-option name="debug" value="true"/>
 </login-module>
 </authentication>
 </security-domain>
 <security-domain name="SPNEGO">
 <authentication>
 <login-module name="1" code="SPNEGO" flag="requisite"
module="org.jboss.security.negotiation">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="serverSecurityDomain" value="host"/>
 </login-module>
 <login-module name="2" code="UsersRoles" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="usersProperties" value="path/to/kerberos/spnego-users.properties"/>
 <module-option name="rolesProperties" value=" /path/to/kerberos/spnego-roles.properties"/>
 <module-option name="defaultUsersProperties" value=" /path/to/kerberos/spnego-
users.properties"/>
 <module-option name="defaultRolesProperties" value=" /path/to/kerberos/spnego-
roles.properties"/>
 </login-module>
 </authentication>
 </security-domain>
 </security-domains>
</subsystem>

CHAPTER 9. MIGRATING TO ELYTRON

129

The legacy applications are then deployed referencing the SPNEGO security domain and secured with
the SPNEGO mechanism.

9.3.6.1.1. Migrate the Kerberos HTTP Authentication to Elytron

Secure the management interface and applications in Elytron by using a security realm and a Kerberos
security factory.

Prerequisite

The examples that follow assume that Kerberos is configured using the system properties.

Procedure

1. Define a security realm to be used to load identity information.

/subsystem=elytron/properties-realm=spnego-properties:add(users-properties=
{path=path/to/spnego-users.properties, plain-text=true, digest-realm-
name=ELYTRON.ORG}, groups-properties={path=path/to/spnego-roles.properties})

2. Define a Kerberos security factory that allows the server to load its own Kerberos identity.

/subsystem=elytron/kerberos-security-factory=test-server:add(path=path/to/test-
server.keytab, principal=HTTP/test-server.elytron.org@ELYTRON.ORG, debug=true)

3. Define a security domain to pull together the policy as well as an HTTP authentication factory
for the authentication policy.

/subsystem=elytron/security-domain=SPNEGODomain:add(default-realm=spnego-
properties, realms=[{realm=spnego-properties, role-decoder=groups-to-roles}], permission-
mapper=default-permission-mapper)
/subsystem=elytron/http-authentication-factory=spnego-http-authentication:add(security-
domain=SPNEGODomain, http-server-mechanism-factory=global,mechanism-
configurations=[{mechanism-name=SPNEGO, credential-security-factory=test-server}])

This results in the following configuration in the elytron subsystem of the server configuration
file.

Example: Migrated Elytron Configuration

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="SPNEGODomain" default-realm="spnego-properties"
permission-mapper="default-permission-mapper">
 <realm name="spnego-properties" role-decoder="groups-to-roles"/>
 </security-domain>
 </security-domains>
 <security-realms>
 ...
 <properties-realm name="spnego-properties">
 <users-properties path="path/to/spnego-users.properties" digest-realm-
name="ELYTRON.ORG" plain-text="true"/>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

130

4. To secure the application, define an application security domain in the undertow subsystem to
map security domains to this http-authentication-factory. The HTTP management interface
can be updated to reference the http-authentication-factory defined in this configuration. This
process is documented in the Migrate Properties-based Authentication and Authorization to
Elytron.

9.3.6.2. Migrating Kerberos Remoting SASL Authentication

Migrate Kerberos remoting SASL authentication using the following information.

Procedure

1. Define a legacy security realm for Kerberos / GSSAPI SASL authentication to be used for
remoting authentication, such as the native management interface.

Example: Kerberos Authentication for Remoting Management CLI Commands

/core-service=management/security-realm=Kerberos:add
/core-service=management/security-realm=Kerberos/server-identity=kerberos:add
/core-service=management/security-realm=Kerberos/server-identity=kerberos/keytab=remote\/test-
server.elytron.org@ELYTRON.ORG:add(path=path/to/remote-test-server.keytab, debug=true)
/core-service=management/security-realm=Kerberos/authentication=kerberos:add(remove-
realm=true)

Example: Kerberos Remoting Security Realm Configuration

 <groups-properties path="path/to/spnego-roles.properties"/>
 </properties-realm>
 </security-realms>
 <credential-security-factories>
 <kerberos-security-factory name="test-server" principal="HTTP/test-
server.elytron.org@ELYTRON.ORG" path="path/to/test-server.keytab" debug="true"/>
 </credential-security-factories>
 ...
 <http>
 ...
 <http-authentication-factory name="spnego-http-authentication" http-server-mechanism-
factory="global" security-domain="SPNEGODomain">
 <mechanism-configuration>
 <mechanism mechanism-name="SPNEGO" credential-security-factory="test-server"/>
 </mechanism-configuration>
 </http-authentication-factory>
 ...
 </http>
 ...
</subsystem>

<management>
 <security-realms>
 ...
 <security-realm name="Kerberos">
 <server-identities>
 <kerberos>
 <keytab principal="remote/test-server.elytron.org@ELYTRON.ORG" path="path/to/remote-test-

CHAPTER 9. MIGRATING TO ELYTRON

131

9.3.6.2.1. Migrate the Kerberos Remoting SASL Authentication to Elytron

Migrate the Kerberos remoting SASL authentication to Elytron using the following steps.

Procedure

1. Define a security realm to be used to load identity information.

/path=kerberos:add(relative-to=user.home, path=src/kerberos)
/subsystem=elytron/properties-realm=kerberos-properties:add(users-properties=
{path=kerberos-users.properties, relative-to=kerberos, digest-realm-name=ELYTRON.ORG},
groups-properties={path=kerberos-groups.properties, relative-to=kerberos})

2. Define the Kerberos security factory for the server’s identity.

/subsystem=elytron/kerberos-security-factory=test-server:add(relative-to=kerberos,
path=remote-test-server.keytab, principal=remote/test-server.elytron.org@ELYTRON.ORG)

3. Define the security domain and a SASL authentication factory.

/subsystem=elytron/security-domain=KerberosDomain:add(default-realm=kerberos-
properties, realms=[{realm=kerberos-properties, role-decoder=groups-to-roles}], permission-
mapper=default-permission-mapper)
/subsystem=elytron/sasl-authentication-factory=gssapi-authentication-factory:add(security-
domain=KerberosDomain, sasl-server-factory=elytron, mechanism-configurations=
[{mechanism-name=GSSAPI, credential-security-factory=test-server}])

This results in the following configuration in the elytron subsystem of the server configuration file.

server.keytab" debug="true"/>
 </kerberos>
 </server-identities>
 <authentication>
 <kerberos remove-realm="true"/>
 </authentication>
 </security-realm>
 </security-realms>
 ...
</management>

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="KerberosDomain" default-realm="kerberos-properties" permission-
mapper="default-permission-mapper">
 <realm name="kerberos-properties" role-decoder="groups-to-roles"/>
 </security-domain>
 </security-domains>
 <security-realms>
 ...
 <properties-realm name="kerberos-properties">
 <users-properties path="kerberos-users.properties" relative-to="kerberos" digest-realm-

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

132

Verification

The management interface or remoting connectors can now be updated to reference the SASL
authentication factory.

The two Elytron examples defined here could also be combined to use a shared security domain and
security realm and just use protocol-specific authentication factories each referencing their own
Kerberos security factory.

Additional resources

These steps to define the equivalent Elytron configuration are very similar to those described in Migrate
Kerberos HTTP Authentication.

9.3.7. Migrate Composite Stores to Elytron

This section describes how to migrate a PicketBox or legacy security realm configuration that uses
multiple identity stores to Elytron Aggregate Security Realm Configuration .

When using either PicketBox or the legacy security realms, it is possible to define a configuration where
authentication is performed against one identity store while the information used for authorization is
loaded from a different store. When migrating to Elytron, this can be achieved by using an aggregate
security realm.

The following examples perform user authentication using the example-users.properties properties
file, and then query LDAP to load the group and role information.

NOTE

The configurations shown are based on the examples in the following sections, which
provide additional background information:

Migrate PicketBox Properties-based Configuration to Elytron

Migrate LDAP Authentication Configuration to Elytron

name="ELYTRON.ORG"/>
 <groups-properties path="kerberos-groups.properties" relative-to="kerberos"/>
 </properties-realm>
 </security-realms>
 <credential-security-factories>
 <kerberos-security-factory name="test-server" principal="remote/test-
server.elytron.org@ELYTRON.ORG" path="remote-test-server.keytab" relative-to="kerberos"/>
 </credential-security-factories>
 ...
 <sasl>
 ...
 <sasl-authentication-factory name="gssapi-authentication-factory" sasl-server-factory="elytron"
security-domain="KerberosDomain">
 <mechanism-configuration>
 <mechanism mechanism-name="GSSAPI" credential-security-factory="test-server"/>
 </mechanism-configuration>
 </sasl-authentication-factory>
 ...
 </sasl>
 </subsystem>

CHAPTER 9. MIGRATING TO ELYTRON

133

9.3.7.1. PicketBox Composite Store Configuration

The PicketBox security domain for this scenario is configured using the following management CLI
commands.

Example: PicketBox Configuration Commands

/subsystem=security/security-domain=application-security:add

/subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=
[{code=UsersRoles, flag=Required, module-options={ password-stacking=useFirstPass,
usersProperties=file://${jboss.server.config.dir}/example-users.properties}} {code=LdapExtended,
flag=Required, module-options={ password-stacking=useFirstPass,
java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory,
java.naming.provider.url=ldap://localhost:10389, java.naming.security.authentication=simple,
bindDN="uid=admin,ou=system", bindCredential=secret, baseCtxDN="ou=users,dc=group-to-
principal,dc=wildfly,dc=org", baseFilter="(uid={0})", rolesCtxDN="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org",roleFilter="(uniqueMember={1})", roleAttributeID="uid" }}])

This results in the following server configuration.

Example: PicketBox Security Domain Configuration

For more information, see Elytron Aggregate Security Realm Configuration for how to configure an
aggregate security realm.

9.3.7.2. Legacy Security Realm Composite Store Configuration

For JBoss EAP 7.4 and earlier releses, the legacy security realm configuration is configured using the
following management CLI commands.

NOTE

<security-domain name="application-security">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="usersProperties" value="file://${jboss.server.config.dir}/example-
users.properties"/>
 </login-module>
 <login-module code="LdapExtended" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="java.naming.factory.initial" value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <module-option name="java.naming.provider.url" value="ldap://localhost:10389"/>
 <module-option name="java.naming.security.authentication" value="simple"/>
 <module-option name="bindDN" value="uid=admin,ou=system"/>
 <module-option name="bindCredential" value="secret"/>
 <module-option name="baseCtxDN" value="ou=users,dc=group-to-principal,dc=wildfly,dc=org"/>
 <module-option name="baseFilter" value="(uid={0})"/>
 <module-option name="rolesCtxDN" value="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>
 <module-option name="roleFilter" value="(uniqueMember={1})"/>
 <module-option name="roleAttributeID" value="uid"/>
 </login-module>
 </authentication>
</security-domain>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

134

NOTE

As the legacy security commands are not applicable in JBoss EAP 8, these commands are
only applicable in JBoss EAP 7.4 and earlier releases.

Example: Legacy Security Realm Configuration Commands

/core-service=management/ldap-connection=MyLdapConnection:add(url="ldap://localhost:10389",
search-dn="uid=admin,ou=system", search-credential="secret")

/core-service=management/security-realm=ApplicationSecurity:add
/core-service=management/security-
realm=ApplicationSecurity/authentication=properties:add(path=example-users.properties, relative-
to=jboss.server.config.dir, plain-text=true)

batch
/core-service=management/security-
realm=ApplicationSecurity/authorization=ldap:add(connection=MyLdapConnection)
/core-service=management/security-realm=ApplicationSecurity/authorization=ldap/username-to-
dn=username-filter:add(attribute=uid, base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org")
/core-service=management/security-realm=ApplicationSecurity/authorization=ldap/group-
search=group-to-principal:add(base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",
iterative=true, prefer-original-connection=true, principal-attribute=uniqueMember, search-
by=DISTINGUISHED_NAME, group-name=SIMPLE, group-name-attribute=uid)
run-batch

This results in the following server configuration.

Example: Legacy Security Realm Configuration

<security-realms>
 ...
 <security-realm name="ApplicationSecurity">
 <authentication>
 <properties path="example-users.properties" relative-to="jboss.server.config.dir" plain-
text="true"/>
 </authentication>
 <authorization>
 <ldap connection="MyLdapConnection">
 <username-to-dn>
 <username-filter base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org" attribute="uid"/>
 </username-to-dn>
 <group-search group-name="SIMPLE" iterative="true" group-name-attribute="uid">
 <group-to-principal search-by="DISTINGUISHED_NAME" base-dn="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org" prefer-original-connection="true">
 <membership-filter principal-attribute="uniqueMember"/>
 </group-to-principal>
 </group-search>
 </ldap>
 </authorization>
 </security-realm>
</security-realms>
<outbound-connections>

CHAPTER 9. MIGRATING TO ELYTRON

135

See Elytron Aggregate Security Realm Configuration for how to configure an aggregate security realm
in the elytron subsystem to accomplish this.

9.3.7.3. Elytron Aggregate Security Realm Configuration

The equivalent Elytron configuration for this scenario is configured using the following management CLI
commands.

Example: Elytron Configuration Commands

/subsystem=elytron/dir-context=ldap-connection:add(url=ldap://localhost:10389,
principal="uid=admin,ou=system", credential-reference={clear-text=secret})

/subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-connection, direct-verification=true,
identity-mapping={search-base-dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org", rdn-
identifier="uid", attribute-mapping=[{filter-base-dn="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org",filter="(uniqueMember={1})",from="uid",to="Roles"}]})

/subsystem=elytron/properties-realm=application-properties:add(users-properties={path=example-
users.properties, relative-to=jboss.server.config.dir, plain-text=true, digest-realm-name="Application
Security"})

/subsystem=elytron/aggregate-realm=combined-realm:add(authentication-realm=application-
properties, authorization-realm=ldap-realm)

/subsystem=elytron/security-domain=application-security:add(realms=[{realm=combined-realm}],
default-realm=combined-realm, permission-mapper=default-permission-mapper)
/subsystem=elytron/http-authentication-factory=application-security-http:add(http-server-mechanism-
factory=global, security-domain=application-security, mechanism-configurations=[{mechanism-
name=BASIC}])

This results in the following server configuration.

Example: Elytron Configuration

 <ldap name="MyLdapConnection" url="ldap://localhost:10389" search-dn="uid=admin,ou=system"
search-credential="secret"/>
</outbound-connections>

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="application-security" default-realm="combined-realm" permission-
mapper="default-permission-mapper">
 <realm name="combined-realm"/>
 </security-domain>
 </security-domains>
 <security-realms>
 <aggregate-realm name="combined-realm" authentication-realm="application-properties"
authorization-realm="ldap-realm"/>
 ...
 <properties-realm name="application-properties">
 <users-properties path="example-users.properties" relative-to="jboss.server.config.dir" digest-

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

136

In the elytron subsystem, an aggregate-realm has been defined that specifies which security realms to
use for authentication and which to use for authorization decisions.

9.3.8. Migrate security domains that use caching to Elytron

When using PicketBox, it was possible to define a security domain and enable in-memory caching for its
access. This allowed you to access the identity data in memory and avoid additional direct access to the
identity store. It is possible to achieve a similar configuration with Elytron. This section shows an example
PicketBox configuration and equivalent security domain caching configuration when using Elytron.

9.3.8.1. PicketBox Cached Security Domain Configuration

The following commands show PicketBox security domain configuration to enable caching in JBoss EAP
7.4 and earlier.

Example: PicketBox Cached Security Domain Commands

/subsystem=security/security-domain=application-security:add(cache-type=default)
/subsystem=security/security-domain=application-security/authentication=classic:add(login-modules=
[{code=LdapExtended, flag=Required, module-options={
java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory,
java.naming.provider.url=ldap://localhost:10389, java.naming.security.authentication=simple,

realm-name="Application Security" plain-text="true"/>
 </properties-realm>
 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-verification="true">
 <identity-mapping rdn-identifier="uid" search-base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org">
 <attribute-mapping>
 <attribute from="uid" to="Roles" filter="(uniqueMember={1})" filter-base-
dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>
 </attribute-mapping>
 </identity-mapping>
 </ldap-realm>
 </security-realms>
 ...
 <http>
 ...
 <http-authentication-factory name="application-security-http" http-server-mechanism-
factory="global" security-domain="application-security">
 <mechanism-configuration>
 <mechanism mechanism-name="BASIC"/>
 </mechanism-configuration>
 </http-authentication-factory>
 ...
 </http>
 ...
 <dir-contexts>
 <dir-context name="ldap-connection" url="ldap://localhost:10389"
principal="uid=admin,ou=system">
 <credential-reference clear-text="secret"/>
 </dir-context>
 </dir-contexts>
</subsystem>

CHAPTER 9. MIGRATING TO ELYTRON

137

bindDN="uid=admin,ou=system", bindCredential=secret, baseCtxDN="ou=users,dc=group-to-
principal,dc=wildfly,dc=org", baseFilter="(uid={0})", rolesCtxDN="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org", roleFilter="(uniqueMember={1})", roleAttributeID="uid" }}])

This results in the following server configuration.

Example: PicketBox Cached Security Domain Configuration

NOTE

This command and resulting configuration is similar to the example shown in Migrate
LDAP Authentication Configuration to Elytron; however, here the attribute cache-type is
defined with a value of default. The default cache type is an in-memory cache. When
using PicketBox, you can also specify a cache-type of infinispan, however this type is
not supported with Elytron.

9.3.8.2. Configuring an Elytron cached security domain

Follow the steps below to create a similar configuration that caches a security domain when using
Elytron.

Procedure

1. Define a security realm and wrap the security realm in a caching realm. The caching realm can
then be used in a security domain and subsequently in an authentication factory.

Example: Elytron Security Realm Configuration Commands

/subsystem=elytron/dir-context=ldap-connection:add(url=ldap://localhost:10389,
principal="uid=admin,ou=system", credential-reference={clear-text=secret})

<subsystem xmlns="urn:jboss:domain:security:2.0">
 <security-domains>
 ...
 <security-domain name="application-security" cache-type="default">
 <authentication>
 <login-module code="LdapExtended" flag="required">
 <module-option name="java.naming.factory.initial" value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <module-option name="java.naming.provider.url" value="ldap://localhost:10389"/>
 <module-option name="java.naming.security.authentication" value="simple"/>
 <module-option name="bindDN" value="uid=admin,ou=system"/>
 <module-option name="bindCredential" value="secret"/>
 <module-option name="baseCtxDN" value="ou=users,dc=group-to-
principal,dc=wildfly,dc=org"/>
 <module-option name="baseFilter" value="(uid={0})"/>
 <module-option name="rolesCtxDN" value="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org"/>
 <module-option name="roleFilter" value="(uniqueMember={1})"/>
 <module-option name="roleAttributeID" value="uid"/>
 </login-module>
 </authentication>
 </security-domain>
 </security-domains>
</subsystem>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

138

/subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-connection, direct-
verification=true, identity-mapping={search-base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org", rdn-identifier="uid", attribute-mapping=[{filter-base-
dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",filter="(uniqueMember=
{1})",from="uid",to="Roles"}]})
/subsystem=elytron/caching-realm=cached-ldap:add(realm=ldap-realm)

2. Define a security domain and an HTTP authentication factory that use the cached-ldap realm
defined in the previous step.

Example: Elytron Security Domain and Authentication Factory Configuration
Commands

/subsystem=elytron/security-domain=application-security:add(realms=[{realm=cached-ldap}],
default-realm=cached-ldap, permission-mapper=default-permission-mapper)
/subsystem=elytron/http-authentication-factory=application-security-http:add(http-server-
mechanism-factory=global, security-domain=application-security, mechanism-
configurations=[{mechanism-name=BASIC}])

NOTE

You must reference the caching-realm instead of the original realm. Otherwise,
caching is bypassed.

These commands result in the following additions to the server configuration.

Example: Elytron Cached Security Domain Configuration

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="application-security" default-realm="cached-ldap" permission-
mapper="default-permission-mapper">
 <realm name="cached-ldap"/>
 </security-domain>
 </security-domains>
 ...
 <security-realms>

 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-verification="true">
 <identity-mapping rdn-identifier="uid" search-base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org">
 <attribute-mapping>
 <attribute from="uid" to="Roles" filter="(uniqueMember={1})" filter-base-
dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>
 </attribute-mapping>
 </identity-mapping>
 </ldap-realm>
 <caching-realm name="cached-ldap" realm="ldap-realm"/>
 </security-realms>
 ...
 <http>

CHAPTER 9. MIGRATING TO ELYTRON

139

9.3.9. Migrate Jakarta authorization security to Elytron

By default, JBoss EAP 7.4 and earlier uses the legacy security subsystem to configure the Jakarta
Authorization policy provider and factory. The default configuration maps to implementations from
PicketBox.

The elytron subsystem provides a built-in policy provider based on the Java Authorization Contract for
Containers (JACC) specification.

For information about how to enable and define a Java Authorization Contract for Containers policy
provider in the elytron subsystem, see Define a Jakarta Authentication Policy Provider in the JBoss
EAP 7.4 Development Guide.

9.4. MIGRATE APPLICATION CLIENTS

This section provides information on how to migrate client applications to Elytron.

Migrate a Naming Client Configuration to Elytron
This section describes how to migrate a client application that performs a remote JNDI lookup using an
org.jboss.naming.remote.client.InitialContext class, which is backed by an
org.jboss.naming.remote.client.InitialContextFactory class, to Elytron.

The following example assumes that the InitialContextFactory class is created by specifying properties
for the user credentials and for the URL of the naming provider that it connects to.

Example: InitialContext Code Used in the Previous Release

 ...
 <http-authentication-factory name="application-security-http" http-server-mechanism-
factory="global" security-domain="application-security">
 <mechanism-configuration>
 <mechanism mechanism-name="BASIC"/>
 </mechanism-configuration>
 </http-authentication-factory>
 ...
 </http>
 ...
 <dir-contexts>
 <dir-context name="ldap-connection" url="ldap://localhost:10389"
principal="uid=admin,ou=system">
 <credential-reference clear-text="secret"/>
 </dir-context>
 </dir-contexts>
 ...

Properties properties = new Properties();
properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jboss.naming.remote.client.InitialContextFactory");
properties.put(Context.PROVIDER_URL,"http-remoting://127.0.0.1:8080");
properties.put(Context.SECURITY_PRINCIPAL, "bob");
properties.put(Context.SECURITY_CREDENTIALS, "secret");
InitialContext context = new InitialContext(properties);
Bar bar = (Bar) context.lookup("foo/bar");
...

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

140

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#enabling_jakarta_authorization_using_elytron

You can choose from one of the following migration approaches:

Migrate the Naming Client Using the Configuration File Approach

Migrate the Naming Client Using the Programmatic Approach

9.4.1. Migrating the Naming Client Using the Configuration File Approach

Migrate your naming client to Elytron using the configuration approach.

Procedure

1. Create a wildfly-config.xml file in the client application META-INF/ directory. The file should
contain the user credentials that are to be used when establishing a connection to the naming
provider.

Example: wildfly-config.xml File

2. Create an InitialContext as in the following example. Note that the InitialContext is backed by
the org.wildfly.naming.client.WildFlyInitialContextFactory class.

Example: InitialContext Code

9.4.2. Migrating the Naming Client Using the Programmatic Approach

Using this approach, you provide the user credentials that are used to establish a connection to the
naming provider directly in the application code.

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.7">
 <authentication-rules>
 <rule use-configuration="namingConfig">
 <match-host name="127.0.0.1"/>
 </rule>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="namingConfig">
 <set-user-name name="bob"/>
 <credentials>
 <clear-password password="secret"/>
 </credentials>
 </configuration>
 </authentication-configurations>
 </authentication-client>
</configuration>

Properties properties = new Properties();
properties.put(Context.INITIAL_CONTEXT_FACTORY,"org.wildfly.naming.client.WildFlyInitial
ContextFactory");
properties.put(Context.PROVIDER_URL,"remote+http://127.0.0.1:8080");
InitialContext context = new InitialContext(properties);
Bar bar = (Bar) context.lookup("foo/bar");
...

CHAPTER 9. MIGRATING TO ELYTRON

141

Example: Code Using the Programmatic Approach

9.4.3. Migrate a Jakarta Enterprise Beans client to Elytron

This migration example assumes that the client application is configured to invoke an Jakarta Enterprise
Beans deployed to a remote server using a jboss-ejb-client.properties file. This file, which is located in
the client application META-INF/ directory, contains the following information needed to connect to the
remote server.

Example: jboss-ejb-client.properties file

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connections=default
remote.connection.default.host=127.0.0.1
remote.connection.default.port = 8080
remote.connection.default.username=bob
remote.connection.default.password=secret

The client looks up the Jakarta Enterprise Beans and calls one of its methods using code similar to the
following example.

Example: Client code that calls a remote Jakarta Enterprise Beans

// Create the authentication configuration
AuthenticationConfiguration namingConfig =
AuthenticationConfiguration.empty().useName("bob").usePassword("secret");

// Create the authentication context
AuthenticationContext context =
AuthenticationContext.empty().with(MatchRule.ALL.matchHost("127.0.0.1"), namingConfig);

// Create a callable that creates and uses an InitialContext
Callable<Void> callable = () -> {
 Properties properties = new Properties();

properties.put(Context.INITIAL_CONTEXT_FACTORY,"org.wildfly.naming.client.WildFlyInitialContextF
actory");
 properties.put(Context.PROVIDER_URL,"remote+http://127.0.0.1:8080");
 InitialContext context = new InitialContext(properties);
 Bar bar = (Bar) context.lookup("foo/bar");
 ...
 return null;
};

// Use the authentication context to run the callable
context.runCallable(callable);

// Create an InitialContext
Properties properties = new Properties();
properties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
InitialContext context = new InitialContext(properties);

// Look up the Jakarta Enterprise Beans and invoke one of its methods

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

142

You can choose from one of the following migration approaches:

Migrate the Jakarta Enterprise Beans client using a configuration file

Migrate the Jakarta Enterprise Beans client programmatically

9.4.3.1. Migrate the Jakarta Enterprise Beans client using a configuration file

Follow these steps to migrate your naming client to Elytron using the configuration approach.

Procedure

1. Configure a wildfly-config.xml file in the client application META-INF/ directory. The file should
contain the user credentials that are to be used when establishing a connection to the naming
provider.

Example: wildfly-config.xml file

2. Create an InitialContext as in the following example. Note that the InitialContext is backed by
the org.wildfly.naming.client.WildFlyInitialContextFactory class.

Example: InitialContext code

RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(
 "ejb:/ejb-remote-server-side//CalculatorBean!" + RemoteCalculator.class.getName());
int sum = statelessRemoteCalculator.add(101, 202);

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.7">
 <authentication-rules>
 <rule use-configuration="ejbConfig">
 <match-host name="127.0.0.1"/>
 </rule>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="ejbConfig">
 <set-user-name name="bob"/>
 <credentials>
 <clear-password password="secret"/>
 </credentials>
 </configuration>
 </authentication-configurations>
 </authentication-client>
 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.0">
 <connections>
 <connection uri="remote+http://127.0.0.1:8080" />
 </connections>
 </jboss-ejb-client>
</configuration>

// Create an InitialContext
Properties properties = new Properties();
properties.put(Context.INITIAL_CONTEXT_FACTORY,"org.wildfly.naming.client.WildFlyInitial
ContextFactory");
InitialContext context = new InitialContext(properties);

CHAPTER 9. MIGRATING TO ELYTRON

143

3. You can now delete the obsolete jboss-ejb-client.properties file as that file is no longer
needed.

9.4.3.2. Migrate the Jakarta Enterprise Beans client programmatically

Migrate the Jakarta Enterprise Beans client programmatically using the following step.

Procedure

Provide the information needed to connect to the remote server directly in the application
code.

Example: Code using the programmatic approach

You can now delete the obsolete jboss-ejb-client.properties file as that file is no longer needed.

9.5. MIGRATE SSL CONFIGURATIONS

// Look up an Jakarta Enterprise Beans and invoke one of its methods
// Note that this code is the same as before
RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(
 "ejb:/ejb-remote-server-side//CalculatorBean!" + RemoteCalculator.class.getName());
int sum = statelessRemoteCalculator.add(101, 202);----

// Create the authentication configuration
AuthenticationConfiguration ejbConfig =
AuthenticationConfiguration.empty().useName("bob").usePassword("secret");

// Create the authentication context
AuthenticationContext context =
AuthenticationContext.empty().with(MatchRule.ALL.matchHost("127.0.0.1"), ejbConfig);

// Create a callable that invokes the Jakarta Enterprise Beans
Callable<Void> callable = () -> {

 // Create an InitialContext
 Properties properties = new Properties();
 properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.wildfly.naming.client.WildFlyInitialContextFactory");
 properties.put(Context.PROVIDER_URL, "remote+http://127.0.0.1:8080");
 InitialContext context = new InitialContext(properties);

 // Look up the Jakarta Enterprise Beans and invoke one of its methods
 // Note that this code is the same as before
 RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(
 "ejb:/ejb-remote-server-side//CalculatorBean!" + RemoteCalculator.class.getName());
 int sum = statelessRemoteCalculator.add(101, 202);
 ...
 return null;
};

// Use the authentication context to run the callable
context.runCallable(callable);

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

144

Migrate SSL configurations in your applications to use Elytron with the following information.

Migrate a Simple SSL Configuration to Elytron
If you secured HTTP connections to the JBoss EAP server using a security realm, migrate the SSL
configuration to Elytron using the information provided in this section.

Prerequisites

Have secured HTTP connections to the JBoss EAP server using a security realm.

The following examples assume you have the following keystore configured in the security-realm.

Example: SSL Configuration Using a Security Realm Keystore

Complete the following steps to achieve the same configuration using Elytron.

Procedure

1. Create a key-store in the elytron subsystem that specifies the location of the keystore and the
password by which it is encrypted. This command assumes the keystore was generated using the
keytool command and its type is JKS.

/subsystem=elytron/key-store=LocalhostKeyStore:add(path=server.keystore,relative-
to=jboss.server.config.dir,credential-reference={clear-text="keystore_password"},type=JKS)

2. Create a key-manager in the elytron subsystem that specifies the key-store defined in the
previous step, the alias, and password of the key.

/subsystem=elytron/key-manager=LocalhostKeyManager:add(key-
store=LocalhostKeyStore,alias-filter=server,credential-reference={clear-
text="key_password"})

3. Create a server-ssl-context in the elytron subsystem that references the key-manager that
was defined in the previous step.

/subsystem=elytron/server-ssl-context=LocalhostSslContext:add(key-
manager=LocalhostKeyManager)

4. Switch the https-listener from the legacy security-realm to the newly created Elytron ssl-
context.

batch
/subsystem=undertow/server=default-server/https-listener=https:undefine-
attribute(name=security-realm)

<security-realm name="ApplicationRealm">
 <server-identities>
 <ssl>
 <keystore path="server.keystore" relative-to="jboss.server.config.dir" keystore-
password="keystore_password" alias="server" key-password="key_password" />
 </ssl>
 </server-identities>
</security-realm>

CHAPTER 9. MIGRATING TO ELYTRON

145

/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-
context,value=LocalhostSslContext)
run-batch

5. Reload the server.

reload

This results in the following elytron subsystem configuration in the server configuration file.

This results in the following undertow subsystem configuration in the server configuration file.

For more information, see Elytron Subsystem and How to Secure the Management Interfaces in the
JBoss EAP 7.4 How to Configure Server Security .

9.5.1. Migrate CLIENT-CERT SSL Authentication to Elytron

To enable CLIENT-CERT SSL authentication, add a truststore element to the authentication element.

<subsystem xmlns="urn:wildfly:elytron:4.0" ...>
 ...
 <tls>
 <key-stores>
 <key-store name="LocalhostKeyStore">
 <credential-reference clear-text="keystore_password"/>
 <implementation type="JKS"/>
 <file path="server.keystore" relative-to="jboss.server.config.dir"/>
 </key-store>
 </key-stores>
 <key-managers>
 <key-manager name="LocalhostKeyManager" key-store="LocalhostKeyStore" alias-
filter="server">
 <credential-reference clear-text="key_password"/>
 </key-manager>
 </key-managers>
 <server-ssl-contexts>
 <server-ssl-context name="LocalhostSslContext" key-manager="LocalhostKeyManager"/>
 </server-ssl-contexts>
 </tls>
</subsystem>

<https-listener name="https" socket-binding="https" ssl-context="LocalhostSslContext" enable-
http2="true"/>

<security-realm name="ManagementRealm">
 <server-identities>
 <ssl>
 <keystore path="server.keystore" relative-to="jboss.server.config.dir" keystore-
password="KEYSTORE_PASSWORD" alias="server" key-password="key_password" />
 </ssl>
 </server-identities>
 <authentication>
 <truststore path="server.truststore" relative-to="jboss.server.config.dir" keystore-
password="TRUSTSTORE_PASSWORD" />

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

146

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/how_to_configure_server_security/#elytron_subsystem
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/how_to_configure_server_security/#secure_the_management_interfaces

NOTE

With this configuration if the CLIENT-CERT authentication does not occur, clients can fall
back to use either the local mechanism or the username/password authentication
mechanism. To make CLIENT-CERT based authentication mandatory, remove the local
and properties elements.

A legacy truststore can be used in two ways:

Legacy truststore containing only CA

Legacy truststore containing client’s certificate

9.5.1.1. Legacy truststore Containing Only CA

Follow these steps to configure the server to prevent users without a valid certificate and private key
from accessing the server using Elytron.

Procedure

1. Create a key-store in the elytron subsystem that specifies the location of the keystore and the
password by which it is encrypted. This command assumes the keystore was generated using the
keytool command and its type is JKS.

/subsystem=elytron/key-store=LocalhostKeyStore:add(path=server.keystore,relative-
to=jboss.server.config.dir,credential-reference={clear-text="keystore_password"},type=JKS)

2. Create a key-store in the elytron subsystem that specifies the location of the truststore and
the password by which it is encrypted. This command assumes the keystore was generated using
the keytool command and its type is JKS.

/subsystem=elytron/key-store=TrustStore:add(path=server.truststore,relative-
to=jboss.server.config.dir,credential-reference={clear-text="truststore_password"},type=JKS)

3. Create a key-manager in the elytron subsystem that specifies the previously defined
LocalhostKeyStore keystore, the alias, and password of the key.

/subsystem=elytron/key-manager=LocalhostKeyManager:add(key-
store=LocalhostKeyStore,alias-filter=server,credential-reference={clear-
text="key_password"})

4. Create a trust-manager in the elytron subsystem that specifies the key-store of the previously
created truststore.

/subsystem=elytron/trust-manager=TrustManager:add(key-store=TrustStore)

5. Create a server-ssl-context in the elytron subsystem that references the previously defined
key-manager, sets the trust-manager attribute, and enables client authentication.

 <local default-user="$local"/>
 <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>
 </authentication>
</security-realm>

CHAPTER 9. MIGRATING TO ELYTRON

147

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/how_to_configure_identity_management/index#configure_authentication_with_certificates

/subsystem=elytron/server-ssl-context=LocalhostSslContext:add(key-
manager=LocalhostKeyManager,trust-manager=TrustManager,need-client-auth=true)

6. Update the https-listener to the newly created Elytron ssl-context.

/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-
context,value=LocalhostSslContext)

7. Reload the server.

reload

This results in the following elytron subsystem configuration in the server configuration file.

This results in the following undertow subsystem configuration in the server configuration file.

<subsystem xmlns="urn:wildfly:elytron:4.0"...>
 ...
 <tls>
 <key-stores>
 <key-store name="LocalhostKeyStore">
 <credential-reference clear-text="keystore_password"/>
 <implementation type="JKS"/>
 <file path="server.keystore" relative-to="jboss.server.config.dir"/>
 </key-store>
 <key-store name="TrustStore">
 <credential-reference clear-text="truststore_password"/>
 <implementation type="JKS"/>
 <file path="server.truststore" relative-to="jboss.server.config.dir"/>
 </key-store>
 </key-stores>
 <key-managers>
 <key-manager name="LocalhostKeyManager" key-store="LocalhostKeyStore" alias-
filter="server">
 <credential-reference clear-text="key_password"/>
 </key-manager>
 </key-managers>
 <trust-managers>
 <trust-manager name="TrustManager" key-store="TrustStore"/>
 </trust-managers>
 <server-ssl-contexts>
 <server-ssl-context name="LocalhostSslContext" need-client-auth="true" key-
manager="LocalhostKeyManager" trust-manager="TrustManager"/>
 </server-ssl-contexts>
 </tls>
</subsystem>

<subsystem xmlns="urn:jboss:domain:undertow:14.0">
...
<https-listener name="https" socket-binding="https" ssl-context="LocalhostSslContext" enable-
http2="true"/>
...
</subsystem>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

148

9.5.1.2. Security Realms and Domains

The security realm is used in two situations:

When certificate authentication fails, the security realm is used in password fallback case.

When authorization is done for password as well as certificate, the realm provides the roles of
individual users.

To allow using the predefined Elytron ManagementDomain security domain and ManagementRealm
security realm, users are stored in standard properties files.

Thus, for any client certificate, a user must exist in the security realm.

9.5.1.3. Principal Decoder

When certificate authentication is used and the security realm accepts user names to resolve an identity,
there has to be a defined way to obtain the username from a client certificate.

In this case the CN attribute is used in the certificate subject.

/subsystem=elytron/x500-attribute-principal-decoder=x500-decoder:add(attribute-name=CN)

9.5.1.4. HTTP Authentication Factory

For the HTTP connections, an HTTP authentication factory is defined, using the previously defined
resources. It is configured to support CLIENT_CERT and DIGEST authentication.

Since a properties realm only verifies passwords and is not able to verify client certificates, you need to
first add a configuring mechanism factory. This disables certificate verification against the security realm.

/subsystem=elytron/configurable-http-server-mechanism-factory=configured-cert:add(http-server-
mechanism-factory=global, properties={org.wildfly.security.http.skip-certificate-verification=true})

The HTTP authentication can be created as:

./subsystem=elytron/http-authentication-factory=client-cert-digest:add(http-server-mechanism-
factory=configured-cert,security-domain=ManagementDomain,mechanism-configurations=
[{mechanism-name=CLIENT_CERT,pre-realm-principal-transformer=x500-decoder},{mechanism-

<security-domains>
 <security-domain name="ManagementDomain" default-realm="ManagementRealm" permission-
mapper="default-permission-mapper">
 <realm name="ManagementRealm" role-decoder="groups-to-roles"/>
 <realm name="local"/>
 </security-domain>
</security-domains>
<security-realms>
 <properties-realm name="ManagementRealm">
 <users-properties path="mgmt-users.properties" relative-to="jboss.server.config.dir" digest-
realm-name="ManagementRealm"/>
 <groups-properties path="mgmt-groups.properties" relative-to="jboss.server.config.dir"/>
 </properties-realm>
</security-realms>

CHAPTER 9. MIGRATING TO ELYTRON

149

name=DIGEST, mechanism-realm-configurations=[{realm-name=ManagementRealm}]}])

The above command results in:

9.6. LEGACY SECURITY BEHAVIOR CHANGES IN LDAP

With Red Hat JBoss Enterprise Application Platform 8.0, there are significant changes to LDAP. These
changes include HTTP status change for unreachable LDAP realms, enabling LDAP security realm for
role parsing from a DN, and changes in sending the JBoss EAP SSL certificate to an LDAP server.

In JBoss EAP 8.0, which utilizes the Elytron subsystem, a "500 Internal Error" is returned when
an LDAP realm is unreachable, indicating a HTTP status change for unreachable realms.

In JBoss EAP 8.0, you can enable the LDAP security realm to parse roles from a DN. By loading
information from LDAP as attributes associated with the identity, these attributes can
subsequently be mapped to roles using the attribute-mapping element.

Example configuration

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 ...
 <http>
 ...
 <http-authentication-factory name="client-cert-digest" http-server-mechanism-factory="configured-
cert" security-domain="ManagementDomain">
 <mechanism-configuration>
 <mechanism mechanism-name="CLIENT_CERT" pre-realm-principal-transformer="x500-
decoder"/>
 <mechanism mechanism-name="DIGEST">
 <mechanism-realm realm-name="ManagementRealm"/>
 </mechanism>
 </mechanism-configuration>
 </http-authentication-factory>
 ...
 <configurable-http-server-mechanism-factory name="configured-cert" http-server-mechanism-
factory="configured-cert">
 <properties>
 <property name="org.wildfly.security.http.skip-certificate-verification" value="true"/>
 </properties>
 </configurable-http-server-mechanism-factory>
 ...
 </http>
 ...
</subsystem>

<ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-verification="true">
 <identity-mapping rdn-identifier="uid" search-base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org">
 <attribute-mapping>
 <attribute from="dn" to="Roles" filter="(uniqueMember={1})" filter-base-
dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>
 </attribute-mapping>
 </identity-mapping>
</ldap-realm>

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

150

In JBoss EAP 8.0, you have the option to configure the outbound LDAP connection to utilize
two-way or mutual TLS for sending the JBoss EAP SSL certificate to an LDAP server. For more
information, see Enabling two-way SSL/TLS for management interfaces and applications .

CHAPTER 9. MIGRATING TO ELYTRON

151

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/configuring_ssltls_in_jboss_eap/#enabling-two-way-ssl-tls-for-management-interfaces-and-applications_default

APPENDIX A. REFERENCE MATERIAL
As a user of JBoss EAP, you can expect seamless compatibility and interoperability between different
releases. Connecting from various clients to servers is supported, with only specific cases requiring
additional considerations.

A.1. COMPATIBILITY AND INTEROPERABILITY BETWEEN RELEASES

This section describes the compatibility and interoperability of client and server enterprise beans and
messaging components between the JBoss EAP 6, JBoss EAP 7, and JBoss EAP 8.0 releases.

A.1.1. Enterprise beans remoting over Internet Inter-ORB Protocol

The following configurations must run without errors:

Connecting from a JBoss EAP 6 client to a JBoss EAP 8.0 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 8.0 server

Connecting from a JBoss EAP 8.0 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 8.0 client to a JBoss EAP 6 server

A.1.2. Enterprise beans remoting using Java Naming and Directory Interface

The following configurations must run without errors:

Connecting from a JBoss EAP 7 client to a JBoss EAP 8.0 server

Connecting from a JBoss EAP 8.0 client to a JBoss EAP 7 server

JBoss EAP 6 provided support for the Enterprise Beans 3.1 specification and introduced the use of
standardized global Java Naming and Directory Interface namespaces, which are still used in JBoss EAP
8.0. The changes in Java Naming and Directory Interface namespace names do not introduce
incompatibilities for the following configurations:

Connecting from a JBoss EAP 6 client to a JBoss EAP 8.0 or a JBoss EAP 7 server

Connecting from a JBoss EAP 8.0 or JBoss EAP 7 client to a JBoss EAP 6 server

A.1.3. Enterprise beans remoting using @WebService

The following configurations must run without errors:

Connecting from a JBoss EAP 6 client to a JBoss EAP 8.0 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 8.0 server

Connecting from a JBoss EAP 8.0 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 8.0 client to a JBoss EAP 6 server

A.1.4. Messaging standalone client

The following configurations must run without errors:

Red Hat JBoss Enterprise Application Platform 8.0 Migration Guide

152

Connecting from a JBoss EAP 7 client to a JBoss EAP 8.0 server

Connecting from a JBoss EAP 8.0 client to a JBoss EAP 7 server

JBoss EAP 8.0 built-in messaging is not able to connect to HornetQ 2.3.x that shipped with JBoss EAP
6 due to protocol compatibility issues. For this reason, the following configuration are not compatible:

Connecting from a JBoss EAP 8.0 client to a JBoss EAP 6 server

Connecting from a JBoss EAP 6 client to a JBoss EAP 8.0 server

NOTE

To make this connection possible, you must create a legacy connection factory,
accessible through Java Naming and Directory Interface.

A.1.5. Messaging MDBs

The following configurations must run without errors:

Connecting from a JBoss EAP 7 client to a JBoss EAP 8.0 server

Connecting from a JBoss EAP 8.0 client to a JBoss EAP 7 server

JBoss EAP 8.0 built-in messaging is not able to connect to HornetQ 2.3.x that shipped with JBoss EAP
6 due to protocol compatibility issues. For this reason, the following configuration are not compatible:

Connecting from a JBoss EAP 8.0 client to a JBoss EAP 6 server

Connecting from a JBoss EAP 6 client to a JBoss EAP 8.0 server

NOTE

To make this connection possible, you must create a legacy connection factory,
accessible through Java Naming and Directory Interface.

A.1.6. Messaging bridges

The following configurations must run without errors:

Connecting from a JBoss EAP 6 client to a JBoss EAP 8.0 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 8.0 server

Connecting from a JBoss EAP 8.0 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 8.0 client to a JBoss EAP 6 server

APPENDIX A. REFERENCE MATERIAL

153

	Table of Contents
	PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM MIGRATION OVERVIEW
	1.1. UNDERSTANDING MIGRATIONS AND UPGRADES
	1.1.1. Major upgrades in JBoss EAP
	1.1.2. Minor updates in JBoss EAP
	1.1.3. Cumulative patches in JBoss EAP

	1.2. USE OF <EAP_HOME> VARIABLE

	CHAPTER 2. PREPARING FOR MIGRATION TO JBOSS EAP 8.0
	2.1. REVIEW THE JAKARTA EE 10 FEATURES
	2.2. REVIEW THE FEATURES OF JBOSS EAP 8.0
	2.3. REVIEW THE JBOSS EAP GETTING STARTED MATERIAL
	2.4. BACK UP YOUR DATA AND REVIEW SERVER STATE
	2.5. MIGRATE JBOSS EAP WITH RPM INSTALLATION
	2.6. MIGRATE JBOSS EAP AS A SERVICE
	2.7. MIGRATE A CLUSTER

	CHAPTER 3. SIMPLIFY YOUR JBOSS EAP 8.0 MIGRATION WITH EFFECTIVE TOOLS
	3.1. ANALYZING YOUR APPLICATIONS BEFORE MIGRATION
	3.2. SIMPLIFY YOUR SERVER CONFIGURATION MIGRATION
	3.2.1. Migrating to JBoss EAP 8.0

	CHAPTER 4. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM APPLICATION MIGRATION FROM JAKARTA EE 8 TO 10
	4.1. THE JAVAX TO JAKARTA PACKAGE NAMESPACE CHANGE
	4.2. OTHER CHANGES
	4.2.1. Jakarta Contexts and Dependency Injection Bean Discovery
	4.2.2. CDI API Changes
	4.2.3. Jakarta Enterprise Beans
	4.2.4. Jakarta Expression Language
	4.2.5. Jakarta JSON Binding
	4.2.6. Jakarta Faces
	4.2.6.1. Jakarta Faces and Java Server Pages
	4.2.6.2. Faces Managed-Beans
	4.2.6.3. Other Faces API Changes

	4.2.7. Jakarta Servlet
	4.2.8. Jakarta Soap with Attachments
	4.2.9. Jakarta XML Binding

	CHAPTER 5. MIGRATE A JBOSS EAP APPLICATION’S MAVEN PROJECT TO JBOSS EAP 8.0
	5.1. RENAMING OF JBOSS EAP JAKARTA EE 8
	5.2. RENAMING OF JBOSS EAP JAKARTA EE 8 WITH TOOLS
	5.3. REMOVAL OF JBOSS EAP JAKARTA EE 8 APIS
	5.4. REMOVAL OF THE JBOSS EAP RUNTIME BOM
	5.5. JAKARTA EE AND JBOSS APIS MAVEN COORDINATES CHANGES
	5.6. REMOVAL OF JBOSS EJB CLIENT LEGACY BOM

	CHAPTER 6. SERVER MIGRATION CHANGES
	6.1. WEB SERVER CONFIGURATION CHANGES
	6.1.1. Default web module behavior changes
	6.1.2. Undertow subsystem default configuration changes

	6.2. INFINISPAN SERVER CONFIGURATION CHANGES
	6.2.1. Configuring custom stateful session bean cache for passivation
	6.2.2. Infinispan cache container transport changes
	6.2.3. EJB subsystem configuration changes from version 8.0 and later

	6.3. JAKARTA ENTERPRISE BEANS SERVER CONFIGURATION CHANGES
	6.3.1. Resolving DuplicateServiceException due to caching changes

	6.4. MESSAGING SERVER CONFIGURATION CHANGES
	6.4.1. Migrate messaging data
	6.4.1.1. Migrate messaging data by using export and import approaches
	6.4.1.2. Migrate messaging data using a messaging bridge
	6.4.1.3. Backing up messaging folder data

	6.4.2. Configure the Jakarta Messaging resource adapter
	6.4.3. Messaging configuration changes
	6.4.4. Galleon layer for embedded broker messaging

	6.5. SECURITY ENHANCEMENTS IN JBOSS EAP 8.0
	6.5.1. Vaults migration
	6.5.2. Legacy security subsystem and security realms removal
	6.5.3. PicketLink subsystem removal
	6.5.4. Migrate from Red Hat build of Keycloak OIDC client adapter to JBoss EAP subsystem
	6.5.5. Custom login modules migration
	6.5.6. FIPS mode changes

	6.6. MOD_CLUSTER CONFIGURATION CHANGES
	6.7. VIEWING CONFIGURATION CHANGES

	CHAPTER 7. UNDERSTANDING APPLICATION MIGRATION CHANGES
	7.1. WEB SERVICES APPLICATION CHANGES
	7.1.1. JAX-RPC support changes
	7.1.2. Apache CXF Spring web services changes
	7.1.2.1. Apache CXF interceptors
	7.1.2.2. Apache CXF features
	7.1.2.3. Apache CXF HTTP transport

	7.1.3. WS-Security changes
	7.1.4. JBoss modules structure change
	7.1.5. Bouncy Castle requirements and changes
	7.1.6. Apache CXF bus selection strategy
	7.1.7. Jakarta XML Web Services 2.2 requirements for WebServiceRef
	7.1.8. IgnoreHttpsHost CN check change
	7.1.9. Server-side configuration and class loading
	7.1.10. Deprecation of Java-endorsed standards override mechanism
	7.1.11. Specification of descriptor in EAR archive

	7.2. UPDATE THE REMOTE URL CONNECTOR AND PORT
	7.3. MESSAGING APPLICATION CHANGES
	7.3.1. Replace or update Jakarta Messaging deployment descriptors
	7.3.2. Replace the HornetQ API
	7.3.3. Replace Deprecated Address Setting Attributes
	7.3.4. Messaging application changes required for JBoss EAP 7

	7.4. JAKARTA RESTFUL WEB SERVICES AND RESTEASY APPLICATION CHANGES
	7.4.1. RESTEasy deprecated classes
	Interceptor and MessageBody Classes
	Client API
	StringConverter

	7.4.2. Removed or Protected RESTEasy classes
	ResteasyProviderFactory Add methods
	Additional Classes Removed From RESTEasy 3

	7.4.3. Additional RESTEasy changes
	SignedInput and SignedOuput
	Security Filters
	Client-side Filters
	Asynchronous HTTP Support
	Server-side Cache
	YAML Provider Setting Changes
	Default Charset UTF-8 in Content-Type Header
	SerializableProvider
	Matching Requests to Resource Methods

	7.4.4. RESTEasy SPI changes
	SPI Exceptions
	InjectorFactory and Registry

	7.4.5. Jackson provider changes
	7.4.6. Spring RESTEasy integration changes
	7.4.7. RESTEasy Jettison JSON provider changes
	7.4.8. MicroProfile for JBoss EAP

	7.5. CDI APPLICATION CHANGES
	7.5.1. Bean Archives
	7.5.2. Clarification of Conversation Resolution
	7.5.3. Observer Resolution

	7.6. HTTP SESSION ID CHANGE
	7.7. MIGRATE EXPLICIT MODULE DEPENDENCIES
	Review Dependencies for Availability
	Dependencies That Require Annotation Scanning

	7.8. HIBERNATE CHANGES
	7.8.1. Migrating from Hibernate ORM 5.3 to 5.4
	Known Changes
	7.8.1.1. Overriding Delayed Identity Insert Behavior
	7.8.1.2. SQL Server JDBC Driver version upgrade to at least 6.1.2

	7.8.2. Migrating from Hibernate ORM 5.4 to 5.5
	Known Changes
	7.8.2.1. Dom4J based XML mapping
	7.8.2.2. Removed the ability to disable "enhanced proxies"

	7.8.3. Migrating from Hibernate ORM 5.5 to 5.6
	Deprecated features
	7.8.3.1. Removal of Javassist

	7.8.4. Migrating from Hibernate ORM 5.6 to 6.0
	7.8.5. Migrating from Hibernate ORM 6.0 to 6.1
	7.8.6. Migrating from Hibernate ORM 6.1 to 6.2
	7.8.7. Migrating from Hibernate ORM 4.3 to Hibernate ORM 5.0
	Removed and deprecated classes
	Other changes to classes and packages
	Type handling
	Transaction management
	Other Hibernate ORM 5 changes

	7.8.8. Migrating from Hibernate ORM 5.0 to Hibernate ORM 5.1
	Hibernate ORM 5.1 features
	Schema management tooling changes
	Schema management tooling changes in JBoss EAP 7
	Schema management tooling changes in JBoss EAP 7.1

	7.8.9. Migrating from Hibernate ORM 5.1 and Hibernate ORM 5.2 to Hibernate ORM 5.3
	Hibernate ORM 5.2 features
	Hibernate ORM 5.3 features
	Exception handling changes between Hibernate 5.1 and Hibernate 5.3
	Compatibility transformer

	7.9. HIBERNATE SEARCH CHANGES
	7.9.1. Hibernate Search 6 replaces Hibernate Search 5 APIs
	7.9.2. Hibernate Search 6 supports Elasticsearch

	7.10. MIGRATE ENTITY BEANS TO JAKARTA PERSISTENCE
	7.11. JAKARTA PERSISTENCE PROPERTY CHANGES
	Jakarta Persistence property changes introduced in JBoss EAP 7.0
	Jakarta Persistence property changes introduced in JBoss EAP 7.1

	7.12. MIGRATE JAKARTA ENTERPRISE BEANS CLIENT CODE
	7.12.1. Jakarta Enterprise Beans client changes in JBoss EAP 7
	7.12.1.1. Update the default remote connection port
	7.12.1.2. Update the default connector

	7.12.2. Migrate remote naming client code
	7.12.3. Additional JBoss EJB client changes introduced in JBoss EAP 7.1

	7.13. MIGRATE CLIENTS TO USE THE WILDFLY CONFIGURATION FILE
	7.14. MIGRATE DEPLOYMENT PLAN CONFIGURATIONS
	7.15. MIGRATE CUSTOM APPLICATION VALVES
	Migrate Valves Configured in Deployments
	Migrate Custom Authenticator Valves

	7.16. SECURITY APPLICATION CHANGES
	7.16.1. Migrate authenticator valves
	7.16.2. PicketLink removal
	PicketLink SP
	PicketLink IDP
	PicketLink STS

	7.16.3. Vault removal
	7.16.4. OIDC client migration
	7.16.5. Custom login modules migration
	7.16.6. Other security application changes

	7.17. JBOSS LOGGING CHANGES
	7.18. JAKARTA FACES CODE CHANGES
	Dropped support for Jakarta Server Faces prior to 4.0

	7.19. INTEGRATE MYFACES FOR ALTERNATIVE FACES
	7.20. MODULE CLASS LOADING CHANGES
	7.21. APPLICATION CLUSTERING CHANGES
	7.21.1. Overview of new clustering features
	7.21.2. Web Session Clustering Changes
	7.21.3. Overriding the default distributable session management behavior
	Referencing an existing session management profile
	Using a Deployment-specific Session Management Profile

	7.21.4. Stateful session EJB clustering changes
	7.21.5. Clustering services changes
	7.21.6. Migrate Clustering HA Singleton

	7.22. CONTEXTSERVICE CUSTOMIZATION BY USING CONTEXT TYPES
	7.23. REMOVAL OF DEPRECATED INITIALCONTEXT CLASS
	7.24. RESOURCE ADAPTERS
	7.24.1. Deploying the IBM MQ Resource Adapter
	Summary
	7.24.1.1. Limitations and known issues of IBM MQ resource adapters

	7.24.2. Removal of Apache Log4j version 1 APIs

	CHAPTER 8. MISCELLANEOUS CHANGES
	8.1. CHANGES TO DELIVERY OF JBOSS EAP NATIVES AND APACHE HTTP SERVER
	Additional changes for JBoss EAP Natives and Apache HTTP Server

	8.2. CHANGES TO DEPLOYMENTS ON AMAZON EC2
	8.3. REMOVE APPLICATIONS THAT INCLUDE SHARED MODULES
	8.4. CHANGES TO THE ADD-USER SCRIPT
	8.5. REMOVAL OF OSGI SUPPORT
	8.6. CHANGES IN SOAP WITH ATTACHMENTS API FOR JAVA

	CHAPTER 9. MIGRATING TO ELYTRON
	9.1. OVERVIEW OF ELYTRON
	9.2. MIGRATE SECURE VAULTS AND PROPERTIES
	9.2.1. Migrate Secure Vaults to Secure Credential Storage
	9.2.1.1. Migrate vault data using the WildFly Elytron tool

	9.2.2. Migrating Security Properties to Elytron

	9.3. MIGRATE AUTHENTICATION CONFIGURATION
	9.3.1. Migrate PicketBox Properties-based Configuration to Elytron
	9.3.1.1. Migrating Properties-based Authentication to Elytron

	9.3.2. Migrating legacy security realm properties-based configuration to Elytron
	9.3.3. Migrating to Filesystem-based Security Realm Using the filesystem-realm Command
	9.3.4. Migrating LDAP Authentication Configuration to Elytron
	9.3.4.1. Migrating the Legacy LDAP Authentication to Elytron

	9.3.5. Migrate Database Authentication Configuration to Elytron
	9.3.5.1. Migrating the legacy database authentication to Elytron

	9.3.6. Migrate Kerberos Authentication to Elytron
	9.3.6.1. Migrating Kerberos HTTP Authentication
	9.3.6.2. Migrating Kerberos Remoting SASL Authentication

	9.3.7. Migrate Composite Stores to Elytron
	9.3.7.1. PicketBox Composite Store Configuration
	9.3.7.2. Legacy Security Realm Composite Store Configuration
	9.3.7.3. Elytron Aggregate Security Realm Configuration

	9.3.8. Migrate security domains that use caching to Elytron
	9.3.8.1. PicketBox Cached Security Domain Configuration
	9.3.8.2. Configuring an Elytron cached security domain

	9.3.9. Migrate Jakarta authorization security to Elytron

	9.4. MIGRATE APPLICATION CLIENTS
	Migrate a Naming Client Configuration to Elytron
	9.4.1. Migrating the Naming Client Using the Configuration File Approach
	9.4.2. Migrating the Naming Client Using the Programmatic Approach
	9.4.3. Migrate a Jakarta Enterprise Beans client to Elytron
	9.4.3.1. Migrate the Jakarta Enterprise Beans client using a configuration file
	9.4.3.2. Migrate the Jakarta Enterprise Beans client programmatically

	9.5. MIGRATE SSL CONFIGURATIONS
	Migrate a Simple SSL Configuration to Elytron
	9.5.1. Migrate CLIENT-CERT SSL Authentication to Elytron
	9.5.1.1. Legacy truststore Containing Only CA
	9.5.1.2. Security Realms and Domains
	9.5.1.3. Principal Decoder
	9.5.1.4. HTTP Authentication Factory

	9.6. LEGACY SECURITY BEHAVIOR CHANGES IN LDAP

	APPENDIX A. REFERENCE MATERIAL
	A.1. COMPATIBILITY AND INTEROPERABILITY BETWEEN RELEASES
	A.1.1. Enterprise beans remoting over Internet Inter-ORB Protocol
	A.1.2. Enterprise beans remoting using Java Naming and Directory Interface
	A.1.3. Enterprise beans remoting using @WebService
	A.1.4. Messaging standalone client
	A.1.5. Messaging MDBs
	A.1.6. Messaging bridges

