
Red Hat JBoss Enterprise Application
Platform 8.0

Configuring SSL/TLS in JBoss EAP

Guide to enabling SSL/TLS in JBoss EAP to secure JBoss EAP management
interfaces and deployed applications

Last Updated: 2024-02-21

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS
in JBoss EAP

Guide to enabling SSL/TLS in JBoss EAP to secure JBoss EAP management interfaces and
deployed applications

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to enabling SSL/TLS in JBoss EAP to secure JBoss EAP management interfaces and
deployed applications.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS
1.1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES

1.1.1. Enabling one-way SSL/TLS for management interfaces by using the wizard
1.1.2. Enabling one-way SSL/TLS for management interfaces by using the subsystem commands
1.1.3. Disabling SSL/TLS for management interfaces by using the security command

1.2. ENABLING ONE-WAY SSL/TLS FOR APPLICATIONS DEPLOYED ON JBOSS EAP
1.2.1. The default SSL context in Elytron
1.2.2. Enabling SSL/TLS for applications by using the automatically generated self-signed certificate
1.2.3. Enabling one-way SSL/TLS for applications deployed on JBoss EAP by using the wizard
1.2.4. Enabling one-way SSL/TLS for applications by using the subsystem commands
1.2.5. Disabling SSL/TLS for applications by using the security command

CHAPTER 2. ENABLING TWO-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS
2.1. GENERATING CLIENT CERTIFICATES
2.2. CONFIGURING A TRUST STORE AND A TRUST MANAGER FOR CLIENT CERTIFICATES
2.3. CONFIGURING A SERVER CERTIFICATE FOR TWO-WAY SSL/TLS
2.4. CONFIGURING SSL CONTEXT TO SECURE JBOSS EAP MANAGEMENT INTERFACES WITH SSL/TLS

2.5. CONFIGURING SERVER-SSL-CONTEXT TO SECURE APPLICATIONS DEPLOYED ON JBOSS EAP WITH
SSL/TLS

CHAPTER 3. CONFIGURING CERTIFICATE REVOCATION CHECKS IN ELYTRON
3.1. CONFIGURING CERTIFICATE REVOCATION CHECKS USING CERTIFICATE REVOCATION LISTS
3.2. CONFIGURING CERTIFICATE REVOCATION CHECKS USING OCSP IN ELYTRON
3.3. CONFIGURING CERTIFICATE REVOCATION CHECKS USING CRL IN THE ELYTRON CLIENT
3.4. CONFIGURING CERTIFICATE REVOCATION CHECKS USING OCSP IN THE ELYTRON CLIENT

CHAPTER 4. USING ELYTRON CLIENT DEFAULT SSLCONTEXT SECURITY PROVIDER IN JBOSS EAP
CLIENTS

4.1. ELYTRON CLIENT DEFAULT SSL CONTEXT SECURITY PROVIDER
4.2. EXAMPLE OF CREATING A CLIENT THAT LOADS THE DEFAULT SSL CONTEXT

4.2.1. Creating a Maven project for JBoss EAP client
4.2.2. Creating a client that loads the default SSLContext

CHAPTER 5. REFERENCE
5.1. KEY-MANAGER ATTRIBUTES
5.2. KEY-STORE ATTRIBUTES
5.3. SERVER-SSL-CONTEXT ATTRIBUTES
5.4. TRUST-MANAGER ATTRIBUTES

3

4

5
5
5

10
16
16
17
18
19
22
25

27
27
28
30

33

37

40
40
41

42
43

44
44
45
45
47

51
51
51

53
56

Table of Contents

1

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

2

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket.

2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION

3

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12316621&summary=(userfeedback)&issuetype=13&description=[Please+include+the+Document+URL,+the+section+number+and +describe+the+issue]&priority=3&labels=[ddf]&components=12391723&customfield_10010

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR
MANAGEMENT INTERFACES AND APPLICATIONS

SSL/TLS, or transport layer security (TLS), is a certificates-based security protocol that is used to
secure the data transfer between two entities communicating over a network.

You can enable one-way SSL/TLS both for the JBoss EAP management interfaces and the applications
deployed on JBoss EAP. For more information, see the following procedures:

Enabling one-way SSL/TLS for management interfaces .

Enabling one-way SSL/TLS for applications deployed on JBoss EAP .

1.1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES

Enable one-way SSL/TLS for management interfaces so that the communication between JBoss EAP
management interfaces and the clients connecting to the interfaces is secure.

To enable one-way SSL/TLS for management interfaces, you can use the following procedures:

Enabling one-way SSL/TLS for management interfaces by using the wizard : Use this procedure
to quickly set up SSL/TLS using a CLI-based wizard. Elytron creates the required resources for
you based on your inputs to the wizard.

Enable one-way SSL/TLS for management interfaces by using the subsystem commands : Use
this procedure to configure the required resource for enabling SSL/TLS manually. Manually
configuring the resources gives you more control over the server configuration.

Additionally, you can disable SSL/TLS for management interfaces using the procedure Disabling
SSL/TLS for management interfaces by using the security command.

1.1.1. Enabling one-way SSL/TLS for management interfaces by using the wizard

Elytron provides a wizard to quickly set up SSL/TLS. You can either use an existing keystore containing
certificates or use the keystore and self-signed certificates that the wizard generates to enable
SSL/TLS. You can also obtain and use certificates from the Let’s Encrypt certificate authority by using
the --lets-encrypt option. For information about Let’s Encrypt, see the Let’s Encrypt documentation.

Use the self-signed certificates the wizard generates to enable SSL/TLS for testing and development
purposes only. For production environments always use certificate authority (CA)-signed certificates.

IMPORTANT

Do not use self-signed certificates in a production environment. Use only the certificates
signed by a certificate authority (CA).

The wizard configures the following resources that are required to enable SSL/TLS for for management
interfaces:

key-store

key-manager

server-ssl-context

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

5

https://letsencrypt.org/

The server-ssl-context is then applied to http-interface.

Elytron names each resource as resource-type-UUID. For example, key-store-9e35a3be-62bb-4fff-
afc2-2d8d141b82bc. The universally unique identifier (UUID) helps avoid name collisions for the
resources.

Prerequisites

JBoss EAP is running.

Procedure

Launch the wizard to configure one-way SSL/TLS for management interfaces by entering the
following command in the management CLI.

Syntax

security enable-ssl-management --interactive

Enter the required information when prompted.

Use the --lets-encrypt option to obtain and use certificates from the Let’s Encrypt certificate
authority.

If SSL/TLS is already enabled for management interfaces the wizard exits with the following
message:

SSL is already enabled for http-interface

To change the existing configuration, first disable SSL/TLS for management interfaces and
then create a new configuration. For information about disabling SSL/TLS for management
interfaces, see Disabling SSL/TLS for management interfaces by using the wizard .

NOTE

To enable one-way SSL/TLS, enter n or blank when prompted to enable SSL
mutual authentication. Setting mutual authentication enables two-way SSL/TLS.

Example of using the wizard interactively

security enable-ssl-management --interactive

Example inputs to the wizard prompts

Please provide required pieces of information to enable SSL:

Certificate info:
Key-store file name (default management.keystore): exampleKeystore.pkcs12
Password (blank generated): secret
What is your first and last name? [Unknown]: localhost
What is the name of your organizational unit? [Unknown]:
What is the name of your organization? [Unknown]:
What is the name of your City or Locality? [Unknown]:

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

6

What is the name of your State or Province? [Unknown]:
What is the two-letter country code for this unit? [Unknown]:
Is CN=localhost, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
correct y/n [y]?y
Validity (in days, blank default): 365
Alias (blank generated): localhost
Enable SSL Mutual Authentication y/n (blank n):n //For one way SSL/TLS enter blank or n
here

SSL options:
keystore file: exampleKeystore.pkcs12
distinguished name: CN=localhost, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown,
C=Unknown
password: secret
validity: 365
alias: localhost
Server keystore file exampleKeystore.pkcs12, certificate file exampleKeystore.pem and
exampleKeystore.csr file will be generated in server configuration directory.

Do you confirm y/n :y

After you enter y, the server reloads. If you configured a self-signed certificate, used the wizard
to generate self-signed certificate or configured a certificate that is not trusted by the Java
virtual machine (JVM), the management CLI prompts you to accept the certificate that the
server presents.

Unable to connect due to unrecognised server certificate
Subject - CN=localhost,OU=Unknown,O=Unknown,L=Unknown,ST=Unknown,C=Unknown
Issuer - CN=localhost, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown,
C=Unknown
Valid From - Mon Jan 30 23:32:20 IST 2023
Valid To - Tue Jan 30 23:32:20 IST 2024
MD5 : b6:e7:f0:57:59:9e:bf:b8:20:99:10:fc:e2:0b:0f:d0
SHA1 : 9c:f0:92:de:c1:11:df:71:0b:d7:16:02:c8:7e:c9:83:ab:e3:0c:2e

Accept certificate? [N]o, [T]emporarily, [P]ermanently :

Enter T or P to proceed with the connection.

You get the following output:

Server reloaded.
SSL enabled for http-interface
ssl-context is ssl-context-a18ba30e-6a26-4ed6-87c5-feb7f3e4dff1
key-manager is key-manager-a18ba30e-6a26-4ed6-87c5-feb7f3e4dff1
key-store is key-store-a18ba30e-6a26-4ed6-87c5-feb7f3e4dff1

Verification

Verify SSL/TLS by connecting with the management CLI client.
You can test SSL/TLS by placing an Elytron client SSL context in a configuration file and then
connecting to the server using the management CLI and referencing the configuration file.

a. Navigate to the directory containing the keystore file. In this example, the keystore file

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

7

a. Navigate to the directory containing the keystore file. In this example, the keystore file
exampleKeystore.pkcs12 was generated in the server’s standalone/configuration
directory.

Example

$ cd JBOSS_HOME/standalone/configuration

b. Create a client trust-store with server certificates.

Syntax

$ keytool -importcert -keystore <trust_store_name> -storepass <password> -alias
<alias> -trustcacerts -file <file_containing_server_certificate>

Example

$ keytool -importcert -keystore client.truststore.pkcs12 -storepass secret -alias localhost
-trustcacerts -file exampleKeystore.pem

If you used a self-signed certificate, you are prompted to trust the certificate.

c. Define the client-side SSL context in a file, for example example-security.xml.

Syntax

Example

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <key-stores>
 <key-store name="${key-store_name}" type="PKCS12" >
 <file name="${path_to_truststore}"/>
 <key-store-clear-password password="${keystore_password}" />
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="${ssl_context_name}">
 <trust-store key-store-name="${trust_store_name}" />
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="${ssl_context_name}" />
 </ssl-context-rules>
 </authentication-client>
</configuration>

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <key-stores>

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

8

d. Connect to the server and issue a command.

Example

$ EAP_HOME/bin/jboss-cli.sh -c --controller=remote+https://127.0.0.1:9993 -
Dwildfly.config.url=<path_to_the_configuration_file>/example-security.xml :whoami

Expected output

{
 "outcome" => "success",
 "result" => {"identity" => {"username" => "$local"}}
}

Verify SSL/TLS by using a browser.

a. Navigate to https://localhost:9993.
If you used a self-signed certificate, the browser presents a warning that the certificate
presented by the server is unknown.

b. Inspect the certificate and verify that the fingerprints shown in your browser match the
fingerprints of the certificate in your keystore. You can view the certificate you generated
with the following command:

Syntax

/subsystem=elytron/key-store=<server_keystore_name>:read-alias(alias=<alias>)

Example

/subsystem=elytron/key-store=key-store-a18ba30e-6a26-4ed6-87c5-feb7f3e4dff1:read-
alias(alias="localhost")

You can get the keystore name from the wizard’s output, for example, "key-store is key-
store-a18ba30e-6a26-4ed6-87c5-feb7f3e4dff1".

Example output

 <key-store name="clientStore" type="PKCS12" >
 <file
name="JBOSS_HOME/standalone/configuration/client.truststore.pkcs12"/>
 <key-store-clear-password password="secret" />
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="client-SSL-context">
 <trust-store key-store-name="clientStore" />
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-SSL-context" />
 </ssl-context-rules>
 </authentication-client>
</configuration>

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

9

https://localhost:9993

...
"sha-1-digest" => "48:e3:6f:16:d1:af:4b:31:8f:9b:0b:7f:33:94:58:af:69:85:c
0:ea",
"sha-256-digest" => "8f:3e:6b:b5:56:e0:d1:97:81:bc:f1:8d:c8:66:75:06:db:7d
:4d:b6:b1:d3:34:dd:f5:6c:85:ca:c7:2b:5b:c7",
...

After you accept the server certificate, you are prompted for login credentials. You can login
using user credentials of existing JBoss EAP users.

SSL/TLS is now enabled for JBoss EAP management interfaces.

Additional resources

key-manager attributes

key-store attributes

server-ssl-context attributes

1.1.2. Enabling one-way SSL/TLS for management interfaces by using the
subsystem commands

Use the elytron subsystem commands to secure the JBoss EAP management interfaces with SSL/TLS.

For testing and development purposes, you can use self-signed certificates. You can either use an
existing keystore containing certificates or use the keystore that Elytron generates when you create the
key-store resource. For production environments always use certificate authority (CA)-signed
certificates.

IMPORTANT

Do not use self-signed certificates in a production environment. Use only the certificates
signed by a certificate authority (CA).

Prerequisites

JBoss EAP is running.

Procedure

1. Configure a keystore to store certificates.
You can either provide a path to an existing keystore, for example, the one that contains CA-
signed certificates, or provide a path to the keystore to create.

/subsystem=elytron/key-store=<keystore_name>:add(path=<path_to_keystore>, credential-
reference=<credential_reference>, type=<keystore_type>)

Example

/subsystem=elytron/key-store=exampleKeyStore:add(path=exampleserver.keystore.pkcs12,
relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=PKCS12)

2. If the keystore doesn’t contain any certificates, or you used the step above to create the

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

10

2. If the keystore doesn’t contain any certificates, or you used the step above to create the
keystore, you must generate a certificate and store the certificate in a file.

a. Generate a key pair in the keystore.

Syntax

/subsystem=elytron/key-store=<keystore_name>:generate-key-
pair(alias=<keystore_alias>,algorithm=<algorithm>,key-
size=<key_size>,validity=<validity_in_days>,credential-
reference=<credential_reference>,distinguished-name="<distinguished_name>")

Example

/subsystem=elytron/key-store=exampleKeyStore:generate-key-
pair(alias=localhost,algorithm=RSA,key-size=2048,validity=365,credential-reference=
{clear-text=secret},distinguished-name="CN=localhost")

b. Store the certificate in a file.

Syntax

/subsystem=elytron/key-store=<keystore_name>:store()

Example

/subsystem=elytron/key-store=exampleKeyStore:store()

3. Configure a key-manager referencing the key-store.

Syntax

/subsystem=elytron/key-manager=<key-manager_name>:add(key-store=<key-
store_name>,credential-reference=<credential_reference>)

Example

/subsystem=elytron/key-manager=exampleKeyManager:add(key-
store=exampleKeyStore,credential-reference={clear-text=secret})

IMPORTANT

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

11

IMPORTANT

Red Hat did not specify the algorithm attribute because the elytron subsystem
uses KeyManagerFactory.getDefaultAlgorithm() to determine an algorithm by
default. However, you can specify the algorithm attribute.

To specify the algorithm attribute, you need to know what key manager
algorithms are provided by the Java Development Kit (JDK) you are using. For
example, a JDK that uses Java Secure Socket Extension (SunJSSE) provides the
PKIX and SunX509 algorithms.

In the command you could specify SunX509 as the key-manager algorithm
attribute.

4. Configure a server-ssl-context referencing the key-manager.

Syntax

/subsystem=elytron/server-ssl-context=<server-ssl-context_name>:add(key-manager=<key-
manager_name>, protocols=<list_of_protocols>)

Example

/subsystem=elytron/server-ssl-context=examplehttpsSSC:add(key-
manager=exampleKeyManager, protocols=["TLSv1.2"])

IMPORTANT

You need to determine what SSL/TLS protocols you want to support. The
example command uses TLSv1.2.

For TLSv1.2 and earlier, use the cipher-suite-filter argument to specify which
cipher suites are allowed.

For TLSv1.3, use the cipher-suite-names argument to specify which cipher
suites are allowed. TLSv1.3 is disabled by default. If you do not specify a
protocol with the protocols attribute or the specified set contains TLSv1.3,
configuring cipher-suite-names enables TLSv1.3.

Use the use-cipher-suites-order argument to honor server cipher suite order.
The use-cipher-suites-order attribute is set to true by default. This differs from
the legacy security subsystem behavior, which defaults to honoring client cipher
suite order.

5. Update the management interfaces to use the configured server-ssl-context.

Syntax

/core-service=management/management-interface=http-interface:write-attribute(name=ssl-
context, value=<server-ssl-context_name>)
/core-service=management/management-interface=http-interface:write-
attribute(name=secure-socket-binding, value=management-https)

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

12

Example

/core-service=management/management-interface=http-interface:write-attribute(name=ssl-
context, value=examplehttpsSSC)
/core-service=management/management-interface=http-interface:write-
attribute(name=secure-socket-binding, value=management-https)

6. Reload the server.

reload

If you used self-signed certificates for enabling SSL/TLS, the management CLI prompts you to
accept the certificate that the server presents. This is the certificate you configured the
keystore with.

Example output

Unable to connect due to unrecognised server certificate
Subject - CN=localhost
Issuer - CN=localhost
Valid From - Mon Jan 30 23:47:21 IST 2023
Valid To - Tue Jan 30 23:47:21 IST 2024
MD5 : a1:00:84:78:a6:46:a4:78:4d:44:c8:6d:ba:1f:30:6a
SHA1 : a4:e5:c1:34:ad:e0:91:18:6f:f6:57:09:91:ae:17:8d:70:f0:1a:7d

Accept certificate? [N]o, [T]emporarily, [P]ermanently :

Enter T or P to proceed with the connection.

Verification

Verify SSL/TLS by connecting through a client.
You can test SSL/TLS by placing an Elytron client SSL context in a configuration file and then
connecting to the server by using the management CLI referencing the configuration file.

a. Navigate to the directory containing the keystore file. In this example, the keystore file
exampleserver.keystore.pkcs12 was generated in the server’s standalone/configuration
directory.

Example

$ cd JBOSS_HOME/standalone/configuration

b. Export the server certificate so that it can be imported into a client trust store.

$ keytool -export -alias <alias> -keystore <key_store> -storepass <keystore_password>-
file <file_name>

Example

$ keytool -export -alias localhost -keystore exampleserver.keystore.pkcs12 -file -
storepass secret server.cer

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

13

c. Create a client trust-store with the server certificates.

Syntax

$ keytool -importcert -keystore <trust_store_name> -storepass <password> -alias
<alias> -trustcacerts -file <file_containing_server_certificate>

Example

$ keytool -importcert -keystore client.truststore.pkcs12 -storepass secret -alias localhost
-trustcacerts -file server.cer

If you used a self-signed certificate, you are prompted to trust the certificate.

d. Define the client-side SSL context in a file, for example example-security.xml.

Syntax

Example

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <key-stores>
 <key-store name="${key-store_name}" type="PKCS12" >
 <file name="${path_to_truststore}"/>
 <key-store-clear-password password="${keystore_password}" />
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="${ssl_context_name}">
 <trust-store key-store-name="${trust_store_name}" />
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="${ssl_context_name}" />
 </ssl-context-rules>
 </authentication-client>
</configuration>

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <key-stores>
 <key-store name="clientStore" type="PKCS12" >
 <file
name="JBOSS_HOME/standalone/configuration/client.truststore.pkcs12"/>
 <key-store-clear-password password="secret" />
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="client-SSL-context">

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

14

e. Connect to the server and issue a command.

Example

$ EAP_HOME/bin/jboss-cli.sh -c --controller=remote+https://127.0.0.1:9993 -
Dwildfly.config.url=example-security.xml :whoami

Expected output

{
 "outcome" => "success",
 "result" => {"identity" => {"username" => "$local"}}
}

Verify SSL/TLS by using a browser.

a. Navigate to https://localhost:9993.
If you used a self-signed certificate, the browser presents a warning that the certificate
presented by the server is unknown.

b. Inspect the certificate and verify that the fingerprints shown in your browser match the
fingerprints of the certificate in your keystore. You can view the certificate you generated
with the following command:

Syntax

/subsystem=elytron/key-store=<server_keystore_name>:read-alias(alias=<alias>)

Example

/subsystem=elytron/key-store=exampleKeyStore:read-alias(alias="localhost")

Example output

...
"sha-1-digest" => "48:e3:6f:16:d1:af:4b:31:8f:9b:0b:7f:33:94:58:af:69:85:c
0:ea",
"sha-256-digest" => "8f:3e:6b:b5:56:e0:d1:97:81:bc:f1:8d:c8:66:75:06:db:7d
:4d:b6:b1:d3:34:dd:f5:6c:85:ca:c7:2b:5b:c7",
...

After you accept the server certificate, you are prompted for login credentials. You can login
using user credentials of existing JBoss EAP users.

 <trust-store key-store-name="clientStore" />
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-SSL-context" />
 </ssl-context-rules>
 </authentication-client>
</configuration>

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

15

https://localhost:9993

SSL/TLS is now enabled for JBoss EAP management interfaces.

Additional resources

key-manager attributes

key-store attributes

server-ssl-context attributes

1.1.3. Disabling SSL/TLS for management interfaces by using the security command

Use the security command to disable SSL/TLS for management interfaces. You might want to do this
to use a different SSL/TLS configuration to the one that is configured.

Disabling SSL/TLS using the command does not delete the Elytron resources. The command just
undefines the secure-socket-binding and the ssl-context attributes of the http-interface
management-interface resource.

Prerequisites

JBoss EAP is running.

Procedure

Use the disable-ssl-management command in the management CLI.

security disable-ssl-management

The server reloads with the following output:

...
Server reloaded.
Reconnected to server.
SSL disabled for http-interface

You can enable SSL/TLS for server management interfaces using one of the following methods:

Enable one-way SSL/TLS for management interfaces by using the wizard : Use this procedure to
quickly set up SSL/TLS using a CLI-based wizard. Elytron creates the required resources for
you based on your inputs to the wizard.

Enable one-way SSL/TLS for management interfaces by using the subsystem commands : Use
this procedure to configure the required resource for enabling SSL/TLS manually. Manually
configuring the resources gives you more control over the server configuration.

1.2. ENABLING ONE-WAY SSL/TLS FOR APPLICATIONS DEPLOYED
ON JBOSS EAP

Enable one-way SSL/TLS for applications deployed on JBoss EAP so that the communication between
the applications and clients, such as web browsers, is secure.

To enable one-way SSL/TLS for applications deployed on JBoss EAP, you can use the following
procedures:

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

16

Enabling SSL/TLS for applications by using the automatically generated self-signed certificate :
Use this procedure in development or testing environments only. This procedure helps you to
quickly enable SSL/TLS for applications without having to do any configurations.

Enable one-way SSL/TLS for applications deployed on JBoss EAP by using the wizard : Use this
procedure to quickly set up SSL/TLS using a CLI-based wizard. Elytron creates the required
resources for you based on your inputs to the wizard.

Enabling one-way SSL/TLS for applications by using the subsystem commands : Use this method
to configure the required resource for enabling SSL/TLS manually. Manually configuring the
resources gives you more control over the server configuration.

Additionally, you can disable SSL/TLS for applications deployed on JBoss EAP by using the procedure
Disabling SSL/TLS for applications by using the security command .

1.2.1. The default SSL context in Elytron

To help developers quickly set up one-way SSL/TLS for applications, the elytron subsystem contains
the required resources to enable one-way SSL/TLS, ready to use in a development or testing
environment by default.

The following resources are provided by default:

A key-store named applicationKS.

A key-manager, named applicationKM, referencing the key-store.

A server-ssl-context, named applicationSSC, referencing the key-manager.

Default TLS configuration

The default key-manager, applicationKM, contains a generate-self-signed-certificate-host attribute
with the value localhost. The generate-self-signed-certificate-host attribute indicates that when this
key-manager is used to obtain the server’s certificate, if the file that backs its key-store doesn’t already

...
<tls>
 <key-stores>
 <key-store name="applicationKS">
 <credential-reference clear-text="password"/>
 <implementation type="JKS"/>
 <file path="application.keystore" relative-to="jboss.server.config.dir"/>
 </key-store>
 </key-stores>
 <key-managers>
 <key-manager name="applicationKM" key-store="applicationKS" generate-self-signed-
certificate-host="localhost">
 <credential-reference clear-text="password"/>
 </key-manager>
 </key-managers>
 <server-ssl-contexts>
 <server-ssl-context name="applicationSSC" key-manager="applicationKM"/>
 </server-ssl-contexts>
</tls>
...

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

17

exist, then the key-manager should automatically generate a self-signed certificate with localhost as
the Common Name. This generated self-signed certificate is stored in the file that backs the key-store.

As the file that backs the default key-store doesn’t exist when the server is installed, just sending an
https request to the server generates a self-signed certificate and enables one-way SSL/TLS for
application. For more information, see Enabling SSL/TLS for applications by using the automatically
generated self-signed certificate.

Additional resources

key-manager attributes

key-store attributes

server-ssl-context attributes

1.2.2. Enabling SSL/TLS for applications by using the automatically generated self-
signed certificate

JBoss EAP automatically generates a self-signed certificate the first time the server receives an HTTPS
request. The elytron subsystem also contains key-store, key-manager, and server-ssl-context
resources that are ready to use in a development or testing environment by default. Therefore, as soon
as JBoss EAP generates a self-signed certificate, the applications are secured using the certificate.

IMPORTANT

Do not use self-signed certificates in a production environment. Use only the certificates
signed by a certificate authority (CA).

Prerequisites

JBoss EAP is running.

Procedure

Navigate to the server URL at the port 8443, for example, https://localhost:8443.
JBoss EAP generates a self-signed certificate when it receives this request. You can see the
server logs for details about this certificate.

The browser flags the connection as insecure because the generated certificate is self-signed.

Verification

1. Compare the certificate JBoss EAP presented to the browser with the certificate in the server
log.

Example server log

17:50:24,086 WARN [org.wildfly.extension.elytron] (default task-1) WFLYELY01085:
Generated self-signed certificate at /home/user1/Downloads/wildflies/wildfly-
27.0.1.Final/standalone/configuration/application.keystore. Please note that self-signed
certificates are not secure and should only be used for testing purposes. Do not use this self-
signed certificate in production.
SHA-1 fingerprint of the generated key is

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

18

https://localhost:8443

11:2f:e7:8c:18:b7:2c:c1:b0:5a:ad:ea:83:e0:32:59:ba:73:91:e2
SHA-256 fingerprint of the generated key is
b2:a4:ed:b0:5c:c2:a1:4c:ca:39:03:e8:3a:11:e4:c5:c4:81:9d:46:97:7c:e6:6f:0c:45:f6:5d:64:3f:0d:
64

Example certificate presented to the browser

SHA-256 Fingerprint B2 A4 ED B0 5C C2 A1 4C CA 39 03 E8 3A 11 E4 C5
C4 81 9D 46 97 7C E6 6F 0C 45 F6 5D 64 3F 0D 64
SHA-1 Fingerprint 11 2F E7 8C 18 B7 2C C1 B0 5A AD EA 83 E0 32 59
BA 73 91 E2

2. If the fingerprints match, like in the example, you can proceed to the page.

SSL/TLS is enabled for applications.

Additional resources

key-manager attributes

key-store attributes

server-ssl-context attributes

1.2.3. Enabling one-way SSL/TLS for applications deployed on JBoss EAP by using
the wizard

Elytron provides a wizard to quickly set up SSL/TLS. You can either use an existing keystore containing
certificates or use the keystore and self-signed certificates that the wizard generates to enable
SSL/TLS. You can also obtain and use certificates from the Let’s Encrypt certificate authority by using
the --lets-encrypt option. For information about Let’s Encrypt, see the Let’s Encrypt documentation.

Use the self-signed certificates the wizard generates to enable SSL/TLS for testing and development
purposes only. For production environments always use certificate authority (CA)-signed certificates.

IMPORTANT

Do not use self-signed certificates in a production environment. Use only the certificates
signed by a certificate authority (CA).

The wizard configures the following resources that are required to enable SSL/TLS for applications:

key-store

key-manager

server-ssl-context

The server-ssl-context is then applied to Undertow https-listener.

Elytron names each resource as resource-type-UUID. For example, key-store-9e35a3be-62bb-4fff-
afc2-2d8d141b82bc. The universally unique identifier (UUID) helps avoid name collisions for the
resources.

Prerequisites

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

19

https://letsencrypt.org/

Prerequisites

JBoss EAP is running.

Procedure

Launch the wizard to configure one-way SSL/TLS for applications by entering the following
command in the management CLI:

Syntax

security enable-ssl-http-server --interactive

Enter the required information when prompted.

Use the --lets-encrypt option to obtain and use certificates from the Let’s Encrypt certificate
authority.

If a server-ssl-context already exists, the wizard exits with the following message:

An SSL server context already exists on the HTTPS listener, use --override-ssl-context option
to overwrite the existing SSL context

NOTE

The elytron subsystem contains an already configured server-ssl-context
resource by default. Therefore, you must use the --override-ssl-context option
the first time you launch the wizard after a fresh installation.

For more information, see The default SSL context in Elytron .

If you override the existing server-ssl-context, Elytron will use the server-ssl-context created
by the wizard to enable SSL.

NOTE

To enable one-way SSL/TLS, enter n or blank when prompted to enable SSL
mutual authentication. Setting mutual authentication enables two-way SSL/TLS.

Example of starting the wizard

security enable-ssl-http-server --interactive --override-ssl-context

Example inputs to the wizard prompts

Please provide required pieces of information to enable SSL:

Certificate info:
Key-store file name (default default-server.keystore): exampleKeystore.pkcs12
Password (blank generated): secret
What is your first and last name? [Unknown]: localhost
What is the name of your organizational unit? [Unknown]:
What is the name of your organization? [Unknown]:

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

20

What is the name of your City or Locality? [Unknown]:
What is the name of your State or Province? [Unknown]:
What is the two-letter country code for this unit? [Unknown]:
Is CN=localhost, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
correct y/n [y]?y
Validity (in days, blank default): 365
Alias (blank generated): localhost
Enable SSL Mutual Authentication y/n (blank n):n //For one way SSL/TLS enter blank or n
here

SSL options:
keystore file: exampleKeystore.pkcs12
distinguished name: CN=localhost, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown,
C=Unknown
password: secret
validity: 365
alias: localhost
Server keystore file exampleKeystore.pkcs12, certificate file exampleKeystore.pem and
exampleKeystore.csr file will be generated in server configuration directory.

Do you confirm y/n :y

After you enter y, the server reloads with the following output:

Server reloaded.
SSL enabled for default-server
ssl-context is ssl-context-4cba6678-c464-4dcc-90ff-9295312ac395
key-manager is key-manager-4cba6678-c464-4dcc-90ff-9295312ac395
key-store is key-store-4cba6678-c464-4dcc-90ff-9295312ac395

Verification

1. Navigate to https://localhost:8443.
If you used a self-signed certificate, the browser presents a warning that the certificate
presented by the server is unknown.

2. Inspect the certificate and verify that the fingerprints shown in your browser match the
fingerprints of the certificate in your keystore. You can view the certificate you generated with
the following command:

Syntax

/subsystem=elytron/key-store=<server_keystore_name>:read-alias(alias=<alias>)

Example

/subsystem=elytron/key-store=key-store-4cba6678-c464-4dcc-90ff-9295312ac395:read-
alias(alias="localhost")

You can get the keystore name from the wizard’s output, for example, "key-store is key-store-
4cba6678-c464-4dcc-90ff-9295312ac395".

Example output

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

21

https://localhost:8443

...
"sha-1-digest" => "48:e3:6f:16:d1:af:4b:31:8f:9b:0b:7f:33:94:58:af:69:85:c
0:ea",
"sha-256-digest" => "8f:3e:6b:b5:56:e0:d1:97:81:bc:f1:8d:c8:66:75:06:db:7d
:4d:b6:b1:d3:34:dd:f5:6c:85:ca:c7:2b:5b:c7",
...

SSL/TLS is now enabled for applications deployed on JBoss EAP.

Additional resources

key-manager attributes

key-store attributes

server-ssl-context attributes

1.2.4. Enabling one-way SSL/TLS for applications by using the subsystem
commands

Use the elytron subsystem commands to secure the applications deployed on JBoss EAP with
SSL/TLS.

For testing and development purposes, you can use self-signed certificates. You can either use an
existing keystore containing certificates or use the keystore that Elytron generates when you create the
key-store resource. For production environments always use certificate authority (CA)-signed
certificates.

IMPORTANT

Do not use self-signed certificates in a production environment. Use only the certificates
signed by a certificate authority (CA).

Prerequisites

JBoss EAP is running.

Procedure

1. Configure a keystore to store certificates.
You can either provide a path to an existing keystore, for example, the one that contains CA-
signed certificates, or provide a path to the keystore to create.

/subsystem=elytron/key-store=<keystore_name>:add(path=<path_to_keystore>, credential-
reference=<credential_reference>, type=<keystore_type>)

Example

/subsystem=elytron/key-store=exampleKeyStore:add(path=exampleserver.keystore.pkcs12,
relative-to=jboss.server.config.dir,credential-reference={clear-text=secret},type=PKCS12)

2. If the keystore doesn’t contain any certificates, or you used the step above to create the
keystore, you must generate a certificate and store the certificate in a file.

a. Generate a key pair in the keystore.

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

22

a. Generate a key pair in the keystore.

Syntax

/subsystem=elytron/key-store=<keystore_name>:generate-key-
pair(alias=<keystore_alias>,algorithm=<algorithm>,key-
size=<key_size>,validity=<validity_in_days>,credential-
reference=<credential_reference>,distinguished-name="<distinguished_name>")

Example

/subsystem=elytron/key-store=exampleKeyStore:generate-key-
pair(alias=localhost,algorithm=RSA,key-size=2048,validity=365,credential-reference=
{clear-text=secret},distinguished-name="CN=localhost")

b. Store the certificate in a file.

Syntax

/subsystem=elytron/key-store=<keystore_name>:store()

Example

/subsystem=elytron/key-store=exampleKeyStore:store()

3. Configure a key-manager referencing the key-store.

Syntax

/subsystem=elytron/key-manager=<key-manager_name>:add(key-store=<key-
store_name>,credential-reference=<credential_reference>)

Example

/subsystem=elytron/key-manager=exampleKeyManager:add(key-
store=exampleKeyStore,credential-reference={clear-text=secret})

IMPORTANT

Red Hat did not specify the algorithm attribute because the elytron subsystem
uses KeyManagerFactory.getDefaultAlgorithm() to determine an algorithm by
default. However, you can specify the algorithm attribute.

To specify the algorithm attribute, you need to know what key manager
algorithms are provided by the Java Development Kit (JDK) you are using. For
example, a JDK that uses Java Secure Socket Extension (SunJSSE) provides the
PKIX and SunX509 algorithms.

In the command you could specify SunX509 as the key-manager algorithm
attribute.

4. Configure a server-ssl-context referencing the key-manager.

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

23

Syntax

/subsystem=elytron/server-ssl-context=<server-ssl-context_name>:add(key-manager=<key-
manager_name>, protocols=<list_of_protocols>)

Example

/subsystem=elytron/server-ssl-context=examplehttpsSSC:add(key-
manager=exampleKeyManager, protocols=["TLSv1.2"])

IMPORTANT

You need to determine what SSL/TLS protocols you want to support. The
example command uses TLSv1.2.

For TLSv1.2 and earlier, use the cipher-suite-filter argument to specify which
cipher suites are allowed.

For TLSv1.3, use the cipher-suite-names argument to specify which cipher
suites are allowed. TLSv1.3 is disabled by default. If you do not specify a
protocol with the protocols attribute or the specified set contains TLSv1.3,
configuring cipher-suite-names enables TLSv1.3.

Use the use-cipher-suites-order argument to honor server cipher suite order.
The use-cipher-suites-order attribute is set to true by default. This differs from
the legacy security subsystem behavior, which defaults to honoring client cipher
suite order.

5. Update Undertow to use the configured server-ssl-context.

Syntax

/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-
context, value=<server-ssl-context_name>)

Example

/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-
context, value=examplehttpsSSC)

6. Reload the server.

reload

Verification

1. Navigate to https://localhost:8443.
If you used a self-signed certificate, the browser presents a warning that the certificate
presented by the server is unknown.

2. Inspect the certificate and verify that the fingerprints shown in your browser match the

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

24

https://localhost:8443

2. Inspect the certificate and verify that the fingerprints shown in your browser match the
fingerprints of the certificate in your keystore. You can view the certificate you generated with
the following command:

Syntax

/subsystem=elytron/key-store=<server_keystore_name>:read-alias(alias=<alias>)

Example

/subsystem=elytron/key-store=exampleKeyStore:read-alias(alias=localhost)

Example output

...
"sha-1-digest" => "cc:f1:82:59:c7:0d:f6:91:bc:3e:69:0a:38:fb:48:be:ec:7f:d
4:bd",
"sha-256-digest" => "c0:f3:f9:8b:3c:f1:72:17:64:54:35:a6:bb:82:7e:51:b0:78
:30:cb:68:ef:04:0e:f5:2b:9d:62:ca:a7:f6:35",
...

SSL/TLS is now enabled for applications deployed on JBoss EAP.

Additional resources

key-manager attributes

key-store attributes

server-ssl-context attributes

1.2.5. Disabling SSL/TLS for applications by using the security command

Use the security command to disable SSL/TLS for applications deployed on JBoss EAP. Disabling
SSL/TLS using the command does not delete the Elytron resources. The command just sets the ssl-
context for the server to its default value applicationSSC.

Prerequisites

JBoss EAP is running.

Procedure

Use the security disable-ssl-http-server command in the management CLI.

security disable-ssl-http-server

The server reloads with the following output:

...
Server reloaded.
SSL disabled for default-server

CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

25

You can enable SSL/TLS for applications deployed on JBoss EAP using one of the following procedure:

Enabling SSL/TLS for applications by using the automatically generated self-signed certificate :
Use this procedure in development or testing environments only. This procedure helps you to
quickly enable SSL/TLS for applications without having to do any configurations.

Enable one-way SSL/TLS for applications deployed on JBoss EAP by using the wizard : Use this
procedure to quickly set up SSL/TLS using a CLI-based wizard. Elytron creates the required
resources for you based on your inputs to the wizard.

Enabling one-way SSL/TLS for applications by using the subsystem commands : Use this method
to configure the required resource for enabling SSL/TLS manually. Manually configuring the
resources gives you more control over the server configuration.

Additional resources

key-manager attributes

key-store attributes

server-ssl-context attributes

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

26

CHAPTER 2. ENABLING TWO-WAY SSL/TLS FOR
MANAGEMENT INTERFACES AND APPLICATIONS

SSL/TLS, or transport layer security (TLS), is a certificates-based security protocol that is used to
secure the data transfer between two entities communicating over a network. Use two-way SSL/TLS
when you want the server to connect only with trusted clients.

Two-way SSL/TLS provides the following security functions:

Authentication

In one-way SSL/TLS, the server presents its certificate to a client to authenticate itself. In two-way
SSL/TLS, the client also presents its certificate to the server for the server to authenticate the client.
Two-way SSL/TLS, therefore, is also called mutual authentication.

Confidentiality

The data transferred between the client and the server is encrypted.

Data integrity

The TLS protocol provides data integrity with secure hash functions, which are used for message
authentication code (MAC) computations. You can enforce specific algorithms and hash functions
for the connections using the cipher-suite-filter and cipher-suite-names attributes of the SSL
context resources.

For more information, see server-ssl-context attributes.

You can secure both JBoss EAP management interfaces and deployed applications by using two-way
SSL/TLS.

To secure management interfaces with two-way SSL/TLS, use the following procedures:

Obtain a certificate from a certificate authority (CA) for the client. Alternatively, for non-
production environments, you can generate a self-signed certificate by following the procedure:
Generate client certificates.

Configure a trust store and a trust manager for client certificate

Configure a server certificate for two-way SSL/TLS .

Configure SSL context to secure JBoss EAP management interfaces with SSL/TLS

To secure applications deployed on JBoss EAP with two-way SSL/TLS, use the following procedures:

Obtain a certificate from a certificate authority (CA) for the client. Alternatively, for non-
production environments, you can generate a self-signed certificate by following the procedure:
Generate client certificates.

Configure a trust store and a trust manager for client certificate

Configure a server certificate for two-way SSL/TLS

Configure SSL context to secure applications deployed on JBoss EAP with SSL/TLS

You can configure certificate revocation checks by following the procedures in Configuring certificate
revocation checks in Elytron.

2.1. GENERATING CLIENT CERTIFICATES

CHAPTER 2. ENABLING TWO-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

27

Generate self-signed client certificates using the keytool command, in the CLI, for the purpose of
testing and development of a two-way SSL/TLS configuration.

IMPORTANT

Do not use self-signed certificates in a production environment. Use only the certificates
signed by a certificate authority (CA).

Procedure

1. Generate a client certificate.

Syntax

$ keytool -genkeypair -alias <keystore_alias> -keyalg <algorithm> -keysize <key_size> -
validity <validity_in_days> -keystore <keystore_name> -dname "<distinguished_name>" -
keypass <private_key_password> -storepass <keystore_password>

Example

2. Export the client certificate to a file.

Syntax

Example

You can now use the generated client certificate to configure a server trust store and a trust manager in
a server. For more information, see Configuring a trust store and a trust manager for client certificates .

2.2. CONFIGURING A TRUST STORE AND A TRUST MANAGER FOR
CLIENT CERTIFICATES

Configure a trust store with the client certificate and a trust manager with a reference to the trust store
to verify the client certificate during the TLS handshake.

Prerequisites

You have obtained or generated a client certificate.
For more information, see Generating client certificates.

$ keytool -genkeypair -alias exampleClientKeyStore -keyalg RSA -keysize 2048 -validity 365
-keystore exampleclient.keystore.pkcs12 -dname "CN=client" -keypass secret -storepass
secret

$ keytool -exportcert -keystore <keystore_name> -alias <keystore_alias> -keypass
<private_key_password> -storepass <keystore_password> -file <file_path>

$ keytool -exportcert -keystore exampleclient.keystore.pkcs12 -alias exampleClientKeyStore
-keypass secret -storepass secret -file EAP_HOME/standalone/configuration/client.cer

Certificate stored in file <EAP_HOME/standalone/configuration/client.cer>

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

28

JBoss EAP is running.

Procedure

1. Configure a trust store with a client certificate by using the management CLI.

a. Create a server trust store to store the client certificate to trust.

Syntax

/subsystem=elytron/key-
store=<server_trust_store_name>:add(path=<path_to_server_trust_store_file>,credential
-reference={<password>})

Example

/subsystem=elytron/key-
store=exampleServerTrustStore:add(path=exampleTLSServer.truststore,relative-
to=jboss.server.config.dir,credential-reference={clear-text=secret})
{"outcome" => "success"}

b. Import the client certificate to the server trust store by specifying the client certificate alias.
Only the clients that present a certificate that the server’s trust store trusts can connect to
the server.

NOTE

If you are configuring two-way SSL/TLS by using a self-signed certificate, set
validate to false because no chain of trust exists for the certificate.

If you are configuring two-way SSL/TLS in a production environment by
using certificates signed by a CA, set validate to true.

Syntax

/subsystem=elytron/key-store=<server_trust_store_name>:import-
certificate(alias=<alias>,path=<certificate_file>,credential-reference={<password>},trust-
cacerts=<true_or_false>,validate=<true_false>)

Example

/subsystem=elytron/key-store=exampleServerTrustStore:import-
certificate(alias=client,path=client.cer,relative-to=jboss.server.config.dir,credential-
reference={clear-text=serverTrustSecret},trust-cacerts=true,validate=false)
{"outcome" => "success"}

c. Export the client certificate to a trust store file.

Syntax

/subsystem=elytron/key-store=<server_trust_store_name>:store()

CHAPTER 2. ENABLING TWO-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

29

Example

/subsystem=elytron/key-store=exampleServerTrustStore:store()
{
 "outcome" => "success",
 "result" => undefined
}

2. Configure a trust manager to verify the client certificate during the TLS handshake.

Syntax

/subsystem=elytron/trust-manager=<trust_manager_name>:add(key-
store=<server_trust_store_name>)

Example

/subsystem=elytron/trust-manager=exampleTLSTrustManager:add(key-
store=exampleServerTrustStore)
{"outcome" => "success"}

The client certificate in the configured trust store is used to verify the certificate that a client presents
during TLS handshake with the server.

Additional resources

Configuring certificate revocation checks using certificate revocation lists

Configuring certificate revocation checks using OCSP in Elytron

key-store attributes

trust-manager attributes

2.3. CONFIGURING A SERVER CERTIFICATE FOR TWO-WAY SSL/TLS

Configure a server certificate, which will be presented to clients during the TLS handshake.

Prerequisites

JBoss EAP is running.

Procedure

1. Generate a self-signed server certificate to use for testing and development purposes. If you
have obtained a certificate from a certificate authority (CA), skip this step.

IMPORTANT

Do not use self-signed certificates in a production environment. Use only the
certificates signed by a certificate authority (CA).

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

30

a. Create a key store to store server certificate.

Syntax

/subsystem=elytron/key-store=<key_store_name>:add(path=<path>,credential-
reference={<password>},type=<key_store_type>)

Example

/subsystem=elytron/key-
store=exampleServerKeyStore:add(path=server.keystore.pkcs12,relative-
to=jboss.server.config.dir,credential-reference={clear-text=secret},type=PKCS12)
{"outcome" => "success"}

b. Generate a server certificate in the key store.

Syntax

/subsystem=elytron/key-store=<key_store_name>:generate-key-
pair(alias=<alias>,algorithm=<algorithm>,key-
size=<key_size>,validity=<validaity_in_days>,credential-reference=
{<password>},distinguished-name="<distinguished_name_in_certificate>")

Example

/subsystem=elytron/key-store=exampleServerKeyStore:generate-key-
pair(alias=localhost,algorithm=RSA,key-size=2048,validity=365,credential-reference=
{clear-text=secret},distinguished-name="CN=localhost")
{"outcome" => "success"}

c. Store the key store to a file.

Syntax

/subsystem=elytron/key-store=<key_store_name>:store()

Example

/subsystem=elytron/key-store=exampleServerKeyStore:store()
{
 "outcome" => "success",
 "result" => undefined
}

d. Export the server certificate.

Syntax

/subsystem=elytron/key-store=<key_store_name>:export-
certificate(alias=<alias>,path=<path_to_certificate>,pem=true)

Example

CHAPTER 2. ENABLING TWO-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

31

/subsystem=elytron/key-store=exampleServerKeyStore:export-
certificate(alias=localhost,path=server.cer,pem=true,relative-to=jboss.server.config.dir)
{"outcome" => "success"}

2. Create a key manager referencing the server key store.

Syntax

/subsystem=elytron/key-manager=<key_manager_name>:add(credential-reference=
{<password>},key-store=<key_store_name>)

Example

/subsystem=elytron/key-manager=exampleServerKeyManager:add(credential-reference=
{clear-text=secret},key-store=exampleServerKeyStore)
{"outcome" => "success"}

The server presents this certificate to the client when SSL/TLS is enabled.

3. Import the server certificate to the client’s trust store so that the client can verify the server
certificate during SSL handshake.

Syntax

$ keytool -import -file <server_certificate_file> -alias <alias> -keystore
<client_trust_store_file> -storepass <password>

Example

$ keytool -import -file EAP_HOME/standalone/configuration/server.cer -alias server -
keystore client.truststore.p12 -storepass secret

Owner: CN=localhost
Issuer: CN=localhost
Serial number: 52679016fbb54f46
Valid from: Fri Sep 30 18:25:29 IST 2022 until: Sat Sep 30 18:25:29 IST 2023
Certificate fingerprints:
 SHA1: 4B:68:24:9E:2A:2D:01:4E:23:69:94:C8:9A:1C:8F:A5:D4:27:CB:98
 SHA256:
C0:AF:74:12:90:66:25:B2:65:4E:6B:4B:89:81:2D:6B:D5:2A:F4:04:BC:85:DA:1C:AB:26:6D:57:9
F:9F:EE:15
Signature algorithm name: SHA256withRSA
Subject Public Key Algorithm: 1024-bit RSA key (disabled)
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 59 13 DC 6A 81 B9 27 18 6E 72 17 0E 67 FC 9F 8F Y..j..'.nr..g...
0010: 04 01 74 8F ..t.
]

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

32

]

Warning:
The input uses a 1024-bit RSA key which is considered a security risk and is disabled.

Trust this certificate? [no]:

Enter yes. You get the following output:

Certificate was added to keystore

Next steps

To secure the management interfaces with two-way SSL/TLS, follow this procedure:

Configuring SSL context to secure JBoss EAP interfaces with SSL/TLS

To secure applications deployed to JBoss EAP with SSL/TLS, follow this procedure:
Configuring SSL context to secure applications deployed on JBoss EAP with SSL/TLS

Additional resources

key-store attributes

key-manager attributes

2.4. CONFIGURING SSL CONTEXT TO SECURE JBOSS EAP
MANAGEMENT INTERFACES WITH SSL/TLS

Secure the JBoss EAP management interfaces with two-way SSL/TLS so that only the clients that
present a certificate trusted by the server can connect to the server’s management interfaces.

Prerequisites

JBoss EAP is running.

You have configured server trust store and a trust manager for client certificates.
For more information, see Configuring a trust store and a trust manager for client certificates .

You have configured the server certificate.
For more information, see Configuring the server certificate for SSL/TLS

Procedure

1. Configure a server SSL context to enable two-way SSL.

Syntax

/subsystem=elytron/server-ssl-context=<server_ssl_context_name>:add(key-
manager=<key_manager_name>,trust-manager=<trust_manager_name>,need-client-
auth=true)

CHAPTER 2. ENABLING TWO-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

33

Example

/subsystem=elytron/server-ssl-context=exampleServerSSLContext:add(key-
manager=exampleServerKeyManager,trust-manager=exampleTLSTrustManager,need-
client-auth=true)
{"outcome" => "success"}

By default, the SSL context uses TLSv1.2. You can configure the protocols attribute to use
TLSv1.3 as follows:

Syntax

/subsystem=elytron/server-ssl-context=<server-ssl-context-name>:add(key-
manager=<key_manager_name>,trust-manager=<trust_manager_name>,need-client-
auth=true,protocols=[TLSv1.3])

2. Add a reference to the SSLContext to use for the http management interface.

Syntax

/core-service=management/management-interface=http-interface:write-attribute(name=ssl-
context, value=<server_ssl_context_name>)

Example

/core-service=management/management-interface=http-interface:write-attribute(name=ssl-
context,value=exampleServerSSLContext)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

3. Define the socket binding configuration to use for the HTTPS management interface’s socket.

Syntax

/core-service=management/management-interface=http-interface:write-
attribute(name=secure-socket-binding, value=<socket_binding>)

Example

/core-service=management/management-interface=http-interface:write-
attribute(name=secure-socket-binding, value=management-https)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

34

4. Reload the server.

reload

...
Accept certificate? [N]o, [T]emporarily, [P]ermanently :

Enter T or P to accept the certificate provided by the server either temporarily or permanently.

The management CLI disconnects because it expects a client certificate to be presented.

Verification

Verify that management console is protected.

a. Verify using the CLI:

Syntax

$ curl --verbose --location --cacert <server_certificate> --cert
<client_keystore>:<password> --cert-type P12 https://localhost:9993

Example

$ curl --verbose --location --cacert server.cer --cert
EAP_HOME/standalone/configuration/exampleclient.keystore.pkcs12:secret --cert-type
P12 https://localhost:9993
...
< HTTP/1.1 200 OK
...

b. Verify using a browser.

i. Import the client certificate into your browser. The example certificate created in the
Generating client certificates procedure is called exampleclient.keystore.pkcs12 and
the example password to import it is secret.
Refer to your browser’s documentation for information about importing certificates to
the browser.

ii. Access https://localhost:9993 in a browser.
The browser prompts you to present a certificate to identify with the server.

iii. Choose the certificate you imported to the browser. For example,
exampleclient.keystore.pkcs12.
If you use a self-signed certificate, the browser presents a warning that the certificate
presented by the server is unknown.

iv. Inspect the certificate and verify that the fingerprints shown in your browser match the
fingerprints of the certificate in your keystore. You can view the certificate in a keystore
with the following command:

Syntax

/subsystem=elytron/key-store=<server_keystore_name>:read-alias(alias=<alias>)

CHAPTER 2. ENABLING TWO-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

35

https://localhost:9993

Example

/subsystem=elytron/key-store=exampleServerKeyStore:read-alias(alias=localhost)
...
"sha-1-digest" => "5e:3e:ad:c8:df:d7:f6:63:38:05:e2:a3:a7:31:07:82:c8:c8:94:47",
"sha-256-digest" =>
"11:b6:8f:00:42:e1:7f:6c:16:ef:db:08:5e:13:d9:b8:16:6e:a0:3c:2e:d4:e5:fd:cb:53:90:88:
d2:9c:b1:99",

After you accept the server certificate, you are prompted for login credentials. You can login
using user credentials of existing JBoss EAP users.

Verify that management CLI is protected.

Create the file wildfly-config.xml with the following content:

Example

NOTE

You can use masked passwords in the key-store-clear-password element, in
place of clear text, for obfuscation.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.7">
 <key-stores>
 <key-store name="truststore" type="PKCS12">
 <file name="${path_to_client_truststore}/client.truststore.p12"/>
 <key-store-clear-password password="secret" />
 </key-store>
 <key-store name="keystore" type="PKCS12">
 <file name="${path_to_client_truststore}/exampleclient.keystore.pkcs12"/>
 <key-store-clear-password password="secret" />
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="client-context">
 <trust-store key-store-name="truststore"/>
 <key-store-ssl-certificate key-store-name="keystore">
 <key-store-clear-password password="secret" />
 </key-store-ssl-certificate>
 <providers>
 <global/>
 </providers>
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-context" />
 </ssl-context-rules>
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

36

Access management CLI by presenting the client certificate.

$./jboss-cli.sh --controller=remote+https://127.0.0.1:9993 -
Dwildfly.config.url=/path/to/wildfly-config.xml --connect

Both the clients: the client’s web browser, and management CLI, trust the server’s certificate, and the
server trusts both clients. The communication between the client and server is over SSL/TLS.

Additional resources

server-ssl-context attributes

2.5. CONFIGURING SERVER-SSL-CONTEXT TO SECURE APPLICATIONS
DEPLOYED ON JBOSS EAP WITH SSL/TLS

Elytron provides a default server-ssl-context called applicationSSC, which you can use to configure
SSL/TLS. Alternately, you can create your own SSL context in Elytron. The following procedure
demonstrates using the default SSL context - applicationSSC, to configure SSL/TLS for applications.

Prerequisites

JBoss EAP is running.

You have configured a server trust store and a trust manager for client certificates.
For more information, see Configuring a trust store and a trust manager for client certificates .

You have configured the server certificate.
For more information, see Configuring the server certificate for SSL/TLS

Procedure

1. Configure the default server SSL context to enable two-way SSL.

/subsystem=elytron/server-ssl-context=applicationSSC:write-attribute(name=need-client-
auth,value=true)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

By default, the SSL context uses TLSv1.2. You can configure the protocols attribute to use
TLSv1.3 as follows:

/subsystem=elytron/server-ssl-context=applicationSSC:write-
attribute(name=protocols,value=[TLSv1.3])

2. Configure a trust manager for the server SSL context.

Syntax

CHAPTER 2. ENABLING TWO-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

37

/subsystem=elytron/server-ssl-context=applicationSSC:write-attribute(name=trust-
manager,value=<server_trust_manager>)

Example

/subsystem=elytron/server-ssl-context=applicationSSC:write-attribute(name=trust-
manager,value=exampleTLSTrustManager)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

3. Configure a key manager of the server SSL context.

Syntax

/subsystem=elytron/server-ssl-context=applicationSSC:write-attribute(name=key-
manager,value=<key_manager_name>)

Example

/subsystem=elytron/server-ssl-context=applicationSSC:write-attribute(name=key-
manager,value=exampleServerKeyManager)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

4. Reload the server.

reload

Verification

Verify that you can access the JBoss EAP welcome page.

a. Verify using the CLI:

Syntax

$ curl --verbose --location --cacert <server_certificate> --cert
<client_keystore>:<password> --cert-type P12 https://localhost:8443

Example

$ curl --verbose --location --cacert server.cer --cert exampleclient.keystore.pkcs12:secret

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

38

--cert-type P12 https://localhost:8443
...
<h3>Your Red Hat JBoss Enterprise Application Platform is running.</h3>
...

b. Verify using a browser.

i. Import the client certificate into your browser. The example certificate created in the
Generating client certificates procedure is called exampleclient.keystore.pkcs12 and
the example password to import it is secret.
Refer to your browser’s documentation for information about importing certificates to
the browser.

ii. Navigate to https://localhost:8443 in a browser.
The browser prompts you to present a certificate to identify with the server.

iii. Choose the certificate you imported to the browser. For example,
exampleclient.keystore.pkcs12.
If you use a self-signed certificate, the browser presents a warning that the certificate
presented by the server is unknown.

iv. Inspect the certificate and verify that the fingerprints shown in your browser match the
fingerprints of the certificate in your keystore. You can view the certificate in a keystore
with the following command:

Syntax

/subsystem=elytron/key-store=<server_keystore_name>:read-alias(alias=<alias>)

Example

/subsystem=elytron/key-store=exampleServerKeyStore:read-alias(alias=localhost)
...
"sha-1-digest" => "5e:3e:ad:c8:df:d7:f6:63:38:05:e2:a3:a7:31:07:82:c8:c8:94:47",
"sha-256-digest" =>
"11:b6:8f:00:42:e1:7f:6c:16:ef:db:08:5e:13:d9:b8:16:6e:a0:3c:2e:d4:e5:fd:cb:53:90:88:
d2:9c:b1:99",

After you accept the server certificate, you can access JBoss EAP welcome page.

Two-way SSL/TLS is now configured for applications.

Additional resources

server-ssl-context attributes

CHAPTER 2. ENABLING TWO-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS

39

https://localhost:8443

CHAPTER 3. CONFIGURING CERTIFICATE REVOCATION
CHECKS IN ELYTRON

To ensure that certificates that are revoked by the issuing Certificate Authority (CA) before their
expiration date are not trusted by Elytron or the Elytron client, configure certificate revocation checks.
You can use either Certificate Revocation Lists (CRL) or an Online Certificate Status Protocol (OCSP)
responder for certificate revocation checking. Use OCSP if you do not want to download the entire CRL.

3.1. CONFIGURING CERTIFICATE REVOCATION CHECKS USING
CERTIFICATE REVOCATION LISTS

Configure certificate revocation checks using Certificate Revocation Lists (CRL) in the Elytron trust
manager used for enabling two-way SSL/TLS, so that the certificates that are revoked by the issuing
Certificate Authority (CA) before their expiration date are not trusted by Elytron.

Prerequisites

JBoss EAP is running.

A trust manager is configured.
For more information, see Configuring a trust store and a trust manager for client certificates .

Procedure

1. Configure the trust manager to use the CRL using one of the following steps:

Configure the trust manager to use CRLs obtained from distribution points referenced in
your certificates.

Syntax

/subsystem=elytron/trust-manager=<trust_manager_name>:write-
attribute(name=certificate-revocation-lists,value=[])

Example

/subsystem=elytron/trust-manager=exampleTLSTrustManager:write-
attribute(name=certificate-revocation-lists,value=[])

Override the CRL obtained from distribution points referenced in your certificates.

Syntax

/subsystem=elytron/trust-manager=<trust_manager_name>:write-
attribute(name=certificate-revocation-lists,value=[{path="<CRL-file-1>"},{path="<CRL-
file-2>"},...,{path="<CRL-file-N>"}])

Example

/subsystem=elytron/trust-manager=exampleTLSTrustManager:write-
attribute(name=certificate-revocation-lists,value=[{path="intermediate.crl.pem"}])

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

40

2. Configure the trust manager to use CRL for certificate revocation checking.

If an OCSP responder is also configured for certificate revocation checks, add attribute
ocsp.prefer-crls with the value true in the trust manager to use CRL for certificate
revocation checking:

Syntax

/subsystem=elytron/trust-manager=<trust_manager_name>:write-
attribute(name=ocsp.prefer-crls,value="true")

Example

/subsystem=elytron/trust-manager=exampleTLSTrustManager:write-
attribute(name=ocsp.prefer-crls,value="true")

If no OCSP responder is configured for certificate revocation checks, the configuration is
complete.

Additional resources

trust-manager attributes

3.2. CONFIGURING CERTIFICATE REVOCATION CHECKS USING OCSP
IN ELYTRON

Configure the trust manager used for enabling two-way SSL/TLS to use an Online Certificate Status
Protocol (OCSP) responder for certificate revocation checking. OCSP is defined in RFC6960.

When both the OCSP responder and the CRL are configured for certificate revocation checks, the
OCSP responder is invoked by default.

Prerequisites

JBoss EAP is running.

A trust manager is configured.
For more information, see Configuring a trust store and a trust manager for client certificates .

Procedure

Configure the trust manager for certification revocation using OCSP using either of the
following steps:

Configure the trust manager to use the OCSP responder defined in the certificate for
certificate revocation checking.

Syntax

/subsystem=elytron/trust-manager=<trust_manager_name>:write-
attribute(name=ocsp,value={})

Example

CHAPTER 3. CONFIGURING CERTIFICATE REVOCATION CHECKS IN ELYTRON

41

https://tools.ietf.org/html/rfc6960

/subsystem=elytron/trust-manager=exampleTLSTrustManager:write-
attribute(name=ocsp,value={})

Override the OCSP responder defined in the certificate.

Syntax

/subsystem=elytron/trust-manager=<trust_manager_name>:write-
attribute(name=ocsp.responder,value="<ocsp_responeder_url>")

Example

/subsystem=elytron/trust-manager=exampleTLSTrustManager:write-
attribute(name=ocsp.responder,value="http://example.com/ocsp-responder")

Additional resources

trust-manager attributes

3.3. CONFIGURING CERTIFICATE REVOCATION CHECKS USING CRL
IN THE ELYTRON CLIENT

Configure certificate revocation checks using Certificate Revocation Lists (CRL) in the Elytron client, so
that the certificates that are revoked by the issuing Certificate Authority (CA) before their expiration
date are not trusted by the client.

Prerequisites

You have created the wildfly-config.xml file for the Elytron client.

Procedure

Add the following content in the <ssl-context> element in the wildfly-config.xml file:

Syntax

Example

Additional resources

trust-manager attributes

3.4. CONFIGURING CERTIFICATE REVOCATION CHECKS USING OCSP

<certificate-revocation-lists>
 <certificate-revocation-list path="${path_to_crl}"/>
</certificate-revocation-lists>

<certificate-revocation-lists>
 <certificate-revocation-list path="/server/ca/crl/revoked.pem"/>
</certificate-revocation-lists>

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

42

3.4. CONFIGURING CERTIFICATE REVOCATION CHECKS USING OCSP
IN THE ELYTRON CLIENT

Configure certificate revocation checks using Online Certificate Status Protocol (OCSP) in the Elytron
client, so that the certificates that are revoked by the issuing Certificate Authority (CA) before their
expiration date are not trusted by the client. When you use an OCSP responder, you do not have to
download the entire CRL.

Prerequisites

You have created the wildfly-config.xml file for the Elytron client.

Procedure

Add the following content in the <ssl-context> element in wildfly-config.xml:

Syntax

Example

Additional resources

trust-manager attributes

<ocsp responder="${ocsp_responder_uri}" responder-
certificate=”${alias_of_ocsp_responder_certificate}” responder-
keystore=”${keystore_for_ocsp_responder_certificate}” />

<ocsp />

CHAPTER 3. CONFIGURING CERTIFICATE REVOCATION CHECKS IN ELYTRON

43

CHAPTER 4. USING ELYTRON CLIENT DEFAULT SSLCONTEXT

SECURITY PROVIDER IN JBOSS EAP CLIENTS
To make a Java Virtual Machine (JVM) use the Elytron client configuration to provide a default
SSLcontext, you can use the WildFlyElytronClientDefaultSSLContextProvider. Use this provider to
make your client libraries automatically use the Elytron client configuration when requesting the default
SSLContext.

4.1. ELYTRON CLIENT DEFAULT SSL CONTEXT SECURITY PROVIDER

Elytron client provides a Java security provider,
org.wildfly.security.auth.client.WildFlyElytronClientDefaultSSLContextProvider, that you can use
to register a Java virtual machine (JVM)-wide default SSL context.

The WildFlyElytronClientDefaultSSLContextProvider provider works as follows:

The provider instantiates the SSLContext when the SSLContext.getDefault() method is called.
The SSLContext is initiated from the authentication context obtained from one of the following
places:

Elytron client configuration file passed as an argument to the provider.

Automatically discovered wildfly-config.xml file on the filesystem. For more information,
see The Default Configuration Approach .
A client configuration file passed as an argument to the provider has the precedence.

When the SSLContext.getDefault() method is called, the JVM returns the SSLContext
instantiated by the provider.
As the Elytron client can have multiple SSL contexts configured, rules are used to choose a
single SSL context for the connection. The default SSL Context is the one that matches all
rules. The provider returns this default SSL context.

NOTE

If no default SSLContext is configured or no configuration is present, the provider will be
ignored.

When you register the WildFlyElytronClientDefaultSSLContextProvider provider, all client libraries
that use SSLContext.getDefault() method use the Elytron client configuration without having to use
Elytron client APIs in their code.

To register the provider, you must add runtime dependency on the following artifacts:

wildfly-elytron-client

wildfly-client-config

You can register the provider either programmatically, in your client code, or statically in the
java.security file. Use programmatic registration when you want to decide dynamically what providers
to register and use.

Registering the provider programmatically

You can register the provider programmatically in your client code as shown below:

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

44

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/how_to_configure_identity_management/application_configuration#elytron_client_default_configuration_approach

Registering the provider statically

You can register the provider in the java.security file as shown below:

Additional resources

Example of creating a client that loads the default SSLContext

4.2. EXAMPLE OF CREATING A CLIENT THAT LOADS THE DEFAULT
SSL CONTEXT

The following example demonstrates registering of the
WildFlyElytronClientDefaultSSLContextProvider provider programmatically and using the
SSLContext.getDefault() method to obtain the SSLContext initialized by an Elytron client. The example
uses static client configuration supplied as an argument to the provider.

4.2.1. Creating a Maven project for JBoss EAP client

To create a client for applications deployed to JBoss EAP, create a Maven project with the required
dependencies and the directory structure.

Prerequisites

You have installed Maven. For more information, see Downloading Apache Maven.

Procedure

1. Set up a Maven project by using the mvn command. The command creates the directory
structure for the project and the pom.xml configuration file.

$ mvn archetype:generate \
-DgroupId=com.example.client \
-DartifactId=client-ssl-context \
-DarchetypeGroupId=org.apache.maven.archetypes \
-DarchetypeArtifactId=maven-archetype-quickstart \
-DinteractiveMode=false

2. Navigate to the application root directory.

$ cd client-ssl-context

3. Replace the content of the generated pom.xml file with the following text:

Security.insertProviderAt(new
WildFlyElytronClientDefaultSSLContextProvider(CONFIG_FILE_PATH), 1);

security.provider.1=org.wildfly.security.auth.client.WildFlyElytronClientDefaultSSLContextProvider
<CONFIG_FILE_PATH>

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

CHAPTER 4. USING ELYTRON CLIENT DEFAULT SSLCONTEXT SECURITY PROVIDER IN JBOSS EAP CLIENTS

45

https://maven.apache.org/download.cgi

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.client</groupId>
 <artifactId>client-ssl-context</artifactId>
 <version>1.0-SNAPSHOT</version>

 <name>client-ssl-context</name>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>11</maven.compiler.source>
 <maven.compiler.target>11</maven.compiler.target>
 </properties>

 <repositories>
 <repository>
 <id>jboss-public-maven-repository</id>
 <name>JBoss Public Maven Repository</name>
 <url>https://repository.jboss.org/nexus/content/groups/public/</url>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 <layout>default</layout>
 </repository>
 <repository>
 <id>redhat-ga-maven-repository</id>
 <name>Red Hat GA Maven Repository</name>
 <url>https://maven.repository.redhat.com/ga/</url>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 <layout>default</layout>
 </repository>
 </repositories>

 <dependencies>
 <dependency> 1
 <groupId>org.wildfly.security</groupId>
 <artifactId>wildfly-elytron-client</artifactId>
 <version>2.0.0.Final-redhat-00001</version>
 </dependency>
 <dependency> 2
 <groupId>org.wildfly.client</groupId>
 <artifactId>wildfly-client-config</artifactId>

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

46

1

2

Dependency for wildfly-elytron-client.

Dependency for wildfly-client-config.

4. Delete the src/test directory.

$ rm -rf src/test/

Verification

In the application root directory, enter the following command:

$ mvn install

You get an output similar to the following:

...
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.682 s
[INFO] Finished at: 2023-10-31T01:32:17+05:30
[INFO] --

Next steps

Creating a client that loads the default SSLContext

4.2.2. Creating a client that loads the default SSLContext

Create a client for applications deployed to JBoss EAP that loads the SSLContext by using the
SSLContext.getDefault() method.

In this procedure, <application_home> refers to the directory that contains the pom.xml configuration
file for the application.

 <version>1.0.1.Final-redhat-00001</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.4.0</version>
 <configuration>
 <mainClass>com.example.client.App</mainClass>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

CHAPTER 4. USING ELYTRON CLIENT DEFAULT SSLCONTEXT SECURITY PROVIDER IN JBOSS EAP CLIENTS

47

Prerequisites

You have secured the applications deployed to JBoss EAP with two-way TLS.
To do this, follow these procedures:

Generate client certificates.

Configure a trust store and a trust manager for client certificate

Configure a server certificate for two-way SSL/TLS

Configure SSL context to secure applications deployed onJBoss EAP with SSL/TLS

You have created a Maven project.
For more information, see Creating a Maven project for JBoss EAP client .

JBoss EAP is running.

Procedure

1. Create a directory to store the Java files.

2. Navigate to the new directory.

3. Create the Java file App.java with the following content:

$ mkdir -p <application_home>/src/main/java/com/example/client

$ cd <application_home>/src/main/java/com/example/client

package com.example.client;

import java.io.IOException;
import java.net.URI;
import java.net.http.HttpClient;
import java.net.http.HttpRequest;
import java.net.http.HttpResponse;
import java.net.http.HttpResponse.BodyHandlers;
import java.security.NoSuchAlgorithmException;
import java.security.Security;
import java.util.Properties;
import javax.net.ssl.SSLContext;
import org.wildfly.security.auth.client.WildFlyElytronClientDefaultSSLContextProvider;

public class App {

 public static void main(String[] args) {
 String url = "https://localhost:8443/"; 1
 try {
 Security.insertProviderAt(new WildFlyElytronClientDefaultSSLContextProvider("src/wildfly-
config-two-way-tls.xml"), 1); 2
 HttpClient httpClient = HttpClient.newBuilder().sslContext(SSLContext.getDefault()).build();
 HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create(url))
 .GET()

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

48

1

2

3

Defines the JBoss EAP home page URL.

Register the security provider. 1 defines the priority for this provider. To statically register
the provider, you can instead add the provider in the java.security file as:
security.provider.1=org.wildfly.security.auth.client.WildFlyElytronClientDefaultSSLC
ontextProvider <PATH>/<TO>/wildfly-config-two-way-tls.xml

Obtain the default SSL context.

4. Create the client configuration file called "wildfly-config-two-way-tls.xml" in the
<application_home>/src directory.

 .build();
 HttpResponse<Void> httpRresponse = httpClient.send(request,
BodyHandlers.discarding());
 String sslContext = SSLContext.getDefault().getProvider().getName();
3

 System.out.println ("\nSSL Default SSLContext is: " + sslContext);

 } catch (NoSuchAlgorithmException | IOException | InterruptedException e) {
 e.printStackTrace();
 }

 System.exit(0);
 }
}

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.7">
 <key-stores>
 <key-store name="truststore" type="PKCS12">
 <file name="${path_to_client_truststore}/client.truststore.p12"/>
 <key-store-clear-password password="secret"/>
 </key-store>
 <key-store name="keystore" type="PKCS12">
 <file name="${path_to_client_keystore}/exampleclient.keystore.pkcs12"/>
 <key-store-clear-password password="secret"/>
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="client-context">
 <trust-store key-store-name="truststore"/>
 <key-store-ssl-certificate key-store-name="keystore"
alias="exampleclientkeystore">
 <key-store-clear-password password="secret"/>
 </key-store-ssl-certificate>
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-context"/>
 </ssl-context-rules>
 </authentication-client>
</configuration>

CHAPTER 4. USING ELYTRON CLIENT DEFAULT SSLCONTEXT SECURITY PROVIDER IN JBOSS EAP CLIENTS

49

Replace the following place holder values with actual paths:

${path_to_client_truststore}

${path_to_client_keystore}

Verification

1. Navigate to the <application_home> directory.

2. Run the application.

$ mvn compile exec:java

Example output

INFO: ELY00001: WildFly Elytron version 2.0.0.Final-redhat-00001

SSL Default SSLContext is: WildFlyElytronClientDefaultSSLContextProvider

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

50

CHAPTER 5. REFERENCE

5.1. KEY-MANAGER ATTRIBUTES

You can configure a key-manager by setting its attributes.

Table 5.1. key-manager attributes

Attribute Description

algorithm The name of the algorithm to use to create the underlying
KeyManagerFactory. This is provided by the JDK. For
example, a JDK that uses SunJSSE provides the PKIX and
SunX509 algorithms. For more information, see the Support
Classes and Interfaces on the Oracle website.

alias-filter A filter to apply to the aliases returned from the keystore. This
can either be a comma-separated list of aliases to return or one
of the following formats:

ALL:-alias1:-alias2

NONE:+alias1:+alias2

credential-reference The credential reference to decrypt keystore item. This can be
specified in clear text or as a reference to a credential stored in
a credential-store. This is not a password of the keystore.

generate-self-signed-certificate-host If the file that backs the keystore does not exist and this
attribute is set, then a self-signed certificate is generated for the
specified host name. Do not set this attribute in a production
environment.

key-store Reference to the key-store to use to initialize the underlying
KeyManagerFactory.

provider-name The name of the provider to use to create the underlying
KeyManagerFactory.

providers Reference to obtain the Provider[] to use when creating the
underlying KeyManagerFactory.

5.2. KEY-STORE ATTRIBUTES

You can configure a key-store by setting its attributes.

Table 5.2. key-store attributes

CHAPTER 5. REFERENCE

51

https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-AD2529FD-8778-4A02-B544-5F58E083774B

Attribute Description

alias-filter A filter to apply to the aliases returned from the keystore, can
either be a comma separated list of aliases to return or one of
the following formats:

ALL:-alias1:-alias2

NONE:+alias1:+alias2

NOTE

The alias-filter attribute is case sensitive.
Because the use of mixed-case or uppercase
aliases, such as elytronAppServer, might not
be recognized by some keystore providers, it is
recommended to use lowercase aliases, such as
elytronappserver.

credential-reference The password to use to access the keystore. This can be
specified in clear text or as a reference to a credential stored in
a credential-store.

path The path to the keystore file.

provider-name The name of the provider to use to load the keystore. When you
set this attribute, the search for the first provider that can create
a key store of the specified type is disabled.

providers A reference to the providers that should be used to obtain the
list of provider instances to search. If not specified, the global list
of providers will be used instead.

relative-to The base path this store is relative to. This can be a full path or a
predefined path such as jboss.server.config.dir.

required If set to true, the key store file referenced must exist at the time
the key store service starts. The default value is false.

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

52

type The type of the key store, for example, JKS.

NOTE

The following key store types are automatically
detected:

JKS

JCEKS

PKCS12

BKS

BCFKS

UBER

You must manually specify the other key store
types.

A full list of key store types can be found in Java Cryptography
Architecture Standard Algorithm Name Documentation for JDK
11 in the Oracle JDK documentation.

Attribute Description

5.3. SERVER-SSL-CONTEXT ATTRIBUTES

You can configure the server SSL context, server-ssl-context, by setting its attributes.

Table 5.3. server-ssl-context attributes

Attribute Description

CHAPTER 5. REFERENCE

53

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#keystore-types

authentication-optional If true rejecting of the client certificate by the security domain
will not prevent the connection. This allows a fall through to use
other authentication mechanisms, such as form login, when the
client certificate is rejected by security domain. This has an
effect only when the security domain is set. This defaults to
false.

cipher-suite-filter The filter to apply to specify the enabled cipher suites. This filter
takes a list of items delimited by colons, commas, or spaces.
Each item may be an OpenSSL-style cipher suite name, a
standard SSL/TLS cipher suite name, or a keyword such as
TLSv1.2 or DES. A full list of keywords as well as additional
details on creating a filter can be found in the Javadoc for the
CipherSuiteSelector class. The default value is DEFAULT,
which corresponds to all known cipher suites that do not have
NULL encryption and excludes any cipher suites that have no
authentication.

cipher-suite-names The filter to apply to specify the enabled cipher suites for
TLSv1.3.

final-principal-transformer A final principal transformer to apply for this mechanism realm.

key-manager Reference to the key managers to use within the SSLContext.

maximum-session-cache-size The maximum number of SSL/TLS sessions to be cached.

need-client-auth If set to true, a client certificate is required on SSL handshake.
Connection without a trusted client certificate will be rejected.
This defaults to false.

post-realm-principal-transformer A principal transformer to apply after the realm is selected.

pre-realm-principal-transformer A principal transformer to apply before the realm is selected.

Attribute Description

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

54

https://wildfly-security.github.io/wildfly-elytron/documentation/api/eap74/org/wildfly/security/ssl/CipherSuiteSelector.html#fromString(java.lang.String)

protocols The enabled protocols. Allowed options are

SSLv2

SSLv3

TLSv1

TLSv1.1

TLSv1.2

TLSv1.3

This defaults to enabling TLSv1, TLSv1.1, TLSv1.2, and
TLSv1.3.

WARNING

Use TLSv1.2, or TLSv1.3 instead of SSLv2,
SSLv3, and TLSv1.0. Using SSLv2, SSLv3,
or TLSv1.0 poses a security risk, therefore
you must explicitly disable them.

If you do not specify a protocol, configuring cipher-suite-
names sets the value of protocols to TLSv1.3.

provider-name The name of the provider to use. If not specified, all providers
from providers will be passed to the SSLContext.

providers The name of the providers to obtain the Provider[] to use to
load the SSLContext.

realm-mapper The realm mapper to be used for SSL/TLS authentication.

security-domain The security domain to use for authentication during SSL/TLS
session establishment.

Attribute Description

CHAPTER 5. REFERENCE

55

session-timeout The timeout for SSL sessions, in seconds.

The value -1 directs Elytron to use the Java Virtual Machine
(JVM) default value.

The value 0 indicates that there is timeout.

The default value is -1.

trust-manager Reference to the trust-manager to use within the
SSLContext.

use-cipher-suites-order If set to true the cipher suites order defined on the server is
used. If set to false the cipher suites order presented by the
client is used. Defaults to true.

want-client-auth If set to true a client certificate is requested, but not required,
on SSL handshake. If a security domain is referenced and
supports X509 evidence, want-client-auth is set to true
automatically. This is ignored when need-client-auth is set.
This defaults to false.

wrap If true, the returned SSLEngine, SSLSocket, and
SSLServerSocket instances are wrapped to protect against
further modification. This defaults to false.

Attribute Description

NOTE

The realm-mapper and principal-transformer attributes for server-ssl-context apply
only for the SASL EXTERNAL mechanism, where the certificate is verified by the trust
manager. HTTP CLIENT-CERT authentication settings are configured in an http-
authentication-factory.

5.4. TRUST-MANAGER ATTRIBUTES

You can configure the trust manager, trust-manager, by setting its attributes.

Table 5.4. trust-manager attributes

Attribute Description

algorithm The name of the algorithm to use to create the underlying
TrustManagerFactory. This is provided by the JDK. For
example, a JDK that uses SunJSSE provides the PKIX and
SunX509 algorithms. More details on SunJSSE can be found in
the Support Classes and Interfaces in Java Secure Socket
Extension (JSSE) Reference Guide in Oracle documentation.

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

56

https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-AD2529FD-8778-4A02-B544-5F58E083774B

alias-filter A filter to apply to the aliases returned from the key store. This
can either be a comma-separated list of aliases to return or one
of the following formats:

ALL:-alias1:-alias2

NONE:+alias1:+alias2

certificate-revocation-list Enables certificate revocation list checks in a trust manager. You
can only define a single CRL path using this attribute. To define
multiple CRL paths, use certificate-revocation-lists. The
attributes of certificate-revocation-list are:

maximum-cert-path - The maximum number of non-
self-issued intermediate certificates that can exist in a
certification path. The default value is 5. This attribute
has been deprecated. Use maximum-cert-path in
trust-manager instead.

path - The path to the certificate revocation list.

relative-to - The base path of the certificate
revocation list file.

certificate-revocation-lists Enables certificate revocation list checks in a trust manager
using multiple certificate revocation lists. The attributes of
certificate-revocation-list are:

path - The path to the certificate revocation list.

relative-to - The base path of the certificate
revocation list file.

key-store Reference to the key-store to use to initialize the underlying
TrustManagerFactory.

maximum-cert-path The maximum number of non-self-issued intermediate
certificates that can exist in a certification path. The default
value is 5.

This attribute has been moved to trust-manager from
certificate-revocation-list inside trust-manager in JBoss
EAP 7.3. For backward compatibility, the attribute is also present
in certificate-revocation-list. Going forward, use maximum-
cert-path in trust-manager.

NOTE

Define maximum-cert-path in either trust-
manager or in certificate-revocation-list
not in both.

Attribute Description

CHAPTER 5. REFERENCE

57

ocsp Enables online certificate status protocol (OCSP) checks in a
trust manager. The attributes of ocsp are:

responder - Overrides the OCSP Responder URI
resolved from the certificate.

responder-certificate - Alias for responder
certificate located in responder-keystore or trust-
manager key store if responder-keystore is not
defined.

responder-keystore - Alternative keystore for
responder certificate. responder-certificate must be
defined.

prefer-crls - When both OCSP and CRL mechanisms
are configured, OCSP mechanism is called first. When
prefer-crls is set to true, the CRL mechanism is called
first.

only-leaf-cert Check revocation status of only the leaf certificate. This is an
optional attribute. The default values is false.

provider-name The name of the provider to use to create the underlying
TrustManagerFactory.

providers Reference to obtain the providers to use when creating the
underlying TrustManagerFactory.

Attribute Description

Red Hat JBoss Enterprise Application Platform 8.0 Configuring SSL/TLS in JBoss EAP

58

	Table of Contents
	PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS
	1.1. ENABLING ONE-WAY SSL/TLS FOR MANAGEMENT INTERFACES
	1.1.1. Enabling one-way SSL/TLS for management interfaces by using the wizard
	1.1.2. Enabling one-way SSL/TLS for management interfaces by using the subsystem commands
	1.1.3. Disabling SSL/TLS for management interfaces by using the security command

	1.2. ENABLING ONE-WAY SSL/TLS FOR APPLICATIONS DEPLOYED ON JBOSS EAP
	1.2.1. The default SSL context in Elytron
	1.2.2. Enabling SSL/TLS for applications by using the automatically generated self-signed certificate
	1.2.3. Enabling one-way SSL/TLS for applications deployed on JBoss EAP by using the wizard
	1.2.4. Enabling one-way SSL/TLS for applications by using the subsystem commands
	1.2.5. Disabling SSL/TLS for applications by using the security command

	CHAPTER 2. ENABLING TWO-WAY SSL/TLS FOR MANAGEMENT INTERFACES AND APPLICATIONS
	2.1. GENERATING CLIENT CERTIFICATES
	2.2. CONFIGURING A TRUST STORE AND A TRUST MANAGER FOR CLIENT CERTIFICATES
	2.3. CONFIGURING A SERVER CERTIFICATE FOR TWO-WAY SSL/TLS
	2.4. CONFIGURING SSL CONTEXT TO SECURE JBOSS EAP MANAGEMENT INTERFACES WITH SSL/TLS
	2.5. CONFIGURING SERVER-SSL-CONTEXT TO SECURE APPLICATIONS DEPLOYED ON JBOSS EAP WITH SSL/TLS

	CHAPTER 3. CONFIGURING CERTIFICATE REVOCATION CHECKS IN ELYTRON
	3.1. CONFIGURING CERTIFICATE REVOCATION CHECKS USING CERTIFICATE REVOCATION LISTS
	3.2. CONFIGURING CERTIFICATE REVOCATION CHECKS USING OCSP IN ELYTRON
	3.3. CONFIGURING CERTIFICATE REVOCATION CHECKS USING CRL IN THE ELYTRON CLIENT
	3.4. CONFIGURING CERTIFICATE REVOCATION CHECKS USING OCSP IN THE ELYTRON CLIENT

	CHAPTER 4. USING ELYTRON CLIENT DEFAULT SSLCONTEXT SECURITY PROVIDER IN JBOSS EAP CLIENTS
	4.1. ELYTRON CLIENT DEFAULT SSL CONTEXT SECURITY PROVIDER
	4.2. EXAMPLE OF CREATING A CLIENT THAT LOADS THE DEFAULT SSL CONTEXT
	4.2.1. Creating a Maven project for JBoss EAP client
	4.2.2. Creating a client that loads the default SSLContext

	CHAPTER 5. REFERENCE
	5.1. KEY-MANAGER ATTRIBUTES
	5.2. KEY-STORE ATTRIBUTES
	5.3. SERVER-SSL-CONTEXT ATTRIBUTES
	5.4. TRUST-MANAGER ATTRIBUTES

