
Red Hat JBoss Enterprise Application
Platform 6.4

How to Setup SSO with SAML v2

How to Setup SSO with SAML v2

Last Updated: 2017-12-12

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO

with SAML v2

How to Setup SSO with SAML v2

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The intent of this guide is to explore the topic of SSO (Single Sign-On) with SAML v2 within Red
Hat JBoss Enterprise Application Platform 6 as well as provide a practical guide for setting up SSO
with SAML in JBoss EAP 6. Essentially this guide is providing a deeper dive into what SSO with
SAML v2 is as well as how to setup and configure it within JBoss EAP 6. Before reading this guide,
users should read through the Security Architecture document for Red Hat JBoss Enterprise
Application Platform 6 and have a solid understanding of the SSO and SAML v2 information
presented in that document. This document also makes use of the JBoss EAP 6 CLI interface for

performing configuration changes. For more information on using the CLI for both standalone
JBoss EAP 6 instances as well as JBoss EAP 6 domains, please consult The Management CLI
section of the Red Hat JBoss Enterprise Application Platform 6 Administration and Configuration
Guide. When completing this document, readers should have a solid, working understanding of
SSO and SAML v2, how it relates to JBoss EAP 6, and how to configure it.

. .

. .

Table of Contents

CHAPTER 1. SSO WITH SAMLV2 DEEPER DIVE
1.1. WHAT IS SAML V2?

1.1.1. Building Blocks
1.1.1.1. Entities
1.1.1.2. Security Assertions
1.1.1.3. Protocols
1.1.1.4. Bindings
1.1.1.5. Profiles

1.2. HOW DOES SAML V2 WORK WITH SSO
1.2.1. Web Browser SSO Profile
1.2.2. Global Logout Profile
1.2.3. Multiple IDPs and the Identity Discovery Profile

1.3. FURTHER READING

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2
2.1. COMPONENTS
2.2. IDP AND SP SETUP AND CONFIGURATION

2.2.1. Setting up an IDP
2.2.1.1. 1. Create a Security Domain for an IDP
2.2.1.2. 2. Configure the web.xml File for an IDP
2.2.1.3. 3. Configure the Authenticator for an IDP
2.2.1.4. 4. Declare the Necessary Dependencies for an IDP
2.2.1.5. 5. Create and Configure a picketlink.xml File for an IDP

2.2.2. Setting up an SP
2.2.2.1. 1. Create a Security Domain for an SP
2.2.2.2. 2. Configure the web.xml File for an SP
2.2.2.3. 3. Configure the Authenticator for an SP
2.2.2.4. 4. Declare the Necessary Dependencies for an SP
2.2.2.5. 5. Create and Configure a picketlink.xml File for an SP

2.2.3. Using SP-initiated Flow
2.2.4. Using IDP-Initiated Flow
2.2.5. Configuring the Global Logout Profile

2.2.5.1. Global Logout Profile
2.2.5.2. Local Logout

2.3. CONFIGURING IDPS AND SPS VIA THE MANAGEMENT CONSOLE
2.3.1. Configuring the Subsystem

2.3.1.1. 1. Update the Extensions
2.3.1.2. 2. Add the Subsystems

2.3.2. Setting up a Federation
2.3.2.1. 1. Preparing the SP and IDP Applications
2.3.2.2. 2. Creating a Federation via the Management Interface

2.4. CONFIGURING IDENTITY STORES FOR IDPS
2.4.1. 1. Setting up the Identity Store

2.4.1.1. Configuring the Identity Store for the Database Login Module
2.4.1.2. Configuring the Identity Store for the Ldap Login Module

2.4.2. 2. Adding the Security Domain
2.4.3. 3. Adding the Authentication Section and Login Module to the Security Domain

2.4.3.1. Adding a Database Login Module
2.4.3.2. Adding an LDAP Login Module

2.5. CONFIGURING SSL/TLS WITH SPS AND IDPS
2.6. ADDITIONAL FEATURES

4
4
4
4
4
5
5
5
5
5
7
8
8

9
9
9
9
9
11
13
13
14
15
15
16
17
18
18

20
20
21
21
22
22
23
23
23
24
24
24
25
26
26
27
28
28
28
29
29
31

Table of Contents

1

2.6.1. SAML Assertion Encryption
2.6.1.1. Enabling Encryption Directly in IDPs and SPs

2.6.2. Digital Signatures in Assertions
2.6.2.1. Enabling Digital Signatures Directly in IDPs and SPs

2.6.3. Handling AJAX Requests

31
31

34
34
37

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

2

Table of Contents

3

CHAPTER 1. SSO WITH SAMLV2 DEEPER DIVE
The basics of SSO and SAML are covered in the Security Architecture for Red Hat JBoss Enterprise
Application Platform. This section takes a deeper dive into the components involved in SAML v2 and
SSO.

1.1. WHAT IS SAML V2?

Security Assertion Markup Language (SAML) is a data format and protocol that allows two parties,
usually an identity provider and a service provider, to exchange authentication and authorization
information. This information is exchanged in the form of SAML tokens (containing assertions) which
are issued by Identity Providers to subjects for authenticating with Service Providers. The ability for
subjects to use (and reuse) SAML tokens issued from an identity provider and with multiple service
providers allows SAML v2 facilitate browser-based SSO.

1.1.1. Building Blocks

The most important concept to keep in mind with SAML is that its all about passing security assertions
between entities. SAML has several components it uses to accomplish this task.

1.1.1.1. Entities

Entities are all parties involved in creating and passing assertions. SAML has the concept of three
distinct entites: subject, identity provider, and service provider.

The subject, (also referred to as the principal) which is the user in most cases, is requesting access to a
resource on a service provider which is secured by SAML.

The service provider (SP) requires proof (i.e. an assertion) of the subject’s identity, which it needs from
the identity provider.

The identity provider (IDP) provides a set of assertions (in the form of a token) about a subject that can
be used in authentication and authorization decisions by service providers.

In summary, subjects get issued assertions, identity providers issue those assertions, and service
providers use those assertions to authenticate and authorize subjects.

1.1.1.2. Security Assertions

A security assertion is a set of statements issued by an identity provider about a subject. Service
providers use these assertions to make access-control decisions about a subject. Statements can take
the following forms:

Authentication

Authentication assertions assert that a subject successfully authenticated using specified method at
a specific point in time. An authentication context containing other information about the
authenticated subject may also be specified in an authentication statement.

Attribute

Attribute assertions assert that a subject has certain attributes.

Authorization Decision

Authorization Decision assertions assert a response (accept or deny) to an authorization request for
a subject on a resource.

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

4

/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture#single_sign_on_sso

Example:

This user logged in as Sarah at 9:30 using a username and password. Sarah is
a member of the Managers group. Sarah is accepted to access the Employee
Information resource.

The statement This user logged in as Sarah at 9:30 using a username and password is an
Authentication assertion.

The statement Sarah is a member of the Managers group is an Attribute assertion.

The statement Sarah is accepted to access the Employee Information resource is an Authorization
Decision assertion.

Assertions are packaged as SAML tokens and transported using SAML protocols.

1.1.1.3. Protocols

A SAML protocol describes how assertions are packaged, usually in the form of a request and
response, as well as the rules on the correct way to process them. These rules must be followed by
both the producers and consumers of the requests and responses. A request can ask for specific,
known assertions or query identity providers for authentication, attribute, or authorization decisions.
The messages (requests and responses) which include security assertions, are formatted in XML and
adhere to a specified schema.

1.1.1.4. Bindings

SAML bindings specify how SAML protocols map to other standard protocols used for transport and
messaging. Some examples include:

A SAML binding that maps to an HTTP redirect

A SAML binding that maps to an HTTP POST

A SAML binding that maps SAML requests/responses to SOAP requests and responses

1.1.1.5. Profiles

SAML profiles use assertions, protocols, and bindings to support specific use cases such as Web
Browser SSO, Single Logout, and Assertion Query.

1.2. HOW DOES SAML V2 WORK WITH SSO

The basics of Browser-Based SSO with SAML v2 are covered in the Red Hat JBoss Enterprise
Application Platform 6 Security Architecture document, specifically in the Browser-Based SSO Using
SAML and Multiple Red Hat JBoss Enterprise Application Platform Instances and Multiple Applications
Using Browser-Based SSO with SAML sections. This section gives a more in-depth explanation
regarding the SAML profiles and bindings related to Browser-based SSO with SAML v2.

1.2.1. Web Browser SSO Profile

The Web Browser SSO profile specifies the way an identity provider (IDP), service provider (SP), and
principal (in the form a browser agent) handle browser-based SSO. Both the SP and IDP have several
bindings each that can be used in the Web Browser SSO profile, allowing many possible flows.
Additionally, this profile supports message flows initiated from either the IDP or SP. This profile also

CHAPTER 1. SSO WITH SAMLV2 DEEPER DIVE

5

/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture
/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture#browser_based_sso_using_saml
/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture#multiple_red_hat_jboss_enterprise_application_platform_instances_and_multiple_applications_using_browser_based_sso_with_saml

supports the IDP pushing the SAML assertion to the SP or the SP pulling the assertion from the IDP.
Flows initiated from either the SP or IDP are explained at a high level in the Red Hat JBoss Enterprise
Application Platform 6 Security Architecture document. SAML assertions being pushed from the IDP
utilizes HTTP POST messages or HTTP redirects. SAML assertions that are pulled by SPs involve
sending an artifact to the receiver which is then dereferenced in order to obtain the assertions.

The basic flow of the Web Browser SSO profile is as follows:

1. Principal HTTP request to SP: The principal first attempts to access a secured resource at the
SP via an HTTP User Agent (e.g. a browser). If the principal has already been issued a SAML
token with a valid security context, the SP will allow or decline the principal (the last step).
Otherwise, the SP will attempt to locate the IDP for the authentication request.

2. SP determines IDP: The SP locates the IDP and its endpoint that supports the SP’s preferred
binding. This allows the SP to send an authentication request to the IDP. The specific means of
this process are may vary between implementations.

3. Authentication Request issued from SP to IDP via principal: Once the SP determines the IDP
location and endpoint, the SP issues an Authentication Request (<AuthnRequest> message)
which will be delivered by the user agent (principal) to the IDP. The HTTP Redirect, HTTP
POST, or HTTP Artifact SAML bindings can be used to transfer the message to the IDP via the
user agent.

4. IDP identifies principal: Once Authentication Request is delivered to the IDP by the principal,
the principal will be identified by the IDP. The identification method is not specifically defined
by the Web Browser SSO profile and may be accomplished in a number of ways (e.g.
authentication via FORM, using existing session information, kerberos authentication, etc)

5. IDP issues Response to SP: Once the principal is identified, the IDP issues a Response
(<Response> message) to be delivered back to the SP for granting (or declining) access by
the principal using the user agent. This message will contain at least one authentication
assertion and can be used to indicate errors as well. HTTP POST or HTTP Artifacts can be used
to transfer this message, but HTTP Redirect cannot be used due to URL length constraints
with most user agents. If the user agent initiated an IDP-based flow (e.g. by attempting to
access the IDP directly instead of an SP), the process would begin at this step. If successful,
the HTTP Post or HTTP Artifact will be sent to a location which is pre-configured in the IDP.

6. SP allows (or declines) access to principal: Once the SP receives the Response, it may grant
access for the requested resource to the principal (by creating a security context), deny
access, or do its own error handling.

NOTE

JBoss EAP 6 does not support the SAML artifact binding.

HTTP REDIRECT VS. POST BINDINGS

HTTP Redirect bindings make use of HTTP GET requests and the URL query paramaters
to transmit protocol messages. Messages sent in this manner are also URL and Base-64
encoded before being sent and decoded by the receiver. HTTP POST bindings send
messages via form data and also do a base-64 encode/decode on the message. Both
SPs and IDPs can transmit and receive messages using redirect or POST bindings. Due
to the limitation of URL lengths in certain scenarios, HTTP Redirect is usually used when
passing short messages, and HTTP POST is used when passing longer messages.

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

6

/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture#browser_based_sso_using_saml

1.2.2. Global Logout Profile

The Global Logout Profile allows a principal who has authenticated with a set of IDPs and SPs, to log
out and have that assertion be propagated to one or more associated IDPs and SPs.

When a principal authenticates with an IDP, the principal and IDP have established an authentication
session. The IDP may then issue assertions to various SPs (or relying parties), based on that
authentication. From there if principal attempts to access any secured resources within those SPs, the
SPs may choose to establish additional sessions with the principal based on that assertion issued from
the IDP (hence relying on the IDP).

Once a session (or set of sessions) is created, a principal may be logged out of sessions individually
using various means, or they may use the Global Logout Profile to logout of all sessions and from all
SPs and IDPs at once. The Global Logout Profile can use the HTTP Redirect, HTTP POST or HTTP
Artifact bindings in its flow. It can also use SOAP binding in certain cases which are not in the scope of
this document.

NOTE

Single Logout Profile can be used as a synonym to Global Logout Profile.

NOTE

JBoss EAP 6 does not support the SAML artifact binding.

As with the Web Browser SSO profile fiow, the Global Logout Profile flow may be initiated either at the
IDP or the SP.

The basic flow of the Global Logout Profile is as follows:

1. Logout issued to IDP by Session Participant: A session participant (i.e. Service Providers or
other relying parties) terminates its own session with the principal and sends a Logout
Request (<LogoutRequest> message) to the IDP that initially issued the security assertion
for the principal. This request can be sent directly between the IDP and relying party, or
indirectly by using the principal’s user agent (i.e. browser) as a pass through.

2. IDP identifies Session Participant: Once the IDP receives the Logout Request, it uses that
request to determine what sessions to terminate with which relying parties (including any
sessions the IDP owns as a session authority or session participant). For each session, the IDP
issues a Logout Request to the relying party and waits for a Logout Response from each
before issuing a new Logout Response back to the original session participant. In cases where
the Global Logout Profile flow was initiated at the IDP, the flow begins at this step and some
other mechanism is used to determine the sessions and SPs.

3. Logout issued by IDP: Once the IDP determines all of the sessions and associated relying
parties, it sends a Logout Request (<LogoutRequest> message) to each relying party and
awaits a Logout Response. These requests may be sent directly between the IDP and the
relying parties or indirectly through the principal’s user agent.

4. Logout response issued by Session Participant or Authority: Each relying party (including the
IDP itself in some cases), attempts to terminate the session as directed by the IDP in the
Logout Request and returns a Logout Response (<LogoutResponse> message) back to the
IDP. As with the Logout Request, the response may be issued directly between the relying
party and the IDP or indirectly through the principal’s user agent.

5. IDP issues Logout response to original Session Participant: Once all the Logout Responses

CHAPTER 1. SSO WITH SAMLV2 DEEPER DIVE

7

have been received from the relying parties, the IDP sends a new Logout Response
(<LogoutResponse> message) back to original session participant who requested the logout.
As with the other parts of this flow, this response may be passed directly between the IDP and
the session participant or indirectly through the principal’s user agent. In cases where the
Logout Request was initiated at the IDP, this step is omitted.

NOTE

The IDP-initiated portion of the Global Logout Profile is not supported in JBoss EAP 6.

NOTE

The direction communication between the IDP and SP portion of the Global Logout
Profile is not supported in JBoss EAP 6.

1.2.3. Multiple IDPs and the Identity Discovery Profile

Browser-base SSO via SAML v2 also supports having multiple IDPs and can be used in both the Web
Browser SSO profile as as well as the Global Logout profile. In cases where multiple-IDP’s are
configured, the Identity Discovery SAML profile is used to determine which IDP a principal uses. This is
accomplished by reading and writing cookies with domain information and a list of IDPs.

1.3. FURTHER READING

For full details on the SAML v2 please see the official SAML 2.0 specification .

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

8

https://www.oasis-open.org/standards#samlv2.0

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2
This section details the actual steps for setting up SSO via SAML v2 using JBoss EAP 6.

2.1. COMPONENTS

As covered in the Section 1.1.1.1, “Entities” section as well as in the Security Architecture for Red Hat
JBoss Enterprise Application Platform 6 document, there are three entites or parties involved in
Browser-Based SSO using SAML v2:

A principal using a user agent (browser) to request access to a secured resource.

A service provider (SP) housing the secured resource.

An identity provider (IDP) which issues security assertions to principals, allowing them to
access secured resources on service providers (SPs).

In addition, the following will be needed to support browser-based SSO via SAML v2:

Separate web applications serving as SPs and IDPs

JBoss EAP 6 instances to host the SPs and IDPs

Security Domains to support the SPs and IDPs

2.2. IDP AND SP SETUP AND CONFIGURATION

This section covers setting up an application to be either an SP or IDP as well as setting up an JBoss
EAP 6 instance to host those applications.

2.2.1. Setting up an IDP

To set up an application to serve as an IDP, the following steps must be performed:

1. Create a Security Domain for an IDP

2. Configure the web.xml File for an IDP

3. Configure the Authenticator for an IDP

4. Declare the Necessary Dependencies for an IDP

5. Create and Configure a picketlink.xml File for an IDP

NOTE

The security domain should be created and configured before creating and deploying
the application.

2.2.1.1. 1. Create a Security Domain for an IDP

The IDP handles challenging a principal for their credentials, handling the authentication and
authorization of that principal, and issuing the proper security (SAML v2) assertions based on the
result. This requires that an identity store be configured via a security domain. The only requirement
around creating this security domain and identity store is that it has authentication and authorization

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

9

/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture#single_sign_on_sso

mechanisms properly defined. Meaning, essentially many differently identity stores (e.g. properties file,
database, ldap, etc) and their associated login modules could be used to support an IDP application.
For more information on security domains, please see the Security Domains section of the Red Hat
JBoss Enterprise Application Platform 6 Security Architecture document.

In the below example, a simple UsersRoles login module using properties files for an identity store is
used.

CLI for Creating a Security Domain

Resulting XML

NOTE

The above CLI commands were done assuming a standalone instance of JBoss EAP 6.
For more details on using the CLI with JBoss EAP 6 domains, please consult The
Management CLI section of the Red Hat JBoss Enterprise Application Platform 6
Administration and Configuration Guide.

Property Files

The UsersRoles login module utilizes properties files to store the user/password and user/role
information. For more specifics of the UsersRoles module, please consult the Red Hat JBoss
Enterprise Application Platform 6 Security Guide. In this example, the properties files contain the
following:

idp-users.properties

/subsystem=security/security-domain=idp:add(cache-type=default)

/subsystem=security/security-domain=idp/authentication=classic:add

/subsystem=security/security-domain=idp/authentication=classic/login-
module=UsersRoles:add(\
 code=UsersRoles, \
 flag=required, \
 module-options=[\
 ("usersProperties"=>"idp-users.properties"), \
 ("rolesProperties"=>"idp-roles.properties") \
])

reload

<security-domain name="idp" cache-type="default">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 <module-option name="usersProperties"
value="${jboss.server.config.dir}/idp-users.properties"/>
 <module-option name="rolesProperties"
value="${jboss.server.config.dir}/idp-roles.properties"/>
 </login-module>
 </authentication>
</security-domain>

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

10

/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture#security_domains
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Administration_and_Configuration_Guide/index.html#sect-The_Management_CLI
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/Security_Guide/appe-Reference.html#topic4732_usersrolesmoduleoptions

idp-roles.properties

2.2.1.2. 2. Configure the web.xml File for an IDP

The web.xml file for an IDP should contain the following:

A <security-constraint> with a <web-resource-collection> containing a <url-
pattern> that maps to the URL pattern of the secured area. Optionally, <security-
constraint> may also contain an <auth-constraint> stipulating the allowed roles.

A <login-config> configured for FORM authentication.

If any roles were specified in the <auth-constraint>, those roles should be defined in a
<security-role>.

Optionally, resources used by the login form (e.g. images, styles, etc) can be specified by an
additional security constraint to be unsecured so they may be accessed prior to authentication
(i.e. on the login page).

The <security-constraint> and <security-role> elements enable administrators to setup
restricted or unrestricted areas based on URL patterns and roles. This allows resources to be secured
or unsecured.

The <login-config> defines the the login and error pages used by the IDP when authenticating
users.

Example web.xml file:

Eric=samplePass
Alan=samplePass

Eric=All
Alan=

<web-app>
 <display-name>IDP</display-name>
 <description>IDP</description>
<!-- Define a security constraint that gives unlimited access to images --
>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Images</web-resource-name>
 <url-pattern>/images/*</url-pattern>
 </web-resource-collection>
 </security-constraint>
<!-- Define a security constraint that requires the All role to access
resources -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>IDP</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>All</role-name>

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

11

NOTE

It is recommended that a welcome page defined in the application. By default, JBoss
EAP 6 will look for a file called index.jsp but this can configured using the <welcome-
file-list> in the web.xml.

Example login.jsp file:

 </auth-constraint>
 </security-constraint>
<!-- Define the Login Configuration for this Application -->
 <login-config>
 <auth-method>FORM</auth-method>
 <realm-name>IDP Application</realm-name>
 <form-login-config>
 <form-login-page>/jsp/login.jsp</form-login-page>
 <form-error-page>/jsp/error.jsp</form-error-page>
 </form-login-config>
 </login-config>
<!-- Security roles referenced by this web application -->
 <security-role>
 <description>The role that is required to log in to the IDP
Application</description>
 <role-name>All</role-name>
 </security-role>
</web-app>

<html>
<head></head>
<body>
 <form id="login_form" name="login_form" method="post"
 action="j_security_check" enctype="application/x-www-form-urlencoded">
 <center>
 <p>Welcome to the IDP</p>
 <p>Please login to proceed.</p>
 </center>
 <div style="margin-left: 15px;">
 <p>
 <label for="username">Username</label>

 <input id="username" type="text" name="j_username"/>
 </p>
 <p>
 <label for="password">Password</label>

 <input id="password" type="password" name="j_password" value=""/>
 </p>
 <center>
 <input id="submit" type="submit" name="submit" value="Login"/>
 </center>
 </div>
 </form>
</body>
</html>

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

12

Example error.jsp file:

2.2.1.3. 3. Configure the Authenticator for an IDP

The authenticator is responsible for the authentication of users and for issuing and validating security
assertions (in case, SAML v2 assertions). The authenticator is configured in the form of a <valve> that
resides in the jboss-web.xml file along with the security domain to be used in authenticating and
authorizing principals (see Step 1).

The jboss-web.xml file should have the following: - A <security-domain> to specify which
security domain to use for authentication and authorization. - A <valve> configured to use the SSO
valve class (e.g. org.picketlink.identity.federation.bindings.tomcat.idp.IDPWebBrowserSSOValve)

An example jboss-web.xml file:

2.2.1.4. 4. Declare the Necessary Dependencies for an IDP

The web application serving as the IDP requires a dependency to be defined in jboss-deployment-
structure.xml, so that the org.picketlink classes can be located. JBoss EAP 6 provides all
necessary org.picketlink and related classes, the application just needs to declare them as
dependencies to use them.

Using jboss-deployment-structure.xml to declare dependencies

Alternatively, this dependency may be defined in a META-INF/MANIFEST.MF file instead:

<html>
<head></head>
<body>
 <p>Login failed, please go back and try again.</p>
</body>
</html>

<jboss-web>
 <security-domain>idp</security-domain>
 <context-root>identity</context-root>
 <valve>
 <class-name>

org.picketlink.identity.federation.bindings.tomcat.idp.IDPWebBrowserSSOVal
ve
 </class-name>
 </valve>
</jboss-web>

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.picketlink"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

13

Using META-INF/MANIFEST.MF to declare dependencies

2.2.1.5. 5. Create and Configure a picketlink.xml File for an IDP

The picketlink.xml file is responsible for the behavior of the Authenticator and is loaded at the
application’s startup.

The file should contain at least the following elements:

<PicketLinkIDP> defining the url of the IDP (<IdentityURL>) and any hosts trusted by the
identity provider.

<Handlers> defining the set of handlers needed for processing the SAML requests and
responses.

An Example picketlink.xml file

WARNING

Handlers are implemented using a Chain of Responsibility, with each individual
handler performing logic on request and responses in the order defined in
picketlink.xml. It is very important to pay attention to the order in which the
handlers are configured.

Manifest-Version: 1.0
Build-Jdk: 1.6.0_24
Dependencies: org.picketlink

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 <PicketLinkIDP xmlns="urn:picketlink:identity-federation:config:2.1">
 <IdentityURL>${idp.url::http://localhost:8080/identity/}</IdentityURL>
 <Trust>
 <Domains>localhost,example.com</Domains>
 </Trust>
 </PicketLinkIDP>
 <Handlers xmlns="urn:picketlink:identity-federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2IssuerTr
ustHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2LogOutHa
ndler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Authenti
cationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGenerati
onHandler" />
 </Handlers>
</PicketLink>



Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

14

By default, picketlink.xml is located in the WEB-INF directory of the IDP web application. However,
a custom path to a picketlink.xml that is external to the application can be configured. This is
useful in cases where multiple applications across one or more JBoss EAP 6 instances share the same
picketlink.xml configuration.

Setting custom location for picketlink.xml

Add two paramaters to the valve element in the application’s jboss-web.xml specifying for the path
to picketlink.xml, and timerInterval which specifies the interval in milliseconds to reload the
configuration.

Example

2.2.2. Setting up an SP

To set up an application to serve as an SP, the following steps must be performed:

1. Create a Security Domain for an SP

2. Configure the web.xml File for an SP

3. Configure the Authenticator for an SP

4. Declare the Necessary Dependencies for an SP

5. Create and Configure a picketlink.xml File for an SP

NOTE

The security domain should be created and configured before creating and deploying
the application.

2.2.2.1. 1. Create a Security Domain for an SP

Since the IDP handles challenging the user for their credentials and issuing security (SAML v2)
assertions, the SP is in charge of validating those assertions. A security domain is still needed to
perform this validation, but an identity store is not. In this case, the security domain for the SP must
use the SAML2LoginModule.

CLI for Adding Security Domain

<jboss-web>
...
<valve>
 <class-name>...</class-name>
 <param>
 <param-name>timerInterval</param-name>
 <param-value>5000</param-value>
 </param>
 <param>
 <param-name>configFile</param-name>
 <param-value>path-to/picketlink.xml</param-value>
 </param>
</valve>
</jboss-web>

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

15

Resulting XML

NOTE

The above CLI commands were done assuming a standalone instance of JBoss EAP 6.
For more details on using the CLI with JBoss EAP 6 domains, please consult The
Management CLI section of the Red Hat JBoss Enterprise Application Platform 6
Administration and Guide.

The SAML2LoginModule allows for authentication decisions to be deferred to an IDP, which will be
configured in the SP’s picketlink.xml.

2.2.2.2. 2. Configure the web.xml File for an SP

The web.xml file for an SP should contain the following:

A <security-constraint> with a <web-resource-collection> containing a <url-
pattern> that maps to the URL pattern of the secured area. Optionally, <security-
constraint> may also contain an <auth-constraint> stipulating the allowed roles.

If any roles were specified in the <auth-constraint>, those roles should be defined in a
<security-role>.

An Example web.xml File

/subsystem=security/security-domain=sp:add(cache-type=default)

/subsystem=security/security-domain=sp/authentication=classic:add

/subsystem=security/security-domain=sp/authentication=classic/login-
module=SAML2LoginModule:add(\

code=org.picketlink.identity.federation.bindings.jboss.auth.SAML2LoginModu
le, \
 flag=required)

reload

<security-domain name="sp" cache-type="default">
 <authentication>
 <login-module
code="org.picketlink.identity.federation.bindings.jboss.auth.SAML2LoginMod
ule"
 flag="required"/>
 </authentication>
</security-domain>

<web-app>
 <display-name>SP</display-name>
 <description>SP</description>
 <!-- Define a Security Constraint on this Application -->
 <security-constraint>

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

16

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Administration_and_Configuration_Guide/index.html#sect-The_Management_CLI

NOTE

It is recommended that a welcome page defined in the application. By default, JBoss
EAP 6 will look for a file called index.jsp but this can configured using the <welcome-
file-list> in the web.xml.

NOTE

The logout process will attempt to redirect principals to logout.jsp on successful
logout. Please ensure this file is defined at the directory root of the application.

2.2.2.3. 3. Configure the Authenticator for an SP

The authenticator is responsible for the authentication of principals based on the security assertions
(in this case, SAML v2 assertions) issued by the IDP. They intercept each request made to the
application, check if a SAML assertion is present in the request, validate the assertions, execute
principal’s SAML specific validations, and create a security context for the principal in the requested
application.

The authenticator is configured in the form of a <valve> that resides in the jboss-web.xml file
along with the security domain to be used in authenticating and authorizing principals (see Step 1).

The jboss-web.xml file for an SP should have the following:

A <security-domain> to specify which security domain to use for authentication and
authorization.

A <valve> configured to use the SSO Service Provider valve class (e.g.
org.picketlink.identity.federation.bindings.tomcat.sp.ServiceProviderAuthenticator)

An Example jboss-web.xml File:

 <web-resource-collection>
 <web-resource-name>SP</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>All</role-name>
 </auth-constraint>
 </security-constraint>
 <!-- Security roles referenced by this web application -->
 <security-role>
 <description>
 The role that is required to log in to the SP Application
 </description>
 <role-name>All</role-name>
 </security-role>

<jboss-web>
 <security-domain>sp</security-domain>
 <context-root>sales-post</context-root>
 <valve>
 <class-
name>org.picketlink.identity.federation.bindings.tomcat.sp.ServiceProvider

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

17

2.2.2.4. 4. Declare the Necessary Dependencies for an SP

The web application serving as the SP requires a dependency to be defined in jboss-deployment-
structure.xml, so that the org.picketlink classes can be located. JBoss EAP 6 provides all
necessary org.picketlink and related classes, the application just needs to declare them as
dependencies to use them.

Using jboss-deployment-structure.xml to declare dependencies

Alternatively, this dependency may be defined in a META-INF/MANIFEST.MF file instead:

Using META-INF/MANIFEST.MF to declare dependencies

2.2.2.5. 5. Create and Configure a picketlink.xml File for an SP

The picketlink.xml file is responsible for the behavior of the Authenticator and is loaded at the
application’s startup.

The file should contain at least the following elements:

<PicketLinkSP> defining the url of the IDP (<IdentityURL>) and the url the SP
(<ServiceURL>).

<Handlers> defining the set of handlers needed for processing the SAML requests and
responses.

An Example picketlink.xml file

Authenticator</class-name>
 </valve>
</jboss-web>

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.picketlink"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

Manifest-Version: 1.0
Build-Jdk: 1.6.0_24
Dependencies: org.picketlink

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 <PicketLinkSP xmlns="urn:picketlink:identity-federation:config:2.1"
BindingType="POST">
 <IdentityURL>${idp.url::http://localhost:8080/identity/}</IdentityURL>
 <ServiceURL>${sales-post.url::http://localhost:8080/sales-post/}
</ServiceURL>
 </PicketLinkSP>
 <Handlers xmlns="urn:picketlink:identity-federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2LogOutHa

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

18

NOTE

While not recommended, the SP may also be configured to use HTTP/REDIRECT by
changing BindingType="POST" to BindingType="REDIRECT".

WARNING

Handlers are implemented using a Chain of Responsibility, with each individual
handler performing logic on request and responses in the order defined in
picketlink.xml. It is very important to pay attention to the order in which the
handlers are configured.

By default, picketlink.xml is located in the WEB-INF directory of the IDP web application. However,
a custom path to a picketlink.xml that is external to the application can be configured. This is
useful in cases where multiple applications across one or more JBoss EAP 6 instances share the same
picketlink.xml configuration.

Setting custom location for picketlink.xml

Add two paramaters to the valve element in the application’s jboss-web.xml specifying for the path
to picketlink.xml, and timerInterval which specifies the interval in milliseconds to reload the
configuration.

Example

ndler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Authenti
cationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGenerati
onHandler" />
 </Handlers>
</PicketLink>



<jboss-web>
...
 <valve>
 <class-name>...</class-name>
 <param>
 <param-name>timerInterval</param-name>
 <param-value>5000</param-value>
 </param>
 <param>
 <param-name>configFile</param-name>
 <param-value>path-to/picketlink.xml</param-value>
 </param>
 </valve>
</jboss-web>

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

19

2.2.3. Using SP-initiated Flow

The SP-inited Flow is a common use case citied when describing browser-based SSO, and was covered
in the Browser-Based SSO Using SAML and Multiple Red Hat JBoss Enterprise Application Platform
Instances and Multiple Applications Using Browser-Based SSO with SAML sections of the Red Hat
JBoss Enterprise Application Platform 6 Security Architecture document. In summary, a principal
attempts to access a secured resource in a SP. The SP starts the flow by checking for a principal’s
security assertions and redirecting any unauthenticated principal’s to the IDP. Upon successful
authentication with the IDP, the principal is then redirected back to the initial SP with their security
assertions for the SP to validate and permit/deny access to the original resource requested.

Walkthrough

1. A principal attempts to access secured resource on a SP.

2. SP performs a check on the principal. If the principal has not yet authenticated, they need to
be redirected to the IDP. If they have already authenticated, then all other steps are skipped
and the final step is performed.

3. The SP locates the IDP and issue an authentication request to the IDP via the principal’s
browser.

4. The IDP attempts to authenticate the principal (e.g. challenging them with a login page) using
the configured identity store.

5. After the principal is identified by the IDP (e.g. successful login), the IDP issues a response
(containing SAML v2 assertions with the principal’s security-related information) to the SP via
the principal’s browser.

6. The SP performs a check on the principal’s security assertions, and based the information
contained in those assertions, the SP allows (or denies) access to the requested resource.

This flow requires no additional steps or configuration to setup. All redirects are handled by the
configured SPs and IDPs and links to both secured and unsecured resources require no additional
changes.

2.2.4. Using IDP-Initiated Flow

Most examples of browser-based SSO via SAML v2 using a SP-initiated flow as covered in the previous
section, but SAML v2 supports an additional flow: the IDP-initiated or Unsolicited Response flow. In this
scenario, the SP does not initiate the authentication flow and receive a SAML response from the IDP.
Instead, the flow starts on the IDP-side and once authenticated, the principal can choose a specific SP
from a list and then get redirected to its URL.

Walkthrough

1. Principal accesses the IDP.

2. The IDP seeing that there is neither SAML request nor response, assumes an IDP first scenario
using SAML.

3. The IDP challenges the principal to authenticate.

4. Upon authentication, the IDP shows the hosted section where the principal gets a page that
links to all the SP applications.

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

20

/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture#browser_based_sso_using_saml
/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture#multiple_red_hat_jboss_enterprise_application_platform_instances_and_multiple_applications_using_browser_based_sso_with_saml
/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture

5. The principal chooses an SP application.

6. The IDP redirects the principal to the service provider with a SAML assertion in the query
parameter, SAML response. In the cases where the POST binding is used, the IDP sends the
SAML assertion to the service provider via an HTTP POST.

7. The SP checks the SAML assertion and provides access.

Hosted Section

The hosted section is a location to direct users after a successful authentication in the IDP-initiated
flow or if a principal, who has already authenticated, attempts to access the root of the IDP directly. By
default, the hosted section is located at /hosted/ but may be changed in the picketlink.xml file by
adding the HostedURI attribute to the <PicketLinkIDP> element:

Linking to SPs

Once the user is authenticated, the IDP shows a page with links to all service provider applications. A
link will usually look like this:

Note that the link above redirects the user to the IDP passing the TARGET query parameter, whose
value is the URL to the target SP application. Once the user clicks the link above, the IDP extracts the
TARGET parameter from the request, builds an SAML v2 response, and redirects the user to the target
URL. When the user hits the SP, they are automatically authenticated. The SAML_VERSION query
parameter is used to specify the SAML version that must be used by the IDP to create the SAML
response.

2.2.5. Configuring the Global Logout Profile

2.2.5.1. Global Logout Profile

A Global Logout Profile initiated at one service provider logs out the user from the Identity Provider
(IDP) and all the service providers.

NOTE

For a Global Logout Profile to function appropriately ensure that only up to five SPs are
configured per IDP.

Configure picketlink.xml

Add the SAML2LogOutHandler in the picketlink.xml.

Create a logout.jsp page

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 <PicketLinkIDP xmlns="urn:picketlink:identity-federation:config:2.1"
HostedURI="/hosted/">
 ...
 </PicketLinkIDP>
</Picketlink>

<a href="http://localhost:8080/identity?
SAML_VERSION=2.0&TARGET=http://localhost:8080/sales-post/">Sales

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

21

As part of the logout process, the users will be redirected to a logout.jsp page located in the root
directory of the Service Provider application. Ensure that this page is created.

Example logout.jsp

Configure Global Logout Profile Links for the SPs

Use GLO=true as a URL parameter in a link to an SP resource to initiate the Global Logout Profile
process.

Example Logout Link

2.2.5.2. Local Logout

In addition to global logout profile, local logout may also be used. Local logout, in contrast to global
logout profile, logs a principal out of a single SP while leaving the session at the IDP and other SPs
completely intact. Basically, local logout allows principals to be "locally logged out" at a single SP.

The process for using Local Logout is essentially the same as Global Logout Profile, with the URL
parameter in the logout link taking the form of LLO=true.

Example Logout Link

When a principal clicks on the Local Logout link at the SP, the SP will invalidate their session and
forward the principal to the configured logout page.

WARNING

If using Local Logout, please be aware of the security implications that result from
it. Meaning, when a principal is only disconnected from one service provider, they
still have an active session with the IDP and other SPs that may allow them to still
access secured resources. While this behavior may be desired in circumstances, it
is strongly recommended to use Global Logout in most scenarios.

2.3. CONFIGURING IDPS AND SPS VIA THE MANAGEMENT CONSOLE

In addition to configuring IDPs and SP manually, SSO via SAML v2 may also be configured via a JBoss
EAP 6 subsystem. This method of configuration is known as the Domain Model and allows all the

<html>
 <head></head>
 <body>
 <p>You have successfully logged out.</p>
 </body>
</html>

Click to LogOut

Click to LogOut



Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

22

configuration to reside centrally on the JBoss EAP 6 instance and not with the individual applications.
This also enables the SSO configuration to be created and updated using the JBoss EAP management
interfaces such as the Management Console and CLI.

Federations

When using the JBoss EAP subsystem to configure and deploy IDPs and SPs, they are grouped
together in a Federation. A Federation can be understood as a Circle of Trust. A Circle of trust contains
applications that share common configurations (certificates, SAML-specific configurations, etc) and
domains that trust each other to accurately document the processes used to identify a user, the type
of authentication system used, and any policies associated with the resulting authentication
credentials. Each federation has one IDP and many SPs. The federation also defines trust relationship
between SPs and IDPs, removing the need for each SP to individual track and maintain that
information.

2.3.1. Configuring the Subsystem

Before the subsystem can be used to setup federations, it needs to be enabled and configured in JBoss
EAP 6. The following steps are needed to enable and configure the subsystem:

1. Update the Extensions

2. Add the Subsystems

NOTE

It is recommended that these steps be preformed while the JBoss EAP 6 instance is not
running.

2.3.1.1. 1. Update the Extensions

In the JBoss EAP 6 configuration file (standalone.xml for standalone instances or domain.xml for
domains), add the org.wildfly.extension.picketlink extension:

2.3.1.2. 2. Add the Subsystems

In the JBoss EAP 6 configuration file (standalone.xml for standalone instances or domain.xml for
domains), add the jboss:domain:picketlink-federation:1.1 subsystem:

<extensions>
 ...
 <extension module="org.wildfly.extension.picketlink"/>
 ...
</extensions>

<profile>
 ...
 <subsystem xmlns="urn:jboss:domain:picketlink-federation:1.1"/>
 ...
</profile>

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

23

NOTE

Examples of configuration may also be found in the
docs/examples/configs/standalone-picketlink.xml file under the JBoss EAP
6 install directory.

2.3.2. Setting up a Federation

Once the subsystem has been setup and configured, it may be used (via the management interfaces) to
configure federations. Configuring a federations requires the following steps:

1. Preparing the SP and IDP Applications

2. Creating a Federation via the Management Interface

2.3.2.1. 1. Preparing the SP and IDP Applications

As was covered in the previous section, when configuring SSO via SAML v2 manually, the following
files were required to be created or updated:

web.xml

jboss-web.xml

picketlink.xml

jboss-deployment-structure.xml

When using the subsystem to setup federations for SSO via SAML v2, the vast majority of the
configuration happens from the management interfaces without having to update any of those files.
The only configuration that must be done to the application is to configure the <security-
constraint> and associated <security-role> in the web.xml of the IDPs and SPs. In addition,
the <login-config> in the web.xml as well as the login and error pages will also have to be present
in the IDP.

Preparing IDPs and SPs Already Configured

If an IDP or SP has already been configured as outlined in the previous section, the following files will
need to be removed:

jboss-web.xml

picketlink.xml

jboss-deployment-structure.xml

Once the applications have been prepared, they may be deployed.

2.3.2.2. 2. Creating a Federation via the Management Interface

Once the JBoss EAP 6 instance has been configured and the applications have been setup and
deployed, a federation may be created from the Management Console.

1. Navigate to Management Console using a Web Browser for Example:
http://localhost:9990/console

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

24

http://localhost:9990/console

2. Click on the Configuration tab at the top

3. Click on PicketLink → Federation in the menu on the left side

4. Click on the Add button to create a new federation

5. Enter a name for the federation and click Save

6. Click on the View for the federation to begin configuring

7. Select Identity Provider under the Federation tab and click Add to configure a new IDP

8. Enter in the information of the deployed IDP and click Save

9. Select Service Provider under the Federation tab and click Add to configure a new SP

10. Enter in the information of the deployed SP and click Save

The Details section in both the Identity Provider and Service Provider subtabs may be used to configure
additional details or make updates to an existing IDP or SP:

NOTE

When configuration changes are made relating to any IDPs or SPs within a federation
(including any security domains used by the IDPs or SPs), it best to restart the affected
IDPs and/or SPs. This can be accomplished using the Restart option on the Identity
Provider and Service Provider subtab.

2.4. CONFIGURING IDENTITY STORES FOR IDPS

Since IDPs use security domains, the functionality of an IDP is independent from the actual identity
store that backs it. As a result, administrators have many options when configuring security domains
for IDPs. The specifics around security domains and login modules can be found in the Security
Subsystem section of the Red Hat JBoss Enterprise Application Platform 6 Security Architecture . Just
as with setting up any login module for a security domain, please keep in mind that different identity
stores offer different functionality and performance tradeoffs.

The following steps are needed for setting up a security domain that uses an identity store:

1. Setting up the Identity Store

2. Adding the Security Domain

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

25

/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture#security_subsystem

3. Adding the Authentication Section and Login Module to the Security Domain

NOTE

For the purposes of this document, the Database login module and Ldap login module
are shown as examples, but other identity stores and login modules may also be
configured for use with IDPs.

NOTE

The CLI commands for this section were done assuming a standalone instance of JBoss
EAP 6. For more details on using the CLI with JBoss EAP 6 domains, please consult The
Management CLI section of the Red Hat JBoss Enterprise Application Platform 6
Administration and Guide.

2.4.1. 1. Setting up the Identity Store

Before a security domain and login module can be configured to use an identity provider, the identity
provider (and sometimes an connection to that identity provider) must be setup.

2.4.1.1. Configuring the Identity Store for the Database Login Module

The following operations are needed for setting up the Identity Store for the Database login module:

Database Setup

Adding a Datasource

Database Setup

The first item needed for a Database-Backed Identity Store is a database for the login module to use.

The following datapoints are needed:

Usernames

Passwords

Roles

Role Groups

The Database Login module requires the ability to create a query that maps usernames to passwords
and a query that maps usernames to roles and role groups. This information can be stored within the
database in variety of ways, but creating a database with tables is not in the scope of this document.
For the purposes of this example, it’s assumed the following tables have been created:

Table 2.1. sso-users

username passwd

Sarah Testing123!

Table 2.2. sso-roles

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

26

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Administration_and_Configuration_Guide/index.html#sect-The_Management_CLI

username role role-group

Sarah Sample SSO-Users

Adding a Datasource

Creating datasources are not in the scope of this document. For specifics on setting up a datasource,
please see the Datasource Management section of the Administration and Configuration Guide .

For the purposes of this example, it is assumed that a datasource named idpDS has been created,
properly configured, and deployed to the JBoss EAP 6 instance. This datasource has a connection to
the database storing the sso-users and sso-roles tables.

2.4.1.2. Configuring the Identity Store for the Ldap Login Module

A properly configured LDAP server is required prior to setting up the Ldap login module. Unlike the
Database login module, a datasource is not needed for setting up the Ldap login module. The basics of
LDAP and how it relates to JBoss EAP 6 security are covered in the Red Hat JBoss Enterprise
Application Platform 6 Security Architecture document.

Setting up an LDAP Server

Setting up an LDAP server is not in the scope of this document. For more information on setting up an
LDAP server, please consult the RHEL System’s Administration Guide . For the purposes of this
example, the LDAP server can be reached at http://ldaphost.example.com:1389/.

Directory Information

The directory structure and organization of an LDAP server can vary greatly depending on the use case
and organizational needs. For the purposes of this example, the below entries have been created (show
in LDIF format):

dn: dc=example,dc=com
objectclass: top
objectclass: dcObject
objectclass: organization
dc: example
o: Example
#=============================
dn: ou=People,dc=example,dc=com
objectclass: top
objectclass: organizationalUnit
ou: People
#=============================
dn: uid=jsmith,ou=People,dc=example,dc=com
objectclass: top
objectclass: uidObject
objectclass: person
uid: jsmith
cn: John
sn: Smith
userPassword: theduke
#=============================
dn: ou=Roles,dc=example,dc=com
objectclass: top

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

27

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Administration_and_Configuration_Guide/index.html#chap-Datasource_Management
/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture#ldap
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/index.html#ch-Directory_Servers
http://ldaphost.example.com:1389/

2.4.2. 2. Adding the Security Domain

Once the identity store itself has been setup and any needed connection between the JBoss EAP 6
instance and the identity store has been configured, the security domain may be created and
configured. The below command shows how to create an empty security domain, replacing MY-
DOMAIN with the desired name of the security domain.

CLI for Adding a Security Domain

2.4.3. 3. Adding the Authentication Section and Login Module to the Security
Domain

After the empty security domain has been created, the authentication section must be created with a
login module added to it. The below command shows how to add an empty authentication section to an
existing security domain, replacing MY-DOMAIN with the name of the security domain.

CLI for Adding an Authentication Section to a Security Domain

Once the empty authentication section has been created, a login module may then be added to it and
configured to use the desired identity store. After adding a login module to a security domain, a
configuration reload is usually required.

Below is the general command structure for adding a login module and reloading the configuration,
replacing MY-DOMAIN, MY-LOGIN-MODULE, and MY-CONFIGURATION with the appropriate information:

2.4.3.1. Adding a Database Login Module

NOTE

This example assumes a datasource named idpDS has been created from Step 1 and a
security domain named idp-db-domain was created in Step 2.

objectclass: organizationalUnit
ou: Roles
#=============================
dn: cn=Sample,ou=Roles,dc=example,dc=com
objectclass: top
objectclass: groupOfNames
cn: Sample
member: uid=jsmith,ou=People,dc=example,dc=com
description: the Sample group

/subsystem=security/security-domain=MY-DOMAIN:add(cache-type=default)

/subsystem=security/security-domain=MY-DOMAIN/authentication=classic:add

/subsystem=security/security-domain=MY-
DOMAIN/authentication=classic/login-module=MY-LOGIN-MODULE:add(MY-
CONFIGURATION)

reload

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

28

CLI for Configuring the Authentication Section to use the Database Login Module

CLI Reloading the configuration

Resulting XML

2.4.3.2. Adding an LDAP Login Module

The steps necessary for configuring both the LdapExtended login module (recommended) as well as
the Ldap login module can be found in How To Configure Identity Management in Red Hat JBoss
Enterprise Application Platform 6.

2.5. CONFIGURING SSL/TLS WITH SPS AND IDPS

The basics of SSL/TLS are covered in the Red Hat JBoss Enterprise Application Platform 6 Security
Architecture. Adding SSL/TLS support to a browser-based SSO environment is not much different than
adding it to non-SSO environment. Both the IDPs and SPs can have an HTTPS connector added to allow
for traffic to be secured.

Add a new HTTPS connector.

Create a secure connector, named HTTPS, which uses the https scheme, the https socket binding
(which defaults to 8443), and is set to be secure.

/subsystem=security/security-domain=idp-db-
domain/authentication=classic/login-module=Database:add(\
 code=Database, \
 flag=required, \
 module-options=[\
 ("dsJndiName"=>"java:/idpDS"), \
 ("principalsQuery"=>"select passwd from 'sso-users' where
username=?"), \
 ("rolesQuery"=>"select role, role-group from 'sso-roles' where
username=?") \
])

reload

<security-domain name="idp-db-domain" cache-type="default">
 <authentication>
 <login-module code="Database" flag="required">
 <module-option name="dsJndiName" value="java:/idpDS"/>
 <module-option name="principalsQuery" value="select passwd
from 'sso-users' where username=?"/>
 <module-option name="rolesQuery" value="select role, role-
group from 'sso-roles' where username=?"/>
 </login-module>
 </authentication>
</security-domain>

/subsystem=web/connector=HTTPS/:add(socket-
binding=https,scheme=https,protocol=HTTP/1.1,secure=true)

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

29

/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/how-to-configure-identity-management#configuring_a_security_domain_to_use_ldap
/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/security-architecture#ssl_tls_and_certificates

Configure the SSL/TLS encryption certificate and keys.

Configure your SSL/TLS certificate, substituting your own values for the example ones. This example
assumes that the keystore is copied to the server configuration directory, which is
EAP_HOME/domain/configuration/ for a managed domain.

Set the protocol to TLSv1.

NOTE

The above CLI commands were done assuming a standalone instance of JBoss EAP 6.
For more details on using the CLI with JBoss EAP 6 domains, please consult The
Management CLI section of the Red Hat JBoss Enterprise Application Platform 6
Administration and Guide.

Optional - Use an additional CertificateRoles login module on the IDP

Optionally, an additional login module for verifying the SSL/TLS certification (CertificateRoles) can be
added to the security domain. This makes use of password stacking combined with the CertificateRoles
login module (which extends the Certificate login module). For more details on the CertificateRoles login
module, see the Red Hat JBoss Enterprise Application Platform 6 Security Guide .

The configuration example below validates any provided certificate. If no certificate is provided or if
the authentication fails, the procedure falls back to a user/password based authentication.

For example:

/subsystem=web/connector=HTTPS/ssl=configuration:add(name=https,certificat
e-key-file="${jboss.server.config.dir}/keystore.jks",password=SECRET, key-
alias=KEY_ALIAS)

/subsystem=web/connector=HTTPS/ssl=configuration/:write-
attribute(name=protocol,value=TLSv1)

<security-domain name="idp" cache-type="default">
 <authentication>
 <login-module code="CertificateRoles" flag="optional">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="securityDomain" value="idp"/>
 <module-option name="verifier"
value="org.jboss.security.auth.certs.AnyCertVerifier"/>
 </login-module>
 <login-module code="UsersRoles" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="usersProperties"
value="users.properties"/>
 <module-option name="rolesProperties"
value="roles.properties"/>
 </login-module>
 </authentication>
 <jsse keystore-password="change_it" keystore-
url="${jboss.server.config.dir}/server.keystore" truststore-
password="change_it"

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

30

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Administration_and_Configuration_Guide/index.html#sect-The_Management_CLI
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/Security_Guide/appe-Reference.html#topic4732_certificateroles

2.6. ADDITIONAL FEATURES

2.6.1. SAML Assertion Encryption

In addition to offering SSL/TLS encryption between IDPs and SPs , the SAML assertions themselves
may also be encrypted. This is useful in securing SAML v2 assertions that are transmitted in an
unsecured manner (e.g. not using SSL/TLS).

2.6.1.1. Enabling Encryption Directly in IDPs and SPs

To enable encryption of security assertions directly in IDPs and SPs, the following procedures must be
performed to both the IDP and SP picketlink.xml files:

1. Enable Encrypt and SupportsSignatures

2. Add Handlers

3. Configure the KeyProvider

1 Enable Encrypt and SupportsSignatures

To enable encryption, the <PicketLinkIDP> and <PicketLinkSP> must be updated.

For the IDP, add or update the Encrypt and SupportsSignatures attributes in <PicketLinkIDP>
to be true:

For the SP, add or update the SupportsSignatures attribute in <PicketLinkSP> to be true:

2 Add Handlers

In addition, handlers must be added to <Handlers>.

For the IDP add SAML2EncryptionHandler and SAML2SignatureValidationHandler to the
picketlink.xml file:

 truststore-url="${jboss.server.config.dir}/server.keystore"
client-auth="true"/>
</security-domain>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkIDP xmlns="urn:picketlink:identity-federation:config:2.1"
 Encrypt="true" SupportsSignatures="true">
 ...
 </PicketLinkIDP>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkSP xmlns="urn:picketlink:identity-federation:config:2.1"
 SupportsSignatures="true">
 ...
 </PicketLinkSP>
</PicketLink>

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

31

For the SP add SAML2SignatureGenerationHandler and SAML2SignatureValidationHandler
to the picketlink.xml file:

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <Handlers xmlns="urn:picketlink:identity-federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2IssuerTr
ustHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2LogOutHa
ndler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Authenti
cationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGenerati
onHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Encrypti
onHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Signatur
eValidationHandler" />
 </Handlers>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <Handlers xmlns="urn:picketlink:identity-federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2LogOutHa
ndler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Authenti
cationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGenerati
onHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Signatur
eGenerationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Signatur
eValidationHandler" />
 </Handlers>
</PicketLink>

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

32

WARNING

Handlers are implemented using a Chain of Responsibility, with each individual
handler performing logic on request and responses in the order defined in
picketlink.xml. It is very important to pay attention to the order in which the
handlers are configured.

WARNING

The SAML2SignatureGenerationHandler should not be configured in the same chain
as the SAML2EncryptoinHandler. This will cause SAML messages will be signed
several times.

3 Configure Key Provider

Lastly, a <KeyProvider> element must be added to BOTH picketlink.xml files. This element
provides the location and credentials for accessing the java keystore used for encrypting and
decrypting security assertions. An example of generating a java keystore can be found here.

For the IDP the element should be added to <PicketLinkIDP>:

For the SP the element should be added to <PicketLinkSP>:





<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkIDP xmlns="urn:picketlink:identity-federation:config:2.1"
 Encrypt="true" SupportsSignatures="true">
 ...
 <KeyProvider
ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyManager
">
 <Auth Key="KeyStoreURL" Value="/my_keystore.jks" />
 <Auth Key="KeyStorePass" Value="store123" />
 <Auth Key="SigningKeyPass" Value="test123" />
 <Auth Key="SigningKeyAlias" Value="servercert" />
 <ValidatingAlias Key="idp.example.com" Value="servercert" />
 <ValidatingAlias Key="localhost" Value="servercert" />
 <ValidatingAlias Key="sp1.example.com" Value="servercert" />
 <ValidatingAlias Key="sp2.example.com" Value="servercert" />
 </KeyProvider>
 ...
 </PicketLinkIDP>
 ...
<PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

33

/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/how-to-configure-server-security#one_create_a_keystore_to_secure_the_management_console

NOTE

In order to properly encrypt and decrypt assertions, the IDP needs to generate
signatures and the SP needs to verify those signatures as well as identify where they
came from. This is accomplished via the <ValidatingAlias> element. IDPs need to
have a <ValidatingAlias> for each trusted server/domain that is trusted (i.e. every
entry in the <Trust> element). SPs need to have a <ValidatingAlias> for each
server/domain containing an IDP.

2.6.2. Digital Signatures in Assertions

Digital Signatures allow IDPs to sign their security (SAML v2) assertions and have those signature (and
assertions) validated by the SPs. This is useful for validating the authenticity of assertions, especially
for assertions that are transmitted in an unsecured manner (e.g. not using SSL/TLS).

2.6.2.1. Enabling Digital Signatures Directly in IDPs and SPs

To enable digital signatures in security assertions directly in IDPs and SPs, the following procedures
must be performed to both the IDP and SP picketlink.xml files:

1. Enable SupportsSignatures

2. Add Handlers

3. Configure the KeyProvider

1 Enable SupportsSignatures

To enable digital signatures, the <PicketLinkIDP> and <PicketLinkSP> must be updated.

For the IDP and SP, add or update the SupportsSignatures attribute in <PicketLinkSP> to be
true:

 ...
 <PicketLinkSP xmlns="urn:picketlink:identity-federation:config:2.1"
 SupportsSignatures="true">
 ...
 <KeyProvider
ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyManager
">
 <Auth Key="KeyStoreURL" Value="/my_keystore.jks" />
 <Auth Key="KeyStorePass" Value="store123" />
 <Auth Key="SigningKeyPass" Value="test123" />
 <Auth Key="SigningKeyAlias" Value="servercert" />
 <ValidatingAlias Key="idp.example.com" Value="servercert" />
 <ValidatingAlias Key="localhost" Value="servercert" />
 </KeyProvider>
 ...
 </PicketLinkSP>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkIDP xmlns="urn:picketlink:identity-federation:config:2.1"
 SupportsSignatures="true">

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

34

2 Add Handlers

In addition, handlers must be added to <Handlers>.

For the IDP and SP, add SAML2SignatureGenerationHandler and
SAML2SignatureValidationHandler to the picketlink.xml file:

IDP picketlink.xml

SP picketlink.xml

 ...
 </PicketLinkIDP>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkSP xmlns="urn:picketlink:identity-federation:config:2.1"
 SupportsSignatures="true">
 ...
 </PicketLinkSP>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <Handlers xmlns="urn:picketlink:identity-federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2IssuerTr
ustHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2LogOutHa
ndler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Authenti
cationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGenerati
onHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Signatur
eGenerationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Signatur
eValidationHandler" />
 </Handlers>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <Handlers xmlns="urn:picketlink:identity-federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2LogOutHa
ndler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Authenti

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

35

WARNING

Handlers are implemented using a Chain of Responsibility, with each individual
handler performing logic on request and responses in the order defined in
picketlink.xml. It is very important to pay attention to the order in which the
handlers are configured.

WARNING

The SAML2SignatureGenerationHandler should not be configured in the same chain
as the SAML2EncryptionHandler. This will cause SAML messages will be signed
several times.

3 Configure Key Provider

Lastly, a <KeyProvider> element must be added to BOTH picketlink.xml files. This element
provides the location and credentials for accessing the java keystore used for signing security
assertions. An example of generating a java keystore can be found here.

For the IDP the element should be added to <PicketLinkIDP>:

cationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGenerati
onHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Signatur
eGenerationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Signatur
eValidationHandler" />
 </Handlers>
</PicketLink>





<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkIDP xmlns="urn:picketlink:identity-federation:config:2.1"
 SupportsSignatures="true">
 ...
 <KeyProvider
ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyManager
">
 <Auth Key="KeyStoreURL" Value="/my_keystore.jks" />
 <Auth Key="KeyStorePass" Value="store123" />
 <Auth Key="SigningKeyPass" Value="test123" />
 <Auth Key="SigningKeyAlias" Value="servercert" />

Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML v2

36

/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/how-to-configure-server-security#one_create_a_keystore_to_secure_the_management_console

For the SP the element should be added to <PicketLinkSP>:

NOTE

In order to properly sign and check assertions, the IDP needs to generate signatures and
the SP needs to verify those signatures as well as identify where they came from. This is
accomplished via the <ValidatingAlias> element. IDPs need to have a
<ValidatingAlias> for each trusted server/domain that is trusted (i.e. every entry in
the <Trust> element). SPs need to have a <ValidatingAlias> for each
server/domain containing an IDP.

2.6.3. Handling AJAX Requests

In certain instances, SPs may need to recieve AJAX requests to secured resources. This is handled
automatically without the need of any additional configuration. so authenticated and authorized users
are able to make AJAX calls without issue. This is accomplished by checking for the existence of the X-
Requested-With header in the request. In addition, cases where users are not authenticated, or if the
request contains the header XMLHttpRequest, the IDP will respond with a 403 (Forbidden) status code
instead of the login page.

 <ValidatingAlias Key="idp.example.com" Value="servercert" />
 <ValidatingAlias Key="localhost" Value="servercert" />
 <ValidatingAlias Key="sp1.example.com" Value="servercert" />
 <ValidatingAlias Key="sp2.example.com" Value="servercert" />
 </KeyProvider>
 ...
 </PicketLinkIDP>
 ...
<PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkSP xmlns="urn:picketlink:identity-federation:config:2.1"
 SupportsSignatures="true">
 ...
 <KeyProvider
ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyManager
">
 <Auth Key="KeyStoreURL" Value="/my_keystore.jks" />
 <Auth Key="KeyStorePass" Value="store123" />
 <Auth Key="SigningKeyPass" Value="test123" />
 <Auth Key="SigningKeyAlias" Value="servercert" />
 <ValidatingAlias Key="idp.example.com" Value="servercert" />
 <ValidatingAlias Key="localhost" Value="servercert" />
 </KeyProvider>
 ...
 </PicketLinkSP>
</PicketLink>

CHAPTER 2. HOW TO SETUP SSO WITH SAML V2

37

	Table of Contents
	CHAPTER 1. SSO WITH SAMLV2 DEEPER DIVE
	1.1. WHAT IS SAML V2?
	1.1.1. Building Blocks
	1.1.1.1. Entities
	1.1.1.2. Security Assertions
	1.1.1.3. Protocols
	1.1.1.4. Bindings
	1.1.1.5. Profiles

	1.2. HOW DOES SAML V2 WORK WITH SSO
	1.2.1. Web Browser SSO Profile
	1.2.2. Global Logout Profile
	1.2.3. Multiple IDPs and the Identity Discovery Profile

	1.3. FURTHER READING

	CHAPTER 2. HOW TO SETUP SSO WITH SAML V2
	2.1. COMPONENTS
	2.2. IDP AND SP SETUP AND CONFIGURATION
	2.2.1. Setting up an IDP
	2.2.1.1. 1. Create a Security Domain for an IDP
	2.2.1.2. 2. Configure the web.xml File for an IDP
	2.2.1.3. 3. Configure the Authenticator for an IDP
	2.2.1.4. 4. Declare the Necessary Dependencies for an IDP
	2.2.1.5. 5. Create and Configure a picketlink.xml File for an IDP

	2.2.2. Setting up an SP
	2.2.2.1. 1. Create a Security Domain for an SP
	2.2.2.2. 2. Configure the web.xml File for an SP
	2.2.2.3. 3. Configure the Authenticator for an SP
	2.2.2.4. 4. Declare the Necessary Dependencies for an SP
	2.2.2.5. 5. Create and Configure a picketlink.xml File for an SP

	2.2.3. Using SP-initiated Flow
	2.2.4. Using IDP-Initiated Flow
	2.2.5. Configuring the Global Logout Profile
	2.2.5.1. Global Logout Profile
	2.2.5.2. Local Logout

	2.3. CONFIGURING IDPS AND SPS VIA THE MANAGEMENT CONSOLE
	2.3.1. Configuring the Subsystem
	2.3.1.1. 1. Update the Extensions
	2.3.1.2. 2. Add the Subsystems

	2.3.2. Setting up a Federation
	2.3.2.1. 1. Preparing the SP and IDP Applications
	2.3.2.2. 2. Creating a Federation via the Management Interface

	2.4. CONFIGURING IDENTITY STORES FOR IDPS
	2.4.1. 1. Setting up the Identity Store
	2.4.1.1. Configuring the Identity Store for the Database Login Module
	2.4.1.2. Configuring the Identity Store for the Ldap Login Module

	2.4.2. 2. Adding the Security Domain
	2.4.3. 3. Adding the Authentication Section and Login Module to the Security Domain
	2.4.3.1. Adding a Database Login Module
	2.4.3.2. Adding an LDAP Login Module

	2.5. CONFIGURING SSL/TLS WITH SPS AND IDPS
	2.6. ADDITIONAL FEATURES
	2.6.1. SAML Assertion Encryption
	2.6.1.1. Enabling Encryption Directly in IDPs and SPs

	2.6.2. Digital Signatures in Assertions
	2.6.2.1. Enabling Digital Signatures Directly in IDPs and SPs

	2.6.3. Handling AJAX Requests

