Red Hat JBoss Enterprise Application Platform 6.4
Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

		[image:]

	

 ⁠
		Red Hat Customer Content Services
	

Legal Notice

		Copyright © 2017 Red Hat, Inc..
	

		This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
	

		The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
	

		All other trademarks are the property of their respective owners.
	

Abstract

			This book provides references and examples for Java EE 6 developers using Red Hat JBoss Enterprise Application Platform 6 and its patch releases.
		

 ⁠Chapter 1. Get Started Developing Applications

 ⁠1.1. Introduction

 ⁠1.1.1. About Red Hat JBoss Enterprise Application Platform 6

		Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a middleware platform built on open standards and compliant with the Java Enterprise Edition 6 specification. It integrates JBoss Application Server 7 with high-availability clustering, messaging, distributed caching, and other technologies.
	

		JBoss EAP 6 includes a new, modular structure that allows service enabling only when required, improving startup speed.
	

		The Management Console and Management Command Line Interface make editing XML configuration files unnecessary and add the ability to script and automate tasks.
	

		In addition, JBoss EAP 6 includes APIs and development frameworks for quickly developing secure and scalable Java EE applications.
	

		Report a bug
	

 ⁠1.2. Prerequisites

 ⁠1.2.1. Become Familiar with Java Enterprise Edition 6

 ⁠1.2.1.1. Overview of EE 6 Profiles

		Java Enterprise Edition 6 (EE 6) includes support for multiple profiles, or subsets of APIs. The only two profiles that the EE 6 specification defines are the Full Profile and the Web Profile.
	

		EE 6 Full Profile includes all APIs and specifications included in the EE 6 specification. EE 6 Web Profile includes a subset of APIs which are useful to web developers.
	

		JBoss EAP 6 is a certified implementation of the Java Enterprise Edition 6 Full Profile and Web Profile specifications.
	

			
					Section 1.2.1.2, “Java Enterprise Edition 6 Web Profile”
				

	
					Section 1.2.1.3, “Java Enterprise Edition 6 Full Profile”
				

	

		Report a bug
	

 ⁠1.2.1.2. Java Enterprise Edition 6 Web Profile

		The Web Profile is one of two profiles defined by the Java Enterprise Edition 6 specification. It is designed for web application development. The other profile defined by the Java Enterprise Edition 6 specification is the Full Profile. See Section 1.2.1.3, “Java Enterprise Edition 6 Full Profile” for more details.
	
Java EE 6 Web Profile Requirements
	
				Java Platform, Enterprise Edition 6
			

	Java Web Technologies
	
						Servlet 3.0 (JSR 315)
					

	
						JSP 2.2 and Expression Language (EL) 1.2
					

	
						JavaServer Faces (JSF) 2.1 (JSR 314)
					

	
						Java Standard Tag Library (JSTL) for JSP 1.2
					

	
						Debugging Support for Other Languages 1.0 (JSR 45)
					

	Enterprise Application Technologies
	
						Contexts and Dependency Injection (CDI) (JSR 299)
					

	
						Dependency Injection for Java (JSR 330)
					

	
						Enterprise JavaBeans 3.1 Lite (JSR 318)
					

	
						Java Persistence API 2.0 (JSR 317)
					

	
						Common Annotations for the Java Platform 1.1 (JSR 250)
					

	
						Java Transaction API (JTA) 1.1 (JSR 907)
					

	
						Bean Validation (JSR 303)
					

		Report a bug
	

 ⁠1.2.1.3. Java Enterprise Edition 6 Full Profile

		The Java Enterprise Edition 6 (EE 6) specification defines a concept of profiles, and defines two of them as part of the specification. Besides the items supported in the Java Enterprise Edition 6 Web Profile (Section 1.2.1.2, “Java Enterprise Edition 6 Web Profile”), the Full Profile supports the following APIs.
	
Items Included in the EE 6 Full Profile
	
				EJB 3.1 (not Lite) (JSR 318)
			

	
				Java EE Connector Architecture 1.6 (JSR 322)
			

	
				Java Message Service (JMS) API 1.1 (JSR 914)
			

	
				JavaMail 1.4 (JSR 919)
			

	Web Service Technologies
	
						Jax-RS RESTful Web Services 1.1 (JSR 311)
					

	
						Implementing Enterprise Web Services 1.3 (JSR 109)
					

	
						JAX-WS Java API for XML-Based Web Services 2.2 (JSR 224)
					

	
						Java Architecture for XML Binding (JAXB) 2.2 (JSR 222)
					

	
						Web Services Metadata for the Java Platform (JSR 181)
					

	
						Java APIs for XML-based RPC 1.1 (JSR 101)
					

	
						Java APIs for XML Messaging 1.3 (JSR 67)
					

	
						Java API for XML Registries (JAXR) 1.0 (JSR 93)
					

	Management and Security Technologies
	
						Java Authentication Service Provider Interface for Containers 1.0 (JSR 196)
					

	
						Java Authentication Contract for Containers 1.3 (JSR 115)
					

	
						Java EE Application Deployment 1.2 (JSR 88)
					

	
						J2EE Management 1.1 (JSR 77)
					

		Report a bug
	

 ⁠1.2.2. About Modules and the New Modular Class Loading System used in JBoss EAP 6

 ⁠1.2.2.1. Modules

		A Module is a logical grouping of classes used for class loading and dependency management. JBoss EAP 6 identifies two different types of modules, sometimes called static and dynamic modules. However the only difference between the two is how they are packaged.
	
	Static Modules
	
					Static Modules are predefined in the EAP_HOME/modules/ directory of the application server. Each sub-directory represents one module and defines a main/ subdirectory that contains a configuration file (module.xml) and any required JAR files. The name of the module is defined in the module.xml file. All the application server provided APIs are provided as static modules, including the Java EE APIs as well as other APIs such as JBoss Logging.
				

 ⁠Example 1.1. Example module.xml file
​<?xml version="1.0" encoding="UTF-8"?>
​<module xmlns="urn:jboss:module:1.0" name="com.mysql">
​ <resources>
​ <resource-root path="mysql-connector-java-5.1.15.jar"/>
​ </resources>
​ <dependencies>
​ <module name="javax.api"/>
​ <module name="javax.transaction.api"/>
​ </dependencies>
​</module>

						The module name, com.mysql, should match the directory structure for the module, excluding the main/ subdirectory name.
					

					The modules provided in JBoss EAP distributions are located in a system directory within the EAP_HOME/modules directory. This keeps them separate from any modules provided by third parties.
				

					Any Red Hat provided layered products that layer on top of JBoss EAP 6.1 or later will also install their modules within the system directory.
				

					Creating custom static modules can be useful if many applications are deployed on the same server that use the same third-party libraries. Instead of bundling those libraries with each application, a module containing these libraries can be created and installed by the JBoss administrator. The applications can then declare an explicit dependency on the custom static modules.
				

					Users must ensure that custom modules are installed into the EAP_HOME/modules directory, using a one directory per module layout. This ensures that custom versions of modules that already exist in the system directory are loaded instead of the shipped versions. In this way, user provided modules will take precedence over system modules.
				

					If you use the JBOSS_MODULEPATH environment variable to change the locations in which JBoss EAP searches for modules, then the product will look for a system subdirectory structure within one of the locations specified. A system structure must exist somewhere in the locations specified with JBOSS_MODULEPATH.
				

	Dynamic Modules
	
					Dynamic Modules are created and loaded by the application server for each JAR or WAR deployment (or subdeployment in an EAR). The name of a dynamic module is derived from the name of the deployed archive. Because deployments are loaded as modules, they can configure dependencies and be used as dependencies by other deployments.
				

		Modules are only loaded when required. This usually only occurs when an application is deployed that has explicit or implicit dependencies.
	

		Report a bug
	

 ⁠1.3. Set Up the Development Environment

 ⁠1.3.1. Download and Install Red Hat JBoss Developer Studio

 ⁠1.3.1.1. Setup Red Hat JBoss Developer Studio

			
					Section 1.3.1.2, “Download Red Hat JBoss Developer Studio”
				

	
					Section 1.3.1.3, “Install Red Hat JBoss Developer Studio”
				

	
					Section 1.3.1.4, “Start Red Hat JBoss Developer Studio”
				

	
					Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server”
				

	

		Report a bug
	

 ⁠1.3.1.2. Download Red Hat JBoss Developer Studio

	
				Go to https://access.redhat.com/.
			

	
				Select Downloads from the menu at the top of the page.
			

	
				Find Red Hat JBoss Developer Studio in the list and click on it.
			

	
				Select the appropriate version and click Download.
			

		Report a bug
	

 ⁠1.3.1.3. Install Red Hat JBoss Developer Studio

	Prerequisites:
	
					Section 1.3.1.2, “Download Red Hat JBoss Developer Studio”
				

 ⁠Procedure 1.1. Install Red Hat JBoss Developer Studio
	
				Open a terminal.
			

	
				Move into the directory containing the downloaded .jar file.
			

	
				Run the following command to launch the GUI installer:
			
java -jar jbdevstudio-build_version.jar

	
				Click Next to start the installation process.
			

	
				Select I accept the terms of this license agreement and click Next.
			

	
				Adjust the installation path and click Next.
			
Note

					If the installation path folder does not exist, a prompt will appear. Click Ok to create the folder.
				

	
				Choose a JVM, or leave the default JVM selected, and click Next.
			

	
				Add any application platforms available, and click Next.
			

	
				Review the installation details, and click Next.
			

	
				Click Next when the installation process is complete.
			

	
				Configure the desktop shortcuts for Red Hat JBoss Developer Studio, and click Next.
			

	
				Click Done.
			

		Report a bug
	

 ⁠1.3.1.4. Start Red Hat JBoss Developer Studio

	Prerequisites:
	
					Section 1.3.1.3, “Install Red Hat JBoss Developer Studio”
				

 ⁠Procedure 1.2. Command to start Red Hat JBoss Developer Studio
	
				Open a terminal.
			

	
				Change into the installation directory.
			

	
				Run the following command to start Red Hat JBoss Developer Studio:
			
[localhost]$./jbdevstudio

		Report a bug
	

 ⁠1.3.1.5. Add the JBoss EAP Server Using Define New Server

		These instructions assume this is your first introduction to Red Hat JBoss Developer Studio and you have not yet added any Red Hat JBoss Enterprise Application Platform servers. The procedure below adds the JBoss EAP server using the Define New Server wizard.
	

 ⁠Procedure 1.3. Add the server

		
	
				Open the Servers tab. If there is no Servers tab, add it to the panel as follows:
			
	
						Click Window → Show View → Other....
					

	
						Select Servers from the Server folder and click OK.
					

	
				Click on No servers are available. Click this link to create a new server... or, if you prefer, right-click within the blank Server panel and select New → Server.
			

 ⁠[image: Add a new server - No servers available]

Figure 1.1. Add a new server - No servers available

	
				Expand JBoss Enterprise Middleware and choose JBoss Enterprise Application Platform 6.1+. Enter a server name, for example, "JBoss Enterprise Application Platform 6.4", then click Next to create the JBoss runtime and define the server. The next time you define a new server, this dialog displays a Server runtime environment selection with the new runtime definition.
			

 ⁠[image: Define a New Server]

Figure 1.2. Define a New Server

	
				Create a Server Adapter to manage starting and stopping the server. Keep the defaults and click Next.
			

 ⁠[image: Create a New Server Adapter]

Figure 1.3. Create a New Server Adapter

	
				Enter a name, for example "JBoss EAP 6.4 Runtime". Under Home Directory, click Browse and navigate to your JBoss EAP install location. Then click Next.
			

 ⁠[image: Add New Server Runtime Environment]

Figure 1.4. Add New Server Runtime Environment

Note

					Some quickstarts require that you run the server with a different profile or additional arguments. To deploy a quickstart that requires the full profile, you must define a new server and add a Server Runtime Environment that specifies standalone-full.xml for the Configuration file. Be sure to give the new server a descriptive name.
				

	
				Configure existing projects for the new server. Because you do not have any projects at this point, click Finish.
			

 ⁠[image: Modify resources for the new JBoss server]

Figure 1.5. Modify resources for the new JBoss server

Result

			The JBoss EAP Runtime Server is listed in the Servers tab.
			
 ⁠[image: Server appears in the server list]

Figure 1.6. Server appears in the server list

		

		Report a bug
	

 ⁠1.4. Run Your First Application

 ⁠1.4.1. Download the Quickstart Code Examples

 ⁠1.4.1.1. Access the Quickstarts

Summary

			JBoss EAP 6 comes with a series of quickstart examples designed to help users begin writing applications using the Java EE 6 technologies.
		
Prerequisites
	
				Maven 3.0.0 or higher. For more information on installing Maven, refer to http://maven.apache.org/download.html.
			

	
				 Section 2.1.1, “About the Maven Repository”
			

	
				The JBoss EAP 6 Maven repository is available online, so it is not necessary to download and install it locally. If you plan to use the online repository, you can skip to the next step. If you prefer to install a local repository, see: Section 2.2.3, “Install the JBoss EAP 6 Maven Repository Locally”.
			

	
				 Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”
			

 ⁠Procedure 1.4. Download the Quickstarts
	
				Open a web browser and access this URL: https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.
			

	
				Find "Quickstarts" in the list.
			

	
				Click the Download button to download a Zip archive containing the examples.
			

	
				Unzip the archive in a directory of your choosing.
			

Result

			The JBoss EAP Quickstarts have been downloaded and unzipped. Refer to the README.md file in the top-level directory of the Quickstart archive for instructions about deploying each quickstart.
		

		Report a bug
	

 ⁠1.4.2. Run the Quickstarts

 ⁠1.4.2.1. Run the Quickstarts in Red Hat JBoss Developer Studio

		This section describes how to use Red Hat JBoss Developer Studio to deploy the quickstarts and run the Arquillian tests.
	

 ⁠Procedure 1.5. Import the quickstarts into Red Hat JBoss Developer Studio

			Each quickstart ships with a POM (Project Object Model) file that contains project and configuration information for the quickstart. Using this POM file, you can easily import the quickstart into Red Hat JBoss Developer Studio.
		

			Important

					If your quickstart project folder is located within the IDE workspace when you import it into Red Hat JBoss Developer Studio, the IDE generates an invalid project name and WAR archive name. Be sure your quickstart project folder is located outside the IDE workspace before you begin!
				

		
	
				If you have not yet done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.
			

	

				Start Red Hat JBoss Developer Studio.
			

	

				From the menu, select File → Import.
			

	

				In the selection list, choose Maven → Existing Maven Projects, then click Next.
			

 ⁠[image: Import Existing Maven Projects]

Figure 1.7. Import Existing Maven Projects

	

				Browse to the directory of the quickstart you plan to test, for example the helloworld quickstart, and click OK. The Projects list box is populated with the pom.xml file of the selected quickstart project.
			

 ⁠[image: Select Maven Projects]

Figure 1.8. Select Maven Projects

	

				Click Finish.
			

 ⁠Procedure 1.6. Build and Deploy the helloworld quickstart

			The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that the JBoss server is configured and running correctly.
		
	
				If you do not see a Servers tab or have not yet defined a server, follow the instructions here: Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server”. If you plan to deploy a quickstart that requires the full profile or additional startup arguments, be sure to create the server runtime environment as noted in the quickstart instructions.
			

	
				Right-click on the jboss-helloworld project in the Project Explorer tab and select Run As. You are provided with a list of choices. Select Run on Server.
			

 ⁠[image: Run As - Run on Server]

Figure 1.9. Run As - Run on Server

	
				Select JBoss EAP 6.1+ Runtime Server from the server list and click Next.
			

 ⁠[image: Run on Server]

Figure 1.10. Run on Server

	
				The next screen displays the resources that are configured on the server. The jboss-helloworld quickstart is configured for you. Click Finish to deploy the quickstart.
			

 ⁠[image: Modify Resources Configured on the Server]

Figure 1.11. Modify Resources Configured on the Server

	
				Review the results.
					
							In the Server tab, the JBoss EAP 6.x Runtime Server status changes to [Started, Republish] .
						

	
							The server Console tab shows messages detailing the JBoss EAP 6.x server start and the helloworld quickstart deployment.
						

	
							A helloworld tab appears displaying the URL http://localhost:8080/jboss-helloworld/HelloWorld and the text "Hello World!".
						

	
							The following messages in the Console confirm deployment of the jboss-helloworld.war file:

JBAS018210: Register web context: /jboss-helloworld
JBAS018559: Deployed "jboss-helloworld.war" (runtime-name : "jboss-helloworld.war")

							 The registered web context is appended to http://localhost:8080 to provide the URL used to access the deployed application.
						

			

	
				To verify the helloworld quickstart deployed successfully to the JBoss server, open a web browser and access the application at this URL: http://localhost:8080/jboss-helloworld
			

 ⁠Procedure 1.7. Run the bean-validation quickstart Arquillian tests

			Some quickstarts do not provide a user interface layer and instead provide Arquillian tests to demonstrate the code examples. The bean-validation quickstart is an example of a quickstart that provides Arquillian tests.
		
	
				Follow the procedure above to import the bean-validation quickstart into Red Hat JBoss Developer Studio.
			

	
				In the Servers tab, right-click on the server and choose Start to start the JBoss EAP server. If you do not see a Servers tab or have not yet defined a server, follow the instructions here: Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server”.
			

	
				Right-click on the jboss-bean-validation project in the Project Explorer tab and select Run As. You are provided with a list of choices. Select Maven Build.
			

	
				In the Goals input field of the Edit Configuration dialog, type: clean test -Parq-jbossas-remote
			

				Then click Run.
			

 ⁠[image: Edit Configuration]

Figure 1.12. Edit Configuration

	
				Review the results.
			

				The server Console tab shows messages detailing the JBoss EAP server start and the output of the bean-validation quickstart Arquillian tests.

 T E S T S

Running org.jboss.as.quickstarts.bean_validation.test.MemberValidationTest
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 2.189 sec

Results :

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --

			

		Report a bug
	

 ⁠1.4.2.2. Run the Quickstarts Using a Command Line

 ⁠Procedure 1.8. Build and Deploy the Quickstarts Using a Command Line

			You can easily build and deploy the quickstarts using a command line. Be aware that, when using a command line, you are responsible for starting the JBoss server if it is required.
		
	
				If you have not yet done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.
			

	
				Review the README.html file in the root directory of the quickstarts.
			

				This file contains general information about system requirements, how to configure Maven, how to add users, and how to run the Quickstarts. Be sure to read through it before you get started.
			

				It also contains a table listing the available quickstarts. The table lists each quickstart name and the technologies it demonstrates. It gives a brief description of each quickstart and the level of experience required to set it up. For more detailed information about a quickstart, click on the quickstart name.
			

				Some quickstarts are designed to enhance or extend other quickstarts. These are noted in the Prerequisites column. If a quickstart lists prerequisites, you must install them first before working with the quickstart.
			

				Some quickstarts require the installation and configuration of optional components. Do not install these components unless the quickstart requires them.
			

	
				Run the helloworld quickstart.
			

				The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that the JBoss server is configured and running correctly. Open the README.html file in the root of the helloworld quickstart. It contains detailed instructions on how to build and deploy the quickstart and access the running application
			

	
				Run the other quickstarts.
			

				Follow the instructions in the README.html file located in the root folder of each quickstart to run the example.
			

		Report a bug
	

 ⁠1.4.3. Review the Quickstart Tutorials

 ⁠1.4.3.1. Explore the helloworld Quickstart

Summary

			The helloworld quickstart shows you how to deploy a simple Servlet to JBoss EAP 6. The business logic is encapsulated in a service which is provided as a CDI (Contexts and Dependency Injection) bean and injected into the Servlet. This quickstart is very simple. All it does is print "Hello World" onto a web page. It is a good starting point to be sure you have configured and started your server properly.
		

		Detailed instructions to build and deploy this quickstart using a command line can be found in the README.html file at the root of the helloworld quickstart directory. Here we show you how to use Red Hat JBoss Developer Studio to run the quickstart. This topic assumes you have installed Red Hat JBoss Developer Studio, configured Maven, and imported and successfully run the helloworld quickstart.
	
Prerequisites

				
						Install Red Hat JBoss Developer Studio following the procedure here: Section 1.3.1.3, “Install Red Hat JBoss Developer Studio”.
					

	
						Configure Maven for use with Red Hat JBoss Developer Studio following the procedure here: Section 2.3.3, “Configure Maven for Use with Red Hat JBoss Developer Studio”.
					

	
						Follow the procedures here to import, build, and deploy the helloworld quickstart in Red Hat JBoss Developer Studio: Section 1.4.2.1, “Run the Quickstarts in Red Hat JBoss Developer Studio”
					

	
						Verify the helloworld quickstart was deployed successfully to JBoss EAP by opening a web browser and accessing the application at this URL: http://localhost:8080/jboss-helloworld
					

		

 ⁠Procedure 1.9. Examine the Directory Structure

			The code for the helloworld quickstart can be found in the QUICKSTART_HOME/helloworld directory. The helloworld quickstart is comprised of a Servlet and a CDI bean. It also includes an empty beans.xml file which tells JBoss EAP 6 to look for beans in this application and to activate the CDI.
		
	
				The beans.xml file is located in the WEB-INF/ folder in the src/main/webapp/ directory of the quickstart.
			

	
				The src/main/webapp/ directory also includes an index.html file which uses a simple meta refresh to redirect the user's browser to the Servlet, which is located at http://localhost:8080/jboss-helloworld/HelloWorld.
			

	
				All the configuration files for this example are located in WEB-INF/, which can be found in the src/main/webapp/ directory of the example.
			

	
				Notice that the quickstart doesn't even need a web.xml file!
			

 ⁠Procedure 1.10. Examine the Code

			The package declaration and imports have been excluded from these listings. The complete listing is available in the quickstart source code.
		
	Review the HelloWorldServlet code

				The HelloWorldServlet.java file is located in the src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This Servlet sends the information to the browser.
			

				
​42. @SuppressWarnings("serial")
​43. @WebServlet("/HelloWorld")
​44. public class HelloWorldServlet extends HttpServlet {
​45.
​46. static String PAGE_HEADER = "<html><head><title>helloworld</title></head><body>";
​47.
​48. static String PAGE_FOOTER = "</body></html>";
​49.
​50. @Inject
​51. HelloService helloService;
​52.
​53. @Override
​54. protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
​55. resp.setContentType("text/html");
​56. PrintWriter writer = resp.getWriter();
​57. writer.println(PAGE_HEADER);
​58. writer.println("<h1>" + helloService.createHelloMessage("World") + "</h1>");
​59. writer.println(PAGE_FOOTER);
​60. writer.close();
​61. }
​62.
​63. }

			

				
 ⁠Table 1.1. HelloWorldServlet Details
	 Line 	 Note
	 43 	 Before Java EE 6, an XML file was used to register Servlets. It is now much cleaner. All you need to do is add the @WebServlet annotation and provide a mapping to a URL used to access the servlet.
	 46-48 	 Every web page needs correctly formed HTML. This quickstart uses static Strings to write the minimum header and footer output.
	 50-51 	 These lines inject the HelloService CDI bean which generates the actual message. As long as we don't alter the API of HelloService, this approach allows us to alter the implementation of HelloService at a later date without changing the view layer.
	 58 	 This line calls into the service to generate the message "Hello World", and write it out to the HTTP request.

			

	Review the HelloService code

				The HelloService.java file is located in the src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This service is very simple. It returns a message. No XML or annotation registration is required.
			

				
​public class HelloService {
​
​ String createHelloMessage(String name) {
​ return "Hello " + name + "!";
​ }
​}

			

		Report a bug
	

 ⁠1.4.3.2. Explore the numberguess Quickstart

Summary

			This quickstart shows you how to create and deploy a simple application to JBoss EAP 6. This application does not persist any information. Information is displayed using a JSF view, and business logic is encapsulated in two CDI (Contexts and Dependency Injection) beans. In the numberguess quickstart, you get 10 attempts to guess a number between 1 and 100. After each attempt, you're told whether your guess was too high or too low.
		

		The code for the numberguess quickstart can be found in the QUICKSTART_HOME/numberguess directory. The numberguess quickstart is comprised of a number of beans, configuration files and Facelets (JSF) views, packaged as a WAR module.
	

		Detailed instructions to build and deploy this quickstart using a command line can be found in the README.html file at the root of the numberguess quickstart directory. Here we show you how to use Red Hat JBoss Developer Studio to run the quickstart. This topic assumes you have installed Red Hat JBoss Developer Studio, configured Maven, and imported and successfully run the numberguess quickstart.
	
Prerequisites

				
						Install Red Hat JBoss Developer Studio following the procedure here: Section 1.3.1.3, “Install Red Hat JBoss Developer Studio”.
					

	
						Configure Maven for use with Red Hat JBoss Developer Studio following the procedure here: Section 2.3.3, “Configure Maven for Use with Red Hat JBoss Developer Studio”.
					

	
						Follow the procedures here to import, build, and deploy the numberguess quickstart in Red Hat JBoss Developer Studio: Section 1.4.2.1, “Run the Quickstarts in Red Hat JBoss Developer Studio”
					

	
						Verify the numberguess quickstart was deployed successfully to JBoss EAP by opening a web browser and accessing the application at this URL: http://localhost:8080/jboss-numberguess
					

		

 ⁠Procedure 1.11. Examine the Configuration Files

			All the configuration files for this example are located in WEB-INF/ directory which can be found in the src/main/webapp/ directory of the quickstart.
		
	
				Examine the faces-config.xml file.
			

				This quickstart uses the JSF 2.0 version of faces-config.xml filename. A standardized version of Facelets is the default view handler in JSF 2.0, so there's really nothing that you have to configure. JBoss EAP 6 goes above and beyond Java EE here. It will automatically configure the JSF for you if you include this configuration file. As a result, the configuration consists of only the root element:
			

				
​
​19. <faces-config version="2.0"
​20. xmlns="http://java.sun.com/xml/ns/javaee"
​21. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​22. xsi:schemaLocation="
​23. http://java.sun.com/xml/ns/javaee>
​24. http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd">
​25.
​26. </faces-config>

			

	
				Examine the beans.xml file.
			

				There's also an empty beans.xml file, which tells JBoss EAP 6 to look for beans in this application and to activate the CDI.
			

	
				There is no web.xml file
			

				Notice that the quickstart doesn't even need a web.xml file!
			

 ⁠Procedure 1.12. Examine the JSF Code

			JSF uses the .xhtml file extension for source files, but serves up the rendered views with the .jsf extension.
		
	
				Examine the home.xhtml code.
			

				The home.xhtml file is located in the src/main/webapp/ directory.
			

				
​
​19. <html xmlns="http://www.w3.org/1999/xhtml"
​20. xmlns:ui="http://java.sun.com/jsf/facelets"
​21. xmlns:h="http://java.sun.com/jsf/html"
​22. xmlns:f="http://java.sun.com/jsf/core">
​23.
​24. <head>
​25. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
​26. <title>Numberguess</title>
​27. </head>
​28.
​29. <body>
​30. <div id="content">
​31. <h1>Guess a number...</h1>
​32. <h:form id="numberGuess">
​33.
​34. <!-- Feedback for the user on their guess -->
​35. <div style="color: red">
​36. <h:messages id="messages" globalOnly="false" />
​37. <h:outputText id="Higher" value="Higher!"
​38. rendered="#{game.number gt game.guess and game.guess ne 0}" />
​39. <h:outputText id="Lower" value="Lower!"
​40. rendered="#{game.number lt game.guess and game.guess ne 0}" />
​41. </div>
​42.
​43. <!-- Instructions for the user -->
​44. <div>
​45. I'm thinking of a number between #{game.smallest} and #{game.biggest}. You have
​48. #{game.remainingGuesses} guesses remaining.
​49. </div>
​50.
​51. <!-- Input box for the users guess, plus a button to submit, and reset -->
​52. <!-- These are bound using EL to our CDI beans -->
​53. <div>
​54. Your guess:
​55. <h:inputText id="inputGuess" value="#{game.guess}"
​56. required="true" size="3"
​57. disabled="#{game.number eq game.guess}"
​58. validator="#{game.validateNumberRange}" />
​59. <h:commandButton id="guessButton" value="Guess"
​60. action="#{game.check}"
​61. disabled="#{game.number eq game.guess}" />
​62. </div>
​63. <div>
​64. <h:commandButton id="restartButton" value="Reset"
​65. action="#{game.reset}" immediate="true" />
​66. </div>
​67. </h:form>
​68.
​69. </div>
​70.
​71. <br style="clear: both" />
​72.
​73. </body>
​74. </html>

			

				
 ⁠Table 1.2. JSF Details
	 Line 	 Note
	 36-40 	 These are the messages which can be sent to the user: "Higher!" and "Lower!"
	 45-48 	 As the user guesses, the range of numbers they can guess gets smaller. This sentence changes to make sure they know the number range of a valid guess.
	 55-58 	 This input field is bound to a bean property using a value expression.
	 58 	 A validator binding is used to make sure the user does not accidentally input a number outside of the range in which they can guess. If the validator was not here, the user might use up a guess on an out of bounds number.
	 59-61 	 There must be a way for the user to send their guess to the server. Here we bind to an action method on the bean.

			

 ⁠Procedure 1.13. Examine the Class Files

			All of the numberguess quickstart source files can be found in the src/main/java/org/jboss/as/quickstarts/numberguess/ directory. The package declaration and imports have been excluded from these listings. The complete listing is available in the quickstart source code.
		
	
				Review the Random.java qualifier code.
			

				A qualifier is used to remove ambiguity between two beans, both of which are eligible for injection based on their type. For more information on qualifiers, refer to Section 11.2.3.3, “Use a Qualifier to Resolve an Ambiguous Injection”
			

				The @Random qualifier is used for injecting a random number.
			

				
​@Target({ TYPE, METHOD, PARAMETER, FIELD })
​@Retention(RUNTIME)
​@Documented
​@Qualifier
​public @interface Random {
​
​}

			

	
				Review the MaxNumber.java qualifier code.
			

				The @MaxNumberqualifier is used for injecting the maximum number allowed.
			

				
​@Target({ TYPE, METHOD, PARAMETER, FIELD })
​@Retention(RUNTIME)
​@Documented
​@Qualifier
​public @interface MaxNumber {
​
​}

			

	
				Review the Generator.java code.
			

				The Generator class is responsible for creating the random number via a producer method. It also exposes the maximum possible number via a producer method. This class is application scoped so you don't get a different random each time.
			

				
​@SuppressWarnings("serial")
​@ApplicationScoped
​public class Generator implements Serializable {
​
​ private java.util.Random random = new java.util.Random(System.currentTimeMillis());
​
​ private int maxNumber = 100;
​
​ java.util.Random getRandom() {
​ return random;
​ }
​
​ @Produces
​ @Random
​ int next() {
​ // a number between 1 and 100
​ return getRandom().nextInt(maxNumber - 1) + 1;
​ }
​
​ @Produces
​ @MaxNumber
​ int getMaxNumber() {
​ return maxNumber;
​ }
​}

			

	
				Review the Game.java code.
			

				The session scoped class Game is the primary entry point of the application. It is responsible for setting up or resetting the game, capturing and validating the user's guess, and providing feedback to the user with a FacesMessage. It uses the post-construct lifecycle method to initialize the game by retrieving a random number from the @Random Instance<Integer> bean.
			

				Notice the @Named annotation in the class. This annotation is only required when you want to make the bean accessible to a JSF view via Expression Language (EL), in this case #{game}.
			

				
​@SuppressWarnings("serial")
​@Named
​@SessionScoped
​public class Game implements Serializable {
​
​ /**
​ * The number that the user needs to guess
​ */
​ private int number;
​
​ /**
​ * The users latest guess
​ */
​ private int guess;
​
​ /**
​ * The smallest number guessed so far (so we can track the valid guess range).
​ */
​ private int smallest;
​
​ /**
​ * The largest number guessed so far
​ */
​ private int biggest;
​
​ /**
​ * The number of guesses remaining
​ */
​ private int remainingGuesses;
​
​ /**
​ * The maximum number we should ask them to guess
​ */
​ @Inject
​ @MaxNumber
​ private int maxNumber;
​
​ /**
​ * The random number to guess
​ */
​ @Inject
​ @Random
​ Instance<Integer> randomNumber;
​
​ public Game() {
​ }
​
​ public int getNumber() {
​ return number;
​ }
​
​ public int getGuess() {
​ return guess;
​ }
​
​ public void setGuess(int guess) {
​ this.guess = guess;
​ }
​
​ public int getSmallest() {
​ return smallest;
​ }
​
​ public int getBiggest() {
​ return biggest;
​ }
​
​ public int getRemainingGuesses() {
​ return remainingGuesses;
​ }
​
​ /**
​ * Check whether the current guess is correct, and update the biggest/smallest guesses as needed. Give feedback to the user
​ * if they are correct.
​ */
​ public void check() {
​ if (guess > number) {
​ biggest = guess - 1;
​ } else if (guess < number) {
​ smallest = guess + 1;
​ } else if (guess == number) {
​ FacesContext.getCurrentInstance().addMessage(null, new FacesMessage("Correct!"));
​ }
​ remainingGuesses--;
​ }
​
​ /**
​ * Reset the game, by putting all values back to their defaults, and getting a new random number. We also call this method
​ * when the user starts playing for the first time using {@linkplain PostConstruct @PostConstruct} to set the initial
​ * values.
​ */
​ @PostConstruct
​ public void reset() {
​ this.smallest = 0;
​ this.guess = 0;
​ this.remainingGuesses = 10;
​ this.biggest = maxNumber;
​ this.number = randomNumber.get();
​ }
​
​ /**
​ * A JSF validation method which checks whether the guess is valid. It might not be valid because there are no guesses left,
​ * or because the guess is not in range.
​ *
​ */
​ public void validateNumberRange(FacesContext context, UIComponent toValidate, Object value) {
​ if (remainingGuesses <= 0) {
​ FacesMessage message = new FacesMessage("No guesses left!");
​ context.addMessage(toValidate.getClientId(context), message);
​ ((UIInput) toValidate).setValid(false);
​ return;
​ }
​ int input = (Integer) value;
​
​ if (input < smallest || input > biggest) {
​ ((UIInput) toValidate).setValid(false);
​
​ FacesMessage message = new FacesMessage("Invalid guess");
​ context.addMessage(toValidate.getClientId(context), message);
​ }
​ }
​}

			

		Report a bug
	

 ⁠1.4.4. Replace the Default Welcome Web Application

		JBoss EAP 6 includes a Welcome application, which displays when you open the URL of the server at port 8080. You can replace this application with your own web application by following this procedure.
	

 ⁠Procedure 1.14. Replace the Default Welcome Web Application With Your Own Web Application
	Disable the Welcome application.

				Use the Management CLI script EAP_HOME/bin/jboss-cli.sh to run the following command. You may need to change the profile to modify a different managed domain profile, or remove the /profile=default portion of the command for a standalone server.
			
/profile=default/subsystem=web/virtual-server=default-host:write-attribute(name=enable-welcome-root,value=false)

	Configure your Web application to use the root context.

				To configure your web application to use the root context (/) as its URL address, modify its jboss-web.xml, which is located in the META-INF/ or WEB-INF/ directory. Replace its <context-root> directive with one that looks like the following.
			
​<jboss-web>
​ <context-root>/</context-root>
​</jboss-web>

	Deploy your application.

				Deploy your application to the server group or server you modified in the first step. The application is now available on http://SERVER_URL:PORT/.
			

		Report a bug
	

 ⁠1.4.5. Using WS-AtomicTransaction

		The wsat-simple quickstart demonstrates the deployment of a WS-AT (WS-AtomicTransaction) enabled JAX-WS Web Service bundled in a WAR archive for deployment to Red Hat JBoss Enterprise Application Platform.
	

		The Web service is offered by a Restaurant for making bookings. The Service allows bookings to be made within an Atomic Transaction. This example demonstrates the basics of implementing a WS-AT enabled Web service. It is beyond the scope of this quick start to demonstrate more advanced features. In particular:
	
	
				The Service does not implement the required hooks to support recovery in the presence of failures.
			

	
				It also does not utilize a transactional back end resource.
			

	
				Only one Web service participates in the protocol. As WS-AT is a 2PC coordination protocol, it is best suited to multi-participant scenarios.
			

		For a more complete example, refer the XTS demonstrator application that ships with the Narayana project: http://www.jboss.org/narayana.
	

		It is also assumed that you have an understanding of WS-AtomicTransaction. For more details, read the XTS documentation that ships with the Narayana project, which can be downloaded here: http://www.jboss.org/narayana/documentation/4174_Final.
	

		The application consists of a single JAX-WS web service that is deployed within a WAR archive. It is tested with a JBoss Arquillian enabled JUnit test.
	

		When running the org.jboss.as.quickstarts.wsat.simple.ClientTest#testCommit() method, the following steps occur:
	
	
				A new Atomic Transaction (AT) is created by the client.
			

	
				An operation on a WS-AT enabled Web service is invoked by the client.
			

	
				The JaxWSHeaderContextProcessor in the WS Client handler chain inserts the WS-AT context into the outgoing SOAP message.
			

	
				When the service receives the SOAP request, the JaxWSHeaderContextProcessor in its handler chain inspects the WS-AT context and associates the request with this AT.
			

	
				The Web service operation is invoked.
			

	
				A participant is enlisted in this AT. This allows the Web Service logic to respond to protocol events, such as Commit and Rollback.
			

	
				The service invokes the business logic. In this case, a booking is made with the restaurant.
			

	
				The backend resource is prepared. This ensures that the Backend resource can undo or make permanent the change when told to do so by the coordinator.
			

	
				The client can then decide to commit or rollback the AT. If the client decides to commit, the coordinator will begin the 2PC protocol. If the participant decides to rollback, all participants will be told to rollback.
			

		There is another test that shows what happens if the client decides to rollback the AT.
	

		Report a bug
	

 ⁠Chapter 2. Maven Guide

 ⁠2.1. Learn about Maven

 ⁠2.1.1. About the Maven Repository

		Apache Maven is a distributed build automation tool used in Java application development to create, manage, and build software projects. Maven uses standard configuration files called Project Object Model, or POM, files to define projects and manage the build process. POMs describe the module and component dependencies, build order, and targets for the resulting project packaging and output using an XML file. This ensures that the project is built in a correct and uniform manner.
	

		Maven achieves this by using a repository. A Maven repository stores Java libraries, plug-ins, and other build artifacts. The default public repository is the Maven 2 Central Repository, but repositories can be private and internal within a company with a goal to share common artifacts among development teams. Repositories are also available from third-parties. JBoss EAP 6 includes a Maven repository that contains many of the requirements that Java EE developers typically use to build applications on JBoss EAP 6. To configure your project to use this repository, see Section 2.3.1, “Configure the JBoss EAP Maven 6 Repository”.
	

		Remote repositories are accessed using common protocols such as http:// for a repository on an HTTP server or file:// for a repository on a file server.
	

		For more information about Maven, see Welcome to Apache Maven.
	

		For more information about Maven repositories, see Apache Maven Project - Introduction to Repositories.
	

		For more information about Maven POM files, see the Apache Maven Project POM Reference and Section 2.1.2, “About the Maven POM File”.
	

		Report a bug
	

 ⁠2.1.2. About the Maven POM File

		The Project Object Model, or POM, file is a configuration file used by Maven to build projects. It is an XML file that contains information about the project and how to build it, including the location of the source, test, and target directories, the project dependencies, plug-in repositories, and goals it can execute. It can also include additional details about the project including the version, description, developers, mailing list, license, and more. A pom.xml file requires some configuration options and will default all others. See Section 2.1.3, “Minimum Requirements of a Maven POM File” for details.
	

		The schema for the pom.xml file can be found at http://maven.apache.org/maven-v4_0_0.xsd.
	

		For more information about POM files, see the Apache Maven Project POM Reference.
	

		Report a bug
	

 ⁠2.1.3. Minimum Requirements of a Maven POM File

Minimum requirements

			The minimum requirements of a pom.xml file are as follows:
		
	
				project root
			

	
				modelVersion
			

	
				groupId - the id of the project's group
			

	
				artifactId - the id of the artifact (project)
			

	
				version - the version of the artifact under the specified group
			

Sample pom.xml file

			A basic pom.xml file might look like this:
		
​
​<project>
​ <modelVersion>4.0.0</modelVersion>
​ <groupId>com.jboss.app</groupId>
​ <artifactId>my-app</artifactId>
​ <version>1</version>
​</project>

		Report a bug
	

 ⁠2.1.4. About the Maven Settings File

		The Maven settings.xml file contains user-specific configuration information for Maven. It contains information that must not be distributed with the pom.xml file, such as developer identity, proxy information, local repository location, and other settings specific to a user.
	

		There are two locations where the settings.xml can be found.
	
	In the Maven installation
	
					The settings file can be found in the M2_HOME/conf/ directory. These settings are referred to as global settings. The default Maven settings file is a template that can be copied and used as a starting point for the user settings file.
				

	In the user's installation
	
					The settings file can be found in the USER_HOME/.m2/ directory. If both the Maven and user settings.xml files exist, the contents are merged. Where there are overlaps, the user's settings.xml file takes precedence.
				

		The following is an example of a Maven settings.xml file:
​<?xml version="1.0" encoding="UTF-8"?>
​<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.xsd">
​ <profiles>
​ <!-- Configure the JBoss EAP Maven repository -->
​ <profile>
​ <id>jboss-eap-maven-repository</id>
​ <repositories>
​ <repository>
​ <id>jboss-eap</id>
​ <url>file:///path/to/repo/jboss-eap-6.4-maven-repository</url>
​ <releases>
​ <enabled>true</enabled>
​ </releases>
​ <snapshots>
​ <enabled>false</enabled>
​ </snapshots>
​ </repository>
​ </repositories>
​ <pluginRepositories>
​ <pluginRepository>
​ <id>jboss-eap-maven-plugin-repository</id>
​ <url>file:///path/to/repo/jboss-eap-6.4-maven-repository</url>
​ <releases>
​ <enabled>true</enabled>
​ </releases>
​ <snapshots>
​ <enabled>false</enabled>
​ </snapshots>
​ </pluginRepository>
​ </pluginRepositories>
​ </profile>
​ </profiles>
​ <activeProfiles>
​ <!-- Optionally, make the repository active by default -->
​ <activeProfile>jboss-eap-maven-repository</activeProfile>
​ </activeProfiles>
​</settings>

	

		The schema for the settings.xml file can be found at http://maven.apache.org/xsd/settings-1.0.0.xsd.
	

		Report a bug
	

 ⁠2.2. Install Maven and the JBoss Maven Repository

 ⁠2.2.1. Download and Install Maven

		If you plan to use Maven command line to build and deploy your applications to JBoss EAP, you must download and install Maven. If you plan to use Red Hat JBoss Developer Studio to build and deploy your applications, you can skip this procedure as Maven is distributed with Red Hat JBoss Developer Studio.
	
	
				Go to Apache Maven Project - Download Maven and download the latest distribution for your operating system.
			

	
				See the Maven documentation for information on how to download and install Apache Maven for your operating system.
			

		Report a bug
	

 ⁠2.2.2. Install the JBoss EAP 6 Maven Repository

		There are three ways to install the repository; on your local file system, on Apache Web Server, or with a Maven repository manager.
	
	
				 Section 2.2.3, “Install the JBoss EAP 6 Maven Repository Locally”
			

	
				 Section 2.2.4, “Install the JBoss EAP 6 Maven Repository for Use with Apache httpd”
			

	
				 Section 2.2.5, “Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository Manager”
			

		Report a bug
	

 ⁠2.2.3. Install the JBoss EAP 6 Maven Repository Locally

Summary

			The JBoss EAP 6 Maven repository is available online, so it is not necessary to download and install it locally. However, if you prefer to install the JBoss EAP Maven repository locally, there are three ways to do it: on your local file system, on Apache Web Server, or with a Maven repository manager. This example covers the steps to download the JBoss EAP 6 Maven Repository to the local file system. This option is easy to configure and allows you to get up and running quickly on your local machine. It can help you become familiar with using Maven for development but is not recommended for team production environments.
		

 ⁠Procedure 2.1. Download and Install the JBoss EAP 6 Maven Repository to the Local File System
	
				Open a web browser and access this URL: https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.
			

	
				Find "Red Hat JBoss Enterprise Application Platform VERSION Maven Repository" in the list.
			

	
				Click the Download button to download a .zip file containing the repository.
			

	
				Unzip the file on the local file system into a directory of your choosing.
			

	
				 Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.
			

Result

			This creates a Maven repository directory called jboss-eap-version-maven-repository.
		
Important

			If you want to continue to use an older local repository, you must configure it separately in the Maven settings.xml configuration file. Each local repository must be configured within its own <repository> tag.
		

Important

			When downloading a new Maven repository, remove the cached repository/ subdirectory located under the .m2/directory before attempting to use the new Maven repository.
		

		Report a bug
	

 ⁠2.2.4. Install the JBoss EAP 6 Maven Repository for Use with Apache httpd

		There are three ways to install the repository; on your local file system, on Apache Web Server, or with a Maven repository manager. This example will cover the steps to download the JBoss EAP 6 Maven Repository for use with Apache httpd. This option is good for multi-user and cross-team development environments because any developer that can access the web server can also access the Maven repository.
	
Prerequisites

			You must configure Apache httpd. See Apache HTTP Server Project documentation for instructions.
		

 ⁠Procedure 2.2. Download the JBoss EAP 6 Maven Repository ZIP archive
	
				Open a web browser and access this URL: https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.
			

	
				Find "Red Hat JBoss Enterprise Application Platform <VERSION> Maven Repository" in the list.
			

	
				Click the Download button to download a .zip file containing the repository.
			

	
				Unzip the files in a directory that is web accessible on the Apache server.
			

	
				Configure Apache to allow read access and directory browsing in the created directory.
			

	
				 Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.
			

Result

			This allows a multi-user environment to access the Maven repository on Apache httpd.
		
Note

			If you're upgrading from a previous version of the repository, note that JBoss EAP Maven Repository artifacts can be extracted into an existing JBoss product Maven repository (such as JBoss EAP 6.1.0) without any conflicts. After the repository archive has been extracted, the artifacts can be used with the existing Maven settings for this repository.
		

		Report a bug
	

 ⁠2.2.5. Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository Manager

		There are three ways to install the repository; on your local file system, on Apache Web Server, or with a Maven repository manager. This option is best if you have a license and already use a repository manager because you can host the JBoss repository alongside your existing repositories. For more information about Maven repository managers, see Section 2.2.6, “About Maven Repository Managers”.
	

		This example will cover the steps to install the JBoss EAP 6 Maven Repository using Sonatype Nexus Maven Repository Manager. For more complete instructions, see Sonatype Nexus: Manage Artifacts.
	

 ⁠Procedure 2.3. Download the JBoss EAP 6 Maven Repository ZIP archive
	
				Open a web browser and access this URL: https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.
			

	
				Find "Red Hat JBoss Enterprise Application Platform <VERSION> Maven Repository" in the list.
			

	
				Click the Download button to download a .zip file containing the repository.
			

	
				Unzip the files into a directory of your choosing on the server hosting Nexus.
			

 ⁠Procedure 2.4. Add the JBoss EAP 6 Maven Repository using Nexus Maven Repository Manager
	
				Log into Nexus as an Administrator.
			

	
				Select the Repositories section from the Views → Repositories menu to the left of your repository manager.
			

	
				Click the Add... dropdown, then select Hosted Repository.
			

	
				Give the new repository a name and ID.
			

	
				Enter the path on disk to the unzipped repository in the field Override Local Storage Location.
			

	
				Continue if you want the artifact to be available in a repository group. Do not continue with this procedure if this is not what you want.
			

	
				Select the repository group.
			

	
				Click on the Configure tab.
			

	
				Drag the new JBoss Maven repository from the Available Repositories list to the Ordered Group Repositories list on the left.
			
Note

					Note that the order of this list determines the priority for searching Maven artifacts.
				

	
				 Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.
			

Result

			The repository is configured using Nexus Maven Repository Manager.
		

	

		Report a bug
	

 ⁠2.2.6. About Maven Repository Managers

		A repository manager is a tool that allows you to easily manage Maven repositories. Repository managers are useful in multiple ways:
			
					They provide the ability to configure proxies between your organization and remote Maven repositories. This provides a number of benefits, including faster and more efficient deployments and a better level of control over what is downloaded by Maven.
				

	
					They provide deployment destinations for your own generated artifacts, allowing collaboration between different development teams across an organization.
				

		 For more information about Maven repository managers, see Apache Maven Project - The List of Repository Managers.
	
Commonly used Maven repository managers
	Sonatype Nexus
	
					See Sonatype Nexus: Manage Artifacts for more information about Nexus.
				

	Artifactory
	
					See Artifactory Open Source for more information about Artifactory.
				

	Apache Archiva
	
					See Apache Archiva: The Build Artifact Repository Manager for more information about Apache Archiva.
				

		Report a bug
	

 ⁠2.3. Use the Maven Repository

 ⁠2.3.1. Configure the JBoss EAP Maven 6 Repository

Overview

			There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:
				
						You can configure the repositories in the Maven global or user settings.
					

	
						You can configure the repositories in the project's POM file.
					

		

 ⁠Procedure 2.5. Configure Maven Settings to Use the JBoss EAP 6 Maven Repository
	Configure the Maven repository using Maven settings

				This is the recommended approach. Maven settings used with a repository manager or repository on a shared server provide better control and manageability of projects. Settings also provide the ability to use an alternative mirror to redirect all lookup requests for a specific repository to your repository manager without changing the project files. For more information about mirrors, see http://maven.apache.org/guides/mini/guide-mirror-settings.html.
			

				This method of configuration applies across all Maven projects, as long as the project POM file does not contain repository configuration.
			

				 Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.
			

	Configure the Maven repository using the project POM

				This method of configuration is generally not recommended. If you decide to configure repositories in your project POM file, plan carefully and be aware that it can slow down your build and you may even end up with artifacts that are not from the expected repository.
			
Note

					In an Enterprise environment, where a repository manager is usually used, Maven should query all artifacts for all projects using this manager. Because Maven uses all declared repositories to find missing artifacts, if it can't find what it's looking for, it will try and look for it in the repository central (defined in the built-in parent POM). To override this central location, you can add a definition with central so that the default repository central is now your repository manager as well. This works well for established projects, but for clean or 'new' projects it causes a problem as it creates a cyclic dependency.
				

					Transitively included POMs are also an issue with this type of configuration. Maven has to query these external repositories for missing artifacts. This not only slows down your build, it also causes you to lose control over where your artifacts are coming from and likely to cause broken builds.
				

				This method of configuration overrides the global and user Maven settings for the configured project.
			

				 Section 2.3.4, “Configure the JBoss EAP 6 Maven Repository Using the Project POM”.
			

		Report a bug
	

 ⁠2.3.2. Configure the JBoss EAP 6 Maven Repository Using the Maven Settings

		There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:
			
					You can modify the Maven settings. This directs Maven to use the configuration across all projects.
				

	
					You can configure the project's POM file. This limits the configuration to the specific project.
				

		 This topic shows you how to direct Maven to use the JBoss EAP 6 Maven Repository across all projects using the Maven settings. This is the recommended approach.
	

		You can configure Maven to use either the online or a locally installed JBoss EAP 6 repository. If you choose to use the online repository, you can use a preconfigured settings file or add the JBoss EAP 6 Maven profiles to the existing settings file. To use a local repository, you must download the repository and configure the settings to point to your locally installed repository. The following procedures describe how to configure Maven for JBoss EAP 6.
	
Note

			The URL of the repository will depend on where the repository is located; on the filesystem, or web server. For information on how to install the repository, see Section 2.2.2, “Install the JBoss EAP 6 Maven Repository”. The following are examples for each of the installation options:
		
	File System
	
						file:///path/to/repo/jboss-eap-6.x-maven-repository
					

	Apache Web Server
	
						http://intranet.acme.com/jboss-eap-6.x-maven-repository/
					

	Nexus Repository Manager
	
						https://intranet.acme.com/nexus/content/repositories/jboss-eap-6.x-maven-repository
					

			You can configure Maven using either the Maven install global settings or the user install settings. These instructions configure the user install settings as this is the most common configuration.
		

 ⁠Procedure 2.6. Configure Maven Using the Settings Shipped with the Quickstart Examples

			The JBoss EAP 6 Quickstarts ship with a settings.xml file that is configured to use the online JBoss EAP 6 Maven repository. This is the simplest approach.
		
	
				This procedure overwrites the existing Maven settings file, so you must back up the existing Maven settings.xml file.
			
	
						Locate the Maven install directory for your operating system. It is usually installed in USER_HOME/.m2/ directory.
							
									For Linux or Mac, this is: ~/.m2/
								

	
									For Windows, this is: \Documents and Settings\USER_NAME\.m2\ or \Users\USER_NAME\.m2\
								

					

	
						If you have an existing USER_HOME/.m2/settings.xml file, rename it or make a backup copy so you can restore it later.
					

	
				Download and unzip the quickstart examples that ship with JBoss EAP 6. For more information, see Section 1.4.1.1, “Access the Quickstarts”
			

	
				Copy the QUICKSTART_HOME/settings.xml file to the USER_HOME/.m2/ directory.
			

	
				If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow the procedure below entitled Procedure 2.9, “Refresh the Red Hat JBoss Developer Studio User Settings”.
			

 ⁠Procedure 2.7. Manually Edit and Configure the Maven Settings To Use the Online JBoss EAP 6 Maven Repository

			You can manually add the JBoss EAP 6 profiles to an existing Maven settings file.
		
	
				Locate the Maven install directory for your operating system. It is usually installed in USER_HOME/.m2/ directory.
					
							For Linux or Mac, this is ~/.m2/
						

	
							For Windows, this is \Documents and Settings\USER_NAME\.m2\ or \Users\USER_NAME\.m2\
						

			

	
				If you do not find a settings.xml file, copy the settings.xml file from the USER_HOME/.m2/conf/ directory into the USER_HOME/.m2/ directory.
			

	
				Copy the following XML into the <profiles> element of the file.
​
​<!-- Configure the JBoss GA Maven repository -->
​<profile>
​ <id>jboss-ga-repository</id>
​ <repositories>
​ <repository>
​ <id>jboss-ga-repository</id>
​ <url>http://maven.repository.redhat.com/techpreview/all</url>
​ <releases>
​ <enabled>true</enabled>
​ </releases>
​ <snapshots>
​ <enabled>false</enabled>
​ </snapshots>
​ </repository>
​ </repositories>
​ <pluginRepositories>
​ <pluginRepository>
​ <id>jboss-ga-plugin-repository</id>
​ <url>http://maven.repository.redhat.com/techpreview/all</url>
​ <releases>
​ <enabled>true</enabled>
​ </releases>
​ <snapshots>
​ <enabled>false</enabled>
​ </snapshots>
​ </pluginRepository>
​ </pluginRepositories>
​</profile>
​<!-- Configure the JBoss Early Access Maven repository -->
​<profile>
​ <id>jboss-earlyaccess-repository</id>
​ <repositories>
​ <repository>
​ <id>jboss-earlyaccess-repository</id>
​ <url>http://maven.repository.redhat.com/earlyaccess/all/</url>
​ <releases>
​ <enabled>true</enabled>
​ </releases>
​ <snapshots>
​ <enabled>false</enabled>
​ </snapshots>
​ </repository>
​ </repositories>
​ <pluginRepositories>
​ <pluginRepository>
​ <id>jboss-earlyaccess-plugin-repository</id>
​ <url>http://maven.repository.redhat.com/earlyaccess/all/</url>
​ <releases>
​ <enabled>true</enabled>
​ </releases>
​ <snapshots>
​ <enabled>false</enabled>
​ </snapshots>
​ </pluginRepository>
​ </pluginRepositories>
​</profile>

			

				Copy the following XML into the <activeProfiles> element of the settings.xml file.
​
​<activeProfile>jboss-ga-repository</activeProfile>
​<activeProfile>jboss-earlyaccess-repository</activeProfile>

			

	
				If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow the procedure below entitled Procedure 2.9, “Refresh the Red Hat JBoss Developer Studio User Settings”.
			

 ⁠Procedure 2.8. Configure the Settings to Use a Locally Installed JBoss EAP Repository

			You can modify the settings to use the JBoss EAP 6 repository installed on the local file system.
		
	
				Locate the Maven install directory for your operating system. It is usually installed in USER_HOME/.m2/ directory.
					
							For Linux or Mac, this is ~/.m2/
						

	
							For Windows, this is \Documents and Settings\USER_NAME\.m2\ or \Users\USER_NAME\.m2\
						

			

	
				If you do not find a settings.xml file, copy the settings.xml file from the USER_HOME/.m2/conf/ directory into the USER_HOME/.m2/ directory.
			

	
				Copy the following XML into the <profiles> element of the settings.xml file. Be sure to change the <url> to the actual repository location.
​
​<profile>
​ <id>jboss-eap-repository</id>
​ <repositories>
​ <repository>
​ <id>jboss-eap-repository</id>
​ <name>JBoss EAP Maven Repository</name>
​ <url>file:///path/to/repo/jboss-eap-6.x-maven-repository</url>
​ <layout>default</layout>
​ <releases>
​ <enabled>true</enabled>
​ <updatePolicy>never</updatePolicy>
​ </releases>
​ <snapshots>
​ <enabled>false</enabled>
​ <updatePolicy>never</updatePolicy>
​ </snapshots>
​ </repository>
​ </repositories>
​ <pluginRepositories>
​ <pluginRepository>
​ <id>jboss-eap-repository-group</id>
​ <name>JBoss EAP Maven Repository</name>
​ <url>
​ file:///path/to/repo/jboss-eap-6.x-maven-repository
​ </url>
​ <layout>default</layout>
​ <releases>
​ <enabled>true</enabled>
​ <updatePolicy>never</updatePolicy>
​ </releases>
​ <snapshots>
​ <enabled>false</enabled>
​ <updatePolicy>never</updatePolicy>
​ </snapshots>
​ </pluginRepository>
​ </pluginRepositories>
​</profile>

			

				Copy the following XML into the <activeProfiles> element of the settings.xml file.
			
​
​<activeProfile>jboss-eap-repository</activeProfile>

	
				If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow the procedure below entitled Procedure 2.9, “Refresh the Red Hat JBoss Developer Studio User Settings”.
			

 ⁠Procedure 2.9. Refresh the Red Hat JBoss Developer Studio User Settings

			If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, you must refresh the user settings.
		
	
				From the menu, choose Window → Preferences.
			

	
				In the Preferences Window, expand Maven and choose User Settings.
			

	
				Click the Update Settings button to refresh the Maven user settings in Red Hat JBoss Developer Studio.
			

 ⁠[image: Update Maven User Settings]

Figure 2.1. Update Maven User Settings

Important

			If your Maven repository contains outdated artifacts, you may encounter one of the following Maven error messages when you build or deploy your project:
				
						Missing artifact ARTIFACT_NAME
					

	
						[ERROR] Failed to execute goal on project PROJECT_NAME; Could not resolve dependencies for PROJECT_NAME
					

			 To resolve the issue, delete the cached version of your local repository to force a download of the latest Maven artifacts. The cached repository is located in your ~/.m2/repository/ subdirectory on Linux, or the %SystemDrive%\Users\USERNAME\.m2\repository\ subdirectory on Windows.
		

		Report a bug
	

 ⁠2.3.3. Configure Maven for Use with Red Hat JBoss Developer Studio

		The artifacts and dependencies needed to build and deploy applications to Red Hat JBoss Enterprise Application Platform are hosted on a public repository. You must direct Maven to use this repository when you build your applications. This topic covers the steps to configure Maven if you plan to build and deploy applications using Red Hat JBoss Developer Studio.
	

		Maven is distributed with Red Hat JBoss Developer Studio, so it is not necessary to install it separately. However, you must configure Maven for use by the Java EE Web Project wizard for deployments to JBoss EAP. The procedure below demonstrates how to configure Maven for use with JBoss EAP by editing the Maven configuration file from within Red Hat JBoss Developer Studio.
	

 ⁠Procedure 2.10. Configure Maven in Red Hat JBoss Developer Studio
	
				Click Window→Preferences, expand JBoss Tools and select JBoss Maven Integration.
			

 ⁠[image: Click Window→Preferences, expand JBoss Tools and select JBoss Maven Integration.]

Figure 2.2. JBoss Maven Integration Pane in the Preferences Window

	
				Click Configure Maven Repositories.
			

	
				Click Add Repository to configure the JBoss GA Tech Preview Maven repository. Complete the Add Maven Repository dialog as follows:
			
	
						Set the Profile ID, Repository ID, and Repository Name values to jboss-ga-repository.
					

	
						Set the Repository URL value to http://maven.repository.redhat.com/techpreview/all.
					

	
						Click the Active by default checkbox to enable the Maven repository.
					

	
						Click OK
					

 ⁠[image: Enter Maven profile and repository values.]

Figure 2.3. Add Maven Repository - JBoss Tech Preview

	
				Click Add Repository to configure the JBoss Early Access Maven repository. Complete the Add Maven Repository dialog as follows:
			
	
						Set the Profile ID, Repository ID, and Repository Name values to jboss-earlyaccess-repository.
					

	
						Set the Repository URL value to http://maven.repository.redhat.com/earlyaccess/all/.
					

	
						Click the Active by default checkbox to enable the Maven repository.
					

	
						Click OK
					

 ⁠[image: Enter Maven profile and repository values.]

Figure 2.4. Add Maven Repository - JBoss Early Access

	
				Review the repositories and click Finish.
			

 ⁠[image: Review Maven profile and repository values.]

Figure 2.5. Review Maven Repositories

	
				You are prompted with the message "Are you sure you want to update the file 'MAVEN_HOME/settings.xml'?". Click Yes to update the settings. Click OK to close the dialog.
			

				The JBoss EAP Maven repository is now configured for use with Red Hat JBoss Developer Studio.
			

		Report a bug
	

 ⁠2.3.4. Configure the JBoss EAP 6 Maven Repository Using the Project POM

		There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:
			
					You can modify the Maven settings.
				

	
					You can configure the project's POM file.
				

		 This task shows you how to configure a specific project to use the JBoss EAP 6 Maven Repository by adding repository information to the project pom.xml. This configuration method supercedes and overrides the global and user settings configurations.
	

		This method of configuration is generally not recommended. If you decide to configure repositories in your project POM file, plan carefully and be aware that it can slow down your build and you may even end up with artifacts that are not from the expected repository.
	
Note

			In an Enterprise environment, where a repository manager is usually used, Maven should query all artifacts for all projects using this manager. Because Maven uses all declared repositories to find missing artifacts, if it can't find what it's looking for, it will try and look for it in the repository central (defined in the built-in parent POM). To override this central location, you can add a definition with central so that the default repository central is now your repository manager as well. This works well for established projects, but for clean or 'new' projects it causes a problem as it creates a cyclic dependency.
		

			Transitively included POMs are also an issue with this type of configuration. Maven has to query these external repositories for missing artifacts. This not only slows down your build, it also causes you to lose control over where your artifacts are coming from and likely to cause broken builds.
		

Note

			The URL of the repository will depend on where the repository is located; on the filesystem, or web server. For information on how to install the repository, see: Section 2.2.2, “Install the JBoss EAP 6 Maven Repository”. The following are examples for each of the installation options:
		
	File System
	
						file:///path/to/repo/jboss-eap-6.x-maven-repository
					

	Apache Web Server
	
						http://intranet.acme.com/jboss-eap-6.x-maven-repository/
					

	Nexus Repository Manager
	
						https://intranet.acme.com/nexus/content/repositories/jboss-eap-6.x-maven-repository
					

	
				Open your project's pom.xml file in a text editor.
			

	
				Add the following repository configuration. If there is already a <repositories> configuration in the file, then add the <repository> element to it. Be sure to change the <url> to the actual repository location.
			
​
​<repositories>
​ <repository>
​ <id>jboss-eap-repository-group</id>
​ <name>JBoss EAP Maven Repository</name>
​ <url>file:///path/to/repo/jboss-eap-6.x.0-maven-repository/</url>
​ <layout>default</layout>
​ <releases>
​ <enabled>true</enabled>
​ <updatePolicy>never</updatePolicy>
​ </releases>
​ <snapshots>
​ <enabled>true</enabled>
​ <updatePolicy>never</updatePolicy>
​ </snapshots>
​ </repository>
​</repositories>

	
				Add the following plug-in repository configuration. If there is already a <pluginRepositories> configuration in the file, then add the <pluginRepository> element to it.
			
​
​<pluginRepositories>
​ <pluginRepository>
​ <id>jboss-eap-repository-group</id>
​ <name>JBoss EAP Maven Repository</name>
​ <url>file:///path/to/repo/jboss-eap-6.x.0-maven-repository/</url>
​ <releases>
​ <enabled>true</enabled>
​ </releases>
​ <snapshots>
​ <enabled>true</enabled>
​ </snapshots>
​ </pluginRepository>
​</pluginRepositories>

		Report a bug
	

 ⁠2.3.5. Manage Project Dependencies

		This topic describes the usage of Bill of Materials (BOM) POMs for Red Hat JBoss Enterprise Application Platform 6.
	

		A BOM is a Maven pom.xml (POM) file that specifies the versions of all runtime dependencies for a given module. Version dependencies are listed in the dependency management section of the file.
	

		A project uses a BOM by adding its groupId:artifactId:version (GAV) to the dependency management section of the project pom.xml file and specifying the <scope>import</scope> and <type>pom</type> element values.
	
Note

			In many cases, dependencies in project POM files use the provided scope. This is because these classes are provided by the application server at runtime and it is not necessary to package them with the user application.
		

 ⁠ Supported Maven Artifacts

		As part of the product build process, all runtime components of JBoss EAP are built from source in a controlled environment. This helps to ensure that the binary artifacts do not contain any malicious code, and that they can be supported for the life of the product. These artifacts can be easily identified by the -redhat version qualifier, for example 1.0.0-redhat-1.
	

		Adding a supported artifact to the build configuration pom.xml file ensures that the build is using the correct binary artifact for local building and testing. Note that an artifact with a -redhat version is not necessarily part of the supported public API, and may change in future revisions. For information about the public supported API, see the JavaDoc documentation included in the release.
	

		For example, to use the supported version of hibernate, add something similar to the following to your build configuration.
​<dependency>
​ <groupId>org.hibernate</groupId>
​ <artifactId>hibernate-core</artifactId>
​ <version>4.2.16.Final-redhat-1</version>
​ <scope>provided</scope>
​</dependency>

		 Notice that the above example includes a value for the <version/> field. However, it is recommended to use Maven dependency management for configuring dependency versions.
	

 ⁠ Dependency Management

		Maven includes a mechanism for managing the versions of direct and transitive dependencies throughout the build. For general information about using dependency management, see the Apache Maven Project Introduction to the Dependency Mechanism.
	

		Using one or more supported JBoss dependencies directly in your build does not guarantee that all transitive dependencies of the build will be fully supported JBoss artifacts. It is common for Maven builds to use a mix of artifact sources from the Maven central repository, the JBoss.org Maven repository, and other Maven repositories.
	

		Included with the JBoss EAP Maven repository is a dependency management BOM, which specifies all supported JBoss EAP binary artifacts. This BOM can be used in a build to ensure that Maven will prioritize supported JBoss EAP dependencies for all direct and transitive dependencies in the build. In other words, transitive dependencies will be managed to the correct supported dependency version where applicable. The version of this BOM matches the version of the JBoss EAP release.
​<dependencyManagement>
​ <dependencies>
​ ...
​ <dependency>
​ <groupId>org.jboss.bom</groupId>
​ <artifactId>eap6-supported-artifacts</artifactId>
​ <version>6.4.0.GA</version>
​ <type>pom</type>
​ <scope>import</scope>
​ </dependency>
​ ...
​ </dependencies>
​</dependencyManagement>

	

 ⁠ JBoss JavaEE Specs Bom

		The jboss-javaee-6.0 BOM contains the Java EE Specification API JARs used by JBoss EAP.
	

		To use this BOM in a project, add a dependency for the GAV that contains the version of the JSP and Servlet API JARs needed to build and deploy the application.
	

		The following example uses the 3.0.2.Final-redhat-x version of the jboss-javaee-6.0 BOM.
​<dependencyManagement>
​ <dependencies>
​ <dependency>
​ <groupId>org.jboss.spec</groupId>
​ <artifactId>jboss-javaee-6.0</artifactId>
​ <version>3.0.2.Final-redhat-x</version>
​ <type>pom</type>
​ <scope>import</scope>
​ </dependency>
​ ...
​ </dependencies>
​</dependencyManagement>
​
​<dependencies>
​ <dependency>
​ <groupId>org.jboss.spec.javax.servlet</groupId>
​ <artifactId>jboss-servlet-api_3.0_spec</artifactId>
​ <scope>provided</scope>
​ </dependency>
​ <dependency>
​ <groupId>org.jboss.spec.javax.servlet.jsp</groupId>
​ <artifactId>jboss-jsp-api_2.2_spec</artifactId>
​ <scope>provided</scope>
​ </dependency>
​ ...
​</dependencies>

	

 ⁠ JBoss EAP BOMs and Quickstarts

		The JBoss BOMs are located in the jboss-bom project at https://github.com/jboss-developer/jboss-eap-boms.
	

		The quickstarts provide the primary use case examples for the Maven repository. The following table lists the Maven BOMs used by the quickstarts.
		
 ⁠Table 2.1. JBoss BOMs Used by the Quickstarts
	 Maven artifactId 	 Description
	 jboss-javaee-6.0-with-hibernate 	 This BOM builds on the Java EE full profile BOM, adding Hibernate Community projects including Hibernate ORM, Hibernate Search and Hibernate Validator. It also provides tool projects such as Hibernate JPA Model Gen and Hibernate Validator Annotation Processor.
	 jboss-javaee-6.0-with-hibernate3 	 This BOM builds on the Java EE full profile BOM, adding Hibernate Community projects including Hibernate 3 ORM, Hibernate Entity Manager (JPA 1.0) and Hibernate Validator.
	 jboss-javaee-6.0-with-logging 	 This BOM builds on the Java EE full profile BOM, adding the JBoss Logging Tools and Log4j framework.
	 jboss-javaee-6.0-with-osgi 	 This BOM builds on the Java EE full profile BOM, adding OSGI.
	 jboss-javaee-6.0-with-resteasy 	 This BOM builds on the Java EE full profile BOM, adding RESTEasy
	 jboss-javaee-6.0-with-security 	 This BOM builds on the Java EE full profile BOM, adding Picketlink.
	 jboss-javaee-6.0-with-tools 	 This BOM builds on the Java EE full profile BOM, adding Arquillian to the mix. It also provides a version of JUnit and TestNG recommended for use with Arquillian.
	 jboss-javaee-6.0-with-transactions 	 This BOM includes a world class transaction manager. Use the JBossTS APIs to access its full capabilities.

	

		The following example uses the 6.4.0.GA version of the jboss-javaee-6.0-with-hibernate BOM.
​
​<dependencyManagement>
​ <dependencies>
​ <dependency>
​ <groupId>org.jboss.bom.eap</groupId>
​ <artifactId>jboss-javaee-6.0-with-hibernate</artifactId>
​ <version>6.4.0.GA</version>
​ <type>pom</type>
​ <scope>import</scope>
​ </dependency>
​ ...
​ </dependencies>
​</dependencyManagement>
​
​<dependencies>
​ <dependency>
​ <groupId>org.hibernate</groupId>
​ <artifactId>hibernate-core</artifactId>
​ <scope>provided</scope>
​ </dependency>
​ ...
​</dependencies>

	

 ⁠ JBoss Client BOMs

		The JBoss EAP server build includes two client BOMs: jboss-as-ejb-client-bom and jboss-as-jms-client-bom.
	

		The client BOMs do not create a dependency management section or define dependencies. Instead, they are an aggregate of other BOMs and are used to package the set of dependencies necessary for a remote client use case.
	

		The following example uses the 7.4.0.Final-redhat-x version of the jboss-as-ejb-client-bom client BOM.
​
​<dependencies>
​ <dependency>
​ <groupId>org.jboss.as</groupId>
​ <artifactId>jboss-as-ejb-client-bom</artifactId>
​ <version>7.5.0.Final-redhat-x</version>
​ <type>pom</type>
​ </dependency>
​ ...l
​</dependencies>

		 This example uses the 7.4.0.Final-redhat-x version of the jboss-as-jms-client-bom client BOM.
​<dependencies>
​ <dependency>
​ <groupId>org.jboss.as</groupId>
​ <artifactId>jboss-as-jms-client-bom</artifactId>
​ <version>7.4.0.Final-redhat-x</version>
​ <type>pom</type>
​ </dependency>
​ ...
​</dependencies>
​

	

		For more information about Maven Dependencies and BOM POM files, see Apache Maven Project - Introduction to the Dependency Mechanism.
	

		Report a bug
	

 ⁠2.4. Upgrade the Maven Repository

 ⁠2.4.1. Apply a Patch to the Local Maven Repository

Summary

			A Maven repository stores Java libraries, plug-ins, and other artifacts required to build and deploy applications to JBoss EAP. The JBoss EAP repository is available online or as a downloaded ZIP file. If you use the publicly hosted repository, updates are applied automatically for you. However, if you download and install the Maven repository locally, you are responsible for applying any updates. Whenever a patch is available for JBoss EAP, a corresponding patch is provided for the JBoss EAP Maven repository. This patch is available in the form of an incremental ZIP file that is unzipped into the existing local repository. The ZIP file contains new JAR and POM files. It does not overwrite any existing JARs nor does it remove JARs, so there is no rollback requirement.
		

		For more information about the JBoss EAP patching process, see the chapter entitled Patching and Upgrading JBoss EAP 6 in the Installation Guide for JBoss Enterprise Application Platform 6 located on the Customer Portal at https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/?version=6.4.
	

		This task describes how to apply Maven updates to your locally installed Maven repository using the unzip command.
	
Prerequisites
	
				Valid access and subscription to the Red Hat Customer Portal.
			

	
				The Red Hat JBoss Enterprise Application Platform <VERSION> Maven Repository ZIP file, downloaded and installed locally.
			

 ⁠Procedure 2.11. Update the Maven Repository
	
				Open a browser and log into https://access.redhat.com.
			

	
				Select Downloads from the menu at the top of the page.
			

	
				Find Red Hat JBoss Enterprise Application Platform in the list and click on it.
			

	
				Select the correct version of JBoss EAP from the Version drop-down menu that appears on this screen, then click on Patches.
			

	
				Find Red Hat JBoss Enterprise Application Platform <VERSION> CPx Incremental Maven Repository in the list and click Download.
			

	
				You are prompted to save the ZIP file to a directory of your choice. Choose a directory and save the file.
			

	
				Locate the path to JBoss EAP Maven repository, referred to in the commands below as EAP_MAVEN_REPOSITORY_PATH, for your operating system. For more information about how to install the Maven repository on the local file system, see Section 2.2.3, “Install the JBoss EAP 6 Maven Repository Locally”.
			

	
				Unzip the Maven patch file directly into the installation directory of the JBoss EAP <VERSION>.x Maven repository.
			

					
						For Linux, open a terminal and type the following command:
[standalone@localhost:9999 /] unzip -o jboss-eap-<VERSION>.x-incremental-maven-repository.zip -d EAP_MAVEN_REPOSITORY_PATH

					

				 	
						For Windows, use the Windows extraction utility to extract the ZIP file into the root of the EAP_MAVEN_REPOSITORY_PATH directory.
					

			

Result

			The locally installed Maven repository is updated with the latest patch.
		

		Report a bug
	

 ⁠Chapter 3. Class Loading and Modules

 ⁠3.1. Introduction

 ⁠3.1.1. Overview of Class Loading and Modules

		JBoss EAP 6 uses a new modular class loading system for controlling the class paths of deployed applications. This system provides more flexibility and control than the traditional system of hierarchical class loaders. Developers have fine-grained control of the classes available to their applications, and can configure a deployment to ignore classes provided by the application server in favor of their own.
	

		The modular class loader separates all Java classes into logical groups called modules. Each module can define dependencies on other modules in order to have the classes from that module added to its own class path. Because each deployed JAR and WAR file is treated as a module, developers can control the contents of their application's class path by adding module configuration to their application.
	

		Report a bug
	

 ⁠3.1.2. Class Loading

		Class Loading is the mechanism by which Java classes and resources are loaded into the Java Runtime Environment.
	

		Report a bug
	

 ⁠3.1.3. Modules

		A Module is a logical grouping of classes used for class loading and dependency management. JBoss EAP 6 identifies two different types of modules, sometimes called static and dynamic modules. However the only difference between the two is how they are packaged.
	
	Static Modules
	
					Static Modules are predefined in the EAP_HOME/modules/ directory of the application server. Each sub-directory represents one module and defines a main/ subdirectory that contains a configuration file (module.xml) and any required JAR files. The name of the module is defined in the module.xml file. All the application server provided APIs are provided as static modules, including the Java EE APIs as well as other APIs such as JBoss Logging.
				

 ⁠Example 3.1. Example module.xml file
​<?xml version="1.0" encoding="UTF-8"?>
​<module xmlns="urn:jboss:module:1.0" name="com.mysql">
​ <resources>
​ <resource-root path="mysql-connector-java-5.1.15.jar"/>
​ </resources>
​ <dependencies>
​ <module name="javax.api"/>
​ <module name="javax.transaction.api"/>
​ </dependencies>
​</module>

						The module name, com.mysql, should match the directory structure for the module, excluding the main/ subdirectory name.
					

					The modules provided in JBoss EAP distributions are located in a system directory within the EAP_HOME/modules directory. This keeps them separate from any modules provided by third parties.
				

					Any Red Hat provided layered products that layer on top of JBoss EAP 6.1 or later will also install their modules within the system directory.
				

					Creating custom static modules can be useful if many applications are deployed on the same server that use the same third-party libraries. Instead of bundling those libraries with each application, a module containing these libraries can be created and installed by the JBoss administrator. The applications can then declare an explicit dependency on the custom static modules.
				

					Users must ensure that custom modules are installed into the EAP_HOME/modules directory, using a one directory per module layout. This ensures that custom versions of modules that already exist in the system directory are loaded instead of the shipped versions. In this way, user provided modules will take precedence over system modules.
				

					If you use the JBOSS_MODULEPATH environment variable to change the locations in which JBoss EAP searches for modules, then the product will look for a system subdirectory structure within one of the locations specified. A system structure must exist somewhere in the locations specified with JBOSS_MODULEPATH.
				

	Dynamic Modules
	
					Dynamic Modules are created and loaded by the application server for each JAR or WAR deployment (or subdeployment in an EAR). The name of a dynamic module is derived from the name of the deployed archive. Because deployments are loaded as modules, they can configure dependencies and be used as dependencies by other deployments.
				

		Modules are only loaded when required. This usually only occurs when an application is deployed that has explicit or implicit dependencies.
	

		Report a bug
	

 ⁠3.1.4. Module Dependencies

		A module dependency is a declaration that one module requires the classes of another module in order to function. Modules can declare dependencies on any number of other modules. When the application server loads a module, the modular class loader parses the dependencies of that module and adds the classes from each dependency to its class path. If a specified dependency cannot be found, the module will fail to load.
	

		Deployed applications (JAR and WAR) are loaded as dynamic modules and make use of dependencies to access the APIs provided by JBoss EAP 6.
	

		There are two types of dependencies: explicit and implicit.
	
Explicit Dependencies

			Explicit dependencies are declared by the developer in the configuration file. Static modules can declare dependencies in the module.xml file. Dynamic modules can have dependencies declared in the MANIFEST.MF or jboss-deployment-structure.xml deployment descriptors of the deployment.
		

		Explicit dependencies can be specified as optional. Failure to load an optional dependency will not cause a module to fail to load. However if the dependency becomes available later it will NOT be added to the module's class path. Dependencies must be available when the module is loaded.
	
Implicit Dependencies

			Implicit dependencies are added automatically by the application server when certain conditions or meta-data are found in a deployment. The Java EE 6 APIs supplied with JBoss EAP 6 are examples of modules that are added by detection of implicit dependencies in deployments.
		

		Deployments can also be configured to exclude specific implicit dependencies. This is done with the jboss-deployment-structure.xml deployment descriptor file. This is commonly done when an application bundles a specific version of a library that the application server will attempt to add as an implicit dependency.
	

		A module's class path contains only its own classes and that of its immediate dependencies. A module is not able to access the classes of the dependencies of one of its dependencies. However a module can specify that an explicit dependency is exported. An exported dependency is provided to any module that depends on the module that exports it.
	

 ⁠Example 3.2. Module dependencies

			Module A depends on Module B and Module B depends on Module C. Module A can access the classes of Module B, and Module B can access the classes of Module C. Module A cannot access the classes of Module C unless:
		
	
					Module A declares an explicit dependency on Module C, or
				

	
					Module B exports its dependency on Module C.
				

		Report a bug
	

 ⁠3.1.5. Class Loading in Deployments

		For the purposes of class loading, all deployments are treated as modules by JBoss EAP 6. These are called dynamic modules. Class loading behavior varies according to the deployment type.
	
	WAR Deployment
	
					A WAR deployment is considered to be a single module. Classes in the WEB-INF/lib directory are treated the same as classes in WEB-INF/classes directory. All classes packaged in the WAR will be loaded with the same class loader.
				

	EAR Deployment
	
					EAR deployments are made up of more than one module. The definition of these modules follows these rules:
				
	
							The lib/ directory of the EAR is a single module called the parent module.
						

	
							Each WAR deployment within the EAR is a single module.
						

	
							Each EJB JAR deployment within the EAR is a single module.
						

					Subdeployment modules (the WAR and JAR deployments within the EAR) have an automatic dependency on the parent module. However they do not have automatic dependencies on each other. This is called subdeployment isolation and can be disabled on a per deployment basis or for the entire application server.
				

					Explicit dependencies between subdeployment modules can be added by the same means as any other module.
				

		Report a bug
	

 ⁠3.1.6. Class Loading Precedence

		The JBoss EAP 6 modular class loader uses a precedence system to prevent class loading conflicts.
	

		During deployment a complete list of packages and classes is created for each deployment and each of its dependencies. The list is ordered according to the class loading precedence rules. When loading classes at runtime, the class loader searches this list, and loads the first match. This prevents multiple copies of the same classes and packages within the deployments class path from conflicting with each other.
	

		The class loader loads classes in the following order, from highest to lowest:
	
	
				Implicit dependencies.
			

				These are the dependencies that are added automatically by JBoss EAP 6, such as the JAVA EE APIs. These dependencies have the highest class loader precedence because they contain common functionality and APIs that are supplied by JBoss EAP 6.
			

				Refer to Section 3.9.1, “Implicit Module Dependencies” for complete details about each implicit dependency.
			

	
				Explicit dependencies.
			

				These are dependencies that are manually added in the application configuration. This can be done using the application's MANIFEST.MF file or the new optional JBoss deployment descriptor jboss-deployment-structure.xml file.
			

				Refer to Section 3.2, “Add an Explicit Module Dependency to a Deployment” to learn how to add explicit dependencies.
			

	
				Local resources.
			

				Class files packaged up inside the deployment itself, e.g. from the WEB-INF/classes or WEB-INF/lib directories of a WAR file.
			

	
				Inter-deployment dependencies.
			

				These are dependencies on other deployments in a EAR deployment. This can include classes in the lib directory of the EAR or classes defined in other EJB jars.
			

		Report a bug
	

 ⁠3.1.7. Dynamic Module Naming

		All deployments are loaded as modules by JBoss EAP 6 and named according to the following conventions.
	
	
				Deployments of WAR and JAR files are named with the following format:
			
 deployment.DEPLOYMENT_NAME

				For example, inventory.war and store.jar will have the module names of deployment.inventory.war and deployment.store.jar respectively.
			

	
				Subdeployments within an Enterprise Archive are named with the following format:
			
 deployment.EAR_NAME.SUBDEPLOYMENT_NAME

				For example, the subdeployment of reports.war within the enterprise archive accounts.ear will have the module name of deployment.accounts.ear.reports.war.
			

		Report a bug
	

 ⁠3.1.8. jboss-deployment-structure.xml

		jboss-deployment-structure.xml is a new optional deployment descriptor for JBoss EAP 6. This deployment descriptor provides control over class loading in the deployment.
	

		The XML schema for this deployment descriptor is in EAP_HOME/docs/schema/jboss-deployment-structure-1_2.xsd
	

		Report a bug
	

 ⁠3.2. Add an Explicit Module Dependency to a Deployment

		This task shows how to add an explicit dependency to an application. Explicit module dependencies can be added to applications to add the classes of those modules to the class path of the application at deployment.
	

		Some dependencies are automatically added to deployments by JBoss EAP 6. See Section 3.9.1, “Implicit Module Dependencies” for details.
	
Prerequisites
	
				You must already have a working software project that you want to add a module dependency to.
			

	
				You must know the name of the module being added as a dependency. See Section 3.9.2, “Included Modules” for the list of static modules included with JBoss EAP 6. If the module is another deployment then see Section 3.1.7, “Dynamic Module Naming” to determine the module name.
			

			Dependencies can be configured using two different methods:
		
	
				Adding entries to the MANIFEST.MF file of the deployment.
			

	
				Adding entries to the jboss-deployment-structure.xml deployment descriptor.
			

 ⁠Procedure 3.1. Add dependency configuration to MANIFEST.MF

			Maven projects can be configured to create the required dependency entries in the MANIFEST.MF file. See Section 3.3, “Generate MANIFEST.MF entries using Maven”.
		
	Add MANIFEST.MF file

				If the project has no MANIFEST.MF file, create a file called MANIFEST.MF. For a web application (WAR) add this file to the META-INF directory. For an EJB archive (JAR) add it to the META-INF directory.
			

	Add dependencies entry

				Add a dependencies entry to the MANIFEST.MF file with a comma-separated list of dependency module names.
			
Dependencies: org.javassist, org.apache.velocity

	Optional: Make a dependency optional

				A dependency can be made optional by appending optional to the module name in the dependency entry.
			
Dependencies: org.javassist optional, org.apache.velocity

	Optional: Export a dependency

				A dependency can be exported by appending export to the module name in the dependency entry.
			
Dependencies: org.javassist, org.apache.velocity export

	Optional: Dependencies using annotations

				This flag is needed when the module dependency contains annotations which need to be processed during annotation scanning, such as when declaring EJB Interceptors. If this is not done, an EJB interceptor declared in a module cannot be used in a deployment. There are other situations involving annotation scanning when this is needed too.
			

				Using this flag requires that the module contain a Jandex index. Instructions for creating and using a Jandex index are included at the end of this topic.
			

 ⁠Procedure 3.2. Add dependency configuration to jboss-deployment-structure.xml
	Add jboss-deployment-structure.xml

				If the application has no jboss-deployment-structure.xml file then create a new file called jboss-deployment-structure.xml and add it to the project. This file is an XML file with the root element of <jboss-deployment-structure>.
			
​<jboss-deployment-structure>
​
​</jboss-deployment-structure>

				For a web application (WAR) add this file to the WEB-INF directory. For an EJB archive (JAR) add it to the META-INF directory.
			

	Add dependencies section

				Create a <deployment> element within the document root and a <dependencies> element within that.
			

	Add module elements

				Within the dependencies node, add a module element for each module dependency. Set the name attribute to the name of the module.
			
<module name="org.javassist" />

	Optional: Make a dependency optional

				A dependency can be made optional by adding the optional attribute to the module entry with the value of true. The default value for this attribute is false.
			
<module name="org.javassist" optional="true" />

	Optional: Export a dependency

				A dependency can be exported by adding the export attribute to the module entry with the value of true. The default value for this attribute is false.
			
<module name="org.javassist" export="true" />

 ⁠Example 3.3. jboss-deployment-structure.xml with two dependencies
​<jboss-deployment-structure>
​
​ <deployment>
​
​ <dependencies>
​ <module name="org.javassist" />
​ <module name="org.apache.velocity" export="true" />
​ </dependencies>
​
​ </deployment>
​
​</jboss-deployment-structure>

		JBoss EAP 6 will add the classes from the specified modules to the class path of the application when it is deployed.
	
Creating a Jandex index

			The annotations flag requires that the module contain a Jandex index. You can create a new "index JAR" to add to the module. Use the Jandex JAR to build the index, and then insert it into a new JAR file:
		

 ⁠Procedure 3.3.
	Create the index

				
java -jar EAP_HOME/modules/org/jboss/jandex/main/jandex-1.0.3.Final-redhat-1.jar $JAR_FILE

			

	Create a temporary working space

				
mkdir /tmp/META-INF

			

	Move the index file to the working directory

				
mv $JAR_FILE.ifx /tmp/META-INF/jandex.idx

			

	
					
						Option 1: Include the index in a new JAR file
					

						
jar cf index.jar -C /tmp META-INF/jandex.idx

					

						Then place the JAR in the module directory and edit module.xml to add it to the resource roots.
					

				 	
						Option 2: Add the index to an existing JAR
					

						
java -jar EAP_HOME/modules/org/jboss/jandex/main/jandex-1.0.3.Final-redhat-1.jar -m $JAR_FILE

					

			

	Tell the module import to utilize the annotation index

				Tell the module import to utilize the annotation index, so that annotation scanning can find the annotations.
			

				Choose one of the methods below based on your situation:
			

					
						If you are adding a module dependency using MANIFEST.MF, add annotations after the module name.
					

						For example change:
					
Dependencies: test.module, other.module

						to
					
Dependencies: test.module annotations, other.module

				 	
						If you are adding a module dependency using jboss-deployment-structure.xml add annotations="true" on the module dependency.
					

			

		Report a bug
	

 ⁠3.3. Generate MANIFEST.MF entries using Maven

		Maven projects that use the Maven JAR, EJB or WAR packaging plug-ins can generate a MANIFEST.MF file with a Dependencies entry. This does not automatically generate the list of dependencies, this process only creates the MANIFEST.MF file with the details specified in the pom.xml.
	
Prerequisites
	
				You must already have a working Maven project.
			

	
				The Maven project must be using one of the JAR, EJB, or WAR plug-ins (maven-jar-plugin, maven-ejb-plugin, maven-war-plugin).
			

	
				You must know the name of the project's module dependencies. Refer to Section 3.9.2, “Included Modules” for the list of static modules included with JBoss EAP 6. If the module is another deployment , then refer to Section 3.1.7, “Dynamic Module Naming” to determine the module name.
			

 ⁠Procedure 3.4. Generate a MANIFEST.MF file containing module dependencies
	Add Configuration

				Add the following configuration to the packaging plug-in configuration in the project's pom.xml file.
			
​<configuration>
​ <archive>
​ <manifestEntries>
​ <Dependencies></Dependencies>
​ </manifestEntries>
​ </archive>
​</configuration>

	List Dependencies

				Add the list of the module dependencies in the <Dependencies> element. Use the same format that is used when adding the dependencies to the MANIFEST.MF. Refer to Section 3.2, “Add an Explicit Module Dependency to a Deployment” for details about that format.
			
​<Dependencies>org.javassist, org.apache.velocity</Dependencies>

				The optional and export attributes can also be used here.
			
​<Dependencies>org.javassist optional, org.apache.velocity export</Dependencies>

	Build the Project

				Build the project using the Maven assembly goal.
			
[Localhost]$ mvn assembly:assembly

		When the project is built using the assembly goal, the final archive contains a MANIFEST.MF file with the specified module dependencies.
	

 ⁠Example 3.4. Configured Module Dependencies in pom.xml

			The example here shows the WAR plug-in but it also works with the JAR and EJB plug-ins (maven-jar-plugin and maven-ejb-plugin).
		
​<plugins>
​ <plugin>
​ <groupId>org.apache.maven.plugins</groupId>
​ <artifactId>maven-war-plugin</artifactId>
​ <configuration>
​ <archive>
​ <manifestEntries>
​ <Dependencies>org.javassist, org.apache.velocity</Dependencies>
​ </manifestEntries>
​ </archive>
​ </configuration>
​ </plugin>
​</plugins>

		Report a bug
	

 ⁠3.4. Prevent a Module Being Implicitly Loaded

		This task describes how to configure your application to exclude a list of module dependencies.
	

		You can configure a deployable application to prevent implicit dependencies from being loaded. This is commonly done when the application includes a different version of a library or framework than the one that will be provided by the application server as an implicit dependency.
	
Prerequisites
	
				You must already have a working software project that you want to exclude an implicit dependency from.
			

	
				You must know the name of the module to exclude. Refer to Section 3.9.1, “Implicit Module Dependencies” for a list of implicit dependencies and their conditions.
			

 ⁠Procedure 3.5. Add dependency exclusion configuration to jboss-deployment-structure.xml
	
				If the application has no jboss-deployment-structure.xml file, create a new file called jboss-deployment-structure.xml and add it to the project. This file is an XML file with the root element of <jboss-deployment-structure>.
			
​<jboss-deployment-structure>
​
​</jboss-deployment-structure>

				For a web application (WAR) add this file to the WEB-INF directory. For an EJB archive (JAR) add it to the META-INF directory.
			

	
				Create a <deployment> element within the document root and an <exclusions> element within that.
			
​<deployment>
​ <exclusions>
​
​ </exclusions>
​</deployment>

	
				Within the exclusions element, add a <module> element for each module to be excluded. Set the name attribute to the name of the module.
			
​<module name="org.javassist" />

 ⁠Example 3.5. Excluding two modules
​<jboss-deployment-structure>
​ <deployment>
​ <exclusions>
​ <module name="org.javassist" />
​ <module name="org.dom4j" />
​ </exclusions>
​ </deployment>
​</jboss-deployment-structure>

		Report a bug
	

 ⁠3.5. Exclude a Subsystem from a Deployment

Summary

			This topic covers the steps required to exclude a subsystem from a deployment. This is done by editing the jboss-deployment-structure.xml configuration file. Excluding a subsystem provides the same effect as removing the subsystem, but it applies only to a single deployment.
		

 ⁠Procedure 3.6. Exclude a Subsystem
	
				Open the jboss-deployment-structure.xml file in a text editor.
			

	
				Add the following XML inside the <deployment> tags:
			
<exclude-subsystems>
 <subsystem name="SUBSYSTEM_NAME" />
</exclude-subsystems>

	
				Save the jboss-deployment-structure.xml file.
			

Result

			The subsystem has been successfully excluded. The subsystem's deployment unit processors will no longer run on the deployment.
		

 ⁠Example 3.6. Example jboss-deployment-structure.xml file.
<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>
 <deployment>
 <exclude-subsystems>
 <subsystem name="jaxrs" />
 </exclude-subsystems>
 <exclusions>
 <module name="org.javassist" />
 </exclusions>
 <dependencies>
 <module name="deployment.javassist.proxy" />
 <module name="deployment.myjavassist" />
 <module name="myservicemodule" services="import"/>
 </dependencies>
 <resources>
 <resource-root path="my-library.jar" />
 </resources>
 </deployment>
 <sub-deployment name="myapp.war">
 <dependencies>
 <module name="deployment.myear.ear.myejbjar.jar" />
 </dependencies>
 <local-last value="true" />
 </sub-deployment>
 <module name="deployment.myjavassist" >
 <resources>
 <resource-root path="javassist.jar" >
 <filter>
 <exclude path="javassist/util/proxy" />
 </filter>
 </resource-root>
 </resources>
 </module>
 <module name="deployment.javassist.proxy" >
 <dependencies>
 <module name="org.javassist" >
 <imports>
 <include path="javassist/util/proxy" />
 <exclude path="/**" />
 </imports>
 </module>
 </dependencies>
 </module>
</jboss-deployment-structure>

		Report a bug
	

 ⁠3.6. Use the Class Loader Programmatically in a Deployment

 ⁠3.6.1. Programmatically Load Classes and Resources in a Deployment

		You can programmatically find or load classes and resources in your application code. The method you choose will depend on a number of factors. This topic describes the methods available and provides guidelines for when to use them.
	
	Load a Class Using the Class.forName() Method
	
					You can use the Class.forName() method to programmatically load and initialize classes. This method has two signatures.
						Class.forName(String className)
	
									This signature takes only one parameter, the name of the class you need to load. With this method signature, the class is loaded by the class loader of the current class and initializes the newly loaded class by default.
								

	Class.forName(String className, boolean initialize, ClassLoader loader)
	
									This signature expects three parameters: the class name, a boolean value that specifies whether to initialize the class, and the ClassLoader that should load the class.
								

					 The three argument signature is the recommended way to programmatically load a class. This signature allows you to control whether you want the target class to be initialized upon load. It is also more efficient to obtain and provide the class loader because the JVM does not need to examine the call stack to determine which class loader to use. Assuming the class containing the code is named CurrentClass, you can obtain the class's class loader using CurrentClass.class.getClassLoader() method.
				

					The following example provides the class loader to load and initialize the TargetClass class:
					
 ⁠Example 3.7. Provide a class loader to load and initialize the TargetClass.

							
​
​Class<?> targetClass = Class.forName("com.myorg.util.TargetClass", true, CurrentClass.class.getClassLoader());

						

				

	Find All Resources with a Given Name
	
					If you know the name and path of a resource, the best way to load it directly is to use the standard Java development kit Class or ClassLoader API.
						Load a Single Resource
	
									To load a single resource located in the same directory as your class or another class in your deployment, you can use the Class.getResourceAsStream() method.
									
 ⁠Example 3.8. Load a single resource in your deployment.

											
​
​InputStream inputStream = CurrentClass.class.getResourceAsStream("targetResourceName");

										

								

	Load All Instances of a Single Resource
	
									To load all instances of a single resource that are visible to your deployment's class loader, use the Class.getClassLoader().getResources(String resourceName) method, where resourceName is the fully qualified path of the resource. This method returns an Enumeration of all URL objects for resources accessible by the class loader with the given name. You can then iterate through the array of URLs to open each stream using the openStream() method.
									
 ⁠Example 3.9. Load all instances of a resource and iterate through the result.

											
​
​Enumeration<URL> urls = CurrentClass.class.getClassLoader().getResources("full/path/to/resource");
​while (urls.hasMoreElements()) {
​ URL url = urls.nextElement();
​ InputStream inputStream = null;
​ try {
​ inputStream = url.openStream();
​ // Process the inputStream
​ ...
​ } catch(IOException ioException) {
​ // Handle the error
​ } finally {
​ if (inputStream != null) {
​ try {
​ inputStream.close();
​ } catch (Exception e) {
​ // ignore
​ }
​ }
​ }
​}

										

									 Note

											Because the URL instances are loaded from local storage, it is not necessary to use the openConnection() or other related methods. Streams are much simpler to use and minimize the complexity of the code.
										

								

				

	Load a Class File From the Class Loader
	
					If a class has already been loaded, you can load the class file that corresponds to that class using the following syntax:
					
 ⁠Example 3.10. Load a class file for a class that has been loaded.

							
​
​InputStream inputStream = CurrentClass.class.getResourceAsStream(TargetClass.class.getSimpleName() + ".class");

						

					 If the class is not yet loaded, you must use the class loader and translate the path:
					
 ⁠Example 3.11. Load a class file for a class that has not been loaded.

							
​
​String className = "com.myorg.util.TargetClass"
​InputStream inputStream = CurrentClass.class.getClassLoader().getResourceAsStream(className.replace('.', '/') + ".class");

						

				

		Report a bug
	

 ⁠3.6.2. Programmatically Iterate Resources in a Deployment

		The JBoss Modules library provides several APIs for iterating all deployment resources. The JavaDoc for the JBoss Modules API is located here: http://docs.jboss.org/jbossmodules/1.3.0.Final/api/. To use these APIs, you must add the following dependency to the MANIFEST.MF:
Dependencies: org.jboss.modules

		 It is important to note that while these APIs provide increased flexibility, they will also run much more slowly than a direct path lookup.
	

		This topic describes some of the ways you can programmatically iterate through resources in your application code.
	
	List Resources Within a Deployment and Within All Imports
	
					There are times when it is not possible to look up resources by the exact path. For example, the exact path may not be known or you may need to examine more than one file in a given path. In this case, the JBoss Modules library provides several APIs for iterating all deployment resources. You can iterate through resources in a deployment by utilizing one of two methods.
						Iterate All Resources Found in a Single Module
	
									The ModuleClassLoader.iterateResources() method iterates all the resources within this module class loader. This method takes two arguments: the starting directory name to search and a boolean that specifies whether it should recurse into subdirectories.
								

									The following example demonstrates how to obtain the ModuleClassLoader and obtain the iterator for resources in the bin/ directory, recursing into subdirectories.
									
 ⁠Example 3.12. Find resources in the "bin" directory, recursing into subdirectories.

											
​
​ModuleClassLoader moduleClassLoader = (ModuleClassLoader) TargetClass.class.getClassLoader();
​Iterator<Resource> mclResources = moduleClassLoader.iterateResources("bin",true);

										

									 The resultant iterator may be used to examine each matching resource and query its name and size (if available), open a readable stream, or acquire a URL for the resource.
								

	Iterate All Resources Found in a Single Module and Imported Resources
	
									The Module.iterateResources() method iterates all the resources within this module class loader, including the resources that are imported into the module. This method returns a much larger set than the previous method. This method requires an argument, which is a filter that narrows the result to a specific pattern. Alternatively, PathFilters.acceptAll() can be supplied to return the entire set.
									
 ⁠Example 3.13. Find the entire set of resources in this module, including imports.

											
​
​ModuleClassLoader moduleClassLoader = (ModuleClassLoader) TargetClass.class.getClassLoader();
​Module module = moduleClassLoader.getModule();
​Iterator<Resource> moduleResources = module.iterateResources(PathFilters.acceptAll());

										

								

				

	Find All Resources That Match a Pattern
	
					If you need to find only specific resources within your deployment or within your deployment's full import set, you need to filter the resource iteration. The JBoss Modules filtering APIs give you several tools to accomplish this.
						Examine the Full Set of Dependencies
	
									If you need to examine the full set of dependencies, you can use the Module.iterateResources() method's PathFilter parameter to check the name of each resource for a match.
								

	Examine Deployment Dependencies
	
									If you need to look only within the deployment, use the ModuleClassLoader.iterateResources() method. However, you must use additional methods to filter the resultant iterator. The PathFilters.filtered() method can provide a filtered view of a resource iterator this case. The PathFilters class includes many static methods to create and compose filters that perform various functions, including finding child paths or exact matches, or matching an Ant-style "glob" pattern.
								

				

	Additional Code Examples For Filtering Resouces
	
					The following examples demonstrate how to filter resources based on different criteria.
					
 ⁠Example 3.14. Find all files named "messages.properties" in your deployment.

							
​
​ModuleClassLoader moduleClassLoader = (ModuleClassLoader) TargetClass.class.getClassLoader();
​Iterator<Resource> mclResources = PathFilters.filtered(PathFilters.match("**/messages.properties"), moduleClassLoader.iterateResources("", true));

						

					
 ⁠Example 3.15. Find all files named "messages.properties" in your deployment and imports.

							
​
​ModuleClassLoader moduleClassLoader = (ModuleClassLoader) TargetClass.class.getClassLoader();
​Module module = moduleClassLoader.getModule();
​Iterator<Resource> moduleResources = module.iterateResources(PathFilters.match("**/message.properties));

						

					
 ⁠Example 3.16. Find all files inside any directory named "my-resources" in your deployment.

							
​
​ModuleClassLoader moduleClassLoader = (ModuleClassLoader) TargetClass.class.getClassLoader();
​Iterator<Resource> mclResources = PathFilters.filtered(PathFilters.match("**/my-resources/**"), moduleClassLoader.iterateResources("", true));

						

					
 ⁠Example 3.17. Find all files named "messages" or "errors" in your deployment and imports.

							
​
​ModuleClassLoader moduleClassLoader = (ModuleClassLoader) TargetClass.class.getClassLoader();
​Module module = moduleClassLoader.getModule();
​Iterator<Resource> moduleResources = module.iterateResources(PathFilters.any(PathFilters.match("**/messages"), PathFilters.match("**/errors"));

						

					
 ⁠Example 3.18. Find all files in a specific package in your deployment.

							
​
​ModuleClassLoader moduleClassLoader = (ModuleClassLoader) TargetClass.class.getClassLoader();
​Iterator<Resource> mclResources = moduleClassLoader.iterateResources("path/form/of/packagename", false);

						

				

		Report a bug
	

 ⁠3.7. Class Loading and Subdeployments

 ⁠3.7.1. Modules and Class Loading in Enterprise Archives

		Enterprise Archives (EAR) are not loaded as a single module like JAR or WAR deployments. They are loaded as multiple unique modules.
	

		The following rules determine what modules exist in an EAR.
	
	
				The contents of the lib/ directory in the root of the EAR archive is a module. This is called the parent module.
			

	
				Each WAR and EJB JAR subdeployment is a module. These modules have the same behavior as any other module as well as implicit dependencies on the parent module.
			

	
				Subdeployments have implicit dependencies on the parent module and any other non-WAR subdeployments.
			

		The implicit dependencies on non-WAR subdeployments occur because JBoss EAP 6 has subdeployment class loader isolation disabled by default. Dependencies on the parent module persist, regardless of subdeployment class loader isolation.
	
Important

			No subdeployment ever gains an implicit dependency on a WAR subdeployment. Any subdeployment can be configured with explicit dependencies on another subdeployment as would be done for any other module.
		

		Subdeployment class loader isolation can be enabled if strict compatibility is required. This can be enabled for a single EAR deployment or for all EAR deployments. The Java EE 6 specification recommends that portable applications should not rely on subdeployments being able to access each other unless dependencies are explicitly declared as Class-Path entries in the MANIFEST.MF file of each subdeployment.
	

		Report a bug
	

 ⁠3.7.2. Subdeployment Class Loader Isolation

		Each subdeployment in an Enterprise Archive (EAR) is a dynamic module with its own class loader. By default a subdeployment can access the resources of other subdeployments.
	

		If a subdeployment is not to be allowed to access the resources of other subdeployments, strict subdeployment isolation can be enabled.
	

		Report a bug
	

 ⁠3.7.3. Enable Subdeployment Class Loader Isolation Within a EAR

		This task shows you how to enable subdeployment class loader isolation in an EAR deployment by using a special deployment descriptor in the EAR. This does not require any changes to be made to the application server and does not affect any other deployments.
	
Important

			Even when subdeployment class loader isolation is disabled it is not possible to add a WAR deployment as a dependency.
		

	Add the deployment descriptor file

				Add the jboss-deployment-structure.xml deployment descriptor file to the META-INF directory of the EAR if it doesn't already exist and add the following content:
			
​<jboss-deployment-structure>
​
​</jboss-deployment-structure>

	Add the <ear-subdeployments-isolated> element

				Add the <ear-subdeployments-isolated> element to the jboss-deployment-structure.xml file if it doesn't already exist with the content of true.
			
​<ear-subdeployments-isolated>true</ear-subdeployments-isolated>

Result:

			Subdeployment class loader isolation will now be enabled for this EAR deployment. This means that the subdeployments of the EAR will not have automatic dependencies on each of the non-WAR subdeployments.
		

		Report a bug
	

 ⁠3.8. Deploy Tag Library Descriptors (TLDs) in a Custom Module

Summary

			If you have multiple applications that use common Tag Library Descriptors (TLDs), it may be useful to separate the TLDs from the applications so that they are located in one central and unique location. This enables easier additions and updates to TLDs without necessarily having to update each individual application that uses them.
		

		This can be done by creating a custom JBoss EAP 6 module that contains the TLD JARs, and declaring a dependency on that module in the applications.
	
Prerequisites

				
						At least one JAR containing TLDs. Ensure that the TLDs are packed in META-INF.
					

		

 ⁠Procedure 3.7. Deploy TLDs in a Custom Module
	
				Using the Management CLI, connect to your JBoss EAP 6 instance and execute the following command to create the custom module containing the TLD JAR:
			
module add --name=MyTagLibs --resources=/path/to/TLDarchive.jar

				If the TLDs are packaged with classes that require dependencies, use the --dependencies=DEPENDENCY option to ensure that you specify those dependencies when creating the custom module.
			

				When creating the module, you can specify multiple JAR resources by separating each one with :. For example, --resources=/path/to/one.jar:/path/to/two.jar
			

	
				In your applications, declare a dependency on the new MyTagLibs custom module using one of the methods described in Section 3.2, “Add an Explicit Module Dependency to a Deployment”.
			
Important

					Ensure that you also import META-INF when declaring the dependency. For example, for MANIFEST.MF:
​Dependencies: com.MyTagLibs meta-inf

					 Or, for jboss-deployment-structure.xml, use the meta-inf attribute.
				

Result

			In your applications you can use TLDs that are contained in the new custom module.
		

		Report a bug
	

 ⁠3.9. Reference

 ⁠3.9.1. Implicit Module Dependencies

		The following table lists the modules that are automatically added to deployments as dependencies and the conditions that trigger the dependency.
	

 ⁠Table 3.1. Implicit Module Dependencies
	 Subsystem Responsible for Adding the Dependency 	 Dependencies That Are Always Added 	 Dependencies That Are Conditionally Added 	 Conditions That Trigger the Addition of the Dependency
	 Core Server 	 	
								javax.api
							

	
								ibm.jdk
							

	
								sun.jdk
							

	
								org.jboss.vfs
							

					 	

					

					 	

					

					
	 EE subsystem 	 	
								javaee.api
							

	
								org.hibernate.validator
							

	
								org.jboss.invocation
							

	
								org.jboss.as.ee
							

					 	

					

					 	

					

					
	 EJB 3 subsystem 	 	
								javax.ejb.api
							

	
								org.jboss.ejb-client
							

	
								org.jboss.iiop-client
							

	
								org.jboss.as.ejb3
							

					

					

					 	 	
								org.jboss.as.jacorb
							

					 	
						The presence of an ejb-jar.xml file within a valid location in the deployment, as described in the Java EE 6 specification.
					

					
						The presence of annotation-based EJBs, for example: @Stateless, @Stateful, @MessageDriven
					

					
	 JAX-RS (RESTEasy) subsystem 	 	
								javax.xml.bind.api
							

	
								javax.ws.rs.api
							

					 	 	
								org.jboss.resteasy.resteasy-atom-provider
							

	
								org.jboss.resteasy.resteasy-hibernatevalidator-provider
							

	
								org.jboss.resteasy.resteasy-jaxrs
							

	
								org.jboss.resteasy.resteasy-jaxb-provider
							

	
								org.jboss.resteasy.resteasy-jackson-provider
							

	
								org.jboss.resteasy.resteasy-jettison-provider
							

	
								org.jboss.resteasy.resteasy-jsapi
							

	
								org.jboss.resteasy.resteasy-multipart-provider
							

	
								org.jboss.resteasy.resteasy-yaml-provider
							

	
								org.codehaus.jackson.jackson-core-asl
							

					 	 The presence of JAX-RS annotations in the deployment.
	 JCA subsystem 	 	
								javax.resource.api
							

					 	 	
								javax.jms.api
							

	
								javax.validation.api
							

	
								org.jboss.ironjacamar.api
							

	
								org.jboss.ironjacamar.impl
							

	
								org.hibernate.validator
							

					 	 The deployment of a resource adapter (RAR) archive.
	 JPA (Hibernate) subsystem 	 	
								javax.persistence.api
							

					 	 	
								javaee.api
							

	
								org.jboss.as.jpa
							

	
								org.jboss.as.jpa.spi
							

	
								org.javassist
							

	
								org.jboss.as.jpa.hibernate:3 / org.jboss.as.jpa.hibernate3.HibernatePersistenceProviderAdaptor
							

	
								org.hibernate.envers
							

	
								org.jboss.as.naming
							

	
								org.jboss.jandex
							

					 	
						The presence of an @PersistenceUnit or @PersistenceContext annotation, or a <persistence-unit-ref> or <persistence-context-ref> element in a deployment descriptor.
					

					

					

					
						JBoss EAP 6 maps persistence provider names to module names. If you name a specific provider in the persistence.xml file, a dependency is added for the appropriate module. If this not the desired behavior, you can exclude it using a jboss-deployment-structure.xml file.
					

					
	 Logging subsystem 	 	
								org.jboss.logging
							

	
								org.apache.log4j
							

	
								org.apache.commons.logging
							

	
								org.slf4j
							

	
								org.jboss.logging.jul-to-slf4j-stub
							

					 	

					

					 	
						These dependencies are always added unless the add-logging-api-dependencies attribute is set to false.
					

					
	 SAR subsystem 	

					

					 	 	
								org.jboss.modules
							

	
								org.jboss.as.system-jmx
							

	
								org.jboss.common-beans
							

					 	 The deployment of a SAR archive.
	 Security subsystem 	 	
								org.picketbox
							

	
								org.jboss.as.security
							

	
								javax.security.jacc.api
							

	
								javax.security.auth.message.api
							

					 	

					

					 	

					

					
	 Web subsystem 	

					

					 	 	
								javax.servlet.api
							

	
								javax.servlet.jsp.api
							

	
								javax.websocket.api
							

	
								javax.servlet.jstl.api
							

	
								org.jboss.as.web
							

					 	 The deployment of a WAR archive. JavaServer Faces (JSF) is added only if it is used.
	 Web Services subsystem 	 	
								javax.jws.api
							

	
								javax.xml.soap.api
							

	
								javax.xml.ws.api
							

					 	 	
								org.jboss.ws.api
							

	
								org.jboss.ws.spi
							

					 	
						If it is not application client type, then it will add the conditional dependencies
					

					
	 Weld (CDI) Subsystem 	 	
								javax.enterprise.api
							

	
								javax.inject.api
							

					 	 	
								javax.persistence.api
							

	
								javaee.api
							

	
								org.javassist
							

	
								org.jboss.as.weld
							

	
								org.jboss.weld.core
							

	
								org.jboss.weld.api
							

	
								org.jboss.weld.spi
							

					 	 The presence of a beans.xml file in the deployment.
	 Container Managed Persistence (CMP) Subsystem 	

					

					 	 	
								org.jboss.as.cmp
							

					 	

		Report a bug
	

 ⁠3.9.2. Included Modules

		A table listing the JBoss EAP 6 included modules and whether they are supported can be found on the Customer Portal at https://access.redhat.com/articles/1122333.
	

		Report a bug
	

 ⁠3.9.3. JBoss Deployment Structure Deployment Descriptor Reference

		The key tasks that can be performed using this deployment descriptor are:
	
	
				Defining explicit module dependencies.
			

	
				Preventing specific implicit dependencies from loading.
			

	
				Defining additional modules from the resources of that deployment.
			

	
				Changing the subdeployment isolation behavior in that EAR deployment.
			

	
				Adding additional resource roots to a module in an EAR.
			

		Report a bug
	

 ⁠Chapter 4. Valves

 ⁠4.1. About Valves

		A Valve is a Java class that gets inserted into the request processing pipeline for an application. It is inserted in the pipeline before servlet filters. Valves can make changes to the request before passing it on or perform other processing such as authentication or even canceling the request.
	

		Valves can be configured at the server level or at the application level. The only difference is in how they are configured and packaged.
			
					Global Valves are configured at the server level and apply to all applications deployed to the server. Instructions to configure Global Valves are located in the Administration and Configuration Guide for JBoss EAP.
				

	
					Valves configured at the application level are packaged with the application deployment and only affect the specific application. Instructions to configure Valves at the application level are located in the Development Guide for JBoss EAP.
				

	

		Version 6.1.0 and later supports global valves.
	

		Report a bug
	

 ⁠4.2. About Global Valves

		A Global Valve is a valve that is inserted into the request processing pipeline of all deployed applications. A valve is made global by being packaged and installed as a static module in JBoss EAP 6. Global valves are configured in the web subsystem.
	

		Only version 6.1.0 and later supports global valves.
	

		For instructions on how to configure Global Valves, see the chapter entitled Global Valves in the Administration and Configuration Guide for JBoss EAP.
	

		Report a bug
	

 ⁠4.3. About Authenticator Valves

		An authenticator valve is a valve that authenticates the credentials of a request. Such valve is a sub-class of org.apache.catalina.authenticator.AuthenticatorBase and overrides the authenticate(Request request, Response response, LoginConfig config) method.
	

		This can be used to implement additional authentication schemes.
	

		Report a bug
	

 ⁠4.4. Configure a Web Application to use a Valve

		Valves that are not installed as global valves must be included with your application and configured in the jboss-web.xml deployment descriptor.
	
Important

			Valves that are installed as global valves are automatically applied to all deployed applications. For instructions on how to configure Global Valves, see Global Valves in the JBoss EAP Administration and Configuration Guide.
		

Prerequisites
	
				The valve must be created and included in your application's classpath. This can be done by either including it in the application's WAR file or any module that is added as a dependency. Examples of such modules include a static module installed on the server or a JAR file in the lib/ directory of an EAR archive if the WAR is deployed in an EAR.
			

	
				The application must include a jboss-web.xml deployment descriptor.
			

 ⁠Procedure 4.1. Configure an application for a local valve
	Configure a Valve

				Create a valve element containing the class-name child element in the application's jboss-web.xml file. The class-name is the name of the valve class.
​<valve>
​ <class-name>VALVE_CLASS_NAME</class-name>
​</valve>

				
 ⁠Example 4.1. Valve element configured in the jboss-web.xml file
​<valve>
​ <class-name>org.jboss.security.negotiation.NegotiationAuthenticator</class-name>
​</valve>

			

	Configure a Custom Valve

				If the valve has configurable parameters, add a param child element to the valve element for each parameter, specifying the param-name and param-value for each.
			

 ⁠Example 4.2. Custom valve element configured in the jboss-web.xml file
​<valve>
​ <class-name>org.jboss.web.tomcat.security.GenericHeaderAuthenticator</class-name>
​ <param>
​ <param-name>httpHeaderForSSOAuth</param-name>
​ <param-value>sm_ssoid,ct-remote-user,HTTP_OBLIX_UID</param-value>
​ </param>
​ <param>
​ <param-name>sessionCookieForSSOAuth</param-name>
​ <param-value>SMSESSION,CTSESSION,ObSSOCookie</param-value>
​ </param>
​</valve>

		When the application is deployed, the valve will be enabled for the application with the specified configuration.
	

 ⁠Example 4.3. jboss-web.xml valve configuration
​<valve>
​ <class-name>org.jboss.samplevalves.RestrictedUserAgentsValve</class-name>
​ <param>
​ <param-name>restrictedUserAgents</param-name>
​ <param-value>^.*MS Web Services Client Protocol.*$</param-value>
​ </param>
​ </valve>

		Report a bug
	

 ⁠4.5. Configure a Web Application to use an Authenticator Valve

		Configuring an application to use an authenticator valve requires the valve to be installed and configured (either local to the application or as a global valve) and the web.xml deployment descriptor of the application to be configured. In the simplest case, the web.xml configuration is the same as using BASIC authentication except the auth-method child element of login-config is set to the name of the valve performing the configuration.
	
Prerequisites
	
				Authentication valve must already be created.
			

	
				If the authentication valve is a global valve then it must already be installed and configured, and you must know the name that it was configured as.
			

	
				You need to know the realm name of the security realm that the application will use.
			

		If you do not know the valve or security realm name to use, ask your server administrator for this information.
	

 ⁠Procedure 4.2. Configure an Application to use an Authenticator Valve
	Configure the valve

				When using a local valve, it must be configured in the application's jboss-web.xml deployment descriptor. See Section 4.4, “Configure a Web Application to use a Valve”.
			

				When using a global valve, this is not necessary.
			

	Add security configuration to web.xml

				Add the security configuration to the web.xml file for your application, using the standard elements such as security-constraint, login-config, and security-role. In the login-config element, set the value of auth-method to the name of the authenticator valve. The realm-name element must also be set to the name of the JBoss security realm being used by the application.
			
​<login-config>
​ <auth-method>VALVE_NAME</auth-method>
​ <realm-name>REALM_NAME</realm-name>
​</login-config>

		When the application is deployed, the authentication of requests is handled by the configured authentication valve.
	

		Report a bug
	

 ⁠4.6. Create a Custom Valve

		A Valve is a Java class that gets inserted into the request processing pipeline for an application before the application's servlet filters. This can be used to modify the request or perform any other behavior. This task demonstrates the basic steps required for implementing a valve.
	

 ⁠Procedure 4.3. Create a Custom Valve
	Configure the Maven dependencies.

				Add the following dependency configuration to the project pom.xml file.
​<dependency>
​ <groupId>org.jboss.web</groupId>
​ <artifactId>jbossweb</artifactId>
​ <version>7.5.7.Final-redhat-1</version>
​ <scope>provided</scope>
​</dependency>

			
Note

					The jbossweb-VERSION.jar file should not be included in the application. It is available to the JBoss EAP server runtime classpath as a JBoss module at this location: EAP_HOME/modules/system/layers/base/org/jboss/as/web/main/jbossweb-7.5.7.Final-redhat-1.jar.
				

	Create the Valve class

				Create a subclass of org.apache.catalina.valves.ValveBase.
			
​package org.jboss.samplevalves;
​
​import org.apache.catalina.valves.ValveBase;
​import org.apache.catalina.connector.Request;
​import org.apache.catalina.connector.Response;
​
​public class RestrictedUserAgentsValve extends ValveBase {
​
​}

	Implement the invoke method.

				The invoke() method is called when this valve is executed in the pipeline. The request and response objects are passed as parameters. Perform any processing and modification of the request and response here.
			
​public void invoke(Request request, Response response)
​{
​
​}

	Invoke the next pipeline step.

				The last thing the invoke method must do is invoke the next step of the pipeline and pass the modified request and response objects along. This is done using the getNext().invoke() method
			
​getNext().invoke(request, response);

	Optional: Specify parameters.

				If the valve must be configurable, enable this by adding a parameter. Do this by adding an instance variable and a setter method for each parameter.
			
​private String restrictedUserAgents = null;
​
​public void setRestricteduserAgents(String mystring)
​{
​ this.restrictedUserAgents = mystring;
​}

	Review the completed code example.

				The class should now look like the following example.
			

				
 ⁠Example 4.4. Sample Custom Valve
​package org.jboss.samplevalves;
​
​import java.io.IOException;
​import java.util.regex.Pattern;
​
​import javax.servlet.ServletException;
​import org.apache.catalina.valves.ValveBase;
​import org.apache.catalina.connector.Request;
​import org.apache.catalina.connector.Response;
​
​public class RestrictedUserAgentsValve extends ValveBase
​{
​ private String restrictedUserAgents = null;
​
​ public void setRestrictedUserAgents(String mystring)
​ {
​ this.restrictedUserAgents = mystring;
​ }
​
​ public void invoke(Request request, Response response) throws IOException, ServletException
​ {
​ String agent = request.getHeader("User-Agent");
​ System.out.println("user-agent: " + agent + " : " + restrictedUserAgents);
​ if (Pattern.matches(restrictedUserAgents, agent))
​ {
​ System.out.println("user-agent: " + agent + " matches: " + restrictedUserAgents);
​ response.addHeader("Connection", "close");
​ }
​ getNext().invoke(request, response);
​ }
​}

			

		Report a bug
	

 ⁠Chapter 5. Logging for Developers

 ⁠5.1. Introduction

 ⁠5.1.1. About Logging

		Logging is the practice of recording a series of messages from an application that provide a record (or log) of the application's activities.
	

		Log messages provide important information for developers when debugging an application and for system administrators maintaining applications in production.
	

		Most modern logging frameworks in Java also include other details such as the exact time and the origin of the message.
	

		Report a bug
	

 ⁠5.1.2. Application Logging Frameworks Supported By JBoss LogManager

		JBoss LogManager supports the following logging frameworks:
	
	
				JBoss Logging - included with JBoss EAP 6
			

	
				Apache Commons Logging - http://commons.apache.org/logging/
			

	
				Simple Logging Facade for Java (SLF4J) - http://www.slf4j.org/
			

	
				Apache log4j - http://logging.apache.org/log4j/1.2/
			

	
				Java SE Logging (java.util.logging) - http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
			

		JBoss LogManager supports the following APIs:
	
	
				java.util.logging
			

	
				JBoss Logging
			

	
				Log4j
			

	
				SLF4J
			

	
				commons-logging
			

		JBoss LogManager also supports the following SPIs:
	
	
				java.util.logging Handler
			

	
				Log4j Appender
			

Note

			If you are using the Log4j API and a Log4J Appender, then Objects will be converted to string before being passed.
		

		Report a bug
	

 ⁠5.1.3. About Log Levels

		Log levels are an ordered set of enumerated values that indicate the nature and severity of a log message. The level of a given log message is specified by the developer using the appropriate methods of their chosen logging framework to send the message.
	

		JBoss EAP 6 supports all the log levels used by the supported application logging frameworks. The most commonly used six log levels are (in order of lowest to highest): TRACE, DEBUG, INFO, WARN, ERROR and FATAL.
	

		Log levels are used by log categories and handlers to limit the messages they are responsible for. Each log level has an assigned numeric value which indicates its order relative to other log levels. Log categories and handlers are assigned a log level and they only process log messages of that level or higher. For example a log handler with the level of WARN will only record messages of the levels WARN, ERROR and FATAL.
	

		Report a bug
	

 ⁠5.1.4. Supported Log Levels

 ⁠Table 5.1. Supported Log Levels
	 Log Level 	 Value 	 Description
	 FINEST 	 300 	
						-
					

					
	 FINER 	 400 	
						-
					

					
	 TRACE 	 400 	
						Use for messages that provide detailed information about the running state of an application. Log messages of TRACE are usually only captured when debugging an application.
					

					
	 DEBUG 	 500 	
						Use for messages that indicate the progress individual requests or activities of an application. Log messages of DEBUG are usually only captured when debugging an application.
					

					
	 FINE 	 500 	
						-
					

					
	 CONFIG 	 700 	
						-
					

					
	 INFO 	 800 	
						Use for messages that indicate the overall progress of the application. Often used for application startup, shutdown and other major lifecycle events.
					

					
	 WARN 	 900 	
						Use to indicate a situation that is not in error but is not considered ideal. May indicate circumstances that may lead to errors in the future.
					

					
	 WARNING 	 900 	
						-
					

					
	 ERROR 	 1000 	
						Use to indicate an error that has occurred that could prevent the current activity or request from completing but will not prevent the application from running.
					

					
	 SEVERE 	 1000 	
						-
					

					
	 FATAL 	 1100 	
						Use to indicate events that could cause critical service failure and application shutdown and possibly cause JBoss EAP 6 to shutdown.
					

					

		Report a bug
	

 ⁠5.1.5. Default Log File Locations

		These are the log files that get created for the default logging configurations. The default configuration writes the server log files using periodic log handlers
	

 ⁠Table 5.2. Default Log File for a standalone server
	 Log File 	 Description
	 EAP_HOME/standalone/log/server.log 	
						Server Log. Contains all server log messages, including server startup messages.
					

					
	 EAP_HOME/standalone/log/gc.log 	
						Garbage collection log. Contains details of all garbage collection.
					

					

 ⁠Table 5.3. Default Log Files for a managed domain
	 Log File 	 Description
	 EAP_HOME/domain/log/host-controller.log 	
						Host Controller boot log. Contains log messages related to the startup of the host controller.
					

					
	 EAP_HOME/domain/log/process-controller.log 	
						Process controller boot log. Contains log messages related to the startup of the process controller.
					

					
	 EAP_HOME/domain/servers/SERVERNAME/log/server.log 	
						The server log for the named server. Contains all log messages for that server, including server startup messages.
					

					

		Report a bug
	

 ⁠5.2. Logging with the JBoss Logging Framework

 ⁠5.2.1. About JBoss Logging

		JBoss Logging is the application logging framework that is included in JBoss EAP 6.
	

		JBoss Logging provide an easy way to add logging to an application. You add code to your application that uses the framework to send log messages in a defined format. When the application is deployed to an application server, these messages can be captured by the server and displayed and/or written to file according to the server's configuration.
	

		Report a bug
	

 ⁠5.2.2. Features of JBoss Logging

	
				Provides an innovative, easy to use "typed" logger.
			

	
				Full support for internationalization and localization. Translators work with message bundles in properties files while developers can work with interfaces and annotations.
			

	
				Build-time tooling to generate typed loggers for production, and runtime generation of typed loggers for development.
			

		Report a bug
	

 ⁠5.2.3. Add Logging to an Application with JBoss Logging

		To log messages from your application you create a Logger object (org.jboss.logging.Logger) and call the appropriate methods of that object. This task describes the steps required to add support for this to your application.
	
Prerequisites
	
				If you are using Maven as your build system, the project must be configured to include the JBoss Maven Repository. Refer to Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”
			

	
				The JBoss Logging JAR files must be in the build path for your application. How you do this depends on whether you build your application using Red Hat JBoss Developer Studio or with Maven.
			
	
						When building using Red Hat JBoss Developer Studio select Properties from the Project menu, then select Targeted Runtimes and ensure the runtime for JBoss EAP 6 is checked.
					

	
						When building using Maven add the following dependency configuration to your project's pom.xml file.
					
​<dependency>
​ <groupId>org.jboss.logging</groupId>
​ <artifactId>jboss-logging</artifactId>
​ <version>3.1.2.GA-redhat-1</version>
​ <scope>provided</scope>
​</dependency>

				You do not need to include the JARs in your built application because JBoss EAP 6 provides them to deployed applications.
			

 ⁠Procedure 5.1. Add Logging to an Application

			Complete the following procedure for each class to which you want to add logging:
		
	Add imports

				Add the import statements for the JBoss Logging class namespaces that you will be using. At a minimum you will need to import import org.jboss.logging.Logger.
​import org.jboss.logging.Logger;

			

	Create a Logger object

				Create an instance of org.jboss.logging.Logger and initialize it by calling the static method Logger.getLogger(Class). Red Hat recommends creating this as a single instance variable for each class.
			
​private static final Logger LOGGER = Logger.getLogger(HelloWorld.class);

	Add logging messages

				Add calls to the methods of the Logger object to your code where you want it to send log messages. The Logger object has many different methods with different parameters for different types of messages. The easiest to use are:
			
	 debug(Object message)
	 info(Object message)
	 error(Object message)
	 trace(Object message)
	 fatal(Object message)

				These methods send a log message with the corresponding log level and the message parameter as a string.
			
​LOGGER.error("Configuration file not found.");

				For the complete list of JBoss Logging methods refer to the org.jboss.logging package in the JBoss EAP 6 API Documentation.
			

 ⁠Example 5.1. Using JBoss Logging when opening a properties file

			This example shows an extract of code from a class that loads customized configuration for an application from a properties file. If the specified file is not found, an ERROR level log message is recorded.
		
​import org.jboss.logging.Logger;
​public class LocalSystemConfig
​{
​ private static final Logger LOGGER = Logger.getLogger(LocalSystemConfig.class);
​
​ public Properties openCustomProperties(String configname) throws CustomConfigFileNotFoundException
​ {
​ Properties props = new Properties();
​ try
​ {
​ LOGGER.info("Loading custom configuration from "+configname);
​ props.load(new FileInputStream(configname));
​ }
​ catch(IOException e) //catch exception in case properties file does not exist
​ {
​ LOGGER.error("Custom configuration file ("+configname+") not found. Using defaults.");
​ throw new CustomConfigFileNotFoundException(configname);
​ }
​
​ return props;
​ }

		Report a bug
	

 ⁠5.3. Per-deployment Logging

 ⁠5.3.1. About Per-deployment Logging

		Per-deployment logging allows a developer to configure in advance the logging configuration for their application. When the application is deployed, logging begins according to the defined configuration. The log files created through this configuration contain information only about the behavior of the application.
	

		This approach has advantages and disadvantages over using system-wide logging. An advantage is that the administrator of the JBoss EAP instance does not need to configure logging. A disadvantage is that the per-deployment logging configuration is read only on startup and so cannot be changed at runtime.
	

		Report a bug
	

 ⁠5.3.2. Add Per-deployment Logging to an Application

		To configure per-deployment logging, add the logging configuration file logging.properties into the deployment. This configuration file is recommended because it can be used with any logging facade as the JBoss Log Manager is the underlying log manager used.
	

		If you are using Simple Logging Facade for Java (SLF4J) or Apache log4j, the logging.properties configuration file is suitable. If you are using Apache log4j appenders then the configuration file log4j.properties is required. The configuration file jboss-logging.properties is supported only for legacy deployments.
	

 ⁠Procedure 5.2. Add Configuration File to the Application
	The directory into which the configuration file is added depends on the deployment method: EAR, WAR or JAR.

					EAR deployment

						Copy the logging configuration file to the META-INF directory.
					

				 	WAR or JAR deployment

						Copy the logging configuration file to either the META-INF or WEB-INF/classes directory.
					

			

		Report a bug
	

 ⁠5.3.3. Example logging.properties File

Additional loggers to configure (the root logger is always configured)
loggers=
Root logger configuration
logger.level=INFO
logger.handlers=FILE

A handler configuration
handler.FILE=org.jboss.logmanager.handlers.FileHandler
handler.FILE.level=ALL
handler.FILE.formatter=PATTERN
handler.FILE.properties=append,autoFlush,enabled,suffix,fileName
handler.FILE.constructorProperties=fileName,append
handler.FILE.append=true
handler.FILE.autoFlush=true
handler.FILE.enabled=true
handler.FILE.fileName=${jboss.server.log.dir}/app.log

The formatter to use
formatter.PATTERN=org.jboss.logmanager.formatters.PatternFormatter
formatter.PATTERN.properties=pattern
formatter.PATTERN.constructorProperties=pattern
formatter.PATTERN.pattern=%d %-5p %c: %m%n

		Report a bug
	

 ⁠5.4. Logging Profiles

 ⁠5.4.1. About Logging Profiles

Important

			Logging profiles are only available in version 6.1.0 and later. They cannot be configured using the management console.
		

		Logging profiles are independent sets of logging configuration that can be assigned to deployed applications. As with the regular logging subsystem, a logging profile can define handlers, categories and a root logger but cannot refer to configuration in other profiles or the main logging subsystem. The design of logging profiles mimics the logging subsystem for ease of configuration.
	

		The use of logging profiles allows administrators to create logging configuration that are specific to one or more applications without affecting any other logging configuration. Because each profile is defined in the server configuration, the logging configuration can be changed without requiring that the affected applications be redeployed.
	

		Each logging profile can have the following configuration:
	
	
				A unique name. This is required.
			

	
				Any number of log handlers.
			

	
				Any number of log categories.
			

	
				Up to one root logger.
			

		An application can specify a logging profile to use in its MANIFEST.MF file, using the logging-profile attribute.
	

		Report a bug
	

 ⁠5.4.2. Specify a Logging Profile in an Application

		An application specifies the logging profile to use in its MANIFEST.MF file.
	
Prerequisites:
	
				You must know the name of the logging profile that has been setup on the server for this application to use. Ask your server administrator for the name of the profile to use.
			

 ⁠Procedure 5.3. Add Logging Profile configuration to an Application
	Edit MANIFEST.MF

				If your application does not have a MANIFEST.MF file: create one with the following content, replacing NAME with the required profile name.
			
Manifest-Version: 1.0
Logging-Profile: NAME

				If your application already has a MANIFEST.MF file: add the following line to it, replacing NAME with the required profile name.
			
Logging-Profile: NAME

Note

			If you are using Maven and the maven-war-plugin, you can put your MANIFEST.MF file in src/main/resources/META-INF/ and add the following configuration to your pom.xml file.
		
​
​<plugin>
​ <artifactId>maven-war-plugin</artifactId>
​ <configuration>
​ <archive>
​ <manifestFile>src/main/resources/META-INF/MANIFEST.MF</manifestFile>
​ </archive>
​ </configuration>
​</plugin>

		When the application is deployed it will use the configuration in the specified logging profile for its log messages.
	

		Report a bug
	

 ⁠Chapter 6. Internationalization and Localization

 ⁠6.1. Introduction

 ⁠6.1.1. About Internationalization

		Internationalization is the process of designing software so that it can be adapted to different languages and regions without engineering changes.
	

		Report a bug
	

 ⁠6.1.2. About Localization

		Localization is the process of adapting internationalized software for a specific region or language by adding locale-specific components and translations of text.
	

		Report a bug
	

 ⁠6.2. JBoss Logging Tools

 ⁠6.2.1. Overview

 ⁠6.2.1.1. JBoss Logging Tools Internationalization and Localization

		JBoss Logging Tools is a Java API that provides support for the internationalization and localization of log messages, exception messages, and generic strings. In addition to providing a mechanism for translation, JBoss Logging tools also provides support for unique identifiers for each log message.
	

		Internationalized messages and exceptions are created as method definitions inside of interfaces annotated using org.jboss.logging annotations. It is not necessary to implement the interfaces, JBoss Logging Tools does this at compile time. Once defined you can use these methods to log messages or obtain exception objects in your code.
	

		Internationalized logging and exception interfaces created with JBoss Logging Tools can be localized by creating a properties file for each bundle containing the translations for a specific language and region. JBoss Logging Tools can generate template property files for each bundle that can then be edited by a translator.
	

		JBoss Logging Tools creates an implementation of each bundle for each corresponding translations property file in your project. All you have to do is use the methods defined in the bundles and JBoss Logging Tools ensures that the correct implementation is invoked for your current regional settings.
	

		Message ids and project codes are unique identifiers that are prepended to each log message. These unique identifiers can be used in documentation to make it easy to find information about log messages. With adequate documentation, the meaning of a log message can be determined from the identifiers regardless of the language that the message was written in.
	

		Report a bug
	

 ⁠6.2.1.2. JBoss Logging Tools Quickstart

		The JBoss Logging Tools quickstart, logging-tools, contains a simple Maven project that demonstrates the features of JBoss Logging Tools. It has been used extensively in this documentation for code samples.
	

		Refer to this quickstart for a complete working demonstration of all the features described in this documentation.
	

		Report a bug
	

 ⁠6.2.1.3. Message Logger

		A Message Logger is an interface that is used to define internationalized log messages. A Message Logger interface is annotated with @org.jboss.logging.MessageLogger.
	

		Report a bug
	

 ⁠6.2.1.4. Message Bundle

		A message bundle is an interface that can be used to define generic translatable messages and Exception objects with internationalized messages . A message bundle is not used for creating log messages.
	

		A message bundle interface is annotated with @org.jboss.logging.MessageBundle.
	

		Report a bug
	

 ⁠6.2.1.5. Internationalized Log Messages

		Internationalized Log Messages are log messages created by defining a method in a Message Logger. The method must be annotated with the @LogMessage and @Message annotations and specify the log message using the value attribute of @Message. Internationalized log messages are localized by providing translations in a properties file.
	

		JBoss Logging Tools generates the required logging classes for each translation at compile time and invokes the correct methods for the current locale at runtime.
	

		Report a bug
	

 ⁠6.2.1.6. Internationalized Exceptions

		An internationalized exception is an exception object returned from a method defined in a message bundle. Message bundle methods that return Java Exception objects can be annotated to define a default exception message. The default message is replaced with a translation if one is found in a matching properties file for the current locale. Internationalized exceptions can also have project codes and message ids assigned to them.
	

		Report a bug
	

 ⁠6.2.1.7. Internationalized Messages

		An internationalized message is a string returned from a method defined in a message bundle. Message bundle methods that return Java String objects can be annotated to define the default content of that String, known as the message. The default message is replaced with a translation if one is found in a matching properties file for the current locale.
	

		Report a bug
	

 ⁠6.2.1.8. Translation Properties Files

		Translation properties files are Java properties files that contain the translations of messages from one interface for one locale, country, and variant. Translation properties files are used by the JBoss Logging Tools to generated the classes that return the messages.
	

		Report a bug
	

 ⁠6.2.1.9. JBoss Logging Tools Project Codes

		Project codes are strings of characters that identify groups of messages. They are displayed at the beginning of each log message, prepended to the message Id. Project codes are defined with the projectCode attribute of the @MessageLogger annotation.
	

		Report a bug
	

 ⁠6.2.1.10. JBoss Logging Tools Message IDs

		Message IDs are numbers, that when combined with a project code, uniquely identify a log message. Message IDs are displayed at the beginning of each log message, appended to the project code for the message. Message IDs are defined with the id attribute of the @Message annotation.
	

		Report a bug
	

 ⁠6.2.2. Creating Internationalized Loggers, Messages and Exceptions

 ⁠6.2.2.1. Create Internationalized Log Messages

		This task shows you how to use JBoss Logging Tools to create internationalized log messages by creating MessageLogger interfaces. It does not cover all optional features or the localization of those log messages.
	

		Refer to the logging-tools quick start for a complete example.
	
Prerequisites:
	
				You must already have a working Maven project. Refer to Section 6.2.6.1, “JBoss Logging Tools Maven Configuration”.
			

	
				The project must have the required Maven configuration for JBoss Logging Tools.
			

 ⁠Procedure 6.1. Create an Internationalized Log Message Bundle
	Create an Message Logger interface

				Add a Java interface to your project to contain the log message definitions. Name the interface descriptively for the log messages that will be defined in it.
			

				The log message interface has the following requirements:
			
	
						It must be annotated with @org.jboss.logging.MessageLogger.
					

	
						It must extend org.jboss.logging.BasicLogger.
					

	
						The interface must define a field of that is a typed logger that implements this interface. Do this with the getMessageLogger() method of org.jboss.logging.Logger.
					

​package com.company.accounts.loggers;
​
​import org.jboss.logging.BasicLogger;
​import org.jboss.logging.Logger;
​import org.jboss.logging.MessageLogger;
​
​@MessageLogger(projectCode="")
​interface AccountsLogger extends BasicLogger
​{
​ AccountsLogger LOGGER = Logger.getMessageLogger(
​ AccountsLogger.class,
​ AccountsLogger.class.getPackage().getName());
​}

	Add method definitions

				Add a method definition to the interface for each log message. Name each method descriptively for the log message that it represents.
			

				Each method has the following requirements:
			
	
						The method must return void.
					

	
						It must be annotated with the @org.jboss.logging.LogMessage annotation.
					

	
						It must be annotated with the @org.jboss.logging.Message annotation.
					

	
						The value attribute of @org.jboss.logging.Message contains the default log message. This is the message that is used if no translation is available.
					

​@LogMessage
​@Message(value = "Customer query failed, Database not available.")
​void customerQueryFailDBClosed();

				The default log level is INFO.
			

	Invoke the methods

				Add the calls to the interface methods in your code where the messages must be logged from. It is not necessary to create implementations of the interfaces, the annotation processor does this for you when the project is compiled.
			
​AccountsLogger.LOGGER.customerQueryFailDBClosed();

				The custom loggers are sub-classed from BasicLogger so the logging methods of BasicLogger (debug(), error() etc) can also be used. It is not necessary to create other loggers to log non-internationalized messages.
			
​AccountsLogger.LOGGER.error("Invalid query syntax.");

Result

			The project now supports one or more internationalized loggers that can be localized.
		

		Report a bug
	

 ⁠6.2.2.2. Create and Use Internationalized Messages

		This task shows you how to create internationalized messages and how to use them. This task does not cover all optional features or the process of localizing those messages.
	

		Refer to the logging-tools quickstart for a complete example.
	
Prerequisites
	
				You have a working Maven project using the JBoss EAP 6 repository. Refer to Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.
			

	
				The required Maven configuration for JBoss Logging Tools has been added. Refer to Section 6.2.6.1, “JBoss Logging Tools Maven Configuration”.
			

 ⁠Procedure 6.2. Create and Use Internationalized Messages
	Create an interface for the exceptions

				JBoss Logging Tools defines internationalized messages in interfaces. Name each interface descriptively for the messages that will be defined in it.
			

				The interface has the following requirements:
			
	
						It must be declared as public
					

	
						It must be annotated with @org.jboss.logging.MessageBundle.
					

	
						The interface must define a field that is a message bundle of the same type as the interface.
					

​@MessageBundle(projectCode="")
​public interface GreetingMessageBundle
​{
​ GreetingMessageBundle MESSAGES = Messages.getBundle(GreetingMessageBundle.class);
​}

	Add method definitions

				Add a method definition to the interface for each message. Name each method descriptively for the message that it represents.
			

				Each method has the following requirements:
			
	
						It must return an object of type String.
					

	
						It must be annotated with the @org.jboss.logging.Message annotation.
					

	
						The value attribute of @org.jboss.logging.Message must be set to the default message. This is the message that is used if no translation is available.
					

​@Message(value = "Hello world.")
​ String helloworldString();

	Invoke methods

				Invoke the interface methods in your application where you need to obtain the message.
			
​System.console.out.println(helloworldString());

		RESULT: the project now supports internationalized message strings that can be localized.
	

		Report a bug
	

 ⁠6.2.2.3. Create Internationalized Exceptions

		This task shows you how to create internationalized exceptions and how to use them. This task does not cover all optional features or the process of localization of those exceptions.
	

		Refer to the logging-tools quick start for a complete example.
	

		For this task it is assumed that you already have a software project, that is being built in either Red Hat JBoss Developer Studio or Maven, to which you want to add internationalized exceptions.
	

 ⁠Procedure 6.3. Create and use Internationalized Exceptions
	Add JBoss Logging Tools configuration

				Add the required project configuration to support JBoss Logging Tools. Refer to Section 6.2.6.1, “JBoss Logging Tools Maven Configuration”
			

	Create an interface for the exceptions

				JBoss Logging Tools defines internationalized exceptions in interfaces. Name each interface descriptively for the exceptions that will be defined in it.
			

				The interface has the following requirements:
			
	
						It must be declared as public.
					

	
						It must be annotated with @org.jboss.logging.MessageBundle.
					

	
						The interface must define a field that is a message bundle of the same type as the interface.
					

​@MessageBundle(projectCode="")
​public interface ExceptionBundle
​{
​ ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);
​}

	Add method definitions

				Add a method definition to the interface for each exception. Name each method descriptively for the exception that it represents.
			

				Each method has the following requirements:
			
	
						It must return an object of type Exception or a sub-type of Exception.
					

	
						It must be annotated with the @org.jboss.logging.Message annotation.
					

	
						The value attribute of @org.jboss.logging.Message must be set to the default exception message. This is the message that is used if no translation is available.
					

	
						If the exception being returned has a constructor that requires parameters in addition to a message string, then those parameters must be supplied in the method definition using the @Param annotation. The parameters must be the same type and order as the constructor.
					

​@Message(value = "The config file could not be opened.")
​IOException configFileAccessError();
​
​@Message(id = 13230, value = "Date string '%s' was invalid.")
​ParseException dateWasInvalid(String dateString, @Param int errorOffset);

	Invoke methods

				Invoke the interface methods in your code where you need to obtain one of the exceptions. The methods do not throw the exceptions, they return the exception object which you can then throw.
			
​try
​{
​ propsInFile=new File(configname);
​ props.load(new FileInputStream(propsInFile));
​}
​catch(IOException ioex) //in case props file does not exist
​{
​ throw ExceptionBundle.EXCEPTIONS.configFileAccessError();
​}

		RESULT: the project now supports internationalized exceptions that can be localized.
	

		Report a bug
	

 ⁠6.2.3. Localizing Internationalized Loggers, Messages and Exceptions

 ⁠6.2.3.1. Generate New Translation Properties Files with Maven

		Projects that are being built with Maven can generate empty translation property files for each Message Logger and Message Bundle it contains. These files can then be used as new translation property files.
	

		The following procedure shows how to configure a Maven project to generate new translation property files.
	

		Refer to the logging-tools quick start for a complete example.
	
Prerequisites:
	
				You must already have a working Maven project.
			

	
				The project must already be configured for JBoss Logging Tools.
			

	
				The project must contain one or more interfaces that define internationalized log messages or exceptions.
			

 ⁠Procedure 6.4. Generate New Translation Properties Files with Maven
	Add Maven configuration

				Add the -AgenereatedTranslationFilePath compiler argument to the Maven compiler plug-in configuration and assign it the path where the new files will be created.
			
​<plugin>
​ <groupId>org.apache.maven.plugins</groupId>
​ <artifactId>maven-compiler-plugin</artifactId>
​ <version>2.3.2</version>
​ <configuration>
​ <source>1.6</source>
​ <target>1.6</target>
​ <compilerArgument>
​ -AgeneratedTranslationFilesPath=${project.basedir}/target/generated-translation-files
​ </compilerArgument>
​ <showDeprecation>true</showDeprecation>
​ </configuration>
​</plugin>

				The above configuration will create the new files in the target/generated-translation-files directory of your Maven project.
			

	Build the project

				Build the project using Maven.
			
[Localhost]$ mvn compile

		One properties files is created per interface annotated with @MessageBundle or @MessageLogger. The new files are created in a subdirectory corresponding to the Java package that each interface is declared in.
	

		Each new file is named using the following syntax where InterfaceName is the name of the interface that this file was generated for: InterfaceName.i18n_locale_COUNTRY_VARIANT.properties.
	

		These files can now be copied into your project as the basis for new translations.
	

		Report a bug
	

 ⁠6.2.3.2. Translate an Internationalized Logger, Exception or Message

		Logging and Exception messages defined in interfaces using JBoss Logging Tools can have translations provided in properties files.
	

		The following procedure shows how to create and use a translation properties file. It is assumed that you already have a project with one or more interfaces defined for internationalized exceptions or log messages.
	

		Refer to the logging-tools quick start for a complete example.
	
Prerequisites
	
				You must already have a working Maven project.
			

	
				The project must already be configured for JBoss Logging Tools.
			

	
				The project must contain one or interfaces that define internationalized log messages or exceptions.
			

	
				The project must be configured to generate template translation property files.
			

 ⁠Procedure 6.5. Translate an internationalized logger, exception or message
	Generate the template properties files

				Run the mvn compile command to create the template translation properties files.
			

	Add the template file to your project

				Copy the template for the interfaces that you want to translate from the directory where they were created into the src/main/resources directory of your project. The properties files must be in the same package as the interfaces they are translating.
			

	Rename the copied template file

				Rename the copy of the template file according to the translation it will contain. E.g. GreeterLogger.i18n_fr_FR.properties.
			

	Translate the contents of the template.

				Edit the new translation properties file to contain the appropriate translation.
			
Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyé.

				Repeat steps two, three, and four for each translation of each bundle being performed.
			

		RESULT: The project now contains translations for one or more message or logger bundles. Building the project will generate the appropriate classes to log messages with the supplied translations. It is not necessary to explicitly invoke methods or supply parameters for specific languages, JBoss Logging Tools automatically uses the correct class for the current locale of the application server.
	

		The source code of the generated classes can be viewed under target/generated-sources/annotations/.
	

		Report a bug
	

 ⁠6.2.4. Customizing Internationalized Log Messages

 ⁠6.2.4.1. Add Message IDs and Project Codes to Log Messages

		This task shows how to add message IDs and project codes to internationalized log messages created using JBoss Logging Tools. A log message must have both a project code and message ID for them to be displayed in the log. If a message does not have both a project code and a message ID, then neither is displayed.
	

		Refer to the logging-tools quick start for a complete example.
	
Prerequisites
	
				You must already have a project with internationalized log messages. Refer to Section 6.2.2.1, “Create Internationalized Log Messages”.
			

	
				You need to know the project code you will be using. You can use a single project code, or define different ones for each interface.
			

 ⁠Procedure 6.6. Add message IDs and Project Codes to Log Messages
	Specify the project code for the interface.

				Specify the project code using the projectCode attribute of the @MessageLogger annotation attached to a custom logger interface. All messages that are defined in the interface will use that project code.
			
​@MessageLogger(projectCode="ACCNTS")
​interface AccountsLogger extends BasicLogger
​{
​
​}

	Specify Message IDs

				Specify a message ID for each message using the id attribute of the @Message annotation attached to the method that defines the message.
			
​@LogMessage
​@Message(id=43, value = "Customer query failed, Database not available.") void customerQueryFailDBClosed();

		The log messages that have both a message ID and project code associated with them will prepend these to the logged message.
	
10:55:50,638 INFO [com.company.accounts.ejb] (MSC service thread 1-4) ACCNTS000043: Customer query failed, Database not available.

		Report a bug
	

 ⁠6.2.4.2. Specify the Log Level for a Message

		The default log level of a message defined by an interface by JBoss Logging Tools is INFO. A different log level can be specified with the level attribute of the @LogMessage annotation attached to the logging method.
	

 ⁠Procedure 6.7. Specify the log level for a message
	Specify level attribute

				Add the level attribute to the @LogMessage annotation of the log message method definition.
			

	Assign log level

				Assign the level attribute the value of the log level for this message. The valid values for level are the six enumerated constants defined in org.jboss.logging.Logger.Level: DEBUG, ERROR, FATAL, INFO, TRACE, and WARN.
			
​Import org.jboss.logging.Logger.Level;
​
​@LogMessage(level=Level.ERROR)
​@Message(value = "Customer query failed, Database not available.")
​void customerQueryFailDBClosed();

		Invoking the logging method in the above sample will produce a log message at the level of ERROR.
	
10:55:50,638 ERROR [com.company.app.Main] (MSC service thread 1-4)
 Customer query failed, Database not available.

		Report a bug
	

 ⁠6.2.4.3. Customize Log Messages with Parameters

		Custom logging methods can define parameters. These parameters are used to pass additional information to be displayed in the log message. Where the parameters appear in the log message is specified in the message itself using either explicit or ordinary indexing.
	

 ⁠Procedure 6.8. Customize log messages with parameters
	Add parameters to method definition

				Parameters of any type can be added to the method definition. Regardless of type, the String representation of the parameter is what is displayed in the message.
			

	Add parameter references to the log message

				References can use explicit or ordinary indexes.
			
	
						To use ordinary indexes, insert the characters %s in the message string where you want each parameter to appear. The first instance of %s will insert the first parameter, the second instance will insert the second parameter, and so on.
					

	
						To use explicit indexes, insert the characters %{#$}s in the message, where # indicates the number of the parameter you wish to appear.
					

Important

			Using explicit indexes allows the parameter references in the message to be in a different order than they are defined in the method. This is important for translated messages which may require different ordering of parameters.
		

		The number of parameters must match the number of references to the parameters in the specified message or the code will not compile. A parameter marked with the @Cause annotation is not included in the number of parameters.
	

 ⁠Example 6.1. Message parameters using ordinary indexes
​@LogMessage(level=Logger.Level.DEBUG)
​@Message(id=2, value="Customer query failed, customerid:%s, user:%s")
​void customerLookupFailed(Long customerid, String username);

 ⁠Example 6.2. Message parameters using explicit indexes
​@LogMessage(level=Logger.Level.DEBUG)
​@Message(id=2, value="Customer query failed, user:%2$s, customerid:%1$s")
​void customerLookupFailed(Long customerid, String username);

		Report a bug
	

 ⁠6.2.4.4. Specify an Exception as the Cause of a Log Message

		JBoss Logging Tools allows one parameter of a custom logging method to be defined as the cause of the message. This parameter must be of the type Throwable or any of its sub-classes and is marked with the @Cause annotation. This parameter cannot be referenced in the log message like other parameters and is displayed after the log message.
	

		The following procedure shows how to update a logging method using the @Cause parameter to indicate the "causing" exception. It is assumed that you have already created internationalized logging messages to which you want to add this functionality.
	

 ⁠Procedure 6.9. Specify an exception as the cause of a log message
	Add the parameter

				Add a parameter of the type Throwable or a sub-class to the method.
			
​@LogMessage
​@Message(id=404, value="Loading configuration failed. Config file:%s")
​void loadConfigFailed(Exception ex, File file);

	Add the annotation

				Add the @Cause annotation to the parameter.
			
​import org.jboss.logging.Cause
​
​@LogMessage
​@Message(value = "Loading configuration failed. Config file: %s")
​void loadConfigFailed(@Cause Exception ex, File file);

	Invoke the method

				When the method is invoked in your code, an object of the correct type must be passed and will be displayed after the log message.
			
​try
​{
​ confFile=new File(filename);
​ props.load(new FileInputStream(confFile));
​}
​catch(Exception ex) //in case properties file cannot be read
​{
​ ConfigLogger.LOGGER.loadConfigFailed(ex, filename);
​}

				Below is the output of the above code samples if the code threw an exception of type FileNotFoundException.
			
10:50:14,675 INFO [com.company.app.Main] (MSC service thread 1-3) Loading configuration failed. Config file: customised.properties
java.io.FileNotFoundException: customised.properties (No such file or directory)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:120)
 at com.company.app.demo.Main.openCustomProperties(Main.java:70)
 at com.company.app.Main.go(Main.java:53)
 at com.company.app.Main.main(Main.java:43)

		Report a bug
	

 ⁠6.2.5. Customizing Internationalized Exceptions

 ⁠6.2.5.1. Add Message IDs and Project Codes to Exception Messages

		The following procedure shows the steps required to add message IDs and project codes to internationalized Exception messages created using JBoss Logging Tools.
	

		Message IDs and project codes are unique identifiers that are prepended to each message displayed by internationalized exceptions. These identifying codes make it possible to create a reference of all the exception messages for an application so that someone can lookup the meaning of an exception message written in language that they do not understand.
	
Prerequisites
	
				You must already have a project with internationalized exceptions. Refer to Section 6.2.2.3, “Create Internationalized Exceptions”.
			

	
				You need to know the project code you will be using. You can use a single project code, or define different ones for each interface.
			

 ⁠Procedure 6.10. Add Message IDs and Project Codes to Exception Messages
	Specify a project code

				Specify the project code using the projectCode attribute of the @MessageBundle annotation attached to a exception bundle interface. All messages that are defined in the interface will use that project code.
			
​@MessageBundle(projectCode="ACCTS")
​interface ExceptionBundle
​{
​ ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);
​}

	Specify message IDs

				Specify a message ID for each exception using the id attribute of the @Message annotation attached to the method that defines the exception.
			
​@Message(id=143, value = "The config file could not be opened.")
​IOException configFileAccessError();

Important

			A message that has both a project code and message ID displays them prepended to the message. If a message does not have both a project code and a message ID, neither is displayed.
		

 ⁠Example 6.3. Creating internationalized exceptions

			This exception bundle interface has the project code of ACCTS, with a single exception method with the ID of 143.
		
​@MessageBundle(projectCode="ACCTS")
​interface ExceptionBundle
​{
​ ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);
​
​ @Message(id=143, value = "The config file could not be opened.")
​ IOException configFileAccessError();
​}

			The exception object can be obtained and thrown using the following code.
		
​throw ExceptionBundle.EXCEPTIONS.configFileAccessError();

			This would display an exception message like the following:
		
Exception in thread "main" java.io.IOException: ACCTS000143: The config file could not be opened.
at com.company.accounts.Main.openCustomProperties(Main.java:78)
at com.company.accounts.Main.go(Main.java:53)
at com.company.accounts.Main.main(Main.java:43)

		Report a bug
	

 ⁠6.2.5.2. Customize Exception Messages with Parameters

		Exception bundle methods that define exceptions can specify parameters to pass additional information to be displayed in the exception message. Where the parameters appear in the exception message is specified in the message itself using either explicit or ordinary indexing.
	

		The following procedure shows the steps required to use method parameters to customize method exceptions.
	

 ⁠Procedure 6.11. Customize an exception message with parameters
	Add parameters to method definition

				Parameters of any type can be added to the method definition. Regardless of type, the String representation of the parameter is what is displayed in the message.
			

	Add parameter references to the exception message

				References can use explicit or ordinary indexes.
			
	
						To use ordinary indexes, insert the characters %s in the message string where you want each parameter to appear. The first instance of %s will insert the first parameter, the second instance will insert the second parameter, and so on.
					

	
						To use explicit indexes, insert the characters %{#$}s in the message where #indicates the number of the parameter which you wish to appear.
					

				Using explicit indexes allows the parameter references in the message to be in a different order than they are defined in the method. This is important for translated messages which may require different ordering of parameters.
			

Important

			The number of parameters must match the number of references to the parameters in the specified message or the code will not compile. A parameter marked with the @Cause annotation is not included in the number of parameters.
		

 ⁠Example 6.4. Using ordinary indexes
​@Message(id=2, value="Customer query failed, customerid:%s, user:%s")
​void customerLookupFailed(Long customerid, String username);

 ⁠Example 6.5. Using explicit indexes
​@Message(id=2, value="Customer query failed, user:%2$s, customerid:%1$s")
​void customerLookupFailed(Long customerid, String username);

		Report a bug
	

 ⁠6.2.5.3. Specify One Exception as the Cause of Another Exception

		Exceptions returned by exception bundle methods can have another exception specified as the underlying cause. This is done by adding a parameter to the method and annotating the parameter with @Cause. This parameter is used to pass the causing exception. This parameter cannot be referenced in the exception message.
	

		The following procedure shows how to update a method from an exception bundle using the @Cause parameter to indicate the causing exception. It is assumed that you have already created an exception bundle to which you want to add this functionality.
	

 ⁠Procedure 6.12. Specify one exception as the cause of another exception
	Add the parameter

				Add the a parameter of the type Throwable or a sub-class to the method.
			
​@Message(id=328, value = "Error calculating: %s.")
​ArithmeticException calculationError(Throwable cause, String msg);

	Add the annotation

				Add the @Cause annotation to the parameter.
			
​import org.jboss.logging.Cause
​
​@Message(id=328, value = "Error calculating: %s.")
​ArithmeticException calculationError(@Cause Throwable cause, String msg);

	Invoke the method

				Invoke the interface method to obtain an exception object. The most common use case is to throw a new exception from a catch block using the caught exception as the cause.
			
​try
​{
​ ...
​}
​catch(Exception ex)
​{
​ throw ExceptionBundle.EXCEPTIONS.calculationError(
​ ex, "calculating payment due per day");
​}

 ⁠Example 6.6. Specify one exception as the cause of another exception

			This exception bundle defines a single method that returns an exception of type ArithmeticException.
		
​@MessageBundle(projectCode = "TPS")
​interface CalcExceptionBundle
​{
​	CalcExceptionBundle EXCEPTIONS = Messages.getBundle(CalcExceptionBundle.class);
​
​ @Message(id=328, value = "Error calculating: %s.")
​ ArithmeticException calcError(@Cause Throwable cause, String value);
​
​}

			This code snippet performs an operation that throws an exception because it attempts to divide an integer by zero. The exception is caught and a new exception is created using the first one as the cause.
		
​int totalDue = 5;
​int daysToPay = 0;
​int amountPerDay;
​
​try
​{
​ amountPerDay = totalDue/daysToPay;
​}
​catch (Exception ex)
​{
​ throw CalcExceptionBundle.EXCEPTIONS.calcError(ex, "payments per day");
​}

			This is what the exception message looks like:
		
Exception in thread "main" java.lang.ArithmeticException: TPS000328: Error calculating: payments per day.
	at com.company.accounts.Main.go(Main.java:58)
	at com.company.accounts.Main.main(Main.java:43)
Caused by: java.lang.ArithmeticException: / by zero
	at com.company.accounts.Main.go(Main.java:54)
	... 1 more

		Report a bug
	

 ⁠6.2.6. Reference

 ⁠6.2.6.1. JBoss Logging Tools Maven Configuration

		To build a Maven project that uses JBoss Logging Tools for internationalization you must make the following changes to the project's configuration in the pom.xml file.
	

		Refer to the logging-tools quick start for an example of a complete working pom.xml file.
	
	
				JBoss Maven Repository must be enabled for the project. Refer to Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.
			

	
				The Maven dependencies for jboss-logging and jboss-logging-processor must be added. Both of dependencies are available in JBoss EAP 6 so the scope element of each can be set to provided as shown.
			
​<dependency>
​ <groupId>org.jboss.logging</groupId>
​ <artifactId>jboss-logging-processor</artifactId>
​ <version>1.0.0.Final</version>
​ <scope>provided</scope>
​</dependency>
​
​<dependency>
​ <groupId>org.jboss.logging</groupId>
​ <artifactId>jboss-logging</artifactId>
​ <version>3.1.0.GA</version>
​ <scope>provided</scope>
​</dependency>

	
				The maven-compiler-plugin must be at least version 2.2 and be configured for target and generated sources of 1.6.
			
​<plugin>
​ <groupId>org.apache.maven.plugins</groupId>
​ <artifactId>maven-compiler-plugin</artifactId>
​ <version>2.3.2</version>
​ <configuration>
​ <source>1.6</source>
​ <target>1.6</target>
​ </configuration>
​</plugin>

		Report a bug
	

 ⁠6.2.6.2. Translation Property File Format

		The property files used for translations of messages in JBoss Logging Tools are standard Java property files. The format of the file is the simple line-oriented, key=value pair format described in the documentation for the java.util.Properties class, http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html.
	

		The file name format has the following format:
	
InterfaceName.i18n_locale_COUNTRY_VARIANT.properties
	
				InterfaceName is the name of the interface that the translations apply to.
			

	
				locale, COUNTRY, and VARIANT identify the regional settings that the translation applies to.
			

	
				locale and COUNTRY specify the language and country using the ISO-639 and ISO-3166 Language and Country codes respectively. COUNTRY is optional.
			

	
				VARIANT is an optional identifier that can be used to identify translations that only apply to a specific operating system or browser.
			

		The properties contained in the translation file are the names of the methods from the interface being translated. The assigned value of the property is the translation. If a method is overloaded then this is indicated by appending a dot and then the number of parameters to the name. Methods for translation can only be overloaded by supplying a different number of parameters.
	

 ⁠Example 6.7. Sample Translation Properties File

			File name: GreeterService.i18n_fr_FR_POSIX.properties.
		
Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyé.

		Report a bug
	

 ⁠6.2.6.3. JBoss Logging Tools Annotations Reference

		The following annotations are defined in JBoss Logging for use with internationalization and localization of log messages, strings, and exceptions.
	

 ⁠Table 6.1. JBoss Logging Tools Annotations
	 Annotation 	 Target 	 Description 	 Attributes
	 @MessageBundle 	 Interface 	
						Defines the interface as a Message Bundle.
					

					 	 projectCode
	 @MessageLogger 	 Interface 	
						Defines the interface as a Message Logger.
					

					 	 projectCode
	 @Message 	 Method 	
						Can be used in Message Bundles and Message Loggers. In a Message Logger it defines a method as being a localized logger. In a Message Bundle it defines the method as being one that returns a localized String or Exception object.
					

					 	 value, id
	 @LogMessage 	 Method 	
						Defines a method in a Message Logger as being a logging method.
					

					 	 level (default INFO)
	 @Cause 	 Parameter 	
						Defines a parameter as being one that passes an Exception as the cause of either a Log message or another Exception.
					

					 	 -
	 @Param 	 Parameter 	
						Defines a parameter as being one that is passed to the constructor of the Exception.
					

					 	 -

		Report a bug
	

 ⁠Chapter 7. Remote JNDI Lookup

 ⁠7.1. Registering Objects to JNDI

		The Java Naming and Directory Interface (JNDI) is a Java API for a directory service that allows Java software clients to discover and look up objects using a name. To look up an object, you must first register that object to JNDI using the java:jboss/exported context.
	

		The following is an example of how to register a JMS queue to JNDI in the messaging subsystem so that it can be looked up by remote JNDI clients.
java:jboss/exported/jms/queue/myTestQueue

		 Remote JNDI clients can then look up the object using the above name; however, it is not necessary to specify the java:jboss/exported/ prefix when looking up a remote client. The remote JNDI clients can look up the remote object up using the following name.
jms/queue/myTestQueue

	

 ⁠Example 7.1. Example of Standalone Server JMS Queue Configuration
​<subsystem xmlns="urn:jboss:domain:messaging:1.4">
​ <hornetq-server>
​ ...
​ <jms-destinations>
​ <jms-queue name="myTestQueue">
​ <entry name="java:jboss/exported/jms/queue/myTestQueue"/>
​ </jms-queue>
​ </jms-destinations>
​ </hornetq-server>
​</subsystem>

		Report a bug
	

 ⁠7.2. Configuring a Remote JNDI Client

		Remote JNDI clients can look up and connect to objects by name using JNDI. The client must have jboss-client.jar on its class path.
	

		The following example shows how to look up the myTestQueue JMS queue from a remote JNDI client:
	

 ⁠Example 7.2. Example Remote JNDI Lookup
​Properties properties = new Properties();
​properties.put(Context.INITIAL_CONTEXT_FACTORY, "org.jboss.naming.remote.client.InitialContextFactory");
​properties.put(Context.PROVIDER_URL, "remote://<hostname>:4447");
​context = new InitialContext(properties);
​Queue myTestQueue = (Queue) context.lookup("jms/queue/myTestQueue");

		Report a bug
	

 ⁠Chapter 8. Enterprise JavaBeans

 ⁠8.1. Introduction

 ⁠8.1.1. Overview of Enterprise JavaBeans

		Enterprise JavaBeans (EJB) 3.1 is an API for developing distributed, transactional, secure and portable Java EE applications through the use of server-side components called Enterprise Beans. Enterprise Beans implement the business logic of an application in a decoupled manner that encourages reuse. Enterprise JavaBeans 3.1 is documented as the Java EE specification JSR-318.
	

		JBoss EAP 6 has full support for applications built using the Enterprise JavaBeans 3.1 specification.
	

		Report a bug
	

 ⁠8.1.2. EJB 3.1 Feature Set

		The following features are supported in EJB 3.1
	
	
				Session Beans
			

	
				Message Driven Beans
			

	
				No-interface views
			

	
				local interfaces
			

	
				remote interfaces
			

	
				JAX-WS web services
			

	
				JAX-RS web services
			

	
				Timer Service
			

	
				Asynchronous Calls
			

	
				Interceptors
			

	
				RMI/IIOP interoperability
			

	
				Transaction support
			

	
				Security
			

	
				Embeddable API
			

		The following features are supported in EJB 3.1 but are proposed for "pruning". This means that these features may become optional in Java EE 7.
	
	
				Entity Beans (container and bean-managed persistence)
			

	
				EJB 2.1 Entity Bean client views
			

	
				EJB Query Language (EJB QL)
			

	
				JAX-RPC based Web Services (endpoints and client views)
			

		Report a bug
	

 ⁠8.1.3. EJB 3.1 Lite

		EJB Lite is a sub-set of the EJB 3.1 specification. It provides a simpler version of the full EJB 3.1 specification as part of the Java EE 6 web profile.
	

		EJB Lite simplifies the implementation of business logic in web applications with enterprise beans by:
	
	
				Only supporting the features that make sense for web-applications, and
			

	
				allowing EJBs to be deployed in the same WAR file as a web-application.
			

		Report a bug
	

 ⁠8.1.4. EJB 3.1 Lite Features

		EJB Lite includes the following features:
	
	
				Stateless, stateful, and singleton session beans
			

	
				Local business interfaces and "no interface" beans
			

	
				Interceptors
			

	
				Container-managed and bean-managed transactions
			

	
				Declarative and programmatic security
			

	
				Embeddable API
			

		The following features of EJB 3.1 are specifically not included:
	
	
				Remote interfaces
			

	
				RMI-IIOP Interoperability
			

	
				JAX-WS Web Service Endpoints
			

	
				EJB Timer Service
			

	
				Asynchronous session bean invocations
			

	
				Message-driven beans
			

		Report a bug
	

 ⁠8.1.5. Enterprise Beans

		Enterprise beans are server-side application components as defined in the Enterprise JavaBeans (EJB) 3.1 specification, JSR-318. Enterprise beans are designed for the implementation of application business logic in a decoupled manner to encourage reuse.
	

		Enterprise beans are written as Java classes and annotated with the appropriate EJB annotations. They can be deployed to the application server in their own archive (a JAR file) or be deployed as part of a Java EE application. The application server manages the lifecycle of each enterprise bean and provides services to them such as security, transactions, and concurrency management.
	

		An enterprise bean can also define any number of business interfaces. Business interfaces provide greater control over which of the bean's methods are available to clients and can also allow access to clients running in remote JVMs.
	

		There are three types of Enterprise Bean: Session beans, Message-driven beans and Entity beans.
	
Important

			Entity beans are now deprecated in EJB 3.1 and Red Hat recommends the use of JPA entities instead. Red Hat only recommends the use of Entity beans for backwards compatibility with legacy systems.
		

		Report a bug
	

 ⁠8.1.6. Overview of Writing Enterprise Beans

		Enterprise beans are server-side components designed to encapsulate business logic in a manner decoupled from any one specific application client. By implementing your business logic within enterprise beans you will be able to reuse those beans in multiple applications.
	

		Enterprise beans are written as annotated Java classes and do not have to implement any specific EJB interfaces or be sub-classed from any EJB super classes to be considered an enterprise bean.
	

		EJB 3.1 enterprise beans are packaged and deployed in Java archive (JAR) files. An enterprise bean JAR file can be deployed to your application server, or included in an enterprise archive (EAR) file and deployed with that application. It is also possible to deploy enterprise beans in a WAR file along side a web application.
	

		Report a bug
	

 ⁠8.1.7. Session Bean Business Interfaces

 ⁠8.1.7.1. Enterprise Bean Business Interfaces

		An EJB business interface is a Java interface written by the bean developer which provides declarations of the public methods of a session bean that are available for clients. Session beans can implement any number of interfaces including none (a "no-interface" bean).
	

		Business interfaces can be declared as local or remote interfaces but not both.
	

		Report a bug
	

 ⁠8.1.7.2. EJB Local Business Interfaces

		An EJB local business interface declares the methods which are available when the bean and the client are in the same JVM. When a session bean implements a local business interface only the methods declared in that interface will be available to clients.
	

		Report a bug
	

 ⁠8.1.7.3. EJB Remote Business Interfaces

		An EJB remote business interface declares the methods which are available to remote clients. Remote access to a session bean that implements a remote interface is automatically provided by the EJB container.
	

		A remote client is any client running in a different JVM and can include desktop applications as well as web applications, services and enterprise beans deployed to a different application server.
	

		Local clients can access the methods exposed by a remote business interface.
	

		Report a bug
	

 ⁠8.1.7.4. EJB No-interface Beans

		A session bean that does not implement any business interfaces is called a no-interface bean. All of the public methods of no-interface beans are accessible to local clients.
	

		A session bean that implements a business interface can also be written to expose a "no-interface" view.
	

		Report a bug
	

 ⁠8.2. Creating Enterprise Bean Projects

 ⁠8.2.1. Create an EJB Archive Project Using Red Hat JBoss Developer Studio

		This task describes how to create an Enterprise JavaBeans (EJB) project in Red Hat JBoss Developer Studio.
	
Prerequisites
	
				A server and server runtime for JBoss EAP 6 has been set up. See Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server” .
			

 ⁠Procedure 8.1. Create an EJB Project in Red Hat JBoss Developer Studio
	Create new project

				To open the New EJB Project wizard, navigate to the File menu, select New, and then EJB Project.
			

 ⁠[image: New EJB Project wizard]

Figure 8.1. New EJB Project wizard

	Specify Details

				Supply the following details:
			
	
						Project name.
					

						As well as the being the name of the project that appears in Red Hat JBoss Developer Studio this is also the default filename for the deployed JAR file.
					

	
						Project location.
					

						The directory where the project's files will be saved. The default is a directory in the current workspace.
					

	
						Target Runtime.
					

						This is the server runtime used for the project. This will need to be set to the same JBoss EAP 6 runtime used by the server that you will be deploying to.
					

	
						EJB module version. This is the version of the EJB specification that your enterprise beans will comply with. Red Hat recommends using 3.1.
					

	
						Configuration. This allows you to adjust the supported features in your project. Use the default configuration for your selected runtime.
					

				Click Next to continue.
			

	Java Build Configuration

				This screen allows you to customize the directories will contain Java source files and the directory where the built output is placed.
			

				Leave this configuration unchanged and click Next.
			

	EJB Module settings

				Check the Generate ejb-jar.xml deployment descriptor checkbox if a deployment descriptor is required. The deployment descriptor is optional in EJB 3.1 and can be added later if required.
			

				Click Finish and the project is created and will be displayed in the Project Explorer.
			

 ⁠[image: Newly created EJB Project in the Project Explorer]

Figure 8.2. Newly created EJB Project in the Project Explorer

	Add Build Artifact to Server for Deployment

				Open the Add and Remove dialog by right-clicking on the server you want to deploy the built artifact to in the server tab, and select "Add and Remove".
			

				Select the resource to deploy from the Available column and click the Add button. The resource will be moved to the Configured column. Click Finish to close the dialog.
			

 ⁠[image: Add and Remove dialog]

Figure 8.3. Add and Remove dialog

Result

			You now have an EJB Project in Red Hat JBoss Developer Studio that can build and deploy to the specified server.
		

		If no enterprise beans are added to the project then Red Hat JBoss Developer Studio will display the warning "An EJB module must contain one or more enterprise beans." This warning will disappear once one or more enterprise beans have been added to the project.
	

		Report a bug
	

 ⁠8.2.2. Create an EJB Archive Project in Maven

		This task demonstrates how to create a project using Maven that contains one or more enterprise beans packaged in a JAR file.
	
Prerequisites:
	
				Maven is already installed.
			

	
				You understand the basic usage of Maven.
			

 ⁠Procedure 8.2. Create an EJB Archive project in Maven
	Create the Maven project

				An EJB project can be created using Maven's archetype system and the ejb-javaee6 archetype. To do this run the mvn command with parameters as shown:
			
 mvn archetype:generate -DarchetypeGroupId=org.codehaus.mojo.archetypes -DarchetypeArtifactId=ejb-javaee6

				Maven will prompt you for the groupId, artifactId, version and package for your project.
			
[localhost]$ mvn archetype:generate -DarchetypeGroupId=org.codehaus.mojo.archetypes -DarchetypeArtifactId=ejb-javaee6
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Maven Stub Project (No POM) 1
[INFO] --
[INFO]
[INFO] >>> maven-archetype-plugin:2.0:generate (default-cli) @ standalone-pom >>>
[INFO]
[INFO] <<< maven-archetype-plugin:2.0:generate (default-cli) @ standalone-pom <<<
[INFO]
[INFO] --- maven-archetype-plugin:2.0:generate (default-cli) @ standalone-pom ---
[INFO] Generating project in Interactive mode
[INFO] Archetype [org.codehaus.mojo.archetypes:ejb-javaee6:1.5] found in catalog remote
Define value for property 'groupId': : com.shinysparkly
Define value for property 'artifactId': : payment-arrangments
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': com.shinysparkly: :
Confirm properties configuration:
groupId: com.company
artifactId: payment-arrangments
version: 1.0-SNAPSHOT
package: com.company.collections
Y: :
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 32.440s
[INFO] Finished at: Mon Oct 31 10:11:12 EST 2011
[INFO] Final Memory: 7M/81M
[INFO] --
[localhost]$

	Add your enterprise beans

				Write your enterprise beans and add them to the project under the src/main/java directory in the appropriate sub-directory for the bean's package.
			

	Build the project

				To build the project, run the mvn package command in the same directory as the pom.xml file. This will compile the Java classes and package the JAR file. The built JAR file is named artifactId-version.jar and is placed in the target/ directory.
			

		RESULT: You now have a Maven project that builds and packages a JAR file. This project can contain enterprise beans and the JAR file can be deployed to an application server.
	

		Report a bug
	

 ⁠8.2.3. Create an EAR Project containing an EJB Project

		This task describes how to create a new Enterprise Archive (EAR) project in Red Hat JBoss Developer Studio that contains an EJB Project.
	
Prerequisites
	
				A server and server runtime for JBoss EAP 6 has been set up. See Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server”.
			

 ⁠Procedure 8.3. Create an EAR Project containing an EJB Project
	Open the New EAR Application Project Wizard

				Navigate to the File menu, select New, then Project and the New Project wizard appears. Select Java EE/Enterprise Application Project and click Next.
			

 ⁠[image: New EAR Application Project Wizard]

Figure 8.4. New EAR Application Project Wizard

	Supply details

				Supply the following details:
			
	
						Project name.
					

						As well as the being the name of the project that appears in Red Hat JBoss Developer Studio this is also the default filename for the deployed EAR file.
					

	
						Project location.
					

						The directory where the project's files will be saved. The default is a directory in the current workspace.
					

	
						Target Runtime.
					

						This is the server runtime used for the project. This will need to be set to the same JBoss EAP 6 runtime used by the server that you will be deploying to.
					

	
						EAR version.
					

						This is the version of the Java Enterprise Edition specification that your project will comply with. Red Hat recommends using 6.
					

	
						Configuration. This allows you to adjust the supported features in your project. Use the default configuration for your selected runtime.
					

				Click Next to continue.
			

	Add a new EJB Module

				New Modules can be added from the Enterprise Application page of the wizard. To add a new EJB Project as a module follow the steps below:
			
	Add new EJB Module

						Click New Module, uncheck Create Default Modules checkbox, select the Enterprise Java Bean and click Next. The New EJB Project wizard appears.
					

	Create EJB Project

						New EJB Project wizard is the same as the wizard used to create new standalone EJB Projects and is described in Section 8.2.1, “Create an EJB Archive Project Using Red Hat JBoss Developer Studio”.
					

						The minimal details required to create the project are:
					
	
								Project name
							

	
								Target Runtime
							

	
								EJB Module version
							

	
								Configuration
							

						All the other steps of the wizard are optional. Click Finish to complete creating the EJB Project.
					

				The newly created EJB project is listed in the Java EE module dependencies and the checkbox is checked.
			

	Optional: add an application.xml deployment descriptor

				Check the Generate application.xml deployment descriptor checkbox if one is required.
			

	Click Finish

				Two new project will appear, the EJB project and the EAR project
			

	Add Build Artifact to Server for Deployment

				Open the Add and Remove dialog by right-clicking in the Servers tab on the server you want to deploy the built artifact to in the server tab, and select Add and Remove.
			

				Select the EAR resource to deploy from the Available column and click the Add button. The resource will be moved to the Configured column. Click Finish to close the dialog.
			

 ⁠[image: Add and Remove dialog]

Figure 8.5. Add and Remove dialog

Result

			You now have an Enterprise Application Project with a member EJB Project. This will build and deploy to the specified server as a single EAR deployment containing an EJB subdeployment.
		

		Report a bug
	

 ⁠8.2.4. Add a Deployment Descriptor to an EJB Project

		An EJB deployment descriptor can be added to an EJB project that was created without one. To do this, follow the procedure below.
	
Perquisites:
	
				You have a EJB Project in Red Hat JBoss Developer Studio to which you want to add an EJB deployment descriptor.
			

 ⁠Procedure 8.4. Add an Deployment Descriptor to an EJB Project
	Open the Project

				Open the project in Red Hat JBoss Developer Studio.
			

	Add Deployment Descriptor

				Right-click on the Deployment Descriptor folder in the project view and select Generate Deployment Descriptor Stub.
			

 ⁠[image: Adding a Deployment Descriptor]

Figure 8.6. Adding a Deployment Descriptor

		The new file, ejb-jar.xml, is created in ejbModule/META-INF/. Double-clicking on the Deployment Descriptor folder in the project view will also open this file.
	

		Report a bug
	

 ⁠8.3. Session Beans

 ⁠8.3.1. Session Beans

		Session Beans are Enterprise Beans that encapsulate a set of related business processes or tasks and are injected into the classes that request them. There are three types of session bean: stateless, stateful, and singleton.
	

		Report a bug
	

 ⁠8.3.2. Stateless Session Beans

		Stateless session beans are the simplest yet most widely used type of session bean. They provide business methods to client applications but do not maintain any state between method calls. Each method is a complete task that does not rely on any shared state within that session bean. Because there is no state, the application server is not required to ensure that each method call is performed on the same instance. This makes stateless session beans very efficient and scalable.
	

		Report a bug
	

 ⁠8.3.3. Stateful Session Beans

		Stateful session beans are Enterprise Beans that provide business methods to client applications and maintain conversational state with the client. They should be used for tasks that must be done in several steps (method calls), each of which relies on the state of the previous step being maintained. The application server ensures that each client receives the same instance of a stateful session bean for each method call.
	

		Report a bug
	

 ⁠8.3.4. Singleton Session Beans

		Singleton session beans are session beans that are instantiated once per application and every client request for a singleton bean goes to the same instance. Singleton beans are an implementation of the Singleton Design Pattern as described in the book Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides; published by Addison-Wesley in 1994.
	

		Singleton beans provide the smallest memory footprint of all the session bean types but must be designed as thread-safe. EJB 3.1 provides container-managed concurrency (CMC) to allow developers to implement thread safe singleton beans easily. However singleton beans can also be written using traditional multi-threaded code (bean-managed concurrency or BMC) if CMC does not provide enough flexibility.
	

		Report a bug
	

 ⁠8.3.5. Add Session Beans to a Project in Red Hat JBoss Developer Studio

		Red Hat JBoss Developer Studio has several wizards that can be used to quickly create enterprise bean classes. The following procedure shows how to use the Red Hat JBoss Developer Studio wizards to add a session bean to a project.
	
Prerequisites:
	
				You have a EJB or Dynamic Web Project in Red Hat JBoss Developer Studio to which you want to add one or more session beans.
			

 ⁠Procedure 8.5. Add Session Beans to a Project in Red Hat JBoss Developer Studio
	Open the Project

				Open the project in Red Hat JBoss Developer Studio.
			

	Open the "Create EJB 3.x Session Bean" wizard

				To open the Create EJB 3.x Session Bean wizard, navigate to the File menu, select New, and then Session Bean (EJB 3.x).
			

 ⁠[image: Create EJB 3.x Session Bean wizard]

Figure 8.7. Create EJB 3.x Session Bean wizard

	Specify class information

				Supply the following details:
			
	
						Project
					

						Verify the correct project is selected.
					

	
						Source folder
					

						This is the folder that the Java source files will be created in. This should not usually need to be changed.
					

	
						Package
					

						Specify the package that the class belongs to.
					

	
						Class name
					

						Specify the name of the class that will be the session bean.
					

	
						Superclass
					

						The session bean class can inherit from a super class. Specify that here if your session has a super class.
					

	
						State type
					

						Specify the state type of the session bean: stateless, stateful, or singleton.
					

	
						Business Interfaces
					

						By default the No-interface box is checked so no interfaces will be created. Check the boxes for the interfaces you wish to define and adjust the names if necessary.
					

						Remember that enterprise beans in a web archive (WAR) only support EJB 3.1 Lite and this does not include remote business interfaces.
					

				Click Next.
			

	Session Bean Specific Information

				You can enter in additional information here to further customize the session bean. It is not required to change any of the information here.
			

				Items that you can change are:
			
	
						Bean name.
					

	
						Mapped name.
					

	
						Transaction type (Container managed or Bean managed).
					

	
						Additional interfaces can be supplied that the bean must implement.
					

	
						You can also specify EJB 2.x Home and Component interfaces if required.
					

	Finish

				Click Finish and the new session bean will be created and added to the project. The files for any new business interfaces will also be created if they were specified.
			

 ⁠[image: New Session Bean in Red Hat JBoss Developer Studio]

Figure 8.8. New Session Bean in Red Hat JBoss Developer Studio

		Report a bug
	

 ⁠8.4. Message-Driven Beans

 ⁠8.4.1. Message-Driven Beans

		Message-driven Beans (MDBs) provide an event driven model for application development. The methods of MDBs are not injected into or invoked from client code but are triggered by the receipt of messages from a messaging service such as a Java Messaging Service (JMS) server. The Java EE 6 specification requires that JMS is supported but other messaging systems can be supported as well.
	

		Report a bug
	

 ⁠8.4.2. Resource Adapters

		A resource adapter is a deployable Java EE component that provides communication between a Java EE application and an Enterprise Information System (EIS) using the Java Connector Architecture (JCA) specification. A resource adapter is often provided by EIS vendors to allow easy integration of their products with Java EE applications.
	

		An Enterprise Information System can be any other software system within an organization. Examples include Enterprise Resource Planning (ERP) systems, database systems, e-mail servers and proprietary messaging systems.
	

		A resource adapter is packaged in a Resource Adapter Archive (RAR) file which can be deployed to JBoss EAP 6. A RAR file may also be included in an Enterprise Archive (EAR) deployment.
	

		Report a bug
	

 ⁠8.4.3. Create a JMS-based Message-Driven Bean in Red Hat JBoss Developer Studio

		This procedure shows how to add a JMS-based Message-Driven Bean to a project in Red Hat JBoss Developer Studio. This procedure creates an EJB 3.x Message-Driven Bean that uses annotations.
	
Prerequisites:
	
				You must have an existing project open in Red Hat JBoss Developer Studio.
			

	
				You must know the name and type of the JMS destination that the bean will be listening to.
			

	
				Support for Java Messaging Service (JMS) must be enabled in the JBoss EAP 6 configuration to which this bean will be deployed.
			

 ⁠Procedure 8.6. Add a JMS-based Message-Driven Bean in Red Hat JBoss Developer Studio
	Open the Create EJB 3.x Message-Driven Bean Wizard

				Go to File → New → Other. Select EJB/Message-Driven Bean (EJB 3.x) and click the Next button.
			

 ⁠[image: Create EJB 3.x Message-Driven Bean Wizard]

Figure 8.9. Create EJB 3.x Message-Driven Bean Wizard

	Specify class file destination details

				There are three sets of details to specify for the bean class here: Project, Java class, and message destination.
			
	Project
		
									If multiple projects exist in the Workspace, ensure that the correct one is selected in the Project menu.
								

	
									The folder where the source file for the new bean will be created is ejbModule under the selected project's directory. Only change this if you have a specific requirement.
								

	Java class
		
									The required fields are: Java package and class name.
								

	
									It is not necessary to supply a Superclass unless the business logic of your application requires it.
								

	Message Destination
	
							These are the details you must supply for a JMS-based Message-Driven Bean:
						
	
									Destination name. This is the queue or topic name that contains the messages that the bean will respond to.
								

	
									By default the JMS checkbox is selected. Do not change this.
								

	
									Set Destination type to Queue or Topic as required.
								

				Click the Next button.
			

	Enter Message-Driven Bean specific information

				The default values here are suitable for a JMS-based Message-Driven bean using Container-managed transactions.
			
	
						Change the Transaction type to Bean if the Bean will use Bean-managed transactions.
					

	
						Change the Bean name if a different bean name than the class name is required.
					

	
						The JMS Message Listener interface will already be listed. You do not need to add or remove any interfaces unless they are specific to your applications business logic.
					

	
						Leave the checkboxes for creating method stubs selected.
					

				Click the Finish button.
			

		Result: The Message-Driven Bean is created with stub methods for the default constructor and the onMessage() method. A Red Hat JBoss Developer Studio editor window opened with the corresponding file.
	

		Report a bug
	

 ⁠8.4.4. Specifying a Resource Adapter in jboss-ejb3.xml for an MDB

		In the jboss-ejb3.xml deployment descriptor you can specify a resource adapter for an MDB to use. Alternatively, to configure a JBoss EAP 6 server-wide default resource adapter for MDBs, see Configuring Message-Driven Beans in the Administration and Configuration Guide.
	

		To specify a resource adapter in jboss-ejb3.xml for an MDB, use the following example.
	

 ⁠Example 8.1. jboss-ejb3.xml Configuration for an MDB Resource Adapter
​<jboss xmlns="http://www.jboss.com/xml/ns/javaee"
​ xmlns:jee="http://java.sun.com/xml/ns/javaee"
​ xmlns:mdb="urn:resource-adapter-binding">
​ <jee:assembly-descriptor>
​ <mdb:resource-adapter-binding>
​ <jee:ejb-name>MyMDB</jee:ejb-name>
​ <mdb:resource-adapter-name>MyResourceAdapter.rar</mdb:resource-adapter-name>
​ </mdb:resource-adapter-binding>
​ </jee:assembly-descriptor>
​</jboss>

		For a resource adapter located in an EAR, you must use the following syntax for <mdb:resource-adapter-name>:
	
	
				For a resource adapter that is in another EAR:
			
​<mdb:resource-adapter-name>OtherDeployment.ear#MyResourceAdapter.rar</mdb:resource-adapter-name>

	
				For a resource adapter that is in the same EAR as the MDB, you can omit the EAR name:
			
​<mdb:resource-adapter-name>#MyResourceAdapter.rar</mdb:resource-adapter-name>

		Report a bug
	

 ⁠8.4.5. Enable EJB and MDB Property Substitution in an Application

		A new feature in Red Hat JBoss Enterprise Application Platform allows you to enable property substitution in EJBs and MDBs using the @ActivationConfigProperty and @Resource annotations. Property substitution requires the following configuration and code changes.
			
					You must enable property substitution in the JBoss EAP server configuration file.
				

	
					You must define the system properties in the server configuration file or pass them as arguments when you start the JBoss EAP server.
				

	
					You must modify the code to use the substitution variables.
				

	

 ⁠Procedure 8.7. Implement Property Substitution in an MDB Application

			The following code examples are based on the helloworld-mdb quickstart that ships with JBoss EAP 6.3 or later. This topic shows you how to modify that quickstart to enable property substitution.
		
	Configure the JBoss EAP server to enable property substitution.

				The JBoss EAP server must be configured to enable property substitution. To do this, set the <annotation-property-replacement> attribute in the ee subsystem of the server configuration file to true.
			
	
						Back up the server configuration file. The helloworld-mdb quickstart example requires the full profile for a standalone server, so this is the standalone/configuration/standalone-full.xml file. If you are running your server in a managed domain, this is the domain/configuration/domain.xml file.
					

	
						Start the JBoss EAP server with the full profile.
					

						For Linux:
EAP_HOME/bin/standalone.sh -c standalone-full.xml

						 For Windows:
EAP_HOMEbin\standalone.bat -c standalone-full.xml

					

	
						Launch the Management CLI using the command for your operating system.
					

						For Linux:
EAP_HOME/bin/jboss-cli.sh --connect

						 For Windows:
EAP_HOME\bin\jboss-cli.bat --connect

					

	
						Type the following command to enable annotation property substitution.
/subsystem=ee:write-attribute(name=annotation-property-replacement,value=true)

					

	
						You should see the following result:
{"outcome" => "success"}

					

	
						Review the changes to the JBoss EAP server configuration file. The ee subsystem should now contain the following XML.
​<subsystem xmlns="urn:jboss:domain:ee:1.2">
​ <spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>
​ <jboss-descriptor-property-replacement>true</jboss-descriptor-property-replacement>
​ <annotation-property-replacement>true</annotation-property-replacement>
​</subsystem>

					

	Define the system properties.

				You can specify the system properties in the server configuration file or you can pass them as command line arguments when you start the JBoss EAP server. System properties defined in the server configuration file take precedence over those passed on the command line when you start the server.
			

					
						Define the system properties in the server configuration file.
					
	
								Start the JBoss EAP server and Management API as described in the previous step.
							

	
								Use the following command syntax to configure a system property in the JBoss EAP server:
/system-property=PROPERTY_NAME:add(value=PROPERTY_VALUE)

							

								For the helloworld-mdb quickstart, we configure the following system properties:
/system-property=property.helloworldmdb.queue:add(value=java:/queue/HELLOWORLDMDBPropQueue)
/system-property=property.helloworldmdb.topic:add(value=java:/topic/HELLOWORLDMDBPropTopic)
/system-property=property.connection.factory:add(value=java:/ConnectionFactory)

							

	
								Review the changes to the JBoss EAP server configuration file. The following system properties should now appear in the after the <extensions>.
​<system-properties>
​ <property name="property.helloworldmdb.queue" value="java:/queue/HELLOWORLDMDBPropQueue"/>
​ <property name="property.helloworldmdb.topic" value="java:/topic/HELLOWORLDMDBPropTopic"/>
​ <property name="property.connection.factory" value="java:/ConnectionFactory"/>
​</system-properties>

							

				 	
						Pass the system properties as arguments on the command line when you start the JBoss EAP server in the form of -DPROPERTY_NAME=PROPERTY_VALUE. The following is an example of how to pass the arguments for the system properties defined in the previous step.
EAP_HOME/bin/standalone.sh -c standalone-full.xml -Dproperty.helloworldmdb.queue=java:/queue/HELLOWORLDMDBPropQueue -Dproperty.helloworldmdb.topic=java:/topic/HELLOWORLDMDBPropTopic -Dproperty.connection.factory=java:/ConnectionFactory

					

			

	Modify the code to use the system property substitutions.

				Replace hard-coded @ActivationConfigProperty and @Resource annotation values with substitutions for the newly defined system properties. The following are examples of how to change the helloworld-mdb quickstart to use the newly defined system property substitutions within the annotations in the source code.
			
	
						Change the @ActivationConfigProperty destination property value in the HelloWorldQueueMDB class to use the substitution for the system property. The @MessageDriven annotation should now look like this:
​@MessageDriven(name = "HelloWorldQueueMDB", activationConfig = {
​ @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
​ @ActivationConfigProperty(propertyName = "destination", propertyValue = "${property.helloworldmdb.queue}"),
​ @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue = "Auto-acknowledge") })

					

	
						Change the @ActivationConfigProperty destination property value in the HelloWorldTopicMDB class to use the substitution for the system property. The @MessageDriven annotation should now look like this:
​@MessageDriven(name = "HelloWorldQTopicMDB", activationConfig = {
​ @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Topic"),
​ @ActivationConfigProperty(propertyName = "destination", propertyValue = "${property.helloworldmdb.topic}"),
​ @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue = "Auto-acknowledge") })

					

	
						Change the @Resource annotations in the HelloWorldMDBServletClient class to use the system property substitutions. The code should now look like this:
​@Resource(mappedName = "${property.connection.factory}")
​private ConnectionFactory connectionFactory;
​
​@Resource(mappedName = "${property.helloworldmdb.queue}")
​private Queue queue;
​
​@Resource(mappedName = "${property.helloworldmdb.topic}")
​private Topic topic;

					

	
						Modify the hornetq-jms.xml file to use the system property substitution values.
​<?xml version="1.0" encoding="UTF-8"?>
​<messaging-deployment xmlns="urn:jboss:messaging-deployment:1.0">
​ <hornetq-server>
​ <jms-destinations>
​ <jms-queue name="HELLOWORLDMDBQueue">
​ <entry name="${property.helloworldmdb.queue}"/>
​ </jms-queue>
​ <jms-topic name="HELLOWORLDMDBTopic">
​ <entry name="${property.helloworldmdb.topic}"/>
​ </jms-topic>
​ </jms-destinations>
​ </hornetq-server>
​</messaging-deployment>

					

	
				Deploy the application. The application will now use the values specified by the system properties for the @Resource and @ActivationConfigProperty property values.
			

		Report a bug
	

 ⁠8.5. Invoking Session Beans

 ⁠8.5.1. Invoke a Session Bean Remotely using JNDI

		This task describes how to add support to a remote client for the invocation of session beans using JNDI. The task assumes that the project is being built using Maven.
	

		The ejb-remote quickstart contains working Maven projects that demonstrate this functionality. The quickstart contains projects for both the session beans to deploy and the remote client. The code samples below are taken from the remote client project.
	

		This task assumes that the session beans do not require authentication.
	
Warning

			Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in all affected packages.
		

Prerequisites

			The following prerequisites must be satisfied before beginning:
		
	
				You must already have a Maven project created ready to use.
			

	
				Configuration for the JBoss EAP 6 Maven repository has already been added.
			

	
				The session beans that you want to invoke are already deployed.
			

	
				The deployed session beans implement remote business interfaces.
			

	
				The remote business interfaces of the session beans are available as a Maven dependency. If the remote business interfaces are only available as a JAR file then it is recommended to add the JAR to your Maven repository as an artifact. Refer to the Maven documentation for the install:install-file goal for directions, http://maven.apache.org/plugins/maven-install-plugin/usage.html
			

	
				You need to know the hostname and JNDI port of the server hosting the session beans.
			

		To invoke a session bean from a remote client you must first configure the project correctly.
	

 ⁠Procedure 8.8. Add Maven Project Configuration for Remote Invocation of Session Beans
	
				Add the required project dependencies
			

				The pom.xml for the project must be updated to include the necessary dependencies.
			

	
				Add the jboss-ejb-client.properties file
			

				The JBoss EJB client API expects to find a file in the root of the project named jboss-ejb-client.properties that contains the connection information for the JNDI service. Add this file to the src/main/resources/ directory of your project with the following content.
			

In the following line, set SSL_ENABLED to true for SSL
remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connections=default
Uncomment the following line to set SSL_STARTTLS to true for SSL
remote.connection.default.connect.options.org.xnio.Options.SSL_STARTTLS=true
remote.connection.default.host=localhost
remote.connection.default.port = 4447
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
Add any of the following SASL options if required
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOPLAINTEXT=false
remote.connection.default.connect.options.org.xnio.Options.SASL_DISALLOWED_MECHANISMS=JBOSS-LOCAL-USER

				Change the host name and port to match your server. 4447 is the default port number. For a secure connection, set the SSL_ENABLED line to true and uncomment the SSL_STARTTLS line. The Remoting interface in the container supports secured and unsecured connections using the same port.
			

	
				Add dependencies for the remote business interfaces
			

				Add the Maven dependencies to the pom.xml for the remote business interfaces of the session beans.
			
​<dependency>
​ <groupId>org.jboss.as.quickstarts</groupId>
​ <artifactId>jboss-ejb-remote-server-side</artifactId>
​ <type>ejb-client</type>
​ <version>${project.version}</version>
​</dependency>

		Now that the project has been configured correctly, you can add the code to access and invoke the session beans.
	

 ⁠Procedure 8.9. Obtain a Bean Proxy using JNDI and Invoke Methods of the Bean
	
				Handle checked exceptions
			

				Two of the methods used in the following code (InitialContext() and lookup()) have a checked exception of type javax.naming.NamingException. These method calls must either be enclosed in a try/catch block that catches NamingException or in a method that is declared to throw NamingException. The ejb-remote quickstart uses the second technique.
			

	
				Create a JNDI Context
			

				A JNDI Context object provides the mechanism for requesting resources from the server. Create a JNDI context using the following code:
			
​final Hashtable jndiProperties = new Hashtable();
​jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
​final Context context = new InitialContext(jndiProperties);

				The connection properties for the JNDI service are read from the jboss-ejb-client.properties file.
			

	
				Use the JNDI Context's lookup() method to obtain a bean proxy
			

				Invoke the lookup() method of the bean proxy and pass it the JNDI name of the session bean you require. This will return an object that must be cast to the type of the remote business interface that contains the methods you want to invoke.
			
​
​
​final RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(
​ "ejb:/jboss-ejb-remote-server-side//CalculatorBean!" +
​ RemoteCalculator.class.getName());

				Session bean JNDI names are defined using a special syntax. For more information, see Section 8.8.1, “EJB JNDI Naming Reference” .
			

	
				Invoke methods
			

				Now that you have a proxy bean object you can invoke any of the methods contained in the remote business interface.
			
​int a = 204;
​int b = 340;
​System.out.println("Adding " + a + " and " + b + " via the remote stateless calculator deployed on the server");
​int sum = statelessRemoteCalculator.add(a, b);
​System.out.println("Remote calculator returned sum = " + sum);

				The proxy bean passes the method invocation request to the session bean on the server, where it is executed. The result is returned to the proxy bean which then returns it to the caller. The communication between the proxy bean and the remote session bean is transparent to the caller.
			

		You should now be able to configure a Maven project to support invoking session beans on a remote server and write the code invoke the session beans methods using a proxy bean retrieved from the server using JNDI.
	

		Report a bug
	

 ⁠8.5.2. About EJB Client Contexts

		JBoss EAP 6 introduced the EJB client API for managing remote EJB invocations. The JBoss EJB client API uses the EJBClientContext, which may be associated with and be used by one or more threads concurrently. The means an EJBClientContext can potentially contain any number of EJB receivers. An EJB receiver is a component that knows how to communicate with a server that is capable of handling the EJB invocation. Typically, EJB remote applications can be classified into the following:
			
					A remote client, which runs as a standalone Java application.
				

	
					A remote client, which runs within another JBoss EAP 6 instance.
				

	

		Depending on the type of remote client, from an EJB client API point of view, there can potentially be more than one EJBClientContext within a JVM.
	

		While standalone applications typically have a single EJBClientContext that may be backed by any number of EJB receivers, this isn't mandatory. If a standalone application has more than one EJBClientContext, an EJB client context selector is responsible for returning the appropriate context.
	

		In case of remote clients that run within another JBoss EAP 6 instance, each deployed application will have a corresponding EJB client context. Whenever that application invokes another EJB, the corresponding EJB client context is used to find the correct EJB receiver, which then handles the invocation.
	

		Report a bug
	

 ⁠8.5.3. Considerations When Using a Single EJB Context

Summary

			You must consider your application requirements when using a single EJB client context with standalone remote clients. For more information about the different types of remote clients, refer to: Section 8.5.2, “About EJB Client Contexts” .
		
Typical Process for a Remote Standalone Client with a Single EJB Client Context

			A remote standalone client typically has just one EJB client context backed by any number of EJB receivers. The following is an example of a standalone remote client application:
​
​public class MyApplication {
​ public static void main(String args[]) {
​ final javax.naming.Context ctxOne = new javax.naming.InitialContext();
​ final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");
​ beanOne.doSomething();
​ ...
​ }
​}

		

		Remote client JNDI lookups are usually backed by a jboss-ejb-client.properties file, which is used to set up the EJB client context and the EJB receivers. This configuration also includes the security credentials, which are then used to create the EJB receiver that connects to the JBoss EAP 6 server. When the above code is invoked, the EJB client API looks for the EJB client context, which is then used to select the EJB receiver that will receive and process the EJB invocation request. In this case, there is just the single EJB client context, so that context is used by the above code to invoke the bean. The procedure to invoke a session bean remotely using JNDI is described in greater detail here: Section 8.5.1, “Invoke a Session Bean Remotely using JNDI” .
	
Remote Standalone Client Requiring Different Credentials

			A user application may want to invoke a bean more than once, but connect to the JBoss EAP 6 server using different security credentials. The following is an example of a standalone remote client application that invokes the same bean twice:
​
​public class MyApplication {
​ public static void main(String args[]) {
​ // Use the "foo" security credential connect to the server and invoke this bean instance
​ final javax.naming.Context ctxOne = new javax.naming.InitialContext();
​ final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");
​ beanOne.doSomething();
​ ...
​
​ // Use the "bar" security credential to connect to the server and invoke this bean instance
​ final javax.naming.Context ctxTwo = new javax.naming.InitialContext();
​ final MyBeanInterface beanTwo = ctxTwo.lookup("ejb:app/module/distinct/bean!interface");
​ beanTwo.doSomething();
​ ...
​ }
​}

		

		In this case, the application wants to connect to the same server instance to invoke the EJB hosted on that server, but wants to use two different credentials while connecting to the server. Because the client application has a single EJB client context, which can have only one EJB receiver for each server instance, this means the above code uses just one credential to connect to the server and the code does not execute as the application expects it to.
	
Solution

			Scoped EJB client contexts offer a solution to this issue. They provide a way to have more control over the EJB client contexts and their associated JNDI contexts, which are typically used for EJB invocations. For more information about scoped EJB client contexts, refer to Section 8.5.4, “Using Scoped EJB Client Contexts” and Section 8.5.5, “Configure EJBs Using a Scoped EJB Client Context” .
		

		Report a bug
	

 ⁠8.5.4. Using Scoped EJB Client Contexts

Summary

			To invoke an EJB In earlier versions of JBoss EAP 6, you would typically create a JNDI context and pass it the PROVIDER_URL, which would point to the target server. Any invocations done on EJB proxies that were looked up using that JNDI context, would end up on that server. With scoped EJB client contexts, user applications have control over which EJB receiver is used for a specific invocation.
		
Use Scoped EJB Client Context in a Remote Standalone Client

			Prior to the introduction of scoped EJB client contexts, the context was typically scoped to the client application. Scoped client contexts now allow the EJB client contexts to be scoped with the JNDI contexts. The following is an example of a standalone remote client application that invokes the same bean twice using a scoped EJB client context:
​
​public class MyApplication {
​ public static void main(String args[]) {
​
​ // Use the "foo" security credential connect to the server and invoke this bean instance
​ final Properties ejbClientContextPropsOne = getPropsForEJBClientContextOne():
​ final javax.naming.Context ctxOne = new javax.naming.InitialContext(ejbClientContextPropsOne);
​ final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");
​ beanOne.doSomething();
​ ...
​ ctxOne.close();
​
​ // Use the "bar" security credential to connect to the server and invoke this bean instance
​ final Properties ejbClientContextPropsTwo = getPropsForEJBClientContextTwo():
​ final javax.naming.Context ctxTwo = new javax.naming.InitialContext(ejbClientContextPropsTwo);
​ final MyBeanInterface beanTwo = ctxTwo.lookup("ejb:app/module/distinct/bean!interface");
​ beanTwo.doSomething();
​ ...
​ ctxTwo.close();
​ }
​}

		

		To use the scoped EJB client context, you configure EJB client properties programmatically and pass the properties on context creation. The properties are the same set of properties that are used in the standard jboss-ejb-client.properties file. To scope the EJB client context to the JNDI context, you must also specify the org.jboss.ejb.client.scoped.context property and set its value to true. This property notifies the EJB client API that it must create an EJB client context, which is backed by EJB receivers, and that the created context is then scoped or visible only to the JNDI context that created it. Any EJB proxies looked up or invoked using this JNDI context will only know of the EJB client context associated with this JNDI context. Other JNDI contexts used by the application to lookup and invoke EJBs will not know about the other scoped EJB client contexts.
	

		JNDI contexts that do not pass the org.jboss.ejb.client.scoped.context property and aren't scoped to an EJB client context will use the default behavior, which is to use the existing EJB client context that is typically tied to the entire application.
	

		Scoped EJB client contexts provide user applications with the flexibility that was associated with the JNP based JNDI invocations in previous versions of JBoss EAP. It provides user applications with more control over which JNDI context communicates to which server and how it connects to that server.
	
Note

			With the scoped context, the underlying resources are no longer handled by the container or the API, so you must close the InitialContext when it is no longer needed. When the InitialContext is closed, the resources are released immediately. The proxies that are bound to it are no longer valid and any invocation will throw an Exception. Failure to close the InitialContext may result in resource and performance issues.
		

		Report a bug
	

 ⁠8.5.5. Configure EJBs Using a Scoped EJB Client Context

Summary

			EJBs can be configured using a map-based scoped context. This is achieved by programmatically populating a Properties map using the standard properties found in the jboss-ejb-client.properties, specifying true for the org.jboss.ejb.client.scoped.context property, and passing the properties on the InitialContext creation.
		

		The benefit of using a scoped context is that it allows you to configure access without directly referencing the EJB or importing JBoss classes. It also provides a way to configure and load balance a host at runtime in a multithreaded environment.
	

 ⁠Procedure 8.10. Configure an EJB Using a Map-Based Scoped Context
	Set the Properties

				Configure the EJB client properties programmatically, specifying the same set of properties that are used in the standard jboss-ejb-client.properties file. To enable the scoped context, you must specify the org.jboss.ejb.client.scoped.context property and set its value to true. The following is an example that configures the properties programmatically.
​
​// Configure EJB Client properties for the InitialContext
​Properties ejbClientContextProps = new Properties();
​ejbClientContextProps.put(“remote.connections”,”name1”);
​ejbClientContextProps.put(“remote.connection.name1.host”,”localhost”);
​ejbClientContextProps.put(“remote.connection.name1.port”,”4447”);
​// Property to enable scoped EJB client context which will be tied to the JNDI context
​ejbClientContextProps.put("org.jboss.ejb.client.scoped.context", “true”);

			

	Pass the Properties on the Context Creation

				
​
​// Create the context using the configured properties
​InitialContext ic = new InitialContext(ejbClientContextProps);
​MySLSB bean = ic.lookup("ejb:myapp/ejb//MySLSBBean!" + MySLSB.class.getName());

			

Additional Information

				
						Contexts generated by lookup EJB proxies are bound by this scoped context and use only the relevant connection parameters. This makes it possible to create different contexts to access data within a client application or to independently access servers using different logins.
					

	
						In the client, both the scoped InitialContext and the scoped proxy are passed to threads, allowing each thread to work with the given context. It is also possible to pass the proxy to multiple threads that can use it concurrently.
					

	
						The scoped context EJB proxy is serialized on the remote call and then deserialized on the server. When it is deserialized, the scoped context information is removed and it returns to its default state. If the deserialized proxy is used on the remote server, because it no longer has the scoped context that was used when it was created, this can result in an EJBCLIENT000025 error or possibly call an unwanted target by using the EJB name.
					

		

		Report a bug
	

 ⁠8.5.6. EJB Client Properties

Summary

			The following tables list properties that can be configured programmatically or in the jboss-ejb-client.properties file.
		
EJB Client Global Properties

			The following table lists properties that are valid for the whole library within the same scope.
		

 ⁠Table 8.1. Global Properties
	 Property Name 	 Description
	 endpoint.name 	
						Name of the client endpoint. If not set, the default value is client-endpoint
					

					
						This can be helpful to distinguish different endpoint settings because the thread name contains this property.
					

					
	 remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED 	
						Boolean value that specifies whether the SSL protocol is enabled for all connections.
					

					 Warning

							Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in all affected packages.
						

					
	 deployment.node.selector 	
						The fully qualified name of the implementation of org.jboss.ejb.client.DeploymentNodeSelector.
					

					
						This is used to load balance the invocation for the EJBs.
					

					
	 invocation.timeout 	
						The timeout for the EJB handshake or method invocation request/response cycle. The value is in milliseconds.
					

					
						The invocation of any method throws a java.util.concurrent.TimeoutException if the execution takes longer than the timeout period. The execution completes and the server is not interrupted.
					

					
	 reconnect.tasks.timeout 	
						The timeout for the background reconnect tasks. The value is in milliseconds.
					

					
						If a number of connections are down, the next client EJB invocation will use an algorithm to decide if a reconnect is necessary to find the right node.
					

					
	 org.jboss.ejb.client.scoped.context 	
						Boolean value that specifies whether to enable the scoped EJB client context. The default value is false.
					

					
						If set to true, the EJB Client will use the scoped context that is tied to the JNDI context. Otherwise the EJB client context will use the global selector in the JVM to determine the properties used to call the remote EJB and host.
					

					

EJB Client Connection Properties

			The connection properties start with the prefix remote.connection.CONNECTION_NAME where the CONNECTION_NAME is a local identifier only used to uniquely identify the connection.
		

 ⁠Table 8.2. Connection Properties
	 Property Name 	 Description
	 remote.connections 	
						A comma-separated list of active connection-names. Each connection is configured by using this name.
					

					
	 remote.connection.CONNECTION_NAME.host 	
						The host name or IP for the connection.
					

					
	 remote.connection.CONNECTION_NAME.port 	
						The port for the connection. The default value is 4447.
					

					
	 remote.connection.CONNECTION_NAME.username 	
						The user name used to authenticate connection security.
					

					
	 remote.connection.CONNECTION_NAME.password 	
						The password used to authenticate the user.
					

					
	 remote.connection.CONNECTION_NAME.connect.timeout 	
						The timeout period for the initial connection. After that, the reconnect task will periodically check whether the connection can be established. The value is in milliseconds.
					

					
	 remote.connection.CONNECTION_NAME.callback.handler.class 	
						Fully qualified name of the CallbackHandler class. It will be used to establish the connection and can not be changed as long as the connection is open.
					

					
	 remote.connection.CONNECTION_NAME.channel.options.org.jboss.remoting3.RemotingOptions.MAX_OUTBOUND_MESSAGES 	
						Integer value specifying the maximum number of outbound requests. The default is 80.
					

					
						There is only one connection from the client (JVM) to the server to handle all invocations.
					

					
	 remote.connection.CONNECTION_NAME.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS 	
						Boolean value that determines whether credentials must be provided by the client to connect successfully. The default value is true.
					

					
						If set to true, the client must provide credentials. If set to false, invocation is allowed as long as the remoting connector does not request a security realm.
					

					
	 remote.connection.CONNECTION_NAME.connect.options.org.xnio.Options.SASL_DISALLOWED_MECHANISMS 	
						Disables certain SASL mechanisms used for authenticating during connection creation.
					

					
						JBOSS-LOCAL-USER means the silent authentication mechanism, used when the client and server are on the same machine, is disabled.
					

					
	 remote.connection.CONNECTION_NAME.connect.options.org.xnio.Options.SASL_POLICY_NOPLAINTEXT 	
						Boolean value that enables or disables the use of plain text messages during the authentication. If using JAAS, it must be set to false to allow a plain text password.
					

					
	 remote.connection.CONNECTION_NAME.connect.options.org.xnio.Options.SSL_ENABLED 	
						Boolean value that specifies whether the SSL protocol is enabled for this connection.
					

					 Warning

							Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in all affected packages.
						

					
	 remote.connection.CONNECTION_NAME.connect.options.org.jboss.remoting3.RemotingOptions.HEARTBEAT_INTERVAL 	
						Interval to send a heartbeat between client and server to prevent automatic close, for example, in the case of a firewall. The value is in milliseconds.
					

					

EJB Client Cluster Properties

			If the initial connection connects to a clustered environment, the topology of the cluster is received automatically and asynchronously. These properties are used to connect to each received member. Each property starts with the prefix remote.cluster.CLUSTER_NAME where the CLUSTER_NAME refers to the related to the servers Infinispan subsystem configuration.
		

 ⁠Table 8.3. Cluster Properties
	 Property Name 	 Description
	 remote.cluster.CLUSTER_NAME.clusternode.selector 	
						The fully qualified name of the implementation of org.jboss.ejb.client.ClusterNodeSelector.
					

					
						This class, rather than org.jboss.ejb.client.DeploymentNodeSelector, is used to load balance EJB invocations in a clustered environment. If the cluster is completely down, the invocation will fail with No ejb receiver available.
					

					
	 remote.cluster.CLUSTER_NAME.channel.options.org.jboss.remoting3.RemotingOptions.MAX_OUTBOUND_MESSAGES 	
						Integer value specifying the maximum number of outbound requests that can be made to the entire cluster.
					

					
	 remote.cluster.CLUSTER_NAME.node.NODE_NAME. channel.options.org.jboss.remoting3.RemotingOptions.MAX_OUTBOUND_MESSAGES 	
						Integer value specifying the maximum number of outbound requests that can be made to this specific cluster-node.
					

					

		Report a bug
	

 ⁠8.5.7. Remote EJB Data Compression

		Previous versions of JBoss EAP included a feature where the message stream that contained the EJB protocol message could be compressed. This feature has been included in JBoss EAP 6.3 and later.
	

			Compression currently can only be specified by annotations on the EJB interface which should be on the client and server side. There is not currently an XML equivalent to specify compression hints.
		

		Data compression hints can be specified via the JBoss annotation org.jboss.ejb.client.annotation.CompressionHint. The hint values specify whether to compress the request, response or request and response. Adding @CompressionHint defaults to compressResponse=true and compressRequest=true.
	

		The annotation can be specified at the interface level to apply to all methods in the EJB's interface such as:
	
​import org.jboss.ejb.client.annotation.CompressionHint;
​
​@CompressionHint(compressResponse = false)
​public interface ClassLevelRequestCompressionRemoteView {
​ String echo(String msg);
​}

		Or the annotation can be applied to specific methods in the EJB's interface such as:
	
​import org.jboss.ejb.client.annotation.CompressionHint;
​
​public interface CompressableDataRemoteView {
​
​ @CompressionHint(compressResponse = false, compressionLevel = Deflater.BEST_COMPRESSION)
​ String echoWithRequestCompress(String msg);
​
​ @CompressionHint(compressRequest = false)
​ String echoWithResponseCompress(String msg);
​
​ @CompressionHint
​ String echoWithRequestAndResponseCompress(String msg);
​
​ String echoWithNoCompress(String msg);
​}

		The compressionLevel setting shown above can have the following values:
	
	
				BEST_COMPRESSION
			

	
				BEST_SPEED
			

	
				DEFAULT_COMPRESSION
			

	
				NO_COMPRESSION
			

		The compressionLevel setting defaults to Deflater.DEFAULT_COMPRESSION.
	

		Class level annotation with method level overrides:
	
​@CompressionHint
​public interface MethodOverrideDataCompressionRemoteView {
​
​ @CompressionHint(compressRequest = false)
​ String echoWithResponseCompress(final String msg);
​
​ @CompressionHint(compressResponse = false)
​ String echoWithRequestCompress(final String msg);
​
​ String echoWithNoExplicitDataCompressionHintOnMethod(String msg);
​}

		On the client side ensure the org.jboss.ejb.client.view.annotation.scan.enabled system property is set to true. This property tells JBoss EJB Client to scan for annotations.
	

		Report a bug
	

 ⁠8.6. Container Interceptors

 ⁠8.6.1. About Container Interceptors

		Standard Java EE interceptors, as defined by the JSR 318, Enterprise JavaBeans 3.1 specification, are expected to run after the container has completed security context propagation, transaction management, and other container provided invocation processing. This is a problem if the application must intercept a call before a specific container interceptor is run.
	

		Releases prior to JBoss EAP 6.0 provided a way to plug server side interceptors into the invocation flow so you could run specific application logic before the container completed the invocation processing. This feature was implemented in JBoss EAP 6.1. This implementation allows standard Java EE interceptors to be used as container interceptors, meaning they use the same XSD elements that are allowed in ejb-jar.xml file for the 3.1 version of the ejb-jar deployment descriptor.
	
Positioning of the Container Interceptor in the Interceptor Chain

			The container interceptors configured for an EJB are guaranteed to be run before the JBoss EAP provided security interceptors, transaction management interceptors, and other server provided interceptors. This allows specific application container interceptors to process or configure relevant context data before the invocation proceeds.
		
Differences Between the Container Interceptor and the Java EE Interceptor API

			Although container interceptors are modeled to be similar to Java EE interceptors, there are some differences in the semantics of the API. For example, it is illegal for container interceptors to invoke the javax.interceptor.InvocationContext.getTarget() method because these interceptors are invoked long before the EJB components are setup or instantiated.
		

		Report a bug
	

 ⁠8.6.2. Create a Container Interceptor Class

Summary

			Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the @javax.annotation.AroundInvoke to mark the method that is invoked during the invocation on the bean.
		

		The following is an example of a container interceptor class that marks the iAmAround method for invocation:
	

 ⁠Example 8.2. Container Interceptor Class Example

			
​
​
​public class ClassLevelContainerInterceptor {
​ @AroundInvoke
​ private Object iAmAround(final InvocationContext invocationContext) throws Exception {
​ return this.getClass().getName() + " " + invocationContext.proceed();
​ }
​}

		

		For an example of a container interceptor descriptor file configured to use this class, see the jboss-ejb3.xml file described here: Section 8.6.3, “Configure a Container Interceptor”.
	

		Report a bug
	

 ⁠8.6.3. Configure a Container Interceptor

Summary

			Container interceptors use the standard Java EE interceptor libraries, meaning they use the same XSD elements that are allowed in ejb-jar.xml file for the 3.1 version of the ejb-jar deployment descriptor. Because they are based on the standard Jave EE interceptor libraries, container interceptors may only be configured using deployment descriptors. This was done by design so applications would not require any JBoss specific annotation or other library dependencies. For more information about container interceptors, refer to: Section 8.6.1, “About Container Interceptors”.
		

 ⁠Procedure 8.11. Create the Descriptor File to Configure the Container Interceptor
	
				Create a jboss-ejb3.xml file in the META-INF directory of the EJB deployment.
			

	
				Configure the container interceptor elements in the descriptor file.
			
	
						Use the urn:container-interceptors:1.0 namespace to specify configuration of container interceptor elements.
					

	
						Use the <container-interceptors> element to specify the container interceptors.
					

	
						Use the <interceptor-binding> elements to bind the container interceptor to the EJBs. The interceptors can be bound in either of the following ways:
					

							
								Bind the interceptor to all the EJBs in the deployment using the * wildcard.
							

						 	
								Bind the interceptor at the individual bean level using the specific EJB name.
							

						 	
								Bind the interceptor at the specific method level for the EJBs.
							

					
Note

							These elements are configured using the EJB 3.1 XSD in the same way it is done for Java EE interceptors.
						

	
				Review the following descriptor file for examples of the above elements.
			

 ⁠Example 8.3. jboss-ejb3.xml

					
​
​<jboss xmlns="http://www.jboss.com/xml/ns/javaee"
​ xmlns:jee="http://java.sun.com/xml/ns/javaee"
​ xmlns:ci ="urn:container-interceptors:1.0">
​
​ <jee:assembly-descriptor>
​ <ci:container-interceptors>
​ <!-- Default interceptor -->
​ <jee:interceptor-binding>
​ <ejb-name>*</ejb-name>
​ <interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ContainerInterceptorOne</interceptor-class>
​ </jee:interceptor-binding>
​ <!-- Class level container-interceptor -->
​ <jee:interceptor-binding>
​ <ejb-name>AnotherFlowTrackingBean</ejb-name>
​ <interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ClassLevelContainerInterceptor</interceptor-class>
​ </jee:interceptor-binding>
​ <!-- Method specific container-interceptor -->
​ <jee:interceptor-binding>
​ <ejb-name>AnotherFlowTrackingBean</ejb-name>
​ <interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.MethodSpecificContainerInterceptor</interceptor-class>
​ <method>
​ <method-name>echoWithMethodSpecificContainerInterceptor</method-name>
​ </method>
​ </jee:interceptor-binding>
​ <!-- container interceptors in a specific order -->
​ <jee:interceptor-binding>
​ <ejb-name>AnotherFlowTrackingBean</ejb-name>
​ <interceptor-order>
​ <interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ClassLevelContainerInterceptor</interceptor-class>
​ <interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.MethodSpecificContainerInterceptor</interceptor-class>
​ <interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ContainerInterceptorOne</interceptor-class>
​ </interceptor-order>
​ <method>
​ <method-name>echoInSpecificOrderOfContainerInterceptors</method-name>
​ </method>
​ </jee:interceptor-binding>
​ </ci:container-interceptors>
​ </jee:assembly-descriptor>
​</jboss>
​

				

				The XSD for the urn:container-interceptors:1.0 namespace is available at EAP_HOME/docs/schema/jboss-ejb-container-interceptors_1_0.xsd.
			

		Report a bug
	

 ⁠8.6.4. Change the Security Context Identity

Summary

			By default, when you make a remote call to an EJB deployed to the application server, the connection to the server is authenticated and any request received over this connection is executed as the identity that authenticated the connection. This is true for both client-to-server and server-to-server calls. If you need to use different identities from the same client, you normally need to open multiple connections to the server so that each one is authenticated as a different identity. Rather than open multiple client connections, you can give permission to the authenticated user to execute a request as a different user.
		

		This topic describes how to switch identities on the existing client connection. The code examples are abridged versions of the code in the quickstart. Refer to the ejb-security-interceptors quickstart for a complete working example.
	

 ⁠Procedure 8.12. Change the Identity of the Security Context

			To change the identity of a secured connection, you must create the following 3 components.
		
	Create the client side interceptor

				The client side interceptor must implement the org.jboss.ejb.client.EJBClientInterceptor interface. The interceptor must pass the requested identity through the context data map, which can be obtained via a call to EJBClientInvocationContext.getContextData(). The following is an example of client side interceptor code:
​
​public class ClientSecurityInterceptor implements EJBClientInterceptor {
​
​ public void handleInvocation(EJBClientInvocationContext context) throws Exception {
​ Principal currentPrincipal = SecurityActions.securityContextGetPrincipal();
​
​ if (currentPrincipal != null) {
​ Map<String, Object> contextData = context.getContextData();
​ contextData.put(ServerSecurityInterceptor.DELEGATED_USER_KEY, currentPrincipal.getName());
​ }
​ context.sendRequest();
​ }
​
​ public Object handleInvocationResult(EJBClientInvocationContext context) throws Exception {
​ return context.getResult();
​ }
​}

			

				User applications can insert the interceptor into the interceptor chain in the EJBClientContext in one of the following ways:
			

					Programmatically

						With this approach, you call the org.jboss.ejb.client.EJBClientContext.registerInterceptor(int order, EJBClientInterceptor interceptor) method and pass the order and the interceptor instance. The order determines where this client interceptor is placed in the interceptor chain.
					

				 	ServiceLoader Mechanism

						With this approach, you create a META-INF/services/org.jboss.ejb.client.EJBClientInterceptor file and place or package it in the classpath of the client application. The rules for the file are dictated by the Java ServiceLoader Mechanism. This file is expected to contain a separate line for each fully qualified class name of the EJB client interceptor implementation. The EJB client interceptor classes must be available in the classpath. EJB client interceptors added using the ServiceLoader mechanism are added to the end of the client interceptor chain, in the order they are found in the classpath. The ejb-security-interceptors quickstart uses this approach.
					

			

	Create and configure the server side container interceptor

				Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the @javax.annotation.AroundInvoke to mark the method that will be invoked during the invocation on the bean. For more information about container interceptors, refer to: Section 8.6.1, “About Container Interceptors”.
			
	Create the container interceptor

						This interceptor receives the InvocationContext with the identity and requests the switch to that new identity. The following is an abridged version of the actual code example:
​
​ public class ServerSecurityInterceptor {
​
​ private static final Logger logger = Logger.getLogger(ServerSecurityInterceptor.class);
​
​ static final String DELEGATED_USER_KEY = ServerSecurityInterceptor.class.getName() + ".DelegationUser";
​
​ @AroundInvoke
​ public Object aroundInvoke(final InvocationContext invocationContext) throws Exception {
​ Principal desiredUser = null;
​ UserPrincipal connectionUser = null;
​
​ Map<String, Object> contextData = invocationContext.getContextData();
​ if (contextData.containsKey(DELEGATED_USER_KEY)) {
​ desiredUser = new SimplePrincipal((String) contextData.get(DELEGATED_USER_KEY));
​
​ Collection<Principal> connectionPrincipals = SecurityActions.getConnectionPrincipals();
​
​ if (connectionPrincipals != null) {
​ for (Principal current : connectionPrincipals) {
​ if (current instanceof UserPrincipal) {
​ connectionUser = (UserPrincipal) current;
​ break;
​ }
​ }
​
​ } else {
​ throw new IllegalStateException("Delegation user requested but no user on connection found.");
​ }
​ }
​
​
​ ContextStateCache stateCache = null;
​ try {
​ if (desiredUser != null && connectionUser != null
​ && (desiredUser.getName().equals(connectionUser.getName()) == false)) {
​ // The final part of this check is to verify that the change does actually indicate a change in user.
​ try {
​ // We have been requested to use an authentication token
​ // so now we attempt the switch.
​ stateCache = SecurityActions.pushIdentity(desiredUser, new OuterUserCredential(connectionUser));
​ } catch (Exception e) {
​ logger.error("Failed to switch security context for user", e);
​ // Don't propagate the exception stacktrace back to the client for security reasons
​ throw new EJBAccessException("Unable to attempt switching of user.");
​ }
​ }
​
​ return invocationContext.proceed();
​ } finally {
​ // switch back to original context
​ if (stateCache != null) {
​ SecurityActions.popIdentity(stateCache);;
​ }
​ }
​ }

					

	Configure the container interceptor

						For information on how to configure server side container interceptors, refer to: Section 8.6.3, “Configure a Container Interceptor”.
					

	Create the JAAS LoginModule

				This component is responsible for verifying that user is allowed to execute requests as the requested identity. The following abridged code examples show the methods that peform the login and validation:
​
​ @SuppressWarnings("unchecked")
​ @Override
​ public boolean login() throws LoginException {
​ if (super.login() == true) {
​ log.debug("super.login()==true");
​ return true;
​ }
​
​ // Time to see if this is a delegation request.
​ NameCallback ncb = new NameCallback("Username:");
​ ObjectCallback ocb = new ObjectCallback("Password:");
​
​ try {
​ callbackHandler.handle(new Callback[] { ncb, ocb });
​ } catch (Exception e) {
​ if (e instanceof RuntimeException) {
​ throw (RuntimeException) e;
​ }
​ return false; // If the CallbackHandler can not handle the required callbacks then no chance.
​ }
​
​ String name = ncb.getName();
​ Object credential = ocb.getCredential();
​
​ if (credential instanceof OuterUserCredential) {
​ // This credential type will only be seen for a delegation request, if not seen then the request is not for us.
​
​ if (delegationAcceptable(name, (OuterUserCredential) credential)) {
​
​ identity = new SimplePrincipal(name);
​ if (getUseFirstPass()) {
​ String userName = identity.getName();
​ if (log.isDebugEnabled())
​ log.debug("Storing username '" + userName + "' and empty password");
​ // Add the username and an empty password to the shared state map
​ sharedState.put("javax.security.auth.login.name", identity);
​ sharedState.put("javax.security.auth.login.password", "");
​ }
​ loginOk = true;
​ return true;
​ }
​ }
​
​ return false; // Attempted login but not successful.
​ }
​
​ protected boolean delegationAcceptable(String requestedUser, OuterUserCredential connectionUser) {
​ if (delegationMappings == null) {
​ return false;
​ }
​
​ String[] allowedMappings = loadPropertyValue(connectionUser.getName(), connectionUser.getRealm());
​ if (allowedMappings.length == 1 && "*".equals(allowedMappings[1])) {
​ // A wild card mapping was found.
​ return true;
​ }
​ for (String current : allowedMappings) {
​ if (requestedUser.equals(current)) {
​ return true;
​ }
​ }
​ return false;
​}

			

		See the ejb-security-interceptors quickstart README.html file for complete instructions and more detailed information about the code.
	

		Report a bug
	

 ⁠8.6.5. Use a Client Side Interceptor in an Application

		You can plug a client-side interceptor into an application programmatically or using a ServiceLoader mechanism. The following procedure describes the two methods.
	
 Plug the Interceptor into an Application Programmatically

			With this approach, you call the org.jboss.ejb.client.EJBClientContext.registerInterceptor(int order, EJBClientInterceptor interceptor) API and pass the order and the interceptor instance. The order is used to determine where exactly in the client interceptor chain this interceptor is placed.
		
 Plug the Interceptor into an Application via the ServiceLoader Mechanism

			With this approach, you create a META-INF/services/org.jboss.ejb.client.EJBClientInterceptor file and place or package it in the classpath of the client application. The rules for the file are dictated by the Java ServiceLoader Mechanism. This file is expected to contain a separate line for each fully qualified class name of the EJB client interceptor implementation. The EJB client interceptor classes must be available in the classpath. EJB client interceptors added using the ServiceLoader mechanism are added to the end of the client interceptor chain, in the order they are found in the classpath. The ejb-security-interceptors quickstart uses this approach.
		

		Report a bug
	

 ⁠8.7. Clustered Enterprise JavaBeans

 ⁠8.7.1. About Clustered Enterprise JavaBeans (EJBs)

		EJB components can be clustered for high-availability scenarios. They use different protocols than HTTP components, so they are clustered in different ways. EJB 2 and 3 stateful and stateless beans can be clustered.
	

		For information on singletons, refer here: Section 10.3, “Implement an HA Singleton”.
	
Note

			EJB 2 entity beans cannot be clustered in EAP 6 and henceforth. This is a migration issue.
		

		Report a bug
	

 ⁠8.7.2. Standalone and In-server Client Configuration

		To connect an EJB client to a clustered EJB application, you need to expand the existing configuration in standalone EJB client or in-server EJB client to include cluster connection configuration. The jboss-ejb-client.properties for standalone EJB client, or even jboss-ejb-client.xml file for a server-side application must be expanded to include a cluster configuration.
	
Note

			An EJB client is any program that uses an EJB on a remote server. A client is in-server when the JVM doing the calling to the remote server is itself running inside of a server. In other words, an EAP instance calling out to another EAP instance would be considered an in-server client.
		

		
 ⁠Example 8.4. Standalone client with jboss-ejb-client.properties configuration

				This example shows the additional cluster configuration required for a standalone EJB client.
			
​
​remote.clusters=ejb
​remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
​remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false
​remote.cluster.ejb.username=test
​remote.cluster.ejb.password=password

		 If an application uses the remote-outbound-connection, you need to configure jboss-ejb-client.xml file and add cluster configuration as shown in the following example:
		
 ⁠Example 8.5. Client application which is deployed in another EAP 6 instance (Configuring jboss-ejb-client.xml file)
​
​<jboss-ejb-client xmlns:xsi="urn:jboss:ejb-client:1.2" xsi:noNamespaceSchemaLocation="jboss-ejb-client_1_2.xsd">
​ <client-context>
​ <ejb-receivers>
​ <!-- this is the connection to access the app-one -->
​ <remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection-1" />
​ <!-- this is the connection to access the app-two -->
​ <remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection-2" />
​ </ejb-receivers>
​
​<!-- if an outbound connection connects to a cluster; a list of members is provided after successful connection.
​To connect to this node this cluster element must be defined. -->
​
​ <clusters>
​ <!-- cluster of remote-ejb-connection-1 -->
​ <cluster name="ejb" security-realm="ejb-security-realm-1" username="quickuser1">
​ <connection-creation-options>
​ <property name="org.xnio.Options.SSL_ENABLED" value="false" />
​ <property name="org.xnio.Options.SASL_POLICY_NOANONYMOUS" value="false" />
​ </connection-creation-options>
​ </cluster>
​ </clusters>
​ </client-context>
​</jboss-ejb-client>

	
Note

			For a secure connection you need to add the credentials to cluster configuration in order to avoid an authentication exception.
		

		Report a bug
	

 ⁠8.7.3. Implementing a Custom Load Balancing Policy for EJB Calls

		It is possible to implement a custom/alternate load balancing policy so that servers for the application do not handle the same amount of EJB calls in general or for a specific time period.
	

		You can implement AllClusterNodeSelector for EJB calls. The node selection behavior of AllClusterNodeSelector is similar to default selector except that AllClusterNodeSelector uses all available cluster nodes even in case of a large cluster (number of nodes>20). If an unconnected cluster node is returned it is opened automatically. The following example shows AllClusterNodeSelector implementation:
​
​package org.jboss.as.quickstarts.ejb.clients.selector;
​
​import java.util.Arrays;
​import java.util.Random;
​import java.util.logging.Level;
​import java.util.logging.Logger;
​
​import org.jboss.ejb.client.ClusterNodeSelector;
​public class AllClusterNodeSelector implements ClusterNodeSelector {
​ private static final Logger LOGGER = Logger.getLogger(AllClusterNodeSelector.class.getName());
​
​ @Override
​ public String selectNode(final String clusterName, final String[] connectedNodes, final String[] availableNodes) {
​ if(LOGGER.isLoggable(Level.FINER)) {
​ LOGGER.finer("INSTANCE "+this+ " : cluster:"+clusterName+" connected:"+Arrays.deepToString(connectedNodes)+" available:"+Arrays.deepToString(availableNodes));
​ }
​
​ if (availableNodes.length == 1) {
​ return availableNodes[0];
​ }
​ final Random random = new Random();
​ final int randomSelection = random.nextInt(availableNodes.length);
​ return availableNodes[randomSelection];
​ }
​
​}

		 You can also implement the SimpleLoadFactorNodeSelector for EJB calls. Load balancing in SimpleLoadFactorNodeSelector happens based on a load factor. The load factor (2/3/4) is calculated based on the names of nodes (A/B/C) irrespective of the load on each node. The following example shows SimpleLoadFactorNodeSelector implementation:
​
​package org.jboss.as.quickstarts.ejb.clients.selector;
​
​import java.util.ArrayList;
​import java.util.Arrays;
​import java.util.Collection;
​import java.util.HashMap;
​import java.util.List;
​import java.util.Map;
​import java.util.logging.Level;
​import java.util.logging.Logger;
​
​import org.jboss.ejb.client.DeploymentNodeSelector;
​public class SimpleLoadFactorNodeSelector implements DeploymentNodeSelector {
​ private static final Logger LOGGER = Logger.getLogger(SimpleLoadFactorNodeSelector.class.getName());
​ private final Map<String, List<String>[]> nodes = new HashMap<String, List<String>[]>();
​ private final Map<String, Integer> cursor = new HashMap<String, Integer>();
​
​ private ArrayList<String> calculateNodes(Collection<String> eligibleNodes) {
​ ArrayList<String> nodeList = new ArrayList<String>();
​
​ for (String string : eligibleNodes) {
​ if(string.contains("A") || string.contains("2")) {
​ nodeList.add(string);
​ nodeList.add(string);
​ } else if(string.contains("B") || string.contains("3")) {
​ nodeList.add(string);
​ nodeList.add(string);
​ nodeList.add(string);
​ } else if(string.contains("C") || string.contains("4")) {
​ nodeList.add(string);
​ nodeList.add(string);
​ nodeList.add(string);
​ nodeList.add(string);
​ }
​ }
​ return nodeList;
​ }
​
​ @SuppressWarnings("unchecked")
​ private void checkNodeNames(String[] eligibleNodes, String key) {
​ if(!nodes.containsKey(key) || nodes.get(key)[0].size() != eligibleNodes.length || !nodes.get(key)[0].containsAll(Arrays.asList(eligibleNodes))) {
​ // must be synchronized as the client might call it concurrent
​ synchronized (nodes) {
​ if(!nodes.containsKey(key) || nodes.get(key)[0].size() != eligibleNodes.length || !nodes.get(key)[0].containsAll(Arrays.asList(eligibleNodes))) {
​ ArrayList<String> nodeList = new ArrayList<String>();
​ nodeList.addAll(Arrays.asList(eligibleNodes));
​
​ nodes.put(key, new List[] { nodeList, calculateNodes(nodeList) });
​ }
​ }
​ }
​ }
​ private synchronized String nextNode(String key) {
​ Integer c = cursor.get(key);
​ List<String> nodeList = nodes.get(key)[1];
​
​ if(c == null || c >= nodeList.size()) {
​ c = Integer.valueOf(0);
​ }
​
​ String node = nodeList.get(c);
​ cursor.put(key, Integer.valueOf(c + 1));
​
​ return node;
​ }
​
​ @Override
​ public String selectNode(String[] eligibleNodes, String appName, String moduleName, String distinctName) {
​ if (LOGGER.isLoggable(Level.FINER)) {
​ LOGGER.finer("INSTANCE " + this + " : nodes:" + Arrays.deepToString(eligibleNodes) + " appName:" + appName + " moduleName:" + moduleName
​ + " distinctName:" + distinctName);
​ }
​
​ // if there is only one there is no sense to choice
​ if (eligibleNodes.length == 1) {
​ return eligibleNodes[0];
​ }
​ final String key = appName + "|" + moduleName + "|" + distinctName;
​
​ checkNodeNames(eligibleNodes, key);
​ return nextNode(key);
​ }
​}

	
Configuration with jboss-ejb-client.properties

			You need to add the property remote.cluster.ejb.clusternode.selector with the name of your implementation class (AllClusterNodeSelector or SimpleLoadFactorNodeSelector). The selector will see all configured servers which are available at the invocation time. The following example uses AllClusterNodeSelector as the deployment node selector:
​
​remote.clusters=ejb
​remote.cluster.ejb.clusternode.selector=org.jboss.as.quickstarts.ejb.clients.selector.AllClusterNodeSelector
​remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
​remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false
​remote.cluster.ejb.username=test
​remote.cluster.ejb.password=password
​
​remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
​remote.connections=one,two
​remote.connection.one.host=localhost
​remote.connection.one.port = 4447
​remote.connection.one.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
​remote.connection.one.username=user
​remote.connection.one.password=user123
​remote.connection.two.host=localhost
​remote.connection.two.port = 4547
​remote.connection.two.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

		
Using JBoss ejb-client API

			You need to add the property remote.cluster.ejb.clusternode.selector to the list for the PropertiesBasedEJBClientConfiguration constructor. The following example uses AllClusterNodeSelector as the deployment node selector:
​
​Properties p = new Properties();
​p.put("remote.clusters", "ejb");
​p.put("remote.cluster.ejb.clusternode.selector", "org.jboss.as.quickstarts.ejb.clients.selector.AllClusterNodeSelector");
​p.put("remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS", "false");
​p.put("remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED", "false");
​p.put("remote.cluster.ejb.username", "test");
​p.put("remote.cluster.ejb.password", "password");
​
​p.put("remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED", "false");
​p.put("remote.connections", "one,two");
​p.put("remote.connection.one.port", "4447");
​p.put("remote.connection.one.host", "localhost");
​p.put("remote.connection.two.port", "4547");
​p.put("remote.connection.two.host", "localhost");
​
​EJBClientConfiguration cc = new PropertiesBasedEJBClientConfiguration(p);
​ContextSelector<EJBClientContext> selector = new ConfigBasedEJBClientContextSelector(cc);
​EJBClientContext.setSelector(selector);
​
​p = new Properties();
​p.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
​InitialContext context = new InitialContext(p);

		
Server application side configuration with jboss-ejb-client.xml

			To use the load balancing policy for server to server communication; package the class together with the application and configure it within the jboss-ejb-client.xml settings (located in META-INF folder). The following example uses AllClusterNodeSelector as the deployment node selector:
​
​<jboss-ejb-client xmlns:xsi="urn:jboss:ejb-client:1.2" xsi:noNamespaceSchemaLocation="jboss-ejb-client_1_2.xsd">
​ <client-context deployment-node-selector="org.jboss.ejb.client.DeploymentNodeSelector">
​ <ejb-receivers>
​ <!-- this is the connection to access the app -->
​ <remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection-1" />
​ </ejb-receivers>
​
​ <!-- if an outbound connection connect to a cluster a list of members is provided after successful connection.
​To connect to this node this cluster element must be defined.
​-->
​ <clusters>
​ <!-- cluster of remote-ejb-connection-1 -->
​ <cluster name="ejb" security-realm="ejb-security-realm-1" username="test" cluster-node-selector="org.jboss.as.quickstarts.ejb.clients.selector.AllClusterNodeSelector">
​ <connection-creation-options>
​ <property name="org.xnio.Options.SSL_ENABLED" value="false" />
​ <property name="org.xnio.Options.SASL_POLICY_NOANONYMOUS" value="false" />
​ </connection-creation-options>
​ </cluster>
​ </clusters>
​ </client-context>
​</jboss-ejb-client>

			 To use the above configuration with security, you will need to add ejb-security-realm-1 to client-server configuration. The following example shows the CLI commands for adding security realm (ejb-security-realm-1) the value is the base64 encoded password for the user "test":
​
​
​core-service=management/security-realm=ejb-security-realm-1:add()
​core-service=management/security-realm=ejb-security-realm-1/server-identity=secret:add(value=cXVpY2sxMjMr)

			 Note

					If you are using standalone mode use the start option -Djboss.node.name= or the server configuration file standalone.xml to configure the server name (server name=""). Ensure that the server name is unique. In domain mode, the controller automatically validates that the names are unique.
				

		

		Report a bug
	

 ⁠8.7.4. Transaction Behavior of EJB Invocations

Server to Server Invocations

			Transaction attributes for distributed JBoss EAP applications need to be handled in a way as if the application is called on the same server. To discontinue a transaction, the destination method must be marked REQUIRES_NEW using different interfaces.
		
Note

			JBoss EAP 6 does not require Java Transaction Services (JTS) for transaction propagation on server-to-server EJB invocations if both servers are JBoss EAP 6. JBoss EJB client API library handles it itself.
		

Client Side Invocations

			To invoke EJB session beans with a JBoss EAP 6 standalone client, the client must have a reference to the InitialContext object while the EJB proxies or UserTransaction are used. It is also important to keep the InitialContext object open while EJB proxies or UserTransaction are being used. Control of the connections will be inside the classes created by the InitialContext with the properties.
		

		The following example shows EJB client API which holds a reference to the InitialContext object.
		
 ⁠Example 8.6. EJB client API referencing InitialContext object
​
​package org.jboss.as.quickstarts.ejb.multi.server;
​
​import java.util.Date;
​import java.util.Properties;
​import java.util.logging.Level;
​import java.util.logging.Logger;
​
​import javax.naming.Context;
​import javax.naming.InitialContext;
​
​import org.jboss.as.quickstarts.ejb.multi.server.app.MainApp;
​import org.jboss.ejb.client.ContextSelector;
​import org.jboss.ejb.client.EJBClientConfiguration;
​import org.jboss.ejb.client.EJBClientContext;
​import org.jboss.ejb.client.PropertiesBasedEJBClientConfiguration;
​import org.jboss.ejb.client.remoting.ConfigBasedEJBClientContextSelector;
​
​public class Client {
​
​/**
​* @param args no args needed
​* @throws Exception
​*/
​ public static void main(String[] args) throws Exception {
​ // suppress output of client messages
​ Logger.getLogger("org.jboss").setLevel(Level.OFF);
​ Logger.getLogger("org.xnio").setLevel(Level.OFF);
​
​ Properties p = new Properties();
​ p.put("remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED", "false");
​ p.put("remote.connections", "one");
​ p.put("remote.connection.one.port", "4447");
​ p.put("remote.connection.one.host", "localhost");
​ p.put("remote.connection.one.username", "quickuser");
​ p.put("remote.connection.one.password", "quick-123");
​
​ EJBClientConfiguration cc = new PropertiesBasedEJBClientConfiguration(p);
​ ContextSelector<EJBClientContext> selector = new ConfigBasedEJBClientContextSelector(cc);
​ EJBClientContext.setSelector(selector);
​
​ Properties props = new Properties();
​ props.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
​ InitialContext context = new InitialContext(props);
​
​
​ final String rcal = "ejb:jboss-ejb-multi-server-app-main/ejb//" + ("MainAppBean") + "!" + MainApp.class.getName();
​ final MainApp remote = (MainApp) context.lookup(rcal);
​ final String result = remote.invokeAll("Client call at "+new Date());
​
​ System.out.println("InvokeAll succeed: "+result);
​ }
​
​}

		 Note

				Obtaining a UserTransaction reference on the client is unsupported for scenarios with a scoped EJB client context and for invocations which use the remote-naming protocol. This is because in these scenarios, InitialContext encapsulates its own EJB client context instance; which cannot be accessed using the static methods of the EJBClient class. When EJBClient.getUserTransaction() is called, it returns a transaction from default (global) EJB client context (which might not be initialized) and not from the desired one.
			

	
 UserTransaction reference on the Client Side

			The following example shows how to get UserTransaction reference on a standalone client.
			
 ⁠Example 8.7. Standalone client referencing UserTransaction object
​
​import org.jboss.ejb.client.EJBClient;
​import javax.transaction.UserTransaction;
​.
​.
​ Context context=null;
​ UserTransaction tx=null;
​ try {
​ Properties props = new Properties();
​ // REMEMBER: there must be a jboss-ejb-client.properties with the connection parameter
​ // in the clients classpath
​ props.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
​ context = new InitialContext(props);
​ System.out.println("\n\tGot initial Context: "+context);
​ tx=EJBClient.getUserTransaction("yourServerName");
​ System.out.println("UserTransaction = "+tx.getStatus());
​ tx.begin();
​ // do some work
​ ...
​ }catch (Exception e) {
​ e.printStackTrace();
​ tx.rollback();
​ }finally{
​ if(context != null) {
​ context.close();
​ }
​ }

		
Note

			To get UserTransaction reference on the client side; start your server with the following system property -Djboss.node.name=yourServerName and then use it on client side as following:
tx=EJBClient.getUserTransaction("yourServerName");

			 Replace "yourServerName" with the name of your server. If a user transaction is started on a node all invocations are sticky on the node and the node must have all the needed EJBs. It is not possible to use UserTransaction with remote-naming protocol and scoped-context.
		

		Report a bug
	

 ⁠8.8. Reference

 ⁠8.8.1. EJB JNDI Naming Reference

		The JNDI lookup name for a session bean has the syntax of:
	
 ejb:<appName>/<moduleName>/<distinctName>/<beanName>!<viewClassName>?stateful
	<appName>
	
					If the session bean's JAR file has been deployed within an enterprise archive (EAR) then this is the name of that EAR. By default, the name of an EAR is its filename without the .ear suffix. The application name can also be overridden in its application.xml file. If the session bean is not deployed in an EAR then leave this blank.
				

	<moduleName>
	
					The module name is the name of the JAR file that the session bean is deployed in. By the default, the name of the JAR file is its filename without the .jar suffix. The module name can also be overridden in the JAR's ejb-jar.xml file.
				

	<distinctName>
	
					JBoss EAP 6 allows each deployment to specify an optional distinct name. If the deployment does not have a distinct name then leave this blank.
				

	<beanName>
	
					The bean name is the classname of the session bean to be invoked.
				

	<viewClassName>
	
					The view class name is the fully qualified classname of the remote interface. This includes the package name of the interface.
				

	?stateful
	
					The ?stateful suffix is required when the JNDI name refers to a stateful session bean. It is not included for other bean types.
				

		Report a bug
	

 ⁠8.8.2. EJB Reference Resolution

		This section covers how JBoss implements @EJB and @Resource. Please note that XML always overrides annotations but the same rules apply.
	
Rules for the @EJB annotation
	
				The @EJB annotation also has a mappedName() attribute. The specification leaves this as vendor specific metadata, but JBoss recognizes mappedName() as the global JNDI name of the EJB you are referencing. If you have specified a mappedName(), then all other attributes are ignored and this global JNDI name is used for binding.
			

	
				If you specify @EJB with no attributes defined:
			
​@EJB
​ProcessPayment myEjbref;

				Then the following rules apply:
			
	
						The EJB jar of the referencing bean is searched for an EJB with the interface used in the @EJB injection. If there are more than one EJB that publishes same business interface, then an exception is thrown. If there is only one bean with that interface then that one is used.
					

	
						Search the EAR for EJBs that publish that interface. If there are duplicates, then an exception is thrown. Otherwise the matching bean is returned.
					

	
						Search globally in JBoss runtime for an EJB of that interface. Again, if duplicates are found, an exception is thrown.
					

	
				@EJB.beanName() corresponds to <ejb-link>. If the beanName() is defined, then use the same algorithm as @EJB with no attributes defined except use the beanName() as a key in the search. An exception to this rule is if you use the ejb-link '#' syntax. The '#' syntax allows you to put a relative path to a jar in the EAR where the EJB you are referencing is located. Refer to the EJB 3.1 specification for more details.
			

		Report a bug
	

 ⁠8.8.3. Project dependencies for Remote EJB Clients

		Maven projects that include the invocation of session beans from remote clients require the following dependencies from the JBoss EAP 6 Maven repository.
	

 ⁠Table 8.4. Maven dependencies for Remote EJB Clients
	 GroupID 	 ArtifactID
	 org.jboss.spec 	 jboss-javaee-6.0
	 org.jboss.as 	 jboss-as-ejb-client-bom
	 org.jboss.spec.javax.transaction 	 jboss-transaction-api_1.1_spec
	 org.jboss.spec.javax.ejb 	 jboss-ejb-api_3.1_spec
	 org.jboss 	 jboss-ejb-client
	 org.jboss.xnio 	 xnio-api
	 org.jboss.xnio 	 xnio-nio
	 org.jboss.remoting3 	 jboss-remoting
	 org.jboss.sasl 	 jboss-sasl
	 org.jboss.marshalling 	 jboss-marshalling-river

		With the exception of jboss-javaee-6.0 and jboss-as-ejb-client-bom, these dependencies must be added to the <dependencies> section of the pom.xml file.
	

		The jboss-javaee-6.0 and jboss-as-ejb-client-bom dependencies should be added to the <dependencyManagement> section of your pom.xml with the scope of import.
	
Note

			The artifactID's versions are subject to change. Refer to the Maven repository for the relevant version.
		

​<dependencyManagement>
​ <dependencies>
​ <dependency>
​ <groupId>org.jboss.spec</groupId>
​ <artifactId>jboss-javaee-6.0</artifactId>
​ <version>3.0.0.Final-redhat-1</version>
​ <type>pom</type>
​ <scope>import</scope>
​ </dependency>
​
​ <dependency>
​ <groupId>org.jboss.as</groupId>
​ <artifactId>jboss-as-ejb-client-bom</artifactId>
​ <version>7.1.1.Final-redhat-1</version>
​ <type>pom</type>
​ <scope>import</scope>
​ </dependency>
​ </dependencies>
​</dependencyManagement>

		Refer to ejb-remote/client/pom.xml in the quickstart files for a complete example of dependency configuration for remote session bean invocation.
	

		Report a bug
	

 ⁠8.8.4. jboss-ejb3.xml Deployment Descriptor Reference

		jboss-ejb3.xml is a custom deployment descriptor that can be used in either EJB JAR or WAR archives. In an EJB JAR archive it must be located in the META-INF/ directory. In a WAR archive it must be located in the WEB-INF/ directory.
	

		The format is similar to ejb-jar.xml, using some of the same namespaces and providing some other additional namespaces. The contents of jboss-ejb3.xml are merged with the contents of ejb-jar.xml, with the jboss-ejb3.xml items taking precedence.
	

		This document only covers the additional non-standard namespaces used by jboss-ejb3.xml. Refer to http://java.sun.com/xml/ns/javaee/ for documentation on the standard namespaces.
	

		The root namespace is http://www.jboss.com/xml/ns/javaee.
	
Assembly descriptor namespaces

			The following namespaces can all be used in the <assembly-descriptor> element. They can be used to apply their configuration to a single bean, or to all beans in the deployment by using * as the ejb-name.
		
	The clustering namespace: urn:clustering:1.0
	​xmlns:c="urn:clustering:1.0"

					This allows you to mark EJB's as clustered. It is the deployment descriptor equivalent to @org.jboss.ejb3.annotation.Clustered.
				
​<c:clustering>
​ <ejb-name>DDBasedClusteredSFSB</ejb-name>
​ <c:clustered>true</c:clustered>
​</c:clustering>

	The security namespace (urn:security)
	​xmlns:s="urn:security"

					This allows you to set the security-domain and the run-as-principal for an EJB.
				
​<s:security>
​ <ejb-name>*</ejb-name>
​ <s:security-domain>myDomain</s:security-domain>
​ <s:run-as-principal>myPrincipal</s:run-as-principal>
​</s:security>

	The resource adapter namespace: urn:resource-adapter-binding
	​xmlns:r="urn:resource-adapter-binding"

					This allows you to set the resource adapter for a Message-Driven Bean.
				
​<r:resource-adapter-binding>
​ <ejb-name>*</ejb-name>
​ <r:resource-adapter-name>myResourceAdapter</r:resource-adapter-name>
​</r:resource-adapter-binding>

	The IIOP namespace: urn:iiop
	​xmlns:u="urn:iiop"

					The IIOP namespace is where IIOP settings are configured.
				

	The pool namespace: urn:ejb-pool:1.0
	​xmlns:p="urn:ejb-pool:1.0"

					This allows you to select the pool that is used by the included stateless session beans or Message-Driven Beans. Pools are defined in the server configuration.
				
​<p:pool>
​ <ejb-name>*</ejb-name>
​ <p:bean-instance-pool-ref>my-pool</p:bean-instance-pool-ref>
​</p:pool>

	The cache namespace: urn:ejb-cache:1.0
	​xmlns:c="urn:ejb-cache:1.0"

					This allows you to select the cache that is used by the included stateful session beans. Caches are defined in the server configuration.
				
​<c:cache>
​ <ejb-name>*</ejb-name>
​ <c:cache-ref>my-cache</c:cache-ref>
​</c:cache>

 ⁠Example 8.8. jboss-ejb3.xml file
​<?xml version="1.1" encoding="UTF-8"?>
​<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"
​ xmlns="http://java.sun.com/xml/ns/javaee"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xmlns:c="urn:clustering:1.0"
​ xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd"
​ version="3.1" impl-version="2.0">
​ <enterprise-beans>
​ <message-driven>
​ <ejb-name>ReplyingMDB</ejb-name>
​ <ejb-class>org.jboss.as.test.integration.ejb.mdb.messagedestination.ReplyingMDB</ejb-class>
​ <activation-config>
​ <activation-config-property>
​ <activation-config-property-name>destination</activation-config-property-name>
​ <activation-config-property-value>java:jboss/mdbtest/messageDestinationQueue
​ </activation-config-property-value>
​ </activation-config-property>
​ </activation-config>
​ </message-driven>
​ </enterprise-beans>
​ <assembly-descriptor>
​ <c:clustering>
​ <ejb-name>DDBasedClusteredSFSB</ejb-name>
​ <c:clustered>true</c:clustered>
​ </c:clustering>
​ </assembly-descriptor>
​</jboss:ejb-jar>

Note

			There are known issues with the jboss-ejb3-spec-2_0.xsd that may result in schema validation errors. You can ignore these errors. For more information, see https://bugzilla.redhat.com/show_bug.cgi?id=1192591.
		

		Report a bug
	

 ⁠Chapter 9. JBoss MBean Services

 ⁠9.1. Writing JBoss MBean Services

		Writing a custom MBean service that relies on a JBoss service requires the service interface method pattern. JBoss MBean service interface method pattern consists of a set of life cycle operations which inform an MBean service when it can create, start, stop, and destroy itself.
	

		You can manage the dependency state using any of the following approaches:
	
	
				If you want specific methods to be called on your MBean, declare those methods in your MBean interface. This approach allows your MBean implementation to avoid dependencies on JBoss specific classes
			

	
				If you are not bothered about dependencies on JBoss specific classes then you may have your MBean interface extend the ServiceMBean interface and ServiceMBeanSupport class. The ServiceMBeanSupport class provides implementations of the service lifecycle methods like create, start and stop. To handle a specific event like the start()event, you need to override startService() method provided by the ServiceMBeanSupport class.
			

		Report a bug
	

 ⁠9.2. A Standard MBean Example

		This section develops two sample MBean services packaged together in a service archive (.sar).
	

		ConfigServiceMBean interface declares specific methods like the start, getTimeout and stop methods to start, hold and stop the MBean correctly without using any JBoss specific classes. ConfigService class implements ConfigServiceMBean interface and consequently implements the methods used within that interface.
	

		PlainThread class extends ServiceMBeanSupport class and implements PlainThreadMBean interface. PlainThread starts a thread and uses ConfigServiceMBean.getTimeout() to determine how long the thread should sleep.
	

 ⁠Example 9.1. Sample MBean services

package org.jboss.example.mbean.support;

public interface ConfigServiceMBean {

 int getTimeout();

 void start();

 void stop();

}

package org.jboss.example.mbean.support;

public class ConfigService implements ConfigServiceMBean {
 int timeout;

 @Override
 public int getTimeout() {
 return timeout;
 }

 @Override
 public void start() {
 //Create a random number between 3000 and 6000 milliseconds
 timeout = (int)Math.round(Math.random() * 3000) + 3000;
 System.out.println("Random timeout set to " + timeout + " seconds");
 }

 @Override
 public void stop() {
 timeout = 0;
 }

}

package org.jboss.example.mbean.support;

import org.jboss.system.ServiceMBean;

public interface PlainThreadMBean extends ServiceMBean {
 void setConfigService(ConfigServiceMBean configServiceMBean);
}

package org.jboss.example.mbean.support;

import org.jboss.system.ServiceMBeanSupport;

public class PlainThread extends ServiceMBeanSupport implements PlainThreadMBean {

 private ConfigServiceMBean configService;
 private Thread thread;
 private volatile boolean done;

 @Override
 public void setConfigService(ConfigServiceMBean configService) {
 this.configService = configService;
 }

 @Override
 protected void startService() throws Exception {
 System.out.println("Starting Plain Thread MBean");
 done = false;
 thread = new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 while (!done) {
 System.out.println("Sleeping....");
 Thread.sleep(configService.getTimeout());
 System.out.println("Slept!");
 }
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 });
 thread.start();
 }

 @Override
 protected void stopService() throws Exception {
 System.out.println("Stopping Plain Thread MBean");
 done = true;
 }

}

		The jboss-service.xml descriptor shows how ConfigService class is injected into PlainThread class using inject tag. The inject tag establishes a dependency between PlainThreadMBean and ConfigServiceMBean and thus allows PlainThreadMBean use ConfigServiceMBean easily.
	

 ⁠Example 9.2. JBoss-service.xml Service Descriptor
​
​<server xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="urn:jboss:service:7.0 jboss-service_7_0.xsd"
​ xmlns="urn:jboss:service:7.0">
​ <mbean code="org.jboss.example.mbean.support.ConfigService" name="jboss.support:name=ConfigBean"/>
​ <mbean code="org.jboss.example.mbean.support.PlainThread" name="jboss.support:name=ThreadBean">
​ <attribute name="configService">
​ <inject bean="jboss.support:name=ConfigBean"/>
​ </attribute>
​ </mbean>
​</server>

		After writing the sample MBeans you can package the classes and the jboss-service.xml descriptor in the META-INF folder of a service archive (.sar).
	

		Report a bug
	

 ⁠9.3. Deploying JBoss MBean Services

		To build and deploy the sample MBeans (ServiceMBeanTest.sar) in Domain mode use the following commands:
[domain@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar

		
[domain@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar --all-server-groups

	

		To build and deploy the sample MBeans (ServiceMBeanTest.sar) in Standalone mode use the following command:
	
[standalone@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar

		To undeploy the sample MBeans use the following command:
	
[standalone@localhost:9999 /] undeploy ServiceMBeanTest.sar

		Report a bug
	

 ⁠Chapter 10. Clustering in Web Applications

 ⁠10.1. Session Replication

 ⁠10.1.1. About HTTP Session Replication

		Session replication ensures that client sessions of distributable applications are not disrupted by failovers of nodes in a cluster. Each node in the cluster shares information about ongoing sessions, and can take them over if the originally-involved node disappears.
	

		Session replication is the mechanism by which mod_cluster, mod_jk, mod_proxy, ISAPI, and NSAPI clusters provide high availability.
	

		Report a bug
	

 ⁠10.1.2. About the Web Session Cache

		The web session cache can be configured when you use any of the HA profiles, including the standalone-ha.xml profile, or the managed domain profiles ha or full-ha. The most commonly configured elements are the cache mode and the number of cache owners for a distributed cache. The owners parameter works only in the DIST mode.
	
Cache Mode

			The cache mode can either be REPL (the default) or DIST.
		
	REPL
	
					The REPL mode replicates the entire cache to every other node in the cluster. This is the safest option, but introduces more overhead.
				

	DIST
	
					The DIST mode is similar to the buddy mode provided in previous implementations. It reduces overhead by distributing the cache to the number of nodes specified in the owners parameter. This number of owners defaults to 2.
				

Owners

			The owners parameter controls how many cluster nodes hold replicated copies of the session. The default is 2.
		

		Report a bug
	

 ⁠10.1.3. Configure the Web Session Cache

		The web session cache defaults to REPL. If you wish to use DIST mode, run the following two commands in the Management CLI. If you use a different profile, change the profile name in the commands. If you use a standalone server, remove the /profile=ha portion of the commands.
	

 ⁠Procedure 10.1. Configure the Web Session Cache
	Change the default cache mode to DIST.

/profile=ha/subsystem=infinispan/cache-container=web/:write-attribute(name=default-cache,value=dist)

	Set the number of owners for a distributed cache.

				The following command sets 5 owners. The default is 2.
			

/profile=ha/subsystem=infinispan/cache-container=web/distributed-cache=dist/:write-attribute(name=owners,value=5)

	Change the default cache mode back to REPL.

/profile=ha/subsystem=infinispan/cache-container=web/:write-attribute(name=default-cache,value=repl)

	Restart the Server

				After changing the web cache mode, you must restart the server.
			

Result

			Your server is configured for session replication. To use session replication in your own applications, refer to the following topic: Section 10.1.4, “Enable Session Replication in Your Application”.
		

		Report a bug
	

 ⁠10.1.4. Enable Session Replication in Your Application

Summary

			To take advantage of JBoss EAP 6 High Availability (HA) features, you must configure your application to be distributable. This procedure shows how to do that, and then explains some of the advanced configuration options you can use.
		

 ⁠Procedure 10.2. Make your Application Distributable
	Required: Indicate that your application is distributable.

				If your application is not marked as distributable, its sessions will never be distributed. Add the <distributable/> element inside the <web-app> tag of your application's web.xml descriptor file. Here is an example.
			

 ⁠Example 10.1. Minimum Configuration for a Distributable Application
​
​<?xml version="1.0"?>
​<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
​ http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
​ version="2.4">
​
​ <distributable/>
​
​</web-app>
​

	Modify the default replication behavior if desired.

				If you want to change any of the values affecting session replication, you can override them inside a <replication-config> element which is a child element of the <jboss-web> element of your application's jboss-web.xml file. For a given element, only include it if you want to override the defaults. The following example lists all of the default settings, and is followed by a table which explains the most commonly changed options.
			

 ⁠Example 10.2. Example <replication-config>Values
​
​<!DOCTYPE jboss-web PUBLIC
​ "-//JBoss//DTD Web Application 5.0//EN"
​ "http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">
​
​<jboss-web>
​
​ <replication-config>
​ <replication-trigger>SET_AND_NON_PRIMITIVE_GET</replication-trigger>
​ <replication-granularity>SESSION</replication-granularity>
​ <use-jk>false</use-jk>
​ <max-unreplicated-interval>30</max-unreplicated-interval>
​ <snapshot-mode>INSTANT</snapshot-mode>
​ <snapshot-interval>1000</snapshot-interval>
​ <session-notification-policy>com.example.CustomSessionNotificationPolicy</session-notification-policy>
​ </replication-config>
​
​</jboss-web>
​

 ⁠Table 10.1. Common Options for Session Replication
	
						Option
					

					 	
						Description
					

					
	
						<replication-trigger>
					

					 	
						Controls which conditions should trigger session data replication across the cluster. This option is necessary because after a mutable object (stored as a session attribute) is accessed from the session, the container has no clear way to know if the object has been modified and needs to be replicated, unless method setAttribute() is called directly.
					

					 Valid Values for <replication-trigger>
	SET_AND_GET
	
									This is the safest but worst-performing option. Session data is always replicated, even if its content has only been accessed, and not modified. This setting is preserved for legacy purposes only. To get the same behavior with better performance, you may, instead of using this setting, set <max-unreplicated-interval> to 0.
								

	SET_AND_NON_PRIMITIVE_GET
	
									The default value. Session data is only replicated if an object of a non-primitive type is accessed. This means that the object is not of a well-known Java type such as Integer, Long, or String.
								

	SET
	
									This option assumes that the application will explicitly call setAttribute on the session when the data needs to be replicated. It prevents unnecessary replication and can benefit overall performance, but is inherently unsafe.
								

					
						Regardless of the setting, you can always trigger session replication by calling setAttribute().
					

					
	
						<replication-granularity>
					

					 	
						Determines the granularity of data that is replicated. It defaults to SESSION, but can be set to ATTRIBUTE instead, to increase performance on sessions where most attributes remain unchanged.
					

					 Valid values for <replication-granularity>
	ATTRIBUTE
	
									This is only for dirty attributes in the session and for some session data like the last-accessed timestamp.
								

	SESSION
	
									The default value. The entire session object is replicated if any attribute is dirty. The shared object references are maintained on remote nodes since the entire session is serialized in one unit.
								

					 Note

							FIELD is not supported in JBoss EAP 6.
						

					

		The following options rarely need to be changed.
	

 ⁠Table 10.2. Less Commonly Changed Options for Session Replication
	
						Option
					

					 	
						Description
					

					
	
						<use-jk>
					

					 	
						Whether to assume that a load balancer such as mod_cluster, mod_jk, or mod_proxy is in use. The default is false. If set to true, the container examines the session ID associated with each request and replaces the jvmRoute portion of the session ID if there is a failover.
					

					
	
						<max-unreplicated-interval>
					

					 	
						The maximum interval (in seconds) to wait after a session was accessed before triggering a replication of a session's timestamp, even if it is considered to be unchanged. This ensures that cluster nodes are aware of each session's timestamp and that an unreplicated session will not expire incorrectly during a failover. It also ensures that you can rely on a correct value for calls to method HttpSession.getLastAccessedTime()during a failover.
					

					
						By default, no value is specified. A value of 0 causes the timestamp to be replicated whenever the session is accessed. A value of -1 causes the timestamp to be replicated only if other activity during the request triggers a replication. A positive value greater than HttpSession.getMaxInactiveInterval() is treated as a misconfiguration and converted to 0.
					

					
	
						<snapshot-mode>
					

					 	
						Specifies when sessions are replicated to other nodes. The default is INSTANT and the other possible value is INTERVAL.
					

					
						In INSTANT mode, changes are replicated at the end of a request, by means of the request processing thread. The <snapshot-interval> option is ignored.
					

					
						In INTERVAL mode, a background task runs at the interval specified by <snapshot-interval>, and replicates modified sessions.
					

					
	
						<snapshot-interval>
					

					 	
						The interval, in milliseconds, at which modified sessions should be replicated when using INTERVAL for the value of <snapshot-mode>.
					

					
	
						<session-notification-policy>
					

					 	
						The fully-qualified class name of the implementation of interface ClusteredSessionNotificationPolicy which governs whether servlet specification notifications are emitted to any registered HttpSessionListener, HttpSessionAttributeListener, or HttpSessionBindingListener.
					

					

		Report a bug
	

 ⁠10.2. HttpSession Passivation and Activation

 ⁠10.2.1. About HTTP Session Passivation and Activation

		Passivation is the process of controlling memory usage by removing relatively unused sessions from memory while storing them in persistent storage.
	

		Activation is when passivated data is retrieved from persisted storage and put back into memory.
	

		Passivation occurs at three different times in a HTTP session's lifetime:
	
	
				When the container requests the creation of a new session, if the number of currently active session exceeds a configurable limit, the server attempts to passivate some sessions to make room for the new one.
			

	
				Periodically, at a configured interval, a background task checks to see if sessions should be passivated.
			

	
				When a web application is deployed and a backup copy of sessions active on other servers is acquired by the newly deploying web application's session manager, sessions may be passivated.
			

		A session is passivated if it meets the following conditions:
	
	
				The session has not been in use for longer than a configurable maximum idle time.
			

	
				The number of active sessions exceeds a configurable maximum and the session has not been in use for longer than a configurable minimum idle time.
			

		Sessions are always passivated using a Least Recently Used (LRU) algorithm.
	

		Report a bug
	

 ⁠10.2.2. Configure HttpSession Passivation in Your Application

Overview

			HttpSession passivation is configured in your application's WEB_INF/jboss-web.xml or META_INF/jboss-web.xml file.
		

 ⁠Example 10.3. jboss-web.xml File
​<!DOCTYPE jboss-web PUBLIC
​ "-//JBoss//DTD Web Application 5.0//EN"
​ "http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">
​
​<jboss-web version="6.0"
​ xmlns="http://www.jboss.com/xml/ns/javaee"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee http://www.jboss.org/j2ee/schema/jboss-web_6_0.xsd">
​
​ <max-active-sessions>20</max-active-sessions>
​ <passivation-config>
​ <use-session-passivation>true</use-session-passivation>
​ <passivation-min-idle-time>60</passivation-min-idle-time>
​ <passivation-max-idle-time>600</passivation-max-idle-time>
​ </passivation-config>
​
​
​</jboss-web>

Passivation Configuration Elements
	<max-active-sessions>
	
					The maximum number of active sessions allowed. If the number of sessions managed by the session manager exceeds this value and passivation is enabled, the excess will be passivated based on the configured <passivation-min-idle-time>. Then, if the number of active sessions still exceeds this limit, attempts to create new sessions will fail. The default value of -1 sets no limit on the maximum number of active sessions.
				

	<passivation-config>
	
					This element holds the rest of the passivation configuration parameters, as child elements.
				

<passivation-config> Child Elements
	<use-session-passivation>
	
					Whether or not to use session passivation. The default value is false.
				

	<passivation-min-idle-time>
	
					The minimum time, in seconds, that a session must be inactive before the container will consider passivating it in order to reduce the active session count to conform to value defined by max-active-sessions. The default value of -1 disables passivating sessions before <passivation-max-idle-time> has elapsed. Neither a value of -1 nor a high value are recommended if <max-active-sessions> is set.
				

	<passivation-max-idle-time>
	
					The maximum time, in seconds, that a session can be inactive before the container attempts to passivate it to save memory. Passivation of such sessions takes place regardless of whether the active session count exceeds <max-active-sessions>. This value should be less than the <session-timeout> setting in the web.xml. The default value of -1 disables passivation based on maximum inactivity.
				

REPL and DIST Replication Modes

			The total number of sessions in memory includes sessions replicated from other cluster nodes that are not being accessed on this node. Take this into account when setting <max-active-sessions>. The number of sessions replicated from other nodes also depends on whether REPL or DIST cache mode is enabled. In REPL cache mode, each session is replicated to each node. In DIST cache mode, each session is replicated only to the number of nodes specified by the owners parameter. See Section 10.1.2, “About the Web Session Cache” and Section 10.1.3, “Configure the Web Session Cache” for information on configuring session cache modes.
		

			For example, consider an eight node cluster, where each node handles requests from 100 users. With REPL cache mode, each node would store 800 sessions in memory. With DIST cache mode enabled, and the default owners setting of 2, each node stores 200 sessions in memory.
		

		Report a bug
	

 ⁠10.3. Implement an HA Singleton

Summary

			The following procedure demonstrates how to deploy a service that is wrapped with the SingletonService decorator and used as a cluster-wide singleton service. The service activates a scheduled timer, which is started only once in the cluster.
		

 ⁠Procedure 10.3. Implement an HA Singleton Service
	
				Write the HA singleton service application.
			

				The following is a simple example of a Service that is wrapped with the SingletonService decorator to be deployed as a singleton service. A complete example can be found in the cluster-ha-singleton quickstart that ships with Red Hat JBoss Enterprise Application Platform 6. This quickstart contains all the instructions to build and deploy the application.
			
	
						Create a service.
					

						The following listing is an example of a service:
​
​package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;
​
​import java.util.Date;
​import java.util.concurrent.atomic.AtomicBoolean;
​
​import javax.naming.InitialContext;
​import javax.naming.NamingException;
​
​import org.jboss.logging.Logger;
​import org.jboss.msc.service.Service;
​import org.jboss.msc.service.ServiceName;
​import org.jboss.msc.service.StartContext;
​import org.jboss.msc.service.StartException;
​import org.jboss.msc.service.StopContext;
​
​
​/**
​ * @author Wolf-Dieter Fink
​ */
​public class HATimerService implements Service<String> {
​ private static final Logger LOGGER = Logger.getLogger(HATimerService.class);
​ public static final ServiceName SINGLETON_SERVICE_NAME = ServiceName.JBOSS.append("quickstart", "ha", "singleton", "timer");
​
​ /**
​ * A flag whether the service is started.
​ */
​ private final AtomicBoolean started = new AtomicBoolean(false);
​
​ /**
​ * @return the name of the server node
​ */
​ public String getValue() throws IllegalStateException, IllegalArgumentException {
​ LOGGER.infof("%s is %s at %s", HATimerService.class.getSimpleName(), (started.get() ? "started" : "not started"), System.getProperty("jboss.node.name"));
​ return "";
​ }
​
​ public void start(StartContext arg0) throws StartException {
​ if (!started.compareAndSet(false, true)) {
​ throw new StartException("The service is still started!");
​ }
​ LOGGER.info("Start HASingleton timer service '" + this.getClass().getName() + "'");
​
​ final String node = System.getProperty("jboss.node.name");
​ try {
​ InitialContext ic = new InitialContext();
​ ((Scheduler) ic.lookup("global/jboss-cluster-ha-singleton-service/SchedulerBean!org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.Scheduler")).initialize("HASingleton timer @" + node + " " + new Date());
​ } catch (NamingException e) {
​ throw new StartException("Could not initialize timer", e);
​ }
​ }
​
​ public void stop(StopContext arg0) {
​ if (!started.compareAndSet(true, false)) {
​ LOGGER.warn("The service '" + this.getClass().getName() + "' is not active!");
​ } else {
​ LOGGER.info("Stop HASingleton timer service '" + this.getClass().getName() + "'");
​ try {
​ InitialContext ic = new InitialContext();
​ ((Scheduler) ic.lookup("global/jboss-cluster-ha-singleton-service/SchedulerBean!org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.Scheduler")).stop();
​ } catch (NamingException e) {
​ LOGGER.error("Could not stop timer", e);
​ }
​ }
​ }
​}

					

	
						Create an activator that installs the Service as a clustered singleton.
					

						The following listing is an example of a Service activator that installs the HATimerService as a clustered singleton service:
​
​package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;
​
​import org.jboss.as.clustering.singleton.SingletonService;
​import org.jboss.logging.Logger;
​import org.jboss.msc.service.DelegatingServiceContainer;
​import org.jboss.msc.service.ServiceActivator;
​import org.jboss.msc.service.ServiceActivatorContext;
​import org.jboss.msc.service.ServiceController;
​
​
​/**
​ * Service activator that installs the HATimerService as a clustered singleton service
​ * during deployment.
​ *
​ * @author Paul Ferraro
​ */
​public class HATimerServiceActivator implements ServiceActivator {
​ private final Logger log = Logger.getLogger(this.getClass());
​
​ @Override
​ public void activate(ServiceActivatorContext context) {
​ log.info("HATimerService will be installed!");
​
​ HATimerService service = new HATimerService();
​ SingletonService<String> singleton = new SingletonService<String>(service, HATimerService.SINGLETON_SERVICE_NAME);
​ /*
​ * To pass a chain of election policies to the singleton, for example,
​ * to tell JGroups to prefer running the singleton on a node with a
​ * particular name, uncomment the following line:
​ */
​ // singleton.setElectionPolicy(new PreferredSingletonElectionPolicy(new SimpleSingletonElectionPolicy(), new NamePreference("node1/singleton")));
​
​ singleton.build(new DelegatingServiceContainer(context.getServiceTarget(), context.getServiceRegistry()))
​ .setInitialMode(ServiceController.Mode.ACTIVE)
​ .install()
​ ;
​ }
​}

						 Note

								The above code example uses a class, org.jboss.as.clustering.singleton.SingletonService, that is part of the JBoss EAP private API. A public API will become available in the JBoss EAP 7 release and the private class will be deprecated, but these classes will be maintained and available for the duration of the JBoss EAP 6.x release cycle.
							

					

	
						Create a ServiceActivator File
					

						Create a file named org.jboss.msc.service.ServiceActivator in the application's resources/META-INF/services/ directory. Add a line containing the fully qualified name of the ServiceActivator class created in the previous step.
org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.HATimerServiceActivator

					

	
						Create a Singleton bean that implements a timer to be used as a cluster-wide singleton timer.
					

						This Singleton bean must not have a remote interface and you must not reference its local interface from another EJB in any application. This prevents a lookup by a client or other component and ensures the SingletonService has total control of the Singleton.
					
	
								Create the Scheduler interface
							

								
​
​package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;
​
​/**
​ * @author Wolf-Dieter Fink
​ */
​public interface Scheduler {
​
​ void initialize(String info);
​
​ void stop();
​
​}

							

	
								Create the Singleton bean that implements the cluster-wide singleton timer.
							

								
​
​package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;
​
​import javax.annotation.Resource;
​import javax.ejb.ScheduleExpression;
​import javax.ejb.Singleton;
​import javax.ejb.Timeout;
​import javax.ejb.Timer;
​import javax.ejb.TimerConfig;
​import javax.ejb.TimerService;
​
​import org.jboss.logging.Logger;
​
​
​/**
​ * A simple example to demonstrate a implementation of a cluster-wide singleton timer.
​ *
​ * @author Wolf-Dieter Fink
​ */
​@Singleton
​public class SchedulerBean implements Scheduler {
​ private static Logger LOGGER = Logger.getLogger(SchedulerBean.class);
​ @Resource
​ private TimerService timerService;
​
​ @Timeout
​ public void scheduler(Timer timer) {
​ LOGGER.info("HASingletonTimer: Info=" + timer.getInfo());
​ }
​
​ @Override
​ public void initialize(String info) {
​ ScheduleExpression sexpr = new ScheduleExpression();
​ // set schedule to every 10 seconds for demonstration
​ sexpr.hour("*").minute("*").second("0/10");
​ // persistent must be false because the timer is started by the HASingleton service
​ timerService.createCalendarTimer(sexpr, new TimerConfig(info, false));
​ }
​
​ @Override
​ public void stop() {
​ LOGGER.info("Stop all existing HASingleton timers");
​ for (Timer timer : timerService.getTimers()) {
​ LOGGER.trace("Stop HASingleton timer: " + timer.getInfo());
​ timer.cancel();
​ }
​ }
​}

							

	
				Start each JBoss EAP 6 instance with clustering enabled.
			

			

				To enable clustering for standalone servers, you must start each server with the HA profile, using a unique node name and port offset for each instance.
			

					
						For Linux, use the following command syntax to start the servers:
					

						EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml -Djboss.node.name=UNIQUE_NODE_NAME -Djboss.socket.binding.port-offset=PORT_OFFSET

 ⁠Example 10.4. Start multiple standalone servers on Linux
$ EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml -Djboss.node.name=node1
$ EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml -Djboss.node.name=node2 -Djboss.socket.binding.port-offset=100

					

				 	
						For Microsoft Windows, use the following command syntax to start the servers:
					
EAP_HOME\bin\standalone.bat --server-config=standalone-ha.xml -Djboss.node.name=UNIQUE_NODE_NAME -Djboss.socket.binding.port-offset=PORT_OFFSET

 ⁠Example 10.5. Start multiple standalone servers on Microsoft Windows
C:> EAP_HOME\bin\standalone.bat --server-config=standalone-ha.xml -Djboss.node.name=node1
C:> EAP_HOME\bin\standalone.bat --server-config=standalone-ha.xml -Djboss.node.name=node2 -Djboss.socket.binding.port-offset=100

			
Note

					If you prefer not to use command line arguments, you can configure the standalone-ha.xml file for each server instance to bind on a separate interface.
				

	
				Deploy the application to the servers
			

				The following Maven command deploys the application to a standalone server running on the default ports.
			

				
mvn clean install jboss-as:deploy

			

				To deploy to additional servers, pass the server name. if it is on a different host, pass the host name and port number on the command line:
			

				
mvn clean package jboss-as:deploy -Djboss-as.hostname=localhost -Djboss-as.port=10099

			

				See the cluster-ha-singleton quickstart that ships with JBoss EAP 6 for Maven configuration and deployment details.
			

		Report a bug
	

 ⁠10.4. Apache mod_cluster-manager Application

 ⁠10.4.1. About mod_cluster-manager Application

		The mod_cluster-manager application is an administration web page which is available on Apache HTTP Server. It is used for monitoring the connected worker nodes and performing various administration tasks like enabling/disabling contexts and configuring the load-balancing properties of worker nodes in a cluster.
	

		Report a bug
	

 ⁠10.4.2. Exploring mod_cluster-manager Application

		The mod_cluster-manager application can be used for performing various administration tasks on worker nodes.
	

		The figure shown below represents the mod_cluster-manager application web page with annotations to highlight important components and administration options on the page.
	

 ⁠[image: Description]

Figure 10.1. mod_cluster Administration Web Page

		The annotations are explained below:
	
	
				[1] mod_cluster/1.2.8.Final: This denotes the version of the mod_cluster native library
			

	
				[2] ajp://192.168.122.204:8099: This denotes the protocol used (either one of AJP, HTTP, HTTPS), hostname or IP address of the worker node and the port
			

	
				[3] jboss-eap-6.3-2: This denotes the worker node's JVMRoute.
			

	
				[4] Virtual Host 1: This denotes the virtual host(s) configured on the worker node
			

	
				[5] Disable : This is an administration option which can be used to disable the creation of new sessions on the particular context. However the ongoing sessions do not get disabled and remain intact
			

	
				[6] Stop : This is an administration option which can be used to stop the routing of session requests to the context. The remaining sessions will failover to another node unless the property sticky-session-force is set to "true"
			

	
				[7] Enable Contexts Disable Contexts Stop Contexts: These denote operations which can be performed on the whole node. Selecting one of these options affects all the contexts of a node in all its virtual hosts.
			

	
				[8] Load balancing group (LBGroup): The load-balancing-group property is set in the mod_cluster subsystem in EAP configuration to group all worker nodes into custom load balancing groups. Load balancing group (LBGroup) is an informational field which gives information about all set load balancing groups. If this field is not set, then all worker nodes are grouped into a single default load balancing group
				Note

						This is only an informational field and thus cannot be used to set load-balancing-group property. The property has to be set in mod_cluster subsystem in EAP configuration.
					

			

	
				[9] Load (value): This indicates the load factor on the worker node. The load factor(s) are evaluated as below:

-load > 0 : A load factor with value 1 indicates that the worker node is overloaded. A load factor of 100 denotes a free and not-loaded node.
-load = 0 :A load factor of value 0 indicates that the worker node is in a standby mode. This means that no session requests will be routed to this node until and unless the other worker nodes are unavailable
-load = -1 : A load factor of value -1 indicates that the worker node is in an error state.
-load = -2 : A load factor of value -2 indicates that the worker node is undergoing CPing/CPong and is in a transition state

			

		Report a bug
	

 ⁠Chapter 11. CDI

 ⁠11.1. Overview of CDI

 ⁠11.1.1. Overview of CDI

			
					Section 11.1.2, “About Contexts and Dependency Injection (CDI)”
				

	
					Section 11.1.5, “Relationship Between Weld, Seam 2, and JavaServer Faces”
				

	
					Section 11.1.3, “Benefits of CDI”
				

	

		Report a bug
	

 ⁠11.1.2. About Contexts and Dependency Injection (CDI)

		Contexts and Dependency Injection (CDI) is a specification designed to enable EJB 3.0 components "to be used as Java Server Faces (JSF) managed beans, unifying the two component models and enabling a considerable simplification to the programming model for web-based applications in Java." The preceding quote is taken from the JSR-299 specification, which can be found at http://www.jcp.org/en/jsr/detail?id=299.
	

		JBoss EAP 6 includes Weld, which is the reference implementation of JSR-299. For more information, about type-safe dependency injection, see Section 11.1.4, “About Type-safe Dependency Injection”.
	

		Report a bug
	

 ⁠11.1.3. Benefits of CDI

		Following are the benefits of CDI:
	
	
				It simplifies and shrinks your code base by replacing big chunks of code with annotations.
			

	
				It is flexible, allowing you to disable and enable injections and events, use alternative beans, and inject non-CDI objects easily.
			

	
				It is easy to use your old code with CDI. You only need to include a beans.xml in your META-INF/ or WEB-INF/ directory. The file can be empty.
			

	
				It simplifies packaging and deployments and reduces the amount of XML you need to add to your deployments.
			

	
				It provides lifecycle management via contexts. You can tie injections to requests, sessions, conversations, or custom contexts.
			

	
				It also provides type-safe dependency injection, which is safer and easier to debug than string-based injection.
			

	
				It decouples interceptors from beans.
			

	
				It provides complex event notification.
			

		Report a bug
	

 ⁠11.1.4. About Type-safe Dependency Injection

		Before JSR-299 and CDI, the only way to inject dependencies in Java was to use strings. This was prone to errors. CDI introduces the ability to inject dependencies in a type-safe way.
	

		For more information about CDI, refer to Section 11.1.2, “About Contexts and Dependency Injection (CDI)”.
	

		Report a bug
	

 ⁠11.1.5. Relationship Between Weld, Seam 2, and JavaServer Faces

		The goal of Seam 2 was to unify Enterprise Java Beans (EJBs) and JavaServer Faces (JSF) managed beans.
	

		JavaServer Faces (JSF) implements JSR-314. It is an API for building server-side user interfaces. JBoss Web Framework Kit includes RichFaces, which is an implementation of JavaServer Faces and AJAX.
	

		Weld is the reference implementation of Contexts and Dependency Injection (CDI), which is defined in JSR-299. Weld was inspired by Seam 2 and other dependency injection frameworks. Weld is included in JBoss EAP 6.
	

		Report a bug
	

 ⁠11.2. Use CDI

 ⁠11.2.1. First Steps

 ⁠11.2.1.1. Enable CDI

Summary

			Contexts and Dependency Injection (CDI) is one of the core technologies in JBoss EAP 6, and is enabled by default. If for some reason it is disabled and you need to enable it, follow this procedure.
		

 ⁠Procedure 11.1. Enable CDI in JBoss EAP 6
	Check to see if the CDI subsystem details are commented out of the configuration file.

				A subsystem can be disabled by commenting out the relevant section of the domain.xml or standalone.xml configuration files, or by removing the relevant section altogether.
			

				To find the CDI subsystem in EAP_HOME/domain/configuration/domain.xml or EAP_HOME/standalone/configuration/standalone.xml, search them for the following string. If it exists, it is located inside the <extensions> section.
			
<extension module="org.jboss.as.weld"/>

				The following line must also be present in the profile you are using. Profiles are in individual <profile> elements within the <profiles> section.
			
<subsystem xmlns="urn:jboss:domain:weld:1.0"/>

	Before editing any files, stop JBoss EAP 6.

				JBoss EAP 6 modifies the configuration files during the time it is running, so you must stop the server before you edit the configuration files directly.
			

	Edit the configuration file to restore the CDI subsystem.

				If the CDI subsystem was commented out, remove the comments.
			

				If it was removed entirely, restore it by adding this line to the file in a new line directly above the </extensions> tag:
			
<extension module="org.jboss.as.weld"/>

	
				You also need to add the following line to the relevant profile in the <profiles> section.
			
<subsystem xmlns="urn:jboss:domain:weld:1.0"/>

	Restart JBoss EAP 6.

				Start JBoss EAP 6 with your updated configuration.
			

Result

			JBoss EAP 6 starts with the CDI subsystem enabled.
		

		Report a bug
	

 ⁠11.2.2. Use CDI to Develop an Application

 ⁠11.2.2.1. Use CDI to Develop an Application

Introduction

			Contexts and Dependency Injection (CDI) gives you tremendous flexibility in developing applications, reusing code, adapting your code at deployment or run-time, and unit testing. JBoss EAP 6 includes Weld, the reference implementation of CDI. These tasks show you how to use CDI in your enterprise applications.
		

			
					Section 11.2.1.1, “Enable CDI”
				

	
					Section 11.2.2.2, “Use CDI with Existing Code”
				

	
					Section 11.2.2.3, “Exclude Beans From the Scanning Process”
				

	
					Section 11.2.2.4, “Use an Injection to Extend an Implementation”
				

	
					Section 11.2.3.3, “Use a Qualifier to Resolve an Ambiguous Injection”
				

	
					Section 11.2.7.4, “Override an Injection with an Alternative”
				

	
					Section 11.2.7.2, “Use Named Beans”
				

	
					Section 11.2.6.1, “Manage the Lifecycle of a Bean”
				

	
					Section 11.2.6.2, “Use a Producer Method”
				

	
					Section 11.2.10.2, “Use Interceptors with CDI”
				

	
					Section 11.2.8.2, “Use Stereotypes”
				

	
					Section 11.2.9.3, “Fire and Observe Events”
				

	

		Report a bug
	

 ⁠11.2.2.2. Use CDI with Existing Code

		Almost every concrete Java class that has a constructor with no parameters, or a constructor designated with the annotation @Inject, is a bean. The only thing you need to do before you can start injecting beans is create a file called beans.xml in the META-INF/ or WEB-INF/ directory of your archive. The file can be empty.
	

 ⁠Procedure 11.2. Use legacy beans in CDI applications
	Package your beans into an archive.

				Package your beans into a JAR or WAR archive.
			

	Include a beans.xml file in your archive.

				Place a beans.xml file into your JAR archive's META-INF/ or your WAR archive's WEB-INF/ directory. The file can be empty.
			

Result:

			You can use these beans with CDI. The container can create and destroy instances of your beans and associate them with a designated context, inject them into other beans, use them in EL expressions, specialize them with qualifier annotations, and add interceptors and decorators to them, without any modifications to your existing code. In some circumstances, you may need to add some annotations.
		

		Report a bug
	

 ⁠11.2.2.3. Exclude Beans From the Scanning Process

Summary

			One of the features of Weld, the JBoss EAP 6 implementation of CDI, is the ability to exclude classes in your archive from scanning, having container lifecycle events fired, and being deployed as beans. This is not part of the JSR-299 specification.
		

 ⁠Example 11.1. Exclude packages from your bean

			The following example has several <weld:exclude> tags.
		
	
					The first one excludes all Swing classes.
				

	
					The second excludes Google Web Toolkit classes if Google Web Toolkit is not installed.
				

	
					The third excludes classes which end in the string Blether (using a regular expression), if the system property verbosity is set to low.
				

	
					The fourth excludes Java Server Faces (JSF) classes if Wicket classes are present and the viewlayer system property is not set.
				

​
​<?xml version="1.0" encoding="UTF-8"?>
​<beans xmlns="http://java.sun.com/xml/ns/javaee"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xmlns:weld="http://jboss.org/schema/weld/beans"
​ xsi:schemaLocation="
​ http://java.sun.com/xml/ns/javaee http://docs.jboss.org/cdi/beans_1_0.xsd
​ http://jboss.org/schema/weld/beans http://jboss.org/schema/weld/beans_1_1.xsd">
​
​ <weld:scan>
​
​ <!-- Don't deploy the classes for the swing app! -->
​ <weld:exclude name="com.acme.swing.**" />
​
​ <!-- Don't include GWT support if GWT is not installed -->
​ <weld:exclude name="com.acme.gwt.**">
​ <weld:if-class-available name="!com.google.GWT"/>
​ </weld:exclude>
​
​ <!--
​ Exclude classes which end in Blether if the system property verbosity is set to low
​ i.e.
​ java ... -Dverbosity=low
​ -->
​ <weld:exclude pattern="^(.*)Blether$">
​ <weld:if-system-property name="verbosity" value="low"/>
​ </weld:exclude>
​
​ <!--
​ Don't include JSF support if Wicket classes are present, and the viewlayer system
​ property is not set
​ -->
​ <weld:exclude name="com.acme.jsf.**">
​ <weld:if-class-available name="org.apache.wicket.Wicket"/>
​ <weld:if-system-property name="!viewlayer"/>
​ </weld:exclude>
​ </weld:scan>
​</beans>

		The formal specification of Weld-specific configuration options can be found at http://jboss.org/schema/weld/beans_1_1.xsd.
	

		Report a bug
	

 ⁠11.2.2.4. Use an Injection to Extend an Implementation

Summary

			You can use an injection to add or change a feature of your existing code. This example shows you how to add a translation ability to an existing class. The translation is a hypothetical feature and the way it is implemented in the example is pseudo-code, and only provided for illustration.
		

		The example assumes you already have a Welcome class, which has a method buildPhrase. The buildPhrase method takes as an argument the name of a city, and outputs a phrase like "Welcome to Boston." Your goal is to create a version of the Welcome class which can translate the greeting into a different language.
	

 ⁠Example 11.2. Inject a Translator Bean Into the Welcome Class

			The following pseudo-code injects a hypothetical Translator object into the Welcome class. The Translator object may be an EJB stateless bean or another type of bean, which can translate sentences from one language to another. In this instance, the Translator is used to translate the entire greeting, without actually modifying the original Welcome class at all. The Translator is injected before the buildPhrase method is implemented.
		

			The code sample below is an example Translating Welcome class.
		
​
​public class TranslatingWelcome extends Welcome {
​
​ @Inject Translator translator;
​
​ public String buildPhrase(String city) {
​ return translator.translate("Welcome to " + city + "!");
​ }
​ ...
​}

		Report a bug
	

 ⁠11.2.3. Ambiguous or Unsatisfied Dependencies

 ⁠11.2.3.1. About Ambiguous or Unsatisfied Dependencies

		Ambiguous dependencies exist when the container is unable to resolve an injection to exactly one bean.
	

		Unsatisfied dependencies exist when the container is unable to resolve an injection to any bean at all.
	

		The container takes the following steps to try to resolve dependencies:
	
	
				It resolves the qualifier annotations on all beans that implement the bean type of an injection point.
			

	
				It filters out disabled beans. Disabled beans are @Alternative beans which are not explicitly enabled.
			

		In the event of an ambiguous or unsatisfied dependency, the container aborts deployment and throws an exception.
	

		To fix an ambiguous dependency, see Section 11.2.3.3, “Use a Qualifier to Resolve an Ambiguous Injection”.
	

		Report a bug
	

 ⁠11.2.3.2. About Qualifiers

		A qualifier is an annotation which ties a bean to a bean type. It allows you to specify exactly which bean you mean to inject. Qualifiers have a retention and a target, which are defined as in the example below.
	

 ⁠Example 11.3. Define the @Synchronous and @Asynchronous Qualifiers
​
​@Qualifier
​@Retention(RUNTIME)
​@Target({TYPE, METHOD, FIELD, PARAMETER})
​public @interface Synchronous {}

​
​@Qualifier
​@Retention(RUNTIME)
​@Target({TYPE, METHOD, FIELD, PARAMETER})
​public @interface Asynchronous {}

 ⁠Example 11.4. Use the @Synchronous and @Asynchronous Qualifiers
​
​@Synchronous
​public class SynchronousPaymentProcessor implements PaymentProcessor {
​
​ public void process(Payment payment) { ... }
​
​}

​
​@Asynchronous
​public class AsynchronousPaymentProcessor implements PaymentProcessor {
​
​ public void process(Payment payment) { ... }
​}

		Report a bug
	

 ⁠11.2.3.3. Use a Qualifier to Resolve an Ambiguous Injection

Summary

			This task shows an ambiguous injection and removes the ambiguity with a qualifier. Read more about ambiguous injections at Section 11.2.3.1, “About Ambiguous or Unsatisfied Dependencies”.
		

 ⁠Example 11.5. Ambiguous injection

			You have two implementations of Welcome, one which translates and one which does not. In that situation, the injection below is ambiguous and needs to be specified to use the translating Welcome.
		
​
​public class Greeter {
​ private Welcome welcome;
​
​ @Inject
​ void init(Welcome welcome) {
​ this.welcome = welcome;
​ }
​ ...
​}

 ⁠Procedure 11.3. Resolve an Ambiguous Injection with a Qualifier
	Create a qualifier annotation called @Translating.
​
​@Qualifier
​@Retention(RUNTIME)
​@Target({TYPE,METHOD,FIELD,PARAMETERS})
​public @interface Translating{}

	Annotate your translating Welcome with the @Translating annotation.
​
​@Translating
​public class TranslatingWelcome extends Welcome {
​ @Inject Translator translator;
​ public String buildPhrase(String city) {
​ return translator.translate("Welcome to " + city + "!");
​ }
​ ...
​}

	Request the translating Welcome in your injection.

				You must request a qualified implementation explicitly, similar to the factory method pattern. The ambiguity is resolved at the injection point.
			
​
​public class Greeter {
​ private Welcome welcome;
​ @Inject
​ void init(@Translating Welcome welcome) {
​ this.welcome = welcome;
​ }
​ public void welcomeVisitors() {
​ System.out.println(welcome.buildPhrase("San Francisco"));
​ }
​}

Result

			The TranslatingWelcome is used, and there is no ambiguity.
		

		Report a bug
	

 ⁠11.2.4. Managed Beans

 ⁠11.2.4.1. About Managed Beans

		Prior to Java EE 6, there was no clear definition of the term bean in the Java EE platform. There were several concepts referred to as beans in the Java EE specifications, including EJB beans and JSF managed beans. Third-party frameworks such as Spring and Seam introduced their own ideas of what defined a bean.
	

		Java EE 6 established a common definition in the Managed Beans specification. Managed Beans are defined as container-managed objects with minimal programming restrictions, otherwise known by the acronym POJO (Plain Old Java Object). They support a small set of basic services, such as resource injection, lifecycle callbacks and interceptors. Companion specifications, such as EJB and CDI, build on this basic model.
	

		With very few exceptions, almost every concrete Java class that has a constructor with no parameters (or a constructor designated with the annotation @Inject) is a bean. This includes every JavaBean and every EJB session bean. The only requirement to enable the mentioned services in beans is that they reside in an archive (a JAR, or a Java EE module such as a WAR or EJB JAR) that contains a special marker file: META-INF/beans.xml.
	

		Report a bug
	

 ⁠11.2.4.2. Types of Classes That are Beans

		A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by the Managed Beans specification. You can explicitly declare a managed bean by annotating the bean class @ManagedBean, but in CDI you do not need to. According to the specification, the CDI container treats any class that satisfies the following conditions as a managed bean:
	
	
				It is not a non-static inner class.
			

	
				It is a concrete class, or is annotated @Decorator.
			

	
				It is not annotated with an EJB component-defining annotation or declared as an EJB bean class in ejb-jar.xml.
			

	
				It does not implement interface javax.enterprise.inject.spi.Extension.
			

	
				It has either a constructor with no parameters, or a constructor annotated with @Inject.
			

		The unrestricted set of bean types for a managed bean contains the bean class, every superclass and all interfaces it implements directly or indirectly.
	

		If a managed bean has a public field, it must have the default scope @Dependent.
	

		Report a bug
	

 ⁠11.2.4.3. Use CDI to Inject an Object Into a Bean

		When your deployment archive includes a META-INF/beans.xml or WEB-INF/beans.xml file, each object in your deployment can be injected using CDI.
	

		This procedure introduces the main ways to inject objects into other objects.
	
	Inject an object into any part of a bean with the @Inject annotation.

				To obtain an instance of a class, within your bean, annotate the field with @Inject.
			

 ⁠Example 11.6. Injecting a TextTranslator instance into a TranslateController
​
​public class TranslateController {
​
​ @Inject TextTranslator textTranslator;
​ ...

	Use your injected object's methods

				You can use your injected object's methods directly. Assume that TextTranslator has a method translate.
			

 ⁠Example 11.7. Use your injected object's methods
​
​// in TranslateController class
​
​public void translate() {
​
​ translation = textTranslator.translate(inputText);
​
​}

	Use injection in the constructor of a bean

				You can inject objects into the constructor of a bean, as an alternative to using a factory or service locator to create them.
			

 ⁠Example 11.8. Using injection in the constructor of a bean
​
​public class TextTranslator {
​
​ private SentenceParser sentenceParser;
​
​ private Translator sentenceTranslator;
​
​
​
​ @Inject
​
​ TextTranslator(SentenceParser sentenceParser, Translator sentenceTranslator) {
​
​ this.sentenceParser = sentenceParser;
​
​ this.sentenceTranslator = sentenceTranslator;
​
​ }
​
​ // Methods of the TextTranslator class
​ ...
​}

	Use the Instance(<T>) interface to get instances programmatically.

				The Instance interface can return an instance of TextTranslator when parameterized with the bean type.
			

 ⁠Example 11.9. Obtaining an instance programmatically
​
​@Inject Instance<TextTranslator> textTranslatorInstance;
​
​...
​
​public void translate() {
​
​ textTranslatorInstance.get().translate(inputText);
​
​}

Result:

			When you inject an object into a bean all of the object's methods and properties are available to your bean. If you inject into your bean's constructor, instances of the injected objects are created when your bean's constructor is called, unless the injection refers to an instance which already exists. For instance, a new instance would not be created if you inject a session-scoped bean during the lifetime of the session.
		

		Report a bug
	

 ⁠11.2.5. Contexts, Scopes, and Dependencies

 ⁠11.2.5.1. Contexts and Scopes

		A context, in terms of CDI, is a storage area which holds instances of beans associated with a specific scope.
	

		A scope is the link between a bean and a context. A scope/context combination may have a specific lifecycle. Several pre-defined scopes exist, and you can create your own scopes. Examples of pre-defined scopes are @RequestScoped, @SessionScoped, and @ConversationScope.
	

		Report a bug
	

 ⁠11.2.5.2. Available Contexts

 ⁠Table 11.1. Available contexts
	 Context 	 Description
	 @Dependent 	 The bean is bound to the lifecycle of the bean holding the reference.
	 @ApplicationScoped 	 Bound to the lifecycle of the application.
	 @RequestScoped 	 Bound to the lifecycle of the request.
	 @SessionScoped 	 Bound to the lifecycle of the session.
	 @ConversationScoped 	 Bound to the lifecycle of the conversation. The conversation scope is between the lengths of the request and the session, and is controlled by the application.
	 Custom scopes 	 If the above contexts do not meet your needs, you can define custom scopes.

		Report a bug
	

 ⁠11.2.6. Bean Lifecycle

 ⁠11.2.6.1. Manage the Lifecycle of a Bean

Summary

			This task shows you how to save a bean for the life of a request. Several other scopes exist, and you can define your own scopes.
		

		The default scope for an injected bean is @Dependent. This means that the bean's lifecycle is dependent upon the lifecycle of the bean which holds the reference. For more information, see Section 11.2.5.1, “Contexts and Scopes”.
	

 ⁠Procedure 11.4. Manage Bean Lifecycles
	Annotate the bean with the scope corresponding to your desired scope.
​
​@RequestScoped
​@Named("greeter")
​public class GreeterBean {
​ private Welcome welcome;
​ private String city; // getter & setter not shown
​ @Inject void init(Welcome welcome) {
​ this.welcome = welcome;
​ }
​ public void welcomeVisitors() {
​ System.out.println(welcome.buildPhrase(city));
​ }
​}

	When your bean is used in the JSF view, it holds state.
​<h:form>
​ <h:inputText value="#{greeter.city}"/>
​ <h:commandButton value="Welcome visitors" action="#{greeter.welcomeVisitors}"/>
​</h:form>

Result:

			Your bean is saved in the context relating to the scope that you specify, and lasts as long as the scope applies.
		

			
					Section 11.2.13.1, “About Bean Proxies”
				

	
					Section 11.2.13.2, “Use a Proxy in an Injection”
				

	

		Report a bug
	

 ⁠11.2.6.2. Use a Producer Method

Summary

			This task shows how to use producer methods to produce a variety of different objects which are not beans for injection.
		

 ⁠Example 11.10. Use a producer method instead of an alternative, to allow polymorphism after deployment

			The @Preferred annotation in the example is a qualifier annotation. For more information about qualifiers, refer to: Section 11.2.3.2, “About Qualifiers”.
		
​
​@SessionScoped
​public class Preferences implements Serializable {
​ private PaymentStrategyType paymentStrategy;
​ ...
​ @Produces @Preferred
​ public PaymentStrategy getPaymentStrategy() {
​ switch (paymentStrategy) {
​ case CREDIT_CARD: return new CreditCardPaymentStrategy();
​ case CHECK: return new CheckPaymentStrategy();
​ default: return null;
​ }
​ }
​}

			The following injection point has the same type and qualifier annotations as the producer method, so it resolves to the producer method using the usual CDI injection rules. The producer method is called by the container to obtain an instance to service this injection point.
		
​
​@Inject @Preferred PaymentStrategy paymentStrategy;

 ⁠Example 11.11. Assign a scope to a producer method

			The default scope of a producer method is @Dependent. If you assign a scope to a bean, it is bound to the appropriate context. The producer method in this example is only called once per session.
		
​
​@Produces @Preferred @SessionScoped
​public PaymentStrategy getPaymentStrategy() {
​ ...
​}

 ⁠Example 11.12. Use an injection inside a producer method

			Objects instantiated directly by an application cannot take advantage of dependency injection and do not have interceptors. However, you can use dependency injection into the producer method to obtain bean instances.
		
​
​@Produces @Preferred @SessionScoped
​public PaymentStrategy getPaymentStrategy(CreditCardPaymentStrategy ccps,
​ CheckPaymentStrategy cps) {
​ switch (paymentStrategy) {
​ case CREDIT_CARD: return ccps;
​ case CHEQUE: return cps;
​ default: return null;
​ }
​}
​

			If you inject a request-scoped bean into a session-scoped producer, the producer method promotes the current request-scoped instance into session scope. This is almost certainly not the desired behavior, so use caution when you use a producer method in this way.
		

Note

			The scope of the producer method is not inherited from the bean that declares the producer method.
		

Result

			Producer methods allow you to inject non-bean objects and change your code dynamically.
		

		Report a bug
	

 ⁠11.2.7. Named Beans and Alternative Beans

 ⁠11.2.7.1. About Named Beans

		A bean is named by using the @Named annotation. Naming a bean allows you to use it directly in Java Server Faces (JSF).
	

		The @Named annotation takes an optional parameter, which is the bean name. If this parameter is omitted, the lower-cased bean name is used as the name.
	

		Report a bug
	

 ⁠11.2.7.2. Use Named Beans

	Use the @Named annotation to assign a name to a bean.
​
​@Named("greeter")
​public class GreeterBean {
​ private Welcome welcome;
​
​ @Inject
​ void init (Welcome welcome) {
​ this.welcome = welcome;
​ }
​
​ public void welcomeVisitors() {
​ System.out.println(welcome.buildPhrase("San Francisco"));
​ }
​}

				The bean name itself is optional. If it is omitted, the bean is named after the class name, with the first letter decapitalized. In the example above, the default name would be greeterBean.
			

	Use the named bean in a JSF view.
​<h:form>
​ <h:commandButton value="Welcome visitors" action="#{greeter.welcomeVisitors}"/>
​</h:form>

Result:

			Your named bean is assigned as an action to the control in your JSF view, with a minimum of coding.
		

		Report a bug
	

 ⁠11.2.7.3. About Alternative Beans

		Alternatives are beans whose implementation is specific to a particular client module or deployment scenario.
	

 ⁠Example 11.13. Defining Alternatives

			This alternative defines a mock implementation of both @Synchronous PaymentProcessor and @Asynchronous PaymentProcessor, all in one:
		
​@Alternative @Synchronous @Asynchronous
​
​public class MockPaymentProcessor implements PaymentProcessor {
​
​ public void process(Payment payment) { ... }
​
​}

		By default, @Alternative beans are disabled. They are enabled for a specific bean archive by editing its beans.xml file.
	

		Report a bug
	

 ⁠11.2.7.4. Override an Injection with an Alternative

Summary

			Alternative beans let you override existing beans. They can be thought of as a way to plug in a class which fills the same role, but functions differently. They are disabled by default. This task shows you how to specify and enable an alternative.
		

 ⁠Procedure 11.5. Override an Injection

			This task assumes that you already have a TranslatingWelcome class in your project, but you want to override it with a "mock" TranslatingWelcome class. This would be the case for a test deployment, where the true Translator bean cannot be used.
		
	Define the alternative.
​
​@Alternative
​@Translating
​public class MockTranslatingWelcome extends Welcome {
​ public String buildPhrase(string city) {
​ return "Bienvenue Ã " + city + "!");
​ }
​}

	Substitute the alternative.

				To activate the substitute implementation, add the fully-qualified class name to your META-INF/beans.xml or WEB-INF/beans.xml file.
			
​<beans>
​ <alternatives>
​ <class>com.acme.MockTranslatingWelcome</class>
​ </alternatives>
​</beans>

Result

			The alternative implementation is now used instead of the original one.
		

		Report a bug
	

 ⁠11.2.8. Stereotypes

 ⁠11.2.8.1. About Stereotypes

		In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype allows you to identify such a role and declare some common metadata for beans with that role in a central place.
	

		A stereotype encapsulates any combination of:
	
	
				default scope
			

	
				a set of interceptor bindings
			

		A stereotype may also specify either of these two scenarios:
	
	
				all beans with the stereotype have defaulted bean EL names
			

	
				all beans with the stereotype are alternatives
			

		A bean may declare zero, one or multiple stereotypes. Stereotype annotations may be applied to a bean class or producer method or field.
	

		A stereotype is an annotation, annotated @Stereotype, that packages several other annotations.
	

		A class that inherits a scope from a stereotype may override that stereotype and specify a scope directly on the bean.
	

		In addition, if a stereotype has a @Named annotation, any bean it is placed on has a default bean name. The bean may override this name if the @Named annotation is specified directly on the bean. For more information about named beans, see Section 11.2.7.1, “About Named Beans”.
	

		Report a bug
	

 ⁠11.2.8.2. Use Stereotypes

Summary

			Without stereotypes, annotations can become cluttered. This task shows you how to use stereotypes to reduce the clutter and streamline your code. For more information about what stereotypes are, see Section 11.2.8.1, “About Stereotypes”.
		

 ⁠Example 11.14. Annotation clutter
​
​@Secure
​@Transactional
​@RequestScoped
​@Named
​public class AccountManager {
​ public boolean transfer(Account a, Account b) {
​ ...
​ }
​}

 ⁠Procedure 11.6. Define and Use Stereotypes
	Define the stereotype,
​
​@Secure
​@Transactional
​@RequestScoped
​@Named
​@Stereotype
​@Retention(RUNTIME)
​@Target(TYPE)
​public @interface BusinessComponent {
​ ...
​}

	Use the stereotype.
​
​@BusinessComponent
​public class AccountManager {
​ public boolean transfer(Account a, Account b) {
​ ...
​ }
​}

Result:

			Stereotypes streamline and simplify your code.
		

		Report a bug
	

 ⁠11.2.9. Observer Methods

 ⁠11.2.9.1. About Observer Methods

		Observer methods receive notifications when events occur.
	

		CDI also provides transactional observer methods, which receive event notifications during the before completion or after completion phase of the transaction in which the event was fired.
	

		Report a bug
	

 ⁠11.2.9.2. Transactional Observers

		Transactional observers receive the event notifications before or after the completion phase of the transaction in which the event was raised. For example, the following observer method refreshes a query result set cached in the application context, but only when transactions that update the Category tree are successful:
	

		
​
​public void refreshCategoryTree(@Observes(during = AFTER_SUCCESS) CategoryUpdateEvent event) { ... }

	

		There are five kinds of transactional observers:
			
					IN_PROGRESS: By default, observers are invoked immediately.
				

	
					AFTER_SUCCESS: Observers are invoked after the completion phase of the transaction, but only if the transaction completes successfully.
				

	
					AFTER_FAILURE: Observers are invoked after the completion phase of the transaction only if the transaction fails to complete successfully.
				

	
					AFTER_COMPLETION: Observers are invoked after the completion phase of the transaction.
				

	
					BEFORE_COMPLETION: Observers are invoked before the completion phase of the transaction.
				

	

		Transactional observers are important in a stateful object model because state is often held for longer than a single atomic transaction.
	

		Assume we have cached a JPA query result set in the application scope:
	
​
​	
​import javax.ejb.Singleton;
​import javax.enterprise.inject.Produces;
​
​@ApplicationScoped @Singleton
​
​public class Catalog {
​ @PersistenceContext EntityManager em;
​ List<Product> products;
​ @Produces @Catalog
​ List<Product> getCatalog() {
​ if (products==null) {
​ products = em.createQuery("select p from Product p where p.deleted = false")
​ .getResultList();
​ }
​ return products;
​ }
​}

		Occasionally a Product is created or deleted. When this occurs, we need to refresh the Product catalog. But we have to wait for the transaction to complete successfully before performing this refresh.
	

		The bean that creates and deletes Products triggers events, for example:
	
​
​	
​import javax.enterprise.event.Event;
​
​@Stateless
​
​public class ProductManager {
​ @PersistenceContext EntityManager em;
​ @Inject @Any Event<Product> productEvent;
​ public void delete(Product product) {
​ em.delete(product);
​ productEvent.select(new AnnotationLiteral<Deleted>(){}).fire(product);
​ }
​
​ public void persist(Product product) {
​ em.persist(product);
​ productEvent.select(new AnnotationLiteral<Created>(){}).fire(product);
​ }
​ ...
​}

		The Catalog can now observe the events after successful completion of the transaction:
	
​
​	
​import javax.ejb.Singleton;
​
​@ApplicationScoped @Singleton
​public class Catalog {
​ ...
​ void addProduct(@Observes(during = AFTER_SUCCESS) @Created Product product) {
​ products.add(product);
​ }
​
​ void removeProduct(@Observes(during = AFTER_SUCCESS) @Deleted Product product) {
​ products.remove(product);
​ }
​
​}

		Report a bug
	

 ⁠11.2.9.3. Fire and Observe Events

 ⁠Example 11.15. Fire an event

			This code shows an event being injected and used in a method.
		
​
​public class AccountManager {
​ @Inject Event<Withdrawal> event;
​
​ public boolean transfer(Account a, Account b) {
​ ...
​ event.fire(new Withdrawal(a));
​ }
​}

 ⁠Example 11.16. Fire an event with a qualifier

			You can annotate your event injection with a qualifier, to make it more specific. For more information about qualifiers, see Section 11.2.3.2, “About Qualifiers”.
		
​
​public class AccountManager {
​ @Inject @Suspicious Event <Withdrawal> event;
​
​ public boolean transfer(Account a, Account b) {
​ ...
​ event.fire(new Withdrawal(a));
​ }
​}

 ⁠Example 11.17. Observe an event

			To observe an event, use the @Observes annotation.
		
​
​public class AccountObserver {
​ void checkTran(@Observes Withdrawal w) {
​ ...
​ }
​}

 ⁠Example 11.18. Observe a qualified event

			You can use qualifiers to observe only specific types of events. For more information about qualifiers, see Section 11.2.3.2, “About Qualifiers”.
		
​
​public class AccountObserver {
​ void checkTran(@Observes @Suspicious Withdrawal w) {
​ ...
​ }
​}

		Report a bug
	

 ⁠11.2.10. Interceptors

 ⁠11.2.10.1. About Interceptors

		Interceptors are defined as part of the Enterprise JavaBeans specification, which can be found at http://jcp.org/aboutJava/communityprocess/final/jsr318/. Interceptors allow you to add functionality to the business methods of a bean without modifying the bean's method directly. The interceptor is executed before any of the business methods of the bean.
	

		CDI enhances this functionality by allowing you to use annotations to bind interceptors to beans.
	
Interception points
	business method interception
	
					A business method interceptor applies to invocations of methods of the bean by clients of the bean.
				

	lifecycle callback interception
	
					A lifecycle callback interceptor applies to invocations of lifecycle callbacks by the container.
				

	timeout method interception
	
					A timeout method interceptor applies to invocations of the EJB timeout methods by the container.
				

		Report a bug
	

 ⁠11.2.10.2. Use Interceptors with CDI

 ⁠Example 11.19. Interceptors without CDI

			Without CDI, interceptors have two problems.
		
	
					The bean must specify the interceptor implementation directly.
				

	
					Every bean in the application must specify the full set of interceptors in the correct order. This makes adding or removing interceptors on an application-wide basis time-consuming and error-prone.
				

​
​@Interceptors({
​ SecurityInterceptor.class,
​ TransactionInterceptor.class,
​ LoggingInterceptor.class
​})
​@Stateful public class BusinessComponent {
​ ...
​}
​

 ⁠Procedure 11.7. Use interceptors with CDI
	Define the interceptor binding type.
​
​@InterceptorBinding
​@Retention(RUNTIME)
​@Target({TYPE, METHOD})
​public @interface Secure {}

	Mark the interceptor implementation.
​
​@Secure
​@Interceptor
​public class SecurityInterceptor {
​ @AroundInvoke
​ public Object aroundInvoke(InvocationContext ctx) throws Exception {
​ // enforce security ...
​ return ctx.proceed();
​ }
​}

	Use the interceptor in your business code.
​
​@Secure
​public class AccountManager {
​ public boolean transfer(Account a, Account b) {
​ ...
​ }
​}

	Enable the interceptor in your deployment, by adding it to META-INF/beans.xml or WEB-INF/beans.xml.
​<beans>
​ <interceptors>
​ <class>com.acme.SecurityInterceptor</class>
​ <class>com.acme.TransactionInterceptor</class>
​ </interceptors>
​</beans>

				The interceptors are applied in the order listed.
			

Result:

			CDI simplifies your interceptor code and makes it easier to apply to your business code.
		

		Report a bug
	

 ⁠11.2.11. About Decorators

		A decorator intercepts invocations from a specific Java interface, and is aware of all the semantics attached to that interface. Decorators are useful for modeling some kinds of business concerns, but do not have the generality of interceptors. They are a bean, or even an abstract class, that implements the type it decorates, and are annotated with @Decorator. To invoke a decorator in a CDI application, it must be specified in the beans.xml file.
	

 ⁠Example 11.20. Example Decorator

@Decorator

public abstract class LargeTransactionDecorator

 implements Account {

 @Inject @Delegate @Any Account account;

 @PersistenceContext EntityManager em;

 public void withdraw(BigDecimal amount) {

 ...

 }

 public void deposit(BigDecimal amount);

 ...

 }

}

		A decorator must have exactly one @Delegate injection point to obtain a reference to the decorated object.
	

		Report a bug
	

 ⁠11.2.12. About Portable Extensions

		CDI is intended to be a foundation for frameworks, extensions and integration with other technologies. Therefore, CDI exposes a set of SPIs for the use of developers of portable extensions to CDI. Extensions can provide the following types of functionality:
	
	
				integration with Business Process Management engines
			

	
				integration with third-party frameworks such as Spring, Seam, GWT or Wicket
			

	
				new technology based upon the CDI programming model
			

		According to the JSR-299 specification, a portable extension may integrate with the container in the following ways:
	
	
				Providing its own beans, interceptors and decorators to the container
			

	
				Injecting dependencies into its own objects using the dependency injection service
			

	
				Providing a context implementation for a custom scope
			

	
				Augmenting or overriding the annotation-based metadata with metadata from some other source
			

		Report a bug
	

 ⁠11.2.13. Bean Proxies

 ⁠11.2.13.1. About Bean Proxies

		Clients of an injected bean do not usually hold a direct reference to a bean instance. Unless the bean is a dependent object (scope @Dependent), the container must redirect all injected references to the bean using a proxy object.
	

		This bean proxy referred to as client proxy is responsible for ensuring the bean instance that receives a method invocation is the instance associated with the current context. The client proxy also allows beans bound to contexts such as the session context to be serialized to disk without recursively serializing other injected beans.
	

		Due to Java limitations, some Java types cannot be proxied by the container. If an injection point declared with one of these types resolves to a bean with any scope other than @Dependent, the container aborts the deployment.
	
Java types that cannot be proxied by the container
	
				Classes which do not have a non-private constructor with no parameters
			

	
				Classes which are declared final or have a final method
			

	
				Arrays and primitive types
			

		Report a bug
	

 ⁠11.2.13.2. Use a Proxy in an Injection

Overview

			A proxy is used for injection when the lifecycles of the beans are different from each other. The proxy is a subclass of the bean that is created at run-time, and overrides all the non-private methods of the bean class. The proxy forwards the invocation onto the actual bean instance.
		

		In this example, the PaymentProcessor instance is not injected directly into Shop. Instead, a proxy is injected, and when the processPayment() method is called, the proxy looks up the current PaymentProcessor bean instance and calls the processPayment() method on it.
	

 ⁠Example 11.21. Proxy Injection
​
​@ConversationScoped
​class PaymentProcessor
​{
​ public void processPayment(int amount)
​ {
​ System.out.println("I'm taking $" + amount);
​ }
​}
​
​@ApplicationScoped
​public class Shop
​{
​
​ @Inject
​ PaymentProcessor paymentProcessor;
​
​ public void buyStuff()
​ {
​ paymentProcessor.processPayment(100);
​ }
​}

		Fore more information about proxies, including which types of classes can be proxied, refer to Section 11.2.13.1, “About Bean Proxies”.
	

		Report a bug
	

 ⁠Chapter 12. Java Transaction API (JTA)

 ⁠12.1. Overview

 ⁠12.1.1. Overview of Java Transactions API (JTA)

Introduction

			These topics provide a foundational understanding of the Java Transactions API (JTA).
		

			
					Section 12.2.5, “About Java Transactions API (JTA)”
				

	
					Section 12.5.2, “Lifecycle of a JTA Transaction”
				

	
					Section 12.9.2, “JTA Transaction Example”
				

	

		Report a bug
	

 ⁠12.2. Transaction Concepts

 ⁠12.2.1. About Transactions

		A transaction consists of two or more actions which must either all succeed or all fail. A successful outcome is a commit, and a failed outcome is a roll-back. In a roll-back, each member's state is reverted to its state before the transaction attempted to commit.
	

		The typical standard for a well-designed transaction is that it is Atomic, Consistent, Isolated, and Durable (ACID).
	

		Report a bug
	

 ⁠12.2.2. About ACID Properties for Transactions

		ACID is an acronym which stands for Atomicity, Consistency, Isolation, and Durability. This terminology is usually used in the context of databases or transactional operations.
	
ACID Definitions
	Atomicity
	
					For a transaction to be atomic, all transaction members must make the same decision. Either they all commit, or they all roll back. If atomicity is broken, what results is termed a heuristic outcome.
				

	Consistency
	
					Consistency means that data written to the database is guaranteed to be valid data, in terms of the database schema. The database or other data source must always be in a consistent state. One example of an inconsistent state would be a field in which half of the data is written before an operation aborts. A consistent state would be if all the data were written, or the write were rolled back when it could not be completed.
				

	Isolation
	
					Isolation means that data being operated on by a transaction must be locked before modification, to prevent processes outside the scope of the transaction from modifying the data.
				

	Durability
	
					Durability means that in the event of an external failure after transaction members have been instructed to commit, all members will be able to continue committing the transaction when the failure is resolved. This failure may be related to hardware, software, network, or any other involved system.
				

		Report a bug
	

 ⁠12.2.3. About the Transaction Coordinator or Transaction Manager

		The terms Transaction Coordinator and Transaction Manager are mostly interchangeable in terms of transactions with JBoss EAP 6. The term Transaction Coordinator is usually used in the context of distributed transactions.
	

		In JTA transactions, The Transaction Manager runs within JBoss EAP 6 and communicates with transaction participants during the two-phase commit protocol.
	

		The Transaction Manager tells transaction participants whether to commit or roll back their data, depending on the outcome of other transaction participants. In this way, it ensures that transactions adhere to the ACID standard.
	

		In JTS transactions, the Transaction Coordinator manages interactions between transaction managers on different servers.
	

			
					Section 12.2.4, “About Transaction Participants”
				

	
					Section 12.2.2, “About ACID Properties for Transactions”
				

	
					Section 12.2.9, “About the 2-Phase Commit Protocol”
				

	

		Report a bug
	

 ⁠12.2.4. About Transaction Participants

		A transaction participant is any process within a transaction, which has the ability to commit or roll back state. This may be a database or other application. Each participant of a transaction independently decides whether it is able to commit or roll back its state, and only if all participants can commit, does the transaction as a whole succeed. Otherwise, each participant rolls back its state, and the transaction as a whole fails. The Transaction Manager coordinates the commit or rollback operations and determines the outcome of the transaction.
	

			
					Section 12.2.1, “About Transactions”
				

	
					Section 12.2.3, “About the Transaction Coordinator or Transaction Manager”
				

	

		Report a bug
	

 ⁠12.2.5. About Java Transactions API (JTA)

		Java Transactions API (JTA) is part of Java Enterprise Edition specification. It is defined in JSR-907.
	

		Implementation of JTA is done using Transaction manager, which is covered by project Narayana for JBoss EAP application server. Transaction manager allows application to assign various resources, for example, database or JMS brokers, through a single global transaction. The global transaction is referred as XA transaction. Only resources with XA capabilities can be included in a transaction.
	

		In this document, JTA refers to Java Transaction API, this term is used to indicate how the transaction manager processes the transactions. Transaction manager works in JTA transactions mode, the data is shared via memory and transaction context is transferred by remote EJB calls. In JTS mode, the data is shared by sending Common Object Request Broker Architecture (CORBA)messages and transaction context is transferred by IIOP calls. Both modes support distribution of transaction over multiple EAP servers.
	

		Annotations is a method for creating and controlling transactions within your code.
	

			
					Section 12.2.7, “About XA Datasources and XA Transactions”
				

	
					Section 12.2.11, “About Distributed Transactions”
				

	
					Section 12.8.2, “Configure the ORB for JTS Transactions”
				

	

		Report a bug
	

 ⁠12.2.6. About Java Transaction Service (JTS)

		Java Transaction Service (JTS) is a mapping of the Object Transaction Service (OTS) to Java. Java applications use the JTA API to manage transactions. JTA then interacts with a JTS transaction implementation when the transaction manager is switched to JTS mode. To use special JTS capabilities, for example, nested transactions, you need to manually use the JTS API.
	

		JTS works over the IIOP protocol. Transaction managers that use JTS, communicate with each other using a process called an Object Request Broker (ORB), using a communication standard called Common Object Request Broker Architecture (CORBA).
	

		Using JTA API from an application standpoint, a JTS transaction behaves in the same way as a JTA transaction.
	
Note

			The implementation of JTS included in JBoss EAP 6 supports distributed transactions. The difference from fully-compliant JTS transactions is interoperability with external third-party ORBs. This feature is unsupported with JBoss EAP 6. Supported configurations distribute transactions across multiple JBoss EAP 6 containers only.
		

			
					Section 12.2.3, “About the Transaction Coordinator or Transaction Manager”
				

	

		Report a bug
	

 ⁠12.2.7. About XA Datasources and XA Transactions

		An XA datasource is a datasource which can participate in an XA global transaction.
	

		An XA transaction is a transaction which can span multiple resources. It involves a coordinating transaction manager, with one or more databases or other transactional resources, all involved in a single global transaction.
	

		Report a bug
	

 ⁠12.2.8. About XA Recovery

		The Java Transaction API (JTA) allows distributed transactions across multiple X/Open XA resources. XA stands for Extended Architecture which was developed by the X/Open Group to define a transaction which uses more than one back-end data store. The XA standard describes the interface between a global Transaction Manager (TM) and a local resource manager. XA allows multiple resources, such as application servers, databases, caches, and message queues, to participate in the same transaction, while preserving atomicity of the transaction. Atomicity means that if one of the participants fails to commit its changes, the other participants abort the transaction, and restore their state to the same status as before the transaction occurred.
	

		XA Recovery is the process of ensuring that all resources affected by a transaction are updated or rolled back, even if any of the resources are transaction participants crash or become unavailable. Within the scope of JBoss EAP 6, the Transaction subsystem provides the mechanisms for XA Recovery to any XA resources or subsystems which use them, such as XA datasources, JMS message queues, and JCA resource adapters.
	

		XA Recovery happens without user intervention. In the event of an XA Recovery failure, errors are recorded in the log output. Contact Red Hat Global Support Services if you need assistance.
	

		Report a bug
	

 ⁠12.2.9. About the 2-Phase Commit Protocol

		The Two-phase commit protocol (2PC) refers to an algorithm to determine the outcome of a transaction.
	
Phase 1

			In the first phase, the transaction participants notify the transaction coordinator whether they are able to commit the transaction or must roll back.
		
Phase 2

			In the second phase, the transaction coordinator makes the decision about whether the overall transaction should commit or roll back. If any one of the participants cannot commit, the transaction must roll back. Otherwise, the transaction can commit. The coordinator directs the transactions about what to do, and they notify the coordinator when they have done it. At that point, the transaction is finished.
		

		Report a bug
	

 ⁠12.2.10. About Transaction Timeouts

		In order to preserve atomicity and adhere to the ACID standard for transactions, some parts of a transaction can be long-running. Transaction participants need to lock parts of datasources when they commit, and the transaction manager needs to wait to hear back from each transaction participant before it can direct them all whether to commit or roll back. Hardware or network failures can cause resources to be locked indefinitely.
	

		Transaction timeouts can be associated with transactions in order to control their lifecycle. If a timeout threshold passes before the transaction commits or rolls back, the timeout causes the transaction to be rolled back automatically.
	

		You can configure default timeout values for the entire transaction subsystem, or you disable default timeout values, and specify timeouts on a per-transaction basis.
	

		Report a bug
	

 ⁠12.2.11. About Distributed Transactions

		A distributed transaction, is a transaction with participants on multiple JBoss EAP 6 servers. Java Transaction Service (JTS) specification mandates that JTS transactions be able to be distributed across application servers from different vendors (transaction distribution among servers from different vendors is not a supported feature). Java Transaction API (JTA) does not define that but JBoss EAP 6 supports distributed JTA transactions among JBoss EAP6 servers.
	
Note

			In other app server vendor documentation, you can find that term distributed transaction means XA transaction. In context of JBoss EAP 6 documentation, the distributed transaction refers transactions distributed among several application servers. Transaction which consists from different resources (for example, database resource and jms resource) are referred as XA transactions in this document. For more information, refer Section 12.2.6, “About Java Transaction Service (JTS)” and Section 12.2.7, “About XA Datasources and XA Transactions”.
		

		Report a bug
	

 ⁠12.2.12. About the ORB Portability API

		The Object Request Broker (ORB) is a process which sends and receives messages to transaction participants, coordinators, resources, and other services distributed across multiple application servers. An ORB uses a standardized Interface Description Language (IDL) to communicate and interpret messages. Common Object Request Broker Architecture (CORBA) is the IDL used by the ORB in JBoss EAP 6.
	

		The main type of service which uses an ORB is a system of distributed Java Transactions, using the Java Transaction Service (JTS) protocol. Other systems, especially legacy systems, may choose to use an ORB for communication, rather than other mechanisms such as remote Enterprise JavaBeans or JAX-WS or JAX-RS Web Services.
	

		The ORB Portability API provides mechanisms to interact with an ORB. This API provides methods for obtaining a reference to the ORB, as well as placing an application into a mode where it listens for incoming connections from an ORB. Some of the methods in the API are not supported by all ORBs. In those cases, an exception is thrown.
	

		The API consists of two different classes:
	
ORB Portability API Classes
	
				com.arjuna.orbportability.orb
			

	
				com.arjuna.orbportability.oa
			

		Refer to the JBoss EAP 6 Javadocs bundle from the Red Hat Customer Portal for specific details about the methods and properties included in the ORB Portability API.
	

		Report a bug
	

 ⁠12.2.13. About Nested Transactions

		Nested transactions are transactions where some participants are also transactions.
	
Benefits of Nested Transactions
	Fault Isolation
	
					If a subtransaction rolls back, perhaps because an object it is using fails, the enclosing transaction does not need to roll back.
				

	Modularity
	
					If a transaction is already associated with a call when a new transaction begins, the new transaction is nested within it. Therefore, if you know that an object requires transactions, you can create them within the object. If the object's methods are invoked without a client transaction, then the object's transactions are top-level. Otherwise, they are nested within the scope of the client's transactions. Likewise, a client does not need to know whether an object is transactional. It can begin its own transaction.
				

		Nested Transactions are only supported as part of the Java Transaction Service (JTS) API, and not part of the Java Transaction API (JTA). Attempting to nest (non-distributed) JTA transactions results in an exception.
	

		Modifying JBoss EAP 6 configuration of transaction subsystem to use JTS does not indicate that nested transaction will be used or activated. If you need to use them, you have to directly use ORB API as JTA API does not provide any method to start the nested transaction.
	

		Report a bug
	

 ⁠12.2.14. About XML Transaction Service

				The XML Transaction Service (XTS) component supports the coordination of private and public Web Services in a business transaction. Using XTS, you can coordinate complex business transactions in a controlled and reliable manner. The XTS API supports a transactional coordination model based on the WS-Coordination, WS-Atomic Transaction, and WS-Business Activity protocols.
			

					
							Section 12.2.14.1, “Overview of Protocols Used by XTS”
						

	
							Section 12.2.14.2, “Web Services-Atomic Transaction Process”
						

	
							Section 12.2.14.3, “Web Services-Business Activity Process”
						

	
							Section 12.2.14.4, “Transaction Bridging Overview”
						

			

				Report a bug
			

 ⁠12.2.14.1. Overview of Protocols Used by XTS

		This topic describes the fundamental concepts associated with the WS-Coordination (WS-C), WS-Atomic Transaction (WS-AT) and WS-Business Activity (WS-BA) protocols, as defined in the specifications of each protocol.
	

		The WS-C specification defines a framework that allows different coordination protocols to be plugged in to coordinate work between clients, services, and participants.
	

		WS-T protocol comprises the pair of transaction coordination protocols, WS-Atomic Transaction (WS-AT) and WS-Business Activity (WS-BA) , which utilize the coordination framework provided by WS-C. WS-T is developed to unify existing traditional transaction processing systems, allowing them to communicate reliably with one another.
	

			
					Section 12.2.14.2, “Web Services-Atomic Transaction Process”
				

	
					Section 12.2.14.3, “Web Services-Business Activity Process”
				

	

		Report a bug
	

 ⁠12.2.14.2. Web Services-Atomic Transaction Process

		An atomic transaction (AT) is designed to support short duration interactions where ACID semantics are appropriate. Within the scope of an AT, Web Services typically employ bridging to access XA resources, such as databases and message queues, under the control of the WS-T. When the transaction terminates, the participant propagates the outcome decision of the AT to the XA resources, and the appropriate commit or rollback actions are taken by each participant.
	
Atomic Transaction Process

				
						To initiate an AT, the client application first locates a WS-C Activation Coordinator Web Service that supports WS-T.
					

	
						The client sends a WS-C CreateCoordinationContext message to the service, specifying http://schemas.xmlsoap.org/ws/2004/10/wsat as its coordination type.
					

	
						The client receives an appropriate WS-T context from the activation service.
					

	
						The response to the CreateCoordinationContext message, the transaction context, has its CoordinationType element set to the WS-AT namespace, http://schemas.xmlsoap.org/ws/2004/10/wsat. It also contains a reference to the atomic transaction coordinator endpoint, the WS-C Registration Service, where participants can be enlisted.
					

	
						The client normally proceeds to invoke Web Services and complete the transaction, either committing all the changes made by the Web Services, or rolling them back. In order to be able to drive this completion, the client must register itself as a participant for the Completion protocol, by sending a register message to the Registration Service whose endpoint was returned in the Coordination Context.
					

	
						Once registered for completion, the client application then interacts with Web Services to accomplish its business-level work. With each invocation of a business Web Service, the client inserts the transaction context into a SOAP header block, such that each invocation is implicitly scoped by the transaction. The toolkits that support WS-AT aware Web Services provide facilities to correlate contexts found in SOAP header blocks with back-end operations. This ensures that modifications made by the Web Service are done within the scope of the same transaction as the client and subject to commit or rollback by the Transaction Coordinator.
					

	
						Once all the necessary application work is complete, the client can terminate the transaction, with the intent of making any changes to the service state permanent. The completion participant instructs the coordinator to try to commit or roll back the transaction. When the commit or rollback operation completes, a status is returned to the participant to indicate the outcome of the transaction.
					

		

		For more details, see Web Services-Transaction Documentation.
	

		Report a bug
	

 ⁠12.2.14.3. Web Services-Business Activity Process

		Web Services-Business Activity (WS-BA) defines a protocol for Web Services based applications to enable existing business processing and workflow systems to wrap their proprietary mechanisms and interoperate across implementations and business boundaries.
	

		Unlike the WS-AT protocol model, where participants inform the transaction coordinator of their state only when asked, a child activity within a BA can specify its outcome to the coordinator directly, without waiting for a request. A participant may choose to exit the activity or notify the coordinator of a failure at any point. This feature is useful when tasks fail because the notification can be used to modify the goals and drive processing forward, without waiting until the end of the transaction to identify failures.
	
WS-BA Process

				
						Services are requested to do work.
					

	
						Wherever these services have the ability to undo any work, they inform the BA, in case the BA later decides the cancel the work. If the BA suffers a failure. it can instruct the service to execute its undo behavior.
					

		

		The BA protocols employ a compensation-based transaction model. When a participant in a business activity completes its work, it may choose to exit the activity. This choice does not allow any subsequent rollback. Alternatively, the participant can complete its activity, signaling to the coordinator that the work it has done can be compensated if, at some later point, another participant notifies a failure to the coordinator. In this latter case, the coordinator asks each non-exited participant to compensate for the failure, giving them the opportunity to execute whatever compensating action they consider appropriate. If all participants exit or complete without failure, the coordinator notifies each completed participant that the activity has been closed.
	

		For more details, see Web Services-Transaction Documentation.
	

		Report a bug
	

 ⁠12.2.14.4. Transaction Bridging Overview

		Transaction Bridging describes the process of linking the Java EE and WS-T domains. The transaction bridge component txbridge provides bi-directional linkage, such that either type of transaction may encompass business logic designed for use with the other type. The technique used by the bridge is a combination of interposition and protocol mapping.
	

		In the transaction bridge, an interposed coordinator is registered into the existing transaction and performs the additional task of protocol mapping; that is, it appears to its parent coordinator to be a resource of its native transaction type, whilst appearing to its children to be a coordinator of their native transaction type, even though these transaction types differ.
	

		The transaction bridge resides in the package org.jboss.jbossts.txbridge and its sub-packages. It consists of two distinct sets of classes, one for bridging in each direction.
	

		For more details, see Transaction Bridge Documentation.
	

		Report a bug
	

 ⁠12.3. Transaction Optimizations

 ⁠12.3.1. Overview of Transaction Optimizations

Introduction

			The Transactions subsystem of JBoss EAP 6 includes several optimizations which you can take advantage of in your applications.
		

			
					Section 12.3.2, “About the LRCO Optimization for Single-phase Commit (1PC)”
				

	
					Section 12.3.3, “About the Presumed-Abort Optimization”
				

	
					Section 12.3.4, “About the Read-Only Optimization”
				

	

		Report a bug
	

 ⁠12.3.2. About the LRCO Optimization for Single-phase Commit (1PC)

				Although the 2-phase commit protocol (2PC) is more commonly encountered with transactions, some situations do not require, or cannot accommodate, both phases. In these cases, you can use the single phase commit (1PC) protocol. One situation where this might happen is when a non-XA-aware datasource needs to participate in the transaction.
			

				In these situations, an optimization known as the Last Resource Commit Optimization (LRCO) is employed. The single-phase resource is processed last in the prepare phase of the transaction, and an attempt is made to commit it. If the commit succeeds, the transaction log is written and the remaining resources go through the 2PC. If the last resource fails to commit, the transaction is rolled back.
			

				While this protocol allows for most transactions to complete normally, certain types of error can cause an inconsistent transaction outcome. Therefore, use this approach only as a last resort.
			

				Where a single local TX datasource is used in a transaction, the LRCO is automatically applied to it.
			

					
							Section 12.2.9, “About the 2-Phase Commit Protocol”
						

			

				Report a bug
			

 ⁠12.3.2.1. Commit Markable Resource

Summary

			Configuring access to a resource manager via the Commit Markable Resource (CMR) interface ensures that a 1PC resource manager can be reliably enlisted in a 2PC transaction. It is an implementation of the LRCO algorithm, which makes non-XA resource fully recoverable.
		

		Previously, adding 1PC resources to a 2PC transaction was achieved via the LRCO method, however there is a window of failure in LRCO. Following the procedure below for adding 1PC resources to a 2PC transaction via the LRCO method:
	
	
				Prepare 2PC
			

	
				Commit LRCO
			

	
				Write tx log
			

	
				Commit 2PC
			

		If the procedure crashes between steps 2 and step 3, you cannot commit the 2PC. CMR eliminates this restriction and allows 1PC to be reliably enlisted in a 2PC transaction.
	
Note

			Use the exception-sorter parameter in the datasource configuration. You can follow the datasource configuration examples mentioned in the JBoss EAP Administration and Configuration Guide.
		

Restrictions

			A transaction may contain only one CMR resource.
		
Prerequisites

			You must have a table created for which the following SQL would work:
SELECT xid,actionuid FROM _tableName_ WHERE transactionManagerID IN (String[])
DELETE FROM _tableName_ WHERE xid IN (byte[[]])
INSERT INTO _tableName_ (xid, transactionManagerID, actionuid) VALUES (byte[],String,byte[])

		

 ⁠Example 12.1. Some examples of the SQL query

			Sybase:
CREATE TABLE xids (xid varbinary(144), transactionManagerID varchar(64), actionuid varbinary(28))

		

			Oracle:
CREATE TABLE xids (xid RAW(144), transactionManagerID varchar(64), actionuid RAW(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

		

			IBM:
CREATE TABLE xids (xid VARCHAR(255) for bit data not null, transactionManagerID
varchar(64), actionuid VARCHAR(255) for bit data not null)
CREATE UNIQUE INDEX index_xid ON xids (xid)

		

			SQL Server:
CREATE TABLE xids (xid varbinary(144), transactionManagerID varchar(64), actionuid varbinary(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

		

			Postgres:
CREATE TABLE xids (xid bytea, transactionManagerID varchar(64), actionuid bytea)
CREATE UNIQUE INDEX index_xid ON xids (xid)

		

Enabling a resource manager as CMR

			By default, the CMR feature is disabled for datasources. To enable it, you must create or modify the datasource configuration and ensure that the connectible attribute is set to true. An example configuration entry in the datasources section of a server xml configuration file could be as follows:
		

		
<datasource enabled="true" jndi-name="java:jboss/datasources/ConnectableDS" pool-name="ConnectableDS" jta="true" use-java-context="true" spy="false" use-ccm="true" connectable="true"/>

	
Note

			This feature is not applicable to XA datasources.
		

		You can also enable a resource manager as CMR using CLI as follows:
/subsystem=datasources/data-source=ConnectableDS:add(enabled="true", jndi-name="java:jboss/datasources/ConnectableDS", jta="true", use-java-context="true", spy="false", use-ccm="true", connectable="true", connection-url="validConnectionURL", exception-sorter="org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLExceptionSorter", driver-name="h2")

	
Updating an existing resource to use the new CMR feature

			If you only need to update an existing resource to use the new CMR feature, then simply modifiy the connectable attribute:
/subsystem=datasources/data-source=ConnectableDS:write-attribute(name=connectable,value=true)

		
Identifying CMR capable datasources

			The transaction subsystem identifies the datasources that are CMR capable through an entry to the transaction subsystem config section as shown below:
		
<subsystem xmlns="urn:jboss:domain:transactions:3.0">
 ...
 <commit-markable-resources>
 <commit-markable-resource jndi-name="java:jboss/datasources/ConnectableDS">
 <xid-location name="xids" batch-size="100" immediate-cleanup="false"/>
 </commit-markable-resource>
 ...
 </commit-markable-resources>
</subsystem>
Note

			You must restart the server after adding the CMR.
		

		Report a bug
	

 ⁠12.3.3. About the Presumed-Abort Optimization

		If a transaction is going to roll back, it can record this information locally and notify all enlisted participants. This notification is only a courtesy, and has no effect on the transaction outcome. After all participants have been contacted, the information about the transaction can be removed.
	

		If a subsequent request for the status of the transaction occurs there will be no information available. In this case, the requester assumes that the transaction has aborted and rolled back. This presumed-abort optimization means that no information about participants needs to be made persistent until the transaction has decided to commit, since any failure prior to this point will be assumed to be an abort of the transaction.
	

		Report a bug
	

 ⁠12.3.4. About the Read-Only Optimization

		When a participant is asked to prepare, it can indicate to the coordinator that it has not modified any data during the transaction. Such a participant does not need to be informed about the outcome of the transaction, since the fate of the participant has no affect on the transaction. This read-only participant can be omitted from the second phase of the commit protocol.
	

		Report a bug
	

 ⁠12.4. Transaction Outcomes

 ⁠12.4.1. About Transaction Outcomes

		There are three possible outcomes for a transaction.
	
	Roll-back
	
					If any transaction participant cannot commit, or the transaction coordinator cannot direct participants to commit, the transaction is rolled back. See Section 12.4.3, “About Transaction Roll-Back” for more information.
				

	Commit
	
					If every transaction participant can commit, the transaction coordinator directs them to do so. See Section 12.4.2, “About Transaction Commit” for more information.
				

	Heuristic outcome
	
					If some transaction participants commit and others roll back. it is termed a heuristic outcome. Heuristic outcomes require human intervention. See Section 12.4.4, “About Heuristic Outcomes” for more information.
				

		Report a bug
	

 ⁠12.4.2. About Transaction Commit

		When a transaction participant commits, it makes its new state durable. The new state is created by the participant doing the work involved in the transaction. The most common example is when a transaction member writes records to a database.
	

		After commit, information about the transaction is removed from the transaction coordinator, and the newly-written state is now the durable state.
	

		Report a bug
	

 ⁠12.4.3. About Transaction Roll-Back

		A transaction participant rolls back by restoring its state to reflect the state before the transaction began. After a roll-back, the state is the same as if the transaction had never been started.
	

		Report a bug
	

 ⁠12.4.4. About Heuristic Outcomes

		A heuristic outcome, or non-atomic outcome, is a transaction anomaly. It refers to a situation where some transaction participants committed their state, and others rolled back. A heuristic outcome causes state to be inconsistent.
	

		Heuristic outcomes typically happen during the second phase of the 2-phase commit (2PC) protocol. They are often caused by failures to the underlying hardware or communications subsystems of the underlying servers.
	

		There are four different types of heuristic outcome.
	
	Heuristic rollback
	
					The commit operation failed because some or all of the participants unilaterally rolled back the transaction.
				

	Heuristic commit
	
					An attempted rollback operation failed because all of the participants unilaterally committed. This may happen if, for example, the coordinator is able to successfully prepare the transaction but then decides to roll it back because of a failure on its side, such as a failure to update its log. In the interim, the participants may decide to commit.
				

	Heuristic mixed
	
					Some participants committed and others rolled back.
				

	Heuristic hazard
	
					The outcome of some of the updates is unknown. For the ones that are known, they have either all committed or all rolled back.
				

		Heuristic outcomes can cause loss of integrity to the system, and usually require human intervention to resolve. Do not write code which relies on them.
	

			
					Section 12.2.9, “About the 2-Phase Commit Protocol”
				

	

		Report a bug
	

 ⁠12.4.5. JBoss Transactions Errors and Exceptions

		For details about exceptions thrown by methods of the UserTransaction class, see the UserTransaction API specification at http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html.
	

		Report a bug
	

 ⁠12.5. Overview of JTA Transactions

 ⁠12.5.1. About Java Transactions API (JTA)

		Java Transactions API (JTA) is part of Java Enterprise Edition specification. It is defined in JSR-907.
	

		Implementation of JTA is done using Transaction manager, which is covered by project Narayana for JBoss EAP application server. Transaction manager allows application to assign various resources, for example, database or JMS brokers, through a single global transaction. The global transaction is referred as XA transaction. Only resources with XA capabilities can be included in a transaction.
	

		In this document, JTA refers to Java Transaction API, this term is used to indicate how the transaction manager processes the transactions. Transaction manager works in JTA transactions mode, the data is shared via memory and transaction context is transferred by remote EJB calls. In JTS mode, the data is shared by sending Common Object Request Broker Architecture (CORBA)messages and transaction context is transferred by IIOP calls. Both modes support distribution of transaction over multiple EAP servers.
	

		Annotations is a method for creating and controlling transactions within your code.
	

			
					Section 12.2.7, “About XA Datasources and XA Transactions”
				

	
					Section 12.2.11, “About Distributed Transactions”
				

	
					Section 12.8.2, “Configure the ORB for JTS Transactions”
				

	

		Report a bug
	

 ⁠12.5.2. Lifecycle of a JTA Transaction

		When a resource asks to participate in a transaction, a chain of events is set in motion. The Transaction Manager is a process that lives within the application server and manages transactions. Transaction participants are objects which participate in a transaction. Resources are datasources, JMS connection factories, or other JCA connections.
	
	Your application starts a new transaction

				To begin a transaction, your application obtains an instance of class UserTransaction from JNDI or, if it is an EJB, from an annotation. The UserTransaction interface includes methods for beginning, committing, and rolling back top-level transactions. Newly-created transactions are automatically associated with their invoking thread. Nested transactions are not supported in JTA, so all transactions are top-level transactions.
			

				Calling UserTransaction.begin() using annotations starts a transaction when an EJB method is called (driven by TransactionAttribute rules). Any resource that is used after that point is associated with the transaction. If more than one resource is enlisted, your transaction becomes an XA transaction, and participates in the two-phase commit protocol at commit time.
			
Note

					The UserTransaction object is used only for BMT transactions. In CMT, the UserTransaction object is not permitted.
				

	Your application modifies its state.

				In the next step, your application performs its work and makes changes to its state.
			

	Your application decides to commit or roll back

				When your application has finished changing its state, it decides whether to commit or roll back. It calls the appropriate method, either UserTransaction.commit() or UserTransaction.rollback().
			

	The transaction manager removes the transaction from its records.

				After the commit or rollback completes, the transaction manager cleans up its records and removes information about your transaction from the transaction log.
			

Failure recovery

			Failure recovery happens automatically. If a resource, transaction participant, or the application server become unavailable, the Transaction Manager handles recovery when the underlying failure is resolved and the resource is available again.
		

			
					Section 12.2.1, “About Transactions”
				

	
					Section 12.2.3, “About the Transaction Coordinator or Transaction Manager”
				

	
					Section 12.2.4, “About Transaction Participants”
				

	
					Section 12.2.9, “About the 2-Phase Commit Protocol”
				

	
					Section 12.2.7, “About XA Datasources and XA Transactions”
				

	

		Report a bug
	

 ⁠12.6. Transaction Subsystem Configuration

 ⁠12.6.1. Transactions Configuration Overview

Introduction

			The following procedures show you how to configure the transactions subsystem of JBoss EAP 6.
		

			
					Section 12.6.2.3, “Configure Your Datasource to Use JTA Transaction API”
				

	
					Section 12.6.2.1, “Configure an XA Datasource”
				

	
					Section 12.7.8.2, “Configure the Transaction Manager”
				

	
					Section 12.6.3.2, “Configure Logging for the Transaction Subsystem”
				

	

		Report a bug
	

 ⁠12.6.2. Transactional Datasource Configuration

 ⁠12.6.2.1. Configure an XA Datasource

Prerequisites

			Log into the Management Console.
		
	Add a new datasource.

				Add a new datasource to JBoss EAP 6. Click the XA Datasource tab at the top.
			
Note

					Refer to Create an XA Datasource with the Management Interfaces section of the Administration and Configuration Guide on the Red Hat Customer Portal for information on how to add a new datasource to JBoss EAP 6.
				

	Configure additional properties as appropriate.

				All datasource parameters are listed in Section 12.6.2.5, “Datasource Parameters”.
			

Result

			Your XA Datasource is configured and ready to use.
		

		Report a bug
	

 ⁠12.6.2.2. Create a Non-XA Datasource with the Management Interfaces

Summary

			This topic covers the steps required to create a non-XA datasource, using either the Management Console or the Management CLI.
		
Prerequisites
	
				The JBoss EAP 6 server must be running.
			

Oracle Datasources

			Prior to version 10.2 of the Oracle datasource, the <no-tx-separate-pools/> parameter was required, as mixing non-transactional and transactional connections would result in an error. This parameter may no longer be required for certain applications.
		

Domain Mode

			To prevent issues such as duplication of driver listing, selected driver not available in a profile, or driver not displayed if a server for the profile is not running, in JBoss EAP 6.4 onwards, only JDBC drivers that are installed as modules and correctly referenced from profiles are detectable while creating a datasource using the Management Console in domain mode.
		

 ⁠Procedure 12.1. Create a Datasource using either the Management CLI or the Management Console
	
					Management CLI
	
								Launch the CLI tool and connect to your server.
							

	
								Run the following Management CLI command to create a non-XA datasource, configuring the variables as appropriate:
							
Note

									The value for DRIVER_NAME depends on the number of classes listed in the /META-INF/services/java.sql.Driver file located in the JDBC driver JAR. If there is only one class, the value is the name of the JAR. If there are multiple classes, the value is the name of the JAR + driverClassName + "_" + majorVersion +"_" + minorVersion. Failure to do so will result in the following error being logged:
								
JBAS014775: New missing/unsatisfied dependencies

									For example, the DRIVER_NAME value required for the MySQL 5.1.31 driver, is mysql-connector-java-5.1.31-bin.jarcom.mysql.jdbc.Driver_5_1.
								

data-source add --name=DATASOURCE_NAME --jndi-name=JNDI_NAME --driver-name=DRIVER_NAME --connection-url=CONNECTION_URL

	
								Enable the datasource:
							
data-source enable --name=DATASOURCE_NAME

				 	Management Console
	
								Login to the Management Console.
							

	Navigate to the Datasources panel in the Management Console
	
										Select the Configuration tab from the top of the console.
									

	
										For Domain mode only, select a profile from the drop-down box in the top left.
									

	
										Expand the Subsystems menu on the left of the console, then expand the Connector menu.
									

	
										Select Datasources from the menu on the left of the console.
									

	Create a new datasource
	
										Click Add at the top of the Datasources panel.
									

	
										Enter the new datasource attributes in the Create Datasource wizard and proceed with the Next button.
									

	
										Enter the JDBC driver details in the Create Datasource wizard and click Next to continue.
									

	
										Enter the connection settings in the Create Datasource wizard.
									

	
										Click the Test Connection button to test the connection to the datasource and verify the settings are correct.
									

	
										Click Done to finish
									

			

Result

			The non-XA datasource has been added to the server. It is now visible in either the standalone.xml or domain.xml file, as well as the management interfaces.
		

		Report a bug
	

 ⁠12.6.2.3. Configure Your Datasource to Use JTA Transaction API

Summary

			This task shows you how to enable Java Transaction API (JTA) on your datasource.
		
Prerequisites

			You must meet the following conditions before continuing with this task:
		
	
				Your database or other resource must support Java Transaction API. If in doubt, consult the documentation for your database or other resource.
			

	
				Create a datasource. Refer to Section 12.6.2.2, “Create a Non-XA Datasource with the Management Interfaces”.
			

	
				Stop JBoss EAP 6.
			

	
				Have access to edit the configuration files directly, in a text editor.
			

 ⁠Procedure 12.2. Configure the Datasource to use Java Transaction API
	Open the configuration file in a text editor.

				Depending on whether you run JBoss EAP 6 in a managed domain or standalone server, your configuration file will be in a different location.
			

					Managed domain

						The default configuration file for a managed domain is in EAP_HOME/domain/configuration/domain.xml for Red Hat Enterprise Linux, and EAP_HOME\domain\configuration\domain.xml for Microsoft Windows Server.
					

				 	Standalone server

						The default configuration file for a standalone server is in EAP_HOME/standalone/configuration/standalone.xml for Red Hat Enterprise Linux, and EAP_HOME\standalone\configuration\standalone.xml for Microsoft Windows Server.
					

			

	Locate the <datasource> tag that corresponds to your datasource.

				The datasource will have the jndi-name attribute set to the one you specified when you created it. For example, the ExampleDS datasource looks like this:
			
<datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="H2DS" enabled="true" jta="true" use-java-context="true" use-ccm="true">

	Set the jta attribute to true.

				Add the following to the contents of your <datasource> tag, as they appear in the previous step: jta="true"
			

				Unless you have a specific use case (such as defining a read only datasource) Red Hat discourages overriding the default value of jta=true. This setting indicates that the datasource will honor the Java Transaction API and allows better tracking of connections by the JCA implementation.
			

	Save the configuration file.

				Save the configuration file and exit the text editor.
			

	Start JBoss EAP 6.

				Relaunch the JBoss EAP 6 server.
			

Result:

			JBoss EAP 6 starts, and your datasource is configured to use Java Transaction API.
		

		Report a bug
	

 ⁠12.6.2.4. Configure Database Connection Validation Settings

Overview

			Database maintenance, network problems, or other outage events may cause JBoss EAP 6 to lose the connection to the database. You enable database connection validation using the <validation> element within the <datasource> section of the server configuration file. Follow the steps below to configure the datasource settings to enable database connection validation in JBoss EAP 6.
		

	

 ⁠Procedure 12.3. Configure Database Connection Validation Settings
	Choose a Validation Method

				Select one of the following validation methods.
			

					<validate-on-match>true</validate-on-match>

						When the <validate-on-match> option is set to true, the database connection is validated every time it is checked out from the connection pool using the validation mechanism specified in the next step.
					

						If a connection is not valid, a warning is written to the log and it retrieves the next connection in the pool. This process continues until a valid connection is found. If you prefer not to cycle through every connection in the pool, you can use the <use-fast-fail> option. If a valid connection is not found in the pool, a new connection is created. If the connection creation fails, an exception is returned to the requesting application.
					

						This setting results in the quickest recovery but creates the highest load on the database. However, this is the safest selection if the minimal performance hit is not a concern.
					

				 	<background-validation>true</background-validation>

						When the <background-validation> option is set to true, it is used in combination with the <background-validation-millis> value to determine how often background validation runs. The default value for the <background-validation-millis> parameter is 0 milliseconds, meaning it is disabled by default. This value should not be set to the same value as your <idle-timeout-minutes> setting.
					

						It is a balancing act to determine the optimum <background-validation-millis> value for a particular system. The lower the value, the more frequently the pool is validated and the sooner invalid connections are removed from the pool. However, lower values take more database resources. Higher values result in less frequent connection validation checks and use less database resources, but dead connections are undetected for longer periods of time.
					

			
Note

					If the <validate-on-match> option is set to true, the <background-validation> option should be set to false. The reverse is also true. If the <background-validation> option is set to true, the <validate-on-match> option should be set to false.
				

	Choose a Validation Mechanism

				Select one of the following validation mechanisms.
			

					Specify a <valid-connection-checker> Class Name

						This is the preferred mechanism as it optimized for the particular RDBMS in use. JBoss EAP 6 provides the following connection checkers:
							
									org.jboss.jca.adapters.jdbc.extensions.db2.DB2ValidConnectionChecker
								

	
									org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLValidConnectionChecker
								

	
									org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLReplicationValidConnectionChecker
								

	
									org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLValidConnectionChecker
								

	
									org.jboss.jca.adapters.jdbc.extensions.novendor.JDBC4ValidConnectionChecker
								

	
									org.jboss.jca.adapters.jdbc.extensions.novendor.NullValidConnectionChecker
								

	
									org.jboss.jca.adapters.jdbc.extensions.oracle.OracleValidConnectionChecker
								

	
									org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLValidConnectionChecker
								

	
									org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseValidConnectionChecker
								

					

				 	Specify SQL for <check-valid-connection-sql>

						You provide the SQL statement used to validate the connection.
					

						The following is an example of how you might specify a SQL statement to validate a connection for Oracle:
​<check-valid-connection-sql>select 1 from dual</check-valid-connection-sql>

						 For MySQL or PostgreSQL, you might specify the following SQL statement:
​<check-valid-connection-sql>select 1</check-valid-connection-sql>

					

			

	Set the <exception-sorter> Class Name

				When an exception is marked as fatal, the connection is closed immediately, even if the connection is participating in a transaction. Use the exception sorter class option to properly detect and clean up after fatal connection exceptions. JBoss EAP 6 provides the following exception sorters:
					
							org.jboss.jca.adapters.jdbc.extensions.db2.DB2ExceptionSorter
						

	
							org.jboss.jca.adapters.jdbc.extensions.informix.InformixExceptionSorter
						

	
							org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptionSorter
						

	
							org.jboss.jca.adapters.jdbc.extensions.novendor.NullExceptionSorter
						

	
							org.jboss.jca.adapters.jdbc.extensions.oracle.OracleExceptionSorter
						

	
							org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLExceptionSorter
						

	
							org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseExceptionSorter
						

	
							org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLExceptionSorter
						

			

		Report a bug
	

 ⁠12.6.2.5. Datasource Parameters

 ⁠Table 12.1. Datasource parameters common to non-XA and XA datasources
	 Parameter 	 Description
	 jndi-name 	 The unique JNDI name for the datasource.
	 pool-name 	 The name of the management pool for the datasource.
	 enabled 	 Whether or not the datasource is enabled.
	 use-java-context 	
						Whether to bind the datasource to global JNDI.
					

					
	 spy 	
						Enable spy functionality on the JDBC layer. This logs all JDBC traffic to the datasource. Note that the logging category jboss.jdbc.spy must also be set to the log level DEBUG in the logging subsystem.
					

					
	 use-ccm 	 Enable the cached connection manager.
	 new-connection-sql 	 A SQL statement which executes when the connection is added to the connection pool.
	 transaction-isolation 	
						One of the following:
					

					 	
								TRANSACTION_READ_UNCOMMITTED
							

	
								TRANSACTION_READ_COMMITTED
							

	
								TRANSACTION_REPEATABLE_READ
							

	
								TRANSACTION_SERIALIZABLE
							

	
								TRANSACTION_NONE
							

					
	 url-selector-strategy-class-name 	 A class that implements interface org.jboss.jca.adapters.jdbc.URLSelectorStrategy.
	 security 	
						Contains child elements which are security settings. See Table 12.6, “Security parameters”.
					

					
	 validation 	
						Contains child elements which are validation settings. See Table 12.7, “Validation parameters”.
					

					
	 timeout 	
						Contains child elements which are timeout settings. See Table 12.8, “Timeout parameters”.
					

					
	 statement 	
						Contains child elements which are statement settings. See Table 12.9, “Statement parameters”.
					

					

 ⁠Table 12.2. Non-XA datasource parameters
	 Parameter 	 Description
	 jta 	 Enable JTA integration for non-XA datasources. Does not apply to XA datasources.
	 connection-url 	 The JDBC driver connection URL.
	 driver-class 	 The fully-qualified name of the JDBC driver class.
	 connection-property 	
						Arbitrary connection properties passed to the method Driver.connect(url,props). Each connection-property specifies a string name/value pair. The property name comes from the name, and the value comes from the element content.
					

					
	 pool 	
						Contains child elements which are pooling settings. See Table 12.4, “Pool parameters common to non-XA and XA datasources”.
					

					
	 url-delimiter 	
						The delimiter for URLs in a connection-url for High Availability (HA) clustered databases.
					

					

 ⁠Table 12.3. XA datasource parameters
	 Parameter 	 Description
	 xa-datasource-property 	
						A property to assign to implementation class XADataSource. Specified by name=value. If a setter method exists, in the format setName, the property is set by calling a setter method in the format of setName(value).
					

					
	 xa-datasource-class 	
						The fully-qualified name of the implementation class javax.sql.XADataSource.
					

					
	 driver 	
						A unique reference to the class loader module which contains the JDBC driver. The accepted format is driverName#majorVersion.minorVersion.
					

					
	 xa-pool 	
						Contains child elements which are pooling settings. See Table 12.4, “Pool parameters common to non-XA and XA datasources” and Table 12.5, “XA pool parameters”.
					

					
	 recovery 	
						Contains child elements which are recovery settings. See Table 12.10, “Recovery parameters”.
					

					

 ⁠Table 12.4. Pool parameters common to non-XA and XA datasources
	 Parameter 	 Description
	 min-pool-size 	 The minimum number of connections a pool holds.
	 max-pool-size 	 The maximum number of connections a pool can hold.
	 prefill 	 Whether to try to prefill the connection pool. The default is false.
	 use-strict-min 	 Whether the idle connection scan should strictly stop marking for closure of any further connections, once the min-pool-size has been reached. The default value is false.
	 flush-strategy 	
						Whether the pool is flushed in the case of an error. Valid values are:
					

					 	
								FailingConnectionOnly
							

	
								IdleConnections
							

	
								EntirePool
							

					
						The default is FailingConnectionOnly.
					

					
	 allow-multiple-users 	 Specifies if multiple users will access the datasource through the getConnection(user, password) method, and whether the internal pool type accounts for this behavior.

 ⁠Table 12.5. XA pool parameters
	 Parameter 	 Description
	 is-same-rm-override 	 Whether the javax.transaction.xa.XAResource.isSameRM(XAResource) class returns true or false.
	 interleaving 	 Whether to enable interleaving for XA connection factories.
	 no-tx-separate-pools 	
						Whether to create separate sub-pools for each context. This is required for Oracle datasources, which do not allow XA connections to be used both inside and outside of a JTA transaction.
					

					
						Using this option will cause your total pool size to be twice max-pool-size, because two actual pools will be created.
					

					
	 pad-xid 	 Whether to pad the Xid.
	 wrap-xa-resource 	
						Whether to wrap the XAResource in an org.jboss.tm.XAResourceWrapper instance.
					

					

 ⁠Table 12.6. Security parameters
	 Parameter 	 Description
	 user-name 	 The username to use to create a new connection.
	 password 	 The password to use to create a new connection.
	 security-domain 	 Contains the name of a JAAS security-manager which handles authentication. This name correlates to the application-policy/name attribute of the JAAS login configuration.
	 reauth-plugin 	 Defines a reauthentication plug-in to use to reauthenticate physical connections.

 ⁠Table 12.7. Validation parameters
	 Parameter 	 Description
	 valid-connection-checker 	
						An implementation of interface org.jboss.jca.adaptors.jdbc.ValidConnectionChecker which provides a SQLException.isValidConnection(Connection e) method to validate a connection. An exception means the connection is destroyed. This overrides the parameter check-valid-connection-sql if it is present.
					

					
	 check-valid-connection-sql 	 An SQL statement to check validity of a pool connection. This may be called when a managed connection is taken from a pool for use.
	 validate-on-match 	
						Indicates whether connection level validation is performed when a connection factory attempts to match a managed connection for a given set.
					

					
						Specifying "true" for validate-on-match is typically not done in conjunction with specifying "true" for background-validation. Validate-on-match is needed when a client must have a connection validated prior to use. This parameter is false by default.
					

					
	 background-validation 	
						Specifies that connections are validated on a background thread. Background validation is a performance optimization when not used with validate-on-match. If validate-on-match is true, using background-validation could result in redundant checks. Background validation does leave open the opportunity for a bad connection to be given to the client for use (a connection goes bad between the time of the validation scan and prior to being handed to the client), so the client application must account for this possibility.
					

					
	 background-validation-millis 	 The amount of time, in milliseconds, that background validation runs.
	 use-fast-fail 	
						If true, fail a connection allocation on the first attempt, if the connection is invalid. Defaults to false.
					

					
	 stale-connection-checker 	
						An instance of org.jboss.jca.adapters.jdbc.StaleConnectionChecker which provides a Boolean isStaleConnection(SQLException e) method. If this method returns true, the exception is wrapped in an org.jboss.jca.adapters.jdbc.StaleConnectionException, which is a subclass of SQLException.
					

					
	 exception-sorter 	
						An instance of org.jboss.jca.adapters.jdbc.ExceptionSorter which provides a Boolean isExceptionFatal(SQLException e) method. This method validates whether an exception is broadcast to all instances of javax.resource.spi.ConnectionEventListener as a connectionErrorOccurred message.
					

					

 ⁠Table 12.8. Timeout parameters
	 Parameter 	 Description
	 use-try-lock 	 Uses tryLock() instead of lock(). This attempts to obtain the lock for the configured number of seconds, before timing out, rather than failing immediately if the lock is unavailable. Defaults to 60 seconds. As an example, to set a timeout of 5 minutes, set <use-try-lock>300</use-try-lock>.
	 blocking-timeout-millis 	 The maximum time, in milliseconds, to block while waiting for a connection. After this time is exceeded, an exception is thrown. This blocks only while waiting for a permit for a connection, and does not throw an exception if creating a new connection takes a long time. Defaults to 30000, which is 30 seconds.
	 idle-timeout-minutes 	
						The maximum time, in minutes, before an idle connection is closed. If not specified, the default is 30 minutes. The actual maximum time depends upon the idleRemover scan time, which is half of the smallest idle-timeout-minutes of any pool.
					

					
	 set-tx-query-timeout 	
						Whether to set the query timeout based on the time remaining until transaction timeout. Any configured query timeout is used if no transaction exists. Defaults to false.
					

					
	 query-timeout 	 Timeout for queries, in seconds. The default is no timeout.
	 allocation-retry 	 The number of times to retry allocating a connection before throwing an exception. The default is 0, so an exception is thrown upon the first failure.
	 allocation-retry-wait-millis 	
						How long, in milliseconds, to wait before retrying to allocate a connection. The default is 5000, which is 5 seconds.
					

					
	 xa-resource-timeout 	
						If non-zero, this value is passed to method XAResource.setTransactionTimeout.
					

					

 ⁠Table 12.9. Statement parameters
	 Parameter 	 Description
	 track-statements 	
						Whether to check for unclosed statements when a connection is returned to a pool and a statement is returned to the prepared statement cache. If false, statements are not tracked.
					

					 Valid values
	
								true: statements and result sets are tracked, and a warning is issued if they are not closed.
							

	
								false: neither statements or result sets are tracked.
							

	
								nowarn: statements are tracked but no warning is issued. This is the default.
							

					
	 prepared-statement-cache-size 	 The number of prepared statements per connection, in a Least Recently Used (LRU) cache.
	 share-prepared-statements 	
						Whether JBoss EAP should cache, instead of close or terminate, the underlying physical statement when the wrapper supplied to the application is closed by application code. The default is false.
					

					

 ⁠Table 12.10. Recovery parameters
	 Parameter 	 Description
	 recover-credential 	 A username/password pair or security domain to use for recovery.
	 recover-plugin 	
						An implementation of the org.jboss.jca.core.spi.recoveryRecoveryPlugin class, to be used for recovery.
					

					

		Report a bug
	

 ⁠12.6.3. Transaction Logging

 ⁠12.6.3.1. About Transaction Log Messages

		To track transaction status while keeping the log files readable, use the DEBUG log level for the transaction logger. For detailed debugging, use the TRACE log level. Refer to Section 12.6.3.2, “Configure Logging for the Transaction Subsystem” for information on configuring the transaction logger.
	

		The transaction manager can generate a lot of logging information when configured to log in the TRACE log level. Following are some of the most commonly-seen messages. This list is not comprehensive, so you may see other messages than these.
	

 ⁠Table 12.11. Transaction State Change
	 Transaction Begin 	
						When a transaction begins, the following code is executed:
					

					
com.arjuna.ats.arjuna.coordinator.BasicAction::Begin:1342

					
tsLogger.logger.trace("BasicAction::Begin() for action-id "+ get_uid());

					
	 Transaction Commit 	
						When a transaction commits, the following code is executed:
					

					
com.arjuna.ats.arjuna.coordinator.BasicAction::End:1342

					
tsLogger.logger.trace("BasicAction::End() for action-id "+ get_uid());

					
	 Transaction Rollback 	
						When a transaction rolls back, the following code is executed:
					

					
com.arjuna.ats.arjuna.coordinator.BasicAction::Abort:1575

					
tsLogger.logger.trace("BasicAction::Abort() for action-id "+ get_uid());

					
	 Transaction Timeout 	
						When a transaction times out, the following code is executed:
					

					
com.arjuna.ats.arjuna.coordinator.TransactionReaper::doCancellations:349

					
tsLogger.logger.trace("Reaper Worker " + Thread.currentThread() + " attempting to cancel " + e._control.get_uid());

					
						You will then see the same thread rolling back the transaction as shown above.
					

					

		Report a bug
	

 ⁠12.6.3.2. Configure Logging for the Transaction Subsystem

Summary

			Use this procedure to control the amount of information logged about transactions, independent of other logging settings in JBoss EAP 6. The main procedure shows how to do this in the web-based Management Console. The Management CLI command is given afterward.
		

 ⁠Procedure 12.4. Configure the Transaction Logger Using the Management Console
	Navigate to the Logging configuration area.

				In the Management Console, click the Configuration tab. If you use a managed domain, choose the server profile you wish to configure, from the Profile selection box at the top left.
			

				Expand the Core menu, and select Logging.
			

	Edit the com.arjuna attributes.

				Select the Log Categories tab. Select com.arjuna and lick Edit in the Details section. This is where you can add class-specific logging information. The com.arjuna class is already present. You can change the log level and whether to use parent handlers.
			
	Log Level
	
							The log level is WARN by default. Because transactions can produce a large quantity of logging output, the meaning of the standard logging levels is slightly different for the transaction logger. In general, messages tagged with levels at a lower severity than the chosen level are discarded.
						
Transaction Logging Levels, from Most to Least Verbose
	
									TRACE
								

	
									DEBUG
								

	
									INFO
								

	
									WARN
								

	
									ERROR
								

	
									FAILURE
								

	Use Parent Handlers
	
							Whether the logger should send its output to its parent logger. The default behavior is true.
						

	
				Changes take effect immediately.
			

		Report a bug
	

 ⁠12.6.3.3. Browse and Manage Transactions

		The Management CLI supports the ability to browse and manipulate transaction records. This functionality is provided by the interaction between the Transaction Manager and the management API of JBoss EAP 6.
	

		The Transaction Manager stores information about each pending transaction and the participants involved the transaction, in a persistent storage called the object store. The management API exposes the object store as a resource called the log-store. An API operation called probe reads the transaction logs and creates a node for each log. You can call the probe command manually, whenever you need to refresh the log-store. It is normal for transaction logs to appear and disappear quickly.
	

 ⁠Example 12.2. Refresh the Log Store

			This command refreshes the log store for server groups which use the profile default in a managed domain. For a standalone server, remove the profile=default from the command.
		
/profile=default/subsystem=transactions/log-store=log-store/:probe

 ⁠Example 12.3. View All Prepared Transactions

			To view all prepared transactions, first refresh the log store (see Example 12.2, “Refresh the Log Store”), then run the following command, which functions similarly to a filesystem ls command.
		
ls /profile=default/subsystem=transactions/log-store=log-store/transactions

			Each transaction is shown, along with its unique identifier. Individual operations can be run against an individual transaction (see Manage a Transaction).
		

 ⁠Manage a Transaction
	View a transaction's attributes.
	
					To view information about a transaction, such as its JNDI name, EIS product name and version, or its status, use the :read-resource CLI command.
				
/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9:read-resource

	View the participants of a transaction.
	
					Each transaction log contains a child element called participants. Use the read-resource CLI command on this element to see the participants of the transaction. Participants are identified by their JNDI names.
				
/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9/participants=java\:\/JmsXA:read-resource

					The result may look similar to this:
				

{
 "outcome" => "success",
 "result" => {
 "eis-product-name" => "HornetQ",
 "eis-product-version" => "2.0",
 "jndi-name" => "java:/JmsXA",
 "status" => "HEURISTIC",
 "type" => "/StateManager/AbstractRecord/XAResourceRecord"
 }
}

					The outcome status shown here is in a HEURISTIC state and is eligible for recovery. See Recover a transaction. for more details.
				

					In special cases it is possible to create orphan records in the object store, that is XAResourceRecords, which do not have any corresponding transaction record in the log. For example, XA resource prepared but crashed before the TM recorded and is inaccessible for the domain management API. To access such records you need to set management option expose-all-logs to true. This option is not saved in management model and is restored to false when the server is restarted.
/profile=default/subsystem=transactions/log-store=log-store:write-attribute(name=expose-all-logs, value=true)

				

	Delete a transaction.
	
					Each transaction log supports a :delete operation, to delete the transaction log representing the transaction.
				
/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9:delete

	
 ⁠Recover a transaction.
	
					Each transaction participant supports recovery via the :recover CLI command.
				
/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9/participants=2:recover

Recovery of heuristic transactions and participants
	
							If the transaction's status is HEURISTIC, the recovery operation changes the state to PREPARE and triggers a recovery.
						

	
							If one of the transaction's participants is heuristic, the recovery operation tries to replay the commit operation. If successful, the participant is removed from the transaction log. You can verify this by re-running the :probe operation on the log-store and checking that the participant is no longer listed. If this is the last participant, the transaction is also deleted.
						

	Refresh the status of a transaction which needs recovery.
	
					If a transaction needs recovery, you can use the :refresh CLI command to be sure it still requires recovery, before attempting the recovery.
				
/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9/participants=2:refresh

View Transaction Statistics

			If Transaction Manager statistics are enabled, you can view statistics about the Transaction Manager and transaction subsystem. See Section 12.7.8.2, “Configure the Transaction Manager” for information about how to enable Transaction Manager statistics.
		

		You can view statistics either via the management console or the Management CLI. In the management console, transaction statistics are available via Runtime → Status → Subsystems → Transactions. Transaction statistics are available for each server in a managed domain. To view the status of a different server, select Change Server in the left-hand menu and select the server from the list.
	

		The following table shows each available statistic, its description, and the Management CLI command to view the statistic.
	

 ⁠Table 12.12. Transaction Subsystem Statistics
	 Statistic 	 Description 	 CLI Command
	 Total 	
						The total number of transactions processed by the Transaction Manager on this server.
					

					 	
						/host=master/server=server-one/subsystem=transactions/:read-attribute(name=number-of-transactions,include-defaults=true)

					

					
	 Committed 	
						The number of committed transactions processed by the Transaction Manager on this server.
					

					 	
						/host=master/server=server-one/subsystem=transactions/:read-attribute(name=number-of-committed-transactions,include-defaults=true)

					

					
	 Aborted 	
						The number of aborted transactions processed by the Transaction Manager on this server.
					

					 	
						/host=master/server=server-one/subsystem=transactions/:read-attribute(name=number-of-aborted-transactions,include-defaults=true)

					

					
	 Timed Out 	
						The number of timed out transactions processed by the Transaction Manager on this server.
					

					 	
						/host=master/server=server-one/subsystem=transactions/:read-attribute(name=number-of-timed-out-transactions,include-defaults=true)

					

					
	 Heuristics 	
						Not available in the Management Console. Number of transactions in a heuristic state.
					

					 	
						/host=master/server=server-one/subsystem=transactions/:read-attribute(name=number-of-heuristics,include-defaults=true)

					

					
	 In-Flight Transactions 	
						Not available in the Management Console. Number of transactions which have begun but not yet terminated.
					

					 	
						/host=master/server=server-one/subsystem=transactions/:read-attribute(name=number-of-inflight-transactions,include-defaults=true)

					

					
	 Failure Origin - Applications 	
						The number of failed transactions whose failure origin was an application.
					

					 	
						/host=master/server=server-one/subsystem=transactions/:read-attribute(name=number-of-application-rollbacks,include-defaults=true)

					

					
	 Failure Origin - Resources 	
						The number of failed transactions whose failure origin was a resource.
					

					 	
						/host=master/server=server-one/subsystem=transactions/:read-attribute(name=number-of-resource-rollbacks,include-defaults=true)

					

					
	 Participant ID 	
						The ID of the participant.
					

					 	
						/host=master/server=server-one/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9:read-children-names(child-type=participants)

					

					
	 List of all transactions 	
						The complete list of transactions.
					

					 	
						/host=master/server=server-one/subsystem=transactions/log-store=log-store:read-children-names(child-type=transactions)

					

					

		Report a bug
	

 ⁠12.7. Use JTA Transactions

 ⁠12.7.1. Transactions JTA Task Overview

Introduction

			The following procedures are useful when you need to use transactions in your application.
		

			
					Section 12.7.2, “Control Transactions”
				

	
					Section 12.7.3, “Begin a Transaction”
				

	
					Section 12.7.5, “Commit a Transaction”
				

	
					Section 12.7.6, “Roll Back a Transaction”
				

	
					Section 12.7.7, “Handle a Heuristic Outcome in a Transaction”
				

	
					Section 12.7.8.2, “Configure the Transaction Manager”
				

	
					Section 12.7.9.1, “Handle Transaction Errors”
				

	

		Report a bug
	

 ⁠12.7.2. Control Transactions

Introduction

			This list of procedures outlines the different ways to control transactions in your applications which use JTA or JTS APIs.
		

			
					Section 12.7.3, “Begin a Transaction”
				

	
					Section 12.7.5, “Commit a Transaction”
				

	
					Section 12.7.6, “Roll Back a Transaction”
				

	
					Section 12.7.7, “Handle a Heuristic Outcome in a Transaction”
				

	

		Report a bug
	

 ⁠12.7.3. Begin a Transaction

		This procedure shows how to begin a new transaction. The API is the same either you run Transaction Manager configured with JTA or JTS.
	
	Get an instance of UserTransaction.

				You can get the instance using JNDI, injection, or an EJB's context, if the EJB uses bean-managed transactions, by means of a @TransactionManagement(TransactionManagementType.BEAN) annotation.
			

					JNDI
new InitialContext().lookup("java:comp/UserTransaction")

				 	Injection
@Resource UserTransaction userTransaction;

				 	Context
	
								In a stateless/stateful bean:
@Resource SessionContext ctx;
ctx.getUserTransaction();

							

	
								In a message-driven bean:
@Resource MessageDrivenContext ctx;
ctx.getUserTransaction()

							

			

	Call UserTransaction.begin() after you connect to your datasource.

...
try {
 System.out.println("\nCreating connection to database: "+url);
 stmt = conn.createStatement(); // non-tx statement
 try {
 System.out.println("Starting top-level transaction.");
 userTransaction.begin();
 stmtx = conn.createStatement(); // will be a tx-statement
 ...
 }
}

Participate in an existing transaction using the JTS API.

			One of the benefits of EJBs (either used with CMT or BMT) is that the container manages all the internals of the transactional processing, that is, you are free from taking care of transaction being part of XA transaction or transaction distribution amongst EAP containers.
		
Result:

			The transaction begins. All uses of your datasource until you commit or roll back the transaction are transactional.
		
Note

			For a full example, see Section 12.9.2, “JTA Transaction Example”.
		

		Report a bug
	

 ⁠12.7.4. Nested Transactions

		Nested transactions allow an application to create a transaction that is embedded in an existing transaction. In this model, multiple subtransactions can be embedded recursively in a transaction. Subtransactions can be committed or rolled back without committing or rolling back the parent transaction. However, the results of a commit operation are contingent upon the commitment of all the transaction's ancestors.
	

		For implementation specific information, refer JBossTS JTS Development guide at https://docs.jboss.org/jbosstm/latest/guides/narayana-jts-development_guide.
	

		Nested transactions are available only when used with the JTS API. Nested transaction are not a supported feature of EAP application server. In addition, many database vendors do not support nested transactions, so consult your database vendor before you add nested transactions to your application.
	

		Report a bug
	

 ⁠12.7.5. Commit a Transaction

		This procedure shows how to commit a transaction using the Java Transaction API (JTA).
	
Prerequisites

			You must begin a transaction before you can commit it. For information on how to begin a transaction, refer to Section 12.7.3, “Begin a Transaction”.
		
	Call the commit() method on the UserTransaction.

				When you call the commit() method on the UserTransaction, the Transaction Manager attempts to commit the transaction.
			

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value)
 EntityManager entityManager = entityManagerFactory.createEntityManager();
 try {
 userTransaction.begin():
 <!-- Perform some data manipulation using entityManager -->
 ...
 // Commit the transaction
 userTransaction.commit();
 } catch (Exception ex) {
 <!-- Log message or notify Web page -->
 ...
 try {
 userTransaction.rollback();
 } catch (SystemException se) {
 throw new RuntimeException(se);
 }
 throw new RuntimeException(e);
 } finally {
 entityManager.close();
 }
}

	If you use Container Managed Transactions (CMT), you do not need to manually commit.

				If you configure your bean to use Container Managed Transactions, the container will manage the transaction lifecycle for you based on annotations you configure in the code.
			

@PersistenceContext
private EntityManager em;

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void updateTable(String key, String value)
 <!-- Perform some data manipulation using entityManager -->
 ...
}

Result

			Your datasource commits and your transaction ends, or an exception is thrown.
		
Note

			For a full example, see Section 12.9.2, “JTA Transaction Example”.
		

		Report a bug
	

 ⁠12.7.6. Roll Back a Transaction

		This procedure shows how to roll back a transaction using the Java Transaction API (JTA).
	
Prerequisites

			You must begin a transaction before you can roll it back. For information on how to begin a transaction, refer to Section 12.7.3, “Begin a Transaction”.
		
	Call the rollback() method on the UserTransaction.

				When you call the rollback() method on the UserTransaction, the Transaction Manager attempts to roll back the transaction and return the data to its previous state.
			

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value)
 EntityManager entityManager = entityManagerFactory.createEntityManager();
 try {
 userTransaction.begin():
 <!-- Perform some data manipulation using entityManager -->
 ...
 // Commit the transaction
 userTransaction.commit();
 } catch (Exception ex) {
 <!-- Log message or notify Web page -->
 ...
 try {
 userTransaction.rollback();
 } catch (SystemException se) {
 throw new RuntimeException(se);
 }
 throw new RuntimeException(e);
 } finally {
 entityManager.close();
 }
}

	If you use Container Managed Transactions (CMT), you do not need to manually roll back the transaction.

				If you configure your bean to use Container Managed Transactions, the container will manage the transaction lifecycle for you based on annotations you configure in the code.
			
Note

					Rollback for CMT occurs if RuntimeException is thrown. You can also explicitly call the setRollbackOnly method to gain the rollback. Or, use the @ApplicationException(rollback=true) for application exception to rollback.
				

Result

			Your transaction is rolled back by the Transaction Manager.
		
Note

			For a full example, see Section 12.9.2, “JTA Transaction Example”.
		

		Report a bug
	

 ⁠12.7.7. Handle a Heuristic Outcome in a Transaction

		This procedure shows how to handle a heuristic outcome of a transaction using the Java Transaction API (JTA).
	

		Heuristic transaction outcomes are uncommon and usually have exceptional causes. The word heuristic means "by hand", and that is the way that these outcomes usually have to be handled. Refer to Section 12.4.4, “About Heuristic Outcomes” for more information about heuristic transaction outcomes.
	

 ⁠Procedure 12.5. Handle a heuristic outcome in a transaction
	Determine the cause

				The over-arching cause of a heuristic outcome in a transaction is that a resource manager promised it could commit or roll-back, and then failed to fulfill the promise. This could be due to a problem with a third-party component, the integration layer between the third-party component and JBoss EAP 6, or JBoss EAP 6 itself.
			

				By far, the most common two causes of heuristic errors are transient failures in the environment and coding errors in the code dealing with resource managers.
			

	Fix transient failures in the environment

				Typically, if there is a transient failure in your environment, you will know about it before you find out about the heuristic error. This could be a network outage, hardware failure, database failure, power outage, or a host of other things.
			

				If you experienced the heuristic outcome in a test environment, during stress testing, it provides information about weaknesses in your environment.
			
Heuristic transactions are not recovered

					JBoss EAP 6 will automatically recover transactions that were in a non-heuristic state at the time of the failure, but it does not attempt to recover heuristic transactions.
				

	Contact resource manager vendors

				If you have no obvious failure in your environment, or the heuristic outcome is easily reproducible, it is probably a coding error. Contact third-party vendors to find out if a solution is available. If you suspect the problem is in the transaction manager of JBoss EAP 6 itself, contact Red Hat Global Support Services.
			

	In a test environment, delete the logs and restart JBoss EAP 6.

				In a test environment, or if you do not care about the integrity of the data, deleting the transaction logs and restarting JBoss EAP 6 gets rid of the heuristic outcome. The transaction logs are located in EAP_HOME/standalone/data/tx-object-store/ for a standalone server, or EAP_HOME/domain/servers/SERVER_NAME/data/tx-object-store in a managed domain, by default. In the case of a managed domain, SERVER_NAME refers to the name of the individual server participating in a server group.
			
Note

					The location of the transaction log also depends on the object store in use and the values set for the oject-store-relative-to and object-store-path parameters. For file system logs (such as a standard shadow and HornetQ logs) the default direction location is used, but when using a JDBC object store, the transaction logs are stored in a database.
				

	Resolve the outcome by hand

				The process of resolving the transaction outcome by hand is very dependent on the exact circumstance of the failure. Typically, you need to take the following steps, applying them to your situation:
			
	
						Identify which resource managers were involved.
					

	
						Examine the state in the transaction manager and the resource managers.
					

	
						Manually force log cleanup and data reconciliation in one or more of the involved components.
					

				The details of how to perform these steps are out of the scope of this documentation.
			

		Report a bug
	

 ⁠12.7.8. Transaction Timeouts

 ⁠12.7.8.1. About Transaction Timeouts

		In order to preserve atomicity and adhere to the ACID standard for transactions, some parts of a transaction can be long-running. Transaction participants need to lock parts of datasources when they commit, and the transaction manager needs to wait to hear back from each transaction participant before it can direct them all whether to commit or roll back. Hardware or network failures can cause resources to be locked indefinitely.
	

		Transaction timeouts can be associated with transactions in order to control their lifecycle. If a timeout threshold passes before the transaction commits or rolls back, the timeout causes the transaction to be rolled back automatically.
	

		You can configure default timeout values for the entire transaction subsystem, or you disable default timeout values, and specify timeouts on a per-transaction basis.
	

		Report a bug
	

 ⁠12.7.8.2. Configure the Transaction Manager

		You can configure the Transaction Manager (TM) using the web-based Management Console or the command-line Management CLI. For each command or option given, the assumption is made that you are running JBoss EAP 6 as a Managed Domain. If you use a Standalone Server or you want to modify a different profile than default, you may need to modify the steps and commands in the following ways.
	
Notes about the Example Commands
	
				For the Management Console, the default profile is the one which is selected when you first log into the console. If you need to modify the Transaction Manager's configuration in a different profile, select your profile instead of default, in each instruction.
			

				Similarly, substitute your profile for the default profile in the example CLI commands.
			

	
				If you use a Standalone Server, only one profile exists. Ignore any instructions to choose a specific profile. In CLI commands, remove the /profile=default portion of the sample commands.
			

Note

			In order for the TM options to be visible in the Management Console or Management CLI, the transactions subsystem must be enabled. It is enabled by default, and required for many other subsystems to function properly, so it is very unlikely that it would be disabled.
		

Configure the TM Using the Management Console

			To configure the TM using the web-based Management Console, select the Configuration tab from the top of the screen. If you use a managed domain, choose the correct profile from the Profile selection box at the top left. Expand the Container menu and select Transactions.
		

		Most options are shown in the Transaction Manager configuration page. The Recovery options are hidden by default. Click the Recovery tab to see the recovery options. Click Edit to edit any of the options. Changes take effect immediately.
	

		Click the Need Help? label to display in-line help text.
	
Configure the TM using the Management CLI

			In the Management CLI, you can configure the TM using a series of commands. The commands all begin with /profile=default/subsystem=transactions/ for a managed domain with profile default, or /subsystem=transactions for a Standalone Server.
		
Important

			If transaction subsystem is configured to use hornetq journal as storage type for transaction logs, then two instances of JBoss EAP is not permitted to use the same directory for storing the journal. Application server instances can't share the same location and each has to configure unique location for it.
		

 ⁠Table 12.13. TM Configuration Options
	 Option 	 Description 	 CLI Command
	
						Enable Statistics
					

					 	
						Whether to enable transaction statistics. These statistics can be viewed in the Management Console in the Subsystem Metrics section of the Runtime tab.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=enable-statistics,value=true)
					

					
	
						Enable TSM Status
					

					 	
						Whether to enable the transaction status manager (TSM) service, which is used for out-of-process recovery. Running an out of process recovery manager to contact the ActionStatusService from different process is not supported (it is normally contacted in memory).
					

					 	
						This configuration option is unsupported.
					

					
	
						Default Timeout
					

					 	
						The default transaction timeout. This defaults to 300 seconds. You can override this programmatically, on a per-transaction basis.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=default-timeout,value=300)
					

					
	
						Object Store Path
					

					 	
						A relative or absolute filesystem path where the TM object store stores data. By default relative to the object-store-relative-to parameter's value.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=object-store-path,value=tx-object-store)
					

					
	
						Object Store Path Relative To
					

					 	
						References a global path configuration in the domain model. The default value is the data directory for JBoss EAP 6, which is the value of the property jboss.server.data.dir, and defaults to EAP_HOME/domain/data/ for a Managed Domain, or EAP_HOME/standalone/data/ for a Standalone Server instance. The value of the object store object-store-path TM attribute is relative to this path.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=object-store-relative-to,value=jboss.server.data.dir)
					

					
	
						Socket Binding
					

					 	
						Specifies the name of the socket binding used by the Transaction Manager for recovery and generating transaction identifiers, when the socket-based mechanism is used. Refer to process-id-socket-max-ports for more information on unique identifier generation. Socket bindings are specified per server group in the Server tab of the Management Console.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=socket-binding,value=txn-recovery-environment)
					

					
	
						Status Socket Binding
					

					 	
						Specifies the socket binding to use for the Transaction Status manager.
					

					 	
						This configuration option is unsupported.
					

					
	
						Recovery Listener
					

					 	
						Whether or not the Transaction Recovery process should listen on a network socket. Defaults to false.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=recovery-listener,value=false)
					

					

		The following options are for advanced use and can only be modified using the Management CLI. Be cautious when changing them from the default configuration. Contact Red Hat Global Support Services for more information.
	

 ⁠Table 12.14. Advanced TM Configuration Options
	 Option 	 Description 	 CLI Command
	
						jts
					

					 	
						Whether to use Java Transaction Service (JTS) transactions. Defaults to false, which uses JTA transactions only.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=jts,value=false)
					

					
	
						node-identifier
					

					 	
						The node identifier for the Transaction Manager. This option is required in the following situations:
							
									For JTS to JTS communications
								

	
									When two Transaction Managers access shared resource managers
								

	
									When two Transaction Managers access shared object stores
								

						 The node-identifier must be unique for each Transaction Manager as it is required to enforce data integrity during recovery. The node-identifier must also be unique for JTA because multiple nodes may interact with the same resource manager or share a transaction object store.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=node-identifier,value=1)
					

					
	
						process-id-socket-max-ports
					

					 	
						The Transaction Manager creates a unique identifier for each transaction log. Two different mechanisms are provided for generating unique identifiers: a socket-based mechanism and a mechanism based on the process identifier of the process.
					

					
						In the case of the socket-based identifier, a socket is opened and its port number is used for the identifier. If the port is already in use, the next port is probed, until a free one is found. The process-id-socket-max-ports represents the maximum number of sockets the TM will try before failing. The default value is 10.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=process-id-socket-max-ports,value=10)
					

					
	
						process-id-uuid
					

					 	
						Set to true to use the process identifier to create a unique identifier for each transaction. Otherwise, the socket-based mechanism is used. Defaults to true. Refer to process-id-socket-max-ports for more information. To enable process-id-socket-binding, set process-id-uuid to false.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=process-id-uuid,value=true)
					

					
	
						process-id-socket-binding
					

					 	
						The name of the socket binding configuration to use if the transaction manager should use a socket-based process id. Will be undefined if process-id-uuid is true; otherwise must be set.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=process-id-socket-binding,value=true)
					

					
	
						use-hornetq-store
					

					 	
						Use HornetQ's journaled storage mechanisms instead of file-based storage, for the transaction logs. This is disabled by default, but can improve I/O performance. It is not recommended for JTS transactions on separate Transaction Managers. When changing this option, the server has to be restarted using the shutdown command for the change to take effect.
					

					 	
						/profile=default/subsystem=transactions/:write-attribute(name=use-hornetq-store,value=false)
					

					

		Report a bug
	

 ⁠12.7.9. JTA Transaction Error Handling

 ⁠12.7.9.1. Handle Transaction Errors

		Transaction errors are challenging to solve because they are often dependent on timing. Here are some common errors and ideas for troubleshooting them.
	
Handle transaction errors

			These guidelines do not apply to heuristic errors. If you experience heuristic errors, refer to Section 12.7.7, “Handle a Heuristic Outcome in a Transaction” and contact Red Hat Global Support Services for assistance.
		

The transaction timed out but the business logic thread did not notice

			This type of error often manifests itself when Hibernate is unable to obtain a database connection for lazy loading. If it happens frequently, you can lengthen the timeout value. Refer to Section 12.7.8.2, “Configure the Transaction Manager”.
		

		If that is not feasible, you may be able to tune your external environment to perform more quickly, or restructure your code to be more efficient. Contact Red Hat Global Support Services if you still have trouble with timeouts.
	
The transaction is already running on a thread, or you receive a NotSupportedException exception

			The NotSupportedException exception usually indicates that you attempted to nest a JTA transaction, and this is not supported. If you were not attempting to nest a transaction, it is likely that another transaction was started in a thread pool task, but finished the task without suspending or ending the transaction.
		

		Applications typically use UserTransaction, which handles this automatically. If so, there may be a problem with a framework.
	

		If your code does use TransactionManager or Transaction methods directly, be aware of the following behavior when committing or rolling back a transaction. If your code uses TransactionManager methods to control your transactions, committing or rolling back a transaction disassociates the transaction from the current thread. However, if your code uses Transaction methods, the transaction may not be associated with the running thread, and you need to disassociate it from its threads manually, before returning it to the thread pool.
	
You are unable to enlist a second local resource

			This error happens if you try to enlist a second non-XA resource into a transaction. If you need multiple resources in a transaction, they must be XA.
		

		Report a bug
	

 ⁠12.8. ORB Configuration

 ⁠12.8.1. About Common Object Request Broker Architecture (CORBA)

		Common Object Request Broker Architecture (CORBA) is a standard that enables applications and services to work together even when they are written in multiple, otherwise-incompatible, languages or hosted on separate platforms. CORBA requests are brokered by a server-side component called an Object Request Broker (ORB). JBoss EAP 6 provides an ORB instance, by means of the JacORB component.
	

		The ORB is used internally for Java Transaction Service (JTS) transactions, and is also available for use by your own applications.
	

		Report a bug
	

 ⁠12.8.2. Configure the ORB for JTS Transactions

		In a default installation of JBoss EAP 6, the ORB is disabled. You can enable the ORB using the command-line Management CLI.
	

 ⁠Procedure 12.6. Configure the ORB using the Management Console
	View the profile settings.

				Select Configuration from the top of the management console. If you use a managed domain, select either the full or full-ha profile from the selection box at the top left.
			

	Modify the Initializers Settings

				Expand the Subsystems menu. Expand the Container menu and select JacORB.
			

				In the form that appears in the main screen, select the Initializers tab and click the Edit button.
			

				Enable the security interceptors by setting the value of Security to on.
			

				To enable the ORB for JTS, set the Transaction Interceptors value to on, rather than the default spec.
			

				Refer to the Need Help? link in the form for detailed explanations about these values. Click Save when you have finished editing the values.
			

	Advanced ORB Configuration

				Refer to the other sections of the form for advanced configuration options. Each section includes a Need Help? link with detailed information about the parameters.
			

Configure the ORB using the Management CLI

			You can configure each aspect of the ORB using the Management CLI. The following commands configure the initializers to the same values as the procedure above, for the Management Console. This is the minimum configuration for the ORB to be used with JTS.
		

		These commands are configured for a managed domain using the full profile. If necessary, change the profile to suit the one you need to configure. If you use a standalone server, omit the /profile=full portion of the commands.
	

 ⁠Example 12.4. Enable the Security Interceptors
/profile=full/subsystem=jacorb/:write-attribute(name=security,value=on)

 ⁠Example 12.5. Enable Transactions in the JacORB Subsystem
/profile=full/subsystem=jacorb/:write-attribute(name=transactions,value=on)

 ⁠Example 12.6. Enable JTS in the Transaction Subsystem
/profile=full/subsystem=transactions:write-attribute(name=jts,value=true)

Note

			For JTS activation, the server must be restarted as reload is not enough.
		

		Report a bug
	

 ⁠12.9. Transaction References

 ⁠12.9.1. JBoss Transactions Errors and Exceptions

		For details about exceptions thrown by methods of the UserTransaction class, see the UserTransaction API specification at http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html.
	

		Report a bug
	

 ⁠12.9.2. JTA Transaction Example

		This example illustrates how to begin, commit, and roll back a JTA transaction. You need to adjust the connection and datasource parameters to suit your environment, and set up two test tables in your database.
	

 ⁠Example 12.7. JTA Transaction example
​
​public class JDBCExample {
​ public static void main (String[] args) {
​ Context ctx = new InitialContext();
​ // Change these two lines to suit your environment.
​ DataSource ds = (DataSource)ctx.lookup("jdbc/ExampleDS");
​ Connection conn = ds.getConnection("testuser", "testpwd");
​ Statement stmt = null; // Non-transactional statement
​ Statement stmtx = null; // Transactional statement
​ Properties dbProperties = new Properties();
​
​ // Get a UserTransaction
​ UserTransaction txn = new InitialContext().lookup("java:comp/UserTransaction");
​
​ try {
​ stmt = conn.createStatement(); // non-tx statement
​
​ // Check the database connection.
​ try {
​ stmt.executeUpdate("DROP TABLE test_table");
​ stmt.executeUpdate("DROP TABLE test_table2");
​ }
​ catch (Exception e) {
​ // assume not in database.
​ }
​
​ try {
​ stmt.executeUpdate("CREATE TABLE test_table (a INTEGER,b INTEGER)");
​ stmt.executeUpdate("CREATE TABLE test_table2 (a INTEGER,b INTEGER)");
​ }
​ catch (Exception e) {
​ }
​
​ try {
​ System.out.println("Starting top-level transaction.");
​
​ txn.begin();
​
​ stmtx = conn.createStatement(); // will be a tx-statement
​
​ // First, we try to roll back changes
​
​ System.out.println("\nAdding entries to table 1.");
​
​ stmtx.executeUpdate("INSERT INTO test_table (a, b) VALUES (1,2)");
​
​ ResultSet res1 = null;
​
​ System.out.println("\nInspecting table 1.");
​
​ res1 = stmtx.executeQuery("SELECT * FROM test_table");
​
​ while (res1.next()) {
​ System.out.println("Column 1: "+res1.getInt(1));
​ System.out.println("Column 2: "+res1.getInt(2));
​ }
​ System.out.println("\nAdding entries to table 2.");
​
​ stmtx.executeUpdate("INSERT INTO test_table2 (a, b) VALUES (3,4)");
​ res1 = stmtx.executeQuery("SELECT * FROM test_table2");
​
​ System.out.println("\nInspecting table 2.");
​
​ while (res1.next()) {
​ System.out.println("Column 1: "+res1.getInt(1));
​ System.out.println("Column 2: "+res1.getInt(2));
​ }
​
​ System.out.print("\nNow attempting to rollback changes.");
​
​ txn.rollback();
​
​ // Next, we try to commit changes
​ txn.begin();
​ stmtx = conn.createStatement();
​ ResultSet res2 = null;
​
​ System.out.println("\nNow checking state of table 1.");
​
​ res2 = stmtx.executeQuery("SELECT * FROM test_table");
​
​ while (res2.next()) {
​ System.out.println("Column 1: "+res2.getInt(1));
​ System.out.println("Column 2: "+res2.getInt(2));
​ }
​
​ System.out.println("\nNow checking state of table 2.");
​
​ stmtx = conn.createStatement();
​
​ res2 = stmtx.executeQuery("SELECT * FROM test_table2");
​
​ while (res2.next()) {
​ System.out.println("Column 1: "+res2.getInt(1));
​ System.out.println("Column 2: "+res2.getInt(2));
​ }
​
​ txn.commit();
​ }
​ catch (Exception ex) {
​ ex.printStackTrace();
​ System.exit(0);
​ }
​ }
​ catch (Exception sysEx) {
​ sysEx.printStackTrace();
​ System.exit(0);
​ }
​ }
​}

		Report a bug
	

 ⁠12.9.3. API Documentation for JBoss Transactions JTA

		The API documentation for the Transaction subsystem of JBoss EAP 6 is available at the following location:
	
	
				UserTransaction - http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html
			

		If you use Red Hat JBoss Developer Studio to develop your applications, the API documentation is included in the Help menu.
	

		Report a bug
	

 ⁠12.9.4. Limitations of the XA Recovery Process

		XA recovery has the following limitations.
	
	The transaction log may not be cleared from a successfully committed transaction.
	
					If the JBoss EAP server crashes after an XAResource commit method successfully completes and commits the transaction, but before the coordinator can update the log, you may see the following warning message in the log when you restart the server:
ARJUNA016037: Could not find new XAResource to use for recovering non-serializable XAResource XAResourceRecord

					 This is because upon recovery, the JBoss Transaction Manager sees the transaction participants in the log and attempts to retry the commit. Eventually the JBoss Transaction Manager assumes the resources are committed and no longer retries the commit. In this situation, can safely ignore this warning as the transaction is committed and there is no loss of data.
				

					To prevent the warning, set the com.arjuna.ats.jta.xaAssumeRecoveryComplete property value to true . This property is checked whenever a new XAResource instance cannot be located from any registered XAResourceRecovery instance. When set to true, the recovery assumes that a previous commit attempt succeeded and the instance can be removed from the log with no further recovery attempts. This property must be used with care because it is global and when used incorrectly could result in XAResource instances remaining in an uncommitted state.
				

	Rollback is not called for JTS transaction when a server crashes at the end of XAResource.prepare().
	
					If the JBoss EAP server crashes after the completion of an XAResource prepare() method call, all of the participating XAResources are locked in the prepared state and remain that way upon server restart, The transaction is not rolled back and the resources remain locked until the transaction times out or a DBA manually rolls back the resources and clears the transaction log.
				

	Periodic recovery can occur on committed transactions.
	
					When the server is under excessive load, the server log may contain the following warning message, followed by a stacktrace:
ARJUNA016027: Local XARecoveryModule.xaRecovery got XA exception XAException.XAER_NOTA: javax.transaction.xa.XAException

				

					Under heavy load, the processing time taken by a transaction can overlap with the timing of the periodic recovery process’s activity. The periodic recovery process detects the transaction still in progress and attempts to initiate a rollback but in fact the transaction continues to completion. At the time the periodic recovery attempts but fails the rollback, it records the rollback failure in the server log. The underlying cause of this issue will be addressed in a future release, but in the meantime a workaround is available.
				

					Increase the interval between the two phases of the recovery process by setting the com.arjuna.ats.jta.orphanSafetyInterval property to a value higher than the default value of 10000 milliseconds. A value of 40000 milliseconds is recommended. Please note that this does not solve the issue, instead it decreases the probability that it will occur and that the warning message will be shown in the log.
				

		Report a bug
	

 ⁠Chapter 13. Hibernate

 ⁠13.1. About Hibernate Core

		Hibernate Core is an object/relational mapping library. It provides the framework for mapping Java classes to database tables, allowing applications to avoid direct interaction with the database.
	

		For more information, refer to Section 13.2.2, “Hibernate EntityManager” and the Section 13.2.1, “About JPA”.
	

		Report a bug
	

 ⁠13.2. Java Persistence API (JPA)

 ⁠13.2.1. About JPA

		The Java Persistence API (JPA) is the standard for using persistence in Java projects. Java EE 6 applications use the Java Persistence 2.0 specification, documented here: http://www.jcp.org/en/jsr/detail?id=317.
	

		Hibernate EntityManager implements the programming interfaces and life-cycle rules defined by the specification. It provides JBoss EAP 6 with a complete Java Persistence solution.
	

		JBoss EAP 6 is 100% compliant with the Java Persistence 2.0 specification. Hibernate also provides additional features to the specification.
	

		To get started with JPA and JBoss EAP 6, refer to the bean-validation, greeter, and kitchensink quickstarts: Section 1.4.1.1, “Access the Quickstarts”.
	

		Report a bug
	

 ⁠13.2.2. Hibernate EntityManager

		Hibernate EntityManager implements the programming interfaces and life-cycle rules defined by the JPA 2.0 specification. It provides JBoss EAP 6 with a complete Java Persistence solution.
	

		For more information about Java Persistence or Hibernate, refer to the Section 13.2.1, “About JPA” and Section 13.1, “About Hibernate Core”.
	

		Report a bug
	

 ⁠13.2.3. Getting Started

 ⁠13.2.3.1. Create a JPA project in Red Hat JBoss Developer Studio

Summary

			This example covers the steps required to create a JPA project in Red Hat JBoss Developer Studio.
		

 ⁠Procedure 13.1. Create a JPA project in Red Hat JBoss Developer Studio
	
				In the Red Hat JBoss Developer Studio window, click File → New → Project. Find JPA in the list, expand it, and select JPA Project. You are presented with the following dialog.
				[image: Create a JPA project in Red Hat JBoss Developer Studio]

			

	
				Enter a Project name.
			

	
				Select a Target runtime. If no target runtime is available, follow these instructions to define a new server and runtime: Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server”.
			

	
				Under JPA version, ensure 2.1 is selected.
			

	
				Under Configuration, choose Basic JPA Configuration.
			

	
				Click Finish.
			

	
				If prompted, choose whether you wish to associate this type of project with the JPA perspective window.
			

		Report a bug
	

 ⁠13.2.3.2. Create the Persistence Settings File in Red Hat JBoss Developer Studio

Summary

			This topic covers the process for creating the persistence.xml file in a Java project using Red Hat JBoss Developer Studio.
		
Prerequisites
	
				Section 1.3.1.4, “Start Red Hat JBoss Developer Studio”
			

 ⁠Procedure 13.2. Create and Configure a new Persistence Settings File
	
				Open an EJB 3.x project in Red Hat JBoss Developer Studio.
			

	
				Right click the project root directory in the Project Explorer panel.
			

	
				Select New → Other....
			

	
				Select XML File from the XML folder and click Next.
			

	
				Select the ejbModule/META-INF folder as the parent directory.
			

	
				Name the file persistence.xml and click Next.
			

	
				Select Create XML file from an XML schema file and click Next.
			

	
				Select http://java.sun.com/xml/ns/persistence/persistence_2.0.xsd from the Select XML Catalog entry list and click Next.
			
[image: Create and Configure a new Persistence Settings File]

	
				Click Finish to create the file.
			

	Result:
	
					The persistence.xml has been created in the META-INF/ folder and is ready to be configured. An example file is available here: Section 13.2.3.3, “Example Persistence Settings File”
				

		Report a bug
	

 ⁠13.2.3.3. Example Persistence Settings File

 ⁠Example 13.1. persistence.xml
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">
 <persistence-unit name="example" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <mapping-file>ormap.xml</mapping-file>
 <jar-file>TestApp.jar</jar-file>
 <class>org.test.Test</class>
 <shared-cache-mode>NONE</shared-cache-mode>
 <validation-mode>CALLBACK</validation-mode>
 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 </properties>
 </persistence-unit>
</persistence>

		Report a bug
	

 ⁠13.2.3.4. Create the Hibernate Configuration File in Red Hat JBoss Developer Studio

Prerequisites
	
				Section 1.3.1.4, “Start Red Hat JBoss Developer Studio”
			

Summary

			This topic covers the process for creating the hibernate.cfg.xml file in a Java project using Red Hat JBoss Developer Studio.
		

 ⁠Procedure 13.3. Create a New Hibernate Configuration File
	
				Open a Java project in Red Hat JBoss Developer Studio.
			

	
				Right click the project root directory in the Project Explorer panel.
			

	
				Select New → Other....
			

	
				Select Hibernate Configuration File from the Hibernate folder and click Next.
			

	
				Select the src/ directory and click Next.
			

	
				Configure the following:
			
	
						Session factory name
					

	
						Database dialect
					

	
						Driver class
					

	
						Connection URL
					

	
						Username
					

	
						Password
					

	
				Click Finish to create the file.
			

	Result:
	
					The hibernate.cfg.xml has been created in the src/ folder. An example file is available here: Section 13.2.3.5, “Example Hibernate Configuration File”.
				

		Report a bug
	

 ⁠13.2.3.5. Example Hibernate Configuration File

 ⁠Example 13.2. hibernate.cfg.xml
<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <session-factory>

 <!-- Datasource Name -->
 <property name="connection.datasource">ExampleDS</property>

 <!-- SQL dialect -->
 <property name="dialect">org.hibernate.dialect.H2Dialect</property>

 <!-- Enable Hibernate's automatic session context management -->
 <property name="current_session_context_class">thread</property>

 <!-- Disable the second-level cache -->
 <property name="cache.region.factory_class">org.hibernate.cache.NoCacheProvider</property>

 <!-- Echo all executed SQL to stdout -->
 <property name="show_sql">true</property>

 <!-- Update the database schema on startup -->
 <property name="hbm2ddl.auto">update</property>

 <mapping resource="org/hibernate/tutorial/domain/Event.hbm.xml"/>

 </session-factory>

</hibernate-configuration>

		Report a bug
	

 ⁠13.2.4. Configuration

 ⁠13.2.4.1. Hibernate Configuration Properties

 ⁠Table 13.1. Hibernate Java Properties
	 Property Name 	 Description
	 hibernate.dialect 	
						The classname of a Hibernate org.hibernate.dialect.Dialect. Allows Hibernate to generate SQL optimized for a particular relational database.
					

					
						In most cases Hibernate will be able to choose the correct org.hibernate.dialect.Dialect implementation, based on the JDBC metadata returned by the JDBC driver.
					

					
	 hibernate.show_sql 	
						Boolean. Writes all SQL statements to console. This is an alternative to setting the log category org.hibernate.SQL to debug.
					

					
	 hibernate.format_sql 	
						Boolean. Pretty print the SQL in the log and console.
					

					
	 hibernate.default_schema 	
						Qualify unqualified table names with the given schema/tablespace in generated SQL.
					

					
	 hibernate.default_catalog 	
						Qualifies unqualified table names with the given catalog in generated SQL.
					

					
	 hibernate.session_factory_name 	
						The org.hibernate.SessionFactory will be automatically bound to this name in JNDI after it has been created. For example, jndi/composite/name.
					

					
	 hibernate.max_fetch_depth 	
						Sets a maximum "depth" for the outer join fetch tree for single-ended associations (one-to-one, many-to-one). A 0 disables default outer join fetching. The recommended value is between 0 and 3.
					

					
	 hibernate.default_batch_fetch_size 	
						Sets a default size for Hibernate batch fetching of associations. The recommended values are 4, 8, and 16.
					

					
	 hibernate.default_entity_mode 	
						Sets a default mode for entity representation for all sessions opened from this SessionFactory. Values include: dynamic-map, dom4j, pojo.
					

					
	 hibernate.order_updates 	
						Boolean. Forces Hibernate to order SQL updates by the primary key value of the items being updated. This will result in fewer transaction deadlocks in highly concurrent systems.
					

					
	 hibernate.generate_statistics 	
						Boolean. If enabled, Hibernate will collect statistics useful for performance tuning.
					

					
	 hibernate.use_identifier_rollback 	
						Boolean. If enabled, generated identifier properties will be reset to default values when objects are deleted.
					

					
	 hibernate.use_sql_comments 	
						Boolean. If turned on, Hibernate will generate comments inside the SQL, for easier debugging. Default value is false.
					

					
	 hibernate.id.new_generator_mappings 	
						Boolean. This property is relevant when using @GeneratedValue. It indicates whether or not the new IdentifierGenerator implementations are used for javax.persistence.GenerationType.AUTO, javax.persistence.GenerationType.TABLE and javax.persistence.GenerationType.SEQUENCE. Default value is true.
					

					
	 hibernate.ejb.naming_strategy 	
						Chooses the org.hibernate.cfg.NamingStrategy implementation when using Hibernate EntityManager. This class is deprecated and this property is only provided for backward compatibility. This property must not be used with hibernate.ejb.naming_strategy_delegator.
					

					
						If the application does not use EntityManager, follow the instructions here to configure the NamingStrategy: Hibernate Reference Documentation - Implementing a Naming Strategy.
					

					
	 hibernate.ejb.naming_strategy_delegator 	
						Specifies an org.hibernate.cfg.naming.NamingStrategyDelegator implementation for database objects and schema elements when using Hibernate EntityManager. This property has the following possible values.
							
									org.hibernate.cfg.naming.LegacyNamingStrategyDelegator: This is the default value. This class is deprecated and is only provided for backward compatibility.
								

	
									org.hibernate.cfg.naming.ImprovedNamingStrategyDelegator: This is the preferred value. It generates default table and column names that comply with the JPA specification. It allows for specification of both the entity and foreign key class names. This class only affects entities that are mapped using Java annotations or JPA XML descriptors. Entities mapped using hbm.xml are not affected,
								

	
									If you prefer, you can configure a custom class that implements org.hibernate.cfg.naming.ImprovedNamingStrategyDelegator
								

						 Note

								This property must not be used with hibernate.ejb.naming_strategy. It is a temporary replacement for org.hibernate.cfg.NamingStrategy to address its limitations. A more comprehensive solution is planned for Hibernate 5.0 that replaces both org.hibernate.cfg.NamingStrategy and org.hibernate.cfg.naming.NamingStrategyDelegator.
							

					

					
						If the application does not use EntityManager, follow the instructions here to configure the NamingStrategy: Hibernate Reference Documentation - Implementing a Naming Strategy.
					

					

Important

			For hibernate.id.new_generator_mappings, new applications should keep the default value of true. Existing applications that used Hibernate 3.3.x may need to change it to false to continue using a sequence object or table based generator, and maintain backward compatibility.
		

		Report a bug
	

 ⁠13.2.4.2. Hibernate JDBC and Connection Properties

 ⁠Table 13.2. Properties
	 Property Name 	 Description
	 hibernate.jdbc.fetch_size 	
						A non-zero value that determines the JDBC fetch size (calls Statement.setFetchSize()).
					

					
	 hibernate.jdbc.batch_size 	
						A non-zero value enables use of JDBC2 batch updates by Hibernate. The recommended values are between 5 and 30.
					

					
	 hibernate.jdbc.batch_versioned_data 	
						Boolean. Set this property to true if the JDBC driver returns correct row counts from executeBatch(). Hibernate will then use batched DML for automatically versioned data. Default value is to false.
					

					
	 hibernate.jdbc.factory_class 	
						Select a custom org.hibernate.jdbc.Batcher. Most applications will not need this configuration property.
					

					
	 hibernate.jdbc.use_scrollable_resultset 	
						Boolean. Enables use of JDBC2 scrollable resultsets by Hibernate. This property is only necessary when using user-supplied JDBC connections. Hibernate uses connection metadata otherwise.
					

					
	 hibernate.jdbc.use_streams_for_binary 	
						Boolean. This is a system-level property. Use streams when writing/reading binary or serializable types to/from JDBC.
					

					
	 hibernate.jdbc.use_get_generated_keys 	
						Boolean. Enables use of JDBC3 PreparedStatement.getGeneratedKeys() to retrieve natively generated keys after insert. Requires JDBC3+ driver and JRE1.4+. Set to false if JDBC driver has problems with the Hibernate identifier generators. By default, it tries to determine the driver capabilities using connection metadata.
					

					
	 hibernate.connection.provider_class 	
						The classname of a custom org.hibernate.connection.ConnectionProvider which provides JDBC connections to Hibernate.
					

					
	 hibernate.connection.isolation 	
						Sets the JDBC transaction isolation level. Check java.sql.Connection for meaningful values, but note that most databases do not support all isolation levels and some define additional, non-standard isolations. Standard values are 1, 2, 4, 8.
					

					
	 hibernate.connection.autocommit 	
						Boolean. This property is not recommended for use. Enables autocommit for JDBC pooled connections.
					

					
	 hibernate.connection.release_mode 	
						Specifies when Hibernate should release JDBC connections. By default, a JDBC connection is held until the session is explicitly closed or disconnected. The default value auto will choose after_statement for the JTA and CMT transaction strategies, and after_transaction for the JDBC transaction strategy.
					

					
						Available values are auto (default), on_close, after_transaction, after_statement.
					

					
						This setting only affects Session returned from SessionFactory.openSession. For Session obtained through SessionFactory.getCurrentSession, the CurrentSessionContext implementation configured for use controls the connection release mode for that Session.
					

					
	 hibernate.connection.<propertyName> 	
						Pass the JDBC property <propertyName> to DriverManager.getConnection().
					

					
	 hibernate.jndi.<propertyName> 	
						Pass the property <propertyName> to the JNDI InitialContextFactory.
					

					

		Report a bug
	

 ⁠13.2.4.3. Hibernate Cache Properties

 ⁠Table 13.3. Properties
	 Property Name 	 Description
	 hibernate.cache.region.factory_class 	
						The classname of a custom CacheProvider.
					

					
	 hibernate.cache.use_minimal_puts 	
						Boolean. Optimizes second-level cache operation to minimize writes, at the cost of more frequent reads. This setting is most useful for clustered caches and, in Hibernate3, is enabled by default for clustered cache implementations.
					

					
	 hibernate.cache.use_query_cache 	
						Boolean. Enables the query cache. Individual queries still have to be set cacheable.
					

					
	 hibernate.cache.use_second_level_cache 	
						Boolean. Used to completely disable the second level cache, which is enabled by default for classes that specify a <cache> mapping.
					

					
	 hibernate.cache.query_cache_factory 	
						The classname of a custom QueryCache interface. The default value is the built-in StandardQueryCache.
					

					
	 hibernate.cache.region_prefix 	
						A prefix to use for second-level cache region names.
					

					
	 hibernate.cache.use_structured_entries 	
						Boolean. Forces Hibernate to store data in the second-level cache in a more human-friendly format.
					

					
	 hibernate.cache.default_cache_concurrency_strategy 	
						Setting used to give the name of the default org.hibernate.annotations.CacheConcurrencyStrategy to use when either @Cacheable or @Cache is used. @Cache(strategy="..") is used to override this default.
					

					

		Report a bug
	

 ⁠13.2.4.4. Hibernate Transaction Properties

 ⁠Table 13.4. Properties
	 Property Name 	 Description
	 hibernate.transaction.factory_class 	
						The classname of a TransactionFactory to use with Hibernate Transaction API. Defaults to JDBCTransactionFactory).
					

					
	 jta.UserTransaction 	
						A JNDI name used by JTATransactionFactory to obtain the JTA UserTransaction from the application server.
					

					
	 hibernate.transaction.manager_lookup_class 	
						The classname of a TransactionManagerLookup. It is required when JVM-level caching is enabled or when using hilo generator in a JTA environment.
					

					
	 hibernate.transaction.flush_before_completion 	
						Boolean. If enabled, the session will be automatically flushed during the before completion phase of the transaction. Built-in and automatic session context management is preferred.
					

					
	 hibernate.transaction.auto_close_session 	
						Boolean. If enabled, the session will be automatically closed during the after completion phase of the transaction. Built-in and automatic session context management is preferred.
					

					

		Report a bug
	

 ⁠13.2.4.5. Miscellaneous Hibernate Properties

 ⁠Table 13.5. Properties
	 Property Name 	 Description
	 hibernate.current_session_context_class 	
						Supply a custom strategy for the scoping of the "current" Session. Values include jta, thread, managed, custom.Class.
					

					
	 hibernate.query.factory_class 	
						Chooses the HQL parser implementation: org.hibernate.hql.internal.ast.ASTQueryTranslatorFactory or org.hibernate.hql.internal.classic.ClassicQueryTranslatorFactory.
					

					
	 hibernate.query.substitutions 	
						Used to map from tokens in Hibernate queries to SQL tokens (tokens might be function or literal names). For example, hqlLiteral=SQL_LITERAL, hqlFunction=SQLFUNC.
					

					
	 hibernate.hbm2ddl.auto 	
						Automatically validates or exports schema DDL to the database when the SessionFactory is created. With create-drop, the database schema will be dropped when the SessionFactory is closed explicitly. Property value options are validate, update, create, create-drop
					

					
	 hibernate.hbm2ddl.import_files 	
						Comma-separated names of the optional files containing SQL DML statements executed during the SessionFactory creation. This is useful for testing or demonstrating. For example, by adding INSERT statements, the database can be populated with a minimal set of data when it is deployed. An example value is /humans.sql,/dogs.sql.
					

					
						File order matters, as the statements of a given file are executed before the statements of the following files. These statements are only executed if the schema is created (i.e. if hibernate.hbm2ddl.auto is set to create or create-drop).
					

					
	 hibernate.hbm2ddl.import_files_sql_extractor 	
						The classname of a custom ImportSqlCommandExtractor. Defaults to the built-in SingleLineSqlCommandExtractor. This is useful for implementing a dedicated parser that extracts a single SQL statement from each import file. Hibernate also provides MultipleLinesSqlCommandExtractor, which supports instructions/comments and quoted strings spread over multiple lines (mandatory semicolon at the end of each statement).
					

					
	 hibernate.bytecode.use_reflection_optimizer 	
						Boolean. This is a system-level property, which cannot be set in the hibernate.cfg.xml file. Enables the use of bytecode manipulation instead of runtime reflection. Reflection can sometimes be useful when troubleshooting. Hibernate always requires either cglib or javassist even if the optimizer is turned off.
					

					
	 hibernate.bytecode.provider 	
						Both javassist or cglib can be used as byte manipulation engines. The default is javassist. Property value is either javassist or cglib
					

					

		Report a bug
	

 ⁠13.2.4.6. Hibernate SQL Dialects

Important

			The hibernate.dialect property should be set to the correct org.hibernate.dialect.Dialect subclass for the application database. If a dialect is specified, Hibernate will use sensible defaults for some of the other properties. This means that they do not have to be specified manually.
		

 ⁠Table 13.6. SQL Dialects (hibernate.dialect)
	 RDBMS 	 Dialect
	 DB2 	 org.hibernate.dialect.DB2Dialect
	 DB2 AS/400 	 org.hibernate.dialect.DB2400Dialect
	 DB2 OS390 	 org.hibernate.dialect.DB2390Dialect
	 Firebird 	 org.hibernate.dialect.FirebirdDialect
	 FrontBase 	 org.hibernate.dialect.FrontbaseDialect
	 H2 Database 	 org.hibernate.dialect.H2Dialect
	 HypersonicSQL 	 org.hibernate.dialect.HSQLDialect
	 Informix 	 org.hibernate.dialect.InformixDialect
	 Ingres 	 org.hibernate.dialect.IngresDialect
	 Interbase 	 org.hibernate.dialect.InterbaseDialect
	 Mckoi SQL 	 org.hibernate.dialect.MckoiDialect
	 Microsoft SQL Server 2000 	 org.hibernate.dialect.SQLServerDialect
	 Microsoft SQL Server 2005 	 org.hibernate.dialect.SQLServer2005Dialect
	 Microsoft SQL Server 2008 	 org.hibernate.dialect.SQLServer2008Dialect
	 Microsoft SQL Server 2012 	 org.hibernate.dialect.SQLServer2008Dialect
	 MySQL5 	 org.hibernate.dialect.MySQL5Dialect
	 MySQL5 with InnoDB 	 org.hibernate.dialect.MySQL5InnoDBDialect
	 MySQL with MyISAM 	 org.hibernate.dialect.MySQLMyISAMDialect
	 Oracle (any version) 	 org.hibernate.dialect.OracleDialect
	 Oracle 9i 	 org.hibernate.dialect.Oracle9iDialect
	 Oracle 10g 	 org.hibernate.dialect.Oracle10gDialect
	 Oracle 11g 	 org.hibernate.dialect.Oracle10gDialect
	 Pointbase 	 org.hibernate.dialect.PointbaseDialect
	 PostgreSQL 	 org.hibernate.dialect.PostgreSQLDialect
	 PostgreSQL 9.2 	 org.hibernate.dialect.PostgreSQL82Dialect
	 Postgres Plus Advanced Server 	 org.hibernate.dialect.PostgresPlusDialect
	 Progress 	 org.hibernate.dialect.ProgressDialect
	 SAP DB 	 org.hibernate.dialect.SAPDBDialect
	 Sybase 	 org.hibernate.dialect.SybaseASE15Dialect
	 Sybase 15.7 	 org.hibernate.dialect.SybaseASE157Dialect
	 Sybase Anywhere 	 org.hibernate.dialect.SybaseAnywhereDialect

		Report a bug
	

 ⁠13.2.5. Second-Level Caches

 ⁠13.2.5.1. About Second-Level Caches

		A second-level cache is a local data store that holds information persisted outside the application session. The cache is managed by the persistence provider, improving run-time by keeping the data separate from the application.
	

		JBoss EAP 6 supports caching for the following purposes:
	
	
				Web Session Clustering
			

	
				Stateful Session Bean Clustering
			

	
				SSO Clustering
			

	
				Hibernate Second Level Cache
			

		Each cache container defines a "repl" and a "dist" cache. These caches should not be used directly by user applications.
	

		Report a bug
	

 ⁠13.2.5.2. Configure a Second Level Cache for Hibernate

		This topic covers the configuration requirements for enabling Infinispan to act as the second level cache for Hibernate.
	

 ⁠Procedure 13.4. Create and Edit the hibernate.cfg.xml file
	Create the hibernate.cfg.xml file

				Create the hibernate.cfg.xml in the deployment's classpath. For specifics, refer to Section 13.2.3.4, “Create the Hibernate Configuration File in Red Hat JBoss Developer Studio” .
			

	
				Add these lines of XML to the hibernate.cfg.xml file in your application. The XML needs to be inside the <session-factory> tags:
			
<property name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>

	
				Add one of the following to the <session-factory> section of the hibernate.cfg.xml file:
			

					If the Infinispan CacheManager is bound to JNDI:
<property name="hibernate.cache.region.factory_class">
 org.hibernate.cache.infinispan.JndiInfinispanRegionFactory
</property>
<property name="hibernate.cache.infinispan.cachemanager">
 java:CacheManager
</property>

				 	If the Infinispan CacheManager is standalone:
<property name="hibernate.cache.region.factory_class">
 org.hibernate.cache.infinispan.InfinispanRegionFactory
</property>

			

Result

			Infinispan is configured as the Second Level Cache for Hibernate.
		

		Report a bug
	

 ⁠13.3. Hibernate Annotations

 ⁠13.3.1. Hibernate Annotations

 ⁠Table 13.7. Hibernate Defined Annotations
	 Annotation 	 Description
	 AccessType 	 Property Access type.
	 Any 	 Defines a ToOne association pointing to several entity types. Matching the according entity type is done through a metadata discriminator column. This kind of mapping should be only marginal.
	 AnyMetaDef 	 Defines @Any and @ManyToAny metadata.
	 AnyMedaDefs 	 Defines @Any and @ManyToAny set of metadata. Can be defined at the entity level or the package level.
	 BatchSize 	 Batch size for SQL loading.
	 Cache 	 Add caching strategy to a root entity or a collection.
	 Cascade 	 Apply a cascade strategy on an association.
	 Check 	 Arbitrary SQL check constraints which can be defined at the class, property or collection level.
	 Columns 	 Support an array of columns. Useful for component user type mappings.
	 ColumnTransformer 	 Custom SQL expression used to read the value from and write a value to a column. Use for direct object loading/saving as well as queries. The write expression must contain exactly one '?' placeholder for the value.
	 ColumnTransformers 	 Plural annotation for @ColumnTransformer. Useful when more than one column is using this behavior.
	 DiscriminatorFormula 	 Discriminator formula to be placed at the root entity.
	 DiscriminatorOptions 	 Optional annotation to express Hibernate specific discriminator properties.
	 Entity 	 Extends Entity with Hibernate features.
	 Fetch 	 Defines the fetching strategy used for the given association.
	 FetchProfile 	 Defines the fetching strategy profile.
	 FetchProfiles 	 Plural annotation for @FetchProfile.
	 Filter 	 Adds filters to an entity or a target entity of a collection.
	 FilterDef 	 Filter definition.
	 FilterDefs 	 Array of filter definitions.
	 FilterJoinTable 	 Adds filters to a join table collection.
	 FilterJoinTables 	 Adds multiple @FilterJoinTable to a collection.
	 Filters 	 Adds multiple @Filters.
	 Formula 	 To be used as a replacement for @Column in most places. The formula has to be a valid SQL fragment.
	 Generated 	 This annotated property is generated by the database.
	 GenericGenerator 	 Generator annotation describing any kind of Hibernate generator in a detyped manner.
	 GenericGenerators 	 Array of generic generator definitions.
	 Immutable 	
						Mark an Entity or a Collection as immutable. No annotation means the element is mutable.
					

					
						An immutable entity may not be updated by the application. Updates to an immutable entity will be ignored, but no exception is thrown.
					

					
						@Immutable placed on a collection makes the collection immutable, meaning additions and deletions to and from the collection are not allowed. A HibernateException is thrown in this case.
					

					
	 Index 	 Defines a database index.
	 JoinFormula 	 To be used as a replacement for @JoinColumn in most places. The formula has to be a valid SQL fragment.
	 LazyCollection 	 Defines the lazy status of a collection.
	 LazyToOne 	 Defines the lazy status of a ToOne association (i.e. OneToOne or ManyToOne).
	 Loader 	 Overwrites Hibernate default FIND method.
	 ManyToAny 	 Defines a ToMany association pointing to different entity types. Matching the according entity type is done through a metadata discriminator column. This kind of mapping should be only marginal.
	 MapKeyType 	 Defines the type of key of a persistent map.
	 MetaValue 	 Represents a discriminator value associated to a given entity type.
	 NamedNativeQueries 	 Extends NamedNativeQueries to hold Hibernate NamedNativeQuery objects.
	 NamedNativeQuery 	 Extends NamedNativeQuery with Hibernate features.
	 NamedQueries 	 Extends NamedQueries to hold Hibernate NamedQuery objects.
	 NamedQuery 	 Extends NamedQuery with Hibernate features.
	 NaturalId 	 Specifies that a property is part of the natural id of the entity.
	 NotFound 	 Action to do when an element is not found on an association.
	 OnDelete 	 Strategy to use on collections, arrays and on joined subclasses delete. OnDelete of secondary tables is currently not supported.
	 OptimisticLock 	 Whether or not a change of the annotated property will trigger an entity version increment. If the annotation is not present, the property is involved in the optimistic lock strategy (default).
	 OptimisticLocking 	 Used to define the style of optimistic locking to be applied to an entity. In a hierarchy, only valid on the root entity.
	 OrderBy 	 Order a collection using SQL ordering (not HQL ordering).
	 ParamDef 	 A parameter definition.
	 Parameter 	 Key/value pattern.
	 Parent 	 Reference the property as a pointer back to the owner (generally the owning entity).
	 Persister 	 Specify a custom persister.
	 Polymorphism 	 Used to define the type of polymorphism Hibernate will apply to entity hierarchies.
	 Proxy 	 Lazy and proxy configuration of a particular class.
	 RowId 	 Support for ROWID mapping feature of Hibernate.
	 Sort 	 Collection sort (Java level sorting).
	 Source 	 Optional annotation in conjunction with Version and timestamp version properties. The annotation value decides where the timestamp is generated.
	 SQLDelete 	 Overwrites the Hibernate default DELETE method.
	 SQLDeleteAll 	 Overwrites the Hibernate default DELETE ALL method.
	 SQLInsert 	 Overwrites the Hibernate default INSERT INTO method.
	 SQLUpdate 	 Overwrites the Hibernate default UPDATE method.
	 Subselect 	 Maps an immutable and read-only entity to a given SQL subselect expression.
	 Synchronize 	 Ensures that auto-flush happens correctly and that queries against the derived entity do not return stale data. Mostly used with Subselect.
	 Table 	 Complementary information to a table either primary or secondary.
	 Tables 	 Plural annotation of Table.
	 Target 	 Defines an explicit target, avoiding reflection and generics resolving.
	 Tuplizer 	 Defines a tuplizer for an entity or a component.
	 Tuplizers 	 Defines a set of tuplizers for an entity or a component.
	 Type 	 Hibernate Type.
	 TypeDef 	 Hibernate Type definition.
	 TypeDefs 	 Hibernate Type definition array.
	 Where 	 Where clause to add to the element Entity or target entity of a collection. The clause is written in SQL.
	 WhereJoinTable 	 Where clause to add to the collection join table. The clause is written in SQL.

Note

			The annotation "Entity" is deprecated and scheduled for removal in future releases.
		

		Report a bug
	

 ⁠13.4. Hibernate Query Language

 ⁠13.4.1. About Hibernate Query Language

		The Hibernate Query Language (HQL) and Java Persistence Query Language (JPQL) are both object model focused query languages similar in nature to SQL. HQL is a superset of JPQL. A HQL query is not always a valid JPQL query, but a JPQL query is always a valid HQL query.
	

		Both HQL and JPQL are non-type-safe ways to perform query operations. Criteria queries offer a type-safe approach to querying.
	

		Report a bug
	

 ⁠13.4.2. HQL Statements

		HQL allows SELECT, UPDATE, DELETE, and INSERT statements. The HQL INSERT statement has no equivalent in JPQL.
	
Important

			Care should be taken as to when an UPDATE or DELETE statement is executed.
		

 ⁠Table 13.8. HQL Statements
	 Statement 	 Description
	 SELECT 	
						The BNF for SELECT statements in HQL is:
					

					

select_statement :: =
 [select_clause]
 from_clause
 [where_clause]
 [groupby_clause]
 [having_clause]
 [orderby_clause]

					
						The simplest possible HQL SELECT statement is of the form:
					

					
from com.acme.Cat

					
	 UDPATE 	 The BNF for UPDATE statement in HQL is the same as it is in JPQL
	 DELETE 	 The BNF for DELETE statements in HQL is the same as it is in JPQL

		Report a bug
	

 ⁠13.4.3. About the INSERT Statement

		HQL adds the ability to define INSERT statements. There is no JPQL equivalent to this. The BNF for an HQL INSERT statement is:
	
insert_statement ::= insert_clause select_statement

insert_clause ::= INSERT INTO entity_name (attribute_list)

attribute_list ::= state_field[, state_field]*

		The attribute_list is analogous to the column specification in the SQL INSERT statement. For entities involved in mapped inheritance, only attributes directly defined on the named entity can be used in the attribute_list. Superclass properties are not allowed and subclass properties do not make sense. In other words, INSERT statements are inherently non-polymorphic.
	
Warning

			select_statement can be any valid HQL select query, with the caveat that the return types must match the types expected by the insert. Currently, this is checked during query compilation rather than allowing the check to relegate to the database. This may cause problems between Hibernate Types which are equivalent as opposed to equal. For example, this might cause lead to issues with mismatches between an attribute mapped as a org.hibernate.type.DateType and an attribute defined as a org.hibernate.type.TimestampType, even though the database might not make a distinction or might be able to handle the conversion.
		

		For the id attribute, the insert statement gives you two options. You can either explicitly specify the id property in the attribute_list, in which case its value is taken from the corresponding select expression, or omit it from the attribute_list in which case a generated value is used. This latter option is only available when using id generators that operate "in the database"; attempting to use this option with any "in memory" type generators will cause an exception during parsing.
	

		For optimistic locking attributes, the insert statement again gives you two options. You can either specify the attribute in the attribute_list in which case its value is taken from the corresponding select expressions, or omit it from the attribute_list in which case the seed value defined by the corresponding org.hibernate.type.VersionType is used.
	

 ⁠Example 13.3. INSERT Query Statements
String hqlInsert = "insert into DelinquentAccount (id, name) select c.id, c.name from Customer c where ...";
int createdEntities = s.createQuery(hqlInsert).executeUpdate();

		Report a bug
	

 ⁠13.4.4. About the FROM Clause

		The FROM clause is responsible defining the scope of object model types available to the rest of the query. It also is responsible for defining all the "identification variables" available to the rest of the query.
	

		Report a bug
	

 ⁠13.4.5. About the WITH Clause

		HQL defines a WITH clause to qualify the join conditions. This is specific to HQL; JPQL does not define this feature.
	

 ⁠Example 13.4. With Clause
select distinct c
from Customer c
 left join c.orders o
 with o.value > 5000.00

		The important distinction is that in the generated SQL the conditions of the with clause are made part of the on clause in the generated SQL as opposed to the other queries in this section where the HQL/JPQL conditions are made part of the where clause in the generated SQL. The distinction in this specific example is probably not that significant. The with clause is sometimes necessary in more complicated queries.
	

		Explicit joins may reference association or component/embedded attributes. In the case of component/embedded attributes, the join is logical and does not correlate to a physical (SQL) join.
	

		Report a bug
	

 ⁠13.4.6. About Bulk Update, Insert and Delete

		Hibernate allows the use of Data Manipulation Language (DML) to bulk insert, update and delete data directly in the mapped database through the Hibernate Query Language.
	
Warning

			Using DML may violate the object/relational mapping and may affect object state. Object state stays in memory and by using DML, the state of an in-memory object is not affected depending on the operation that is performed on the underlying database. In-memory data must be used with care if DML is used.
		

		The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROM? EntityName (WHERE where_conditions)?.
	
Note

			The FROM keyword and the WHERE Clause are optional.
		

		The result of execution of a UPDATE or DELETE statement is the number of rows that are actually affected (updated or deleted).
	

 ⁠Example 13.5. Bulk Update Statement

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlUpdate = "update Company set name = :newName where name = :oldName";
int updatedEntities = s.createQuery(hqlUpdate)
 .setString("newName", newName)
 .setString("oldName", oldName)
 .executeUpdate();
tx.commit();
session.close();

 ⁠Example 13.6. Bulk Delete statement

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlDelete = "delete Company where name = :oldName";
int deletedEntities = s.createQuery(hqlDelete)
 .setString("oldName", oldName)
 .executeUpdate();
tx.commit();
session.close();

		The int value returned by the Query.executeUpdate() method indicates the number of entities within the database that were affected by the operation.
	

		Internally, the database might use multiple SQL statements to execute the operation in response to a DML Update or Delete request. This might be because of relationships that exist between tables and the join tables that may need to be updated or deleted.
	

		For example, issuing a delete statement (as in the example above) may actually result in deletes being executed against not just the Company table for companies that are named with oldName, but also against joined tables. Thus, a Company table in a BiDirectional ManyToMany relationship with an Employee table, would lose rows from the corresponding join table Company_Employee as a result of the successful execution of the previous example.
	

		The int deletedEntries value above will contain a count of all the rows affected due to this operation, including the rows in the join tables.
	

		The pseudo-syntax for INSERT statements is: INSERT INTO EntityName properties_list select_statement.
	
Note

			Only the INSERT INTO ... SELECT ... form is supported; not the INSERT INTO ... VALUES ... form.
		

 ⁠Example 13.7. Bulk Insert statement

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlInsert = "insert into Account (id, name) select c.id, c.name from Customer c where ...";
int createdEntities = s.createQuery(hqlInsert)
 .executeUpdate();
tx.commit();
session.close();

		If you do not supply the value for the id attribute via the SELECT statement, an identifier is generated for you, as long as the underlying database supports auto-generated keys. The return value of this bulk insert operation is the number of entries actually created in the database.
	

		Report a bug
	

 ⁠13.4.7. About Collection Member References

		References to collection-valued associations actually refer to the values of that collection.
	

 ⁠Example 13.8. Collection References
select c
from Customer c
 join c.orders o
 join o.lineItems l
 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

// alternate syntax
select c
from Customer c,
 in(c.orders) o,
 in(o.lineItems) l
 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

		In the example, the identification variable o actually refers to the object model type Order which is the type of the elements of the Customer#orders association.
	

		The example also shows the alternate syntax for specifying collection association joins using the IN syntax. Both forms are equivalent. Which form an application chooses to use is simply a matter of taste.
	

		Report a bug
	

 ⁠13.4.8. About Qualified Path Expressions

		It was previously stated that collection-valued associations actually refer to the values of that collection. Based on the type of collection, there are also available a set of explicit qualification expressions.
	

 ⁠Table 13.9. Qualified Path Expressions
	 Expression 	 Description
	 VALUE 	
						Refers to the collection value. Same as not specifying a qualifier. Useful to explicitly show intent. Valid for any type of collection-valued reference.
					

					
	 INDEX 	
						According to HQL rules, this is valid for both Maps and Lists which specify a javax.persistence.OrderColumn annotation to refer to the Map key or the List position (aka the OrderColumn value). JPQL however, reserves this for use in the List case and adds KEY for the MAP case. Applications interested in JPA provider portability should be aware of this distinction.
					

					
	 KEY 	
						Valid only for Maps. Refers to the map's key. If the key is itself an entity, can be further navigated.
					

					
	 ENTRY 	
						Only valid only for Maps. Refers to the Map's logical java.util.Map.Entry tuple (the combination of its key and value). ENTRY is only valid as a terminal path and only valid in the select clause.
					

					

 ⁠Example 13.9. Qualified Collection References

// Product.images is a Map<String,String> : key = a name, value = file path

// select all the image file paths (the map value) for Product#123
select i
from Product p
 join p.images i
where p.id = 123

// same as above
select value(i)
from Product p
 join p.images i
where p.id = 123

// select all the image names (the map key) for Product#123
select key(i)
from Product p
 join p.images i
where p.id = 123

// select all the image names and file paths (the 'Map.Entry') for Product#123
select entry(i)
from Product p
 join p.images i
where p.id = 123

// total the value of the initial line items for all orders for a customer
select sum(li.amount)
from Customer c
 join c.orders o
 join o.lineItems li
where c.id = 123
 and index(li) = 1

		Report a bug
	

 ⁠13.4.9. About Scalar Functions

		HQL defines some standard functions that are available regardless of the underlying database in use. HQL can also understand additional functions defined by the dialect and the application.
	

		Report a bug
	

 ⁠13.4.10. HQL Standardized Functions

		The following functions are available in HQL regardless of the underlying database in use.
	

 ⁠Table 13.10. HQL Standardized Functions
	 Function 	 Description
	 BIT_LENGTH 	
						Returns the length of binary data.
					

					
	 CAST 	
						Performs a SQL cast. The cast target should name the Hibernate mapping type to use.
					

					
	 EXTRACT 	
						Performs a SQL extraction on datetime values. An extraction extracts parts of the datetime (the year, for example). See the abbreviated forms below.
					

					
	 SECOND 	
						Abbreviated extract form for extracting the second.
					

					
	 MINUTE 	
						Abbreviated extract form for extracting the minute.
					

					
	 HOUR 	
						Abbreviated extract form for extracting the hour.
					

					
	 DAY 	
						Abbreviated extract form for extracting the day.
					

					
	 MONTH 	
						Abbreviated extract form for extracting the month.
					

					
	 YEAR 	
						Abbreviated extract form for extracting the year.
					

					
	 STR 	
						Abbreviated form for casting a value as character data.
					

					

		Application developers can also supply their own set of functions. This would usually represent either custom SQL functions or aliases for snippets of SQL. Such function declarations are made by using the addSqlFunction method of org.hibernate.cfg.Configuration
	

		Report a bug
	

 ⁠13.4.11. About the Concatenation Operation

		HQL defines a concatenation operator in addition to supporting the concatenation (CONCAT) function. This is not defined by JPQL, so portable applications should avoid using it. The concatenation operator is taken from the SQL concatenation operator - ||.
	

 ⁠Example 13.10. Concatenation Operation Example

select 'Mr. ' || c.name.first || ' ' || c.name.last
from Customer c
where c.gender = Gender.MALE

		Report a bug
	

 ⁠13.4.12. About Dynamic Instantiation

		There is a particular expression type that is only valid in the select clause. Hibernate calls this "dynamic instantiation". JPQL supports some of this feature and calls it a "constructor expression".
	

 ⁠Example 13.11. Dynamic Instantiation Example - Constructor

select new Family(mother, mate, offspr)
from DomesticCat as mother
 join mother.mate as mate
 left join mother.kittens as offspr

		So rather than dealing with the Object[] here we are wrapping the values in a type-safe java object that will be returned as the results of the query. The class reference must be fully qualified and it must have a matching constructor.
	

		The class here need not be mapped. If it does represent an entity, the resulting instances are returned in the NEW state (not managed!).
	

		This is the part JPQL supports as well. HQL supports additional "dynamic instantiation" features. First, the query can specify to return a List rather than an Object[] for scalar results:
	

 ⁠Example 13.12. Dynamic Instantiation Example - List

select new list(mother, offspr, mate.name)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

		The results from this query will be a List<List> as opposed to a List<Object[]>
	

		HQL also supports wrapping the scalar results in a Map.
	

 ⁠Example 13.13. Dynamic Instantiation Example - Map

select new map(mother as mother, offspr as offspr, mate as mate)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

select new map(max(c.bodyWeight) as max, min(c.bodyWeight) as min, count(*) as n)
from Cat cxt

		The results from this query will be a List<Map<String,Object>> as opposed to a List<Object[]>. The keys of the map are defined by the aliases given to the select expressions.
	

		Report a bug
	

 ⁠13.4.13. About HQL Predicates

		Predicates form the basis of the where clause, the having clause and searched case expressions. They are expressions which resolve to a truth value, generally TRUE or FALSE, although boolean comparisons involving NULLs generally resolve to UNKNOWN.
	
HQL Predicates
	Nullness Predicate
	
					Check a value for nullness. Can be applied to basic attribute references, entity references and parameters. HQL additionally allows it to be applied to component/embeddable types.
				

 ⁠Example 13.14. Nullness Checking Examples

// select everyone with an associated address
select p
from Person p
where p.address is not null

// select everyone without an associated address
select p
from Person p
where p.address is null

	Like Predicate
	
					Performs a like comparison on string values. The syntax is:
				

like_expression ::=
 string_expression
 [NOT] LIKE pattern_value
 [ESCAPE escape_character]

					The semantics follow that of the SQL like expression. The pattern_value is the pattern to attempt to match in the string_expression. Just like SQL, pattern_value can use "_" and "%" as wildcards. The meanings are the same. "_" matches any single character. "%" matches any number of characters.
				

					The optional escape_character is used to specify an escape character used to escape the special meaning of "_" and "%" in the pattern_value. This is useful when needing to search on patterns including either "_" or "%".
				

 ⁠Example 13.15. Like Predicate Examples

select p
from Person p
where p.name like '%Schmidt'

select p
from Person p
where p.name not like 'Jingleheimmer%'

// find any with name starting with "sp_"
select sp
from StoredProcedureMetadata sp
where sp.name like 'sp|_%' escape '|'

	Between Predicate
	
					Analogous to the SQL BETWEEN expression. Perform a evaluation that a value is within the range of 2 other values. All the operands should have comparable types.
				

 ⁠Example 13.16. Between Predicate Examples

select p
from Customer c
 join c.paymentHistory p
where c.id = 123
 and index(p) between 0 and 9

select c
from Customer c
where c.president.dateOfBirth
 between {d '1945-01-01'}
 and {d '1965-01-01'}

select o
from Order o
where o.total between 500 and 5000

select p
from Person p
where p.name between 'A' and 'E'

		Report a bug
	

 ⁠13.4.14. About Relational Comparisons

		Comparisons involve one of the comparison operators - =, >, >=, <, <=, <>. HQL also defines != as a comparison operator synonymous with <>. The operands should be of the same type.
	

 ⁠Example 13.17. Relational Comparison Examples

// numeric comparison
select c
from Customer c
where c.chiefExecutive.age < 30

// string comparison
select c
from Customer c
where c.name = 'Acme'

// datetime comparison
select c
from Customer c
where c.inceptionDate < {d '2000-01-01'}

// enum comparison
select c
from Customer c
where c.chiefExecutive.gender = com.acme.Gender.MALE

// boolean comparison
select c
from Customer c
where c.sendEmail = true

// entity type comparison
select p
from Payment p
where type(p) = WireTransferPayment

// entity value comparison
select c
from Customer c
where c.chiefExecutive = c.chiefTechnologist

		Comparisons can also involve subquery qualifiers - ALL, ANY, SOME. SOME and ANY are synonymous.
	

		The ALL qualifier resolves to true if the comparison is true for all of the values in the result of the subquery. It resolves to false if the subquery result is empty.
	

 ⁠Example 13.18. ALL Subquery Comparison Qualifier Example

// select all players that scored at least 3 points
// in every game.
select p
from Player p
where 3 > all (
 select spg.points
 from StatsPerGame spg
 where spg.player = p
)

		The ANY/SOME qualifier resolves to true if the comparison is true for some of (at least one of) the values in the result of the subquery. It resolves to false if the subquery result is empty.
	

		Report a bug
	

 ⁠13.4.15. About the IN Predicate

		The IN predicate performs a check that a particular value is in a list of values. Its syntax is:
	

in_expression ::= single_valued_expression
 [NOT] IN single_valued_list

single_valued_list ::= constructor_expression |
 (subquery) |
 collection_valued_input_parameter

constructor_expression ::= (expression[, expression]*)

		The types of the single_valued_expression and the individual values in the single_valued_list must be consistent. JPQL limits the valid types here to string, numeric, date, time, timestamp, and enum types. In JPQL, single_valued_expression can only refer to:
	
	
				"state fields", which is its term for simple attributes. Specifically this excludes association and component/embedded attributes.
			

	
				entity type expressions.
			

		In HQL, single_valued_expression can refer to a far more broad set of expression types. Single-valued association are allowed. So are component/embedded attributes, although that feature depends on the level of support for tuple or "row value constructor syntax" in the underlying database. Additionally, HQL does not limit the value type in any way, though application developers should be aware that different types may incur limited support based on the underlying database vendor. This is largely the reason for the JPQL limitations.
	

		The list of values can come from a number of different sources. In the constructor_expression and collection_valued_input_parameter, the list of values must not be empty; it must contain at least one value.
	

 ⁠Example 13.19. In Predicate Examples

select p
from Payment p
where type(p) in (CreditCardPayment, WireTransferPayment)

select c
from Customer c
where c.hqAddress.state in ('TX', 'OK', 'LA', 'NM')

select c
from Customer c
where c.hqAddress.state in ?

select c
from Customer c
where c.hqAddress.state in (
 select dm.state
 from DeliveryMetadata dm
 where dm.salesTax is not null
)

// Not JPQL compliant!
select c
from Customer c
where c.name in (
 ('John','Doe'),
 ('Jane','Doe')
)

// Not JPQL compliant!
select c
from Customer c
where c.chiefExecutive in (
 select p
 from Person p
 where ...
)

		Report a bug
	

 ⁠13.4.16. About HQL Ordering

		The results of the query can also be ordered. The ORDER BY clause is used to specify the selected values to be used to order the result. The types of expressions considered valid as part of the order-by clause include:
	
	
				state fields
			

	
				component/embeddable attributes
			

	
				scalar expressions such as arithmetic operations, functions, etc.
			

	
				identification variable declared in the select clause for any of the previous expression types
			

		HQL does not mandate that all values referenced in the order-by clause must be named in the select clause, but it is required by JPQL. Applications desiring database portability should be aware that not all databases support referencing values in the order-by clause that are not referenced in the select clause.
	

		Individual expressions in the order-by can be qualified with either ASC (ascending) or DESC (descending) to indicated the desired ordering direction.
	

 ⁠Example 13.20. Order-by Examples

// legal because p.name is implicitly part of p
select p
from Person p
order by p.name

select c.id, sum(o.total) as t
from Order o
 inner join o.customer c
group by c.id
order by t

		Report a bug
	

 ⁠13.5. Hibernate Services

 ⁠13.5.1. About Hibernate Services

		Services are classes that provide Hibernate with pluggable implementations of various types of functionality. Specifically they are implementations of certain service contract interfaces. The interface is known as the service role; the implementation class is know as the service implementation. Generally speaking, users can plug in alternate implementations of all standard service roles (overriding); they can also define additional services beyond the base set of service roles (extending).
	

		Report a bug
	

 ⁠13.5.2. About Service Contracts

		The basic requirement for a service is to implement the marker interface org.hibernate.service.Service. Hibernate uses this internally for some basic type safety.
	

		Optionally, the service can also implement the org.hibernate.service.spi.Startable and org.hibernate.service.spi.Stoppable interfaces to receive notifications of being started and stopped. Another optional service contract is org.hibernate.service.spi.Manageable which marks the service as manageable in JMX provided the JMX integration is enabled.
	

		Report a bug
	

 ⁠13.5.3. Types of Service Dependencies

		Services are allowed to declare dependencies on other services using either of 2 approaches:
	
	@org.hibernate.service.spi.InjectService
	
					Any method on the service implementation class accepting a single parameter and annotated with @InjectService is considered requesting injection of another service.
				

					By default the type of the method parameter is expected to be the service role to be injected. If the parameter type is different than the service role, the serviceRole attribute of the InjectService should be used to explicitly name the role.
				

					By default injected services are considered required, that is the start up will fail if a named dependent service is missing. If the service to be injected is optional, the required attribute of the InjectService should be declared as false (default is true).
				

	org.hibernate.service.spi.ServiceRegistryAwareService
	
					The second approach is a pull approach where the service implements the optional service interface org.hibernate.service.spi.ServiceRegistryAwareService which declares a single injectServices method.
				

					During startup, Hibernate will inject the org.hibernate.service.ServiceRegistry itself into services which implement this interface. The service can then use the ServiceRegistry reference to locate any additional services it needs.
				

		Report a bug
	

 ⁠13.5.4. The ServiceRegistry

 ⁠13.5.4.1. About the ServiceRegistry

		The central service API, aside from the services themselves, is the org.hibernate.service.ServiceRegistry interface. The main purpose of a service registry is to hold, manage and provide access to services.
	

		Service registries are hierarchical. Services in one registry can depend on and utilize services in that same registry as well as any parent registries.
	

		Use org.hibernate.service.ServiceRegistryBuilder to build a org.hibernate.service.ServiceRegistry instance.
	

 ⁠Example 13.21. Use ServiceRegistryBuilder to create a ServiceRegistry

ServiceRegistryBuilder registryBuilder = new ServiceRegistryBuilder(bootstrapServiceRegistry);
 ServiceRegistry serviceRegistry = registryBuilder.buildServiceRegistry();

		Report a bug
	

 ⁠13.5.5. Custom Services

 ⁠13.5.5.1. About Custom Services

		Once a org.hibernate.service.ServiceRegistry is built it is considered immutable; the services themselves might accept re-configuration, but immutability here means adding/replacing services. So another role provided by the org.hibernate.service.ServiceRegistryBuilder is to allow tweaking of the services that will be contained in the org.hibernate.service.ServiceRegistry generated from it.
	

		There are two means to tell a org.hibernate.service.ServiceRegistryBuilder about custom services.
	
	
				Implement a org.hibernate.service.spi.BasicServiceInitiator class to control on-demand construction of the service class and add it to the org.hibernate.service.ServiceRegistryBuilder via its addInitiator method.
			

	
				Just instantiate the service class and add it to the org.hibernate.service.ServiceRegistryBuilder via its addService method.
			

		Either approach the adding a service approach or the adding an initiator approach are valid for extending a registry (adding new service roles) and overriding services (replacing service implementations).
	

 ⁠Example 13.22. Use ServiceRegistryBuilder to Replace an Existing Service with a Custom Service

 ServiceRegistryBuilder registryBuilder = new ServiceRegistryBuilder(bootstrapServiceRegistry);
 registryBuilder.addService(JdbcServices.class, new FakeJdbcService());
 ServiceRegistry serviceRegistry = registryBuilder.buildServiceRegistry();

 public class FakeJdbcService implements JdbcServices{

 @Override
 public ConnectionProvider getConnectionProvider() {
 return null;
 }

 @Override
 public Dialect getDialect() {
 return null;
 }

 @Override
 public SqlStatementLogger getSqlStatementLogger() {
 return null;
 }

 @Override
 public SqlExceptionHelper getSqlExceptionHelper() {
 return null;
 }

 @Override
 public ExtractedDatabaseMetaData getExtractedMetaDataSupport() {
 return null;
 }

 @Override
 public LobCreator getLobCreator(LobCreationContext lobCreationContext) {
 return null;
 }

 @Override
 public ResultSetWrapper getResultSetWrapper() {
 return null;
 }
 }

		Report a bug
	

 ⁠13.5.6. The Bootstrap Registry

 ⁠13.5.6.1. About the Boot-strap Registry

		The boot-strap registry holds services that absolutely have to be available for most things to work. The main service here is the ClassLoaderService which is a perfect example. Even resolving configuration files needs access to class loading services (resource look ups). This is the root registry (no parent) in normal use.
	

		Instances of boot-strap registries are built using the org.hibernate.service.BootstrapServiceRegistryBuilder class.
	

		Report a bug
	

 ⁠13.5.6.2. Using BootstrapServiceRegistryBuilder

 ⁠Example 13.23. Using BootstrapServiceRegistryBuilder

BootstrapServiceRegistry bootstrapServiceRegistry = new BootstrapServiceRegistryBuilder()
 // pass in org.hibernate.integrator.spi.Integrator instances which are not
 // auto-discovered (for whatever reason) but which should be included
 .with(anExplicitIntegrator)
 // pass in a class loader that Hibernate should use to load application classes
 .with(anExplicitClassLoaderForApplicationClasses)
 // pass in a class loader that Hibernate should use to load resources
 .with(anExplicitClassLoaderForResources)
 // see BootstrapServiceRegistryBuilder for rest of available methods
 ...
 // finally, build the bootstrap registry with all the above options
 .build();

		Report a bug
	

 ⁠13.5.6.3. BootstrapRegistry Services

		org.hibernate.service.classloading.spi.ClassLoaderService
	

		Hibernate needs to interact with class loaders. However, the manner in which Hibernate (or any library) should interact with class loaders varies based on the runtime environment which is hosting the application. Application servers, OSGi containers, and other modular class loading systems impose very specific class loading requirements. This service is provides Hibernate an abstraction from this environmental complexity. And just as importantly, it does so in a single-swappable-component manner.
	

		In terms of interacting with a class loader, Hibernate needs the following capabilities:
			
					the ability to locate application classes
				

	
					the ability to locate integration classes
				

	
					the ability to locate resources (properties files, xml files, etc)
				

	
					the ability to load java.util.ServiceLoader
				

	
Note

			Currently, the ability to load application classes and the ability to load integration classes are combined into a single "load class" capability on the service. That may change in a later release.
		

		org.hibernate.integrator.spi.IntegratorService
	

		Applications, add-ons and other modules need to integrate with Hibernate. The previous approach required a component, usually an application, to coordinate the registration of each individual module. This registration was conducted on behalf of each module's integrator.
	

		This service focuses on the discovery aspect. It leverages the standard Java java.util.ServiceLoader capability provided by the org.hibernate.service.classloading.spi.ClassLoaderService in order to discover implementations of the org.hibernate.integrator.spi.Integrator contract.
	

		Integrators would simply define a file named /META-INF/services/org.hibernate.integrator.spi.Integrator and make it available on the classpath.
	

		This file is used by the java.util.ServiceLoader mechanism. It lists, one per line, the fully qualified names of classes which implement the org.hibernate.integrator.spi.Integrator interface.
	

		Report a bug
	

 ⁠13.5.7. The SessionFactory Registry

 ⁠13.5.7.1. SessionFactory Registry

		While it is best practice to treat instances of all the registry types as targeting a given org.hibernate.SessionFactory, the instances of services in this group explicitly belong to a single org.hibernate.SessionFactory.
	

		The difference is a matter of timing in when they need to be initiated. Generally they need access to the org.hibernate.SessionFactory to be initiated. This special registry is org.hibernate.service.spi.SessionFactoryServiceRegistry
	

		Report a bug
	

 ⁠13.5.7.2. SessionFactory Services

org.hibernate.event.service.spi.EventListenerRegistry
	Description
	
					Service for managing event listeners.
				

	Initiator
	
					org.hibernate.event.service.internal.EventListenerServiceInitiator
				

	Implementations
	
					org.hibernate.event.service.internal.EventListenerRegistryImpl
				

		Report a bug
	

 ⁠13.5.8. Integrators

 ⁠13.5.8.1. Integrators

		The org.hibernate.integrator.spi.Integrator is intended to provide a simple means for allowing developers to hook into the process of building a functioning SessionFactory. The org.hibernate.integrator.spi.Integrator interface defines 2 methods of interest: integrate allows us to hook into the building process; disintegrate allows us to hook into a SessionFactory shutting down.
	
Note

			There is a 3rd method defined on org.hibernate.integrator.spi.Integrator, an overloaded form of integrate accepting a org.hibernate.metamodel.source.MetadataImplementor instead of org.hibernate.cfg.Configuration. This form is intended for use with the new metamodel code scheduled for completion in 5.0.
		

		In addition to the discovery approach provided by the IntegratorService, applications can manually register Integrator implementations when building the BootstrapServiceRegistry.
	

		Report a bug
	

 ⁠13.5.8.2. Integrator use-cases

		The main use cases for an org.hibernate.integrator.spi.Integrator right now are registering event listeners and providing services (see org.hibernate.integrator.spi.ServiceContributingIntegrator). With 5.0 we plan on expanding that to allow altering the metamodel describing the mapping between object and relational models.
	

 ⁠Example 13.24. Registering event listeners

public class MyIntegrator implements org.hibernate.integrator.spi.Integrator {

 public void integrate(
 Configuration configuration,
 SessionFactoryImplementor sessionFactory,
 SessionFactoryServiceRegistry serviceRegistry) {
 // As you might expect, an EventListenerRegistry is the thing with which event listeners are registered It is a
 // service so we look it up using the service registry
 final EventListenerRegistry eventListenerRegistry = serviceRegistry.getService(EventListenerRegistry.class);

 // If you wish to have custom determination and handling of "duplicate" listeners, you would have to add an
 // implementation of the org.hibernate.event.service.spi.DuplicationStrategy contract like this
 eventListenerRegistry.addDuplicationStrategy(myDuplicationStrategy);

 // EventListenerRegistry defines 3 ways to register listeners:
 // 1) This form overrides any existing registrations with
 eventListenerRegistry.setListeners(EventType.AUTO_FLUSH, myCompleteSetOfListeners);
 // 2) This form adds the specified listener(s) to the beginning of the listener chain
 eventListenerRegistry.prependListeners(EventType.AUTO_FLUSH, myListenersToBeCalledFirst);
		// 3) This form adds the specified listener(s) to the end of the listener chain
 eventListenerRegistry.appendListeners(EventType.AUTO_FLUSH, myListenersToBeCalledLast);
 }
}

		Report a bug
	

 ⁠13.6. Bean Validation

 ⁠13.6.1. About Bean Validation

		Bean Validation, or JavaBeans Validation, is a model for validating data in Java objects. The model uses built-in and custom annotation constraints to ensure the integrity of application data. The specification is documented here: http://jcp.org/en/jsr/detail?id=303.
	

		Hibernate Validator is the JBoss EAP 6 implementation of Bean Validation. It is also the reference implementation of the JSR.
	

		JBoss EAP 6 is 100% compliant with JSR 303 - Bean Validation. Hibernate Validator also provides additional features to the specification.
	

		To get started with Bean Validation, refer to the bean-validation quickstart example: Section 1.4.1.1, “Access the Quickstarts”.
	

		Report a bug
	

 ⁠13.6.2. Hibernate Validator

		Hibernate Validator is the reference implementation of JSR 303 - Bean Validation.
	

		Bean Validation provides users with a model for validating Java object data. For more information, refer to Section 13.6.1, “About Bean Validation” and Section 13.6.3.1, “About Validation Constraints”.
	

		Report a bug
	

 ⁠13.6.3. Validation Constraints

 ⁠13.6.3.1. About Validation Constraints

		Validation constraints are rules applied to a java element, such as a field, property or bean. A constraint will usually have a set of attributes used to set its limits. There are predefined constraints, and custom ones can be created. Each constraint is expressed in the form of an annotation.
	

		The built-in validation constraints for Hibernate Validator are listed here: Section 13.6.3.3, “Hibernate Validator Constraints”
	

		For more information, refer to Section 13.6.2, “Hibernate Validator” and Section 13.6.1, “About Bean Validation”.
	

		Report a bug
	

 ⁠13.6.3.2. Create a Constraint Annotation in Red Hat JBoss Developer Studio

Summary

			This task covers the process of creating a constraint annotation in Red Hat JBoss Developer Studio, for use within a Java application.
		
Prerequisites
	
				Section 1.3.1.4, “Start Red Hat JBoss Developer Studio”
			

 ⁠Procedure 13.5. Create a Constraint Annotation
	
				Open a Java project in Red Hat JBoss Developer Studio.
			

	Create a Data Set

				A constraint annotation requires a data set that defines the acceptable values.
			
	
						Right click on the project root folder in the Project Explorer panel.
					

	
						Select New → Enum.
					

	
						Configure the following elements:
					
	
								Package:
							

	
								Name:
							

	
						Click the Add... button to add any required interfaces.
					

	
						Click Finish to create the file.
					

	
						Add a set of values to the data set and click Save.
					

 ⁠Example 13.25. Example Data Set

package com.example;

public enum CaseMode {
 UPPER,
 LOWER;
}

	Create the Annotation File

				Create a new Java class.
			

	
				Configure the constraint annotation and click Save.
			

 ⁠Example 13.26. Example Constraint Annotation File
package com.mycompany;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import javax.validation.Constraint;
import javax.validation.Payload;

@Target({ METHOD, FIELD, ANNOTATION_TYPE })
@Retention(RUNTIME)
@Constraint(validatedBy = CheckCaseValidator.class)
@Documented
public @interface CheckCase {

 String message() default "{com.mycompany.constraints.checkcase}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

 CaseMode value();

}

	Result
	
					A custom constraint annotation with a set of possible values has been created, ready to be used in the Java project.
				

		Report a bug
	

 ⁠13.6.3.3. Hibernate Validator Constraints

 ⁠Table 13.11. Built-in Constraints
	 Annotation 	 Apply on 	 Runtime checking 	 Hibernate Metadata impact
	 @Length(min=, max=) 	 property (String) 	 Check if the string length matches the range. 	 Column length will be set to max.
	 @Max(value=) 	 property (numeric or string representation of a numeric) 	 Check if the value is less than or equal to max. 	 Add a check constraint on the column.
	 @Min(value=) 	 property (numeric or string representation of a numeric) 	 Check if the value is more than or equal to Min. 	 Add a check constraint on the column.
	 @NotNull 	 property 	 Check if the value is not null. 	 Column(s) are not null.
	 @NotEmpty 	 property 	 Check if the string is not null nor empty. Check if the connection is not null nor empty. 	 Column(s) are not null (for String).
	 @Past 	 property (date or calendar) 	 Check if the date is in the past. 	 Add a check constraint on the column.
	 @Future 	 property (date or calendar) 	 Check if the date is in the future. 	 None.
	 @Pattern(regex="regexp", flag=) or @Patterns({@Pattern(...)}) 	 property (string) 	 Check if the property matches the regular expression given a match flag (see java.util.regex.Pattern). 	 None.
	 @Range(min=, max=) 	 property (numeric or string representation of a numeric) 	 Check if the value is between min and max (included). 	 Add a check constraint on the column.
	 @Size(min=, max=) 	 property (array, collection, map) 	 Check if the element size is between min and max (included). 	 None.
	 @AssertFalse 	 property 	 Check that the method evaluates to false (useful for constraints expressed in code rather than annotations). 	 None.
	 @AssertTrue 	 property 	 Check that the method evaluates to true (useful for constraints expressed in code rather than annotations). 	 None.
	 @Valid 	 property (object) 	 Perform validation recursively on the associated object. If the object is a Collection or an array, the elements are validated recursively. If the object is a Map, the value elements are validated recursively. 	 None.
	 @Email 	 property (String) 	 Check whether the string is conform to the e-mail address specification. 	 None.
	 @CreditCardNumber 	 property (String) 	 Check whether the string is a well formatted credit card number (derivative of the Luhn algorithm). 	 None.
	 @Digits(integerDigits=1) 	 property (numeric or string representation of a numeric) 	 Check whether the property is a number having up to integerDigits integer digits and fractionalDigits fractional digits. 	 Define column precision and scale.
	 @EAN 	 property (string) 	 Check whether the string is a properly formatted EAN or UPC-A code. 	 None.

		Report a bug
	

 ⁠13.6.4. Configuration

 ⁠13.6.4.1. Example Validation Configuration File

 ⁠Example 13.27. validation.xml
<validation-config xmlns="http://jboss.org/xml/ns/javax/validation/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration">

 <default-provider>
 org.hibernate.validator.HibernateValidator
 </default-provider>
 <message-interpolator>
 org.hibernate.validator.messageinterpolation.ResourceBundleMessageInterpolator
 </message-interpolator>
 <constraint-validator-factory>
 org.hibernate.validator.engine.ConstraintValidatorFactoryImpl
 </constraint-validator-factory>

 <constraint-mapping>
 /constraints-example.xml
 </constraint-mapping>

 <property name="prop1">value1</property>
 <property name="prop2">value2</property>
</validation-config>

		Report a bug
	

 ⁠13.7. Envers

 ⁠13.7.1. About Hibernate Envers

		Hibernate Envers is an auditing and versioning system, providing JBoss EAP 6 with a means to track historical changes to persistent classes. Audit tables are created for entities annotated with @Audited, which store the history of changes made to the entity. The data can then be retrieved and queried.
	

		Envers allows developers to:
	
	
				audit all mappings defined by the JPA specification,
			

	
				audit all hibernate mappings that extend the JPA specification,
			

	
				audit entities mapped by or using the native Hibernate API
			

	
				log data for each revision using a revision entity, and
			

	
				query historical data.
			

		Report a bug
	

 ⁠13.7.2. About Auditing Persistent Classes

		Auditing of persistent classes is done in JBoss EAP 6 through Hibernate Envers and the @Audited annotation. When the annotation is applied to a class, a table is created, which stores the revision history of the entity.
	

		Each time a change is made to the class, an entry is added to the audit table. The entry contains the changes to the class, and is given a revision number. This means that changes can be rolled back, or previous revisions can be viewed.
	

		Report a bug
	

 ⁠13.7.3. Auditing Strategies

 ⁠13.7.3.1. About Auditing Strategies

		Auditing strategies define how audit information is persisted, queried and stored. There are currently two audit strategies available with Hibernate Envers:
	
	Default Audit Strategy
	
					This strategy persists the audit data together with a start revision. For each row that is inserted, updated or deleted in an audited table, one or more rows are inserted in the audit tables, along with the start revision of its validity.
				

					Rows in the audit tables are never updated after insertion. Queries of audit information use subqueries to select the applicable rows in the audit tables, which are slow and difficult to index.
				

	Validity Audit Strategy
	
					This strategy stores the start revision, as well as the end revision of the audit information. For each row that is inserted, updated or deleted in an audited table, one or more rows are inserted in the audit tables, along with the start revision of its validity.
				

					At the same time, the end revision field of the previous audit rows (if available) is set to this revision. Queries on the audit information can then use between start and end revision, instead of subqueries. This means that persisting audit information is a little slower because of the extra updates, but retrieving audit information is a lot faster.
				

					This can also be improved by adding extra indexes.
				

		For more information on auditing, refer to Section 13.7.2, “About Auditing Persistent Classes”. To set the auditing strategy for the application, refer here: Section 13.7.3.2, “Set the Auditing Strategy”.
	

		Report a bug
	

 ⁠13.7.3.2. Set the Auditing Strategy

Summary

			There are two audit strategies supported by JBoss EAP 6: the default and validity audit strategies. This task covers the steps required to define the auditing strategy for an application.
		

 ⁠Procedure 13.6. Define a Auditing Strategy
	
				Configure the org.hibernate.envers.audit_strategy property in the persistence.xml file of the application. If the property is not set in the persistence.xml file, then the default audit strategy is used.
			

 ⁠Example 13.28. Set the Default Audit Strategy

<property name="org.hibernate.envers.audit_strategy" value="org.hibernate.envers.strategy.DefaultAuditStrategy"/>

 ⁠Example 13.29. Set the Validity Audit Strategy

<property name="org.hibernate.envers.audit_strategy" value="org.hibernate.envers.strategy.ValidityAuditStrategy"/>

		Report a bug
	

 ⁠13.7.4. Getting Started with Entity Auditing

 ⁠13.7.4.1. Add Auditing Support to a JPA Entity

		JBoss EAP 6 uses entity auditing, through Section 13.7.1, “About Hibernate Envers”, to track the historical changes of a persistent class. This topic covers adding auditing support for a JPA entity.
	

 ⁠Procedure 13.7. Add Auditing Support to a JPA Entity
	
				Configure the available auditing parameters to suit the deployment: Section 13.7.5.1, “Configure Envers Parameters”.
			

	
				Open the JPA entity to be audited.
			

	
				Import the org.hibernate.envers.Audited interface.
			

	
				Apply the @Audited annotation to each field or property to be audited, or apply it once to the whole class.
			

 ⁠Example 13.30. Audit Two Fields

import org.hibernate.envers.Audited;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
public class Person {
 @Id
 @GeneratedValue
 private int id;

 @Audited
 private String name;

 private String surname;

 @ManyToOne
 @Audited
 private Address address;

 // add getters, setters, constructors, equals and hashCode here
}

 ⁠Example 13.31. Audit an entire Class

import org.hibernate.envers.Audited;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
@Audited
public class Person {
 @Id
 @GeneratedValue
 private int id;

 private String name;

 private String surname;

 @ManyToOne
 private Address address;

 // add getters, setters, constructors, equals and hashCode here
}

Result

			The JPA entity has been configured for auditing. A table called Entity_AUD will be created to store the historical changes.
		

		Report a bug
	

 ⁠13.7.5. Configuration

 ⁠13.7.5.1. Configure Envers Parameters

		JBoss EAP 6 uses entity auditing, through Hibernate Envers, to track the historical changes of a persistent class. This topic covers configuring the available Envers parameters.
	

 ⁠Procedure 13.8. Configure Envers Parameters
	
				Open the persistence.xml file for the application.
			

	
				Add, remove or configure Envers properties as required. For a list of available properties, refer to Section 13.7.5.4, “Envers Configuration Properties”.
			

 ⁠Example 13.32. Example Envers Parameters
<persistence-unit name="mypc">
 <description>Persistence Unit.</description>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop" />
 <property name="hibernate.show_sql" value="true" />
 <property name="hibernate.cache.use_second_level_cache"	value="true" />
 <property name="hibernate.cache.use_query_cache" value="true" />
 <property name="hibernate.generate_statistics" value="true" />
 <property name="org.hibernate.envers.versionsTableSuffix" value="_V" />
 <property name="org.hibernate.envers.revisionFieldName" value="ver_rev" />
 </properties>
</persistence-unit>

	Result
	
					Auditing has been configured for all JPA entities in the application.
				

		Report a bug
	

 ⁠13.7.5.2. Enable or Disable Auditing at Runtime

Summary

			This task covers the configuration steps required to enable/disable entity version auditing at runtime.
		

 ⁠Procedure 13.9. Enable/Disable Auditing
	
				Subclass the AuditEventListener class.
			

	
				Override the following methods that are called on Hibernate events:
			
	
						onPostInsert
					

	
						onPostUpdate
					

	
						onPostDelete
					

	
						onPreUpdateCollection
					

	
						onPreRemoveCollection
					

	
						onPostRecreateCollection
					

	
				Specify the subclass as the listener for the events.
			

	
				Determine if the change should be audited.
			

	
				Pass the call to the superclass if the change should be audited.
			

		Report a bug
	

 ⁠13.7.5.3. Configure Conditional Auditing

Summary

			Hibernate Envers persists audit data in reaction to various Hibernate events, using a series of event listeners. These listeners are registered automatically if the Envers jar is in the class path. This task covers the steps required to implement conditional auditing, by overriding some of the Envers event listeners.
		

 ⁠Procedure 13.10. Implement Conditional Auditing
	
				Set the hibernate.listeners.envers.autoRegister Hibernate property to false in the persistence.xml file.
			

	
				Subclass each event listener to be overridden. Place the conditional auditing logic in the subclass, and call the super method if auditing should be performed.
			

	
				Create a custom implementation of org.hibernate.integrator.spi.Integrator, similar to org.hibernate.envers.event.EnversIntegrator. Use the event listener subclasses created in step two, rather than the default classes.
			

	
				Add a META-INF/services/org.hibernate.integrator.spi.Integrator file to the jar. This file should contain the fully qualified name of the class implementing the interface.
			

Result

			Conditional auditing has been configured, overriding the default Envers event listeners.
		

		Report a bug
	

 ⁠13.7.5.4. Envers Configuration Properties

 ⁠Table 13.12. Entity Data Versioning Configuration Parameters
	 Property Name 	 Default Value 	 Description
	
						 org.hibernate.envers.audit_table_prefix
					

					 	

					

					 	
						A string that is prepended to the name of an audited entity, to create the name of the entity that will hold the audit information.
					

					
	
						 org.hibernate.envers.audit_table_suffix
					

					 	
						_AUD
					

					 	
						A string that is appended to the name of an audited entity to create the name of the entity that will hold the audit information. For example, if an entity with a table name of Person is audited, Envers will generate a table called Person_AUD to store the historical data.
					

					
	
						 org.hibernate.envers.revision_field_name
					

					 	
						REV
					

					 	
						The name of the field in the audit entity that holds the revision number.
					

					
	
						 org.hibernate.envers.revision_type_field_name
					

					 	
						REVTYPE
					

					 	
						The name of the field in the audit entity that holds the type of revision. The current types of revisions possible are: add, mod and del.
					

					
	
						 org.hibernate.envers.revision_on_collection_change
					

					 	
						true
					

					 	
						This property determines if a revision should be generated if a relation field that is not owned changes. This can either be a collection in a one-to-many relation, or the field using the mappedBy attribute in a one-to-one relation.
					

					
	
						 org.hibernate.envers.do_not_audit_optimistic_locking_field
					

					 	
						true
					

					 	
						When true, properties used for optimistic locking (annotated with @Version) will automatically be excluded from auditing.
					

					
	
						 org.hibernate.envers.store_data_at_delete
					

					 	
						false
					

					 	
						This property defines whether or not entity data should be stored in the revision when the entity is deleted, instead of only the ID, with all other properties marked as null. This is not usually necessary, as the data is present in the last-but-one revision. Sometimes, however, it is easier and more efficient to access it in the last revision. However, this means the data the entity contained before deletion is stored twice.
					

					
	
						 org.hibernate.envers.default_schema
					

					 	
						null (same as normal tables)
					

					 	
						The default schema name used for audit tables. Can be overridden using the @AuditTable(schema="...") annotation. If not present, the schema will be the same as the schema of the normal tables.
					

					
	
						 org.hibernate.envers.default_catalog
					

					 	
						null (same as normal tables)
					

					 	
						The default catalog name that should be used for audit tables. Can be overridden using the @AuditTable(catalog="...") annotation. If not present, the catalog will be the same as the catalog of the normal tables.
					

					
	
						 org.hibernate.envers.audit_strategy
					

					 	
						org.hibernate.envers.strategy.DefaultAuditStrategy
					

					 	
						This property defines the audit strategy that should be used when persisting audit data. By default, only the revision where an entity was modified is stored. Alternatively, org.hibernate.envers.strategy.ValidityAuditStrategy stores both the start revision and the end revision. Together, these define when an audit row was valid.
					

					
	
						 org.hibernate.envers.audit_strategy_validity_end_rev_field_name
					

					 	
						REVEND
					

					 	
						The column name that will hold the end revision number in audit entities. This property is only valid if the validity audit strategy is used.
					

					
	
						 org.hibernate.envers.audit_strategy_validity_store_revend_timestamp
					

					 	
						false
					

					 	
						This property defines whether the timestamp of the end revision, where the data was last valid, should be stored in addition to the end revision itself. This is useful to be able to purge old audit records out of a relational database by using table partitioning. Partitioning requires a column that exists within the table. This property is only evaluated if the ValidityAuditStrategy is used.
					

					
	
						 org.hibernate.envers.audit_strategy_validity_revend_timestamp_field_name
					

					 	
						REVEND_TSTMP
					

					 	
						Column name of the timestamp of the end revision at which point the data was still valid. Only used if the ValidityAuditStrategy is used, and org.hibernate.envers.audit_strategy_validity_store_revend_timestamp evaluates to true.
					

					

		Report a bug
	

 ⁠13.7.6. Queries

 ⁠13.7.6.1. Retrieve Auditing Information

Summary

			Hibernate Envers provides the functionality to retrieve audit information through queries. This topic provides examples of those queries.
		
Note

			Queries on the audited data will be, in many cases, much slower than corresponding queries on live data, as they involve correlated subselects.
		

 ⁠Example 13.33. Querying for Entities of a Class at a Given Revision

			The entry point for this type of query is:
		
AuditQuery query = getAuditReader()
 .createQuery()
 .forEntitiesAtRevision(MyEntity.class, revisionNumber);

			Constraints can then be specified, using the AuditEntity factory class. The query below only selects entities where the name property is equal to John:
		
query.add(AuditEntity.property("name").eq("John"));

			The queries below only select entities that are related to a given entity:
		
query.add(AuditEntity.property("address").eq(relatedEntityInstance));
// or
query.add(AuditEntity.relatedId("address").eq(relatedEntityId));

			The results can then be ordered, limited, and have aggregations and projections (except grouping) set. The example below is a full query.
		
List personsAtAddress = getAuditReader().createQuery()
 .forEntitiesAtRevision(Person.class, 12)
 .addOrder(AuditEntity.property("surname").desc())
 .add(AuditEntity.relatedId("address").eq(addressId))
 .setFirstResult(4)
 .setMaxResults(2)
 .getResultList();

 ⁠Example 13.34. Query Revisions where Entities of a Given Class Changed

			The entry point for this type of query is:
		
AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true);

			Constraints can be added to this query in the same way as the previous example. There are additional possibilities for this query:
		
	AuditEntity.revisionNumber()
	
						Specify constraints, projections and order on the revision number in which the audited entity was modified.
					

	AuditEntity.revisionProperty(propertyName)
	
						Specify constraints, projections and order on a property of the revision entity, corresponding to the revision in which the audited entity was modified.
					

	AuditEntity.revisionType()
	
						Provides accesses to the type of the revision (ADD, MOD, DEL).
					

			The query results can then be adjusted as necessary. The query below selects the smallest revision number at which the entity of the MyEntity class, with the entityId ID has changed, after revision number 42:
		
Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.id().eq(entityId))
 .add(AuditEntity.revisionNumber().gt(42))
 .getSingleResult();

			Queries for revisions can also minimize/maximize a property. The query below selects the revision at which the value of the actualDate for a given entity was larger than a given value, but as small as possible:
		
Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 // We are only interested in the first revision
 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.property("actualDate").minimize()
 .add(AuditEntity.property("actualDate").ge(givenDate))
 .add(AuditEntity.id().eq(givenEntityId)))
 .getSingleResult();

			The minimize() and maximize() methods return a criteria, to which constraints can be added, which must be met by the entities with the maximized/minimized properties.
		

			There are two boolean parameters passed when creating the query.
		
	selectEntitiesOnly
	
						This parameter is only valid when an explicit projection is not set.
					

						If true, the result of the query will be a list of entities that changed at revisions satisfying the specified constraints.
					

						If false, the result will be a list of three element arrays. The first element will be the changed entity instance. The second will be an entity containing revision data. If no custom entity is used, this will be an instance of DefaultRevisionEntity. The third element array will be the type of the revision (ADD, MOD, DEL).
					

	selectDeletedEntities
	
						This parameter specifies if revisions in which the entity was deleted must be included in the results. If true, the entities will have the revision type DEL, and all fields, except id, will have the value null.
					

 ⁠Example 13.35. Query Revisions of an Entity that Modified a Given Property

			The query below will return all revisions of MyEntity with a given id, where the actualDate property has been changed.
		
AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .add(AuditEntity.id().eq(id));
 .add(AuditEntity.property("actualDate").hasChanged())

			The hasChanged condition can be combined with additional criteria. The query below will return a horizontal slice for MyEntity at the time the revisionNumber was generated. It will be limited to the revisions that modified prop1, but not prop2.
		
AuditQuery query = getAuditReader().createQuery()
 .forEntitiesAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

			The result set will also contain revisions with numbers lower than the revisionNumber. This means that this query cannot be read as "Return all MyEntities changed in revisionNumber with prop1 modified and prop2 untouched."
		

			The query below shows how this result can be returned, using the forEntitiesModifiedAtRevision query:
		
AuditQuery query = getAuditReader().createQuery()
 .forEntitiesModifiedAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

 ⁠Example 13.36. Query Entities Modified in a Given Revision

			The example below shows the basic query for entities modified in a given revision. It allows entity names and corresponding Java classes changed in a specified revision to be retrieved:
		
Set<Pair<String, Class>> modifiedEntityTypes = getAuditReader()
 .getCrossTypeRevisionChangesReader().findEntityTypes(revisionNumber);

			There are a number of other queries that are also accessible from org.hibernate.envers.CrossTypeRevisionChangesReader:
		
	List<Object> findEntities(Number)
	
						Returns snapshots of all audited entities changed (added, updated and removed) in a given revision. Executes n+1 SQL queries, where n is a number of different entity classes modified within the specified revision.
					

	List<Object> findEntities(Number, RevisionType)
	
						Returns snapshots of all audited entities changed (added, updated or removed) in a given revision filtered by modification type. Executes n+1 SQL queries, where n is a number of different entity classes modified within specified revision.
					

	Map<RevisionType, List<Object>> findEntitiesGroupByRevisionType(Number)
	
						Returns a map containing lists of entity snapshots grouped by modification operation (e.g. addition, update and removal). Executes 3n+1 SQL queries, where n is a number of different entity classes modified within specified revision.
					

		Report a bug
	

 ⁠13.8. Performance Tuning

 ⁠13.8.1. Alternative Batch Loading Algorithms

		Hibernate allows you to load data for associations using one of four fetching strategies: join, select, subselect and batch. Out of these four strategies, batch loading allows for the biggest performance gains as it is an optimization strategy for select fetching. In this strategy, Hibernate retrieves a batch of entity instances or collections in a single SELECT statement by specifying a list of primary or foreign keys. Batch fetching is an optimization of the lazy select fetching strategy.
	

		There are two ways to configure batch fetching: per-class level or per-collection level.
	
	
				Per-Class Level
			

				When Hibernate loads data on a per-class level, it requires the batch size of the association to pre-load when queried. For example, consider that at runtime you have 30 instances of a car object loaded in session. Each car object belongs to an owner object. If you were to iterate through all the car objects and request their owners, with lazy loading, Hibernate will issue 30 select statements - one for each owner. This is a performance bottleneck.
			

				You can instead, tell Hibernate to pre-load the data for the next batch of owners before they have been sought via a query. When an owner object has been queried, Hibernate will query many more of these objects in the same SELECT statement.
			

				The number of owner objects to query in advance depends upon the batch-size parameter specified at configuration time:
<class name="owner" batch-size="10"></class>

			

				This tells Hibernate to query at least 10 more owner objects in expectation of them being needed in the near future. When a user queries the owner of car A, the owner of car B may already have been loaded as part of batch loading. When the user actually needs the owner of car B, instead of going to the database (and issuing a SELECT statement), the value can be retrieved from the current session.
			

				In addition to the batch-size parameter, Hibernate 4.2.0 has introduced a new configuration item to improve in batch loading performance. The configuration item is called Batch Fetch Style configuration and specified by the hibernate.batch_fetch_style parameter.
			

				Three different batch fetch styles are supported: LEGACY, PADDED and DYNAMIC. To specify which style to use, use org.hibernate.cfg.AvailableSettings#BATCH_FETCH_STYLE.
			
	
						LEGACY: In the legacy style of loading, a set of pre-built batch sizes based on ArrayHelper.getBatchSizes(int) are utilized. Batches are loaded using the next-smaller pre-built batch size from the number of existing batchable identifiers.
					

						Continuing with the above example, with a batch-size setting of 30, the pre-built batch sizes would be [30, 15, 10, 9, 8, 7, .., 1]. An attempt to batch load 29 identifiers would result in batches of 15, 10, and 4. There will be 3 corresponding SQL queries, each loading 15, 10 and 4 owners from the database.
					

	
						PADDED - Padded is similar to LEGACY style of batch loading. It still utilizes pre-built batch sizes, but uses the next-bigger batch size and pads the extra identifier placeholders.
					

						As with the example above, if 30 owner objects are to be initialized, there will only be one query executed against the database.
					

						However, if 29 owner objects are to be initialized, Hibernate will still execute only 1 SQL select statement of batch size 30, with the extra space padded with a repeated identifier.
					

	
						Dynamic - While still conforming to batch-size restrictions, this style of batch loading dynamically builds its SQL SELECT statement using the actual number of objects to be loaded.
					

						For example, for 30 owner objects, and a maximum batch size of 30, a call to retrieve 30 owner objects will result in one SQL SELECT statement. A call to retrieve 35 will result in two SQL statements, of batch sizes 30 and 5 respectively. Hibernate will dynamically alter the second SQL statement to keep at 5, the required number, while still remaining under the restriction of 30 as the batch-size. This is different to the PADDED version, as the second SQL will not get PADDED, and unlike the LEGACY style, there is no fixed size for the second SQL statement - the second SQL is created dynamically.
					

						For a query of less than 30 identifiers, this style will dynamically only load the number of identifiers requested.
					

	
				Per-Collection Level
			

				Hibernate can also batch load collections honoring the batch fetch size and styles as listed in the per-class section above.
			

				To reverse the example used in the previous section, consider that you need to load all the car objects owned by each owner object. If 10 owner objects are loaded in the current session iterating through all owners will generate 10 SELECT statements, one for every call to getCars() method. If you enable batch fetching for the cars collection in the mapping of Owner, Hibernate can pre-fetch these collections, as shown below.
			
<class name="Owner"><set name="cars" batch-size="5"></set></class>

				Thus, with a batch-size of 5 and using legacy batch style to load 10 collections, Hibernate will execute two SELECT statements, each retrieving 5 collections.
			

		Report a bug
	

 ⁠13.8.2. Second Level Caching of Object References for Non-mutable Data

		Hibernate automatically caches data within memory for improved performance. This is accomplished by an in-memory cache which reduces the number of times that database lookups are required, especially for data that rarely changes.
	

		Hibernate maintains two types of caches. The primary cache (also called the first-level cache) is mandatory. This cache is associated with the current session and all requests must pass through it. The secondary cache (also called the second-level cache) is optional, and is only consulted after the primary cache has been consulted first.
	

		Data is stored in the second-level cache by first disassembling it into a state array. This array is deep copied, and that deep copy is put into the cache. The reverse is done for reading from the cache. This works well for data that changes (mutable data), but is inefficient for immutable data.
	

		Deep copying data is an expensive operation in terms of memory usage and processing speed. For large data sets, memory and processing speed become a performance-limiting factor. Hibernate allows you to specify that immutable data be referenced rather than copied. Instead of copying entire data sets, Hibernate can now store the reference to the data in the cache.
	

		This can be done by changing the value of the configuration setting hibernate.cache.use_reference_entries to true. By default, hibernate.cache.use_reference_entries is set to false.
	

		When hibernate.cache.use_reference_entries is set to true, an immutable data object that does not have any associations is not copied into the second-level cache, and only a reference to it is stored.
	
Warning

			When hibernate.cache.use_reference_entries is set to true, immutable data objects with associations are still deep copied into the second-level cache.
		

		Report a bug
	

 ⁠Chapter 14. Hibernate Search

 ⁠14.1. Getting Started with Hibernate Search

 ⁠14.1.1. About Hibernate Search

		Hibernate Search provides full-text search capability to Hibernate applications. It is especially suited to search applications for which SQL-based solutions are not suited, including: full-text, fuzzy and geolocation searches. Hibernate Search uses Apache Lucene as its full-text search engine, but is designed to minimize the maintenance overhead. Once it is configured, indexing, clustering and data synchronization is maintained transparently, allowing you to focus on meeting your business requirements.
	

		Report a bug
	

 ⁠14.1.2. First Steps with Hibernate Search

		To get started with Hibernate Search for your application, follow these topics.
	
	
				See Configuration in the JBoss EAP Administration and Configuration Guide to configure Hibernate Search.
			

	
				Section 14.1.3, “Enable Hibernate Search using Maven”
			

	
				Section 14.1.5, “Indexing”
			

	
				Section 14.1.6, “Searching”
			

	
				Section 14.1.7, “Analyzer”
			

		Report a bug
	

 ⁠14.1.3. Enable Hibernate Search using Maven

		Use the following configuration in your Maven project to add hibernate-search-orm dependencies:
	
​<dependencyManagement>
​ <dependencies>
​ <dependency>
​ <groupId>org.hibernate</groupId>
​ <artifactId>hibernate-search-orm</artifactId>
​ <version>4.6.0.Final-redhat-2</version>
​ </dependency>
​ </dependencies>
​</dependencyManagement>
​
​<dependencies>
​ <dependency>
​ <groupId>org.hibernate</groupId>
​ <artifactId>hibernate-search-orm</artifactId>
​ <scope>provided</scope>
​ </dependency>
​</dependencies>

		Report a bug
	

 ⁠14.1.4. Add Annotations

		For this section, consider the example in which you have a database containing details of books. Your application contains the Hibernate managed classes example.Book and example.Author and you want to add free text search capabilities to your application to enable searching for books.
	

 ⁠Example 14.1. Entities Book and Author Before Adding Hibernate Search Specific Annotations
​package example;
​...
​@Entity
​public class Book {
​
​ @Id
​ @GeneratedValue
​ private Integer id;
​
​ private String title;
​
​ private String subtitle;
​
​ @ManyToMany
​ private Set<Author> authors = new HashSet<Author>();
​
​ private Date publicationDate;
​
​ public Book() {}
​
​ // standard getters/setters follow here
​ ...
​}
​package example;
​...
​@Entity
​public class Author {
​
​ @Id
​ @GeneratedValue
​ private Integer id;
​
​ private String name;
​
​ public Author() {}
​
​ // standard getters/setters follow here
​ ...
​}

		To achieve this you have to add a few annotations to the Book and Author class. The first annotation @Indexed marks Book as indexable. By design Hibernate Search stores an untokenized ID in the index to ensure index unicity for a given entity. @DocumentId marks the property to use for this purpose and is in most cases the same as the database primary key. The @DocumentId annotation is optional in the case where an @Id annotation exists.
	

		Next the fields you want to make searchable must be marked as such. In this example, start with title and subtitle and annotate both with @Field. The parameter index=Index.YES will ensure that the text will be indexed, while analyze=Analyze.YES ensures that the text will be analyzed using the default Lucene analyzer. Usually, analyzing means chunking a sentence into individual words and potentially excluding common words like 'a' or 'the'. We will talk more about analyzers a little later on. The third parameter we specify within @Field, store=Store.NO, ensures that the actual data will not be stored in the index. Whether this data is stored in the index or not has nothing to do with the ability to search for it. From Lucene's perspective it is not necessary to keep the data once the index is created. The benefit of storing it is the ability to retrieve it via projections (see Section 14.3.1.10.5, “Projection”).
	

		Without projections, Hibernate Search will per default execute a Lucene query in order to find the database identifiers of the entities matching the query criteria and use these identifiers to retrieve managed objects from the database. The decision for or against projection has to be made on a case to case basis. The default behavior is recommended since it returns managed objects whereas projections only return object arrays.
	

		Note that index=Index.YES, analyze=Analyze.YES and store=Store.NO are the default values for these parameters and could be omitted.
	

		Another annotation not yet discussed is @DateBridge. This annotation is one of the built-in field bridges in Hibernate Search. The Lucene index is purely string based. For this reason Hibernate Search must convert the data types of the indexed fields to strings and vice-versa. A range of predefined bridges are provided, including the DateBridge which will convert a java.util.Date into a String with the specified resolution. For more details see Section 14.2.4, “Bridges”.
	

		This leaves us with @IndexedEmbedded.This annotation is used to index associated entities (@ManyToMany, @*ToOne, @Embedded and @ElementCollection) as part of the owning entity. This is needed since a Lucene index document is a flat data structure which does not know anything about object relations. To ensure that the authors' name will be searchable you have to ensure that the names are indexed as part of the book itself. On top of @IndexedEmbedded you will also have to mark all fields of the associated entity you want to have included in the index with @Indexed. For more details see Section 14.2.1.3, “Embedded and Associated Objects”
	

		These settings should be sufficient for now. For more details on entity mapping see Section 14.2.1, “Mapping an Entity”.
	

 ⁠Example 14.2. Entities After Adding Hibernate Search Annotations
​package example;
​...
​@Entity
​@Indexed
​public class Book {
​
​ @Id
​ @GeneratedValue
​ private Integer id;
​
​ @Field(index=Index.YES, analyze=Analyze.YES, store=Store.NO)
​ private String title;
​
​ @Field(index=Index.YES, analyze=Analyze.YES, store=Store.NO)
​ private String subtitle;
​
​ @Field(index = Index.YES, analyze=Analyze.NO, store = Store.YES)
​ @DateBridge(resolution = Resolution.DAY)
​ private Date publicationDate;
​
​ @IndexedEmbedded
​ @ManyToMany
​ private Set<Author> authors = new HashSet<Author>();
​
​ public Book() {
​ }
​
​ // standard getters/setters follow here
​ ...
​}
​package example;
​...
​@Entity
​public class Author {
​
​ @Id
​ @GeneratedValue
​ private Integer id;
​
​ @Field
​ private String name;
​
​ public Author() {
​ }
​
​ // standard getters/setters follow here
​ ...
​}

		Report a bug
	

 ⁠14.1.5. Indexing

		Hibernate Search will transparently index every entity persisted, updated or removed through Hibernate Core. However, you have to create an initial Lucene index for the data already present in your database. Once you have added the above properties and annotations it is time to trigger an initial batch index of your books. You can achieve this by using one of the following code snippets (see also Section 14.4.3, “Rebuilding the Index”):
	

 ⁠Example 14.3. Using the Hibernate Session to Index Data
​FullTextSession fullTextSession = org.hibernate.search.Search.getFullTextSession(session);
​fullTextSession.createIndexer().startAndWait();

 ⁠Example 14.4. Using JPA to Index Data
​EntityManager em = entityManagerFactory.createEntityManager();
​FullTextEntityManager fullTextEntityManager = org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
​fullTextEntityManager.createIndexer().startAndWait();

		After executing the above code, you should be able to see a Lucene index under /var/lucene/indexes/example.Book. Go ahead an inspect this index with Luke. It will help you to understand how Hibernate Search works.
	

		Report a bug
	

 ⁠14.1.6. Searching

		To execute a search, create a Lucene query using either the Lucene API (Section 14.3.1.1, “Building a Lucene Query Using the Lucene API”) or the Hibernate Search query DSL (Section 14.3.1.2, “Building a Lucene Query”). Wrap the query in a org.hibernate.Query to get the required functionality from the Hibernate API. The following code prepares a query against the indexed fields. Executing the code returns a list of Books.
	

 ⁠Example 14.5. Using a Hibernate Search Session to Create and Execute a Search
​FullTextSession fullTextSession = Search.getFullTextSession(session);
​Transaction tx = fullTextSession.beginTransaction();
​
​// create native Lucene query using the query DSL
​// alternatively you can write the Lucene query using the Lucene query parser
​// or the Lucene programmatic API. The Hibernate Search DSL is recommended though
​QueryBuilder qb = fullTextSession.getSearchFactory()
​ .buildQueryBuilder().forEntity(Book.class).get();
​org.apache.lucene.search.Query query = qb
​ .keyword()
​ .onFields("title", "subtitle", "authors.name", "publicationDate")
​ .matching("Java rocks!")
​ .createQuery();
​
​// wrap Lucene query in a org.hibernate.Query
​org.hibernate.Query hibQuery =
​ fullTextSession.createFullTextQuery(query, Book.class);
​
​// execute search
​List result = hibQuery.list();
​
​tx.commit();
​session.close();

 ⁠Example 14.6. Using JPA to Create and Execute a Search
​EntityManager em = entityManagerFactory.createEntityManager();
​FullTextEntityManager fullTextEntityManager =
​ org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
​em.getTransaction().begin();
​
​// create native Lucene query using the query DSL
​// alternatively you can write the Lucene query using the Lucene query parser
​// or the Lucene programmatic API. The Hibernate Search DSL is recommended though
​QueryBuilder qb = fullTextEntityManager.getSearchFactory()
​ .buildQueryBuilder().forEntity(Book.class).get();
​org.apache.lucene.search.Query query = qb
​ .keyword()
​ .onFields("title", "subtitle", "authors.name", "publicationDate")
​ .matching("Java rocks!")
​ .createQuery();
​
​// wrap Lucene query in a javax.persistence.Query
​javax.persistence.Query persistenceQuery =
​ fullTextEntityManager.createFullTextQuery(query, Book.class);
​
​// execute search
​List result = persistenceQuery.getResultList();
​
​em.getTransaction().commit();
​em.close();

		Report a bug
	

 ⁠14.1.7. Analyzer

		Assuming that the title of an indexed book entity is Refactoring: Improving the Design of Existing Code and that hits are required for the following queries: refactor, refactors, refactored, and refactoring. Select an analyzer class in Lucene that applies word stemming when indexing and searching. Hibernate Search offers several ways to configure the analyzer (see Section 14.2.3.1, “Default Analyzer and Analyzer by Class” for more information):
	
	
				Set the analyzer property in the configuration file. The specified class becomes the default analyzer.
			

	
				Set the @Analyzer annotation at the entity level.
			

	
				Set the @Analyzer annotation at the field level.
			

		Specify the fully qualified classname or the analyzer to use, or see an analyzer defined by the @AnalyzerDef annotation with the @Analyzer annotation. The Solr analyzer framework with its factories are utilized for the latter option. For more information about factory classes, see the Solr JavaDoc or read the corresponding section on the Solr Wiki (http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters)
	

		In the example, a StandardTokenizerFactory is used by two filter factories: LowerCaseFilterFactory and SnowballPorterFilterFactory. The tokenizer splits words at punctuation characters and hyphens but keeping email addresses and internet hostnames intact. The standard tokenizer is ideal for this and other general operations. The lowercase filter converts all letters in the token into lowercase and the snowball filter applies language specific stemming.
	

		If using the Solr framework, use the tokenizer with an arbitrary number of filters.
	

 ⁠Example 14.7. Using @AnalyzerDef and the Solr Framework to Define and Use an Analyzer
​@Indexed
​@AnalyzerDef(
​ name = "customanalyzer",
​ tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
​ filters = {
​ @TokenFilterDef(factory = LowerCaseFilterFactory.class),
​ @TokenFilterDef(factory = SnowballPorterFilterFactory.class,
​ params = { @Parameter(name = "language", value = "English") })
​ })
​public class Book implements Serializable {
​
​ @Field
​ @Analyzer(definition = "customanalyzer")
​ private String title;
​
​ @Field
​ @Analyzer(definition = "customanalyzer")
​ private String subtitle;
​
​ @IndexedEmbedded
​ private Set authors = new HashSet();
​
​ @Field(index = Index.YES, analyze = Analyze.NO, store = Store.YES)
​ @DateBridge(resolution = Resolution.DAY)
​ private Date publicationDate;
​
​ public Book() {
​ }
​
​ // standard getters/setters follow here
​ ...
​}

		Use @AnalyzerDef to define an analyzer, then apply it to entities and properties using @Analyzer. In the example, the customanalyzer is defined but not applied on the entity. The analyzer is only applied to the title and subtitle properties. An analyzer definition is global. Define the analyzer for an entity and reuse the definition for other entities as required.
	

		Report a bug
	

 ⁠14.2. Mapping Entities to the Index Structure

 ⁠14.2.1. Mapping an Entity

				All the metadata information required to index entities is described through annotations, so there is no need for XML mapping files. You can still use Hibernate mapping files for the basic Hibernate configuration, but the Hibernate Search specific configuration has to be expressed via annotations.
			

				Report a bug
			

 ⁠14.2.1.1. Basic Mapping

					Lets start with the most commonly used annotations for mapping an entity.
				

					The Lucene-based Query API uses the following common annotations to map entities:
						
								@Indexed
							

	
								@Field
							

	
								@NumericField
							

	
								@Id
							

				

					Report a bug
				

 ⁠14.2.1.1.1. @Indexed

		Foremost we must declare a persistent class as indexable. This is done by annotating the class with @Indexed (all entities not annotated with @Indexed will be ignored by the indexing process):
	

 ⁠Example 14.8. Making a class indexable with @Indexed
@Entity
@Indexed
public class Essay {
 ...
}

		You can optionally specify the index attribute of the @Indexed annotation to change the default name of the index.
	

		Report a bug
	

 ⁠14.2.1.1.2. @Field

		For each property (or attribute) of your entity, you have the ability to describe how it will be indexed. The default (no annotation present) means that the property is ignored by the indexing process. @Field does declare a property as indexed and allows to configure several aspects of the indexing process by setting one or more of the following attributes:
	
	
				name : describe under which name, the property should be stored in the Lucene Document. The default value is the property name (following the JavaBeans convention)
			

	
				store : describe whether or not the property is stored in the Lucene index. You can store the value Store.YES (consuming more space in the index but allowing projection, see Section 14.3.1.10.5, “Projection”), store it in a compressed way Store.COMPRESS (this does consume more CPU), or avoid any storage Store.NO (this is the default value). When a property is stored, you can retrieve its original value from the Lucene Document. This is not related to whether the element is indexed or not.
			

	
				index: describe whether the property is indexed or not. The different values are Index.NO (no indexing, ie cannot be found by a query), Index.YES (the element gets indexed and is searchable). The default value is Index.YES. Index.NO can be useful for cases where a property is not required to be searchable, but should be available for projection.
			
Note

					Index.NO in combination with Analyze.YES or Norms.YES is not useful, since analyze and norms require the property to be indexed
				

	
				analyze: determines whether the property is analyzed (Analyze.YES) or not (Analyze.NO). The default value is Analyze.YES.
				Note

						Whether or not you want to analyze a property depends on whether you wish to search the element as is, or by the words it contains. It make sense to analyze a text field, but probably not a date field.
					

				 Note

						Fields used for sorting must not be analyzed.
					

			

	
				norms: describes whether index time boosting information should be stored (Norms.YES) or not (Norms.NO). Not storing it can save a considerable amount of memory, but there won't be any index time boosting information available. The default value is Norms.YES.
			

	
				termVector: describes collections of term-frequency pairs. This attribute enables the storing of the term vectors within the documents during indexing. The default value is TermVector.NO.
			

				The different values of this attribute are:
			
	 Value 	 Definition
	 TermVector.YES 	 Store the term vectors of each document. This produces two synchronized arrays, one contains document terms and the other contains the term's frequency.
	 TermVector.NO 	 Do not store term vectors.
	 TermVector.WITH_OFFSETS 	 Store the term vector and token offset information. This is the same as TermVector.YES plus it contains the starting and ending offset position information for the terms.
	 TermVector.WITH_POSITIONS 	 Store the term vector and token position information. This is the same as TermVector.YES plus it contains the ordinal positions of each occurrence of a term in a document.
	 TermVector.WITH_POSITION_OFFSETS 	 Store the term vector, token position and offset information. This is a combination of the YES, WITH_OFFSETS and WITH_POSITIONS.

	
				indexNullAs : Per default null values are ignored and not indexed. However, using indexNullAs you can specify a string which will be inserted as token for the null value. Per default this value is set to Field.DO_NOT_INDEX_NULL indicating that null values should not be indexed. You can set this value to Field.DEFAULT_NULL_TOKEN to indicate that a default null token should be used. This default null token can be specified in the configuration using hibernate.search.default_null_token. If this property is not set and you specify Field.DEFAULT_NULL_TOKEN the string "_null_" will be used as default.
			
Note

					When the indexNullAs parameter is used it is important to use the same token in the search query to search for null values. It is also advisable to use this feature only with un-analyzed fields (analyze=Analyze.NO).
				

Warning

					When implementing a custom FieldBridge or TwoWayFieldBridge it is up to the developer to handle the indexing of null values (see JavaDocs of LuceneOptions.indexNullAs()).
				

		Report a bug
	

 ⁠14.2.1.1.3. @NumericField

		There is a companion annotation to @Field called @NumericField that can be specified in the same scope as @Field or @DocumentId. It can be specified for Integer, Long, Float, and Double properties. At index time the value will be indexed using a Trie structure. When a property is indexed as numeric field, it enables efficient range query and sorting, orders of magnitude faster than doing the same query on standard @Field properties. The @NumericField annotation accept the following parameters:
			 Value 	 Definition
	 forField 	 (Optional) Specify the name of the related @Field that will be indexed as numeric. It's only mandatory when the property contains more than a @Field declaration
	 precisionStep 	 (Optional) Change the way that the Trie structure is stored in the index. Smaller precisionSteps lead to more disk space usage and faster range and sort queries. Larger values lead to less space used and range query performance more close to the range query in normal @Fields. Default value is 4.

		 @NumericField supports only Double, Long, Integer and Float. It is not possible to take any advantage from similar functionality in Lucene for the other numeric types, so remaining types should use the string encoding via the default or custom TwoWayFieldBridge.
	

		It is possible to use a custom NumericFieldBridge assuming you can deal with the approximation during type transformation:
	

 ⁠Example 14.9. Defining a custom NumericFieldBridge
​
​public class BigDecimalNumericFieldBridge extends NumericFieldBridge {
​ private static final BigDecimal storeFactor = BigDecimal.valueOf(100);
​
​ @Override
​ public void set(String name, Object value, Document document, LuceneOptions luceneOptions) {
​ if (value != null) {
​ BigDecimal decimalValue = (BigDecimal) value;
​ Long indexedValue = Long.valueOf(decimalValue.multiply(storeFactor).longValue());
​ luceneOptions.addNumericFieldToDocument(name, indexedValue, document);
​ }
​ }
​
​ @Override
​ public Object get(String name, Document document) {
​ String fromLucene = document.get(name);
​ BigDecimal storedBigDecimal = new BigDecimal(fromLucene);
​ return storedBigDecimal.divide(storeFactor);
​ }
​
​}

		Report a bug
	

 ⁠14.2.1.1.4. @Id

		Finally, the id (identifier) property of an entity is a special property used by Hibernate Search to ensure index uniqueness of a given entity. By design, an id must be stored and must not be tokenized. To mark a property as an index identifier, use the @DocumentId annotation. If you are using JPA and you have specified @Id you can omit @DocumentId. The chosen entity identifier will also be used as the document identifier.
	

 ⁠Example 14.10. Specifying indexed properties
​@Entity
​@Indexed
​public class Essay {
​ ...
​
​ @Id
​ @DocumentId
​ public Long getId() { return id; }
​
​ @Field(name="Abstract", store=Store.YES)
​ public String getSummary() { return summary; }
​
​ @Lob
​ @Field
​ public String getText() { return text; }
​
​ @Field @NumericField(precisionStep = 6)
​ public float getGrade() { return grade; }
​}

		Example 14.10, “Specifying indexed properties” defines an index with four fields: id , Abstract, text and grade . Note that by default the field name is not capitalized, following the JavaBean specification. The grade field is annotated as numeric with a slightly larger precision step than the default.
	

		Report a bug
	

 ⁠14.2.1.2. Mapping Properties Multiple Times

		Sometimes you need to map a property multiple times per index, with slightly different indexing strategies. For example, sorting a query by field requires the field to be un-analyzed. To search by words on this property and still sort it, it needs to be indexed - once analyzed and once un-analyzed. @Fields allows you to achieve this goal.
	

 ⁠Example 14.11. Using @Fields to map a property multiple times
​@Entity
​@Indexed(index = "Book")
​public class Book {
​ @Fields({
​ @Field,
​ @Field(name = "summary_forSort", analyze = Analyze.NO, store = Store.YES)
​ })
​ public String getSummary() {
​ return summary;
​ }
​
​ ...
​}

		In this example the field summary is indexed twice, once as summary in a tokenized way, and once as summary_forSort in an untokenized way.
	

		Report a bug
	

 ⁠14.2.1.3. Embedded and Associated Objects

		Associated objects as well as embedded objects can be indexed as part of the root entity index. This is useful if you expect to search a given entity based on properties of associated objects. In Example 14.12, “Indexing associations” the aim is to return places where the associated city is Atlanta (In the Lucene query parser language, it would translate into address.city:Atlanta). The place fields will be indexed in the Place index. The Place index documents will also contain the fields address.id, address.street, and address.city which you will be able to query.
	

 ⁠Example 14.12. Indexing associations
​@Entity
​@Indexed
​public class Place {
​ @Id
​ @GeneratedValue
​ @DocumentId
​ private Long id;
​
​ @Field
​ private String name;
​
​ @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
​ @IndexedEmbedded
​ private Address address;
​
​}
​
​@Entity
​public class Address {
​ @Id
​ @GeneratedValue
​ private Long id;
​
​ @Field
​ private String street;
​
​ @Field
​ private String city;
​
​ @ContainedIn
​ @OneToMany(mappedBy="address")
​ private Set<Place> places;
​ ...
​}

		Because the data is denormalized in the Lucene index when using the @IndexedEmbedded technique, Hibernate Search must be aware of any change in the Place object and any change in the Address object to keep the index up to date. To ensure the Place Lucene document is updated when it's Address changes, mark the other side of the bidirectional relationship with @ContainedIn.
	
Note

			@ContainedIn is useful on both associations pointing to entities and on embedded (collection of) objects.
		

		To expand upon this, the following example demonstrates nesting @IndexedEmbedded.
	

 ⁠Example 14.13. Nested usage of @IndexedEmbedded and @ContainedIn
​@Entity
​@Indexed
​public class Place {
​ @Id
​ @GeneratedValue
​ @DocumentId
​ private Long id;
​
​ @Field
​ private String name;
​
​ @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
​ @IndexedEmbedded
​ private Address address;
​
​}
​
​@Entity
​public class Address {
​ @Id
​ @GeneratedValue
​ private Long id;
​
​ @Field
​ private String street;
​
​ @Field
​ private String city;
​
​ @IndexedEmbedded(depth = 1, prefix = "ownedBy_")
​ private Owner ownedBy;
​
​ @ContainedIn
​ @OneToMany(mappedBy="address")
​ private Set<Place> places;
​ ...
​}
​
​@Embeddable
​public class Owner {
​ @Field
​ private String name;
​ ...
​}

		Any @*ToMany, @*ToOne and @Embedded attribute can be annotated with @IndexedEmbedded. The attributes of the associated class will then be added to the main entity index. In Example 14.13, “Nested usage of @IndexedEmbedded and @ContainedIn” the index will contain the following fields:
	
	
				id
			

	
				name
			

	
				address.street
			

	
				address.city
			

	
				address.ownedBy_name
			

		The default prefix is propertyName., following the traditional object navigation convention. You can override it using the prefix attribute as it is shown on the ownedBy property.
	
Note

			The prefix cannot be set to the empty string.
		

		The depth property is necessary when the object graph contains a cyclic dependency of classes (not instances). For example, if Owner points to Place. Hibernate Search will stop including Indexed embedded attributes after reaching the expected depth (or the object graph boundaries are reached). A class having a self reference is an example of cyclic dependency. In our example, because depth is set to 1, any @IndexedEmbedded attribute in Owner (if any) will be ignored.
	

		Using @IndexedEmbedded for object associations allows you to express queries (using Lucene's query syntax) such as:
	
	
				Return places where name contains JBoss and where address city is Atlanta. In Lucene query this would be
			
+name:jboss +address.city:atlanta

	
				Return places where name contains JBoss and where owner's name contain Joe. In Lucene query this would be
			
+name:jboss +address.ownedBy_name:joe

		This behavior mimics the relational join operation in a more efficient way (at the cost of data duplication). Remember that, out of the box, Lucene indexes have no notion of association, the join operation does not exist. It might help to keep the relational model normalized while benefiting from the full text index speed and feature richness.
	

		Note

				An associated object can itself (but does not have to) be @Indexed
			

	

		When @IndexedEmbedded points to an entity, the association has to be directional and the other side has to be annotated @ContainedIn (as seen in the previous example). If not, Hibernate Search has no way to update the root index when the associated entity is updated (in our example, a Place index document has to be updated when the associated Address instance is updated).
	

		Sometimes, the object type annotated by @IndexedEmbedded is not the object type targeted by Hibernate and Hibernate Search. This is especially the case when interfaces are used in lieu of their implementation. For this reason you can override the object type targeted by Hibernate Search using the targetElement parameter.
	

 ⁠Example 14.14. Using the targetElement property of @IndexedEmbedded
​@Entity
​@Indexed
​public class Address {
​ @Id
​ @GeneratedValue
​ @DocumentId
​ private Long id;
​
​ @Field
​ private String street;
​
​ @IndexedEmbedded(depth = 1, prefix = "ownedBy_", targetElement = Owner.class)
​ @Target(Owner.class)
​ private Person ownedBy;
​
​
​ ...
​}
​
​@Embeddable
​public class Owner implements Person { ... }

		Report a bug
	

 ⁠14.2.1.4. Limiting Object Embedding to Specific Paths

		The @IndexedEmbedded annotation provides also an attribute includePaths which can be used as an alternative to depth, or be combined with it.
	

		When using only depth all indexed fields of the embedded type will be added recursively at the same depth. This makes it harder to select only a specific path without adding all other fields as well, which might not be needed.
	

		To avoid unnecessarily loading and indexing entities you can specify exactly which paths are needed. A typical application might need different depths for different paths, or in other words it might need to specify paths explicitly, as shown in Example 14.15, “Using the includePaths property of @IndexedEmbedded”
	

 ⁠Example 14.15. Using the includePaths property of @IndexedEmbedded
​@Entity
​@Indexed
​public class Person {
​
​ @Id
​ public int getId() {
​ return id;
​ }
​
​ @Field
​ public String getName() {
​ return name;
​ }
​
​ @Field
​ public String getSurname() {
​ return surname;
​ }
​
​ @OneToMany
​ @IndexedEmbedded(includePaths = { "name" })
​ public Set<Person> getParents() {
​ return parents;
​ }
​
​ @ContainedIn
​ @ManyToOne
​ public Human getChild() {
​ return child;
​ }
​
​ ...//other fields omitted

		Using a mapping as in Example 14.15, “Using the includePaths property of @IndexedEmbedded”, you would be able to search on a Person by name and/or surname, and/or the name of the parent. It will not index the surname of the parent, so searching on parent's surnames will not be possible but speeds up indexing, saves space and improve overall performance.
	

		The @IndexedEmbeddedincludePaths will include the specified paths in addition to what you would index normally specifying a limited value for depth. When using includePaths, and leaving depth undefined, behavior is equivalent to setting depth=0: only the included paths are indexed.
	

 ⁠Example 14.16. Using the includePaths property of @IndexedEmbedded
​@Entity
​@Indexed
​public class Human {
​
​ @Id
​ public int getId() {
​ return id;
​ }
​
​ @Field
​ public String getName() {
​ return name;
​ }
​
​ @Field
​ public String getSurname() {
​ return surname;
​ }
​
​ @OneToMany
​ @IndexedEmbedded(depth = 2, includePaths = { "parents.parents.name" })
​ public Set<Human> getParents() {
​ return parents;
​ }
​
​ @ContainedIn
​ @ManyToOne
​ public Human getChild() {
​ return child;
​ }
​
​ ...//other fields omitted

		In Example 14.16, “Using the includePaths property of @IndexedEmbedded”, every human will have its name and surname attributes indexed. The name and surname of parents will also be indexed, recursively up to second line because of the depth attribute. It will be possible to search by name or surname, of the person directly, his parents or of his grand parents. Beyond the second level, we will in addition index one more level but only the name, not the surname.
	

		This results in the following fields in the index:
	
	
				id - as primary key
			

	
				_hibernate_class - stores entity type
			

	
				name - as direct field
			

	
				surname - as direct field
			

	
				parents.name - as embedded field at depth 1
			

	
				parents.surname - as embedded field at depth 1
			

	
				parents.parents.name - as embedded field at depth 2
			

	
				parents.parents.surname - as embedded field at depth 2
			

	
				parents.parents.parents.name - as additional path as specified by includePaths. The first parents. is inferred from the field name, the remaining path is the attribute of includePaths
			

		Having explicit control of the indexed paths might be easier if you are designing your application by defining the needed queries first, as at that point you might know exactly which fields you need, and which other fields are unnecessary to implement your use case.
	

		Report a bug
	

 ⁠14.2.2. Boosting

				Lucene has the notion of boosting which allows you to give certain documents or fields more or less importance than others. Lucene differentiates between index and search time boosting. The following sections show you how you can achieve index time boosting using Hibernate Search.
			

				Report a bug
			

 ⁠14.2.2.1. Static Index Time Boosting

		To define a static boost value for an indexed class or property you can use the @Boost annotation. You can use this annotation within @Field or specify it directly on method or class level.
	

 ⁠Example 14.17. Different ways of using @Boost
@Entity
@Indexed
@Boost(1.7f)
public class Essay {
 ...

 @Id
 @DocumentId
 public Long getId() { return id; }

 @Field(name="Abstract", store=Store.YES, boost=@Boost(2f))
 @Boost(1.5f)
 public String getSummary() { return summary; }

 @Lob
 @Field(boost=@Boost(1.2f))
 public String getText() { return text; }

 @Field
 public String getISBN() { return isbn; }

}

		In Example 14.17, “Different ways of using @Boost”, Essay's probability to reach the top of the search list will be multiplied by 1.7. The summary field will be 3.0 (2 * 1.5, because @Field.boost and @Boost on a property are cumulative) more important than the isbn field. The text field will be 1.2 times more important than the isbn field. Note that this explanation is wrong in strictest terms, but it is simple and close enough to reality for all practical purposes.
	

		Report a bug
	

 ⁠14.2.2.2. Dynamic Index Time Boosting

		The @Boost annotation used in Section 14.2.2.1, “Static Index Time Boosting” defines a static boost factor which is independent of the state of the indexed entity at runtime. However, there are usecases in which the boost factor may depend on the actual state of the entity. In this case you can use the @DynamicBoost annotation together with an accompanying custom BoostStrategy.
	

 ⁠Example 14.18. Dynamic boost example
​public enum PersonType {
​ NORMAL,
​ VIP
​}
​
​@Entity
​@Indexed
​@DynamicBoost(impl = VIPBoostStrategy.class)
​public class Person {
​ private PersonType type;
​
​ //
​}
​
​public class VIPBoostStrategy implements BoostStrategy {
​ public float defineBoost(Object value) {
​ Person person = (Person) value;
​ if (person.getType().equals(PersonType.VIP)) {
​ return 2.0f;
​ }
​ else {
​ return 1.0f;
​ }
​ }
​}

		In Example 14.18, “Dynamic boost example” a dynamic boost is defined on class level specifying VIPBoostStrategy as implementation of the BoostStrategy interface to be used at indexing time. You can place the @DynamicBoost either at class or field level. Depending on the placement of the annotation either the whole entity is passed to the defineBoost method or just the annotated field/property value. It's up to you to cast the passed object to the correct type. In the example all indexed values of a VIP person would be double as important as the values of a normal person.
		Note

				The specified BoostStrategy implementation must define a public no-arg constructor.
			

		 Of course you can mix and match @Boost and @DynamicBoost annotations in your entity. All defined boost factors are cumulative.
	

		Report a bug
	

 ⁠14.2.3. Analysis

				Analysis is the process of converting text into single terms (words) and can be considered as one of the key features of a full-text search engine. Lucene uses the concept of Analyzers to control this process. In the following section we cover the multiple ways Hibernate Search offers to configure the analyzers.
			

				Report a bug
			

 ⁠14.2.3.1. Default Analyzer and Analyzer by Class

		The default analyzer class used to index tokenized fields is configurable through the hibernate.search.analyzer property. The default value for this property is org.apache.lucene.analysis.standard.StandardAnalyzer.
	

		You can also define the analyzer class per entity, property and even per @Field (useful when multiple fields are indexed from a single property).
	

 ⁠Example 14.19. Different ways of using @Analyzer
​@Entity
​@Indexed
​@Analyzer(impl = EntityAnalyzer.class)
​public class MyEntity {
​ @Id
​ @GeneratedValue
​ @DocumentId
​ private Integer id;
​
​ @Field
​ private String name;
​
​ @Field
​ @Analyzer(impl = PropertyAnalyzer.class)
​ private String summary;
​
​ @Field(analyzer = @Analyzer(impl = FieldAnalyzer.class)
​ private String body;
​
​ ...
​}

		In this example, EntityAnalyzer is used to index tokenized property (name), except summary and body which are indexed with PropertyAnalyzer and FieldAnalyzer respectively.
	
Warning

			Mixing different analyzers in the same entity is most of the time a bad practice. It makes query building more complex and results less predictable (for the novice), especially if you are using a QueryParser (which uses the same analyzer for the whole query). As a rule of thumb, for any given field the same analyzer should be used for indexing and querying.
		

		Report a bug
	

 ⁠14.2.3.2. Named Analyzers

		Analyzers can become quite complex to deal with. For this reason introduces Hibernate Search the notion of analyzer definitions. An analyzer definition can be reused by many @Analyzer declarations and is composed of:
	
	
				a name: the unique string used to refer to the definition
			

	
				a list of char filters: each char filter is responsible to pre-process input characters before the tokenization. Char filters can add, change, or remove characters; one common usage is for characters normalization
			

	
				a tokenizer: responsible for tokenizing the input stream into individual words
			

	
				a list of filters: each filter is responsible to remove, modify, or sometimes even add words into the stream provided by the tokenizer
			

		This separation of tasks - a list of char filters, and a tokenizer followed by a list of filters - allows for easy reuse of each individual component and let you build your customized analyzer in a very flexible way (like Lego). Generally speaking the char filters do some pre-processing in the character input, then the Tokenizer starts the tokenizing process by turning the character input into tokens which are then further processed by the TokenFilters. Hibernate Search supports this infrastructure by utilizing the Solr analyzer framework.
	
Note

			Some of the analyzers and filters will require additional dependencies. For example to use the snowball stemmer you have to also include the lucene-snowball jar and for the PhoneticFilterFactory you need the commons-codec jar. Your distribution of Hibernate Search provides these dependencies in its lib/optional directory.
		

			When using Maven all required Solr dependencies are now defined as dependencies of the artifact org.hibernate:hibernate-search-analyzers; add the following dependency :
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search-analyzers</artifactId>
 <version>4.6.0.Final-redhat-2</version>
 <scope>provided</scope>
<dependency>

		

		Let's review a concrete example now - Example 14.20, “@AnalyzerDef and the Solr framework”. First a char filter is defined by its factory. In our example, a mapping char filter is used, and will replace characters in the input based on the rules specified in the mapping file. Next a tokenizer is defined. This example uses the standard tokenizer. Last but not least, a list of filters is defined by their factories. In our example, the StopFilter filter is built reading the dedicated words property file. The filter is also expected to ignore case.
	

 ⁠Example 14.20. @AnalyzerDef and the Solr framework
​@AnalyzerDef(name="customanalyzer",
​ charFilters = {
​ @CharFilterDef(factory = MappingCharFilterFactory.class, params = {
​ @Parameter(name = "mapping",
​ value = "org/hibernate/search/test/analyzer/solr/mapping-chars.properties")
​ })
​ },
​ tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
​ filters = {
​ @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
​ @TokenFilterDef(factory = LowerCaseFilterFactory.class),
​ @TokenFilterDef(factory = StopFilterFactory.class, params = {
​ @Parameter(name="words",
​ value= "org/hibernate/search/test/analyzer/solr/stoplist.properties"),
​ @Parameter(name="ignoreCase", value="true")
​ })
​})
​public class Team {
​ ...
​}

Note

			Filters and char filters are applied in the order they are defined in the @AnalyzerDef annotation. Order matters!
		

		Some tokenizers, token filters or char filters load resources like a configuration or metadata file. This is the case for the stop filter and the synonym filter. If the resource charset is not using the VM default, you can explicitly specify it by adding a resource_charset parameter.
	

 ⁠Example 14.21. Use a specific charset to load the property file
​@AnalyzerDef(name="customanalyzer",
​ charFilters = {
​ @CharFilterDef(factory = MappingCharFilterFactory.class, params = {
​ @Parameter(name = "mapping",
​ value = "org/hibernate/search/test/analyzer/solr/mapping-chars.properties")
​ })
​ },
​ tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
​ filters = {
​ @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
​ @TokenFilterDef(factory = LowerCaseFilterFactory.class),
​ @TokenFilterDef(factory = StopFilterFactory.class, params = {
​ @Parameter(name="words",
​ value= "org/hibernate/search/test/analyzer/solr/stoplist.properties"),
​ @Parameter(name="resource_charset", value = "UTF-16BE"),
​ @Parameter(name="ignoreCase", value="true")
​ })
​})
​public class Team {
​ ...
​}

		Once defined, an analyzer definition can be reused by an @Analyzer declaration as seen in Example 14.22, “Referencing an analyzer by name”.
	

 ⁠Example 14.22. Referencing an analyzer by name
​@Entity
​@Indexed
​@AnalyzerDef(name="customanalyzer", ...)
​public class Team {
​ @Id
​ @DocumentId
​ @GeneratedValue
​ private Integer id;
​
​ @Field
​ private String name;
​
​ @Field
​ private String location;
​
​ @Field
​ @Analyzer(definition = "customanalyzer")
​ private String description;
​}

		Analyzer instances declared by @AnalyzerDef are also available by their name in the SearchFactory which is quite useful when building queries.
	
​Analyzer analyzer = fullTextSession.getSearchFactory().getAnalyzer("customanalyzer");

		Fields in queries must be analyzed with the same analyzer used to index the field so that they speak a common "language": the same tokens are reused between the query and the indexing process. This rule has some exceptions but is true most of the time. Respect it unless you know what you are doing.
	

		Report a bug
	

 ⁠14.2.3.3. Available Analyzers

		Solr and Lucene come with a lot of useful default char filters, tokenizers, and filters. You can find a complete list of char filter factories, tokenizer factories and filter factories at http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters. Let's check a few of them.
	

 ⁠Table 14.1. Example of available char filters
	 Factory 	 Description 	 Parameters 	 Additional dependencies
	 MappingCharFilterFactory 	 Replaces one or more characters with one or more characters, based on mappings specified in the resource file 	
						mapping: points to a resource file containing the mappings using the format:

 "á" => "a"

 "ñ" => "n"

 "ø" => "o"

					

					 	 none
	 HTMLStripCharFilterFactory 	 Remove HTML standard tags, keeping the text 	 none 	 none

 ⁠Table 14.2. Example of available tokenizers
	 Factory 	 Description 	 Parameters 	 Additional dependencies
	 StandardTokenizerFactory 	 Use the Lucene StandardTokenizer 	 none 	 none
	 HTMLStripCharFilterFactory 	 Remove HTML tags, keep the text and pass it to a StandardTokenizer. 	 none 	 solr-core
	 PatternTokenizerFactory 	 Breaks text at the specified regular expression pattern. 	
						pattern: the regular expression to use for tokenizing
					

					
						group: says which pattern group to extract into tokens
					

					 	 solr-core

 ⁠Table 14.3. Examples of available filters
	 Factory 	 Description 	 Parameters 	 Additional dependencies
	 StandardFilterFactory 	 Remove dots from acronyms and 's from words 	 none 	 solr-core
	 LowerCaseFilterFactory 	 Lowercases all words 	 none 	 solr-core
	 StopFilterFactory 	 Remove words (tokens) matching a list of stop words 	
						words: points to a resource file containing the stop words
					

					
						ignoreCase: true if case should be ignored when comparing stop words, false otherwise
					

					 	 solr-core
	 SnowballPorterFilterFactory 	 Reduces a word to it's root in a given language. (example: protect, protects, protection share the same root). Using such a filter allows searches matching related words. 	 language: Danish, Dutch, English, Finnish, French, German, Italian, Norwegian, Portuguese, Russian, Spanish, Swedish and a few more 	 solr-core
	 ISOLatin1AccentFilterFactory 	 Remove accents for languages like French 	 none 	 solr-core
	 PhoneticFilterFactory 	 Inserts phonetically similar tokens into the token stream 	
						encoder: One of DoubleMetaphone, Metaphone, Soundex or RefinedSoundex
					

					
						inject: true will add tokens to the stream, false will replace the existing token
					

					
						maxCodeLength: sets the maximum length of the code to be generated. Supported only for Metaphone and DoubleMetaphone encodings
					

					 	 solr-core and commons-codec
	 CollationKeyFilterFactory 	 Converts each token into its java.text.CollationKey, and then encodes the CollationKey with IndexableBinaryStringTools, to allow it to be stored as an index term. 	 custom, language, country, variant, strength, decomposition
						For more information, see Lucene's CollationKeyFilter javadocs
					

					 	 solr-core and commons-io

		We recommend to check all the implementations of org.apache.solr.analysis.TokenizerFactory and org.apache.solr.analysis.TokenFilterFactory in your IDE to see the implementations available.
	

		Report a bug
	

 ⁠14.2.3.4. Dynamic Analyzer Selection

		So far all the introduced ways to specify an analyzer were static. However, there are use cases where it is useful to select an analyzer depending on the current state of the entity to be indexed, for example in a multilingual applications. For an BlogEntry class for example the analyzer could depend on the language property of the entry. Depending on this property the correct language specific stemmer should be chosen to index the actual text.
	

		To enable this dynamic analyzer selection Hibernate Search introduces the AnalyzerDiscriminator annotation. Example 14.23, “Usage of @AnalyzerDiscriminator” demonstrates the usage of this annotation.
	

 ⁠Example 14.23. Usage of @AnalyzerDiscriminator
​@Entity
​@Indexed
​@AnalyzerDefs({
​ @AnalyzerDef(name = "en",
​ tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
​ filters = {
​ @TokenFilterDef(factory = LowerCaseFilterFactory.class),
​ @TokenFilterDef(factory = EnglishPorterFilterFactory.class
​)
​ }),
​ @AnalyzerDef(name = "de",
​ tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
​ filters = {
​ @TokenFilterDef(factory = LowerCaseFilterFactory.class),
​ @TokenFilterDef(factory = GermanStemFilterFactory.class)
​ })
​})
​public class BlogEntry {
​
​ @Id
​ @GeneratedValue
​ @DocumentId
​ private Integer id;
​
​ @Field
​ @AnalyzerDiscriminator(impl = LanguageDiscriminator.class)
​ private String language;
​
​ @Field
​ private String text;
​
​ private Set<BlogEntry> references;
​
​ // standard getter/setter
​ ...
​}
​public class LanguageDiscriminator implements Discriminator {
​
​ public String getAnalyzerDefinitionName(Object value, Object entity, String field) {
​ if (value == null || !(entity instanceof BlogEntry)) {
​ return null;
​ }
​ return (String) value;
​
​ }
​}

		The prerequisite for using @AnalyzerDiscriminator is that all analyzers which are going to be used dynamically are predefined via @AnalyzerDef definitions. If this is the case, one can place the @AnalyzerDiscriminator annotation either on the class or on a specific property of the entity for which to dynamically select an analyzer. Via the impl parameter of the AnalyzerDiscriminator you specify a concrete implementation of the Discriminator interface. It is up to you to provide an implementation for this interface. The only method you have to implement is getAnalyzerDefinitionName() which gets called for each field added to the Lucene document. The entity which is getting indexed is also passed to the interface method. The value parameter is only set if the AnalyzerDiscriminator is placed on property level instead of class level. In this case the value represents the current value of this property.
	

		An implementation of the Discriminator interface has to return the name of an existing analyzer definition or null if the default analyzer should not be overridden. Example 14.23, “Usage of @AnalyzerDiscriminator” assumes that the language parameter is either 'de' or 'en' which matches the specified names in the @AnalyzerDefs.
	

		Report a bug
	

 ⁠14.2.3.5. Retrieving an Analyzer

		Retrieving an analyzer can be used when multiple analyzers have been used in a domain model, in order to benefit from stemming or phonetic approximation, etc. In this case, use the same analyzers to building a query. Alternatively, use the Hibernate Search query DSL, which selects the correct analyzer automatically. See Section 14.3.1.2, “Building a Lucene Query”
	

		Whether you are using the Lucene programmatic API or the Lucene query parser, you can retrieve the scoped analyzer for a given entity. A scoped analyzer is an analyzer which applies the right analyzers depending on the field indexed. Remember, multiple analyzers can be defined on a given entity each one working on an individual field. A scoped analyzer unifies all these analyzers into a context-aware analyzer. While the theory seems a bit complex, using the right analyzer in a query is very easy.
	
Note

			When you use programmatic mapping for a child entity, you can only see the fields defined by the child entity. Fields or methods inherited from a parent entity (annotated with @MappedSuperclass) are not configurable. To configure properties inherited from a parent entity, either override the property in the child entity or create a programmatic mapping for the parent entity. This mimics the usage of annotations where you cannot annotate a field or method of a parent entity unless it is redefined in the child entity.
		

 ⁠Example 14.24. Using the scoped analyzer when building a full-text query
​org.apache.lucene.queryParser.QueryParser parser = new QueryParser(
​ "title",
​ fullTextSession.getSearchFactory().getAnalyzer(Song.class)
​);
​
​org.apache.lucene.search.Query luceneQuery =
​ parser.parse("title:sky Or title_stemmed:diamond");
​
​org.hibernate.Query fullTextQuery =
​ fullTextSession.createFullTextQuery(luceneQuery, Song.class);
​
​List result = fullTextQuery.list(); //return a list of managed objects

		In the example above, the song title is indexed in two fields: the standard analyzer is used in the field title and a stemming analyzer is used in the field title_stemmed. By using the analyzer provided by the search factory, the query uses the appropriate analyzer depending on the field targeted.
	
Note

			You can also retrieve analyzers defined via @AnalyzerDef by their definition name using searchFactory.getAnalyzer(String).
		

		Report a bug
	

 ⁠14.2.4. Bridges

				When discussing the basic mapping for an entity one important fact was so far disregarded. In Lucene all index fields have to be represented as strings. All entity properties annotated with @Field have to be converted to strings to be indexed. The reason we have not mentioned it so far is, that for most of your properties Hibernate Search does the translation job for you thanks to set of built-in bridges. However, in some cases you need a more fine grained control over the translation process.
			

				Report a bug
			

 ⁠14.2.4.1. Built-in Bridges

		Hibernate Search comes bundled with a set of built-in bridges between a Java property type and its full text representation.
	
	null
	
					Per default null elements are not indexed. Lucene does not support null elements. However, in some situation it can be useful to insert a custom token representing the null value. See Section 14.2.1.1.2, “@Field” for more information.
				

	java.lang.String
	
					Strings are indexed as are
				

	short, Short, integer, Integer, long, Long, float, Float, double, Double, BigInteger, BigDecimal
	
					Numbers are converted into their string representation. Note that numbers cannot be compared by Lucene (that is, used in ranged queries) out of the box: they have to be padded.
					Note

							Using a Range query has drawbacks, an alternative approach is to use a Filter query which will filter the result query to the appropriate range.
						

							Hibernate Search also supports the use of a custom StringBridge as described in Section 14.2.4.2, “Custom Bridges”.
						

				

	java.util.Date
	
					Dates are stored as yyyyMMddHHmmssSSS in GMT time (200611072203012 for Nov 7th of 2006 4:03PM and 12ms EST). You shouldn't really bother with the internal format. What is important is that when using a TermRangeQuery, you should know that the dates have to be expressed in GMT time.
				

					Usually, storing the date up to the millisecond is not necessary. @DateBridge defines the appropriate resolution you are willing to store in the index (@DateBridge(resolution=Resolution.DAY)). The date pattern will then be truncated accordingly.
				
​@Entity
​@Indexed
​public class Meeting {
​ @Field(analyze=Analyze.NO)
​ @DateBridge(resolution=Resolution.MINUTE)
​ private Date date;
​ ...
Warning

						A Date whose resolution is lower than MILLISECOND cannot be a @DocumentId.
					

Important

						The default Date bridge uses Lucene's DateTools to convert from and to String. This means that all dates are expressed in GMT time. If your requirements are to store dates in a fixed time zone you have to implement a custom date bridge. Make sure you understand the requirements of your applications regarding to date indexing and searching.
					

	java.net.URI, java.net.URL
	
					URI and URL are converted to their string representation.
				

	java.lang.Class
	
					Class are converted to their fully qualified class name. The thread context class loader is used when the class is rehydrated.
				

		Report a bug
	

 ⁠14.2.4.2. Custom Bridges

					Sometimes, the built-in bridges of Hibernate Search do not cover some of your property types, or the String representation used by the bridge does not meet your requirements. The following paragraphs describe several solutions to this problem.
				

					Report a bug
				

 ⁠14.2.4.2.1. StringBridge

		The simplest custom solution is to give Hibernate Search an implementation of your expected Object to String bridge. To do so you need to implement the org.hibernate.search.bridge.StringBridge interface. All implementations have to be thread-safe as they are used concurrently.
	

 ⁠Example 14.25. Custom StringBridge implementation
​/**
​ * Padding Integer bridge.
​ * All numbers will be padded with 0 to match 5 digits
​ *
​ * @author Emmanuel Bernard
​ */
​public class PaddedIntegerBridge implements StringBridge {
​
​ private int PADDING = 5;
​
​ public String objectToString(Object object) {
​ String rawInteger = ((Integer) object).toString();
​ if (rawInteger.length() > PADDING)
​ throw new IllegalArgumentException("Try to pad on a number too big");
​ StringBuilder paddedInteger = new StringBuilder();
​ for (int padIndex = rawInteger.length() ; padIndex < PADDING ; padIndex++) {
​ paddedInteger.append('0');
​ }
​ return paddedInteger.append(rawInteger).toString();
​ }
​}

		Given the string bridge defined in Example 14.25, “Custom StringBridge implementation”, any property or field can use this bridge thanks to the @FieldBridge annotation:
	
​@FieldBridge(impl = PaddedIntegerBridge.class)
​private Integer length;

		Report a bug
	

 ⁠14.2.4.2.2. Parameterized Bridge

		Parameters can also be passed to the bridge implementation making it more flexible. Example 14.26, “Passing parameters to your bridge implementation” implements a ParameterizedBridge interface and parameters are passed through the @FieldBridge annotation.
	

 ⁠Example 14.26. Passing parameters to your bridge implementation
​public class PaddedIntegerBridge implements StringBridge, ParameterizedBridge {
​
​ public static String PADDING_PROPERTY = "padding";
​ private int padding = 5; //default
​
​ public void setParameterValues(Map<String,String> parameters) {
​ String padding = parameters.get(PADDING_PROPERTY);
​ if (padding != null) this.padding = Integer.parseInt(padding);
​ }
​
​ public String objectToString(Object object) {
​ String rawInteger = ((Integer) object).toString();
​ if (rawInteger.length() > padding)
​ throw new IllegalArgumentException("Try to pad on a number too big");
​ StringBuilder paddedInteger = new StringBuilder();
​ for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex++) {
​ paddedInteger.append('0');
​ }
​ return paddedInteger.append(rawInteger).toString();
​ }
​}
​
​
​//property
​@FieldBridge(impl = PaddedIntegerBridge.class,
​ params = @Parameter(name="padding", value="10")
​)
​private Integer length;

		The ParameterizedBridge interface can be implemented by StringBridge, TwoWayStringBridge, FieldBridge implementations.
	

		All implementations have to be thread-safe, but the parameters are set during initialization and no special care is required at this stage.
	

		Report a bug
	

 ⁠14.2.4.2.3. Type Aware Bridge

		It is sometimes useful to get the type the bridge is applied on:
	
	
				the return type of the property for field/getter-level bridges.
			

	
				the class type for class-level bridges.
			

		An example is a bridge that deals with enums in a custom fashion but needs to access the actual enum type. Any bridge implementing AppliedOnTypeAwareBridge will get the type the bridge is applied on injected. Like parameters, the type injected needs no particular care with regard to thread-safety.
	

		Report a bug
	

 ⁠14.2.4.2.4. Two-Way Bridge

		If you expect to use your bridge implementation on an id property (that is, annotated with @DocumentId), you need to use a slightly extended version of StringBridge named TwoWayStringBridge. Hibernate Search needs to read the string representation of the identifier and generate the object out of it. There is no difference in the way the @FieldBridge annotation is used.
	

 ⁠Example 14.27. Implementing a TwoWayStringBridge usable for id properties
​public class PaddedIntegerBridge implements TwoWayStringBridge, ParameterizedBridge {
​
​ public static String PADDING_PROPERTY = "padding";
​ private int padding = 5; //default
​
​ public void setParameterValues(Map parameters) {
​ Object padding = parameters.get(PADDING_PROPERTY);
​ if (padding != null) this.padding = (Integer) padding;
​ }
​
​ public String objectToString(Object object) {
​ String rawInteger = ((Integer) object).toString();
​ if (rawInteger.length() > padding)
​ throw new IllegalArgumentException("Try to pad on a number too big");
​ StringBuilder paddedInteger = new StringBuilder();
​ for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex++) {
​ paddedInteger.append('0');
​ }
​ return paddedInteger.append(rawInteger).toString();
​ }
​
​ public Object stringToObject(String stringValue) {
​ return new Integer(stringValue);
​ }
​}
​
​
​//id property
​@DocumentId
​@FieldBridge(impl = PaddedIntegerBridge.class,
​ params = @Parameter(name="padding", value="10")
​private Integer id;

Important

			It is important for the two-way process to be idempotent (ie object = stringToObject(objectToString(object))).
		

		Report a bug
	

 ⁠14.2.4.2.5. FieldBridge

		Some use cases require more than a simple object to string translation when mapping a property to a Lucene index. To give you the greatest possible flexibility you can also implement a bridge as a FieldBridge. This interface gives you a property value and let you map it the way you want in your Lucene Document. You can for example store a property in two different document fields. The interface is very similar in its concept to the Hibernate UserTypes.
	

 ⁠Example 14.28. Implementing the FieldBridge Interface
​/**
​ * Store the date in 3 different fields - year, month, day - to ease Range Query per
​ * year, month or day (eg get all the elements of December for the last 5 years).
​ * @author Emmanuel Bernard
​ */
​public class DateSplitBridge implements FieldBridge {
​ private final static TimeZone GMT = TimeZone.getTimeZone("GMT");
​
​ public void set(String name, Object value, Document document, LuceneOptions luceneOptions) {
​ Date date = (Date) value;
​ Calendar cal = GregorianCalendar.getInstance(GMT);
​ cal.setTime(date);
​ int year = cal.get(Calendar.YEAR);
​ int month = cal.get(Calendar.MONTH) + 1;
​ int day = cal.get(Calendar.DAY_OF_MONTH);
​
​ // set year
​ luceneOptions.addFieldToDocument(
​ name + ".year",
​ String.valueOf(year),
​ document);
​
​ // set month and pad it if needed
​ luceneOptions.addFieldToDocument(
​ name + ".month",
​ month < 10 ? "0" : "" + String.valueOf(month),
​ document);
​
​ // set day and pad it if needed
​ luceneOptions.addFieldToDocument(
​ name + ".day",
​ day < 10 ? "0" : "" + String.valueOf(day),
​ document);
​ }
​}
​
​//property
​@FieldBridge(impl = DateSplitBridge.class)
​private Date date;

		In Example 14.28, “Implementing the FieldBridge Interface” the fields are not added directly to Document. Instead the addition is delegated to the LuceneOptions helper; this helper will apply the options you have selected on @Field, like Store or TermVector, or apply the choosen @Boost value. It is especially useful to encapsulate the complexity of COMPRESS implementations. Even though it is recommended to delegate to LuceneOptions to add fields to the Document, nothing stops you from editing the Document directly and ignore the LuceneOptions in case you need to.
	
Note

			Classes like LuceneOptions are created to shield your application from changes in Lucene API and simplify your code. Use them if you can, but if you need more flexibility you're not required to.
		

		Report a bug
	

 ⁠14.2.4.2.6. ClassBridge

		It is sometimes useful to combine more than one property of a given entity and index this combination in a specific way into the Lucene index. The @ClassBridge and @ClassBridges annotations can be defined at the class level, as opposed to the property level. In this case the custom field bridge implementation receives the entity instance as the value parameter instead of a particular property. Though not shown in Example 14.29, “Implementing a class bridge”, @ClassBridge supports the termVector attribute discussed in section Section 14.2.1.1, “Basic Mapping”.
	

 ⁠Example 14.29. Implementing a class bridge
​@Entity
​@Indexed
​@ClassBridge(name="branchnetwork",
​ store=Store.YES,
​ impl = CatFieldsClassBridge.class,
​ params = @Parameter(name="sepChar", value=" "))
​public class Department {
​ private int id;
​ private String network;
​ private String branchHead;
​ private String branch;
​ private Integer maxEmployees
​ ...
​}
​
​public class CatFieldsClassBridge implements FieldBridge, ParameterizedBridge {
​ private String sepChar;
​
​ public void setParameterValues(Map parameters) {
​ this.sepChar = (String) parameters.get("sepChar");
​ }
​
​ public void set(String name, Object value, Document document, LuceneOptions luceneOptions) {
​ // In this particular class the name of the new field was passed
​ // from the name field of the ClassBridge Annotation. This is not
​ // a requirement. It just works that way in this instance. The
​ // actual name could be supplied by hard coding it below.
​ Department dep = (Department) value;
​ String fieldValue1 = dep.getBranch();
​ if (fieldValue1 == null) {
​ fieldValue1 = "";
​ }
​ String fieldValue2 = dep.getNetwork();
​ if (fieldValue2 == null) {
​ fieldValue2 = "";
​ }
​ String fieldValue = fieldValue1 + sepChar + fieldValue2;
​ Field field = new Field(name, fieldValue, luceneOptions.getStore(),
​ luceneOptions.getIndex(), luceneOptions.getTermVector());
​ field.setBoost(luceneOptions.getBoost());
​ document.add(field);
​ }
​}

		In this example, the particular CatFieldsClassBridge is applied to the department instance, the field bridge then concatenate both branch and network and index the concatenation.
	

		Report a bug
	

 ⁠14.3. Querying

			Hibernate Search can execute Lucene queries and retrieve domain objects managed by an Hibernate session. The search provides the power of Lucene without leaving the Hibernate paradigm, giving another dimension to the Hibernate classic search mechanisms (HQL, Criteria query, native SQL query).
		

			Preparing and executing a query consists of following four steps:
		
	
					Creating a FullTextSession
				

	
					Creating a Lucene query using either Hibernate Search query DSL (recommended) or using the Lucene Query API
				

	
					Wrapping the Lucene query using an org.hibernate.Query
				

	
					Executing the search by calling for example list() or scroll()
				

			To access the querying facilities, use a FullTextSession. This Search specific session wraps a regular org.hibernate.Session in order to provide query and indexing capabilities.
		

 ⁠Example 14.30. Creating a FullTextSession
​Session session = sessionFactory.openSession();
​...
​FullTextSession fullTextSession = Search.getFullTextSession(session);

			Use the FullTextSession to build a full-text query using either the Hibernate Search query DSL or the native Lucene query.
		

			Use the following code when using the Hibernate Search query DSL:
		
​
​final QueryBuilder b = fullTextSession.getSearchFactory().buildQueryBuilder().forEntity(Myth.class).get();
​
​org.apache.lucene.search.Query luceneQuery =
​ b.keyword()
​ .onField("history").boostedTo(3)
​ .matching("storm")
​ .createQuery();
​
​org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);
​List result = fullTextQuery.list(); //return a list of managed objects

			As an alternative, write the Lucene query using either the Lucene query parser or the Lucene programmatic API.
		

 ⁠Example 14.31. Creating a Lucene query via the QueryParser
​
​SearchFactory searchFactory = fullTextSession.getSearchFactory();
​org.apache.lucene.queryParser.QueryParser parser =
​ new QueryParser("title", searchFactory.getAnalyzer(Myth.class));
​try {
​ org.apache.lucene.search.Query luceneQuery = parser.parse("history:storm^3");
​}
​catch (ParseException e) {
​ //handle parsing failure
​}
​
​org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);
​List result = fullTextQuery.list(); //return a list of managed objects

			A Hibernate query built on the Lucene query is a org.hibernate.Query. This query remains in the same paradigm as other Hibernate query facilities, such as HQL (Hibernate Query Language), Native, and Criteria. Use methods such as list(), uniqueResult(), iterate() and scroll() with the query.
		

			The same extensions are available with the Hibernate Java Persistence APIs:
		

 ⁠Example 14.32. Creating a Search query using the JPA API
​EntityManager em = entityManagerFactory.createEntityManager();
​
​FullTextEntityManager fullTextEntityManager =
​ org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
​
​...
​final QueryBuilder b = fullTextEntityManager.getSearchFactory()
​ .buildQueryBuilder().forEntity(Myth.class).get();
​
​org.apache.lucene.search.Query luceneQuery =
​ b.keyword()
​ .onField("history").boostedTo(3)
​ .matching("storm")
​ .createQuery();
​javax.persistence.Query fullTextQuery = fullTextEntityManager.createFullTextQuery(luceneQuery);
​
​List result = fullTextQuery.getResultList(); //return a list of managed objects

Note

				In these examples, the Hibernate API has been used. The same examples can also be written with the Java Persistence API by adjusting the way the FullTextQuery is retrieved.
			

			Report a bug
		

 ⁠14.3.1. Building Queries

				Hibernate Search queries are built on Lucene queries, allowing users to use any Lucene query type. When the query is built, Hibernate Search uses org.hibernate.Query as the query manipulation API for further query processing.
			

				Report a bug
			

 ⁠14.3.1.1. Building a Lucene Query Using the Lucene API

		With the Lucene API, use either the query parser (simple queries) or the Lucene programmatic API (complex queries). Building a Lucene query is out of scope for the Hibernate Search documentation. For details, see the online Lucene documentation or a copy of Lucene in Action or Hibernate Search in Action.
	

		Report a bug
	

 ⁠14.3.1.2. Building a Lucene Query

		The Lucene programmatic API enables full-text queries. However, when using the Lucene programmatic API, the parameters must be converted to their string equivalent and must also apply the correct analyzer to the right field. A ngram analyzer for example uses several ngrams as the tokens for a given word and should be searched as such. It is recommended to use the QueryBuilder for this task.
	

		The Hibernate Search query API is fluent, with the following key characteristics:
	
	
				Method names are in English. As a result, API operations can be read and understood as a series of English phrases and instructions.
			

	
				It uses IDE autocompletion which helps possible completions for the current input prefix and allows the user to choose the right option.
			

	
				It often uses the chaining method pattern.
			

	
				It is easy to use and read the API operations.
			

		To use the API, first create a query builder that is attached to a given indexedentitytype. This QueryBuilder knows what analyzer to use and what field bridge to apply. Several QueryBuilders (one for each entity type involved in the root of your query) can be created. The QueryBuilder is derived from the SearchFactory.
	
​QueryBuilder mythQB = searchFactory.buildQueryBuilder().forEntity(Myth.class).get();

		The analyzer used for a given field or fields can also be overridden.
	
​QueryBuilder mythQB = searchFactory.buildQueryBuilder()
​ .forEntity(Myth.class)
​ .overridesForField("history","stem_analyzer_definition")
​ .get();

		The query builder is now used to build Lucene queries. Customized queries generated using Lucene's query parser or Query objects assembled using the Lucene programmatic API are used with the Hibernate Search DSL.
	

		Report a bug
	

 ⁠14.3.1.3. Keyword Queries

		The following example shows how to search for a specific word:
	
​Query luceneQuery = mythQB.keyword().onField("history").matching("storm").createQuery();

 ⁠Table 14.4. Keyword query parameters
	 Parameter 	 Description
	 keyword() 	 Use this parameter to find a specific word
	 onField() 	 Use this parameter to specify in which lucene field to search the word
	 matching() 	 use this parameter to specify the match for search string
	 createQuery() 	 creates the Lucene query object

	
				The value "storm" is passed through the history FieldBridge. This is useful when numbers or dates are involved.
			

	
				The field bridge value is then passed to the analyzer used to index the field history. This ensures that the query uses the same term transformation than the indexing (lower case, ngram, stemming and so on). If the analyzing process generates several terms for a given word, a boolean query is used with the SHOULD logic (roughly an OR logic).
			

		To search a property that is not of type string.
	
​
​@Indexed
​public class Myth {
​ @Field(analyze = Analyze.NO)
​ @DateBridge(resolution = Resolution.YEAR)
​ public Date getCreationDate() { return creationDate; }
​ public Date setCreationDate(Date creationDate) { this.creationDate = creationDate; }
​ private Date creationDate;
​
​ ...
​}
​
​Date birthdate = ...;
​Query luceneQuery = mythQb.keyword().onField("creationDate").matching(birthdate).createQuery();

Note

			In plain Lucene, the Date object had to be converted to its string representation (in this case the year)
		

		This conversion works for any object, provided that the FieldBridge has an objectToString method (and all built-in FieldBridge implementations do).
	

		The next example searches a field that uses ngram analyzers. The ngram analyzers index succession of ngrams of words, which helps to avoid user typos. For example, the 3-grams of the word hibernate are hib, ibe, ber, ern, rna, nat, ate.
	
​@AnalyzerDef(name = "ngram",
​ tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
​ filters = {
​ @TokenFilterDef(factory = StandardFilterFactory.class),
​ @TokenFilterDef(factory = LowerCaseFilterFactory.class),
​ @TokenFilterDef(factory = StopFilterFactory.class),
​ @TokenFilterDef(factory = NGramFilterFactory.class,
​ params = {
​ @Parameter(name = "minGramSize", value = "3"),
​ @Parameter(name = "maxGramSize", value = "3") })
​ }
​)
​
​public class Myth {
​ @Field(analyzer=@Analyzer(definition="ngram")
​ public String getName() { return name; }
​ public String setName(String name) { this.name = name; }
​ private String name;
​
​ ...
​}
​
​Date birthdate = ...;
​Query luceneQuery = mythQb.keyword().onField("name").matching("Sisiphus")
​ .createQuery();

		The matching word "Sisiphus" will be lower-cased and then split into 3-grams: sis, isi, sip, iph, phu, hus. Each of these ngram will be part of the query. The user is then able to find the Sysiphus myth (with a y). All that is transparently done for the user.
	
Note

			If the user does not want a specific field to use the field bridge or the analyzer then the ignoreAnalyzer() or ignoreFieldBridge() functions can be called.
		

		To search for multiple possible words in the same field, add them all in the matching clause.
	
​//search document with storm or lightning in their history
​Query luceneQuery =
​ mythQB.keyword().onField("history").matching("storm lightning").createQuery();

		To search the same word on multiple fields, use the onFields method.
	
​Query luceneQuery = mythQB
​ .keyword()
​ .onFields("history","description","name")
​ .matching("storm")
​ .createQuery();

		Sometimes, one field should be treated differently from another field even if searching the same term, use the andField() method for that.
	
​Query luceneQuery = mythQB.keyword()
​ .onField("history")
​ .andField("name")
​ .boostedTo(5)
​ .andField("description")
​ .matching("storm")
​ .createQuery();

		In the previous example, only field name is boosted to 5.
	

		Report a bug
	

 ⁠14.3.1.4. Fuzzy Queries

		To execute a fuzzy query (based on the Levenshtein distance algorithm), start with a keyword query and add the fuzzy flag.
	
​Query luceneQuery = mythQB
​ .keyword()
​ .fuzzy()
​ .withThreshold(.8f)
​ .withPrefixLength(1)
​ .onField("history")
​ .matching("starm")
​ .createQuery();

		The threshold is the limit above which two terms are considering matching. It is a decimal between 0 and 1 and the default value is 0.5. The prefixLength is the length of the prefix ignored by the "fuzzyness". While the default value is 0, a nonzero value is recommended for indexes containing a huge number of distinct terms.
	

		Report a bug
	

 ⁠14.3.1.5. Wildcard Queries

		Wildcard queries are useful in circumstances where only part of the word is known. The ? represents a single character and * represents multiple characters. Note that for performance purposes, it is recommended that the query does not start with either ? or *.
	
​Query luceneQuery = mythQB
​ .keyword()
​ .wildcard()
​ .onField("history")
​ .matching("sto*")
​ .createQuery();
Note

			Wildcard queries do not apply the analyzer on the matching terms. The risk of * or ? being mangled is too high.
		

		Report a bug
	

 ⁠14.3.1.6. Phrase Queries

		So far we have been looking for words or sets of words, the user can also search exact or approximate sentences. Use phrase() to do so.
	
​Query luceneQuery = mythQB
​ .phrase()
​ .onField("history")
​ .sentence("Thou shalt not kill")
​ .createQuery();

		Approximate sentences can be searched by adding a slop factor. The slop factor represents the number of other words permitted in the sentence: this works like a within or near operator.
	
​Query luceneQuery = mythQB
​ .phrase()
​ .withSlop(3)
​ .onField("history")
​ .sentence("Thou kill")
​ .createQuery();

		Report a bug
	

 ⁠14.3.1.7. Range Queries

		A range query searches for a value in between given boundaries (included or not) or for a value below or above a given boundary (included or not).
	
​//look for 0 <= starred < 3
​Query luceneQuery = mythQB
​ .range()
​ .onField("starred")
​ .from(0).to(3).excludeLimit()
​ .createQuery();
​
​//look for myths strictly BC
​Date beforeChrist = ...;
​Query luceneQuery = mythQB
​ .range()
​ .onField("creationDate")
​ .below(beforeChrist).excludeLimit()
​ .createQuery();

		Report a bug
	

 ⁠14.3.1.8. Combining Queries

		Queries can be aggregated (combined) to create more complex queries. The following aggregation operators are available:
	
	
				SHOULD: the query should contain the matching elements of the subquery.
			

	
				MUST: the query must contain the matching elements of the subquery.
			

	
				MUST NOT: the query must not contain the matching elements of the subquery.
			

		The subqueries can be any Lucene query including a boolean query itself.
	

 ⁠Example 14.33. MUST NOT Query
​//look for popular modern myths that are not urban
​Date twentiethCentury = ...;
​Query luceneQuery = mythQB
​ .bool()
​ .must(mythQB.keyword().onField("description").matching("urban").createQuery())
​ .not()
​ .must(mythQB.range().onField("starred").above(4).createQuery())
​ .must(mythQB
​ .range()
​ .onField("creationDate")
​ .above(twentiethCentury)
​ .createQuery())
​ .createQuery();

 ⁠Example 14.34. SHOULD Query
​//look for popular myths that are preferably urban
​Query luceneQuery = mythQB
​ .bool()
​ .should(mythQB.keyword().onField("description").matching("urban").createQuery())
​ .must(mythQB.range().onField("starred").above(4).createQuery())
​ .createQuery();

 ⁠Example 14.35. NOT Query
​//look for all myths except religious ones
​Query luceneQuery = mythQB
​ .all()
​ .except(monthQb
​ .keyword()
​ .onField("description_stem")
​ .matching("religion")
​ .createQuery()
​)
​ .createQuery();

		Report a bug
	

 ⁠14.3.1.9. Query Options

		The Hibernate Search query DSL is an easy to use and easy to read query API. In accepting and producing Lucene queries, you can incorporate query types not yet supported by the DSL.
	

		The following is a summary of query options for query types and fields:
	
	
				boostedTo (on query type and on field) boosts the whole query or the specific field to a given factor.
			

	
				withConstantScore (on query) returns all results that match the query have a constant score equals to the boost.
			

	
				filteredBy(Filter)(on query) filters query results using the Filter instance.
			

	
				ignoreAnalyzer (on field) ignores the analyzer when processing this field.
			

	
				ignoreFieldBridge (on field) ignores field bridge when processing this field.
			

 ⁠Example 14.36. Combination of Query Options
​Query luceneQuery = mythQB
​ .bool()
​ .should(mythQB.keyword().onField("description").matching("urban").createQuery())
​ .should(mythQB
​ .keyword()
​ .onField("name")
​ .boostedTo(3)
​ .ignoreAnalyzer()
​ .matching("urban").createQuery())
​ .must(mythQB
​ .range()
​ .boostedTo(5).withConstantScore()
​ .onField("starred").above(4).createQuery())
​ .createQuery();

		Report a bug
	

 ⁠14.3.1.10. Build a Hibernate Search Query

 ⁠14.3.1.10.1. Generality

		After building the Lucene query, wrap it within a Hibernate query. The query searches all indexed entities and returns all types of indexed classes unless explicitly configured not to do so.
	

 ⁠Example 14.37. Wrapping a Lucene Query in a Hibernate Query
​FullTextSession fullTextSession = Search.getFullTextSession(session);
​org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);

		For improved performance, restrict the returned types as follows:
	

 ⁠Example 14.38. Filtering the Search Result by Entity Type
​fullTextQuery = fullTextSession
​ .createFullTextQuery(luceneQuery, Customer.class);
​
​// or
​
​fullTextQuery = fullTextSession
​ .createFullTextQuery(luceneQuery, Item.class, Actor.class);

		The first part of the second example only returns the matching Customers. The second part of the same example returns matching Actors and Items. The type restriction is polymorphic. As a result, if the two subclasses Salesman and Customer of the base class Person return, specify Person.class to filter based on result types.
	

		Report a bug
	

 ⁠14.3.1.10.2. Pagination

		To avoid performance degradation, it is recommended to restrict the number of returned objects per query. A user navigating from one page to another page is a very common use case. The way to define pagination is similar to defining pagination in a plain HQL or Criteria query.
	

 ⁠Example 14.39. Defining pagination for a search query
​org.hibernate.Query fullTextQuery =
​ fullTextSession.createFullTextQuery(luceneQuery, Customer.class);
​fullTextQuery.setFirstResult(15); //start from the 15th element
​fullTextQuery.setMaxResults(10); //return 10 elements

Note

			It is still possible to get the total number of matching elements regardless of the pagination via fulltextQuery.getResultSize()
		

		Report a bug
	

 ⁠14.3.1.10.3. Sorting

		Apache Lucene contains a flexible and powerful result sorting mechanism. The default sorting is by relevance and is appropriate for a large variety of use cases. The sorting mechanism can be changed to sort by other properties using the Lucene Sort object to apply a Lucene sorting strategy.
	

 ⁠Example 14.40. Specifying a Lucene Sort
​
​org.hibernate.search.FullTextQuery query = s.createFullTextQuery(query, Book.class);
​org.apache.lucene.search.Sort sort = new Sort(
​ new SortField("title", SortField.STRING));
​query.setSort(sort);
​List results = query.list();

Note

			Fields used for sorting must not be tokenized. For more information about tokenizing, see Section 14.2.1.1.2, “@Field”.
		

		Report a bug
	

 ⁠14.3.1.10.4. Fetching Strategy

		Hibernate Search loads objects using a single query if the return types are restricted to one class. Hibernate Search is restricted by the static fetching strategy defined in the domain model. It is useful to refine the fetching strategy for a specific use case as follows:
	

 ⁠Example 14.41. Specifying FetchMode on a query
​Criteria criteria =
​ s.createCriteria(Book.class).setFetchMode("authors", FetchMode.JOIN);
​s.createFullTextQuery(luceneQuery).setCriteriaQuery(criteria);

		In this example, the query will return all Books matching the LuceneQuery. The authors collection will be loaded from the same query using an SQL outer join.
	

		In a criteria query definition, the type is guessed based on the provided criteria query. As a result, it is not necessary to restrict the return entity types.
	
Important

			The fetch mode is the only adjustable property. Do not use a restriction (a where clause) on the Criteria query because the getResultSize() throws a SearchException if used in conjunction with a Criteria with restriction.
		

		If more than one entity is expected, do not use setCriteriaQuery.
	

		Report a bug
	

 ⁠14.3.1.10.5. Projection

		In some cases, only a small subset of the properties is required. Use Hibernate Search to return a subset of properties as follows:
	

		Hibernate Search extracts properties from the Lucene index and converts them to their object representation and returns a list of Object[]. Projections prevent a time consuming database round-trip. However, they have following constraints:
	
	
				The properties projected must be stored in the index (@Field(store=Store.YES)), which increases the index size.
			

	
				The properties projected must use a FieldBridge implementing org.hibernate.search.bridge.TwoWayFieldBridge or org.hibernate.search.bridge.TwoWayStringBridge, the latter being the simpler version.
			
Note

					All Hibernate Search built-in types are two-way.
				

	
				Only the simple properties of the indexed entity or its embedded associations can be projected. Therefore a whole embedded entity cannot be projected.
			

	
				Projection does not work on collections or maps which are indexed via @IndexedEmbedded
			

		Lucene provides metadata information about query results. Use projection constants to retrieve the metadata.
	

 ⁠Example 14.42. Using Projection to Retrieve Metadata
​org.hibernate.search.FullTextQuery query =
​ s.createFullTextQuery(luceneQuery, Book.class);
​query.setProjection(FullTextQuery.SCORE, FullTextQuery.THIS, "mainAuthor.name");
​List results = query.list();
​Object[] firstResult = (Object[]) results.get(0);
​float score = firstResult[0];
​Book book = firstResult[1];
​String authorName = firstResult[2];

		Fields can be mixed with the following projection constants:
	
	
				FullTextQuery.THIS: returns the initialized and managed entity (as a non projected query would have done).
			

	
				FullTextQuery.DOCUMENT: returns the Lucene Document related to the object projected.
			

	
				FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.
			

	
				FullTextQuery.SCORE: returns the document score in the query. Scores are handy to compare one result against an other for a given query but are useless when comparing the result of different queries.
			

	
				FullTextQuery.ID: the ID property value of the projected object.
			

	
				FullTextQuery.DOCUMENT_ID: the Lucene document ID. Be careful in using this value as a Lucene document ID can change over time between two different IndexReader opening.
			

	
				FullTextQuery.EXPLANATION: returns the Lucene Explanation object for the matching object/document in the given query. This is not suitable for retrieving large amounts of data. Running explanation typically is as costly as running the whole Lucene query per matching element. As a result, projection is recommended.
			

		Report a bug
	

 ⁠14.3.1.10.6. Customizing Object Initialization Strategies

		By default, Hibernate Search uses the most appropriate strategy to initialize entities matching the full text query. It executes one (or several) queries to retrieve the required entities. This approach minimizes database trips where few of the retrieved entities are present in the persistence context (the session) or the second level cache.
	

		If entities are present in the second level cache, force Hibernate Search to look into the cache before retrieving a database object.
	

 ⁠Example 14.43. Check the second-level cache before using a query
​FullTextQuery query = session.createFullTextQuery(luceneQuery, User.class);
​query.initializeObjectWith(
​ ObjectLookupMethod.SECOND_LEVEL_CACHE,
​ DatabaseRetrievalMethod.QUERY
​);

		ObjectLookupMethod defines the strategy to check if an object is easily accessible (without fetching it from the database). Other options are:
	
	
				ObjectLookupMethod.PERSISTENCE_CONTEXT is used if many matching entities are already loaded into the persistence context (loaded in the Session or EntityManager).
			

	
				ObjectLookupMethod.SECOND_LEVEL_CACHE checks the persistence context and then the second-level cache.
			

		Set the following to search in the second-level cache:
	
	
				Correctly configure and activate the second-level cache.
			

	
				Enable the second-level cache for the relevant entity. This is done using annotations such as @Cacheable.
			

	
				Enable second-level cache read access for either Session, EntityManager or Query. Use CacheMode.NORMAL in Hibernate native APIs or CacheRetrieveMode.USE in Java Persistence APIs.
			

Warning

			Unless the second-level cache implementation is EHCache or Infinispan, do not use ObjectLookupMethod.SECOND_LEVEL_CACHE. Other second-level cache providers do not implement this operation efficiently.
		

		Customize how objects are loaded from the database using DatabaseRetrievalMethod as follows:
	
	
				QUERY (default) uses a set of queries to load several objects in each batch. This approach is recommended.
			

	
				FIND_BY_ID loads one object at a time using the Session.get or EntityManager.find semantic. This is recommended if the batch size is set for the entity, which allows Hibernate Core to load entities in batches.
			

		Report a bug
	

 ⁠14.3.1.10.7. Limiting the Time of a Query

		Limit the time a query takes in Hibernate Guide as follows:
	
	
				Raise an exception when arriving at the limit.
			

	
				Limit to the number of results retrieved when the time limit is raised.
			

		Report a bug
	

 ⁠14.3.1.10.8. Raise an Exception on Time Limit

		If a query uses more than the defined amount of time, a QueryTimeoutException is raised (org.hibernate.QueryTimeoutException or javax.persistence.QueryTimeoutException depending on the programmatic API).
	

		To define the limit when using the native Hibernate APIs, use one of the following approaches:
	

 ⁠Example 14.44. Defining a Timeout in Query Execution
​Query luceneQuery = ...;
​FullTextQuery query = fullTextSession.createFullTextQuery(luceneQuery, User.class);
​
​//define the timeout in seconds
​query.setTimeout(5);
​
​//alternatively, define the timeout in any given time unit
​query.setTimeout(450, TimeUnit.MILLISECONDS);
​
​try {
​ query.list();
​}
​catch (org.hibernate.QueryTimeoutException e) {
​ //do something, too slow
​}

		The getResultSize(), iterate() and scroll() honor the timeout until the end of the method call. As a result, Iterable or the ScrollableResults ignore the timeout. Additionally, explain() does not honor this timeout period. This method is used for debugging and to check the reasons for slow performance of a query.
	

		The following is the standard way to limit execution time using the Java Persistence API (JPA):
	

 ⁠Example 14.45. Defining a Timeout in Query Execution
​Query luceneQuery = ...;
​FullTextQuery query = fullTextEM.createFullTextQuery(luceneQuery, User.class);
​
​//define the timeout in milliseconds
​query.setHint("javax.persistence.query.timeout", 450);
​
​try {
​ query.getResultList();
​}
​catch (javax.persistence.QueryTimeoutException e) {
​ //do something, too slow
​}

Important

			The example code does not guarantee that the query stops at the specified results amount.
		

		Report a bug
	

 ⁠14.3.2. Retrieving the Results

				After building the Hibernate query, it is executed the same way as a HQL or Criteria query. The same paradigm and object semantic apply to a Lucene Query query and the common operations like: list(), uniqueResult(), iterate(), scroll() are available.
			

				Report a bug
			

 ⁠14.3.2.1. Performance Considerations

		If you expect a reasonable number of results (for example using pagination) and expect to work on all of them, list() or uniqueResult() are recommended. list() work best if the entity batch-size is set up properly. Note that Hibernate Search has to process all Lucene Hits elements (within the pagination) when using list() , uniqueResult() and iterate().
	

		If you wish to minimize Lucene document loading, scroll() is more appropriate. Don't forget to close the ScrollableResults object when you're done, since it keeps Lucene resources. If you expect to use scroll, but wish to load objects in batch, you can use query.setFetchSize(). When an object is accessed, and if not already loaded, Hibernate Search will load the next fetchSize objects in one pass.
	
Important

			Pagination is preferred over scrolling.
		

		Report a bug
	

 ⁠14.3.2.2. Result Size

		It is sometimes useful to know the total number of matching documents:
	
	
				to provide a total search results feature, as provided by Google searches. For example, "1-10 of about 888,000,000 results"
			

	
				to implement a fast pagination navigation
			

	
				to implement a multi-step search engine that adds approximation if the restricted query returns zero or not enough results
			

		Of course it would be too costly to retrieve all the matching documents. Hibernate Search allows you to retrieve the total number of matching documents regardless of the pagination parameters. Even more interesting, you can retrieve the number of matching elements without triggering a single object load.
	

 ⁠Example 14.46. Determining the Result Size of a Query
​org.hibernate.search.FullTextQuery query =
​ s.createFullTextQuery(luceneQuery, Book.class);
​//return the number of matching books without loading a single one
​assert 3245 == query.getResultSize();
​
​org.hibernate.search.FullTextQuery query =
​ s.createFullTextQuery(luceneQuery, Book.class);
​query.setMaxResult(10);
​List results = query.list();
​//return the total number of matching books regardless of pagination
​assert 3245 == query.getResultSize();

Note

			Like Google, the number of results is approximation if the index is not fully up-to-date with the database (asynchronous cluster for example).
		

		Report a bug
	

 ⁠14.3.2.3. ResultTransformer

		Projection results are returned as Object arrays. If the data structure used for the object does not match the requirements of the application, apply a ResultTransformer. The ResultTransformer builds the required data structure after the query execution.
	

 ⁠Example 14.47. Using ResultTransformer with Projections
​org.hibernate.search.FullTextQuery query =
​ s.createFullTextQuery(luceneQuery, Book.class);
​query.setProjection("title", "mainAuthor.name");
​
​query.setResultTransformer(new StaticAliasToBeanResultTransformer(BookView.class, "title", "author"));
​List<BookView> results = (List<BookView>) query.list();
​for(BookView view : results) {
​ log.info("Book: " + view.getTitle() + ", " + view.getAuthor());
​}

		Examples of ResultTransformer implementations can be found in the Hibernate Core codebase.
	

		Report a bug
	

 ⁠14.3.2.4. Understanding Results

		If the results of a query are not what you expected, the Luke tool is useful in understanding the outcome. However, Hibernate Search also gives you access to the Lucene Explanation object for a given result (in a given query). This class is considered fairly advanced to Lucene users but can provide a good understanding of the scoring of an object. You have two ways to access the Explanation object for a given result:
	
	
				Use the fullTextQuery.explain(int) method
			

	
				Use projection
			

		The first approach takes a document ID as a parameter and return the Explanation object. The document ID can be retrieved using projection and the FullTextQuery.DOCUMENT_ID constant.
	
Warning

			The Document ID is unrelated to the entity ID. Be careful not to confuse these concepts.
		

		In the second approach you project the Explanation object using the FullTextQuery.EXPLANATION constant.
	

 ⁠Example 14.48. Retrieving the Lucene Explanation Object Using Projection
​FullTextQuery ftQuery = s.createFullTextQuery(luceneQuery, Dvd.class)
​ .setProjection(
​ FullTextQuery.DOCUMENT_ID,
​ FullTextQuery.EXPLANATION,
​ FullTextQuery.THIS);
​@SuppressWarnings("unchecked") List<Object[]> results = ftQuery.list();
​for (Object[] result : results) {
​ Explanation e = (Explanation) result[1];
​ display(e.toString());
​}

		Use the Explanation object only when required as it is roughly as expensive as running the Lucene query again.
	

		Report a bug
	

 ⁠14.3.3. Filters

				Apache Lucene has a powerful feature that allows you to filter query results according to a custom filtering process. This is a very powerful way to apply additional data restrictions, especially since filters can be cached and reused. Use cases include:
			
	
						security
					

	
						temporal data (example, view only last month's data)
					

	
						population filter (example, search limited to a given category)
					

				Hibernate Search pushes the concept further by introducing the notion of parameterizable named filters which are transparently cached. For people familiar with the notion of Hibernate Core filters, the API is very similar:
			

 ⁠Example 14.49. Enabling Fulltext Filters for a Query
​fullTextQuery = s.createFullTextQuery(query, Driver.class);
​fullTextQuery.enableFullTextFilter("bestDriver");
​fullTextQuery.enableFullTextFilter("security").setParameter("login", "andre");
​fullTextQuery.list(); //returns only best drivers where andre has credentials

				In this example we enabled two filters on top of the query. You can enable (or disable) as many filters as you like.
			

				Declaring filters is done through the @FullTextFilterDef annotation. This annotation can be on any @Indexed entity regardless of the query the filter is later applied to. This implies that filter definitions are global and their names must be unique. A SearchException is thrown in case two different @FullTextFilterDef annotations with the same name are defined. Each named filter has to specify its actual filter implementation.
			

 ⁠Example 14.50. Defining and Implementing a Filter

@FullTextFilterDefs({
 @FullTextFilterDef(name = "bestDriver", impl = BestDriversFilter.class),
 @FullTextFilterDef(name = "security", impl = SecurityFilterFactory.class)
})
public class Driver { ... }
​public class BestDriversFilter extends org.apache.lucene.search.Filter {
​
​ public DocIdSet getDocIdSet(IndexReader reader) throws IOException {
​ OpenBitSet bitSet = new OpenBitSet(reader.maxDoc());
​ TermDocs termDocs = reader.termDocs(new Term("score", "5"));
​ while (termDocs.next()) {
​ bitSet.set(termDocs.doc());
​ }
​ return bitSet;
​ }
​}

				BestDriversFilter is an example of a simple Lucene filter which reduces the result set to drivers whose score is 5. In this example the specified filter implements the org.apache.lucene.search.Filter directly and contains a no-arg constructor.
			

				If your Filter creation requires additional steps or if the filter you want to use does not have a no-arg constructor, you can use the factory pattern:
			

 ⁠Example 14.51. Creating a filter using the factory pattern
​
​
​@FullTextFilterDef(name = "bestDriver", impl = BestDriversFilterFactory.class)
​public class Driver { ... }
​
​public class BestDriversFilterFactory {
​
​ @Factory
​ public Filter getFilter() {
​ //some additional steps to cache the filter results per IndexReader
​ Filter bestDriversFilter = new BestDriversFilter();
​ return new CachingWrapperFilter(bestDriversFilter);
​ }
​}

				Hibernate Search will look for a @Factory annotated method and use it to build the filter instance. The factory must have a no-arg constructor.
			

				Named filters come in handy where parameters have to be passed to the filter. For example a security filter might want to know which security level you want to apply:
			

 ⁠Example 14.52. Passing parameters to a defined filter
​fullTextQuery = s.createFullTextQuery(query, Driver.class);
​fullTextQuery.enableFullTextFilter("security").setParameter("level", 5);

				Each parameter name should have an associated setter on either the filter or filter factory of the targeted named filter definition.
			

 ⁠Example 14.53. Using parameters in the actual filter implementation
​public class SecurityFilterFactory {
​ private Integer level;
​
​ /**
​ * injected parameter
​ */
​ public void setLevel(Integer level) {
​ this.level = level;
​ }
​
​ @Key public FilterKey getKey() {
​ StandardFilterKey key = new StandardFilterKey();
​ key.addParameter(level);
​ return key;
​ }
​
​ @Factory
​ public Filter getFilter() {
​ Query query = new TermQuery(new Term("level", level.toString()));
​ return new CachingWrapperFilter(new QueryWrapperFilter(query));
​ }
​}

				Note the method annotated @Key returns a FilterKey object. The returned object has a special contract: the key object must implement equals() / hashCode() so that two keys are equal if and only if the given Filter types are the same and the set of parameters are the same. In other words, two filter keys are equal if and only if the filters from which the keys are generated can be interchanged. The key object is used as a key in the cache mechanism.
			

				@Key methods are needed only if:
			
	
						the filter caching system is enabled (enabled by default)
					

	
						the filter has parameters
					

				In most cases, using the StandardFilterKey implementation will be good enough. It delegates the equals() / hashCode() implementation to each of the parameters equals and hashcode methods.
			

				As mentioned before the defined filters are per default cached and the cache uses a combination of hard and soft references to allow disposal of memory when needed. The hard reference cache keeps track of the most recently used filters and transforms the ones least used to SoftReferences when needed. Once the limit of the hard reference cache is reached additional filters are cached as SoftReferences. To adjust the size of the hard reference cache, use hibernate.search.filter.cache_strategy.size (defaults to 128). For advanced use of filter caching, implement your own FilterCachingStrategy. The classname is defined by hibernate.search.filter.cache_strategy.
			

				This filter caching mechanism should not be confused with caching the actual filter results. In Lucene it is common practice to wrap filters using the IndexReader around a CachingWrapperFilter. The wrapper will cache the DocIdSet returned from the getDocIdSet(IndexReader reader) method to avoid expensive recomputation. It is important to mention that the computed DocIdSet is only cachable for the same IndexReader instance, because the reader effectively represents the state of the index at the moment it was opened. The document list cannot change within an opened IndexReader. A different/new IndexReader instance, however, works potentially on a different set of Documents (either from a different index or simply because the index has changed), hence the cached DocIdSet has to be recomputed.
			

				Hibernate Search also helps with this aspect of caching. Per default the cache flag of @FullTextFilterDef is set to FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS which will automatically cache the filter instance as well as wrap the specified filter around a Hibernate specific implementation of CachingWrapperFilter. In contrast to Lucene's version of this class SoftReferences are used together with a hard reference count (see discussion about filter cache). The hard reference count can be adjusted using hibernate.search.filter.cache_docidresults.size (defaults to 5). The wrapping behaviour can be controlled using the @FullTextFilterDef.cache parameter. There are three different values for this parameter:
			
	 Value 	 Definition
	 FilterCacheModeType.NONE 	 No filter instance and no result is cached by Hibernate Search. For every filter call, a new filter instance is created. This setting might be useful for rapidly changing data sets or heavily memory constrained environments.
	 FilterCacheModeType.INSTANCE_ONLY 	 The filter instance is cached and reused across concurrent Filter.getDocIdSet() calls. DocIdSet results are not cached. This setting is useful when a filter uses its own specific caching mechanism or the filter results change dynamically due to application specific events making DocIdSet caching in both cases unnecessary.
	 FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS 	 Both the filter instance and the DocIdSet results are cached. This is the default value.

				Last but not least - why should filters be cached? There are two areas where filter caching shines:
			

				Filters should be cached in the following situations:
			
	
						the system does not update the targeted entity index often (in other words, the IndexReader is reused a lot)
					

	
						the Filter's DocIdSet is expensive to compute (compared to the time spent to execute the query)
					

				Report a bug
			

 ⁠14.3.3.1. Using Filters in a Sharded Environment

		In a sharded environment it is possible to execute queries on a subset of the available shards. This can be done in two steps:
	

 ⁠Procedure 14.1. Query a Subset of Index Shards
	
				Create a sharding strategy that does select a subset of IndexManagers depending on a filter configuration.
			

	
				Activate the filter at query time.
			

 ⁠Example 14.54. Query a Subset of Index Shards

			In this example the query is run against a specific customer shard if the customer filter is activated.
		
​public class CustomerShardingStrategy implements IndexShardingStrategy {
​	
​	 // stored IndexManagers in a array indexed by customerID
​	 private IndexManager[] indexManagers;
​	
​	 public void initialize(Properties properties, IndexManager[] indexManagers) {
​	 this.indexManagers = indexManagers;
​	 }
​	
​	 public IndexManager[] getIndexManagersForAllShards() {
​	 return indexManagers;
​	 }
​	
​	 public IndexManager getIndexManagerForAddition(
​	 Class<?> entity, Serializable id, String idInString, Document document) {
​	 Integer customerID = Integer.parseInt(document.getFieldable("customerID").stringValue());
​	 return indexManagers[customerID];
​	 }
​	
​	 public IndexManager[] getIndexManagersForDeletion(
​	 Class<?> entity, Serializable id, String idInString) {
​	 return getIndexManagersForAllShards();
​	 }
​	
​	 /**
​	 * Optimization; don't search ALL shards and union the results; in this case, we
​	 * can be certain that all the data for a particular customer Filter is in a single
​	 * shard; simply return that shard by customerID.
​	 */
​	 public IndexManager[] getIndexManagersForQuery(
​	 FullTextFilterImplementor[] filters) {
​	 FullTextFilter filter = getCustomerFilter(filters, "customer");
​	 if (filter == null) {
​	 return getIndexManagersForAllShards();
​	 }
​	 else {
​	 return new IndexManager[] { indexManagers[Integer.parseInt(
​	 filter.getParameter("customerID").toString())] };
​	 }
​	 }
​	
​	 private FullTextFilter getCustomerFilter(FullTextFilterImplementor[] filters, String name) {
​	 for (FullTextFilterImplementor filter: filters) {
​	 if (filter.getName().equals(name)) return filter;
​	 }
​	 return null;
​	 }
​	}

		In this example, if the filter named customer is present, only the shard dedicated to this customer is queried, otherwise, all shards are returned. A given Sharding strategy can react to one or more filters and depends on their parameters.
	

		The second step is to activate the filter at query time. While the filter can be a regular filter (as defined in Section 14.3.3, “Filters”) which also filters Lucene results after the query, you can make use of a special filter that will only be passed to the sharding strategy (and is otherwise ignored).
	

		To use this feature, specify the ShardSensitiveOnlyFilter class when declaring your filter.
	
​@Indexed
​@FullTextFilterDef(name="customer", impl=ShardSensitiveOnlyFilter.class)
​public class Customer {
​ ...
​}
​
​FullTextQuery query = ftEm.createFullTextQuery(luceneQuery, Customer.class);
​query.enableFulltextFilter("customer").setParameter("CustomerID", 5);
​@SuppressWarnings("unchecked")
​List<Customer> results = query.getResultList();

		Note that by using the ShardSensitiveOnlyFilter, you do not have to implement any Lucene filter. Using filters and sharding strategy reacting to these filters is recommended to speed up queries in a sharded environment.
	

		Report a bug
	

 ⁠14.3.4. Faceting

				Faceted search is a technique which allows the results of a query to be divided into multiple categories. This categorization includes the calculation of hit counts for each category and the ability to further restrict search results based on these facets (categories). Example 14.55, “Search for Hibernate Search on Amazon” shows a faceting example. The search results in fifteen hits which are displayed on the main part of the page. The navigation bar on the left, however, shows the category Computers & Internet with its subcategories Programming, Computer Science, Databases, Software, Web Development, Networking and Home Computing. For each of these subcategories the number of books is shown matching the main search criteria and belonging to the respective subcategory. This division of the category Computers & Internet is one concrete search facet. Another one is for example the average customer review.
			

 ⁠Example 14.55. Search for Hibernate Search on Amazon

					In Hibernate Search, the classes QueryBuilder and FullTextQuery are the entry point into the faceting API. The former creates faceting requests and the latter accesses the FacetManager. The FacetManager applies faceting requests on a query and selects facets that are added to an existing query to refine search results. The examples use the entity Cd as shown in Example 14.56, “Entity Cd”:
				

 ⁠[image: Search for Hibernate Search on Amazon]

Figure 14.1. Search for Hibernate Search on Amazon

 ⁠Example 14.56. Entity Cd
​
​@Indexed
​public class Cd {
​
​ private int id;
​
​ @Fields({
​ @Field,
​ @Field(name = "name_un_analyzed", analyze = Analyze.NO)
​ })
​ private String name;
​
​ @Field(analyze = Analyze.NO)
​ @NumericField
​ private int price;
​
​ Field(analyze = Analyze.NO)
​ @DateBridge(resolution = Resolution.YEAR)
​ private Date releaseYear;
​
​ @Field(analyze = Analyze.NO)
​ private String label;
​
​
​// setter/getter
​...

				Report a bug
			

 ⁠14.3.4.1. Creating a Faceting Request

		The first step towards a faceted search is to create the FacetingRequest. Currently two types of faceting requests are supported. The first type is called discrete faceting and the second type range faceting request. In the case of a discrete faceting request you specify on which index field you want to facet (categorize) and which faceting options to apply. An example for a discrete faceting request can be seen in Example 14.57, “Creating a discrete faceting request”:
	

 ⁠Example 14.57. Creating a discrete faceting request
​QueryBuilder builder = fullTextSession.getSearchFactory()
​ .buildQueryBuilder()
​ .forEntity(Cd.class)
​ .get();
​FacetingRequest labelFacetingRequest = builder.facet()
​ .name("labelFaceting")
​ .onField("label")
​ .discrete()
​ .orderedBy(FacetSortOrder.COUNT_DESC)
​ .includeZeroCounts(false)
​ .maxFacetCount(1)
​ .createFacetingRequest();

		When executing this faceting request a Facet instance will be created for each discrete value for the indexed field label. The Facet instance will record the actual field value including how often this particular field value occurs within the original query results. orderedBy, includeZeroCounts and maxFacetCount are optional parameters which can be applied on any faceting request. orderedBy allows to specify in which order the created facets will be returned. The default is FacetSortOrder.COUNT_DESC, but you can also sort on the field value or the order in which ranges were specified. includeZeroCount determines whether facets with a count of 0 will be included in the result (per default they are) and maxFacetCount allows to limit the maximum amount of facets returned.
	
Note

			At the moment there are several preconditions an indexed field has to meet in order to apply faceting on it. The indexed property must be of type String, Date or a subtype of Number and null values should be avoided. Furthermore the property has to be indexed with Analyze.NO and in case of a numeric property @NumericField needs to be specified.
		

		The creation of a range faceting request is quite similar except that we have to specify ranges for the field values we are faceting on. A range faceting request can be seen in Example 14.58, “Creating a range faceting request” where three different price ranges are specified. below and above can only be specified once, but you can specify as many from - to ranges as you want. For each range boundary you can also specify via excludeLimit whether it is included into the range or not.
	

 ⁠Example 14.58. Creating a range faceting request
​QueryBuilder builder = fullTextSession.getSearchFactory()
​ .buildQueryBuilder()
​ .forEntity(Cd.class)
​ .get();
​FacetingRequest priceFacetingRequest = builder.facet()
​ .name("priceFaceting")
​ .onField("price")
​ .range()
​ .below(1000)
​ .from(1001).to(1500)
​ .above(1500).excludeLimit()
​ .createFacetingRequest();

		Report a bug
	

 ⁠14.3.4.2. Applying a Faceting Request

		A faceting request is applied to a query via the FacetManager class which can be retrieved via the FullTextQuery class.
	

		You can enable as many faceting requests as you like and retrieve them afterwards via getFacets() specifying the faceting request name. There is also a disableFaceting() method which allows you to disable a faceting request by specifying its name.
	

 ⁠Example 14.59. Applying a faceting request
​// create a fulltext query
​Query luceneQuery = builder.all().createQuery(); // match all query
​FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, Cd.class);
​
​// retrieve facet manager and apply faceting request
​FacetManager facetManager = fullTextQuery.getFacetManager();
​facetManager.enableFaceting(priceFacetingRequest);
​
​// get the list of Cds
​List<Cd> cds = fullTextQuery.list();
​...
​
​// retrieve the faceting results
​List<Facet> facets = facetManager.getFacets("priceFaceting");
​...

		Report a bug
	

 ⁠14.3.4.3. Restricting Query Results

		Last but not least, you can apply any of the returned Facets as additional criteria on your original query in order to implement a "drill-down" functionality. For this purpose FacetSelection can be utilized. FacetSelections are available via the FacetManager and allow you to select a facet as query criteria (selectFacets), remove a facet restriction (deselectFacets), remove all facet restrictions (clearSelectedFacets) and retrieve all currently selected facets (getSelectedFacets). Example 14.60, “Restricting query results via the application of a FacetSelection” shows an example.
	

 ⁠Example 14.60. Restricting query results via the application of a FacetSelection
​// create a fulltext query
​Query luceneQuery = builder.all().createQuery(); // match all query
​FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, clazz);
​
​// retrieve facet manager and apply faceting request
​FacetManager facetManager = fullTextQuery.getFacetManager();
​facetManager.enableFaceting(priceFacetingRequest);
​
​// get the list of Cd
​List<Cd> cds = fullTextQuery.list();
​assertTrue(cds.size() == 10);
​
​// retrieve the faceting results
​List<Facet> facets = facetManager.getFacets("priceFaceting");
​assertTrue(facets.get(0).getCount() == 2)
​
​// apply first facet as additional search criteria
​facetManager.getFacetGroup("priceFaceting").selectFacets(facets.get(0));
​
​// re-execute the query
​cds = fullTextQuery.list();
​assertTrue(cds.size() == 2);

		Report a bug
	

 ⁠14.3.5. Optimizing the Query Process

				Query performance depends on several criteria:
			
	
						The Lucene query.
					

	
						The number of objects loaded: use pagination (always) or index projection (if needed).
					

	
						The way Hibernate Search interacts with the Lucene readers: defines the appropriate reader strategy.
					

	
						Caching frequently extracted values from the index: see Section 14.3.5.1, “Caching Index Values: FieldCache”
					

				Report a bug
			

 ⁠14.3.5.1. Caching Index Values: FieldCache

		The primary function of a Lucene index is to identify matches to your queries. After the query is performed the results must be analyzed to extract useful information. Hibernate Search would typically need to extract the Class type and the primary key.
	

		Extracting the needed values from the index has a performance cost, which in some cases might be very low and not noticeable, but in some other cases might be a good candidate for caching.
	

		The requirements depend on the kind of Projections being used (see Section 14.3.1.10.5, “Projection”), as in some cases the Class type is not needed as it can be inferred from the query context or other means.
	

		Using the @CacheFromIndex annotation you can experiment with different kinds of caching of the main metadata fields required by Hibernate Search:
	
​import static org.hibernate.search.annotations.FieldCacheType.CLASS;
​import static org.hibernate.search.annotations.FieldCacheType.ID;
​
​@Indexed
​@CacheFromIndex({ CLASS, ID })
​public class Essay {
​ ...

		It is possible to cache Class types and IDs using this annotation:
	
	
				CLASS: Hibernate Search will use a Lucene FieldCache to improve peformance of the Class type extraction from the index.
			

				This value is enabled by default, and is what Hibernate Search will apply if you don't specify the @CacheFromIndex annotation.
			

	
				ID: Extracting the primary identifier will use a cache. This is likely providing the best performing queries, but will consume much more memory which in turn might reduce performance.
			

Note

			Measure the performance and memory consumption impact after warmup (executing some queries). Performance may improve by enabling Field Caches but this is not always the case.
		

		Using a FieldCache has two downsides to consider:
	
	
				Memory usage: these caches can be quite memory hungry. Typically the CLASS cache has lower requirements than the ID cache.
			

	
				Index warmup: when using field caches, the first query on a new index or segment will be slower than when you don't have caching enabled.
			

		With some queries the classtype won't be needed at all, in that case even if you enabled the CLASS field cache, this might not be used; for example if you are targeting a single class, obviously all returned values will be of that type (this is evaluated at each Query execution).
	

		For the ID FieldCache to be used, the ids of targeted entities must be using a TwoWayFieldBridge (as all builting bridges), and all types being loaded in a specific query must use the fieldname for the id, and have ids of the same type (this is evaluated at each Query execution).
	

		Report a bug
	

 ⁠14.4. Manual Index Changes

			As Hibernate Core applies changes to the database, Hibernate Search detects these changes and will update the index automatically (unless the EventListeners are disabled). Sometimes changes are made to the database without using Hibernate, as when backup is restored or your data is otherwise affected. In these cases Hibernate Search exposes the Manual Index APIs to explicitly update or remove a single entity from the index, rebuild the index for the whole database, or remove all references to a specific type.
		

			All these methods affect the Lucene Index only, no changes are applied to the database.
		

			Report a bug
		

 ⁠14.4.1. Adding Instances to the Index

		Using FullTextSession.index(T entity) you can directly add or update a specific object instance to the index. If this entity was already indexed, then the index will be updated. Changes to the index are only applied at transaction commit.
	

 ⁠Example 14.61. Indexing an entity via FullTextSession.index(T entity)
​FullTextSession fullTextSession = Search.getFullTextSession(session);
​Transaction tx = fullTextSession.beginTransaction();
​Object customer = fullTextSession.load(Customer.class, 8);
​fullTextSession.index(customer);
​tx.commit(); //index only updated at commit time

		In case you want to add all instances for a type, or for all indexed types, the recommended approach is to use a MassIndexer: see Section 14.4.3.2, “Using a MassIndexer” for more details.
	

		Report a bug
	

 ⁠14.4.2. Deleting Instances from the Index

		It is equally possible to remove an entity or all entities of a given type from a Lucene index without the need to physically remove them from the database. This operation is named purging and is also done through the FullTextSession.
	

 ⁠Example 14.62. Purging a specific instance of an entity from the index
​FullTextSession fullTextSession = Search.getFullTextSession(session);
​Transaction tx = fullTextSession.beginTransaction();
​for (Customer customer : customers) {
​ fullTextSession.purge(Customer.class, customer.getId());
​}
​tx.commit(); //index is updated at commit time

		Purging will remove the entity with the given id from the Lucene index but will not touch the database.
	

		If you need to remove all entities of a given type, you can use the purgeAll method. This operation removes all entities of the type passed as a parameter as well as all its subtypes.
	

 ⁠Example 14.63. Purging all instances of an entity from the index
​FullTextSession fullTextSession = Search.getFullTextSession(session);
​Transaction tx = fullTextSession.beginTransaction();
​fullTextSession.purgeAll(Customer.class);
​//optionally optimize the index
​//fullTextSession.getSearchFactory().optimize(Customer.class);
​tx.commit(); //index changes are applied at commit time

		It is recommended to optimize the index after such an operation.
	
Note

			Methods index, purge, and purgeAll are available on FullTextEntityManager as well.
		

Note

			All manual indexing methods (index, purge, and purgeAll) only affect the index, not the database, nevertheless they are transactional and as such they won't be applied until the transaction is successfully committed, or you make use of flushToIndexes.
		

		Report a bug
	

 ⁠14.4.3. Rebuilding the Index

				If you change the entity mapping to the index, chances are that the whole Index needs to be updated; For example if you decide to index a an existing field using a different analyzer you'll need to rebuild the index for affected types. Also if the Database is replaced (like restored from a backup, imported from a legacy system) you'll want to be able to rebuild the index from existing data. Hibernate Search provides two main strategies to choose from:
			
	
						Using FullTextSession.flushToIndexes() periodically, while using FullTextSession.index() on all entities.
					

	
						Use a MassIndexer.
					

				Report a bug
			

 ⁠14.4.3.1. Using flushToIndexes()

		This strategy consists of removing the existing index and then adding all entities back to the index using FullTextSession.purgeAll() and FullTextSession.index(), however there are some memory and efficiency constraints. For maximum efficiency Hibernate Search batches index operations and executes them at commit time. If you expect to index a lot of data you need to be careful about memory consumption since all documents are kept in a queue until the transaction commit. You can potentially face an OutOfMemoryException if you don't empty the queue periodically; to do this use fullTextSession.flushToIndexes(). Every time fullTextSession.flushToIndexes() is called (or if the transaction is committed), the batch queue is processed, applying all index changes. Be aware that, once flushed, the changes cannot be rolled back.
	

 ⁠Example 14.64. Index rebuilding using index() and flushToIndexes()
​fullTextSession.setFlushMode(FlushMode.MANUAL);
​fullTextSession.setCacheMode(CacheMode.IGNORE);
​transaction = fullTextSession.beginTransaction();
​//Scrollable results will avoid loading too many objects in memory
​ScrollableResults results = fullTextSession.createCriteria(Email.class)
​ .setFetchSize(BATCH_SIZE)
​ .scroll(ScrollMode.FORWARD_ONLY);
​int index = 0;
​while(results.next()) {
​ index++;
​ fullTextSession.index(results.get(0)); //index each element
​ if (index % BATCH_SIZE == 0) {
​ fullTextSession.flushToIndexes(); //apply changes to indexes
​ fullTextSession.clear(); //free memory since the queue is processed
​ }
​}
​transaction.commit();

Note

			hibernate.search.default.worker.batch_size has been deprecated in favor of this explicit API which provides better control
		

		Try to use a batch size that guarantees that your application will not be out of memory: with a bigger batch size objects are fetched faster from database but more memory is needed.
	

		Report a bug
	

 ⁠14.4.3.2. Using a MassIndexer

		Hibernate Search's MassIndexer uses several parallel threads to rebuild the index. You can optionally select which entities need to be reloaded or have it reindex all entities. This approach is optimized for best performance but requires to set the application in maintenance mode. Querying the index is not recommended when a MassIndexer is busy.
	

 ⁠Example 14.65. Rebuild the Index Using a MassIndexer
​fullTextSession.createIndexer().startAndWait();

		This will rebuild the index, deleting it and then reloading all entities from the database. Although it is simple to use, some tweaking is recommended to speed up the process.
	
Warning

			During the progress of a MassIndexer the content of the index is undefined! If a query is performed while the MassIndexer is working most likely some results will be missing.
		

 ⁠Example 14.66. Using a Tuned MassIndexer
​fullTextSession
​ .createIndexer(User.class)
​ .batchSizeToLoadObjects(25)
​ .cacheMode(CacheMode.NORMAL)
​ .threadsToLoadObjects(12)
​ .idFetchSize(150)
​ .progressMonitor(monitor) //a MassIndexerProgressMonitor implementation
​ .startAndWait();

		This will rebuild the index of all User instances (and subtypes), and will create 12 parallel threads to load the User instances using batches of 25 objects per query. These same 12 threads will also need to process indexed embedded relations and custom FieldBridges or ClassBridges to output a Lucene document. The threads trigger lazyloading of additional attributes during the conversion process. Because of this, a high number of threads working in parallel is required. The number of threads working on actual index writing is defined by the backend configuration of each index.
	

		It is recommended to leave cacheMode to CacheMode.IGNORE (the default), as in most reindexing situations the cache will be a useless additional overhead. It might be useful to enable some other CacheMode depending on your data as it could increase performance if the main entity is relating to enum-like data included in the index.
	
Note

			The ideal of number of threads to achieve best performance is highly dependent on your overall architecture, database design and data values. All internal thread groups have meaningful names so they should be easily identified with most diagnostic tools, including threaddumps.
		

Note

			The MassIndexer is unaware of transactions, therefore there is no need to begin one or commit afterward. Because it is not transactional it is not recommended to let users use the system during its processing, as it is unlikely people will be able to find results and the system load might be too high anyway.
		

		Other parameters which affect indexing time and memory consumption are:
	
	
				hibernate.search.[default|<indexname>].exclusive_index_use
			

	
				hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs
			

	
				hibernate.search.[default|<indexname>].indexwriter.max_merge_docs
			

	
				hibernate.search.[default|<indexname>].indexwriter.merge_factor
			

	
				hibernate.search.[default|<indexname>].indexwriter.merge_min_size
			

	
				hibernate.search.[default|<indexname>].indexwriter.merge_max_size
			

	
				hibernate.search.[default|<indexname>].indexwriter.merge_max_optimize_size
			

	
				hibernate.search.[default|<indexname>].indexwriter.merge_calibrate_by_deletes
			

	
				hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size
			

	
				hibernate.search.[default|<indexname>].indexwriter.term_index_interval
			

		Previous versions also had a max_field_length but this was removed from Lucene, it's possible to obtain a similar effect by using a LimitTokenCountAnalyzer.
	

		All .indexwriter parameters are Lucene specific and Hibernate Search passes these parameters through.
	

		The MassIndexer uses a forward only scrollable result to iterate on the primary keys to be loaded, but MySQL's JDBC driver will load all values in memory. To avoid this "optimization" set idFetchSize to Integer.MIN_VALUE.
	

		Report a bug
	

 ⁠14.5. Index Optimization

			From time to time, the Lucene index needs to be optimized. The process is essentially a defragmentation. Until an optimization is triggered Lucene only marks deleted documents as such, no physical are applied. During the optimization process the deletions will be applied which also affects the number of files in the Lucene Directory.
		

			Optimizing the Lucene index speeds up searches but has no effect on the indexation (update) performance. During an optimization, searches can be performed, but will most likely be slowed down. All index updates will be stopped. It is recommended to schedule optimization:
		
	
					On an idle system or when searches are least frequent.
				

	
					After a large number of index modifications are applied.
				

			MassIndexer (see Section 14.4.3.2, “Using a MassIndexer”) optimizes indexes by default at the start and at the end of processing. Use MassIndexer.optimizeAfterPurge and MassIndexer.optimizeOnFinish to change this default behavior.
		

			Report a bug
		

 ⁠14.5.1. Automatic Optimization

		Hibernate Search can automatically optimize an index after either:
	
	
				a certain amount of operations (insertion or deletion).
			

	
				a certain amount of transactions.
			

		The configuration for automatic index optimization can be defined either globally or per index:
	

 ⁠Example 14.67. Defining automatic optimization parameters
hibernate.search.default.optimizer.operation_limit.max = 1000
hibernate.search.default.optimizer.transaction_limit.max = 100
hibernate.search.Animal.optimizer.transaction_limit.max = 50

		An optimization will be triggered to the Animal index as soon as either:
	
	
				the number of additions and deletions reaches 1000.
			

	
				the number of transactions reaches 50 (hibernate.search.Animal.optimizer.transaction_limit.max has priority over hibernate.search.default.optimizer.transaction_limit.max)
			

		If none of these parameters are defined, no optimization is processed automatically.
	

		The default implementation of OptimizerStrategy can be overridden by implementing org.hibernate.search.store.optimization.OptimizerStrategy and setting the optimizer.implementation property to the fully qualified name of your implementation. This implementation must implement the interface, be a public class and have a public constructor taking no arguments.
	

 ⁠Example 14.68. Loading a custom OptimizerStrategy
hibernate.search.default.optimizer.implementation = com.acme.worlddomination.SmartOptimizer
hibernate.search.default.optimizer.SomeOption = CustomConfigurationValue
hibernate.search.humans.optimizer.implementation = default

		The keyword default can be used to select the Hibernate Search default implementation; all properties after the .optimizer key separator will be passed to the implementation's initialize method at start.
	

		Report a bug
	

 ⁠14.5.2. Manual Optimization

		You can programmatically optimize (defragment) a Lucene index from Hibernate Search through the SearchFactory:
	

 ⁠Example 14.69. Programmatic Index Optimization
​FullTextSession fullTextSession = Search.getFullTextSession(regularSession);
​SearchFactory searchFactory = fullTextSession.getSearchFactory();
​
​searchFactory.optimize(Order.class);
​// or
​searchFactory.optimize();

		The first example optimizes the Lucene index holding Orders and the second optimizes all indexes.
	
Note

			searchFactory.optimize() has no effect on a JMS backend. You must apply the optimize operation on the Master node.
		

		Report a bug
	

 ⁠14.5.3. Adjusting Optimization

		Apache Lucene has a few parameters to influence how optimization is performed. Hibernate Search exposes those parameters.
	

		Further index optimization parameters include:
	
	
				hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs
			

	
				hibernate.search.[default|<indexname>].indexwriter.max_merge_docs
			

	
				hibernate.search.[default|<indexname>].indexwriter.merge_factor
			

	
				hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size
			

	
				hibernate.search.[default|<indexname>].indexwriter.term_index_interval
			

		Report a bug
	

 ⁠14.6. Advanced Features

 ⁠14.6.1. Accessing the SearchFactory

		The SearchFactory object keeps track of the underlying Lucene resources for Hibernate Search. It is a convenient way to access Lucene natively. The SearchFactory can be accessed from a FullTextSession:
	

 ⁠Example 14.70. Accessing the SearchFactory
​FullTextSession fullTextSession = Search.getFullTextSession(regularSession);
​SearchFactory searchFactory = fullTextSession.getSearchFactory();

		Report a bug
	

 ⁠14.6.2. Using an IndexReader

		Queries in Lucene are executed on an IndexReader. Hibernate Search might cache index readers to maximize performance, or provide other efficient strategies to retrieve an updated IndexReader minimizing I/O operations. Your code can access these cached resources, but there are several requirements.
	

 ⁠Example 14.71. Accessing an IndexReader
​IndexReader reader = searchFactory.getIndexReaderAccessor().open(Order.class);
​try {
​ //perform read-only operations on the reader
​}
​finally {
​ searchFactory.getIndexReaderAccessor().close(reader);
​}

		In this example the SearchFactory determines which indexes are needed to query this entity (considering a Sharding strategy). Using the configured ReaderProvider on each index, it returns a compound IndexReader on top of all involved indexes. Because this IndexReader is shared amongst several clients, you must adhere to the following rules:
	
	
				Never call indexReader.close(), instead use readerProvider.closeReader(reader) when necessary, preferably in a finally block.
			

	
				Don not use this IndexReader for modification operations (it is a readonly IndexReader, and any such attempt will result in an exception).
			

		Aside from those rules, you can use the IndexReader freely, especially to do native Lucene queries. Using the shared IndexReaders will make most queries more efficient than by opening one directly from, for example, the filesystem.
	

		As an alternative to the method open(Class... types) you can use open(String... indexNames), allowing you to pass in one or more index names. Using this strategy you can also select a subset of the indexes for any indexed type if sharding is used.
	

 ⁠Example 14.72. Accessing an IndexReader by index names
​IndexReader reader = searchFactory.getIndexReaderAccessor().open("Products.1", "Products.3");

		Report a bug
	

 ⁠14.6.3. Accessing a Lucene Directory

		A Directory is the most common abstraction used by Lucene to represent the index storage; Hibernate Search doesn't interact directly with a Lucene Directory but abstracts these interactions via an IndexManager: an index does not necessarily need to be implemented by a Directory.
	

		If you know your index is represented as a Directory and need to access it, you can get a reference to the Directory via the IndexManager. Cast the IndexManager to a DirectoryBasedIndexManager and then use getDirectoryProvider().getDirectory() to get a reference to the underlying Directory. This is not recommended, we would encourage to use the IndexReader instead.
	

		Report a bug
	

 ⁠14.6.4. Sharding Indexes

		In some cases it can be useful to split (shard) the indexed data of a given entity into several Lucene indexes.
	
Warning

			Sharding should only be implemented if the advantages outweigh the disadvantages. Searching sharded indexes will typically be slower as all shards have to be opened for a single search.
		

		Possible use cases for sharding are:
	
	
				A single index is so large that index update times are slowing the application down.
			

	
				A typical search will only hit a subset of the index, such as when data is naturally segmented by customer, region or application.
			

		By default sharding is not enabled unless the number of shards is configured. To do this use the hibernate.search.<indexName>.sharding_strategy.nbr_of_shards property.
	

 ⁠Example 14.73. Enabling Index Sharding

			In this example 5 shards are enabled.
		
hibernate.search.<indexName>.sharding_strategy.nbr_of_shards = 5

		Responsible for splitting the data into sub-indexes is the IndexShardingStrategy. The default sharding strategy splits the data according to the hash value of the ID string representation (generated by the FieldBridge). This ensures a fairly balanced sharding. You can replace the default strategy by implementing a custom IndexShardingStrategy. To use your custom strategy you have to set the hibernate.search.<indexName>.sharding_strategy property.
	

 ⁠Example 14.74. Specifying a Custom Sharding Strategy
hibernate.search.<indexName>.sharding_strategy = my.shardingstrategy.Implementation

		The IndexShardingStrategy property also allows for optimizing searches by selecting which shard to run the query against. By activating a filter a sharding strategy can select a subset of the shards used to answer a query (IndexShardingStrategy.getIndexManagersForQuery) and thus speed up the query execution.
	

		Each shard has an independent IndexManager and so can be configured to use a different directory provider and back end configuration. The IndexManager index names for the Animal entity in Example 14.75, “Sharding Configuration for Entity Animal” are Animal.0 to Animal.4. In other words, each shard has the name of its owning index followed by . (dot) and its index number.
	

 ⁠Example 14.75. Sharding Configuration for Entity Animal
hibernate.search.default.indexBase = /usr/lucene/indexes
hibernate.search.Animal.sharding_strategy.nbr_of_shards = 5
hibernate.search.Animal.directory_provider = filesystem
hibernate.search.Animal.0.indexName = Animal00
hibernate.search.Animal.3.indexBase = /usr/lucene/sharded
hibernate.search.Animal.3.indexName = Animal03

		In Example 14.75, “Sharding Configuration for Entity Animal”, the configuration uses the default id string hashing strategy and shards the Animal index into 5 sub-indexes. All sub-indexes are filesystem instances and the directory where each sub-index is stored is as followed:
	
	
				for sub-index 0: /usr/lucene/indexes/Animal00 (shared indexBase but overridden indexName)
			

	
				for sub-index 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default indexName)
			

	
				for sub-index 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default indexName)
			

	
				for sub-index 3: /usr/lucene/shared/Animal03 (overridden indexBase, overridden indexName)
			

	
				for sub-index 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default indexName)
			

		When implementing a IndexShardingStrategy any field can be used to determine the sharding selection. Consider that to handle deletions, purge and purgeAll operations, the implementation might need to return one or more indexes without being able to read all the field values or the primary identifier. In that case the information is not enough to pick a single index, all indexes should be returned, so that the delete operation will be propagated to all indexes potentially containing the documents to be deleted.
	

		Report a bug
	

 ⁠14.6.5. Customizing Lucene's Scoring Formula

		Lucene allows the user to customize its scoring formula by extending org.apache.lucene.search.Similarity. The abstract methods defined in this class match the factors of the following formula calculating the score of query q for document d:
	

		score(q,d) = coord(q,d) · queryNorm(q) · ∑ t in q (tf(t in d) · idf(t) 2 · t.getBoost() · norm(t,d))
	
	 Factor 	 Description
	 tf(t ind) 	 Term frequency factor for the term (t) in the document (d).
	 idf(t) 	 Inverse document frequency of the term.
	 coord(q,d) 	 Score factor based on how many of the query terms are found in the specified document.
	 queryNorm(q) 	 Normalizing factor used to make scores between queries comparable.
	 t.getBoost() 	 Field boost.
	 norm(t,d) 	 Encapsulates a few (indexing time) boost and length factors.

		It is beyond the scope of this manual to explain this formula in more detail. Please refer to Similarity's Javadocs for more information.
	

		Hibernate Search provides three ways to modify Lucene's similarity calculation.
	

		First you can set the default similarity by specifying the fully specified classname of your Similarity implementation using the property hibernate.search.similarity. The default value is org.apache.lucene.search.DefaultSimilarity.
	

		You can also override the similarity used for a specific index by setting the similarity property
hibernate.search.default.similarity = my.custom.Similarity

	

		Finally you can override the default similarity on class level using the @Similarity annotation.
	
@Entity
@Indexed
@Similarity(impl = DummySimilarity.class)
public class Book {
...
}

		As an example, let's assume it is not important how often a term appears in a document. Documents with a single occurrence of the term should be scored the same as documents with multiple occurrences. In this case your custom implementation of the method tf(float freq) should return 1.0.
	
Warning

			When two entities share the same index they must declare the same Similarity implementation. Classes in the same class hierarchy always share the index, so it's not allowed to override the Similarity implementation in a subtype.
		

			Likewise, it does not make sense to define the similarity via the index setting and the class-level setting as they would conflict. Such a configuration will be rejected.
		

		Report a bug
	

 ⁠14.6.6. Exception Handling Configuration

		Hibernate Search allows you to configure how exceptions are handled during the indexing process. If no configuration is provided then exceptions are logged to the log output by default. It is possible to explicitly declare the exception logging mechanism as follows:
	
hibernate.search.error_handler = log

		The default exception handling occurs for both synchronous and asynchronous indexing. Hibernate Search provides an easy mechanism to override the default error handling implementation.
	

		In order to provide your own implementation you must implement the ErrorHandler interface, which provides the handle(ErrorContext context) method. ErrorContext provides a reference to the primary LuceneWork instance, the underlying exception and any subsequent LuceneWork instances that could not be processed due to the primary exception.
	

		
public interface ErrorContext {
 List<LuceneWork> getFailingOperations();
 LuceneWork getOperationAtFault();
 Throwable getThrowable();
 boolean hasErrors();
}

	

		To register this error handler with Hibernate Search you must declare the fully qualified classname of your ErrorHandler implementation in the configuration properties:
	

		
hibernate.search.error_handler = CustomerErrorHandler

	

		Report a bug
	

 ⁠14.6.7. Disable Hibernate Search

		Hibernate Search can be partially or completely disabled as required. Hibernate Search's indexing can be disabled, for example, if the index is read-only, or you prefer to perform indexing manually, rather than automatically. It is also possible to completely disable Hibernate Search, preventing indexing and searching.
	
 Disable Indexing

			To disable Hibernate Search indexing, change the indexing_strategy configuration option to manual, then restart JBoss EAP.
hibernate.search.indexing_strategy = manual

		
 Disable Hibernate Search Completely

			To disable Hibernate Search completely, disable all listeners by changing the autoregister_listeners configuration option to false, then restart JBoss EAP.
hibernate.search.autoregister_listeners = false

		

		Report a bug
	

 ⁠Chapter 15. JAX-RS Web Services

 ⁠15.1. About JAX-RS

		JAX-RS is the Java API for RESTful web services. It provides support for building web services using REST, through the use of annotations. These annotations simplify the process of mapping Java objects to web resources. The specification is defined here: http://www.jcp.org/en/jsr/detail?id=311.
	

		RESTEasy is the JBoss EAP 6 implementation of JAX-RS. It also provides additional features to the specification.
	

		JBoss EAP 6 is compliant with JSR 311 - JAX-RS.
	

		To get started with JAX-RS and JBoss EAP 6, refer to the helloworld-rs, jax-rs-client, and kitchensink quickstart: Section 1.4.1.1, “Access the Quickstarts”.
	

		Report a bug
	

 ⁠15.2. About RESTEasy

		RESTEasy is a portable implementation of the JAX-RS Java API. It also provides additional features, including a client side framework (the RESTEasy JAX-RS Client Framework) for mapping outgoing requests to remote servers, allowing JAX-RS to operate as a client or server-side specification.
	

		Report a bug
	

 ⁠15.3. About RESTful Web Services

		RESTful web services are designed to expose APIs on the web. They aim to provide better performance, scalability, and flexibility than traditional web services by allowing clients to access data and resources using predictable URLs.
	

		The Java Enterprise Edition 6 specification for RESTful services is JAX-RS. For more information about JAX-RS, refer to Section 15.1, “About JAX-RS” and Section 15.2, “About RESTEasy”.
	

		Report a bug
	

 ⁠15.4. RESTEasy Defined Annotations

 ⁠Table 15.1. JAX-RS/RESTEasy Annotations
	 Annotation 	 Usage
	 ClientResponseType 	 This is an annotation that you can add to a RESTEasy client interface that has a return type of Response.
	 ContentEncoding 	 Meta annotation that specifies a Content-Encoding to be applied via the annotated annotation.
	 DecorateTypes 	 Must be placed on a DecoratorProcessor class to specify the supported types.
	 Decorator 	 Meta-annotation to be placed on another annotation that triggers decoration.
	 Form 	 This can be used as a value object for incoming/outgoing request/responses.
	 StringParameterUnmarshallerBinder 	 Meta-annotation to be placed on another annotation that triggers a StringParameterUnmarshaller to be applied to a string based annotation injector.
	 Cache 	 Set response Cache-Control header automatically.
	 NoCache 	 Set Cache-Control response header of "nocache".
	 ServerCached 	 Specifies that the response to this jax-rs method should be cached on the server.
	 ClientInterceptor 	 Identifies an interceptor as a client-side interceptor.
	 DecoderPrecedence 	 This interceptor is an Content-Encoding decoder.
	 EncoderPrecedence 	 This interceptor is an Content-Encoding encoder.
	 HeaderDecoratorPrecedence 	 HeaderDecoratorPrecedence interceptors should always come first as they decorate a response (on the server), or an outgoing request (on the client) with special, user-defined, headers.
	 RedirectPrecedence 	 Should be placed on a PreProcessInterceptor.
	 SecurityPrecedence 	 Should be placed on a PreProcessInterceptor.
	 ServerInterceptor 	 Identifies an interceptor as a server-side interceptor.
	 NoJackson 	 Placed on class, parameter, field or method when you don't want the Jackson provider to be triggered.
	 ImageWriterParams 	 An annotation that a resource class can use to pass parameters to the IIOImageProvider.
	 DoNotUseJAXBProvider 	 Put this on a class or parameter when you do not want the JAXB MessageBodyReader/Writer used but instead have a more specific provider you want to use to marshall the type.
	 Formatted 	 Format XML output with indentations and newlines. This is a JAXB Decorator.
	 IgnoreMediaTypes 	 Placed on a type, method, parameter, or field to tell JAXRS not to use JAXB provider for a certain media type
	 Stylesheet 	 Specifies an XML stylesheet header.
	 Wrapped 	 Put this on a method or parameter when you want to marshal or unmarshal a collection or array of JAXB objects.
	 WrappedMap 	 Put this on a method or parameter when you want to marshal or unmarshal a map of JAXB objects.
	 XmlHeader 	 Sets an XML header for the returned document.
	 BadgerFish 	 A JSONConfig.
	 Mapped 	 A JSONConfig.
	 XmlNsMap 	 A JSONToXml.
	 MultipartForm 	 This can be used as a value object for incoming/outgoing request/responses of the multipart/form-data mime type.
	 PartType 	 Must be used in conjunction with Multipart providers when writing out a List or Map as a multipart/* type.
	 XopWithMultipartRelated 	 This annotation can be used to process/produce incoming/outgoing XOP messages (packaged as multipart/related) to/from JAXB annotated objects.
	 After 	 Used to add an expiration attribute when signing or as a stale check for verification.
	 Signed 	 Convenience annotation that triggers the signing of a request or response using the DOSETA specification.
	 Verify 	 Verification of input signature specified in a signature header.
	 Path 	 This must exist either in the class or resource method. If it exists in both, the relative path to the resource method is a concatenation of the class and method.
	 PathParam 	 Allows you to map variable URI path fragments into a method call.
	 QueryParam 	 Allows you to map URI query string parameter or URL form encoded parameter to the method invocation.
	 CookieParam 	 Allows you to specify the value of a cookie or object representation of an HTTP request cookie into the method invocation.
	 DefaultValue 	 Can be combined with the other @*Param annotations to define a default value when the HTTP request item does not exist.
	 Context 	 Allows you to specify instances of javax.ws.rs.core.HttpHeaders, javax.ws.rs.core.UriInfo, javax.ws.rs.core.Request, javax.servlet.HttpServletRequest, javax.servlet.HttpServletResponse, and javax.ws.rs.core.SecurityContext objects.
	 Encoded 	 Can be used on a class, method, or param. By default, inject @PathParam and @QueryParams are decoded. By adding the @Encoded annotation, the value of these params are provided in encoded form.

		Report a bug
	

 ⁠15.5. RESTEasy Configuration

 ⁠15.5.1. RESTEasy Configuration Parameters

 ⁠Table 15.2. Elements
	 Option Name 	 Default Value 	 Description
	 resteasy.servlet.mapping.prefix 	 No default 	 If the url-pattern for the Resteasy servlet-mapping is not /*.
	 resteasy.scan 	 false 	 Automatically scan WEB-INF/lib jars and WEB-INF/classes directory for both @Provider and JAX-RS resource classes (@Path, @GET, @POST etc..) and register them.
	 resteasy.scan.providers 	 false 	 Scan for @Provider classes and register them.
	 resteasy.scan.resources 	 false 	 Scan for JAX-RS resource classes.
	 resteasy.providers 	 no default 	 A comma delimited list of fully qualified @Provider class names you want to register.
	 resteasy.use.builtin.providers 	 true 	 Whether or not to register default, built-in @Provider classes.
	 resteasy.resources 	 No default 	 A comma delimited list of fully qualified JAX-RS resource class names you want to register.
	 resteasy.jndi.resources 	 No default 	 A comma delimited list of JNDI names which reference objects you want to register as JAX-RS resources.
	 javax.ws.rs.Application 	 No default 	 Fully qualified name of Application class to bootstrap in a spec portable way.
	 resteasy.media.type.mappings 	 No default 	 Replaces the need for an Accept header by mapping file name extensions (like .xml or .txt) to a media type. Used when the client is unable to use a Accept header to choose a representation (i.e. a browser).
	 resteasy.language.mappings 	 No default 	 Replaces the need for an Accept-Language header by mapping file name extensions (like .en or .fr) to a language. Used when the client is unable to use a Accept-Language header to choose a language (i.e. a browser).
	 resteasy.document.expand.entity.references 	 false 	 Whether to expand external entities or replace them with an empty string. In JBoss EAP 6, this parameter defaults to false, so it replaces them with an empty string.
	 resteasy.document.secure.processing.feature 	 true 	 Impose security constraints in processing org.w3c.dom.Document documents and JAXB object representations.
	 resteasy.document.secure.disableDTDs 	 true 	 Prohibit DTDs in org.w3c.dom.Document documents and JAXB object representations.

Important

			In a Servlet 3.0 container, the resteasy.scan.* configurations in the web.xml file are ignored, and all JAX-RS annotated components will be automatically scanned.
		

		Report a bug
	

 ⁠15.6. JAX-RS Web Service Security

 ⁠15.6.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

Summary

			RESTEasy supports the @RolesAllowed, @PermitAll, and @DenyAll annotations on JAX-RS methods. However, it does not recognize these annotations by default. Follow these steps to configure the web.xml file and enable role-based security.
		
Warning

			Changing the default values of the following RESTEasy parameters may cause RESTEasy applications to be potentially vulnerable against XXE attacks.
		
	
					resteasy.document.expand.entity.references
				

	
					resteasy.document.secure.processing.feature
				

	
					resteasy.document.secure.disableDTDs
				

			For more information about these parameters, see Section 15.5.1, “RESTEasy Configuration Parameters”.
		

Warning

			Do not activate role-based security if the application uses EJBs. The EJB container will provide the functionality, instead of RESTEasy.
		

 ⁠Procedure 15.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
	
				Open the web.xml file for the application in a text editor.
			

	
				Add the following <context-param> to the file, within the web-app tags:
			

<context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>
</context-param>

	
				Declare all roles used within the RESTEasy JAX-RS WAR file, using the <security-role> tags:
			
<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>
<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>

	
				Authorize access to all URLs handled by the JAX-RS runtime for all roles:
			
<security-constraint>
 <web-resource-collection>
	<web-resource-name>Resteasy</web-resource-name>
	<url-pattern>/PATH</url-pattern>
 </web-resource-collection>
 <auth-constraint>
	<role-name>ROLE_NAME</role-name>
	<role-name>ROLE_NAME</role-name>
 </auth-constraint>
</security-constraint>

Result

			Role-based security has been enabled within the application, with a set of defined roles.
		

 ⁠Example 15.1. Example Role-Based Security Configuration

<web-app>

 <context-param>
	<param-name>resteasy.role.based.security</param-name>
	<param-value>true</param-value>
 </context-param>

 <servlet-mapping>
	<servlet-name>Resteasy</servlet-name>
	<url-pattern>/*</url-pattern>
 </servlet-mapping>

 <security-constraint>
	<web-resource-collection>
	 <web-resource-name>Resteasy</web-resource-name>
	 <url-pattern>/security</url-pattern>
	</web-resource-collection>
	<auth-constraint>
	 <role-name>admin</role-name>
	 <role-name>user</role-name>
	</auth-constraint>
 </security-constraint>

 <security-role>
	<role-name>admin</role-name>
 </security-role>
 <security-role>
	<role-name>user</role-name>
 </security-role>

</web-app>

		Report a bug
	

 ⁠15.6.2. Secure a JAX-RS Web Service using Annotations

Summary

			This topic covers the steps to secure a JAX-RS web service using the supported security annotations
		

 ⁠Procedure 15.2. Secure a JAX-RS Web Service using Supported Security Annotations
	
				Enable role-based security. For more information, refer to: Section 15.6.1, “Enable Role-Based Security for a RESTEasy JAX-RS Web Service”
			

	
				Add security annotations to the JAX-RS web service. RESTEasy supports the following annotations:
			
	@RolesAllowed
	
							Defines which roles can access the method. All roles should be defined in the web.xml file.
						

	@PermitAll
	
							Allows all roles defined in the web.xml file to access the method.
						

	@DenyAll
	
							Denies all access to the method.
						

		Report a bug
	

 ⁠15.7. Exception Handling

 ⁠15.7.1. Create an Exception Mapper

Summary

			Exception mappers are custom, application provided components that catch thrown exceptions and write specific HTTP responses.
		

 ⁠Example 15.2. Exception Mapper

			An exception mapper is a class that is annotated with the @Provider annotation, and implements the ExceptionMapper interface.
		

			An example exception mapper is shown below.
		
​
​@Provider
​public class EJBExceptionMapper implements ExceptionMapper<javax.ejb.EJBException>
​ {
​ Response toResponse(EJBException exception) {
​ return Response.status(500).build();
​ }
​}

		To register an exception mapper, list it in the web.xml file under the resteasy.providers context-param, or register it programmatically through the ResteasyProviderFactory class.
	

		Report a bug
	

 ⁠15.7.2. RESTEasy Internally Thrown Exceptions

 ⁠Table 15.3. Exception List
	 Exception 	 HTTP Code 	 Description
	 BadRequestException 	 400 	 Bad Request. The request was not formatted correctly, or there was a problem processing the request input.
	 UnauthorizedException 	 401 	 Unauthorized. Security exception thrown if you are using RESTEasy's annotation-based role-based security.
	 InternalServerErrorException 	 500 	 Internal Server Error.
	 MethodNotAllowedException 	 405 	 There is no JAX-RS method for the resource that can handle the invoked HTTP operation.
	 NotAcceptableException 	 406 	 There is no JAX-RS method that can produce the media types listed in the Accept header.
	 NotFoundException 	 404 	 There is no JAX-RS method that serves the request path/resource.
	 ReaderException 	 400 	 All exceptions thrown from MessageBodyReaders are wrapped within this exception. If there is no ExceptionMapper for the wrapped exception, or if the exception is not a WebApplicationException, then RESTEasy will return a 400 code by default.
	 WriterException 	 500 	 All exceptions thrown from MessageBodyWriters are wrapped within this exception. If there is no ExceptionMapper for the wrapped exception, or if the exception is not a WebApplicationException, then RESTEasy will return a 400 code by default.
	 JAXBUnmarshalException 	 400 	 The JAXB providers (XML and Jettison) throw this exception on reads. They may be wrapping JAXBExceptions. This class extends ReaderException.
	 JAXBMarshalException 	 500 	 The JAXB providers (XML and Jettison) throw this exception on writes. They may be wrapping JAXBExceptions. This class extends WriterException.
	 ApplicationException 	 N/A 	 Wraps all exceptions thrown from application code. It functions in the same way as InvocationTargetException. If there is an ExceptionMapper for wrapped exception, then that is used to handle the request.
	 Failure 	 N/A 	 Internal RESTEasy error. Not logged.
	 LoggableFailure 	 N/A 	 Internal RESTEasy error. Logged.
	 DefaultOptionsMethodException 	 N/A 	 If the user invokes HTTP OPTIONS and no JAX-RS method for it, RESTEasy provides a default behavior by throwing this exception.

		Report a bug
	

 ⁠15.8. RESTEasy Interceptors

 ⁠15.8.1. Intercept JAX-RS Invocations

Summary

			RESTEasy can intercept JAX-RS invocations and route them through listener-like objects called interceptors. This topic covers descriptions of the four types of interceptors.
		

 ⁠Example 15.3. MessageBodyReader/Writer Interceptors

			MessageBodyReaderInterceptors and MessageBodyWriterInterceptors can be used on the either the server or client side. They are annotated with @Provider, as well as either @ServerInterceptor or @ClientInterceptor so that RESTEasy knows whether or not to add them to the interceptor list.
		

			These interceptors wrap around the invocation of MessageBodyReader.readFrom() or MessageBodyWriter.writeTo(). They can be used to wrap the Output or Input streams.
		

			RESTEasy GZIP support has interceptors that create and override the default Output and Input streams with a GzipOutputStream or GzipInputStream so that gzip encoding can work. They can also be used to append headers to the response, or the outgoing request on the client side.
		

public interface MessageBodyReaderInterceptor
 {
 Object read(MessageBodyReaderContext context) throws IOException, WebApplicationException;

 }

public interface MessageBodyWriterInterceptor
 {
 void write(MessageBodyWriterContext context) throws IOException, WebApplicationException;

 }

			The interceptors and the MessageBodyReader or Writer is invoked in one big Java call stack. MessageBodyReaderContext.proceed() or MessageBodyWriterContext.proceed() is called in order to go to the next interceptor or, if there are no more interceptors to invoke, the readFrom() or writeTo() method of the MessageBodyReader or MessageBodyWriter. This wrapping allows objects to be modified before they get to the Reader or Writer, and then cleaned up after proceed() returns.
		

			The example below is a server side interceptor, that adds a header value to the response.
		

@Provider
@ServerInterceptor
public class MyHeaderDecorator implements MessageBodyWriterInterceptor {

 public void write(MessageBodyWriterContext context) throws IOException, WebApplicationException
 {
 context.getHeaders().add("My-Header", "custom");
 context.proceed();
 }
}

 ⁠Example 15.4. PreProcessInterceptor

			PreProcessInterceptors run after a JAX-RS resource method is found to invoke on, but before the actual invocation happens. They are annotated with @ServerInterceptor, and run in sequence.
		

			These interfaces are only usable on the server. They can be used to implement security features, or to handle the Java request. The RESTEasy security implementation uses this type of interceptor to abort requests before they occur if the user does not pass authorization. The RESTEasy caching framework also uses this to return cached responses to avoid invoking methods again.
		
public interface PreProcessInterceptor
 {
 ServerResponse preProcess(HttpRequest request, ResourceMethod method) throws Failure, WebApplicationException;
 }

			If the preProcess() method returns a ServerResponse then the underlying JAX-RS method will not get invoked, and the runtime will process the response and return to the client. If the preProcess() method does not return a ServerResponse, the underlying JAX-RS method will be invoked.
		

 ⁠Example 15.5. PostProcessInterceptors

			PostProcessInterceptors run after the JAX-RS method was invoked, but before MessageBodyWriters are invoked. They are used if a response header needs to be set when a MessageBodyWriter may not be invoked.
		

			They can only be used on the server side. They do not wrap anything, and are invoked in sequence.
		

public interface PostProcessInterceptor
 {
 void postProcess(ServerResponse response);
 }

 ⁠Example 15.6. ClientExecutionInterceptors

			ClientExecutionInterceptors are only usable on the client side. They wrap around the HTTP invocation that goes to the server. They must be annotated with @ClientInterceptor and @Provider. These interceptors run after the MessageBodyWriter, and after the ClientRequest has been built on the client side.
		

			RESTEasy GZIP support uses ClientExecutionInterceptors to set the Accept header to contain "gzip, deflate" before the request goes out. The RESTEasy client cache uses it to check to see if its cache contains the resource before going over the wire.
		

public interface ClientExecutionInterceptor
{
 ClientResponse execute(ClientExecutionContext ctx) throws Exception;
}

public interface ClientExecutionContext
{
 ClientRequest getRequest();

 ClientResponse proceed() throws Exception;
}

		Report a bug
	

 ⁠15.8.2. Bind an Interceptor to a JAX-RS Method

Summary

			All registered interceptors are invoked for every request by default. The AcceptedByMethod interface can be implemented to fine tune this behavior.
		

 ⁠Example 15.7. Binding Interceptors Example

			RESTEasy will call the accept() method for interceptors that implement the AcceptedByMethod interface. If the method returns true, the interceptor will be added to the JAX-RS method's call chain; otherwise it will be ignored for that method.
		

			In the example below, accept() determines if the @GET annotation is present on the JAX-RS method. If it is, the interceptor will be applied to the method's call chain.
		

@Provider
@ServerInterceptor
public class MyHeaderDecorator implements MessageBodyWriterInterceptor, AcceptedByMethod {

 public boolean accept(Class declaring, Method method) {
 return method.isAnnotationPresent(GET.class);
 }

 public void write(MessageBodyWriterContext context) throws IOException, WebApplicationException
 {
 context.getHeaders().add("My-Header", "custom");
 context.proceed();
 }
}

		Report a bug
	

 ⁠15.8.3. Register an Interceptor

Summary

			This topic covers how to register a RESTEasy JAX-RS interceptor in an application.
		

 ⁠Procedure 15.3. Register an Interceptor
	
				To register an interceptor, list it in the web.xml file under the resteasy.providers context-param, or return it as a class or as an object in the Application.getClasses() or Application.getSingletons() method.
			

 ⁠Example 15.8. Registering an interceptor by listing it in the web.xml file:

			
<context-param>
	<param-name>resteasy.providers</param-name>
	<param-value>my.app.CustomInterceptor</paramvalue>
</context-param>

		

 ⁠Example 15.9. Registering an interceptor using the Application.getClasses() method:

			
package org.jboss.resteasy.example;

import javax.ws.rs.core.Application;
import java.util.HashSet;
import java.util.Set;

public class MyApp extends Application {

 public java.util.Set<java.lang.Class<?>> getClasses() {
 Set<Class<?>> resources = new HashSet<Class<?>>();
 resources.add(MyResource.class);
 resources.add(MyProvider.class);
 return resources;
 }
}

		

 ⁠Example 15.10. Registering an interceptor using the Application.getSingletons() method:

			
package org.jboss.resteasy.example;

import javax.ws.rs.core.Application;
import java.util.HashSet;
import java.util.Set;

public class MyApp extends Application {

 protected Set<Object> singletons = new HashSet<Object>();

 public PubSubApplication() {
 singletons.add(new MyResource());
 singletons.add(new MyProvider());
 }

 @Override
 public Set<Object> getSingletons() {
 return singletons;
 }
}

		

		Report a bug
	

 ⁠15.8.4. Interceptor Precedence Families

 ⁠15.8.4.1. About Interceptor Precedence Families

Summary

			Interceptors can be sensitive to the order they are invoked. RESTEasy groups interceptors in families to make ordering them simpler. This reference topic covers the built-in interceptor precedence families and the interceptors associated with each.
		

		There are five predefined families. They are invoked in the following order:
	
	SECURITY
	
					SECURITY interceptors are usually PreProcessInterceptors. They are invoked first because as little as possible should be done before the invocation is authorized.
				

	HEADER_DECORATOR
	
					HEADER_DECORATOR interceptors add headers to a response or an outgoing request. They follow the security interceptors as the added headers may affect the behavior of other interceptor families.
				

	ENCODER
	
					ENCODER interceptors change the OutputStream. For example, the GZIP interceptor creates a GZIPOutputStream to wrap the real OutputStream for compression.
				

	REDIRECT
	
					REDIRECT interceptors are usually used in PreProcessInterceptors, as they may reroute the request and totally bypass the JAX-RS method.
				

	DECODER
	
					DECODER interceptors wrap the InputStream. For example, the GZIP interceptor decoder wraps the InputStream in a GzipInputStream instance.
				

		For complete type safety, there are convenience annotations in the org.jboss.resteasy.annotations.interception package: @DecoredPrecedence, @EncoderPrecedence, @HeaderDecoratorPrecedence, @RedirectPrecedence, @SecurityPrecedence. Use these instead of the @Precedence annotation. For more information, refer Section 15.4, “RESTEasy Defined Annotations”.
	

		Report a bug
	

 ⁠15.8.4.2. Define a Custom Interceptor Precedence Family

Summary

			Custom precedence families can be created and registered in the web.xml file. This topic covers examples of the context params available for defining interceptor precedence families.
		

		There are three context params that can be used to define a new precedence family.
	

 ⁠Example 15.11. resteasy.append.interceptor.precedence

			The resteasy.append.interceptor.precedence context param appends the new precedence family to the default precedence family list.
		

<context-param>
 <param-name>resteasy.append.interceptor.precedence</param-name>
 <param-value>CUSTOM_PRECEDENCE_FAMILY</param-value>
</context-param>

 ⁠Example 15.12. resteasy.interceptor.before.precedence

			The resteasy.interceptor.before.precedence context param defines the default precedence family that the custom family is executed before. The parameter value takes the form DEFAULT_PRECEDENCE_FAMILY/CUSTOM_PRECEDENCE_FAMILY, delimited by a ':'.
		

<context-param>
 <param-name>resteasy.interceptor.before.precedence</param-name>
 <param-value>DEFAULT_PRECEDENCE_FAMILY : CUSTOM_PRECEDENCE_FAMILY</param-value>
</context-param>

 ⁠Example 15.13. resteasy.interceptor.after.precedence

			The resteasy.interceptor.after.precedence context param defines the default precedence family that the custom family is executed after. The parameter value takes the form DEFAULT_PRECEDENCE_FAMILY/CUSTOM_PRECEDENCE_FAMILY, delimited by a :.
		

<context-param>
 <param-name>resteasy.interceptor.after.precedence</param-name>
 <param-value>DEFAULT_PRECEDENCE_FAMILY : CUSTOM_PRECEDENCE_FAMILY</param-value>
</context-param>

		Precedence families are applied to interceptors using the @Precedence annotation. For the default precedence family list, refer to: Section 15.8.4.1, “About Interceptor Precedence Families”.
	

		Report a bug
	

 ⁠15.9. String Based Annotations

 ⁠15.9.1. Convert String Based @*Param Annotations to Objects

		JAX-RS @*Param annotations, including @QueryParam, @MatrixParam, @HeaderParam, @PathParam, and @FormParam, are represented as strings in a raw HTTP request. These types of injected parameters can be converted to objects if these objects have a valueOf(String) static method or a constructor that takes one String parameter.
	

		RESTEasy provides two proprietary @Provider interfaces to handle this conversion for classes that don't have either a valueOf(String) static method, or a string constructor.
	

 ⁠Example 15.14. StringConverter

			The StringConverter interface is implemented to provide custom string marshalling. It is registered under the resteasy.providers context-param in the web.xml file. It can also be registered manually by calling the ResteasyProviderFactory.addStringConverter() method.
		

			The example below is a simple example of using StringConverter.
		
import org.jboss.resteasy.client.ProxyFactory;
import org.jboss.resteasy.spi.StringConverter;
import org.jboss.resteasy.test.BaseResourceTest;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

import javax.ws.rs.HeaderParam;
import javax.ws.rs.MatrixParam;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.ext.Provider;

public class StringConverterTest extends BaseResourceTest
{
 public static class POJO
 {
 private String name;

 public String getName()
 {
	return name;
 }

 public void setName(String name)
 {
	this.name = name;
 }
 }

 @Provider
 public static class POJOConverter implements StringConverter<POJO>
 {
 public POJO fromString(String str)
 {
	System.out.println("FROM STRNG: " + str);
	POJO pojo = new POJO();
	pojo.setName(str);
	return pojo;
 }

 public String toString(POJO value)
 {
	return value.getName();
 }
 }

 @Path("/")
 public static class MyResource
 {
 @Path("{pojo}")
 @PUT
 public void put(@QueryParam("pojo")POJO q, @PathParam("pojo")POJO pp,
		 @MatrixParam("pojo")POJO mp, @HeaderParam("pojo")POJO hp)
 {
	Assert.assertEquals(q.getName(), "pojo");
	Assert.assertEquals(pp.getName(), "pojo");
	Assert.assertEquals(mp.getName(), "pojo");
	Assert.assertEquals(hp.getName(), "pojo");
 }
 }

 @Before
 public void setUp() throws Exception
 {
 dispatcher.getProviderFactory().addStringConverter(POJOConverter.class);
 dispatcher.getRegistry().addPerRequestResource(MyResource.class);
 }

 @Path("/")
 public static interface MyClient
 {
 @Path("{pojo}")
 @PUT
 void put(@QueryParam("pojo")POJO q, @PathParam("pojo")POJO pp,
	 @MatrixParam("pojo")POJO mp, @HeaderParam("pojo")POJO hp);
 }

 @Test
 public void testIt() throws Exception
 {
 MyClient client = ProxyFactory.create(MyClient.class, "http://localhost:8081");
 POJO pojo = new POJO();
 pojo.setName("pojo");
 client.put(pojo, pojo, pojo, pojo);
 }
}

 ⁠Example 15.15. StringParameterUnmarshaller

			The StringParameterUnmarshaller interface is sensitive to the annotations placed on the parameter or field you are injecting into. It is created per injector. The setAnnotations() method is called by resteasy to initialize the unmarshaller.
		

			This interface can be added by creating and registering a provider that implements the interface. It can also be bound using a meta-annotation called org.jboss.resteasy.annotations.StringsParameterUnmarshallerBinder.
		

			The example below formats a java.util.Date based @PathParam.
		
public class StringParamUnmarshallerTest extends BaseResourceTest
{
 @Retention(RetentionPolicy.RUNTIME)
 @StringParameterUnmarshallerBinder(DateFormatter.class)
 public @interface DateFormat
 {
 String value();
 }

 public static class DateFormatter implements StringParameterUnmarshaller<Date>
 {
 private SimpleDateFormat formatter;

 public void setAnnotations(Annotation[] annotations)
 {
 DateFormat format = FindAnnotation.findAnnotation(annotations, DateFormat.class);
 formatter = new SimpleDateFormat(format.value());
 }

 public Date fromString(String str)
 {
 try
 {
 return formatter.parse(str);
 }
 catch (ParseException e)
 {
 throw new RuntimeException(e);
 }
 }
 }

 @Path("/datetest")
 public static class Service
 {
 @GET
 @Produces("text/plain")
 @Path("/{date}")
 public String get(@PathParam("date") @DateFormat("MM-dd-yyyy") Date date)
 {
 System.out.println(date);
 Calendar c = Calendar.getInstance();
 c.setTime(date);
 Assert.assertEquals(3, c.get(Calendar.MONTH));
 Assert.assertEquals(23, c.get(Calendar.DAY_OF_MONTH));
 Assert.assertEquals(1977, c.get(Calendar.YEAR));
 return date.toString();
 }
 }

 @BeforeClass
 public static void setup() throws Exception
 {
 addPerRequestResource(Service.class);
 }

 @Test
 public void testMe() throws Exception
 {
 ClientRequest request = new ClientRequest(generateURL("/datetest/04-23-1977"));
 System.out.println(request.getTarget(String.class));
 }
}

			It defines a new annotation called @DateFormat. The annotation is annotated with the meta-annotation StringParameterUnmarshallerBinder with a reference to the DateFormater classes.
		

			The Service.get() method has a @PathParam parameter that is also annotated with @DateFormat. The application of @DateFormat triggers the binding of the DateFormatter. The DateFormatter will now be run to unmarshal the path parameter into the date parameter of the get() method.
		

		Report a bug
	

 ⁠15.10. Configure File Extensions

 ⁠15.10.1. Map File Extensions to Media Types in the web.xml File

Summary

			Some clients, like browsers, cannot use the Accept and Accept-Language headers to negotiate the representation's media type or language. RESTEasy can map file name suffixes to media types and languages to deal with this issue. Follow these steps to map media types to file extensions, in the web.xml file.
		

 ⁠Procedure 15.4. Map Media Types to File Extensions
	
				Open the web.xml file for the application in a text editor.
			

	
				Add the context-param resteasy.media.type.mappings to the file, inside the web-app tags:
			

<context-param>
 <param-name>resteasy.media.type.mappings</param-name>
</context-param>

	
				Configure the parameter values. The mappings form a comma delimited list. Each mapping is delimited by a ::
			

 ⁠Example 15.16. Example Mapping

<context-param>
 <param-name>resteasy.media.type.mappings</param-name>
 <param-value>html : text/html, json : application/json, xml : application/xml</param-value>
</context-param>

		Report a bug
	

 ⁠15.10.2. Map File Extensions to Languages in the web.xml File

Summary

			Some clients, like browsers, cannot use the Accept and Accept-Language headers to negotiate the representation's media type or language. RESTEasy can map file name suffixes to media types and languages to deal with this issue. Follow these steps to map languages to file extensions, in the web.xml file.
		

 ⁠Procedure 15.5. Map File Extensions to Languages in the web.xml File
	
				Open the web.xml file for the application in a text editor.
			

	
				Add the context-param resteasy.language.mappings to the file, inside the web-app tags:
			

<context-param>
 <param-name>resteasy.language.mappings</param-name>
</context-param>

	
				Configure the parameter values. The mappings form a comma delimited list. Each mapping is delimited by a ::
			

 ⁠Example 15.17. Example Mapping

<context-param>
 <param-name>resteasy.language.mappings</param-name>
 <param-value> en : en-US, es : es, fr : fr</param-name>
</context-param>

		Report a bug
	

 ⁠15.10.3. RESTEasy Supported Media Types

 ⁠Table 15.4. Media Types
	 Media Type 	 Java Type
	 application/*+xml, text/*+xml, application/*+json, application/*+fastinfoset, application/atom+* 	 JaxB annotated classes
	 application/*+xml, text/*+xml 	 org.w3c.dom.Document
	 / 	 java.lang.String
	 / 	 java.io.InputStream
	 text/plain 	 primitives, java.lang.String, or any type that has a String constructor, or static valueOf(String) method for input, toString() for output
	 / 	 javax.activation.DataSource
	 / 	 byte[]
	 / 	 java.io.File
	 application/x-www-form-urlencoded 	 javax.ws.rs.core.MultivaluedMap

		Report a bug
	

 ⁠15.11. RESTEasy JavaScript API

 ⁠15.11.1. About the RESTEasy JavaScript API

		RESTEasy can generate a JavaScript API that uses AJAX calls to invoke JAX-RS operations. Each JAX-RS resource class will generate a JavaScript object of the same name as the declaring class or interface. The JavaScript object contains each JAX-RS method as properties.
	

 ⁠Example 15.18. Simple JAX-RS JavaScript API Example

@Path("foo")
public class Foo{
 @Path("{id}")
 @GET
 public String get(@QueryParam("order") String order, @HeaderParam("X-Foo") String header,
 @MatrixParam("colour") String colour, @CookieParam("Foo-Cookie") String cookie){
 &
 }
 @POST
 public void post(String text){
 }
}

			We can use the previous JAX-RS API in JavaScript using the following code:
		

var text = Foo.get({order: 'desc', 'X-Foo': 'hello',
 colour: 'blue', 'Foo-Cookie': 123987235444});
Foo.put({$entity: text});

		Each JavaScript API method takes an optional object as single parameter where each property is a cookie, header, path, query or form parameter as identified by their name, or the API parameter properties. The properties are available here: Section 15.11.3, “RESTEasy Javascript API Parameters”.
	

		Report a bug
	

 ⁠15.11.2. Enable the RESTEasy JavaScript API Servlet

Summary

			The RESTEasy JavaScript API is not enabled by default. Follow these steps to enable it using the web.xml file.
		

 ⁠Procedure 15.6. Edit web.xml to enable RESTEasy JavaScript API
	
				Open the web.xml file of the application in a text editor.
			

	
				Add the following configuration to the file, inside the web-app tags:
			
<servlet>
 <servlet-name>RESTEasy JSAPI</servlet-name>
 <servlet-class>org.jboss.resteasy.jsapi.JSAPIServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>RESTEasy JSAPI</servlet-name>
 <url-pattern>/URL</url-pattern>
</servlet-mapping>

		Report a bug
	

 ⁠15.11.3. RESTEasy Javascript API Parameters

 ⁠Table 15.5. Parameter Properties
	 Property 	 Default Value 	 Description
	 $entity 	 	 The entity to send as a PUT, POST request.
	 $contentType 	 	 The MIME type of the body entity sent as the Content-Type header. Determined by the @Consumes annotation.
	 $accepts 	 */* 	 The accepted MIME types sent as the Accept header. Determined by the @Provides annotation.
	 $callback 	 	 Set to a function (httpCode, xmlHttpRequest, value) for an asynchronous call. If not present, the call will be synchronous and return the value.
	 $apiURL 	 	 Set to the base URI of the JAX-RS endpoint, not including the last slash.
	 $username 	 	 If username and password are set, they will be used for credentials for the request.
	 $password 	 	 If username and password are set, they will be used for credentials for the request.

		Report a bug
	

 ⁠15.11.4. Build AJAX Queries with the JavaScript API

Summary

			The RESTEasy JavaScript API can be used to manually construct requests. This topic covers examples of this behavior.
		

 ⁠Example 15.19. The REST Object

			The REST object can be used to override RESTEasy JavaScript API client behavior:
		

// Change the base URL used by the API:
REST.apiURL = "http://api.service.com";

// log everything in a div element
REST.log = function(text){
 jQuery("#log-div").append(text);
};

			The REST object contains the following read-write properties:
		
	apiURL
	
						Set by default to the JAX-RS root URL. Used by every JavaScript client API functions when constructing the requests.
					

	log
	
						Set to a function(string) in order to receive RESTEasy client API logs. This is useful if you want to debug your client API and place the logs where you can see them.
					

 ⁠Example 15.20. The REST.Request Class

			The REST.Request class can be used to build custom requests:
		

var r = new REST.Request();
r.setURI("http://api.service.com/orders/23/json");
r.setMethod("PUT");
r.setContentType("application/json");
r.setEntity({id: "23"});
r.addMatrixParameter("JSESSIONID", "12309812378123");
r.execute(function(status, request, entity){
 log("Response is "+status);
});

		Report a bug
	

 ⁠15.11.5. REST.Request Class Members

 ⁠Table 15.6. REST.Request Class
	 Member 	 Description
	 execute(callback) 	 Executes the request with all the information set in the current object. The value is passed to the optional argument callback, not returned.
	 setAccepts(acceptHeader) 	 Sets the Accept request header. Defaults to */*.
	 setCredentials(username, password) 	 Sets the request credentials.
	 setEntity(entity) 	 Sets the request entity.
	 setContentType(contentTypeHeader) 	 Sets the Content-Type request header.
	 setURI(uri) 	 Sets the request URI. This should be an absolute URI.
	 setMethod(method) 	 Sets the request method. Defaults to GET.
	 setAsync(async) 	 Controls whether the request should be asynchronous. Defaults to true.
	 addCookie(name, value) 	 Sets the given cookie in the current document when executing the request. This will be persistent in the browser.
	 addQueryParameter(name, value) 	 Adds a query parameter to the URI query part.
	 addMatrixParameter(name, value) 	 Adds a matrix parameter (path parameter) to the last path segment of the request URI.
	 addHeader(name, value) 	 Adds a request header.

		Report a bug
	

 ⁠15.12. RESTEasy Asynchronous Job Service

 ⁠15.12.1. About the RESTEasy Asynchronous Job Service

		The RESTEasy Asynchronous Job Service is designed to add asynchronous behavior to the HTTP protocol. While HTTP is a synchronous protocol it does have a faint idea of asynchronous invocations. The HTTP 1.1 response code 202, "Accepted" means that the server has received and accepted the response for processing, but the processing has not yet been completed. The Asynchronous Job Service builds around this.
	

		To enable the service, refer to: Section 15.12.2, “Enable the Asynchronous Job Service”. For examples of how the service works, refer to Section 15.12.3, “Configure Asynchronous Jobs for RESTEasy”.
	

		Report a bug
	

 ⁠15.12.2. Enable the Asynchronous Job Service

 ⁠Procedure 15.7. Modify the web.xml file
	
				Enable the asynchronous job service in the web.xml file:
			

<context-param>
 <param-name>resteasy.async.job.service.enabled</param-name>
 <param-value>true</param-value>
</context-param>

Result

			The asynchronous job service has been enabled. For configuration options, refer to: Section 15.12.4, “Asynchronous Job Service Configuration Parameters”.
		

		Report a bug
	

 ⁠15.12.3. Configure Asynchronous Jobs for RESTEasy

Summary

			This topic covers examples of the query parameters for asynchronous jobs with RESTEasy.
		
Warning

			Role based security does not work with the Asynchronous Job Service, as it cannot be implemented portably. If the Asynchronous Job Service is used, application security must be done through XML declarations in the web.xml file instead.
		

Important

			While GET, DELETE, and PUT methods can be invoked asynchronously, this breaks the HTTP 1.1 contract of these methods. While these invocations may not change the state of the resource if invoked more than once, they do change the state of the server as new Job entries with each invocation.
		

 ⁠Example 15.21. The Asynch Parameter

			The asynch query parameter is used to run invocations in the background. A 202 Accepted response is returned, as well as a Location header with a URL pointing to where the response of the background method is located.
		
POST http://example.com/myservice?asynch=true

			The example above will return a 202 Accepted response. It will also return a Location header with a URL pointing to where the response of the background method is located. An example of the location header is shown below:
		

HTTP/1.1 202 Accepted
Location: http://example.com/asynch/jobs/3332334

			The URI will take the form of:
		
/asynch/jobs/{job-id}?wait={millisconds}|nowait=true

			GET, POST and DELETE operations can be performed on this URL.
		
	
					GET returns the JAX-RS resource method invoked as a response if the job was completed. If the job has not been completed, this GET will return a 202 Accepted response code. Invoking GET does not remove the job, so it can be called multiple times.
				

	
					POST does a read of the job response and removes the job if it has been completed.
				

	
					DELETE is called to manually clean up the job queue.
				
Note

						When the Job queue is full, it will evict the earliest job from memory automatically, without needing to call DELETE.
					

 ⁠Example 15.22. Wait / Nowait

			The GET and POST operations allow for the maximum wait time to be defined, using the wait and nowait query parameters. If the wait parameter is not specified, the operation will default to nowait=true, and will not wait at all if the job is not complete. The wait parameter is defined in milliseconds.
		
POST http://example.com/asynch/jobs/122?wait=3000

 ⁠Example 15.23. The Oneway Parameter

			RESTEasy supports fire and forget jobs, using the oneway query parameter.
		
POST http://example.com/myservice?oneway=true

			The example above will return a 202 Accepted response, but no job will be created.
		

		Report a bug
	

 ⁠15.12.4. Asynchronous Job Service Configuration Parameters

Summary

			The table below details the configurable context-params for the Asynchronous Job Service. These parameters can be configured in the web.xml file.
		

 ⁠Table 15.7. Configuration Parameters
	 Parameter 	 Description
	 resteasy.async.job.service.max.job.results 	 Number of job results that can be held in the memory at any one time. Default value is 100.
	 resteasy.async.job.service.max.wait 	 Maximum wait time on a job when a client is querying for it. Default value is 300000.
	 resteasy.async.job.service.thread.pool.size 	 Thread pool size of the background threads that run the job. Default value is 100.
	 resteasy.async.job.service.base.path 	 Sets the base path for the job URIs. Default value is /asynch/jobs

 ⁠Example 15.24. Example Asynchronous Jobs Configuration

<web-app>
 <context-param>
 <param-name>resteasy.async.job.service.enabled</param-name>
 <param-value>true</param-value>
 </context-param>

 <context-param>
 <param-name>resteasy.async.job.service.max.job.results</param-name>
 <param-value>100</param-value>
 </context-param>
 <context-param>
 <param-name>resteasy.async.job.service.max.wait</param-name>
 <param-value>300000</param-value>
 </context-param>
 <context-param>
 <param-name>resteasy.async.job.service.thread.pool.size</param-name>
 <param-value>100</param-value>
 </context-param>
 <context-param>
 <param-name>resteasy.async.job.service.base.path</param-name>
 <param-value>/asynch/jobs</param-value>
 </context-param>

 <listener>
 <listener-class>
 org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap
 </listener-class>
 </listener>

 <servlet>
 <servlet-name>Resteasy</servlet-name>
 <servlet-class>
 org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>Resteasy</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

</web-app>

		Report a bug
	

 ⁠15.13. RESTEasy JAXB

 ⁠15.13.1. Create a JAXB Decorator

Summary

			RESTEasy's JAXB providers have a pluggable way to decorate Marshaller and Unmarshaller instances. An annotation is created that can trigger either a Marshaller or Unmarshaller instance. This topic covers the steps to create a JAXB decorator with RESTEasy.
		

 ⁠Procedure 15.8. Create a JAXB Decorator with RESTEasy
	Create the Processor Class
	
						Create a class that implements DecoratorProcessor<Target, Annotation>. The target is either the JAXB Marshaller or Unmarshaller class. The annotation is created in step two.
					

	
						Annotate the class with @DecorateTypes, and declare the MIME Types the decorator should decorate.
					

	
						Set properties or values within the decorate function.
					

 ⁠Example 15.25. Example Processor Class
​
​import org.jboss.resteasy.core.interception.DecoratorProcessor;
​import org.jboss.resteasy.annotations.DecorateTypes;
​
​import javax.xml.bind.Marshaller;
​import javax.xml.bind.PropertyException;
​import javax.ws.rs.core.MediaType;
​import javax.ws.rs.Produces;
​import java.lang.annotation.Annotation;
​
​@DecorateTypes({"text/*+xml", "application/*+xml"})
​public class PrettyProcessor implements DecoratorProcessor<Marshaller, Pretty>
​{
​ public Marshaller decorate(Marshaller target, Pretty annotation,
​	 Class type, Annotation[] annotations, MediaType mediaType)
​ {
​	target.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
​ }
​}

	Create the Annotation
	
						Create a custom interface that is annotated with the @Decorator annotation.
					

	
						Declare the processor and target for the @Decorator annotation. The processor is created in step one. The target is either the JAXB Marshaller or Unmarshaller class.
					

 ⁠Example 15.26. Example Annotation
​
​import org.jboss.resteasy.annotations.Decorator;
​
​@Target({ElementType.TYPE, ElementType.METHOD, ElementType.PARAMETER, ElementType.FIELD})
​@Retention(RetentionPolicy.RUNTIME)
​@Decorator(processor = PrettyProcessor.class, target = Marshaller.class)
​public @interface Pretty {}

	
				Add the annotation created in step two to a function so that either the input or output is decorated when it is marshalled.
			

Result

			The JAXB decorator has been created and applied within the JAX-RS web service.
		

		Report a bug
	

 ⁠15.13.2. JAXB and XML Provider

		RESTEasy facilitates JAXB provider support for XML.
	
@XmlHeader and @Stylesheet

			RESTEasy provides setting an XML header using the @org.jboss.resteasy.annotations.providers.jaxb.XmlHeader annotation. For example:
​@XmlRootElement
​public static class Thing
​{
​ private String name;
​
​ public String getName()
​ {
​ return name;
​ }
​
​ public void setName(String name)
​ {
​ this.name = name;
​ }
​}
​
​@Path("/test")
​public static class TestService
​{
​
​ @GET
​ @Path("/header")
​ @Produces("application/xml")
​ @XmlHeader("<?xml-stylesheet type='text/xsl' href='${baseuri}foo.xsl' ?>")
​ public Thing get()
​ {
​ Thing thing = new Thing();
​ thing.setName("bill");
​ return thing;
​ }
​}

			 The @XmlHeader ensures that the XML output has an XML-stylesheet header.
		

		RESTEasy has a convenience annotation for stylesheet headers. For example:
​@XmlRootElement
​public static class Thing
​{
​ private String name;
​
​ public String getName()
​ {
​ return name;
​ }
​
​ public void setName(String name)
​ {
​ this.name = name;
​ }
​}
​
​@Path("/test")
​public static class TestService
​{
​
​ @GET
​ @Path("/stylesheet")
​ @Produces("application/xml")
​ @Stylesheet(type="text/css", href="${basepath}foo.xsl")
​ @Junk
​ public Thing getStyle()
​ {
​ Thing thing = new Thing();
​ thing.setName("bill");
​ return thing;
​ }
​}

	

		Report a bug
	

 ⁠15.13.3. JAXB and JSON Provider

		RESTEasy allows you to marshal JAXB annotated POJOs to and from JSON. This provider wraps the Jettison JSON library to accomplish this task. For more information about Jettison and how it works, refer to: http://jettison.codehaus.org/.
​<dependency>
​	<groupId>org.jboss.resteasy</groupId>
​	<artifactId>resteasy-jettison-provider</artifactId>
​	<version>${version.org.jboss.resteasy}</version>
​	<scope>provided</scope>
​</dependency>

	

		Jettison has two mapping formats. One is BadgerFish the other is a Jettison mapped convention format. The mapped convention is the default. For more details on the JAXB + JSON Provider integration with Jettison, refer to: http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/index.html
	

		Report a bug
	

 ⁠15.14. RESTEasy Atom Support

 ⁠15.14.1. About the Atom API and Provider

		The RESTEasy Atom API and Provider is a simple object model that RESTEasy defines to represent Atom. The main classes for the API are in the org.jboss.resteasy.plugins.providers.atom package. RESTEasy uses JAXB to marshal and unmarshal the API. The provider is JAXB based, and is not limited to sending atom objects using XML. All JAXB providers that RESTEasy has can be reused by the Atom API and provider, including JSON. Refer to the javadocs available from the Customer Service Portal for more information on the API.
	
​
​import org.jboss.resteasy.plugins.providers.atom.Content;
​import org.jboss.resteasy.plugins.providers.atom.Entry;
​import org.jboss.resteasy.plugins.providers.atom.Feed;
​import org.jboss.resteasy.plugins.providers.atom.Link;
​import org.jboss.resteasy.plugins.providers.atom.Person;
​
​@Path("atom")
​public class MyAtomService
​{
​
​ @GET
​ @Path("feed")
​ @Produces("application/atom+xml")
​ public Feed getFeed() throws URISyntaxException
​ {
​ Feed feed = new Feed();
​ feed.setId(new URI("http://example.com/42"));
​ feed.setTitle("My Feed");
​ feed.setUpdated(new Date());
​ Link link = new Link();
​ link.setHref(new URI("http://localhost"));
​ link.setRel("edit");
​ feed.getLinks().add(link);
​ feed.getAuthors().add(new Person("John Brown"));
​ Entry entry = new Entry();
​ entry.setTitle("Hello World");
​ Content content = new Content();
​ content.setType(MediaType.TEXT_HTML_TYPE);
​ content.setText("Nothing much");
​ entry.setContent(content);
​ feed.getEntries().add(entry);
​ return feed;
​ }
​}

		Report a bug
	

 ⁠15.14.2. Using JAXB with Atom Provider

		The org.jboss.resteasy.plugins.providers.atom.Content class allows you to unmarshal and marshal JAXB annotated objects that are the body of the content. You can refer the example of sending an Entry with a Customer object attached as the body of the entry's content.
​
​@XmlRootElement(namespace = "http://jboss.org/Customer")
​@XmlAccessorType(XmlAccessType.FIELD)
​public class Customer
​{
​ @XmlElement
​ private String name;
​
​ public Customer()
​ {
​ }
​
​ public Customer(String name)
​ {
​ this.name = name;
​ }
​
​ public String getName()
​ {
​ return name;
​ }
​}
​
​@Path("atom")
​public static class AtomServer
​{
​ @GET
​ @Path("entry")
​ @Produces("application/atom+xml")
​ public Entry getEntry()
​ {
​ Entry entry = new Entry();
​ entry.setTitle("Hello World");
​ Content content = new Content();
​ content.setJAXBObject(new Customer("bill"));
​ entry.setContent(content);
​ return entry;
​ }
​}

		 The Content.setJAXBObject() method is used to specify the content object you are sending back to Java JAXB object to marshal appropriately. If you are using a different base format other than XML, i.e. "application/atom+json", the attached JAXB object is marshalled in the same format. If you have an atom document as your input, you can also extract JAXB objects from Content using the Content.getJAXBObject(Class clazz) method. Here is an example of an input atom document and extracting a Customer object from the content.
​
​@Path("atom")
​public static class AtomServer
​{
​ @PUT
​ @Path("entry")
​ @Produces("application/atom+xml")
​ public void putCustomer(Entry entry)
​ {
​ Content content = entry.getContent();
​ Customer cust = content.getJAXBObject(Customer.class);
​ }
​}

	

		Report a bug
	

 ⁠15.15. YAML Provider

		RESTEasy comes with built in support for YAML using the SnakeYAML library. To enable YAML support, you must insert the following dependencies into the project pom file of your application:
​<dependency>
​	<groupId>org.jboss.resteasy</groupId>
​	<artifactId>resteasy-yaml-provider</artifactId>
​	<version>${version.org.jboss.resteasy}</version>
​	<scope>provided</scope>
​</dependency>
​
​<dependency>
​	<groupId>org.yaml</groupId>
​	<artifactId>snakeyaml</artifactId>
​	<version>${version.org.yaml.snakeyaml}</version>
​</dependency>

	

		YAML provider recognizes three mime types:
			
					text/x-yaml
				

	
					text/yaml
				

	
					application/x-yaml
				

	

		The following example demonstrates how to use YAML in a resource method:
​import javax.ws.rs.Consumes;
​ import javax.ws.rs.GET;
​ import javax.ws.rs.Path;
​ import javax.ws.rs.Produces;
​
​ @Path("/yaml")
​ public class YamlResource
​ {
​
​@GET
​@Produces("text/x-yaml")
​public MyObject getMyObject() {
​ return createMyObject();
​}
​...
​ }

	

		Report a bug
	

 ⁠15.16. EJB Integration

		In order to integrate RESTEasy with EJB, you must first modify the published interfaces of your EJB. Currently, RESTEasy only has simple portable integration with EJBs, so you must also manually configure your RESTEasy war file.
	

		To make an EJB function as a JAX-RS resource, you must annotate an SLSB's @Remote or @Local interface with JAX-RS annotations:
​@Local
​@Path("/Library")
​public interface Library {
​ @GET
​ @Path("/books/{isbn}")
​ public String getBook(@PathParam("isbn") String isbn);
​}
​@Stateless
​public class LibraryBean implements Library {
​...
​}

	

		Next, in RESTEasy's web.xml file, you must manually register the EJB with RESTEasy using the resteasy.jndi.resources <context-param>
​<web-app>
​ <display-name>Archetype Created Web Application</display-name>
​ <context-param>
​ <param-name>resteasy.jndi.resources</param-name>
​ <param-value>LibraryBean/local</param-value>
​ </context-param>
​ <listener>
​ <listener-class>org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap</listener-class>
​ </listener>
​ <servlet>
​ <servlet-name>Resteasy</servlet-name>
​ <servlet-class>org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher</servlet-class>
​ </servlet>
​ <servlet-mapping>
​ <servlet-name>Resteasy</servlet-name>
​ <url-pattern>/*</url-pattern>
​ </servlet-mapping>
​</web-app>

	

		Report a bug
	

 ⁠15.17. JSON Support via Jackson

		Besides the Jettison JAXB adapter for JSON, RESTEasy also supports integration with the Jackson project. Jackson allows you to marshal Java objects to and from JSON. It has a Java bean based model as well as JAXB like APIs.
	

		While Jackson comes with its own JAX-RS integration, RESTEasy expands it. In order to include it in your project, add the following Maven dependency to your build:
​<repository>
​	<id>jboss</id>
​	<url>>http://repository.jboss.org/nexus/content/groups/public/</url>
​</repository>
​...
​<dependency>
​	<groupId>org.jboss.resteasy</groupId>
​	<artifactId>resteasy-jackson-provider</artifactId>
​	<version>${version.org.jboss.resteasy}</version>
​	<scope>provided</scope>
​</dependency>

		 For more information on JSON support via Jackson project, refer to http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/index.html
	

		Report a bug
	

 ⁠15.18. RESTEasy/Spring Integration

 ⁠15.18.1. RESTEasy/Spring integration

Prerequisites
	
				Your application must have an existing JAX-WS service and client configuration.
			

 ⁠Procedure 15.9. Enable the RESTEasy/Spring integration functionality
	
				RESTEasy integrates with Spring 3.0.x.
			

				Maven users must use the resteasy-spring artifact. Alternatively, the jar is available as a module in JBoss EAP 6.
			

				RESTEasy comes with its own Spring ContextLoaderListener that registers a RESTEasy specific BeanPostProcessor that processes JAX-RS annotations when a bean is created by a BeanFactory.This means that RESTEasy will automatically scan for @Provider and JAX-RS resource annotations on your bean class and register them as JAX-RS resources.
			

 ⁠Example 15.27. Edit web.xml

					Add the following to your web.xml file to enable the RESTEasy/Spring integration functionality:
				
​
​<web-app>
​	<display-name>
​			Archetype Created Web Application
​	</display-name>
​	<listener>
​ 	<listener-class>
​ 		org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap
​ 	</listener-class>
​	</listener>
​
​	<listener>
​	 <listener-class>
​ 	 		org.jboss.resteasy.plugins.spring.SpringContextLoaderListener
​ 	</listener-class>
​	</listener>
​
​	<servlet>
​ 	<servlet-name>Resteasy
​ 	</servlet-name>
​ 		<servlet-class>
​ 			org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher
​ 		</servlet-class>
​	</servlet>
​
​	<servlet-mapping>
​ 	<servlet-name>
​ 		Resteasy
​ 	</servlet-name>
​ 	<url-pattern>/*</url-pattern>
​	</servlet-mapping>
​</web-app>
​

				The SpringContextLoaderListener must be declared after ResteasyBootstrap as it uses ServletContext attributes initialized by it.
			

		For more information regarding RestEasy and Spring integration, see http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/
	

		Report a bug
	

 ⁠Chapter 16. JAX-WS Web Services

 ⁠16.1. About JAX-WS Web Services

		Java API for XML Web Services (JAX-WS) is an API included in the Java Enterprise Edition (EE) platform, and is used to create Web Services. Web Services are applications designed to communicate with each other over a network, typically exchanging information in XML or other structured text formats. Web Services are platform-independent. A typical JAX-WS application uses a client/server model. The server component is called a Web Service Endpoint.
	

		JAX-WS has a counterpart for smaller and simpler Web Services, which use a protocol called JAX-RS. JAX-RS is a protocol for Representational State Transfer, or REST. JAX-RS applications are typically light-weight, and rely only on the HTTP protocol itself for communication. JAX-WS makes it easier to support various Web Service oriented protocols, such as WS-Notification, WS-Addressing, WS-Policy, WS-Security, and WS-Trust. They communicate using a specialized XML language called Simple Object Access Protocol (SOAP), which defines a message architecture and message formats.
	

		A JAX-WS Web Service also includes a machine-readable description of the operations it provides, written in Web Services Description Language (WSDL), which is a specialized XML document type.
	

		A Web Service Endpoint consists of a class which implements WebService and WebMethod interfaces.
	

		A Web Service Client consists of a client which depends upon several classes called stubs, which are generated from the WSDL definition. JBoss EAP 6 includes the tools to generate the classes from WSDL.
	

		In a JAX-WS Web service, a formal contract is established to describe the interface that the Web Service offers. The contract is typically written in WSDL, but may be written in SOAP messages. The architecture of the Web Service typically addresses business requirements, such as transactions, security, messaging, and coordination. JBoss EAP 6 provides mechanisms for handling these business concerns.
	

		Web Services Description Language (WSDL) is an XML-based language used to describe Web Services and how to access them. The Web Service itself is written in Java or another programming language. The WSDL definition consists of references to the interface, port definitions, and instructions for how other Web Services should interact with it over a network. Web Services communicate with each other using Simple Object Access Protocol (SOAP). This type of Web Service contrasts with RESTful Web Services, built using Representative State Transfer (REST) design principles. These RESTful Web Services do not require the use of WSDL or SOAP, but rely on the structure of the HTTP protocol itself to define how other services interact with them.
	

		JBoss EAP 6 includes support for deploying JAX-WS Web Service endpoints. This support is provided by JBossWS. Configuration of the Web Services subsystem, such as endpoint configuration, handler chains, and handlers, is provided through the webservices subsystem.
	
Working Examples

			The JBoss EAP Quickstarts include several fully-functioning JAX-WS Web Service applications. These examples include:
		
	
				wsat-simple
			

	
				wsba-coordinator-completion-simple
			

	
				wsba-participant-completion-simple
			

		Report a bug
	

 ⁠16.2. Configure the webservices Subsystem

		Many configuration options are available for the webservices subsystem, which controls the behavior of Web Services deployed into JBoss EAP 6. The command to modify each element in the Management CLI script (EAP_HOME/bin/jboss-cli.sh or EAP_HOME/bin/jboss-cli.bat) is provided. Remove the /profile=default portion of the command for a standalone server, or replace default with the name of profile to configure.
	
Published Endpoint Address

			You can rewrite the <soap:address> element in endpoint-published WSDL contracts. This ability can be used to control the server address that is advertised to clients for each endpoint. Each of the following optional elements can be modified to suit your requirements. If there is any active WS deployment then modification of any of these elements requires a server reload.
		

 ⁠Table 16.1. Configuration Elements for Published Endpoint Addresses
	 Element 	 Description 	 CLI Command
	 modify-wsdl-address 	
						Whether to always modify the WSDL address. If true, the content of <soap:address> will always be overwritten. If false, the content of <soap:address> will only be overwritten if it is not a valid URL. The values used will be the wsdl-host, wsdl-port, and wsdl-secure-port described below.
					

					 	
						/profile=default/subsystem=webservices/:write-attribute(name=modify-wsdl-address,value=true)
					

					
	 wsdl-host 	
						The hostname / IP address to be used for rewriting <soap:address>. If wsdl-host is set to the string jbossws.undefined.host, the requester's host is used when rewriting the <soap:address>.
					

					 	 /profile=default/subsystem=webservices/:write-attribute(name=wsdl-host,value=10.1.1.1)
	 wsdl-port 	 An integer which explicitly defines the HTTP port that will be used for rewriting the SOAP address. If undefined, the HTTP port is identified by querying the list of installed HTTP connectors. 	
						/profile=default/subsystem=webservices/:write-attribute(name=wsdl-port,value=8080)
					

					
	 wsdl-secure-port 	 An integer which explicitly defines the HTTPS port that will be used for rewriting the SOAP address. If undefined, the HTTPS port is identified by querying the list of installed HTTPS connectors. 	
						/profile=default/subsystem=webservices/:write-attribute(name=wsdl-secure-port,value=8443)
					

					

Predefined Endpoint Configurations

			You can define endpoint configurations which can be referenced by endpoint implementations. One way this might be used is to add a given handler to any WS endpoint that is marked with a given endpoint configuration with the annotation @org.jboss.ws.api.annotation.EndpointConfig.
		

		JBoss EAP 6 includes a default Standard-Endpoint-Config. An example of a custom configuration, Recording-Endpoint-Config, is also included. This provides an example of a recording handler. The Standard-Endpoint-Config is automatically used for any endpoint which is not associated with any other configuration.
	

		To read the Standard-Endpoint-Config using the Management CLI, use the following command:
	
/profile=default/subsystem=webservices/endpoint-config=Standard-Endpoint-Config/:read-resource(recursive=true,proxies=false,include-runtime=false,include-defaults=true)
Endpoint Configurations

			An endpoint configuration, referred to as an endpoint-config in the Management API, includes a pre-handler-chain, post-handler-chain and some properties, which are applied to a particular endpoint. The following commands read and add and endpoint config.
		

 ⁠Example 16.1. Read an Endpoint Config
/profile=default/subsystem=webservices/endpoint-config=Recording-Endpoint-Config:read-resource

 ⁠Example 16.2. Add an Endpoint Config
/profile=default/subsystem=webservices/endpoint-config=My-Endpoint-Config:add

Handler Chains

			Each endpoint config may be associated with PRE and POST handler chains. Each handler chain may include JAXWS-compliant handlers. For outbound messages, PRE handler chain handlers are executed before any handler attached to the endpoints using standard JAXWS means, such as the @HandlerChain annotation. POST handler chain handlers are executed after usual endpoint handlers. For inbound messages, the opposite applies. JAX-WS is a standard API for XML-based web services, and is documented at http://jcp.org/en/jsr/detail?id=224.
		

		A handler chain may also include a protocol-bindings attribute, which sets the protocols which trigger the chain to start.
	

 ⁠Example 16.3. Read a Handler Chain
/profile=default/subsystem=webservices/endpoint-config=Recording-Endpoint-Config/pre-handler-chain=recording-handlers:read-resource

 ⁠Example 16.4. Add a Handler Chain
/profile=default/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-chain=my-handlers:add(protocol-bindings="##SOAP11_HTTP")

Handlers

			A JAXWS handler is a child element handler within a handler chain. The handler takes a class attribute, which is the fully-qualified classname of the handler class. When the endpoint is deployed, an instance of that class is created for each referencing deployment. Either the deployment class loader or the class loader for module org.jboss.as.webservices.server.integration must be able to load the handler class.
		

 ⁠Example 16.5. Read a Handler
/profile=default/subsystem=webservices/endpoint-config=Recording-Endpoint-Config/pre-handler-chain=recording-handlers/handler=RecordingHandler:read-resource

 ⁠Example 16.6. Add a Handler
/profile=default/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-chain=my-handlers/handler=foo-handler:add(class="org.jboss.ws.common.invocation.RecordingServerHandler")

Web Services Runtime Information

			You can view runtime information about Web Services, such as the web context and the WSDL URL, by querying the endpoints themselves. You can use the * character to query all endpoints at once. The following examples show the command for a both a server in a managed domain and for a standalone server.
		

 ⁠Example 16.7. View Runtime Information about All Web Service Endpoints on A Server in a Managed Domain

			This command displays information about all endpoints on a server named server-one, which is hosted on physical host master and running in a managed domain.
		
/host=master/server=server-one/deployment="*"/subsystem=webservices/endpoint="*":read-resource

 ⁠Example 16.8. View Runtime Information about All Web Service Endpoints on a Standalone Server

			This command displays information about all Web Service endpoints on a standalone server.
		
/deployment="*"/subsystem=webservices/endpoint="*":read-resource

 ⁠Example 16.9. Example Endpoint Information

			The following is an example displaying hypothetical output.
		
{
 "outcome" => "success",
 "result" => [{
 "address" => [
 ("deployment" => "jaxws-samples-handlerchain.war"),
 ("subsystem" => "webservices"),
 ("endpoint" => "jaxws-samples-handlerchain:TestService")
],
 "outcome" => "success",
 "result" => {
 "class" => "org.jboss.test.ws.jaxws.samples.handlerchain.EndpointImpl",
 "context" => "jaxws-samples-handlerchain",
 "name" => "TestService",
 "type" => "JAXWS_JSE",
 "wsdl-url" => "http://localhost:8080/jaxws-samples-handlerchain?wsdl"
 }
 }]
}

		Report a bug
	

 ⁠16.3. Configure the HTTP Timeout per Application

		The HTTP session timeout defines the period after which a HTTP session is considered to have become invalid because there was no activity within the specified period.
	

		The HTTP session timeout can be configured in several places. In order of precedence these are:
	
	
				Application - defined in the application's web.xml configuration file.
			

	
				Server - specified via the default-session-timeout attribute.
			

	
				Default - 30 minutes.
			

 ⁠Procedure 16.1. Configure the HTTP Timeout per Application
	
				Edit the application's WEB-INF/web.xml file.
			

	
				Add the following configuration XML to the file, changing 30 to the desired timeout (in minutes).
			

				
<session-config>
 <session-timeout>30</session-timeout>
</session-config>

			

	
				If you modified the WAR file, redeploy the application. If you exploded the WAR file, no further action is required because JBoss EAP will automatically undeploy and redeploy the application.
			

		Report a bug
	

 ⁠16.4. JAX-WS Web Service Endpoints

 ⁠16.4.1. About JAX-WS Web Service Endpoints

		This topic is an overview of JAX-WS web service endpoints and accompanying concepts. A JAX-WS Web Service endpoint is the server component of a Web Service. Clients and other Web Services communicate it over the HTTP protocol using an XML language called Simple Object Access Protocol (SOAP). The endpoint itself is deployed into the JBoss EAP 6 container.
	

		WSDL descriptors can be created in one of two ways:
	
	
				You can write WSDL descriptors manually.
			

	
				You can use JAX-WS annotations that create the WSDL descriptors automatically for you. This is the most common method for creating WSDL descriptors.
			

		An endpoint implementation bean is annotated with JAX-WS annotations and deployed to the server. The server automatically generates and publishes the abstract contract in WSDL format for client consumption. All marshalling and unmarshalling is delegated to the Java Architecture for XML Binding (JAXB) service.
	

		The endpoint itself may be a POJO (Plain Old Java Object) or a Java EE Web Application. You can also expose endpoints using an EJB3 stateless session bean. It is packaged into a Web Archive (WAR) file. The specification for packaging the endpoint, called a Java Service Endpoint (JSE) is defined in JSR-181, which can be found at http://jcp.org/aboutJava/communityprocess/mrel/jsr181/index2.html.
	
Development Requirements

			A Web Service must fulfill the requirements of the JAX-WS API and the Web Services metadata specification at http://www.jcp.org/en/jsr/summary?id=181. A valid implementation meets the following requirements:
		
	
				It contains a javax.jws.WebService annotation.
			

	
				All method parameters and return types are compatible with the JAXB 2.0 specification, JSR-222. Refer to http://www.jcp.org/en/jsr/summary?id=222 for more information.
			

 ⁠Example 16.10. Example POJO Endpoint
​
​@WebService
​@SOAPBinding(style = SOAPBinding.Style.RPC)
​public class JSEBean01
​{
​ @WebMethod
​ public String echo(String input)
​ {
​ ...
​ }
​}

 ⁠Example 16.11. Example Web Services Endpoint
​
​<web-app ...>
​ <servlet>
​ <servlet-name>TestService</servlet-name>
​ <servlet-class>org.jboss.test.ws.jaxws.samples.jsr181pojo.JSEBean01</servlet-class>
​ </servlet>
​ <servlet-mapping>
​ <servlet-name>TestService</servlet-name>
​ <url-pattern>/*</url-pattern>
​ </servlet-mapping>
​</web-app>
​
​

 ⁠Example 16.12. Exposing an Endpoint in an EJB

			This EJB3 stateless session bean exposes the same method on the remote interface and as an endpoint operation.
		
​
​@Stateless
​@Remote(EJB3RemoteInterface.class)
​@RemoteBinding(jndiBinding = "/ejb3/EJB3EndpointInterface")
​
​@WebService
​@SOAPBinding(style = SOAPBinding.Style.RPC)
​public class EJB3Bean01 implements EJB3RemoteInterface
​{
​ @WebMethod
​ public String echo(String input)
​ {
​ ...
​ }
​}
​

Endpoint Providers

			JAX-WS services typically implement a Java service endpoint interface (SEI), which may be mapped from a WSDL port type, either directly or using annotations. This SEI provides a high-level abstraction which hides the details between Java objects and their XML representations. However, in some cases, services need the ability to operate at the XML message level. The endpoint Provider interface provides this functionality to Web Services which implement it.
		
Consuming and Accessing the Endpoint

			After you deploy your Web Service, you can consume the WSDL to create the component stubs which will be the basis for your application. Your application can then access the endpoint to do its work.
		
Working Examples

			The JBoss EAP Quickstarts include several fully-functioning JAX-WS Web Service applications. These examples include:
		
	
				wsat-simple
			

	
				wsba-coordinator-completion-simple
			

	
				wsba-participant-completion-simple
			

		Report a bug
	

 ⁠16.4.2. Write and Deploy a JAX-WS Web Service Endpoint

Introduction

			This topic discusses the development of a simple JAX-WS service endpoint, which is the server-side component, which responds to requests from JAX-WS clients and publishes the WSDL definition for itself. For more in-depth information about JAX-WS service endpoints, refer to Section 16.6.2, “JAX-WS Common API Reference” and the API documentation bundle in Javadoc format, distributed with JBoss EAP 6.
		
Development Requirements

			A Web Service must fulfill the requirements of the JAXWS API and the Web Services meta data specification at http://www.jcp.org/en/jsr/summary?id=181. A valid implementation meets the following requirements:
		
	
				It contains a javax.jws.WebService annotation.
			

	
				All method parameters and return types are compatible with the JAXB 2.0 specification, JSR-222. Refer to http://www.jcp.org/en/jsr/summary?id=222 for more information.
			

 ⁠Example 16.13. Example Service Implementation
​
​
​package org.jboss.test.ws.jaxws.samples.retail.profile;
​
​import javax.ejb.Stateless;
​import javax.jws.WebService;
​import javax.jws.WebMethod;
​import javax.jws.soap.SOAPBinding;
​
​@Stateless
​@WebService(
​ name="ProfileMgmt",
​ targetNamespace = "http://org.jboss.ws/samples/retail/profile",
​ serviceName = "ProfileMgmtService")
​@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
​public class ProfileMgmtBean {
​
​ @WebMethod
​ public DiscountResponse getCustomerDiscount(DiscountRequest request) {
​ return new DiscountResponse(request.getCustomer(), 10.00);
​ }
​}

 ⁠Example 16.14. Example XML Payload

			The following is an example of the DiscountRequest class which is used by the ProfileMgmtBean bean in the previous example. The annotations are included for verbosity. Typically, the JAXB defaults are reasonable and do not need to be specified.
		
​
​
​package org.jboss.test.ws.jaxws.samples.retail.profile;
​
​import javax.xml.bind.annotation.XmlAccessType;
​import javax.xml.bind.annotation.XmlAccessorType;
​import javax.xml.bind.annotation.XmlType;
​
​import org.jboss.test.ws.jaxws.samples.retail.Customer;
​
​@XmlAccessorType(XmlAccessType.FIELD)
​@XmlType(
​ name = "discountRequest",
​ namespace="http://org.jboss.ws/samples/retail/profile",
​ propOrder = { "customer" }
​)
​public class DiscountRequest {
​
​ protected Customer customer;
​
​ public DiscountRequest() {
​ }
​
​ public DiscountRequest(Customer customer) {
​ this.customer = customer;
​ }
​
​ public Customer getCustomer() {
​ return customer;
​ }
​
​ public void setCustomer(Customer value) {
​ this.customer = value;
​ }
​
​}

			More complex mappings are possible. Refer to the JAXB API specification at https://jaxb.java.net/ for more information.
		

Package Your Deployment

			The implementation class is wrapped in a JAR deployment. Any metadata required for deployment is taken from the annotations on the implementation class and the service endpoint interface. Deploy the JAR using the Management CLI or the Management Interface, and the HTTP endpoint is created automatically.
		

		The following listing shows an example of the correct structure for JAR deployment of an EJB Web Service.
	

 ⁠Example 16.15. Example JAR Structure for a Web Service Deployment
[user@host ~]$ jar -tf jaxws-samples-retail.jar
org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.class
org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.class
org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtBean.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.class
org/jboss/test/ws/jaxws/samples/retail/profile/package-info.class

		Report a bug
	

 ⁠16.5. JAX-WS Web Service Clients

 ⁠16.5.1. Consume and Access a JAX-WS Web Service

		After creating a Web Service endpoint, either manually or using JAX-WS annotations, you can access its WSDL, which can be used to create the basic client application which will communicate with the Web Service. The process of generating Java code from the published WSDL is called consuming the Web service. This happens in the following phases:
	
	
				Create the client artifacts.
			

	
				Construct a service stub.
			

Create the Client Artifacts

			Before you can create client artifacts, you need to create your WSDL contract. The following WSDL contract is used for the examples presented in the rest of this topic.
		

		The examples below rely on having this WSDL contract in the ProfileMgmtService.wsdl file.
	

 ⁠Example 16.16. Example WSDL Contract
​
​
​<definitions
​ name='ProfileMgmtService'
​ targetNamespace='http://org.jboss.ws/samples/retail/profile'
​ xmlns='http://schemas.xmlsoap.org/wsdl/'
​ xmlns:ns1='http://org.jboss.ws/samples/retail'
​ xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
​ xmlns:tns='http://org.jboss.ws/samples/retail/profile'
​ xmlns:xsd='http://www.w3.org/2001/XMLSchema'>
​
​ <types>
​
​ <xs:schema targetNamespace='http://org.jboss.ws/samples/retail'
​ version='1.0' xmlns:xs='http://www.w3.org/2001/XMLSchema'>
​ <xs:complexType name='customer'>
​ <xs:sequence>
​ <xs:element minOccurs='0' name='creditCardDetails' type='xs:string'/>
​ <xs:element minOccurs='0' name='firstName' type='xs:string'/>
​ <xs:element minOccurs='0' name='lastName' type='xs:string'/>
​ </xs:sequence>
​ </xs:complexType>
​ </xs:schema>
​
​ <xs:schema
​ targetNamespace='http://org.jboss.ws/samples/retail/profile'
​ version='1.0'
​ xmlns:ns1='http://org.jboss.ws/samples/retail'
​ xmlns:tns='http://org.jboss.ws/samples/retail/profile'
​ xmlns:xs='http://www.w3.org/2001/XMLSchema'>
​
​ <xs:import namespace='http://org.jboss.ws/samples/retail'/>
​ <xs:element name='getCustomerDiscount'
​ nillable='true' type='tns:discountRequest'/>
​ <xs:element name='getCustomerDiscountResponse'
​ nillable='true' type='tns:discountResponse'/>
​ <xs:complexType name='discountRequest'>
​ <xs:sequence>
​ <xs:element minOccurs='0' name='customer' type='ns1:customer'/>
​
​ </xs:sequence>
​ </xs:complexType>
​ <xs:complexType name='discountResponse'>
​ <xs:sequence>
​ <xs:element minOccurs='0' name='customer' type='ns1:customer'/>
​ <xs:element name='discount' type='xs:double'/>
​ </xs:sequence>
​ </xs:complexType>
​ </xs:schema>
​
​ </types>
​
​ <message name='ProfileMgmt_getCustomerDiscount'>
​ <part element='tns:getCustomerDiscount' name='getCustomerDiscount'/>
​ </message>
​ <message name='ProfileMgmt_getCustomerDiscountResponse'>
​ <part element='tns:getCustomerDiscountResponse'
​ name='getCustomerDiscountResponse'/>
​ </message>
​ <portType name='ProfileMgmt'>
​ <operation name='getCustomerDiscount'
​ parameterOrder='getCustomerDiscount'>
​
​ <input message='tns:ProfileMgmt_getCustomerDiscount'/>
​ <output message='tns:ProfileMgmt_getCustomerDiscountResponse'/>
​ </operation>
​ </portType>
​ <binding name='ProfileMgmtBinding' type='tns:ProfileMgmt'>
​ <soap:binding style='document'
​ transport='http://schemas.xmlsoap.org/soap/http'/>
​ <operation name='getCustomerDiscount'>
​ <soap:operation soapAction=''/>
​ <input>
​
​ <soap:body use='literal'/>
​ </input>
​ <output>
​ <soap:body use='literal'/>
​ </output>
​ </operation>
​ </binding>
​ <service name='ProfileMgmtService'>
​ <port binding='tns:ProfileMgmtBinding' name='ProfileMgmtPort'>
​
​ <soap:address
​ location='SERVER:PORT/jaxws-samples-retail/ProfileMgmtBean'/>
​ </port>
​ </service>
​</definitions>	
​

Note

			If you use JAX-WS annotations to create your Web Service endpoint, the WSDL contract is generated automatically, and you only need its URL. You can get this URL from the Webservices section of the Runtime section of the web-based Management Console, after the endpoint is deployed.
		

		The wsconsume.sh or wsconsume.bat tool is used to consume the abstract contract (WSDL) and produce annotated Java classes and optional sources that define it. The command is located in the EAP_HOME/bin/ directory of the JBoss EAP 6 installation.
	

 ⁠Example 16.17. Syntax of the wsconsume.sh Command

[user@host bin]$./wsconsume.sh --help
WSConsumeTask is a cmd line tool that generates portable JAX-WS artifacts from a WSDL file.

usage: org.jboss.ws.tools.cmd.WSConsume [options] <wsdl-url>

options:
 -h, --help Show this help message
 -b, --binding=<file> One or more JAX-WS or JAXB binding files
 -k, --keep Keep/Generate Java source
 -c --catalog=<file> Oasis XML Catalog file for entity resolution
 -p --package=<name> The target package for generated source
 -w --wsdlLocation=<loc> Value to use for @WebService.wsdlLocation
 -o, --output=<directory> The directory to put generated artifacts
 -s, --source=<directory> The directory to put Java source
 -t, --target=<2.0|2.1|2.2> The JAX-WS specification target
 -q, --quiet Be somewhat more quiet
 -v, --verbose Show full exception stack traces
 -l, --load-consumer Load the consumer and exit (debug utility)
 -e, --extension Enable SOAP 1.2 binding extension
 -a, --additionalHeaders Enable processing of implicit SOAP headers
 -n, --nocompile Do not compile generated sources

		The following command generates the source .java files listed in the output, from the ProfileMgmtService.wsdl file. The sources use the directory structure of the package, which is specified with the -p switch.
	
[user@host bin]$ wsconsume.sh -k -p org.jboss.test.ws.jaxws.samples.retail.profile ProfileMgmtService.wsdl
output/org/jboss/test/ws/jaxws/samples/retail/profile/Customer.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/package-info.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/Customer.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/package-info.class

		Both .java source files and compiled .class files are generated into the output/ directory within the directory where you run the command.
	

 ⁠Table 16.2. Descriptions of Artifacts Created by wsconsume.sh
	 File 	 Description
	
						ProfileMgmt.java
					

					 	
						Service endpoint interface.
					

					
	
						Customer.java
					

					 	
						Custom data type.
					

					
	
						Discount*.java
					

					 	
						Custom data types.
					

					
	
						ObjectFactory.java
					

					 	
						JAXB XML registry.
					

					
	
						package-info.java
					

					 	
						JAXB package annotations.
					

					
	
						ProfileMgmtService.java
					

					 	
						Service factory.
					

					

		The wsconsume.sh command generates all custom data types (JAXB annotated classes), the service endpoint interface and a service factory class. These artifacts are used to build web service client implementations.
	
Construct a Service Stub

			Web service clients use service stubs to abstract the details of a remote web service invocation. To a client application, a WS invocation looks like an invocation of any other business component. In this case the service endpoint interface acts as the business interface, and a service factory class is not used to construct it as a service stub.
		

 ⁠Example 16.18. Constructing a Service Stub and Accessing the Endpoint

			The following example first creates a service factory using the WSDL location and the service name. Next, it uses the service endpoint interface created by the wsconsume.sh command to build the service stub. Finally, the stub can be used just as any other business interface would be.
		

			You can find the WSDL URL for your endpoint in the web-based Management Console. Choose the Runtime menu item in the top bar then the Webservices entry under Subsystems in the left pane. View the Attributes tab to review your deployments details.
		
​
​
​import javax.xml.ws.Service;
​[...]
​Service service = Service.create(
​new URL("http://example.org/service?wsdl"),
​new QName("MyService")
​);
​ProfileMgmt profileMgmt = service.getPort(ProfileMgmt.class);
​
​// Use the service stub in your application

		Report a bug
	

 ⁠16.5.2. Develop a JAX-WS Client Application

		This topic discusses JAX-WS Web Service clients in general. The client communicates with, and requests work from, the JAX-WS endpoint, which is deployed in the Java Enterprise Edition 6 container. For detailed information about the classes, methods, and other implementation details mentioned below, refer to Section 16.6.2, “JAX-WS Common API Reference” and the relevant sections of the Javadocs bundle included with JBoss EAP 6.
	
Service
	Overview
	
					A Service is an abstraction which represents a WSDL service. A WSDL service is a collection of related ports, each of which includes a port type bound to a particular protocol and a particular endpoint address.
				

					Usually, the Service is generated when the rest of the component stubs are generated from an existing WSDL contract. The WSDL contract is available via the WSDL URL of the deployed endpoint, or can be created from the endpoint source using the wsprovide.sh command in the EAP_HOME/bin/ directory.
				

					This type of usage is referred to as the static use case. In this case, you create instances of the Service class which is created as one of the component stubs.
				

					You can also create the service manually, using the Service.create method. This is referred to as the dynamic use case.
				

	Usage
		Static Use Case
	
								The static use case for a JAX-WS client assumes that you already have a WSDL contract. This may be generated by an external tool or generated by using the correct JAX-WS annotations when you create your JAX-WS endpoint.
							

								To generate your component stubs, you use the wsconsume.sh or wsconsume.bat script which is included in EAP_HOME/bin/. The script takes the WSDL URL or file as a parameter, and generates multiple of files, structured in a directory tree. The source and class files representing your Service are named CLASSNAME_Service.java and CLASSNAME_Service.class, respectively.
							

								The generated implementation class has two public constructors, one with no arguments and one with two arguments. The two arguments represent the WSDL location (a java.net.URL) and the service name (a javax.xml.namespace.QName) respectively.
							

								The no-argument constructor is the one used most often. In this case the WSDL location and service name are those found in the WSDL. These are set implicitly from the @WebServiceClient annotation that decorates the generated class.
							

 ⁠Example 16.19. Example Generated Service Class
​
​@WebServiceClient(name="StockQuoteService", targetNamespace="http://example.com/stocks", wsdlLocation="http://example.com/stocks.wsdl")
​public class StockQuoteService extends javax.xml.ws.Service
​{
​ public StockQuoteService()
​ {
​ super(new URL("http://example.com/stocks.wsdl"), new QName("http://example.com/stocks", "StockQuoteService"));
​ }
​
​ public StockQuoteService(String wsdlLocation, QName serviceName)
​ {
​ super(wsdlLocation, serviceName);
​ }
​
​ ...
​}

	Dynamic Use Case
	
								In the dynamic case, no stubs are generated automatically. Instead, a web service client uses the Service.create method to create Service instances. The following code fragment illustrates this process.
							

 ⁠Example 16.20. Creating Services Manually
​
​URL wsdlLocation = new URL("http://example.org/my.wsdl");
​QName serviceName = new QName("http://example.org/sample", "MyService");
​Service service = Service.create(wsdlLocation, serviceName);
​

	Handler Resolver
	
					JAX-WS provides a flexible plug-in framework for message processing modules, known as handlers. These handlers extend the capabilities of a JAX-WS runtime system. A Service instance provides access to a HandlerResolver via a pair of getHandlerResolver and setHandlerResolver methods that can configure a set of handlers on a per-service, per-port or per-protocol binding basis.
				

					When a Service instance creates a proxy or a Dispatch instance, the handler resolver currently registered with the service creates the required handler chain. Subsequent changes to the handler resolver configured for a Service instance do not affect the handlers on previously created proxies or Dispatch instances.
				

	Executor
	
					Service instances can be configured with a java.util.concurrent.Executor. The Executor invokes any asynchronous callbacks requested by the application. The setExecutor and getExecutor methods of Service can modify and retrieve the Executor configured for a service.
				

Dynamic Proxy

			A dynamic proxy is an instance of a client proxy using one of the getPort methods provided in the Service. The portName specifies the name of the WSDL port the service uses. The serviceEndpointInterface specifies the service endpoint interface supported by the created dynamic proxy instance.
		

 ⁠Example 16.21. getPort Methods
​
​public <T> T getPort(QName portName, Class<T> serviceEndpointInterface)
​public <T> T getPort(Class<T> serviceEndpointInterface)

		The Service Endpoint Interface is usually generated using the wsconsume.sh command, which parses the WSDL and creates Java classes from it.
	

		A typed method which returns a port is also provided. These methods also return dynamic proxies that implement the SEI. See the following example.
	

 ⁠Example 16.22. Returning the Port of a Service
​
​@WebServiceClient(name = "TestEndpointService", targetNamespace = "http://org.jboss.ws/wsref",
​ wsdlLocation = "http://localhost.localdomain:8080/jaxws-samples-webserviceref?wsdl")
​
​public class TestEndpointService extends Service
​{
​ ...
​
​ public TestEndpointService(URL wsdlLocation, QName serviceName) {
​ super(wsdlLocation, serviceName);
​ }
​
​ @WebEndpoint(name = "TestEndpointPort")
​ public TestEndpoint getTestEndpointPort()
​ {
​ return (TestEndpoint)super.getPort(TESTENDPOINTPORT, TestEndpoint.class);
​ }
​}
​

@WebServiceRef

			The @WebServiceRef annotation declares a reference to a Web Service. It follows the resource pattern shown by the javax.annotation.Resource annotation defined in http://www.jcp.org/en/jsr/summary?id=250.
		
Use Cases for @WebServiceRef
	
				You can use it to define a reference whose type is a generated Service class. In this case, the type and value element each refer to the generated Service class type. Moreover, if the reference type can be inferred by the field or method declaration the annotation is applied to, the type and value elements may (but are not required to) have the default value of Object.class. If the type cannot be inferred, then at least the type element must be present with a non-default value.
			

	
				You can use it to define a reference whose type is an SEI. In this case, the type element may (but is not required to) be present with its default value if the type of the reference can be inferred from the annotated field or method declaration. However, the value element must always be present and refer to a generated service class type, which is a subtype of javax.xml.ws.Service. The wsdlLocation element, if present, overrides the WSDL location information specified in the @WebService annotation of the referenced generated service class.
			

 ⁠Example 16.23. @WebServiceRef Examples
​
​public class EJB3Client implements EJB3Remote
​{
​ @WebServiceRef
​ public TestEndpointService service4;
​
​ @WebServiceRef
​ public TestEndpoint port3;

Dispatch

			XML Web Services use XML messages for communication between the endpoint, which is deployed in the Java EE container, and any clients. The XML messages use an XML language called Simple Object Access Protocol (SOAP). The JAX-WS API provides the mechanisms for the endpoint and clients to each be able to send and receive SOAP messages. Marshalling is the process of converting a Java Object into a SOAP XML message. Unmarshalling is the process of converting the SOAP XML message back into a Java Object.
		

		In some cases, you need access to the raw SOAP messages themselves, rather than the result of the conversion. The Dispatch class provides this functionality. Dispatch operates in one of two usage modes, which are identified by one of the following constants.
	
	
				javax.xml.ws.Service.Mode.MESSAGE - This mode directs client applications to work directly with protocol-specific message structures. When used with a SOAP protocol binding, a client application works directly with a SOAP message.
			

	
				javax.xml.ws.Service.Mode.PAYLOAD - This mode causes the client to work with the payload itself. For instance, if it is used with a SOAP protocol binding, a client application would work with the contents of the SOAP body rather than the entire SOAP message.
			

		Dispatch is a low-level API which requires clients to structure messages or payloads as XML, with strict adherence to the standards of the individual protocol and a detailed knowledge of message or payload structure. Dispatch is a generic class which supports input and output of messages or message payloads of any type.
	

 ⁠Example 16.24. Dispatch Usage
​
​Service service = Service.create(wsdlURL, serviceName);
​Dispatch dispatch = service.createDispatch(portName, StreamSource.class, Mode.PAYLOAD);
​
​String payload = "<ns1:ping xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";
​dispatch.invokeOneWay(new StreamSource(new StringReader(payload)));
​
​payload = "<ns1:feedback xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";
​Source retObj = (Source)dispatch.invoke(new StreamSource(new StringReader(payload)));

Asynchronous Invocations

			The BindingProvider interface represents a component that provides a protocol binding which clients can use. It is implemented by proxies and is extended by the Dispatch interface.
		

		BindingProvider instances may provide asynchronous operation capabilities.Asynchronous operation invocations are decoupled from the BindingProvider instance at invocation time. The response context is not updated when the operation completes. Instead, a separate response context is made available using the Response interface.
	

 ⁠Example 16.25. Example Asynchronous Invocation
​
​public void testInvokeAsync() throws Exception
​{
​ URL wsdlURL = new URL("http://" + getServerHost() + ":8080/jaxws-samples-asynchronous?wsdl");
​ QName serviceName = new QName(targetNS, "TestEndpointService");
​ Service service = Service.create(wsdlURL, serviceName);
​ TestEndpoint port = service.getPort(TestEndpoint.class);
​ Response response = port.echoAsync("Async");
​ // access future
​ String retStr = (String) response.get();
​ assertEquals("Async", retStr);
​}

@Oneway Invocations

			The @Oneway annotation indicates that the given web method takes an input message but returns no output message. Usually, a @Oneway method returns the thread of control to the calling application before the business method is executed.
		

 ⁠Example 16.26. Example @Oneway Invocation
​
​@WebService (name="PingEndpoint")
​@SOAPBinding(style = SOAPBinding.Style.RPC)
​public class PingEndpointImpl
​{
​ private static String feedback;
​
​ @WebMethod
​ @Oneway
​ public void ping()
​ {
​ log.info("ping");
​ feedback = "ok";
​ }
​
​ @WebMethod
​ public String feedback()
​ {
​ log.info("feedback");
​ return feedback;
​ }
​}

Timeout Configuration

			Two different properties control the timeout behavior of the HTTP connection and the timeout of a client which is waiting to receive a message. The first is javax.xml.ws.client.connectionTimeout and the second is javax.xml.ws.client.receiveTimeout. Each is expressed in milliseconds, and the correct syntax is shown below.
		

 ⁠Example 16.27. JAX-WS Timeout Configuration
​
​public void testConfigureTimeout() throws Exception
​{
​ //Set timeout until a connection is established
​ ((BindingProvider)port).getRequestContext().put("javax.xml.ws.client.connectionTimeout", "6000");
​
​ //Set timeout until the response is received
​ ((BindingProvider) port).getRequestContext().put("javax.xml.ws.client.receiveTimeout", "1000");
​
​ port.echo("testTimeout");
​}

		Report a bug
	

 ⁠16.6. JAX-WS Development Reference

 ⁠16.6.1. Enable Web Services Addressing (WS-Addressing)

Prerequisites
	
				Your application must have an existing JAX-WS service and client configuration.
			

 ⁠Procedure 16.2. Annotate and Update client code
	Annotate the service endpoint

				Add the @Addressing annotation to the application's endpoint code.
			

 ⁠Example 16.28. @Addressing annotation

					This example demonstrates a regular JAX-WS endpoint with the @Addressing annotation added.
				
​package org.jboss.test.ws.jaxws.samples.wsa;
​
​import javax.jws.WebService;
​import javax.xml.ws.soap.Addressing;
​
​@WebService
​(
​ portName = "AddressingServicePort",
​ serviceName = "AddressingService",
​ wsdlLocation = "WEB-INF/wsdl/AddressingService.wsdl",
​ targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wsaddressing",
​ endpointInterface = "org.jboss.test.ws.jaxws.samples.wsa.ServiceIface"
​)
​@Addressing(enabled=true, required=true)
​public class ServiceImpl implements ServiceIface
​{
​ public String sayHello()
​ {
​ return "Hello World!";
​ }
​}

	Update client code

				Update the client code in the application so that it configures WS-Addressing.
			

 ⁠Example 16.29. Client configuration for WS-Addressing

					This example demonstrates a regular JAX-WS client updated to configure WS-Addressing.
				
​package org.jboss.test.ws.jaxws.samples.wsa;
​
​import java.net.URL;
​import javax.xml.namespace.QName;
​import javax.xml.ws.Service;
​import javax.xml.ws.soap.AddressingFeature;
​
​public final class AddressingTestCase
​{
​ private final String serviceURL =
​ "http://localhost:8080/jaxws-samples-wsa/AddressingService";
​
​ public static void main(String[] args) throws Exception
​ {
​ // construct proxy
​ QName serviceName =
​ new QName("http://www.jboss.org/jbossws/ws-extensions/wsaddressing",
​ "AddressingService");
​ URL wsdlURL = new URL(serviceURL + "?wsdl");
​ Service service = Service.create(wsdlURL, serviceName);
​ ServiceIface proxy =
​ (ServiceIface)service.getPort(ServiceIface.class,
​ new AddressingFeature());
​ // invoke method
​ proxy.sayHello();
​ }
​}

Result

			The client and endpoint are now communicating using WS-Addressing.
		

		Report a bug
	

 ⁠16.6.2. JAX-WS Common API Reference

		Several JAX-WS development concepts are shared between Web Service endpoints and clients. These include the handler framework, message context, and fault handling.
	
Handler Framework

			The handler framework is implemented by a JAX-WS protocol binding in the runtime of the client and the endpoint, which is the server component. Proxies and Dispatch instances, known collectively as binding providers, each use protocol bindings to bind their abstract functionality to specific protocols.
		

		Client and server-side handlers are organized into an ordered list known as a handler chain. The handlers within a handler chain are invoked each time a message is sent or received. Inbound messages are processed by handlers before the binding provider processes them. Outbound messages are processed by handlers after the binding provider processes them.
	

		Handlers are invoked with a message context which provides methods to access and modify inbound and outbound messages and to manage a set of properties. Message context properties facilitate communication between individual handlers, as well as between handlers and client and service implementations. Different types of handlers are invoked with different types of message contexts.
	
Types of Message Handlers
	Logical Handler
	
					Logical handlers only operate on message context properties and message payloads. Logical handlers are protocol-independent and cannot affect protocol-specific parts of a message. Logical handlers implement interface javax.xml.ws.handler.LogicalHandler.
				

	Protocol Handler
	
					Protocol handlers operate on message context properties and protocol-specific messages. Protocol handlers are specific to a particular protocol and may access and change protocol-specific aspects of a message. Protocol handlers implement any interface derived from javax.xml.ws.handler.Handler except javax.xml.ws.handler.LogicalHandler.
				

	Service Endpoint Handler
	
					On a service endpoint, handlers are defined using the @HandlerChain annotation. The location of the handler chain file can be either an absolute java.net.URL in externalForm or a relative path from the source file or class file.
				

 ⁠Example 16.30. Example Service Endpoint Handler
​
​@WebService
​@HandlerChain(file = "jaxws-server-source-handlers.xml")
​public class SOAPEndpointSourceImpl
​{
​ ...
​}
​

	Service Client Handler
	
					On a JAX-WS client, handlers are defined either by using the @HandlerChain annotation, as in service endpoints, or dynamically, using the JAX-WS API.
				

 ⁠Example 16.31. Defining a Service Client Handler Using the API
​
​Service service = Service.create(wsdlURL, serviceName);
​Endpoint port = (Endpoint)service.getPort(Endpoint.class);
​
​BindingProvider bindingProvider = (BindingProvider)port;
​List<Handler> handlerChain = new ArrayList<Handler>();
​handlerChain.add(new LogHandler());
​handlerChain.add(new AuthorizationHandler());
​handlerChain.add(new RoutingHandler());
​bindingProvider.getBinding().setHandlerChain(handlerChain);

						The call to the setHandlerChain method is required.
					

Message Context

			The MessageContext interface is the super interface for all JAX-WS message contexts. It extends Map<String,Object> with additional methods and constants to manage a set of properties that enable handlers in a handler chain to share processing related state. For example, a handler may use the put method to insert a property into the message context. One or more other handlers in the handler chain may subsequently obtain the message via the get method.
		

		Properties are scoped as either APPLICATION or HANDLER. All properties are available to all handlers for an instance of a message exchange pattern (MEP) of a particular endpoint. For instance, if a logical handler puts a property into the message context, that property is also available to any protocol handlers in the chain during the execution of an MEP instance.
	
Note

			An asynchronous Message Exchange Pattern (MEP) allows for sending and receiving messages asynchronously at the HTTP connection level. You can enable it by setting additional properties in the request context.
		

		Properties scoped at the APPLICATION level are also made available to client applications and service endpoint implementations. The defaultscope for a property is HANDLER.
	

		Logical amd SOAP messages use different contexts.
	
	Logical Message Context
	
					When logical handlers are invoked, they receive a message context of type LogicalMessageContext. LogicalMessageContext extends MessageContext with methods which obtain and modify the message payload. It does not provide access to the protocol-specific aspects of a message. A protocol binding defines which components of a message are available via a logical message context. A logical handler deployed in a SOAP binding can access the contents of the SOAP body but not the SOAP headers. On the other hand, the XML/HTTP binding defines that a logical handler can access the entire XML payload of a message.
				

	SOAP Message Context
	
					When SOAP handlers are invoked, they receive a SOAPMessageContext. SOAPMessageContext extends MessageContext with methods which obtain and modify the SOAP message payload.
				

Fault Handling

			An application may throw a SOAPFaultException or an application-specific user exception. In the case of the latter, the required fault wrapper beans are generated at run-time if they are not already part of the deployment.
		

 ⁠Example 16.32. Fault Handling Examples
​
​public void throwSoapFaultException()
​{
​ SOAPFactory factory = SOAPFactory.newInstance();
​ SOAPFault fault = factory.createFault("this is a fault string!", new QName("http://foo", "FooCode"));
​ fault.setFaultActor("mr.actor");
​ fault.addDetail().addChildElement("test");
​ throw new SOAPFaultException(fault);
​}

​
​public void throwApplicationException() throws UserException
​{
​ throw new UserException("validation", 123, "Some validation error");
​}

JAX-WS Annotations

			The annotations available via the JAX-WS API are defined in JSR-224, which can be found at http://www.jcp.org/en/jsr/detail?id=224. These annotations are in package javax.xml.ws.
		

		The annotations available via the JWS API are defined in JSR-181, which can be found at http://www.jcp.org/en/jsr/detail?id=181. These annotations are in package javax.jws.
	

		Report a bug
	

 ⁠Chapter 17. WebSockets

 ⁠17.1. About WebSockets

		The WebSocket protocol provides two way communication between web clients and servers. Communications between clients and the server are event-based, allowing for faster processing and smaller bandwidth compared with polling-based methods. WebSocket is available for use in web applications via a JavaScript API.
	

		A connection is first established between client and server as an HTTP connection. The client then requests a WebSocket connection using the Upgrade header. All communications are then full-duplex over the same TCP/IP connection, with minimal data overhead. Because each message does not include unnecessary HTTP header content, Websocket communications require smaller bandwidth. The result is a low latency communications path, suited to applications which require real-time responsiveness.
	

		The JBoss EAP 6 WebSocket implementation provides full dependency injection support for server endpoints, however, it does not provide CDI services for client endpoints. CDI support is limited to that required by the Java EE 6 platform, and as a result, Java EE 7 features such as interceptors on endpoints are not supported.
	

		Report a bug
	

 ⁠17.2. Create a WebSocket Application

		A WebSocket application requires the following components and configuration changes:
			
					A Java client or a WebSocket enabled HTML client. You can verify HTML client browser support at this location: http://caniuse.com/websockets
				

	
					A WebSocket server endpoint class.
				

	
					A jboss-web.xml file configured to enable WebSockets.
				

	
					Project dependencies configured to declare a dependency on the WebSocket API.
				

	
					Enable the NIO2 connector in the web subsystem of the Red Hat JBoss Enterprise Application Platform server configuration file.
				

		 Note

				WebSocket applications require Java Runtime Environment version 7 or greater. Otherwise the WebSocket will not be enabled.
			

	

 ⁠Procedure 17.1. Create the WebSocket Application

			The following is a simple example of a WebSocket application. It provides buttons to open a connection, send a message, and close a connection. It does not implement any other functions or include any error handling, which would be required for a real world application.
		
	Create the JavaScript HTML client.

				The following is an example of a WebSocket client. It contains these JavaScript functions:
					
							connect(): This function creates the WebSocket connection passing the WebSocket URI. The resource location matches the resource defined in the server endpoint class. This function also intercepts and handles the WebSocket onopen, onmessage, onerror, and onclose.
						

	
							sendMessage(): This function gets the name entered in the form, creates a message, and sends it using a WebSocket.send() command.
						

	
							disconnect(): This function issues the WebSocket.close() command.
						

	
							displayMessage(): This function sets the display message on the page to the value returned by the WebSocket endpoint method.
						

	
							displayStatus(): This function displays the WebSocket connection status.
						

				 l
			

				
​
​<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
​ <head>
​ <title>WebSocket: Say Hello</title>
​ <link rel="stylesheet" type="text/css" href="resources/css/hello.css" />
​ <script type="text/javascript">
​ var websocket = null;
​
​ function connect() {
​ var wsURI = 'ws://' + window.location.host + '/jboss-websocket-hello/websocket/helloName';
​ websocket = new WebSocket(wsURI);
​
​ websocket.onopen = function() {
​ displayStatus('Open');
​ document.getElementById('sayHello').disabled = false;
​ displayMessage('Connection is now open. Type a name and click Say Hello to send a message.');
​ };
​ websocket.onmessage = function(event) {
​ // log the event
​ displayMessage('The response was received! ' + event.data, 'success');
​ };
​ websocket.onerror = function(event) {
​ // log the event
​ displayMessage('Error! ' + event.data, 'error');
​ };
​ websocket.onclose = function() {
​ displayStatus('Closed');
​ displayMessage('The connection was closed or timed out. Please click the Open Connection button to reconnect.');
​ document.getElementById('sayHello').disabled = true;
​ };
​ }
​
​ function disconnect() {
​ if (websocket !== null) {
​ websocket.close();
​ websocket = null;
​ }
​ message.setAttribute("class", "message");
​ message.value = 'WebSocket closed.';
​ // log the event
​ }
​
​ function sendMessage() {
​ if (websocket !== null) {
​ var content = document.getElementById('name').value;
​ websocket.send(content);
​ } else {
​ displayMessage('WebSocket connection is not established. Please click the Open Connection button.', 'error');
​ }
​ }
​
​ function displayMessage(data, style) {
​ var message = document.getElementById('hellomessage');
​ message.setAttribute("class", style);
​ message.value = data;
​ }
​
​ function displayStatus(status) {
​ var currentStatus = document.getElementById('currentstatus');
​ currentStatus.value = status;
​ }
​
​ </script>
​ </head>
​ <body>
​
​ <div>
​ <h1>Welcome to JBoss!</h1>
​ <div>This is a simple example of a WebSocket implementation.</div>
​ <div id="connect-container">
​ <div>
​ <fieldset>
​ <legend>Connect or disconnect using WebSocket :</legend>
​ <input type="button" id="connect" onclick="connect();" value="Open Connection" />
​ <input type="button" id="disconnect" onclick="disconnect();" value="Close Connection" />
​ </fieldset>
​ </div>
​ <div>
​ <fieldset>
​ <legend>Type your name below. then click the `Say Hello` button :</legend>
​ <input id="name" type="text" size="40" style="width: 40%"/>
​ <input type="button" id="sayHello" onclick="sendMessage();" value="Say Hello" disabled="disabled"/>
​ </fieldset>
​ </div>
​ <div>Current WebSocket Connection Status: <output id="currentstatus" class="message">Closed</output></div>
​ <div>
​ <output id="hellomessage" />
​ </div>
​ </div>
​ </div>
​ </body>
​</html>

			

	Create the WebSocket server endpoint.

				You can create a WebSocket server endpoint using either of the following methods.
					
							Programmatic Endpoint: The endpoint extends the Endpoint class.
						

	
							Annotated Endpoint: The endpoint class uses annotations to interact with the WebSocket events. It is simpler to code than the programmatic endpoint
						

				 The code example below uses the annotated endpoint approach and handles the following events.
					
							The @ServerEndpoint annotation identifies this class as a WebSocket server endpoint and specifies the path.
						

	
							The @OnOpen annotation is triggered when the WebSocket connection is opened.
						

	
							The @OnMessage annotation is triggered when a message is sent to the WebSocket connection.
						

	
							The @OnClose annotation is triggered when the WebSocket connection is closed.
						

			

				
​
​package org.jboss.as.quickstarts.websocket_hello;
​
​import javax.websocket.CloseReason;
​import javax.websocket.OnClose;
​import javax.websocket.OnMessage;
​import javax.websocket.OnOpen;
​import javax.websocket.Session;
​import javax.websocket.server.ServerEndpoint;
​
​@ServerEndpoint("/websocket/helloName")
​public class HelloName {
​
​ @OnMessage
​ public String sayHello(String name) {
​ System.out.println("Say hello to '" + name + "'");
​ return ("Hello" + name);
​ }
​
​ @OnOpen
​ public void helloOnOpen(Session session) {
​ System.out.println("WebSocket opened: " + session.getId());
​ }
​
​ @OnClose
​ public void helloOnClose(CloseReason reason) {
​ System.out.println("Closing a WebSocket due to " + reason.getReasonPhrase());
​ }
​}

			

	Configure the jboss-web.xml file.

				You must create the <enable-websockets> element in the application WEB-INF/jboss-web.xml and set it to true.
​<?xml version="1.0" encoding="UTF-8"?>
​<!--Enable WebSockets -->
​<jboss-web>
​ <enable-websockets>true</enable-websockets>
​</jboss-web>

			

	Declare the WebSocket API dependency in your project POM file.

				If you use Maven, you add the following dependency to the project pom.xml file.
​<dependency>
​ <groupId>org.jboss.spec.javax.websocket</groupId>
​ <artifactId>jboss-websocket-api_1.0_spec</artifactId>
​ <version>1.0.0.Final</version>
​ <scope>provided</scope>
​</dependency>

			

	Configure the JBoss EAP server.

				Configure the http <connector> in the web subsystem of the server configuration file to use the NIO2 protocol.
			
	
						Start the JBoss EAP server.
					

	
						Launch the Management CLI using the command for your operating system.
					

						For Linux:
EAP_HOME/bin/jboss-cli.sh --connect

						 For Windows:
EAP_HOME\bin\jboss-cli.bat --connect

					

	
						To enable the non blocking Java NIO2 connector protocol in the web subsystem of the JBoss EAP server configuration file, type the following command .
/subsystem=web/connector=http/:write-attribute(name=protocol,value=org.apache.coyote.http11.Http11NioProtocol)

					

					

						For either command, you should see the following result:
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

					

	
						Notify the server to reload the configuration.
reload

					

						You should see the following result:
{
 "outcome" => "success",
 "result" => undefined
}

					

	
						Review the changes to the JBoss EAP server configuration file. The web subsystem should now contain the following XML for the http <connector>.
					

						
​<subsystem xmlns="urn:jboss:domain:web:2.1" default-virtual-server="default-host" native="false">
​ <connector name="http" protocol="org.apache.coyote.http11.Http11NioProtocol" scheme="http" socket-binding="http"/>
​ <virtual-server name="default-host" enable-welcome-root="true">
​ <alias name="localhost"/>
​ <alias name="example.com"/>
​ </virtual-server>
​</subsystem>

					

		Report a bug
	

 ⁠Chapter 18. Application Security

 ⁠18.1. Foundational Concepts

 ⁠18.1.1. About Encryption

		Encryption refers to obfuscating sensitive information by applying mathematical algorithms to it. Encryption is one of the foundations of securing your infrastructure from data breaches, system outages, and other risks.
	

		Encryption can be applied to simple string data, such as passwords. It can also be applied to data communication streams. The HTTPS protocol, for instance, encrypts all data before transferring it from one party to another. If you connect from one server to another using the Secure Shell (SSH) protocol, all of your communication is sent in an encrypted tunnel .
	

		Report a bug
	

 ⁠18.1.2. About Security Domains

		Security domains are part of the JBoss EAP 6 security subsystem. All security configuration is now managed centrally, by the domain controller of a managed domain, or by the standalone server.
	

		A security domain consists of configurations for authentication, authorization, security mapping, and auditing. It implements Java Authentication and Authorization Service (JAAS) declarative security.
	

		Authentication refers to verifying the identity of a user. In security terminology, this user is referred to as a principal. Although authentication and authorization are different, many of the included authentication modules also handle authorization.
	

		Authorization is a process by which the server determines if an authenticated user has permission or privileges to access specific resources in the system or operation.
	

		Security mapping refers to the ability to add, modify, or delete information from a principal, role, or attribute before passing the information to your application.
	

		The auditing manager allows you to configure provider modules to control the way that security events are reported.
	

		If you use security domains, you can remove all specific security configuration from your application itself. This allows you to change security parameters centrally. One common scenario that benefits from this type of configuration structure is the process of moving applications between testing and production environments.
	

		Report a bug
	

 ⁠18.1.3. About SSL Encryption

		Secure Sockets Layer (SSL) encrypts network traffic between two systems. Traffic between the two systems is encrypted using a two-way key, generated during the handshake
		 phase of the connection and known only by those two systems.
	

		For secure exchange of the two-way encryption key, SSL makes use of Public Key Infrastructure (PKI), a method of encryption that utilizes a key pair. A key pair consists of two separate but matching cryptographic keys - a public key and a private key. The public key is shared with others and is used to encrypt data, and the private key is kept secret and is used to decrypt data that has been encrypted using the public key.
	

		When a client requests a secure connection, a handshake phase takes place before secure communication can begin. During the SSL handshake the server passes its public key to the client in the form of a certificate. The certificate contains the identity of the server (its URL), the public key of the server, and a digital signature that validates the certificate. The client then validates the certificate and makes a decision about whether the certificate is trusted or not. If the certificate is trusted, the client generates the two-way encryption key for the SSL connection, encrypts it using the public key of the server, and sends it back to the server. The server decrypts the two-way encryption key, using its private key, and further communication between the two machines over this connection is encrypted using the two-way encryption key.
	
Warning

			Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in all affected packages.
		

		Report a bug
	

 ⁠18.1.4. About Declarative Security

		Declarative security is a method to separate security concerns from your application code by using the container to manage security. The container provides an authorization system based on either file permissions or users, groups, and roles. This approach is usually superior to programmatic security, which gives the application itself all of the responsibility for security.
	

		JBoss EAP 6 provides declarative security via security domains.
	

		Report a bug
	

 ⁠18.2. Role-Based Security in Applications

 ⁠18.2.1. About Application Security

		Securing your applications is a multi-faceted and important concern for every application developer. JBoss EAP 6 provides all the tools you need to write secure applications, including the following abilities:
	

			
					Section 18.2.2, “About Authentication”
				

	
					Section 18.2.3, “About Authorization”
				

	
					Section 18.2.4, “About Security Auditing”
				

	
					Section 18.2.5, “About Security Mapping”
				

	
					Section 18.1.4, “About Declarative Security”
				

	
					Section 18.4.2.1, “About EJB Method Permissions”
				

	
					Section 18.4.3.1, “About EJB Security Annotations”
				

	

		See also Section 18.2.8, “Use a Security Domain in Your Application”.
	

		Report a bug
	

 ⁠18.2.2. About Authentication

		Authentication refers to identifying a subject and verifying the authenticity of the identification. The most common authentication mechanism is a username and password combination. Other common authentication mechanisms use shared keys, smart cards, or fingerprints. The outcome of a successful authentication is referred to as a principal, in terms of Java Enterprise Edition declarative security.
	

		JBoss EAP 6 uses a pluggable system of authentication modules to provide flexibility and integration with the authentication systems you already use in your organization. Each security domain may contain one or more configured authentication modules. Each module includes additional configuration parameters to customize its behavior. The easiest way to configure the authentication subsystem is within the web-based management console.
	

		Authentication is not the same as authorization, although they are often linked. Many of the included authentication modules can also handle authorization.
	

		Report a bug
	

 ⁠18.2.3. About Authorization

		Authorization is a mechanism for granting or denying access to a resource based on identity. It is implemented as a set of declarative security roles which can be added to principals.
	

		JBoss EAP 6 uses a modular system to configure authorization. Each security domain may contain one or more authorization policies. Each policy has a basic module which defines its behavior. It is configured through specific flags and attributes. The easiest way to configure the authorization subsystem is by using the web-based management console.
	

		Authorization is different from authentication, and usually happens after authentication. Many of the authentication modules also handle authorization.
	

		Report a bug
	

 ⁠18.2.4. About Security Auditing

		Security auditing refers to triggering events, such as writing to a log, in response to an event that happens within the security subsystem. Auditing mechanisms are configured as part of a security domain, along with authentication, authorization, and security mapping details.
	

		Auditing uses provider modules. You can use one of the included ones, or implement your own.
	

		Report a bug
	

 ⁠18.2.5. About Security Mapping

		Security mapping allows you to combine authentication and authorization information after the authentication or authorization happens, but before the information is passed to your application.
	

		You can map principals (authentication), roles (authorization), or credentials (attributes which are not principals or roles).
	

		Role Mapping is used to add, replace, or remove roles to the subject after authentication.
	

		Principal mapping is used to modify a principal after authentication.
	

		Attribute mapping is used to convert attributes from an external system to be used by your application, and vice versa.
	

		Report a bug
	

 ⁠18.2.6. Java Authentication and Authorization Service (JAAS)

		Java Authentication and Authorization Service (JAAS) is a security API which consists of a set of Java packages designed for user authentication and authorization. The API is a Java implementation of the standard Pluggable Authentication Modules (PAM) framework. It extends the Java Enterprise Edition access control architecture to support user-based authorization.
	

		In JBoss EAP 6, JAAS only provides declarative role-based security. For more information about declarative security, refer to Section 18.1.4, “About Declarative Security”.
	

		JAAS is independent of any underlying authentication technologies, such as Kerberos or LDAP. You can change your underlying security structure without changing your application. You only need to change the JAAS configuration.
	

		Report a bug
	

 ⁠18.2.7. About Java Authentication and Authorization Service (JAAS)

		The security architecture of JBoss EAP 6 is comprised of the security configuration subsystem, and application-specific security configurations which are included in several configuration files within the application.
	
Domain, Server Group, and Server Specific Configuration

			Server groups (in a managed domain) and servers (in a standalone server) include the configuration for security domains. A security domain includes information about a combination of authentication, authorization, mapping, and auditing modules, with configuration details. An application specifies which security domain it requires, by name, in its jboss-web.xml.
		
Application-specific Configuration

			Application-specific configuration takes place in one or more of the following four files.
		

 ⁠Table 18.1. Application-Specific Configuration Files
	 File 	 Description
	 ejb-jar.xml 	
						The deployment descriptor for an Enterprise JavaBean (EJB) application, located in the META-INF directory of the archive. Use the ejb-jar.xml to specify roles and map them to principals, at the application level. You can also limit specific methods and classes to certain roles. It is also used for other EJB-specific configuration not related to security.
					

					
	 web.xml 	
						The deployment descriptor for a Java Enterprise Edition (EE) web application. Use the web.xml to declare the resource and transport constraints for the application, such as limiting the type of HTTP requests that are allowed. You can also configure simple web-based authentication in this file. It is also used for other application-specific configuration not related to security. The security domain the application uses for authentication and authorization is defined in jboss-web.xml.
					

					
	 jboss-ejb3.xml 	
						Contains JBoss-specific extensions to the ejb-jar.xml descriptor.
					

					
	 jboss-web.xml 	
						Contains JBoss-specific extensions to the web.xml descriptor.
					

					

Note

			The ejb-jar.xml and web.xml are defined in the Java Enterprise Edition (Java EE) specification. The jboss-ejb3.xml provides JBoss-specific extensions for the ejb-jar.xml, and the jboss-web.xml provides JBoss-specific extensions for the web.xml.
		

		Report a bug
	

 ⁠18.2.8. Use a Security Domain in Your Application

Overview

			To use a security domain in your application, first you need to define the security domain in the server's configuration and then enable it for an application in the application's deployment descriptor. Then you must add the required annotations to the EJB that uses it. This topic covers the steps required to use a security domain in your application.
		
Warning

			If an application is part of a security domain that uses an authentication cache, user authentications for that application will also be available to other applications in that security domain.
		

 ⁠Procedure 18.1. Configure Your Application to Use a Security Domain
	Define the Security Domain

				You need to define the security domain in the server's configuration file, and then enable it for an application in the application's descriptor file.
			
	Configure the security domain in the server's configuration file

						The security domain is configured in the security subsystem of the server's configuration file. If the JBoss EAP 6 instance is running in a managed domain, this is the domain/configuration/domain.xml file. If the JBoss EAP 6 instance is running as a standalone server, this is the standalone/configuration/standalone.xml file.
					

						The other, jboss-web-policy, and jboss-ejb-policy security domains are provided by default in JBoss EAP 6. The following XML example was copied from the security subsystem in the server's configuration file.
					

						The cache-type attribute of a security domain specifies a cache for faster authentication checks. Allowed values are default to use a simple map as the cache, or infinispan to use an Infinispan cache.
​<subsystem xmlns="urn:jboss:domain:security:1.2">
​ <security-domains>
​ <security-domain name="other" cache-type="default">
​ <authentication>
​ <login-module code="Remoting" flag="optional">
​ <module-option name="password-stacking" value="useFirstPass"/>
​ </login-module>
​ <login-module code="RealmDirect" flag="required">
​ <module-option name="password-stacking" value="useFirstPass"/>
​ </login-module>
​ </authentication>
​ </security-domain>
​ <security-domain name="jboss-web-policy" cache-type="default">
​ <authorization>
​ <policy-module code="Delegating" flag="required"/>
​ </authorization>
​ </security-domain>
​ <security-domain name="jboss-ejb-policy" cache-type="default">
​ <authorization>
​ <policy-module code="Delegating" flag="required"/>
​ </authorization>
​ </security-domain>
​ </security-domains>
​</subsystem>

					

						You can configure additional security domains as needed using the Management Console or CLI.
					

	Enable the security domain in the application's descriptor file

						The security domain is specified in the <security-domain> child element of the <jboss-web> element in the application's WEB-INF/jboss-web.xml file. The following example configures a security domain named my-domain.
​<jboss-web>
​ <security-domain>my-domain</security-domain>
​</jboss-web>

					

						This is only one of many settings which you can specify in the WEB-INF/jboss-web.xml descriptor.
					

	Add the Required Annotation to the EJB

				You configure security in the EJB using the @SecurityDomain and @RolesAllowed annotations. The following EJB code example limits access to the other security domain by users in the guest role.
			
​package example.ejb3;
​
​import java.security.Principal;
​
​import javax.annotation.Resource;
​import javax.annotation.security.RolesAllowed;
​import javax.ejb.SessionContext;
​import javax.ejb.Stateless;
​
​import org.jboss.ejb3.annotation.SecurityDomain;
​
​/**
​ * Simple secured EJB using EJB security annotations
​ * Allow access to "other" security domain by users in a "guest" role.
​ */
​@Stateless
​@RolesAllowed({ "guest" })
​@SecurityDomain("other")
​public class SecuredEJB {
​
​ // Inject the Session Context
​ @Resource
​ private SessionContext ctx;
​
​ /**
​ * Secured EJB method using security annotations
​ */
​ public String getSecurityInfo() {
​ // Session context injected using the resource annotation
​ Principal principal = ctx.getCallerPrincipal();
​ return principal.toString();
​ }
​}

				For more code examples, see the ejb-security quickstart in the JBoss EAP 6 Quickstarts bundle, which is available from the Red Hat Customer Portal.
			
Note

					The security domain for an EJB can also be set using the jboss-ejb3.xml deployment descriptor. See Section 8.8.4, “jboss-ejb3.xml Deployment Descriptor Reference” for details.
				

 ⁠Procedure 18.2. Configure JBoss EAP 6 to access custom principal in EJB 3 bean
	
				Configure the ApplicationRealm to defer to JAAS:
			
​<security-realm name="MyDomainRealm">
​ <authentication>
​ <jaas name="my-security-domain"/>
​</security-realm>

	
				Configure the JAAS security-domain to use the custom principal:
			
​<security-domain name="my-security-domain" cache-type="default">
​ <authentication>
​ <login-module code="UsersRoles" flag="required">
​ <module-option name="usersProperties" value="file:///${jboss.server.config.dir}/users.properties"/>
​ <module-option name="rolesProperties" value="file:///${jboss.server.config.dir}/roles.properties"/>
​ <module-option name="principalClass" value="org.jboss.example.CustomPrincipalImpl"/>
​ </login-module>
​ </authentication>
​</security-domain>

	
				Deploy the custom principal as a JBoss module.
			

	
				Configure the org.jboss.as.remoting module (modules/org/jboss/as/remoting/main/module.xml) to depend on the module that contains the custom principal:
			
​
​<resources>
​ <resource-root path="jboss-as-remoting-7.1.2.Final-redhat-1.jar"/>
​ <!-- Insert resources here -->
​</resources>
​
​<dependencies>
​ <module name="org.jboss.staxmapper"/>
​ <module name="org.jboss.as.controller"/>
​ <module name="org.jboss.as.domain-management"/>
​ <module name="org.jboss.as.network"/>
​ <module name="org.jboss.as.protocol"/>
​ <module name="org.jboss.as.server"/>
​ <module name="org.jboss.as.security" optional="true"/>
​ <module name="org.jboss.as.threads"/>
​ <module name="org.jboss.logging"/>
​ <module name="org.jboss.modules"/>
​ <module name="org.jboss.msc"/>
​ <module name="org.jboss.remoting3"/>
​ <module name="org.jboss.sasl"/>
​ <module name="org.jboss.threads"/>
​ <module name="org.picketbox" optional="true"/>
​ <module name="javax.api" />
​ <module name="org.jboss.example" /> <!--FIXME: dependency on custom principal added here -->
​</dependencies>

	
				Configure the client to use org.jboss.ejb.client.naming, the jboss-ejb-client.properties file should look like the following:
			
remote.connections=default
endpoint.name=client-endpoint
remote.connection.default.port=4447
remote.connection.default.host=localhost
remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
The following setting is required when deferring to JAAS
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOPLAINTEXT=false

remote.connection.default.username=admin
remote.connection.default.password=testing

		Report a bug
	

 ⁠18.2.9. Use Role-Based Security In Servlets

		To add security to a servlet, you map each servlet to a URL pattern, and create security constraints on the URL patterns which need to be secured. The security constraints limit access to the URLs to roles. The authentication and authorization are handled by the security domain specified in the WAR's jboss-web.xml.
	
Prerequisites

			Before you use role-based security in a servlet, the security domain used to authenticate and authorize access needs to be configured in the JBoss EAP 6 container.
		

 ⁠Procedure 18.3. Add Role-Based Security to Servlets
	Add mappings between servlets and URL patterns.

				Use <servlet-mapping> elements in the web.xml to map individual servlets to URL patterns. The following example maps the servlet called DisplayOpResult to the URL pattern /DisplayOpResult.
			
​
​<servlet-mapping>
​ <servlet-name>DisplayOpResult</servlet-name>
​ <url-pattern>/DisplayOpResult</url-pattern>
​</servlet-mapping>		
​

	Add security constraints to the URL patterns.

				To map the URL pattern to a security constraint, use a <security-constraint>. The following example constrains access from the URL pattern /DisplayOpResult to be accessed by principals with the role eap_admin. The role needs to be present in the security domain.
			
​
​<security-constraint>
​	<display-name>Restrict access to role eap_admin</display-name>
​	<web-resource-collection>
​		<web-resource-name>Restrict access to role eap_admin</web-resource-name>
​		<url-pattern>/DisplayOpResult/*</url-pattern>
​	</web-resource-collection>
​	<auth-constraint>
​		<role-name>eap_admin</role-name>
​	</auth-constraint>	
​</security-constraint>	
​
​<security-role>
​ <role-name>eap_admin</role-name>
​</security-role>
​
​
​<login-config>
​ <auth-method>BASIC</auth-method>
​</login-config>
​

				You need to specify the authentication method, which can be any of the following: BASIC, FORM, DIGEST, CLIENT-CERT, SPNEGO. This example uses BASIC authentication.
			

	Specify the security domain in the WAR's jboss-web.xml

				Add the security domain to the WAR's jboss-web.xml in order to connect the servlets to the configured security domain, which knows how to authenticate and authorize principals against the security constraints. The following example uses the security domain called acme_domain.
			
​
​<jboss-web>
​	...
​	<security-domain>acme_domain</security-domain>
​	...
​</jboss-web>
​

 ⁠Example 18.1. Example web.xml with Role-Based Security Configured
​
​<web-app xmlns="http://java.sun.com/xml/ns/javaee"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
​ version="3.0">
​
​<display-name>Use Role-Based Security In Servlets</display-name>
​
​<welcome-file-list>
​ <welcome-file>/index.jsp</welcome-file>
​</welcome-file-list>
​
​<servlet-mapping>
​ <servlet-name>DisplayOpResult</servlet-name>
​ <url-pattern>/DisplayOpResult</url-pattern>
​</servlet-mapping>
​
​<security-constraint>
​ <display-name>Restrict access to role eap_admin</display-name>
​ <web-resource-collection>
​ <web-resource-name>Restrict access to role eap_admin</web-resource-name>
​ <url-pattern>/DisplayOpResult/*</url-pattern>
​ </web-resource-collection>
​ <auth-constraint>
​ <role-name>eap_admin</role-name>
​ </auth-constraint>
​ </security-constraint>
​
​ <security-role>
​ <role-name>eap_admin</role-name>
​ </security-role>
​
​ <login-config>
​ <auth-method>BASIC</auth-method>
​ </login-config>
​
​</web-app>

		Report a bug
	

 ⁠18.2.10. Use A Third-Party Authentication System In Your Application

		You can integrate third-party security systems with JBoss EAP 6. These types of systems are usually token-based. The external system performs the authentication and passes a token back to the Web application through the request headers. This is often referred to as perimeter authentication. To configure perimeter authentication in your application, add a custom authentication valve. If you have a valve from a third-party provider, be sure it is in your classpath and follow the examples below, along with the documentation for your third-party authentication module.
	
Note

			The location for configuring valves has changed in JBoss EAP 6. There is no longer a context.xml deployment descriptor. Valves are configured directly in the jboss-web.xml descriptor instead. The context.xml is now ignored.
		

 ⁠Example 18.2. Basic Authentication Valve
​<jboss-web>
​ <valve>
​ <class-name>org.jboss.security.negotiation.NegotiationAuthenticator</class-name>
​ </valve>
​</jboss-web>

			This valve is used for Kerberos-based SSO. It also shows the most simple pattern for specifying a third-party authenticator for your Web application.
		

 ⁠Example 18.3. Custom Valve With Header Attributes Set
​<jboss-web>
​ <valve>
​ <class-name>org.jboss.web.tomcat.security.GenericHeaderAuthenticator</class-name>
​ <param>
​ <param-name>httpHeaderForSSOAuth</param-name>
​ <param-value>sm_ssoid,ct-remote-user,HTTP_OBLIX_UID</param-value>
​ </param>
​ <param>
​ <param-name>sessionCookieForSSOAuth</param-name>
​ <param-value>SMSESSION,CTSESSION,ObSSOCookie</param-value>
​ </param>
​ </valve>
​</jboss-web>

			This example shows how to set custom attributes on your valve. The authenticator checks for the presence of the header ID and the session key, and passes them into the JAAS framework which drives the security layer, as the username and password value. You need a custom JAAS login module which can process the username and password and populate the subject with the correct roles. If no header values match the configured values, regular form-based authentication semantics apply.
		

Writing a Custom Authenticator

			Writing your own authenticator is out of scope of this document. However, the following Java code is provided as an example.
		

 ⁠Example 18.4. GenericHeaderAuthenticator.java
​/*
​ * JBoss, Home of Professional Open Source.
​ * Copyright 2006, Red Hat Middleware LLC, and individual contributors
​ * as indicated by the @author tags. See the copyright.txt file in the
​ * distribution for a full listing of individual contributors.
​ *
​ * This is free software; you can redistribute it and/or modify it
​ * under the terms of the GNU Lesser General Public License as
​ * published by the Free Software Foundation; either version 2.1 of
​ * the License, or (at your option) any later version.
​ *
​ * This software is distributed in the hope that it will be useful,
​ * but WITHOUT ANY WARRANTY; without even the implied warranty of
​ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
​ * Lesser General Public License for more details.
​ *
​ * You should have received a copy of the GNU Lesser General Public
​ * License along with this software; if not, write to the Free
​ * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
​ * 02110-1301 USA, or see the FSF site: http://www.fsf.org.
​ */
​
​package org.jboss.web.tomcat.security;
​
​import java.io.IOException;
​import java.security.Principal;
​import java.util.StringTokenizer;
​
​import javax.management.JMException;
​import javax.management.ObjectName;
​import javax.servlet.http.Cookie;
​import javax.servlet.http.HttpServletRequest;
​import javax.servlet.http.HttpServletResponse;
​
​import org.apache.catalina.Realm;
​import org.apache.catalina.Session;
​import org.apache.catalina.authenticator.Constants;
​import org.apache.catalina.connector.Request;
​import org.apache.catalina.connector.Response;
​import org.apache.catalina.deploy.LoginConfig;
​import org.jboss.logging.Logger;
​
​import org.jboss.as.web.security.ExtendedFormAuthenticator;
​
​/**
​ * JBAS-2283: Provide custom header based authentication support
​ *
​ * Header Authenticator that deals with userid from the request header Requires
​ * two attributes configured on the Tomcat Service - one for the http header
​ * denoting the authenticated identity and the other is the SESSION cookie
​ *
​ * @author Anil Saldhana
​ * @author Stefan Guilhen
​ * @version $Revision$
​ * @since Sep 11, 2006
​ */
​public class GenericHeaderAuthenticator extends ExtendedFormAuthenticator {
​ protected static Logger log = Logger
​ .getLogger(GenericHeaderAuthenticator.class);
​
​ protected boolean trace = log.isTraceEnabled();
​
​ // JBAS-4804: GenericHeaderAuthenticator injection of ssoid and
​ // sessioncookie name.
​ private String httpHeaderForSSOAuth = null;
​
​ private String sessionCookieForSSOAuth = null;
​
​ /**
​ * <p>
​ * Obtain the value of the <code>httpHeaderForSSOAuth</code> attribute. This
​ * attribute is used to indicate the request header ids that have to be
​ * checked in order to retrieve the SSO identity set by a third party
​ * security system.
​ * </p>
​ *
​ * @return a <code>String</code> containing the value of the
​ * <code>httpHeaderForSSOAuth</code> attribute.
​ */
​ public String getHttpHeaderForSSOAuth() {
​ return httpHeaderForSSOAuth;
​ }
​
​ /**
​ * <p>
​ * Set the value of the <code>httpHeaderForSSOAuth</code> attribute. This
​ * attribute is used to indicate the request header ids that have to be
​ * checked in order to retrieve the SSO identity set by a third party
​ * security system.
​ * </p>
​ *
​ * @param httpHeaderForSSOAuth
​ * a <code>String</code> containing the value of the
​ * <code>httpHeaderForSSOAuth</code> attribute.
​ */
​ public void setHttpHeaderForSSOAuth(String httpHeaderForSSOAuth) {
​ this.httpHeaderForSSOAuth = httpHeaderForSSOAuth;
​ }
​
​ /**
​ * <p>
​ * Obtain the value of the <code>sessionCookieForSSOAuth</code> attribute.
​ * This attribute is used to indicate the names of the SSO cookies that may
​ * be present in the request object.
​ * </p>
​ *
​ * @return a <code>String</code> containing the names (separated by a
​ * <code>','</code>) of the SSO cookies that may have been set by a
​ * third party security system in the request.
​ */
​ public String getSessionCookieForSSOAuth() {
​ return sessionCookieForSSOAuth;
​ }
​
​ /**
​ * <p>
​ * Set the value of the <code>sessionCookieForSSOAuth</code> attribute. This
​ * attribute is used to indicate the names of the SSO cookies that may be
​ * present in the request object.
​ * </p>
​ *
​ * @param sessionCookieForSSOAuth
​ * a <code>String</code> containing the names (separated by a
​ * <code>','</code>) of the SSO cookies that may have been set by
​ * a third party security system in the request.
​ */
​ public void setSessionCookieForSSOAuth(String sessionCookieForSSOAuth) {
​ this.sessionCookieForSSOAuth = sessionCookieForSSOAuth;
​ }
​
​ /**
​ * <p>
​ * Creates an instance of <code>GenericHeaderAuthenticator</code>.
​ * </p>
​ */
​ public GenericHeaderAuthenticator() {
​ super();
​ }
​
​ public boolean authenticate(Request request, HttpServletResponse response,
​ LoginConfig config) throws IOException {
​ log.trace("Authenticating user");
​
​ Principal principal = request.getUserPrincipal();
​ if (principal != null) {
​ if (trace)
​ log.trace("Already authenticated '" + principal.getName() + "'");
​ return true;
​ }
​
​ Realm realm = context.getRealm();
​ Session session = request.getSessionInternal(true);
​
​ String username = getUserId(request);
​ String password = getSessionCookie(request);
​
​ // Check if there is sso id as well as sessionkey
​ if (username == null || password == null) {
​ log.trace("Username is null or password(sessionkey) is null:fallback to form auth");
​ return super.authenticate(request, response, config);
​ }
​ principal = realm.authenticate(username, password);
​
​ if (principal == null) {
​ forwardToErrorPage(request, response, config);
​ return false;
​ }
​
​ session.setNote(Constants.SESS_USERNAME_NOTE, username);
​ session.setNote(Constants.SESS_PASSWORD_NOTE, password);
​ request.setUserPrincipal(principal);
​
​ register(request, response, principal, HttpServletRequest.FORM_AUTH,
​ username, password);
​ return true;
​ }
​
​ /**
​ * Get the username from the request header
​ *
​ * @param request
​ * @return
​ */
​ protected String getUserId(Request request) {
​ String ssoid = null;
​ // We can have a comma-separated ids
​ String ids = "";
​ try {
​ ids = this.getIdentityHeaderId();
​ } catch (JMException e) {
​ if (trace)
​ log.trace("getUserId exception", e);
​ }
​ if (ids == null || ids.length() == 0)
​ throw new IllegalStateException(
​ "Http headers configuration in tomcat service missing");
​
​ StringTokenizer st = new StringTokenizer(ids, ",");
​ while (st.hasMoreTokens()) {
​ ssoid = request.getHeader(st.nextToken());
​ if (ssoid != null)
​ break;
​ }
​ if (trace)
​ log.trace("SSOID-" + ssoid);
​ return ssoid;
​ }
​
​ /**
​ * Obtain the session cookie from the request
​ *
​ * @param request
​ * @return
​ */
​ protected String getSessionCookie(Request request) {
​ Cookie[] cookies = request.getCookies();
​ log.trace("Cookies:" + cookies);
​ int numCookies = cookies != null ? cookies.length : 0;
​
​ // We can have comma-separated ids
​ String ids = "";
​ try {
​ ids = this.getSessionCookieId();
​ log.trace("Session Cookie Ids=" + ids);
​ } catch (JMException e) {
​ if (trace)
​ log.trace("checkSessionCookie exception", e);
​ }
​ if (ids == null || ids.length() == 0)
​ throw new IllegalStateException(
​ "Session cookies configuration in tomcat service missing");
​
​ StringTokenizer st = new StringTokenizer(ids, ",");
​ while (st.hasMoreTokens()) {
​ String cookieToken = st.nextToken();
​ String val = getCookieValue(cookies, numCookies, cookieToken);
​ if (val != null)
​ return val;
​ }
​ if (trace)
​ log.trace("Session Cookie not found");
​ return null;
​ }
​
​ /**
​ * Get the configured header identity id in the tomcat service
​ *
​ * @return
​ * @throws JMException
​ */
​ protected String getIdentityHeaderId() throws JMException {
​ if (this.httpHeaderForSSOAuth != null)
​ return this.httpHeaderForSSOAuth;
​ return (String) mserver.getAttribute(new ObjectName(
​ "jboss.web:service=WebServer"), "HttpHeaderForSSOAuth");
​ }
​
​ /**
​ * Get the configured session cookie id in the tomcat service
​ *
​ * @return
​ * @throws JMException
​ */
​ protected String getSessionCookieId() throws JMException {
​ if (this.sessionCookieForSSOAuth != null)
​ return this.sessionCookieForSSOAuth;
​ return (String) mserver.getAttribute(new ObjectName(
​ "jboss.web:service=WebServer"), "SessionCookieForSSOAuth");
​ }
​
​ /**
​ * Get the value of a cookie if the name matches the token
​ *
​ * @param cookies
​ * array of cookies
​ * @param numCookies
​ * number of cookies in the array
​ * @param token
​ * Key
​ * @return value of cookie
​ */
​ protected String getCookieValue(Cookie[] cookies, int numCookies,
​ String token) {
​ for (int i = 0; i < numCookies; i++) {
​ Cookie cookie = cookies[i];
​ log.trace("Matching cookieToken:" + token + " with cookie name="
​ + cookie.getName());
​ if (token.equals(cookie.getName())) {
​ if (trace)
​ log.trace("Cookie-" + token + " value=" + cookie.getValue());
​ return cookie.getValue();
​ }
​ }
​ return null;
​ }
​}

		Report a bug
	

 ⁠18.3. Login Modules

		

			Report a bug
		

 ⁠18.3.1. Using Modules

				JBoss EAP 6 includes several bundled login modules suitable for most user management needs. JBoss EAP 6 can read user information from a relational database, an LDAP server, or flat files. In addition to these core login modules, JBoss EAP 6 provides other login modules that provide user information for very customized needs.
			

				More login modules and their options can be found in Appendix A.1.
			

				Report a bug
			

 ⁠18.3.1.1. Password Stacking

		Multiple login modules can be chained together in a stack, with each login module providing both the credentials verification and role assignment during authentication. This works for many use cases, but sometimes credentials verification and role assignment are split across multiple user management stores.
	

		Section 18.3.1.4, “Ldap Login Module” describes how to combine LDAP and a relational database, allowing a user to be authenticated by either system. Consider the case where users are managed in a central LDAP server but application-specific roles are stored in the application's relational database. The password-stacking module option captures this relationship.
	

		To use password stacking, each login module should set the <module-option> password-stacking attribute to useFirstPass. If a previous module configured for password stacking has authenticated the user, all the other stacking modules will consider the user authenticated and only attempt to provide a set of roles for the authorization step.
	

		When password-stacking option is set to useFirstPass, this module first looks for a shared user name and password under the property names javax.security.auth.login.name and javax.security.auth.login.password respectively in the login module shared state map.
	

		If found, these properties are used as the principal name and password. If not found, the principal name and password are set by this login module and stored under the property names javax.security.auth.login.name and javax.security.auth.login.password respectively.
	
Note

			When using password stacking, set all modules to be required. This ensures that all modules are considered, and have the chance to contribute roles to the authorization process.
		

 ⁠Example 18.5. Password Stacking Sample

			This management CLI example shows how password stacking could be used.
		
/subsystem=security/security-domain=pwdStack/authentication=classic/login-module=Ldap:add(\
 code=Ldap, \
 flag=required, \
 module-options=[\
 ("password-stacking"=>"useFirstPass"), \
 ... Ldap login module configuration
])
/subsystem=security/security-domain=pwdStack/authentication=classic/login-module=Database:add(\
 code=Database, \
 flag=required, \
 module-options=[\
 ("password-stacking"=>"useFirstPass"), \
 ... Database login module configuration
])

		Report a bug
	

 ⁠18.3.1.2. Password Hashing

		Most login modules must compare a client-supplied password to a password stored in a user management system. These modules generally work with plain text passwords, but can be configured to support hashed passwords to prevent plain text passwords from being stored on the server side.
	
Important

			Red Hat JBoss Enterprise Application Platform Common Criteria certified release only supports SHA-256 for password hashing.
		

 ⁠Example 18.6. Password Hashing

			The following is a login module configuration that assigns unauthenticated users the principal name nobody and contains based64-encoded, SHA-256 hashes of the passwords in a usersb64.properties file. The usersb64.properties file is part of the deployment classpath.
		

/subsystem=security/security-domain=testUsersRoles:add
/subsystem=security/security-domain=testUsersRoles/authentication=classic:add
/subsystem=security/security-domain=testUsersRoles/authentication=classic/login-module=UsersRoles:add(\
 code=UsersRoles, \
 flag=required, \
 module-options=[\
 ("usersProperties"=>"usersb64.properties"), \
 ("rolesProperties"=>"test-users-roles.properties"), \
 ("unauthenticatedIdentity"=>"nobody"), \
 ("hashAlgorithm"=>"SHA-256"), \
 ("hashEncoding"=>"base64") \
])

	hashAlgorithm
	
					Name of the java.security.MessageDigest algorithm to use to hash the password. There is no default so this option must be specified to enable hashing. Typical values are SHA-256, SHA-1 and MD5.
				

	hashEncoding
	
					String that specifies one of three encoding types: base64, hex or rfc2617. The default is base64.
				

	hashCharset
	
					Encoding character set used to convert the clear text password to a byte array. The platform default encoding is the default.
				

	hashUserPassword
	
					Specifies the hashing algorithm must be applied to the password the user submits. The hashed user password is compared against the value in the login module, which is expected to be a hash of the password. The default is true.
				

	hashStorePassword
	
					Specifies the hashing algorithm must be applied to the password stored on the server side. This is used for digest authentication, where the user submits a hash of the user password along with a request-specific tokens from the server to be compare. The hash algorithm (for digest, this would be rfc2617) is utilized to compute a server-side hash, which should match the hashed value sent from the client.
				

		If you must generate passwords in code, the org.jboss.security.auth.spi.Util class provides a static helper method that will hash a password using the specified encoding. The following example produces a base64-encoded, MD5 hashed password.
	
​
​String hashedPassword = Util.createPasswordHash("SHA-256",
​ Util.BASE64_ENCODING, null, null, "password");

		OpenSSL provides an alternative way to quickly generate hashed passwords at the command-line. The following example also produces a base64-encoded, SHA-256 hashed password. Here the password in plain text - password - is piped into the OpenSSL digest function then piped into another OpenSSL function to convert into base64-encoded format.
	
echo -n password | openssl dgst -sha256 -binary | openssl base64

		In both cases, the hashed version of the password is the same: XohImNooBHFR0OVvjcYpJ3NgPQ1qq73WKhHvch0VQtg=. This value must be stored in the users' properties file specified in the security domain - usersb64.properties - in the example above.
	

		Report a bug
	

 ⁠18.3.1.3. Unauthenticated Identity

		Not all requests are received in an authenticated format. unauthenticatedIdentity is a login module configuration option that assigns a specific identity (guest, for example) to requests that are made with no associated authentication information. This can be used to allow unprotected servlets to invoke methods on EJBs that do not require a specific role. Such a principal has no associated roles and so can only access either unsecured EJBs or EJB methods that are associated with the unchecked permission constraint.
	
	
				unauthenticatedIdentity: This defines the principal name that should be assigned to requests that contain no authentication information.
			

		Report a bug
	

 ⁠18.3.1.4. Ldap Login Module

		Ldap login module is a LoginModule implementation that authenticates against a Lightweight Directory Access Protocol (LDAP) server. Use the Ldap login module if your user name and credentials are stored in an LDAP server that is accessible using a Java Naming and Directory Interface (JNDI) LDAP provider.
	
AdvancedLDAP Login Module

			If you wish to use LDAP with the SPNEGO authentication or skip some of the authentication phases while using an LDAP server, consider using the AdvancedLdap login module chained with the SPNEGO login module or only the AdvancedLdap login module.
		

	Distinguished Name (DN)
	
					In Lightweight Directory Access Protocol (LDAP), the distinguished name uniquely identifies an object in a directory. Each distinguished name must have a unique name and location from all other objects, which is achieved using a number of attribute-value pairs (AVPs). The AVPs define information such as common names, organization unit, among others. The combination of these values results in a unique string required by the LDAP.
				

Note

			This login module also supports unauthenticated identity and password stacking.
		

		The LDAP connectivity information is provided as configuration options that are passed through to the environment object used to create JNDI initial context. The standard LDAP JNDI properties used include the following:
	
	java.naming.factory.initial
	
					InitialContextFactory implementation class name. This defaults to the Sun LDAP provider implementation com.sun.jndi.ldap.LdapCtxFactory.
				

	java.naming.provider.url
	
					LDAP URL for the LDAP server.
				

	java.naming.security.authentication
	
					Security protocol level to use. The available values include none, simple, and strong. If the property is undefined, the behavior is determined by the service provider.
				

	java.naming.security.protocol
	
					Transport protocol to use for secure access. Set this configuration option to the type of service provider (for example, SSL). If the property is undefined, the behavior is determined by the service provider.
				

	java.naming.security.principal
	
					Specifies the identity of the Principal for authenticating the caller to the service. This is built from other properties as described below.
				

	java.naming.security.credentials
	
					Specifies the credentials of the Principal for authenticating the caller to the service. Credentials can take the form of a hashed password, a clear-text password, a key, or a certificate. If the property is undefined, the behavior is determined by the service provider.
				

		For details of Ldap login module configuration options, see the Included Authentication Modules reference in the Security Guide for JBoss EAP.
	
Note

			In certain directory schemas (e.g., Microsoft Active Directory), role attributes in the user object are stored as DNs to role objects instead of simple names. For implementations that use this schema type, roleAttributeIsDN must be set to true.
		

		User authentication is performed by connecting to the LDAP server, based on the login module configuration options. Connecting to the LDAP server is done by creating an InitialLdapContext with an environment composed of the LDAP JNDI properties described previously in this section.
	

		The Context.SECURITY_PRINCIPAL is set to the distinguished name of the user obtained by the callback handler in combination with the principalDNPrefix and principalDNSuffix option values, and the Context.SECURITY_CREDENTIALS property is set to the respective String password.
	

		Once authentication has succeeded (InitialLdapContext instance is created), the user's roles are queried by performing a search on the rolesCtxDN location with search attributes set to the roleAttributeName and uidAttributeName option values. The roles names are obtaining by invoking the toString method on the role attributes in the search result set.
	

 ⁠Example 18.7. LDAP Login Module Security Domain

			This management CLI example shows how to use the parameters in a security domain authentication configuration.
		

/subsystem=security/security-domain=testLDAP:add(cache-type=default)
/subsystem=security/security-domain=testLDAP/authentication=classic:add
/subsystem=security/security-domain=testLDAP/authentication=classic/login-module=Ldap:add(\
 code=Ldap, \
 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org:1389/"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("principalDNPrefix"=>"uid="), \
 ("principalDNSuffix"=>",ou=People,dc=jboss,dc=org"), \
 ("rolesCtxDN"=>"ou=Roles,dc=jboss,dc=org"), \
 ("uidAttributeID"=>"member"), \
 ("matchOnUserDN"=>true), \
 ("roleAttributeID"=>"cn"), \
 ("roleAttributeIsDN"=>false) \
])

		The java.naming.factory.initial, java.naming.factory.url and java.naming.security options in the testLDAP security domain configuration indicate the following conditions:
	
	
				The Sun LDAP JNDI provider implementation will be used
			

	
				The LDAP server is located on host ldaphost.jboss.org on port 1389
			

	
				The LDAP simple authentication method will be use to connect to the LDAP server.
			

		The login module attempts to connect to the LDAP server using a Distinguished Name (DN) representing the user it is trying to authenticate. This DN is constructed from the passed principalDNPrefix, the user name of the user and the principalDNSuffix as described above. In Example 18.8, “LDIF File Example”, the user name jsmith would map to uid=jsmith,ou=People,dc=jboss,dc=org.
	
Note

			The example assumes the LDAP server authenticates users using the userPassword attribute of the user's entry (theduke in this example). Most LDAP servers operate in this manner, however if your LDAP server handles authentication differently you must ensure LDAP is configured according to your production environment requirements.
		

		Once authentication succeeds, the roles on which authorization will be based are retrieved by performing a subtree search of the rolesCtxDN for entries whose uidAttributeID match the user. If matchOnUserDN is true, the search will be based on the full DN of the user. Otherwise the search will be based on the actual user name entered. In this example, the search is under ou=Roles,dc=jboss,dc=org for any entries that have a member attribute equal to uid=jsmith,ou=People,dc=jboss,dc=org. The search would locate cn=JBossAdmin under the roles entry.
	

		The search returns the attribute specified in the roleAttributeID option. In this example, the attribute is cn. The value returned would be JBossAdmin, so the jsmith user is assigned to the JBossAdmin role.
	

		A local LDAP server often provides identity and authentication services, but is unable to use authorization services. This is because application roles do not always map well onto LDAP groups, and LDAP administrators are often hesitant to allow external application-specific data in central LDAP servers. The LDAP authentication module is often paired with another login module, such as the database login module, that can provide roles more suitable to the application being developed.
	

		An LDAP Data Interchange Format (LDIF) file representing the structure of the directory this data operates against is shown in Example 18.8, “LDIF File Example”.
	
	LDAP Data Interchange Format (LDIF)
	
					Plain text data interchange format used to represent LDAP directory content and update requests. Directory content is represented as one record for each object or update request. Content consists of add, modify, delete, and rename requests.
				

 ⁠Example 18.8. LDIF File Example
dn: dc=jboss,dc=org
objectclass: top
objectclass: dcObject
objectclass: organization
dc: jboss
o: JBoss

dn: ou=People,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: People

dn: uid=jsmith,ou=People,dc=jboss,dc=org
objectclass: top
objectclass: uidObject
objectclass: person
uid: jsmith
cn: John
sn: Smith
userPassword: theduke

dn: ou=Roles,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: Roles

dn: cn=JBossAdmin,ou=Roles,dc=jboss,dc=org
objectclass: top
objectclass: groupOfNames
cn: JBossAdmin
member: uid=jsmith,ou=People,dc=jboss,dc=org
description: the JBossAdmin group

		Report a bug
	

 ⁠18.3.1.5. LdapExtended Login Module

	Distinguished Name (DN)
	
					In Lightweight Directory Access Protocol (LDAP), the distinguished name uniquely identifies an object in a directory. Each distinguished name must have a unique name and location from all other objects, which is achieved using a number of attribute-value pairs (AVPs). The AVPs define information such as common names, organization unit, among others. The combination of these values results in a unique string required by the LDAP.
				

		The LdapExtended (org.jboss.security.auth.spi.LdapExtLoginModule) searches for the user to bind, as well as the associated roles, for authentication. The roles query recursively follows DNs to navigate a hierarchical role structure.
	

		The LoginModule options include whatever options are supported by the chosen LDAP JNDI provider supports. Examples of standard property names are:
	
	
				Context.INITIAL_CONTEXT_FACTORY = "java.naming.factory.initial"
			

	
				Context.SECURITY_PROTOCOL = "java.naming.security.protocol"
			

	
				Context.PROVIDER_URL = "java.naming.provider.url"
			

	
				Context.SECURITY_AUTHENTICATION = "java.naming.security.authentication"
			

	
				Context.REFERRAL = "java.naming.referral"
			

		Login module implementation logic follows the order below:
	
	
				The initial LDAP server bind is authenticated using the bindDN and bindCredential properties. The bindDN is a user with permissions to search both the baseCtxDN and rolesCtxDN trees for the user and roles. The user DN to authenticate against is queried using the filter specified by the baseFilter property.
			

	
				The resulting userDN is authenticated by binding to the LDAP server using the userDN as the InitialLdapContext environment Context.SECURITY_PRINCIPAL. The Context.SECURITY_CREDENTIALS property is either set to the String password obtained by the callback handler.
			

	
				If this is successful, the associated user roles are queried using the rolesCtxDN, roleAttributeID, roleAttributeIsDN, roleNameAttributeID, and roleFilter options.
			

Note

			AdvancedLdap Login Module differs from LdapExtended Login Module in the following ways:
				
						The top level role is queried only for roleAttributeID and not for roleNameAttributeID.
					

	
						When the roleAttributeIsDN module property is set to false, the recursive role search is disabled even if the recurseRoles module option is set to true.
					

		

		For details of LdapExtended login module options, see the Included Authentication Modules reference in the Security Guide for JBoss EAP.
	

 ⁠[image: LDAP Structure Example]

Figure 18.1. LDAP Structure Example

 ⁠Example 18.9. Example 2 LDAP Configuration

version: 1
dn: o=example2,dc=jboss,dc=org
objectClass: top
objectClass: organization
o: example2

dn: ou=People,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: People

dn: uid=jduke,ou=People,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: uidObject
objectClass: person
objectClass: inetOrgPerson
cn: Java Duke
employeeNumber: judke-123
sn: Duke
uid: jduke
userPassword:: dGhlZHVrZQ==

dn: uid=jduke2,ou=People,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: uidObject
objectClass: person
objectClass: inetOrgPerson
cn: Java Duke2
employeeNumber: judke2-123
sn: Duke2
uid: jduke2
userPassword:: dGhlZHVrZTI=

dn: ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: Roles

dn: uid=jduke,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupUserEx
memberOf: cn=Echo,ou=Roles,o=example2,dc=jboss,dc=org
memberOf: cn=TheDuke,ou=Roles,o=example2,dc=jboss,dc=org
uid: jduke

dn: uid=jduke2,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupUserEx
memberOf: cn=Echo2,ou=Roles,o=example2,dc=jboss,dc=org
memberOf: cn=TheDuke2,ou=Roles,o=example2,dc=jboss,dc=org
uid: jduke2

dn: cn=Echo,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
cn: Echo
description: the echo role
member: uid=jduke,ou=People,dc=jboss,dc=org

dn: cn=TheDuke,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: TheDuke
description: the duke role
member: uid=jduke,ou=People,o=example2,dc=jboss,dc=org

dn: cn=Echo2,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
cn: Echo2
description: the Echo2 role
member: uid=jduke2,ou=People,dc=jboss,dc=org

dn: cn=TheDuke2,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: TheDuke2
description: the duke2 role
member: uid=jduke2,ou=People,o=example2,dc=jboss,dc=org

dn: cn=JBossAdmin,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
cn: JBossAdmin
description: the JBossAdmin group
member: uid=jduke,ou=People,dc=jboss,dc=org

			The module configuration for this LDAP structure example is outlined in the following management CLI command.
		

/subsystem=security/security-domain=testLdapExample2/authentication=classic/login-module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("bindDN"=>"cn=Root,dc=jboss,dc=org"), \
 ("bindCredential"=>"secret1"), \
 ("baseCtxDN"=>"ou=People,o=example2,dc=jboss,dc=org"), \
 ("baseFilter"=>"(uid={0})"), \
 ("rolesCtxDN"=>"ou=Roles,o=example2,dc=jboss,dc=org"), \
 ("roleFilter"=>"(uid={0})"), \
 ("roleAttributeIsDN"=>"true"), \
 ("roleAttributeID"=>"memberOf"), \
 ("roleNameAttributeID"=>"cn") \
])

 ⁠Example 18.10. Example 3 LDAP Configuration

dn: o=example3,dc=jboss,dc=org
objectclass: top
objectclass: organization
o: example3

dn: ou=People,o=example3,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: People

dn: uid=jduke,ou=People,o=example3,dc=jboss,dc=org
objectclass: top
objectclass: uidObject
objectclass: person
objectClass: inetOrgPerson
uid: jduke
employeeNumber: judke-123
cn: Java Duke
sn: Duke
userPassword: theduke

dn: ou=Roles,o=example3,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: Roles

dn: uid=jduke,ou=Roles,o=example3,dc=jboss,dc=org
objectClass: top
objectClass: groupUserEx
memberOf: cn=Echo,ou=Roles,o=example3,dc=jboss,dc=org
memberOf: cn=TheDuke,ou=Roles,o=example3,dc=jboss,dc=org
uid: jduke

dn: cn=Echo,ou=Roles,o=example3,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
cn: Echo
description: the JBossAdmin group
member: uid=jduke,ou=People,o=example3,dc=jboss,dc=org

dn: cn=TheDuke,ou=Roles,o=example3,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: TheDuke
member: uid=jduke,ou=People,o=example3,dc=jboss,dc=org

		The module configuration for this LDAP structure example is outlined in the following management CLI command.
	

/subsystem=security/security-domain=testLdapExample3/authentication=classic/login-module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("bindDN"=>"cn=Root,dc=jboss,dc=org"), \
 ("bindCredential"=>"secret1"), \
 ("baseCtxDN"=>"ou=People,o=example3,dc=jboss,dc=org"), \
 ("baseFilter"=>"(cn={0})"), \
 ("rolesCtxDN"=>"ou=Roles,o=example3,dc=jboss,dc=org"), \
 ("roleFilter"=>"(member={1})"), \
 ("roleAttributeID"=>"cn") \
])

 ⁠Example 18.11. Example 4 LDAP Configuration

dn: o=example4,dc=jboss,dc=org
objectclass: top
objectclass: organization
o: example4

dn: ou=People,o=example4,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: People

dn: uid=jduke,ou=People,o=example4,dc=jboss,dc=org
objectClass: top
objectClass: uidObject
objectClass: person
objectClass: inetOrgPerson
cn: Java Duke
employeeNumber: jduke-123
sn: Duke
uid: jduke
userPassword:: dGhlZHVrZQ==

dn: ou=Roles,o=example4,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: Roles

dn: cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: RG1
member: cn=empty

dn: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: RG2
member: cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
member: uid=jduke,ou=People,o=example4,dc=jboss,dc=org

dn: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: RG3
member: cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R1
member: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R2,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R2
member: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R3,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R3
member: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
member: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R4,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R4
member: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R5,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R5
member: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
member: uid=jduke,ou=People,o=example4,dc=jboss,dc=org

			The module configuration for this LDAP structure example is outlined in the code sample.
		

/subsystem=security/security-domain=testLdapExample4/authentication=classic/login-module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("bindDN"=>"cn=Root,dc=jboss,dc=org"), \
 ("bindCredential"=>"secret1"), \
 ("baseCtxDN"=>"ou=People,o=example4,dc=jboss,dc=org"), \
 ("baseFilter"=>"(cn={0})"), \
 ("rolesCtxDN"=>"ou=Roles,o=example4,dc=jboss,dc=org"), \
 ("roleFilter"=>"(member={1})"), \
 ("roleRecursion"=>"1"), \
 ("roleAttributeID"=>"memberOf") \
])

 ⁠Example 18.12. Default Active Directory Configuration

			The example below represents the configuration for a default Active Directory configuration.
		

			Some Active Directory configurations may require searching against the Global Catalog on port 3268 instead of the usual port 389. This is most likely when the Active Directory forest includes multiple domains.
		

/subsystem=security/security-domain=AD_Default/authentication=classic/login-module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("bindDN"=>"JBOSS\searchuser"), \
 ("bindCredential"=>"password"), \
 ("baseCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("baseFilter"=>"(sAMAccountName={0})"), \
 ("rolesCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("roleFilter"=>"(sAMAccountName={0})"), \
 ("roleAttributeID"=>"memberOf"), \
 ("roleAttributeIsDN"=>"true"), \
 ("roleNameAttributeID"=>"cn"), \
 ("searchScope"=>"ONELEVEL_SCOPE"), \
 ("allowEmptyPasswords"=>"false") \
])

 ⁠Example 18.13. Recursive Roles Active Directory Configuration

			The example below implements a recursive role search within Active Directory. The key difference between this example and the default Active Directory example is that the role search has been replaced to search the member attribute using the DN of the user. The login module then uses the DN of the role to find groups of which the group is a member.
		

/subsystem=security/security-domain=AD_Recursive/authentication=classic/login-module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("java.naming.referral"=>"follow"), \
 ("bindDN"=>"JBOSS\searchuser"), \
 ("bindCredential"=>"password"), \
 ("baseCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("baseFilter"=>"(sAMAccountName={0})"), \
 ("rolesCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("roleFilter"=>"(member={1})"), \
 ("roleAttributeID"=>"cn"), \
 ("roleAttributeIsDN"=>"false"), \
 ("roleRecursion"=>"2"), \
 ("searchScope"=>"ONELEVEL_SCOPE"), \
 ("allowEmptyPasswords"=>"false") \
])

		Report a bug
	

 ⁠18.3.1.6. UsersRoles Login Module

		UsersRoles login module is a simple login module that supports multiple users and user roles loaded from Java properties files. The default username-to-password mapping filename is users.properties and the default username-to-roles mapping filename is roles.properties.
	

		For details of UsersRoles login module options, see the Included Authentication Modules reference in the Security Guide for JBoss EAP.
	

		This login module supports password stacking, password hashing, and unauthenticated identity.
	

		The properties files are loaded during initialization using the initialize method thread context class loader. This means that these files can be placed on the classpath of the Java EE deployment (for example, into the WEB-INF/classes folder in the WAR archive), or into any directory on the server classpath. The primary purpose of this login module is to easily test the security settings of multiple users and roles using properties files deployed with the application.
	

 ⁠Example 18.14. UsersRoles Login Module

/subsystem=security/security-domain=ejb3-sampleapp/authentication=classic/login-module=UsersRoles:add(\
 code=UsersRoles, \
 flag=required, \
 module-options=[\
 ("usersProperties"=>"ejb3-sampleapp-users.properties"), \
 ("rolesProperties"=>"ejb3-sampleapp-roles.properties") \
])

		In Example 18.14, “UsersRoles Login Module”, the ejb3-sampleapp-users.properties file uses a username=password format with each user entry on a separate line:
	

username1=password1
username2=password2
...

		The ejb3-sampleapp-roles.properties file referenced in Example 18.14, “UsersRoles Login Module” uses the pattern username=role1,role2, with an optional group name value. For example:
	

username1=role1,role2,...
username1.RoleGroup1=role3,role4,...
username2=role1,role3,...

		The user name.XXX property name pattern present in ejb3-sampleapp-roles.properties is used to assign the user name roles to a particular named group of roles where the XXX portion of the property name is the group name. The user name=... form is an abbreviation for user name.Roles=..., where the Roles group name is the standard name the JBossAuthorizationManager expects to contain the roles which define the permissions of users.
	

		The following would be equivalent definitions for the jduke user name:
	

jduke=TheDuke,AnimatedCharacter
jduke.Roles=TheDuke,AnimatedCharacter

		Report a bug
	

 ⁠18.3.1.7. Database Login Module

		The Database login module is a Java Database Connectivity-based (JDBC) login module that supports authentication and role mapping. Use this login module if you have your user name, password and role information stored in a relational database.
	
Note

			This module supports password stacking, password hashing and unauthenticated identity.
		

		The Database login module is based on two logical tables:
	

Table Principals(PrincipalID text, Password text)
Table Roles(PrincipalID text, Role text, RoleGroup text)

		The Principals table associates the user PrincipalID with the valid password and the Roles table associates the user PrincipalID with its role sets. The roles used for user permissions must be contained in rows with a RoleGroup column value of Roles.
	

		The tables are logical in that you can specify the SQL query that the login module uses. The only requirement is that the java.sql.ResultSet has the same logical structure as the Principals and Roles tables described previously. The actual names of the tables and columns are not relevant as the results are accessed based on the column index.
	

		To clarify this notion, consider a database with two tables, Principals and Roles, as already declared. The following statements populate the tables with the following data:
	
	
				PrincipalID java with a Password of echoman in the Principals table
			

	
				PrincipalID java with a role named Echo in the RolesRoleGroup in the Roles table
			

	
				PrincipalID java with a role named caller_java in the CallerPrincipalRoleGroup in the Roles table
			

INSERT INTO Principals VALUES('java', 'echoman')
INSERT INTO Roles VALUES('java', 'Echo', 'Roles')
INSERT INTO Roles VALUES('java', 'caller_java', 'CallerPrincipal')

		For details of Database login module options, see the Included Authentication Modules reference in the Security Guide for JBoss EAP.
	

		An example Database login module configuration could be constructed as follows:
	

CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE UserRoles(username VARCHAR(64), role VARCHAR(32))

		A corresponding login module configuration in a security domain:
	

/subsystem=security/security-domain=testDB/authentication=classic/login-module=Database:add(\
 code=Database, \
 flag=required, \
 module-options=[\
 ("dsJndiName"=>"java:/MyDatabaseDS"), \
 ("principalsQuery"=>"select passwd from Users where username=?"), \
 ("rolesQuery"=>"select role, 'Roles' from UserRoles where username=?") \
])

		Report a bug
	

 ⁠18.3.1.8. Certificate Login Module

		Certificate login module authenticates users based on X509 certificates. A typical use case for this login module is CLIENT-CERT authentication in the web tier.
	

		This login module only performs authentication: you must combine it with another login module capable of acquiring authorization roles to completely define access to a secured web or EJB component. Two subclasses of this login module, CertRolesLoginModule and DatabaseCertLoginModule extend the behavior to obtain the authorization roles from either a properties file or database.
	

		For details of Certificate login module options, see the Included Authentication Modules reference in the Security Guide for JBoss EAP.
	

		The Certificate login module needs a KeyStore to perform user validation. This is obtained from a JSSE configuration of linked security domain as shown in the following configuration fragment:
	

/subsystem=security/security-domain=trust-domain:add
/subsystem=security/security-domain=trust-domain/jsse=classic:add(\
 truststore={ \
 password=>pass1234, \
 url=>/home/jbosseap/trusted-clients.jks \
 })

/subsystem=security/security-domain=testCert:add
/subsystem=security/security-domain=testCert/authentication=classic:add
/subsystem=security/security-domain=testCert/authentication=classic/login-module=Certificate:add(\
 code=Certificate, \
 flag=required, \
 module-options=[\
 ("securityDomain"=>"trust-domain"), \
])

 ⁠Procedure 18.4. Secure Web Applications with Certificates and Role-based Authorization

			This procedure describes how to secure a web application, such as the user-app.war, using client certificates and role-based authorization. In this example the CertificateRoles login module is used for authentication and authorization. Both the trusted-clients.keystore and the app-roles.properties require an entry that maps to the principal associated with the client certificate.
		

			By default, the principal is created using the client certificate distinguished name, such as the DN specified in Example 18.15, “Certificate Example”.
		
	Declare Resources and Roles

				Modify web.xml to declare the resources to be secured along with the allowed roles and security domain to be used for authentication and authorization.
			

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Protect App</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Admin</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>Secured area</realm-name>
 </login-config>

 <security-role>
 <role-name>Admin</role-name>
 </security-role>
</web-app>

	Specify the Security Domain

				In the jboss-web.xml file, specify the required security domain.
			
​
​
​<jboss-web>
​ <security-domain>app-sec-domain</security-domain>
​</jboss-web>
​

	Configure Login Module

				Define the login module configuration for the app-sec-domain domain you just specified using the management CLI.
			
[
/subsystem=security/security-domain=trust-domain:add
/subsystem=security/security-domain=trust-domain/jsse=classic:add(\
 truststore={ \
 password=>pass1234, \
 url=>/home/jbosseap/trusted-clients.jks \
 })

/subsystem=security/security-domain=app-sec-domain:add
/subsystem=security/security-domain=app-sec-domain/authentication=classic:add
/subsystem=security/security-domain=app-sec-domain/authentication=classic/login-module=CertificateRoles:add(\
 code=CertificateRoles, \
 flag=required, \
 module-options=[\
 ("securityDomain"=>"trust-domain"), \
 ("rolesProperties"=>"app-roles.properties") \
])

 ⁠Example 18.15. Certificate Example

[conf]$ keytool -printcert -file valid-client-cert.crt
Owner: CN=valid-client, OU=Security QE, OU=JBoss, O=Red Hat, C=CZ
Issuer: CN=EAP Certification Authority, OU=Security QE, OU=JBoss, O=Red Hat, C=CZ
Serial number: 2
Valid from: Mon Mar 24 18:21:55 CET 2014 until: Tue Mar 24 18:21:55 CET 2015
Certificate fingerprints:
 MD5: 0C:54:AE:6E:29:ED:E4:EF:46:B5:14:30:F2:E0:2A:CB
 SHA1: D6:FB:19:E7:11:28:6C:DE:01:F2:92:2F:22:EF:BB:5D:BF:73:25:3D
 SHA256: CD:B7:B1:72:A3:02:42:55:A3:1C:30:E1:A6:F0:20:B0:2C:0F:23:4F:7A:8E:2F:2D:FA:AF:55:3E:A7:9B:2B:F4
 Signature algorithm name: SHA1withRSA
 Version: 3

		The trusted-clients.keystore would need the certificate in Example 18.15, “Certificate Example” stored with an alias of CN=valid-client, OU=Security QE, OU=JBoss, O=Red Hat, C=CZ. The app-roles.properties must have the same entry. Since the DN contains characters that are normally treated as delimiters, you must escape the problem characters using a backslash ('\') as illustrated below.
	

A sample app-roles.properties file
CN\=valid-client,\ OU\=Security\ QE,\ OU\=JBoss,\ O\=Red\ Hat,\ C\=CZ

		Report a bug
	

 ⁠18.3.1.9. Identity Login Module

		Identity login module is a simple login module that associates a hard-coded user name to any subject authenticated against the module. It creates a SimplePrincipal instance using the name specified by the principal option.
	
Note

			This module supports password stacking.
		

		This login module is useful when you need to provide a fixed identity to a service, and in development environments when you want to test the security associated with a given principal and associated roles.
	

		For details of Identity login module options, see the Included Authentication Modules reference in the Security Guide for JBoss EAP.
	

		A sample security domain configuration is described below. It authenticates all users as the principal named jduke and assigns role names of TheDuke, and AnimatedCharacter:.
	

/subsystem=security/security-domain=testIdentity:add
/subsystem=security/security-domain=testIdentity/authentication=classic:add
/subsystem=security/security-domain=testIdentity/authentication=classic/login-module=Identity:add(\
 code=Identity, \
 flag=required, \
 module-options=[\
 ("principal"=>"jduke"), \
 ("roles"=>"TheDuke,AnimatedCharacter") \
])

		Report a bug
	

 ⁠18.3.1.10. RunAs Login Module

					RunAs login module is a helper module that pushes a run as role onto the stack for the duration of the login phase of authentication, then pops the run as role from the stack in either the commit or abort phase.
				

					The purpose of this login module is to provide a role for other login modules that must access secured resources in order to perform their authentication (for example, a login module that accesses a secured EJB). RunAs login module must be configured ahead of the login modules that require a run as role established.
				

					For details of RunAs login module options, see the Included Authentication Modules reference in the Security Guide for JBoss EAP.
				

					Report a bug
				

 ⁠18.3.1.10.1. RunAsIdentity Creation

		In order for JBoss EAP 6 to secure access to EJB methods, the identity of the user must be known at the time the method call is made.
	

		A user's identity in the server is represented either by a javax.security.auth.Subject instance or an org.jboss.security.RunAsIdentity instance. Both these classes store one or more principals that represent the identity and a list of roles that the identity possesses. In the case of the javax.security.auth.Subject a list of credentials is also stored.
	

		In the <assembly-descriptor> section of the ejb-jar.xml deployment descriptor, you specify one or more roles that a user must have to access the various EJB methods. A comparison of these lists reveals whether the user has one of the roles necessary to access the EJB method.
	

 ⁠Example 18.16. org.jboss.security.RunAsIdentity Creation

			In the ejb-jar.xml file, you specify a <security-identity> element with a <run-as> role defined as a child of the <session> element.
		
​<session>
​ ...
​ <security-identity>
​ <run-as>
​ <role-name>Admin</role-name>
​ </run-as>
​ </security-identity>
​ ...
​</session>

			This declaration signifies that an Admin RunAsIdentity role must be created.
		

			To name a principal for the Admin role, you define a <run-as-principal> element in the jboss-ejb3.xml file.
		
​
​
​<jboss:ejb-jar
​ xmlns="http://java.sun.com/xml/ns/javaee"
​ xmlns:jboss="http://www.jboss.com/xml/ns/javaee"
​ xmlns:s="urn:security:1.1"
​ version="3.1" impl-version="2.0">
​ <assembly-descriptor>
​ <s:security>
​ <ejb-name>WhoAmIBean</ejb-name>
​ <s:run-as-principal>John</s:run-as-principal>
​ </s:security>
​ </assembly-descriptor>
​</jboss:ejb-jar>
​

			The <security-identity> element in both the ejb-jar.xml and <security> element in the jboss-ejb3.xml files are parsed at deployment time. The <run-as> role name and the <run-as-principal> name are then stored in the org.jboss.metadata.ejb.spec.SecurityIdentityMetaData class.
		

 ⁠Example 18.17. Assigning multiple roles to a RunAsIdentity

			You can assign more roles to RunAsIdentity by mapping roles to principals in the jboss-ejb3.xml deployment descriptor <assembly-descriptor> element group.
		
​
​
​<jboss:ejb-jar xmlns:sr="urn:security-role"
​ ...>
​ <assembly-descriptor>
​ ...
​ <sr:security-role>
​ <sr:role-name>Support</sr:role-name>
​ <sr:principal-name>John</sr:principal-name>
​ <sr:principal-name>Jill</sr:principal-name>
​ <sr:principal-name>Tony</sr:principal-name>
​ </sr:security-role>
​ </assembly-descriptor>
​</jboss:ejb-jar>
​

			In Example 18.16, “org.jboss.security.RunAsIdentity Creation”, the <run-as-principal> of John was created. The configuration in this example extends the Admin role, by adding the Support role. The new role contains extra principals, including the originally defined principal John.
		

			The <security-role> element in both the ejb-jar.xml and jboss-ejb3.xml files are parsed at deployment time. The <role-name> and the <principal-name> data is stored in the org.jboss.metadata.ejb.spec.SecurityIdentityMetaData class.
		

		Report a bug
	

 ⁠18.3.1.11. Client Login Module

		Client login module (org.jboss.security.ClientLoginModule) is an implementation of LoginModule for use by JBoss clients when establishing caller identity and credentials. This creates a new SecurityContext assigns it a principal and a credential and sets the SecurityContext to the ThreadLocal security context.
	

		Client login module is the only supported mechanism for a client to establish the current thread's caller. Both stand-alone client applications, and server environments (acting as JBoss EJB clients where the security environment has not been configured to use the EAP security subsystem transparently) must use Client login module.
	

		Note that this login module does not perform any authentication. It merely copies the login information provided to it into the server EJB invocation layer for subsequent authentication on the server. If you need to perform client-side authentication of users you would need to configure another login module in addition to the Client login module.
	

		For details of Client login module options, see the Included Authentication Modules reference in the Security Guide for JBoss EAP.
	

		Report a bug
	

 ⁠18.3.1.12. SPNEGO Login Module

		SPNEGO login module (org.jboss.security.negotiation.spnego.SPNEGOLoginModule) is an implementation of LoginModule that establishes caller identity and credentials with a KDC. The module implements SPNEGO (Simple and Protected GSSAPI Negotiation mechanism) and is a part of the JBoss Negotiation project. This authentication can be used in the chained configuration with the AdvancedLdap login module to allow cooperation with an LDAP server.
	

		For details of SPNEGO login module options, see the Included Authentication Modules reference in the Security Guide for JBoss EAP.
	

		The JBoss Negotiation module is not included as a standard dependency for deployed applications. To use the SPNEGO or AdvancedLdap login modules in your project, you must add the dependency manually by editing the META-INF/jboss-deployment-structure.xml deployment descriptor file.
	

 ⁠Example 18.18. Add JBoss Negotiation Module as a Dependency
​
​
​<jboss-deployment-structure>
​ <deployment>
​ <dependencies>
​ <module name="org.jboss.security.negotiation" />
​ </dependencies>
​ </deployment>
​</jboss-deployment-structure>
​

		Report a bug
	

 ⁠18.3.1.13. RoleMapping Login Module

		RoleMapping login module supports mapping roles, that are the end result of the authentication process, to one or more declarative roles. For example, if the authentication process has determined that the user "A" has the roles "ldapAdmin" and "testAdmin", and the declarative role defined in the web.xml or ejb-jar.xml file for access is admin, then this login module maps the admin roles to the user A.
	

		For details of RoleMapping login module options, see the Included Authentication Modules reference in the Security Guide for JBoss EAP.
	

		The RoleMapping login module must be defined as an optional module to a login module configuration as it alters mapping of the previously mapped roles.
	

 ⁠Example 18.19. Defining mapped roles

/subsystem=security/security-domain=test-domain-2/:add
/subsystem=security/security-domain=test-domain-2/authentication=classic:add
/subsystem=security/security-domain=test-domain-2/authentication=classic/login-module=test-2-lm/:add(\
flag=required,\
code=UsersRoles,\
module-options=[("usersProperties"=>"users.properties"),("rolesProperties"=>"roles.properties")]\
)
/subsystem=security/security-domain=test-domain-2/authentication=classic/login-module=test2-map/:add(\
flag=optional,\
code=RoleMapping,\
module-options=[("rolesProperties"=>"rolesMapping-roles.properties")]\
)

		Another example achieving the same result, but using the mapping module. This is the preferred method of role mapping:
	

 ⁠Example 18.20. Preferred method of defining mapped roles

/subsystem=security/security-domain=test-domain-2/:add
/subsystem=security/security-domain=test-domain-2/authentication=classic:add
/subsystem=security/security-domain=test-domain-2/authentication=classic/login-module=test-2-lm/:add(\
flag=required,\
code=UsersRoles,\
module-options=[("usersProperties"=>"users.properties"),("rolesProperties"=>"roles.properties")]\
)
/subsystem=security/security-domain=test-domain-2/mapping=classic/mapping-module=test2-map/:add(\
code=PropertiesRoles,type=role,\
module-options=[("rolesProperties"=>"rolesMapping-roles.properties")]\
)

 ⁠Example 18.21. Properties File used by a RoleMappingLoginModule

ldapAdmin=admin, testAdmin

			If the authenticated subject contains role ldapAdmin, then the roles admin and testAdmin are added to or substitute the authenticated subject depending on the replaceRole property value.
		

		Report a bug
	

 ⁠18.3.1.14. bindCredential Module Option

		The bindCredential module option is used to store the credentials for the DN and can be used by several login and mapping modules. There are several methods for obtaining the password.
	

	 Plaintext in a management CLI command.
	
					The password for the bindCredential module may be provided in plaintext, in a management CLI command. For example: ("bindCredential"=>"secret1"). For security reasons, the password should be encrypted using the JBoss EAP vault mechanism.
				

	 Use an external command.
	
					To obtain the password from the output of an external command, use the format {EXT}... where the ... is the external command. The first line of the command output is used as the password.
				

					To improve performance, the {EXTC[:expiration_in_millis]} variant caches the password for a specified number of milliseconds. By default the cached password does not expire. If the value 0 (zero) is specified, the cached credentials do not expire.
				

					The EXTC variant is only supported by the LdapExtended login module.
				

 ⁠Example 18.22. Obtain a password from an external command

			

{EXT}cat /mysecretpasswordfile

		

 ⁠Example 18.23. Obtain a password from an external file and cache it for 500 milliseconds

			

{EXTC:500}cat /mysecretpasswordfile

		

		Report a bug
	

 ⁠18.3.2. Custom Modules

				If the login modules bundled with the EAP security framework do not work with your security environment, you can write your own custom login module implementation. The AuthenticationManager requires a particular usage pattern of the Subject principals set. You must understand the JAAS Subject class's information storage features and the expected usage of these features to write a login module that works with the AuthenticationManager.
			

				This section examines this requirement and introduces two abstract base LoginModule implementations that can help you implement custom login modules.
			

				You can obtain security information associated with a Subject by using the following methods:
			
​java.util.Set getPrincipals()
​java.util.Set getPrincipals(java.lang.Class c)
​java.util.Set getPrivateCredentials()
​java.util.Set getPrivateCredentials(java.lang.Class c)
​java.util.Set getPublicCredentials()
​java.util.Set getPublicCredentials(java.lang.Class c)

				For Subject identities and roles, EAP has selected the most logical choice: the principals sets obtained via getPrincipals() and getPrincipals(java.lang.Class). The usage pattern is as follows:
			
	
						User identities (for example; user name, social security number, employee ID) are stored as java.security.Principal objects in the SubjectPrincipals set. The Principal implementation that represents the user identity must base comparisons and equality on the name of the principal. A suitable implementation is available as the org.jboss.security.SimplePrincipal class. Other Principal instances may be added to the SubjectPrincipals set as needed.
					

	
						Assigned user roles are also stored in the Principals set, and are grouped in named role sets using java.security.acl.Group instances. The Group interface defines a collection of Principals and/or Groups, and is a subinterface of java.security.Principal.
					

	
						Any number of role sets can be assigned to a Subject.
					

	
						The EAP security framework uses two well-known role sets with the names Roles and CallerPrincipal.
					
	
								The Roles group is the collection of Principals for the named roles as known in the application domain under which the Subject has been authenticated. This role set is used by methods like the EJBContext.isCallerInRole(String), which EJBs can use to see if the current caller belongs to the named application domain role. The security interceptor logic that performs method permission checks also uses this role set.
							

	
								The CallerPrincipal Group consists of the single Principal identity assigned to the user in the application domain. The EJBContext.getCallerPrincipal() method uses the CallerPrincipal to allow the application domain to map from the operation environment identity to a user identity suitable for the application. If a Subject does not have a CallerPrincipal Group, the application identity is the same as operational environment identity.
							

				Report a bug
			

 ⁠18.3.2.1. Subject Usage Pattern Support

		To simplify correct implementation of the Subject usage patterns described in Section 18.3.2, “Custom Modules”, EAP includes login modules that populate the authenticated Subject with a template pattern that enforces correct Subject usage.
	
AbstractServerLoginModule

			The most generic of the two is the org.jboss.security.auth.spi.AbstractServerLoginModule class.
		

		It provides an implementation of the javax.security.auth.spi.LoginModule interface and offers abstract methods for the key tasks specific to an operation environment security infrastructure. The key details of the class are highlighted in Example 18.24, “AbstractServerLoginModule Class Fragment”. The JavaDoc comments detail the responsibilities of subclasses.
	
Important

			The loginOk instance variable is pivotal. This must be set to true if the log in succeeds, or false by any subclasses that override the log in method. If this variable is incorrectly set, the commit method will not correctly update the subject.
		

		Tracking the log in phase outcomes allows login modules to be chained together with control flags. These control flags do not require the login modules to succeed as part of the authentication process.
	

 ⁠Example 18.24. AbstractServerLoginModule Class Fragment
​package org.jboss.security.auth.spi;
​/**
​ * This class implements the common functionality required for a JAAS
​ * server-side LoginModule and implements the PicketBox standard
​ * Subject usage pattern of storing identities and roles. Subclass
​ * this module to create your own custom LoginModule and override the
​ * login(), getRoleSets(), and getIdentity() methods.
​ */
​public abstract class AbstractServerLoginModule
​ implements javax.security.auth.spi.LoginModule
​{
​ protected Subject subject;
​ protected CallbackHandler callbackHandler;
​ protected Map sharedState;
​ protected Map options;
​ protected Logger log;
​
​ /** Flag indicating if the shared credential should be used */
​ protected boolean useFirstPass;
​ /**
​ * Flag indicating if the login phase succeeded. Subclasses that
​ * override the login method must set this to true on successful
​ * completion of login
​ */
​ protected boolean loginOk;
​
​ // ...
​ /**
​ * Initialize the login module. This stores the subject,
​ * callbackHandler and sharedState and options for the login
​ * session. Subclasses should override if they need to process
​ * their own options. A call to super.initialize(...) must be
​ * made in the case of an override.
​ *
​ * <p>
​ * The options are checked for the password-stacking parameter.
​ * If this is set to "useFirstPass", the login identity will be taken from the
​ * <code>javax.security.auth.login.name</code> value of the sharedState map,
​ * and the proof of identity from the
​ * <code>javax.security.auth.login.password</code> value of the sharedState map.
​ *
​ * @param subject the Subject to update after a successful login.
​ * @param callbackHandler the CallbackHandler that will be used to obtain the
​ * the user identity and credentials.
​ * @param sharedState a Map shared between all configured login module instances
​ * @param options the parameters passed to the login module.
​ */
​ public void initialize(Subject subject,
​ CallbackHandler callbackHandler,
​ Map sharedState,
​ Map options)
​ {
​ // ...
​ }
​
​
​ /**
​ * Looks for javax.security.auth.login.name and
​ * javax.security.auth.login.password values in the sharedState
​ * map if the useFirstPass option was true and returns true if
​ * they exist. If they do not or are null this method returns
​ * false.
​ * Note that subclasses that override the login method
​ * must set the loginOk var to true if the login succeeds in
​ * order for the commit phase to populate the Subject. This
​ * implementation sets loginOk to true if the login() method
​ * returns true, otherwise, it sets loginOk to false.
​ */
​ public boolean login()
​ throws LoginException
​ {
​ // ...
​ }
​
​ /**
​ * Overridden by subclasses to return the Principal that
​ * corresponds to the user primary identity.
​ */
​ abstract protected Principal getIdentity();
​
​ /**
​ * Overridden by subclasses to return the Groups that correspond
​ * to the role sets assigned to the user. Subclasses should
​ * create at least a Group named "Roles" that contains the roles
​ * assigned to the user. A second common group is
​ * "CallerPrincipal," which provides the application identity of
​ * the user rather than the security domain identity.
​ *
​ * @return Group[] containing the sets of roles
​ */
​ abstract protected Group[] getRoleSets() throws LoginException;
​}

UsernamePasswordLoginModule

			The second abstract base login module suitable for custom login modules is the org.jboss.security.auth.spi.UsernamePasswordLoginModule.
		

		This login module further simplifies custom login module implementation by enforcing a string-based user name as the user identity and a char[] password as the authentication credentials. It also supports the mapping of anonymous users (indicated by a null user name and password) to a principal with no roles. The key details of the class are highlighted in the following class fragment. The JavaDoc comments detail the responsibilities of subclasses.
	

 ⁠Example 18.25. UsernamePasswordLoginModule Class Fragment
​package org.jboss.security.auth.spi;
​
​/**
​ * An abstract subclass of AbstractServerLoginModule that imposes a
​ * an identity == String username, credentials == String password
​ * view on the login process. Subclasses override the
​ * getUsersPassword() and getUsersRoles() methods to return the
​ * expected password and roles for the user.
​ */
​public abstract class UsernamePasswordLoginModule
​ extends AbstractServerLoginModule
​{
​ /** The login identity */
​ private Principal identity;
​ /** The proof of login identity */
​ private char[] credential;
​ /** The principal to use when a null username and password are seen */
​ private Principal unauthenticatedIdentity;
​
​ /**
​ * The message digest algorithm used to hash passwords. If null then
​ * plain passwords will be used. */
​ private String hashAlgorithm = null;
​
​ /**
​ * The name of the charset/encoding to use when converting the
​ * password String to a byte array. Default is the platform's
​ * default encoding.
​ */
​ private String hashCharset = null;
​
​ /** The string encoding format to use. Defaults to base64. */
​ private String hashEncoding = null;
​
​ // ...
​
​ /**
​ * Override the superclass method to look for an
​ * unauthenticatedIdentity property. This method first invokes
​ * the super version.
​ *
​ * @param options,
​ * @option unauthenticatedIdentity: the name of the principal to
​ * assign and authenticate when a null username and password are
​ * seen.
​ */
​ public void initialize(Subject subject,
​ CallbackHandler callbackHandler,
​ Map sharedState,
​ Map options)
​ {
​ super.initialize(subject, callbackHandler, sharedState,
​ options);
​ // Check for unauthenticatedIdentity option.
​ Object option = options.get("unauthenticatedIdentity");
​ String name = (String) option;
​ if (name != null) {
​ unauthenticatedIdentity = new SimplePrincipal(name);
​ }
​ }
​
​ // ...
​
​ /**
​ * A hook that allows subclasses to change the validation of the
​ * input password against the expected password. This version
​ * checks that neither inputPassword or expectedPassword are null
​ * and that inputPassword.equals(expectedPassword) is true;
​ *
​ * @return true if the inputPassword is valid, false otherwise.
​ */
​ protected boolean validatePassword(String inputPassword,
​ String expectedPassword)
​ {
​ if (inputPassword == null || expectedPassword == null) {
​ return false;
​ }
​ return inputPassword.equals(expectedPassword);
​ }
​
​ /**
​ * Get the expected password for the current username available
​ * via the getUsername() method. This is called from within the
​ * login() method after the CallbackHandler has returned the
​ * username and candidate password.
​ *
​ * @return the valid password String
​ */
​ abstract protected String getUsersPassword()
​ throws LoginException;
​}

Subclassing Login Modules

			The choice of sub-classing the AbstractServerLoginModule versus UsernamePasswordLoginModule is based on whether a string-based user name and credentials are usable for the authentication technology you are writing the login module for. If the string-based semantic is valid, then subclass UsernamePasswordLoginModule, otherwise subclass AbstractServerLoginModule.
		
Subclassing Steps

			The steps your custom login module must execute depend on which base login module class you choose. When writing a custom login module that integrates with your security infrastructure, you should start by sub-classing AbstractServerLoginModule or UsernamePasswordLoginModule to ensure that your login module provides the authenticated Principal information in the form expected by the EAP security manager.
		

		When sub-classing the AbstractServerLoginModule, you must override the following:
	
	
				void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to parse.
			

	
				boolean login(): to perform the authentication activity. Be sure to set the loginOk instance variable to true if log in succeeds, false if it fails.
			

	
				Principal getIdentity(): to return the Principal object for the user authenticated by the log() step.
			

	
				Group[] getRoleSets(): to return at least one Group named Roles that contains the roles assigned to the Principal authenticated during login(). A second common Group is named CallerPrincipal and provides the user's application identity rather than the security domain identity.
			

		When sub-classing the UsernamePasswordLoginModule, you must override the following:
	
	
				void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to parse.
			

	
				Group[] getRoleSets(): to return at least one Group named Roles that contains the roles assigned to the Principal authenticated during login(). A second common Group is named CallerPrincipal and provides the user's application identity rather than the security domain identity.
			

	
				String getUsersPassword(): to return the expected password for the current user name available via the getUsername() method. The getUsersPassword() method is called from within login() after the callbackhandler returns the user name and candidate password.
			

		Report a bug
	

 ⁠18.3.2.2. Custom LoginModule Example

		The following information will help you to create a custom Login Module example that extends the UsernamePasswordLoginModule and obtains a user's password and role names from a JNDI lookup.
	

		At the end of this section you will have created a custom JNDI context login module that will return a user's password if you perform a lookup on the context using a name of the form password/<username> (where <username> is the current user being authenticated). Similarly, a lookup of the form roles/<username> returns the requested user's roles. In Example 18.26, “JndiUserAndPassLoginModule Custom Login Module” is the source code for the JndiUserAndPassLoginModule custom login module.
	

		Note that because this extends the JBoss UsernamePasswordLoginModule, the JndiUserAndPassLoginModule obtains the user's password and roles from the JNDI store. The JndiUserAndPassLoginModule does not interact with the JAAS LoginModule operations.
	

 ⁠Example 18.26. JndiUserAndPassLoginModule Custom Login Module
​package org.jboss.book.security.ex2;
​
​import java.security.acl.Group;
​import java.util.Map;
​import javax.naming.InitialContext;
​import javax.naming.NamingException;
​import javax.security.auth.Subject;
​import javax.security.auth.callback.CallbackHandler;
​import javax.security.auth.login.LoginException;
​import org.jboss.logging.Logger;
​import org.jboss.security.SimpleGroup;
​import org.jboss.security.SimplePrincipal;
​import org.jboss.security.auth.spi.UsernamePasswordLoginModule;
​/**
​ * An example custom login module that obtains passwords and roles for a user from a JNDI lookup.
​ *
​ * @author Scott.Stark@jboss.org
​ */
​public class JndiUserAndPassLoginModule extends UsernamePasswordLoginModule {
​ /** The JNDI name to the context that handles the password/username lookup */
​ private String userPathPrefix;
​ /** The JNDI name to the context that handles the roles/username lookup */
​ private String rolesPathPrefix;
​ private static Logger log = Logger.getLogger(JndiUserAndPassLoginModule.class);
​ /**
​ * Override to obtain the userPathPrefix and rolesPathPrefix options.
​ */
​ @Override
​ public void initialize(Subject subject, CallbackHandler callbackHandler, Map sharedState, Map options) {
​ super.initialize(subject, callbackHandler, sharedState, options);
​ userPathPrefix = (String) options.get("userPathPrefix");
​ rolesPathPrefix = (String) options.get("rolesPathPrefix");
​ }
​ /**
​ * Get the roles the current user belongs to by querying the rolesPathPrefix + '/' + super.getUsername() JNDI location.
​ */
​ @Override
​ protected Group[] getRoleSets() throws LoginException {
​ try {
​ InitialContext ctx = new InitialContext();
​ String rolesPath = rolesPathPrefix + '/' + super.getUsername();
​ String[] roles = (String[]) ctx.lookup(rolesPath);
​ Group[] groups = { new SimpleGroup("Roles") };
​ log.info("Getting roles for user=" + super.getUsername());
​ for (int r = 0; r < roles.length; r++) {
​ SimplePrincipal role = new SimplePrincipal(roles[r]);
​ log.info("Found role=" + roles[r]);
​ groups[0].addMember(role);
​ }
​ return groups;
​ } catch (NamingException e) {
​ log.error("Failed to obtain groups for user=" + super.getUsername(), e);
​ throw new LoginException(e.toString(true));
​ }
​ }
​ /**
​ * Get the password of the current user by querying the userPathPrefix + '/' + super.getUsername() JNDI location.
​ */
​ @Override
​ protected String getUsersPassword() throws LoginException {
​ try {
​ InitialContext ctx = new InitialContext();
​ String userPath = userPathPrefix + '/' + super.getUsername();
​ log.info("Getting password for user=" + super.getUsername());
​ String passwd = (String) ctx.lookup(userPath);
​ log.info("Found password=" + passwd);
​ return passwd;
​ } catch (NamingException e) {
​ log.error("Failed to obtain password for user=" + super.getUsername(), e);
​ throw new LoginException(e.toString(true));
​ }
​ }
​}

 ⁠Example 18.27. Definition of security-ex2 security domain with the newly-created custom login module

/subsystem=security/security-domain=security-ex2/:add
/subsystem=security/security-domain=security-ex2/authentication=classic:add
/subsystem=security/security-domain=security-ex2/authentication=classic/login-module=ex2/:add(\
flag=required,\
code=org.jboss.book.security.ex2.JndiUserAndPassLoginModule,\
module-options=[("userPathPrefix"=>"/security/store/password"),\
("rolesPathPrefix"=>"/security/store/roles")]\
)

		The choice of using the JndiUserAndPassLoginModule custom login module for the server side authentication of the user is determined by the login configuration for the example security domain. The EJB JAR META-INF/jboss-ejb3.xml descriptor sets the security domain. For a web application it is part of the WEB-INF/jboss-web.xml file.
	

 ⁠Example 18.28. jboss-ejb3.xml Example
​<?xml version="1.0"?>
​<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:s="urn:security" version="3.1" impl-version="2.0">
​ <assembly-descriptor>
​ <s:security>
​ <ejb-name>*</ejb-name>
​ <s:security-domain>security-ex2</s:security-domain>
​ </s:security>
​ </assembly-descriptor>
​</jboss:ejb-jar>

 ⁠Example 18.29. jboss-web.xml example
​<?xml version="1.0"?>
​<jboss-web>
​ <security-domain>security-ex2</security-domain>
​</jboss-web>

		Report a bug
	

 ⁠18.4. EJB Application Security

 ⁠18.4.1. Security Identity

 ⁠18.4.1.1. About EJB Security Identity

		An EJB can specify an identity to use when invoking methods on other components. This is the EJB's security identity (also known as invocation identity).
	

		By default, the EJB uses its own caller identity. The identity can alternatively be set to a specific security role. Using specific security roles is useful when you want to construct a segmented security model - for example, restricting access to a set of components to internal EJBs only.
	

		Report a bug
	

 ⁠18.4.1.2. Set the Security Identity of an EJB

		The security identity of the EJB is specified through the <security-identity> tag in the security configuration.
	

		By default - if no <security-identity> tag is present - the EJB's own caller identity is used.
	

 ⁠Example 18.30. Set the security identity of an EJB to be the same as its caller

			This example sets the security identity for method invocations made by an EJB to be the same as the current caller's identity. This behavior is the default if you do not specify a <security-identity> element declaration.
		
​
​<ejb-jar>
​ <enterprise-beans>
​	 <session>
​		<ejb-name>ASessionBean</ejb-name>
​		<!-- ... -->
​		<security-identity>
​		 <use-caller-identity/>
​		</security-identity>
​	 </session>
​	 <!-- ... -->
​ </enterprise-beans>
​</ejb-jar>

 ⁠Example 18.31. Set the security identity of an EJB to a specific role

			To set the security identity to a specific role, use the <run-as> and <role-name> tags inside the <security-identity> tag.
		
​
​<ejb-jar>
​ <enterprise-beans>
​	 <session>
​		<ejb-name>RunAsBean</ejb-name>
​		<!-- ... -->
​		<security-identity>
​		 <run-as>
​			 <description>A private internal role</description>
​			 <role-name>InternalRole</role-name>
​		 </run-as>
​		</security-identity>
​	 </session>
​ </enterprise-beans>
​ <!-- ... -->
​</ejb-jar>

			By default, when you use <run-as>, a principal named anonymous is assigned to outgoing calls. To assign a different principal, uses the <run-as-principal>.
		
​
​<session>
​ <ejb-name>RunAsBean</ejb-name>
​ <security-identity>
​ <run-as-principal>internal</run-as-principal>
​ </security-identity>
​</session>

Specifying security identity in servlets

			You can also use the <run-as> and <run-as-principal> elements inside a servlet element.
		

See also:
	
				Section 18.4.1.1, “About EJB Security Identity”
			

	
				Section 20.1, “EJB Security Parameter Reference”
			

		Report a bug
	

 ⁠18.4.2. EJB Method Permissions

 ⁠18.4.2.1. About EJB Method Permissions

		EJBs can restrict access to their methods to specific security roles.
	

		The EJB <method-permission> element declaration specifies the roles that can invoke the EJB's interface methods. You can specify permissions for the following combinations:
	
	
				All home and component interface methods of the named EJB
			

	
				A specified method of the home or component interface of the named EJB
			

	
				A specified method within a set of methods with an overloaded name
			

		Report a bug
	

 ⁠18.4.2.2. Use EJB Method Permissions

Overview

			The <method-permission> element defines the logical roles that are allowed to access the EJB methods defined by <method> elements. Several examples demonstrate the syntax of the XML. Multiple method permission statements may be present, and they have a cumulative effect. The <method-permission> element is a child of the <assembly-descriptor> element of the <ejb-jar> descriptor.
		

		The XML syntax is an alternative to using annotations for EJB method permissions.
	

 ⁠Example 18.32. Allow roles to access all methods of an EJB
​
​<method-permission>
​ <description>The employee and temp-employee roles may access any method
​ of the EmployeeService bean </description>
​ <role-name>employee</role-name>
​ <role-name>temp-employee</role-name>
​ <method>
​ <ejb-name>EmployeeService</ejb-name>
​ <method-name>*</method-name>
​ </method>
​</method-permission>
​

 ⁠Example 18.33. Allow roles to access only specific methods of an EJB, and limiting which method parameters can be passed.
​
​<method-permission>
​ <description>The employee role may access the findByPrimaryKey,
​ getEmployeeInfo, and the updateEmployeeInfo(String) method of
​ the AcmePayroll bean </description>
​ <role-name>employee</role-name>
​ <method>
​	<ejb-name>AcmePayroll</ejb-name>
​	<method-name>findByPrimaryKey</method-name>
​ </method>
​ <method>
​	<ejb-name>AcmePayroll</ejb-name>
​	<method-name>getEmployeeInfo</method-name>
​ </method>
​ <method>
​	<ejb-name>AcmePayroll</ejb-name>
​	<method-name>updateEmployeeInfo</method-name>
​	<method-params>
​	 <method-param>java.lang.String</method-param>
​	</method-params>
​ </method>
​</method-permission>

 ⁠Example 18.34. Allow any authenticated user to access methods of EJBs

			Using the <unchecked/> element allows any authenticated user to use the specified methods.
		
​
​<method-permission>
​ <description>Any authenticated user may access any method of the
​ EmployeeServiceHelp bean</description>
​ <unchecked/>
​ <method>
​	<ejb-name>EmployeeServiceHelp</ejb-name>
​	<method-name>*</method-name>
​ </method>
​</method-permission>

 ⁠Example 18.35. Completely exclude specific EJB methods from being used
​
​<exclude-list>
​ <description>No fireTheCTO methods of the EmployeeFiring bean may be
​ used in this deployment</description>
​ <method>
​	<ejb-name>EmployeeFiring</ejb-name>
​	<method-name>fireTheCTO</method-name>
​ </method>
​</exclude-list>

 ⁠Example 18.36. A complete <assembly-descriptor> containing several <method-permission> blocks
​
​<ejb-jar>
​ <assembly-descriptor>
​ <method-permission>
​ <description>The employee and temp-employee roles may access any
​ method of the EmployeeService bean </description>
​ <role-name>employee</role-name>
​ <role-name>temp-employee</role-name>
​ <method>
​ <ejb-name>EmployeeService</ejb-name>
​ <method-name>*</method-name>
​ </method>
​ </method-permission>
​ <method-permission>
​ <description>The employee role may access the findByPrimaryKey,
​ getEmployeeInfo, and the updateEmployeeInfo(String) method of
​ the AcmePayroll bean </description>
​ <role-name>employee</role-name>
​ <method>
​ <ejb-name>AcmePayroll</ejb-name>
​ <method-name>findByPrimaryKey</method-name>
​ </method>
​ <method>
​ <ejb-name>AcmePayroll</ejb-name>
​ <method-name>getEmployeeInfo</method-name>
​ </method>
​ <method>
​ <ejb-name>AcmePayroll</ejb-name>
​ <method-name>updateEmployeeInfo</method-name>
​ <method-params>
​ <method-param>java.lang.String</method-param>
​ </method-params>
​ </method>
​ </method-permission>
​ <method-permission>
​ <description>The admin role may access any method of the
​ EmployeeServiceAdmin bean </description>
​ <role-name>admin</role-name>
​ <method>
​ <ejb-name>EmployeeServiceAdmin</ejb-name>
​ <method-name>*</method-name>
​ </method>
​ </method-permission>
​ <method-permission>
​ <description>Any authenticated user may access any method of the
​ EmployeeServiceHelp bean</description>
​ <unchecked/>
​ <method>
​ <ejb-name>EmployeeServiceHelp</ejb-name>
​ <method-name>*</method-name>
​ </method>
​ </method-permission>
​ <exclude-list>
​ <description>No fireTheCTO methods of the EmployeeFiring bean may be
​ used in this deployment</description>
​ <method>
​ <ejb-name>EmployeeFiring</ejb-name>
​ <method-name>fireTheCTO</method-name>
​ </method>
​ </exclude-list>
​ </assembly-descriptor>
​</ejb-jar>

		Report a bug
	

 ⁠18.4.3. EJB Security Annotations

 ⁠18.4.3.1. About EJB Security Annotations

		EJB javax.annotation.security annotations are defined in JSR250.
	

		EJBs use security annotations to pass information about security to the deployer. These include:
	
	@DeclareRoles
	
					Declares which roles are available.
				

	@RunAs
	
					Configures the propagated security identity of a component.
				

		Report a bug
	

 ⁠18.4.3.2. Use EJB Security Annotations

Overview

			You can use either XML descriptors or annotations to control which security roles are able to call methods in your Enterprise JavaBeans (EJBs). For information on using XML descriptors, refer to Section 18.4.2.2, “Use EJB Method Permissions”.
		

		Any method values explicitly specified in the deployment descriptor override annotation values. If a method value is not specified in the deployment descriptor, those values set using annotations are used. The overriding granularity is on a per-method basis.
	
Annotations for Controlling Security Permissions of EJBs
	@DeclareRoles
	
					Use @DeclareRoles to define which security roles to check permissions against. If no @DeclareRoles is present, the list is built automatically from the @RolesAllowed annotation. For information about configuring roles, refer to the Java EE 6 Tutorial Specifying Authorized Users by Declaring Security Roles.
				

	@RolesAllowed, @PermitAll, @DenyAll
	
					Use @RolesAllowed to list which roles are allowed to access a method or methods. Use @PermitAll or @DenyAll to either permit or deny all roles from using a method or methods. For information about configuring annotation method permissions, refer to the Java EE 6 Tutorial Specifying Authorized Users by Declaring Security Roles.
				

	@RunAs
	
					Use @RunAs to specify a role a method uses when making calls from the annotated method. For information about configuring propagated security identities using annotations, refer to the Java EE 6 Tutorial Propagating a Security Identity (Run-As).
				

 ⁠Example 18.37. Security Annotations Example
​
​@Stateless
​@RolesAllowed({"admin"})
​@SecurityDomain("other")
​public class WelcomeEJB implements Welcome {
​	@PermitAll
​	public String WelcomeEveryone(String msg) {
​		return "Welcome to " + msg;
​	}
​	@RunAs("tempemployee")
​	public String GoodBye(String msg) {
​	 return "Goodbye, " + msg;
​	}
​	public String GoodbyeAdmin(String msg) {
​		return "See you later, " + msg;
​	}
​}

			In this code, all roles can access method WelcomeEveryone. The GoodBye method uses the tempemployee role when making calls. Only the admin role can access method GoodbyeAdmin, and any other methods with no security annotation.
		

		Report a bug
	

 ⁠18.4.4. Remote Access to EJBs

 ⁠18.4.4.1. About Remote Method Access

		JBoss Remoting is the framework which provides remote access to EJBs, JMX MBeans, and other similar services. It works within the following transport types, with or without SSL:
	
Supported Transport Types
	
				Socket / Secure Socket
			

	
				RMI / RMI over SSL
			

	
				HTTP / HTTPS
			

	
				Servlet / Secure Servlet
			

	
				Bisocket / Secure Bisocket
			

Warning

			Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in all affected packages.
		

		JBoss Remoting also provides automatic discovery via Multicast or JNDI.
	

		It is used by many of the subsystems within JBoss EAP 6, and also enables you to design, implement, and deploy services that can be remotely invoked by clients over several different transport mechanisms. It also allows you to access existing services in JBoss EAP 6.
	
Data Marshalling

			The Remoting system also provides data marshalling and unmarshalling services. Data marshalling refers to the ability to safely move data across network and platform boundaries, so that a separate system can perform work on it. The work is then sent back to the original system and behaves as though it were handled locally.
		
Architecture Overview

			When you design a client application which uses Remoting, you direct your application to communicate with the server by configuring it to use a special type of resource locator called an InvokerLocator, which is a simple String with a URL-type format. The server listens for requests for remote resources on a connector, which is configured as part of the remoting subsystem. The connector hands the request off to a configured ServerInvocationHandler. Each ServerInvocationHandler implements a method invoke(InvocationRequest), which knows how to handle the request.
		

		The JBoss Remoting framework contains three layers that mirror each other on the client and server side.
	
JBoss Remoting Framework Layers
	
				The user interacts with the outer layer. On the client side, the outer layer is the Client class, which sends invocation requests. On the server side, it is the InvocationHandler, which is implemented by the user and receives invocation requests.
			

	
				The transport is controlled by the invoker layer.
			

	
				The lowest layer contains the marshaller and unmarshaller, which convert data formats to wire formats.
			

		Report a bug
	

 ⁠18.4.4.2. About Remoting Callbacks

		When a Remoting client requests information from the server, it can block and wait for the server to reply, but this is often not the ideal behavior. To allow the client to listen for asynchronous events on the server, and continue doing other work while waiting for the server to finish the request, your application can ask the server to send a notification when it has finished. This is referred to as a callback. One client can add itself as a listener for asynchronous events generated on behalf of another client, as well. There are two different choices for how to receive callbacks: pull callbacks or push callbacks. Clients check for pull callbacks synchronously, but passively listen for push callbacks.
	

		In essence, a callback works by the server sending an InvocationRequest to the client. Your server-side code works the same regardless of whether the callback is synchronous or asynchronous. Only the client needs to know the difference. The server's InvocationRequest sends a responseObject to the client. This is the payload that the client has requested. This may be a direct response to a request or an event notification.
	

		Your server also tracks listeners using an m_listeners object. It contains a list of all listeners that have been added to your server handler. The ServerInvocationHandler interface includes methods that allow you to manage this list.
	

		The client handles pull and push callback in different ways. In either case, it must implement a callback handler. A callback handler is an implementation of interface org.jboss.remoting.InvokerCallbackHandler, which processes the callback data. After implementing the callback handler, you either add yourself as a listener for a pull callback, or implement a callback server for a push callback.
	
Pull Callbacks

			For a pull callback, your client adds itself to the server's list of listeners using the Client.addListener() method. It then polls the server periodically for synchronous delivery of callback data. This poll is performed using the Client.getCallbacks().
		
Push Callback

			A push callback requires your client application to run its own InvocationHandler. To do this, you need to run a Remoting service on the client itself. This is referred to as a callback server. The callback server accepts incoming requests asynchronously and processes them for the requester (in this case, the server). To register your client's callback server with the main server, pass the callback server's InvokerLocator as the second argument to the addListener method.
		

		Report a bug
	

 ⁠18.4.4.3. About Remoting Server Detection

		Remoting servers and clients can automatically detect each other using JNDI or Multicast. A Remoting Detector is added to both the client and server, and a NetworkRegistry is added to the client.
	

		The Detector on the server side periodically scans the InvokerRegistry and pulls all server invokers it has created. It uses this information to publish a detection message which contains the locator and subsystems supported by each server invoker. It publishes this message via a multicast broadcast or a binding into a JNDI server.
	

		On the client side, the Detector receives the multicast message or periodically polls the JNDI server to retrieve detection messages. If the Detector notices that a detection message is for a newly-detected remoting server, it registers it into the NetworkRegistry. The Detector also updates the NetworkRegistry if it detects that a server is no longer available.
	

		Report a bug
	

 ⁠18.4.4.4. Configure the Remoting Subsystem

Overview

			JBoss Remoting has three top-level configurable elements: the worker thread pool, one or more connectors, and a series of local and remote connection URIs. This topic presents an explanation of each configurable item, example CLI commands for how to configure each item, and an XML example of a fully-configured subsystem. This configuration only applies to the server. Most people will not need to configure the Remoting subsystem at all, unless they use custom connectors for their own applications. Applications which act as Remoting clients, such as EJBs, need separate configuration to connect to a specific connector.
		
Note

			The Remoting subsystem configuration is not exposed to the web-based Management Console, but it is fully configurable from the command-line based Management CLI. Editing the XML by hand is not recommended.
		

Adapting the CLI Commands

			The CLI commands are formulated for a managed domain, when configuring the default profile. To configure a different profile, substitute its name. For a standalone server, omit the /profile=default part of the command.
		
Configuration Outside the Remoting Subsystem

			There are a few configuration aspects which are outside of the remoting subsystem:
		
	Network Interface
	
					The network interface used by the remoting subsystem is the public interface defined in the domain/configuration/domain.xml or standalone/configuration/standalone.xml.
				
​
​<interfaces>
​ <interface name="management"/>
​ <interface name="public"/>
​ <interface name="unsecure"/>
​</interfaces>
​

					The per-host definition of the public interface is defined in the host.xml in the same directory as the domain.xml or standalone.xml. This interface is also used by several other subsystems. Exercise caution when modifying it.
				
​
​<interfaces>
​ <interface name="management">
​ <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
​ </interface>
​ <interface name="public">
​ <inet-address value="${jboss.bind.address:127.0.0.1}"/>
​ </interface>
​ <interface name="unsecure">
​ <!-- Used for IIOP sockets in the standard configuration.
​ To secure JacORB you need to setup SSL -->
​ <inet-address value="${jboss.bind.address.unsecure:127.0.0.1}"/>
​ </interface>
​</interfaces>
​

	socket-binding
	
					The default socket-binding used by the remoting subsystem binds to TCP port 4447. Refer to the documentation about socket bindings and socket binding groups for more information if you need to change this.
				

					Information about socket binding and socket binding groups can be found in the Socket Binding Groups chapter of JBoss EAP's Administration and Configuration Guide available at https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/?version=6.4
				

	Remoting Connector Reference for EJB
	
					The EJB subsystem contains a reference to the remoting connector for remote method invocations. The following is the default configuration:
				
​
​<remote connector-ref="remoting-connector" thread-pool-name="default"/>
​

	Secure Transport Configuration
	
					Remoting transports use StartTLS to use a secure (HTTPS, Secure Servlet, etc) connection if the client requests it. The same socket binding (network port) is used for secured and unsecured connections, so no additional server-side configuration is necessary. The client requests the secure or unsecured transport, as its needs dictate. JBoss EAP 6 components which use Remoting, such as EJBs, the ORB, and the JMS provider, request secured interfaces by default.
				

Warning: StartTLS Security Considerations

			StartTLS works by activating a secure connection if the client requests it, and otherwise defaulting to an unsecured connection. It is inherently susceptible to a Man in the Middle style exploit, wherein an attacker intercepts the client's request and modifies it to request an unsecured connection. Clients must be written to fail appropriately if they do not receive a secure connection, unless an unsecured connection actually is an appropriate fall-back.
		

Worker Thread Pool

			The worker thread pool is the group of threads which are available to process work which comes in through the Remoting connectors. It is a single element <worker-thread-pool>, and takes several attributes. Tune these attributes if you get network timeouts, run out of threads, or need to limit memory usage. Specific recommendations depend on your specific situation. Contact Red Hat Global Support Services for more information.
		

 ⁠Table 18.2. Worker Thread Pool Attributes
	 Attribute 	 Description 	 CLI Command
	 read-threads 	
						The number of read threads to create for the remoting worker. Defaults to 1.
					

					 	
						/profile=default/subsystem=remoting/:write-attribute(name=worker-read-threads,value=1)
					

					
	 write-threads 	
						The number of write threads to create for the remoting worker. Defaults to 1.
					

					 	
						/profile=default/subsystem=remoting/:write-attribute(name=worker-write-threads,value=1)
					

					
	 task-keepalive 	
						The number of milliseconds to keep non-core remoting worker task threads alive. Defaults to 60.
					

					 	
						/profile=default/subsystem=remoting/:write-attribute(name=worker-task-keepalive,value=60)
					

					
	 task-max-threads 	
						The maximum number of threads for the remoting worker task thread pool. Defaults to 16.
					

					 	
						/profile=default/subsystem=remoting/:write-attribute(name=worker-task-max-threads,value=16)
					

					
	 task-core-threads 	
						The number of core threads for the remoting worker task thread pool. Defaults to 4.
					

					 	
						/profile=default/subsystem=remoting/:write-attribute(name=worker-task-core-threads,value=4)
					

					
	 task-limit 	
						The maximum number of remoting worker tasks to allow before rejecting. Defaults to 16384.
					

					 	
						/profile=default/subsystem=remoting/:write-attribute(name=worker-task-limit,value=16384)
					

					

Connector

			The connector is the main Remoting configuration element. Multiple connectors are allowed. Each consists of a element <connector> element with several sub-elements, as well as a few possible attributes. The default connector is used by several subsystems of JBoss EAP 6. Specific settings for the elements and attributes of your custom connectors depend on your applications, so contact Red Hat Global Support Services for more information.
		

 ⁠Table 18.3. Connector Attributes
	 Attribute 	 Description 	 CLI Command
	 socket-binding 	 The name of the socket binding to use for this connector. 	
						/profile=default/subsystem=remoting/connector=remoting-connector/:write-attribute(name=socket-binding,value=remoting)
					

					
	 authentication-provider 	
						The Java Authentication Service Provider Interface for Containers (JASPIC) module to use with this connector. The module must be in the classpath.
					

					 	
						/profile=default/subsystem=remoting/connector=remoting-connector/:write-attribute(name=authentication-provider,value=myProvider)
					

					
	 security-realm 	
						Optional. The security realm which contains your application's users, passwords, and roles. An EJB or Web Application can authenticate against a security realm. ApplicationRealm is available in a default JBoss EAP 6 installation.
					

					 	
						/profile=default/subsystem=remoting/connector=remoting-connector/:write-attribute(name=security-realm,value=ApplicationRealm)
					

					

 ⁠Table 18.4. Connector Elements
	 Attribute 	 Description 	 CLI Command
	 sasl 	
						Enclosing element for Simple Authentication and Security Layer (SASL) authentication mechanisms
					

					 	
						N/A
					

					
	 properties 	
						Contains one or more <property> elements, each with a name attribute and an optional value attribute.
					

					 	
						/profile=default/subsystem=remoting/connector=remoting-connector/property=myProp/:add(value=myPropValue)
					

					

Outbound Connections

			You can specify three different types of outbound connection:
		
	
				Outbound connection to a URI.
			

	
				Local outbound connection – connects to a local resource such as a socket.
			

	
				Remote outbound connection – connects to a remote resource and authenticates using a security realm.
			

		All of the outbound connections are enclosed in an <outbound-connections> element. Each of these connection types takes an outbound-socket-binding-ref attribute. The outbound-connection takes a uri attribute. The remote outbound connection takes optional username and security-realm attributes to use for authorization.
	

 ⁠Table 18.5. Outbound Connection Elements
	 Attribute 	 Description 	 CLI Command
	 outbound-connection 	 Generic outbound connection. 	
						/profile=default/subsystem=remoting/outbound-connection=my-connection/:add(uri=http://my-connection)
					

					
	 local-outbound-connection 	 Outbound connection with a implicit local:// URI scheme. 	
						/profile=default/subsystem=remoting/local-outbound-connection=my-connection/:add(outbound-socket-binding-ref=remoting2)
					

					
	 remote-outbound-connection 	
						Outbound connections for remote:// URI scheme, using basic/digest authentication with a security realm.
					

					 	
						/profile=default/subsystem=remoting/remote-outbound-connection=my-connection/:add(outbound-socket-binding-ref=remoting,username=myUser,security-realm=ApplicationRealm)
					

					

SASL Elements

			Before defining the SASL child elements, you need to create the initial SASL element. Use the following command:
		
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl:add

		The child elements of the SASL element are described in the table below.
	

 ⁠Table 18.6. SASL child elements
	 Attribute 	 Description 	 CLI Command
	 include-mechanisms 	
						Contains a value attribute, which is a list of SASL mechanisms.
					

					 	
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl:write-attribute(name=include-mechanisms,value=["DIGEST","PLAIN","GSSAPI"])

					
	 qop 	
						Contains a value attribute, which is a list of SASL Quality of protection values, in decreasing order of preference.
					

					 	
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl:write-attribute(name=qop,value=["auth"])

					
	 strength 	
						Contains a value attribute, which is a list of SASL cipher strength values, in decreasing order of preference.
					

					 	
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl:write-attribute(name=strength,value=["medium"])

					
	 reuse-session 	
						Contains a value attribute which is a boolean value. If true, attempt to reuse sessions.
					

					 	
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl:write-attribute(name=reuse-session,value=false)

					
	 server-auth 	
						Contains a value attribute which is a boolean value. If true, the server authenticates to the client.
					

					 	
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl:write-attribute(name=server-auth,value=false)

					
	 policy 	
						An enclosing element which contains zero or more of the following elements, which each take a single value.
					

					 	
								forward-secrecy – whether mechanisms are required to implement forward secrecy (breaking into one session will not automatically provide information for breaking into future sessions)
							

	
								no-active – whether mechanisms susceptible to non-dictionary attacks are permitted. A value of false permits, and true denies.
							

	
								no-anonymous – whether mechanisms that accept anonymous login are permitted. A value of false permits, and true denies.
							

	
								no-dictionary – whether mechanisms susceptible to passive dictionary attacks are allowed. A value of false permits, and true denies.
							

	
								no-plain-text – whether mechanisms which are susceptible to simple plain passive attacks are allowed. A value of false permits, and true denies.
							

	
								pass-credentials – whether mechanisms which pass client credentials are allowed.
							

					 	
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl/sasl-policy=policy:add

					
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl/sasl-policy=policy:write-attribute(name=forward-secrecy,value=true)

					
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl/sasl-policy=policy:write-attribute(name=no-active,value=false)

					
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl/sasl-policy=policy:write-attribute(name=no-anonymous,value=false)

					
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl/sasl-policy=policy:write-attribute(name=no-dictionary,value=true)

					
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl/sasl-policy=policy:write-attribute(name=no-plain-text,value=false)

					
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl/sasl-policy=policy:write-attribute(name=pass-credentials,value=true)

					
	 properties 	
						Contains one or more <property> elements, each with a name attribute and an optional value attribute.
					

					 	
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl/property=myprop:add(value=1)

					
/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl/property=myprop2:add(value=2)

					

 ⁠Example 18.38. Example Configurations

			This example shows the default remoting subsystem that ships with JBoss EAP 6.
		
​
​<subsystem xmlns="urn:jboss:domain:remoting:1.1">
​ <connector name="remoting-connector" socket-binding="remoting" security-realm="ApplicationRealm"/>
​</subsystem>
​

			This example contains many hypothetical values, and is presented to put the elements and attributes discussed previously into context.
		
​
​<subsystem xmlns="urn:jboss:domain:remoting:1.1">
​ <worker-thread-pool read-threads="1" task-keepalive="60" task-max-threads="16" task-core-thread="4" task-limit="16384" write-threads="1" />
​ <connector name="remoting-connector" socket-binding="remoting" security-realm="ApplicationRealm">
​ <sasl>
​ <include-mechanisms value="GSSAPI PLAIN DIGEST-MD5" />
​ <qop value="auth" />
​ <strength value="medium" />
​ <reuse-session value="false" />
​ <server-auth value="false" />
​ <policy>
​ <forward-secrecy value="true" />
​ <no-active value="false" />
​ <no-anonymous value="false" />
​ <no-dictionary value="true" />
​ <no-plain-text value="false" />
​ <pass-credentials value="true" />
​ </policy>
​ <properties>
​ <property name="myprop1" value="1" />
​ <property name="myprop2" value="2" />
​ </properties>
​ </sasl>
​ <authentication-provider name="myprovider" />
​ <properties>
​ <property name="myprop3" value="propValue" />
​ </properties>
​ </connector>
​ <outbound-connections>
​ <outbound-connection name="my-outbound-connection" uri="http://myhost:7777/"/>
​ <remote-outbound-connection name="my-remote-connection" outbound-socket-binding-ref="my-remote-socket" username="myUser" security-realm="ApplicationRealm"/>
​ <local-outbound-connection name="myLocalConnection" outbound-socket-binding-ref="my-outbound-socket"/>
​ </outbound-connections>
​</subsystem>
​

Configuration Aspects Not Yet Documented
	
				JNDI and Multicast Automatic Detection
			

		Report a bug
	

 ⁠18.4.4.5. Use Security Realms with Remote EJB Clients

		One way to add security to clients which invoke EJBs remotely is to use security realms. A security realm is a simple database of username/password pairs and username/role pairs. The terminology is also used in the context of web containers, with a slightly different meaning.
	

		To authenticate a specific username/password pair that exists in a security realm against an EJB, follow these steps:
	
	
				Add a new security realm to the domain controller or standalone server.
			

	
				Add the following parameters to the jboss-ejb-client.properties file, which is in the classpath of the application. This example assumes the connection is referred to as default by the other parameters in the file.
			

remote.connection.default.username=appuser
remote.connection.default.password=apppassword

	
				Create a custom Remoting connector on the domain or standalone server, which uses your new security realm.
			

	
				Deploy your EJB to the server group which is configured to use the profile with the custom Remoting connector, or to your standalone server if you are not using a managed domain.
			

		Report a bug
	

 ⁠18.4.4.6. Add a New Security Realm

	Run the Management CLI.

				Start the jboss-cli.sh or jboss-cli.bat command and connect to the server.
			

	Create the new security realm itself.

				Run the following command to create a new security realm named MyDomainRealm on a domain controller or a standalone server.
			

				For a domain instance, use this command:
			
/host=master/core-service=management/security-realm=MyDomainRealm:add()

				For a standalone instance, use this command:
			
/core-service=management/security-realm=MyDomainRealm:add()

	Create the references to the properties file which will store information about the new role.

				Run the following command to create a pointer a file named myfile.properties, which will contain the properties pertaining to the new role.
			
Note

					The newly created properties file is not managed by the included add-user.sh and add-user.bat scripts. It must be managed externally.
				

				For a domain instance, use this command:
			
/host=master/core-service=management/security-realm=MyDomainRealm/authentication=properties:add(path=myfile.properties)

				For a standalone instance, use this command:
			
/core-service=management/security-realm=MyDomainRealm/authentication=properties:add(path=myfile.properties)

Result

			Your new security realm is created. When you add users and roles to this new realm, the information will be stored in a separate file from the default security realms. You can manage this new file using your own applications or procedures.
		

		Report a bug
	

 ⁠18.4.4.7. Add a User to a Security Realm

	Run the add-user.sh or add-user.bat command.

				Open a terminal and change directories to the EAP_HOME/bin/ directory. If you run Red Hat Enterprise Linux or another UNIX-like operating system, run add-user.sh. If you run Microsoft Windows Server, run add-user.bat.
			

	Choose whether to add a Management User or Application User.

				For this procedure, type b to add an Application User.
			

	Choose the realm the user will be added to.

				By default, the only available realm is ApplicationRealm. If you have added a custom realm, you can type its name instead.
			

	Type the username, password, and roles, when prompted.

				Type the desired username, password, and optional roles when prompted. Verify your choice by typing yes, or type no to cancel the changes. The changes are written to each of the properties files for the security realm.
			

		Report a bug
	

 ⁠18.4.4.8. About Remote EJB Access Using SSL Encryption

		By default, the network traffic for Remote Method Invocation (RMI) of EJB2 and EJB3 Beans is not encrypted. In instances where encryption is required, Secure Sockets Layer (SSL) can be utilized so that the connection between the client and server is encrypted. Using SSL also has the added benefit of allowing the network traffic to traverse some firewalls, depending on the firewall configuration.
	
Warning

			Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in all affected packages.
		

		Report a bug
	

 ⁠18.5. JAX-RS Application Security

 ⁠18.5.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

Summary

			RESTEasy supports the @RolesAllowed, @PermitAll, and @DenyAll annotations on JAX-RS methods. However, it does not recognize these annotations by default. Follow these steps to configure the web.xml file and enable role-based security.
		
Warning

			Changing the default values of the following RESTEasy parameters may cause RESTEasy applications to be potentially vulnerable against XXE attacks.
		
	
					resteasy.document.expand.entity.references
				

	
					resteasy.document.secure.processing.feature
				

	
					resteasy.document.secure.disableDTDs
				

			For more information about these parameters, see Section 15.5.1, “RESTEasy Configuration Parameters”.
		

Warning

			Do not activate role-based security if the application uses EJBs. The EJB container will provide the functionality, instead of RESTEasy.
		

 ⁠Procedure 18.5. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
	
				Open the web.xml file for the application in a text editor.
			

	
				Add the following <context-param> to the file, within the web-app tags:
			

<context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>
</context-param>

	
				Declare all roles used within the RESTEasy JAX-RS WAR file, using the <security-role> tags:
			
<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>
<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>

	
				Authorize access to all URLs handled by the JAX-RS runtime for all roles:
			
<security-constraint>
 <web-resource-collection>
	<web-resource-name>Resteasy</web-resource-name>
	<url-pattern>/PATH</url-pattern>
 </web-resource-collection>
 <auth-constraint>
	<role-name>ROLE_NAME</role-name>
	<role-name>ROLE_NAME</role-name>
 </auth-constraint>
</security-constraint>

Result

			Role-based security has been enabled within the application, with a set of defined roles.
		

 ⁠Example 18.39. Example Role-Based Security Configuration

<web-app>

 <context-param>
	<param-name>resteasy.role.based.security</param-name>
	<param-value>true</param-value>
 </context-param>

 <servlet-mapping>
	<servlet-name>Resteasy</servlet-name>
	<url-pattern>/*</url-pattern>
 </servlet-mapping>

 <security-constraint>
	<web-resource-collection>
	 <web-resource-name>Resteasy</web-resource-name>
	 <url-pattern>/security</url-pattern>
	</web-resource-collection>
	<auth-constraint>
	 <role-name>admin</role-name>
	 <role-name>user</role-name>
	</auth-constraint>
 </security-constraint>

 <security-role>
	<role-name>admin</role-name>
 </security-role>
 <security-role>
	<role-name>user</role-name>
 </security-role>

</web-app>

		Report a bug
	

 ⁠18.5.2. Secure a JAX-RS Web Service using Annotations

Summary

			This topic covers the steps to secure a JAX-RS web service using the supported security annotations
		

 ⁠Procedure 18.6. Secure a JAX-RS Web Service using Supported Security Annotations
	
				Enable role-based security. For more information, refer to: Section 18.5.1, “Enable Role-Based Security for a RESTEasy JAX-RS Web Service”
			

	
				Add security annotations to the JAX-RS web service. RESTEasy supports the following annotations:
			
	@RolesAllowed
	
							Defines which roles can access the method. All roles should be defined in the web.xml file.
						

	@PermitAll
	
							Allows all roles defined in the web.xml file to access the method.
						

	@DenyAll
	
							Denies all access to the method.
						

		Report a bug
	

 ⁠18.6. Password Vaults for Sensitive Strings

 ⁠18.6.1. Password Vault System

		Configuration of JBoss EAP and associated applications requires potentially sensitive information, such as usernames and passwords.
	

		The Password Vault provides a feature to mask the password information and store it in an encrypted keystore. You can include references of the encrypted keystore in Management CLI commands or applications. The Password Vault uses the Java Keystore as its storage mechanism. The Password Vault consists of two parts: storage and key storage. Java Keystore is used to store the key, which is used to encrypt or decrypt sensitive strings in Vault storage.
	

		Report a bug
	

 ⁠18.6.2. Configure and Use Password Vault

		The masked keystore password feature provided in Password Vault provides the option to obtain the masked keystore password from Password Vault, which is stored on the JBoss EAP server. The Password Vault uses the Java Keystore as its storage mechanism.
	

 ⁠Procedure 18.7. Basic steps to configure and use Password Vault
	
				Setup a Java Keystore to store key for password encryption.
			

				For information on creating a keystore, refer Section 18.6.4, “Create a Java Keystore to Store Sensitive Strings”.
			

	
				Initialize the Password Vault.
			

				For information on masking the password and initialize the password vault, refer Section 18.6.5, “Initialize the Password Vault”.
			

	
				Store a Sensitive String in the Password Vault.
			

				For information on storing sensitive string in Password Vault, refer Section 18.6.8, “Store a Sensitive String in the Password Vault”.
			

	
				Configure JBoss EAP 6 to use the Password Vault.
			

				For information on configuring JBoss EAP 6 to use the Password Vault, refer Section 18.6.6, “Configure JBoss EAP 6 to Use the Password Vault”. For custom implementation, refer Section 18.6.7, “Configure JBoss EAP 6 to Use a Custom Implementation of the Password Vault”.
			
Note

					To use an encrypted sensitive string in configuration, refer Section 18.6.9, “Use an Encrypted Sensitive String in Configuration”.
				

					To use an encrypted sensitive string in an application, refer Section 18.6.10, “Use an Encrypted Sensitive String in an Application”.
				

					To verify a sensitive string in Password Vault, refer Section 18.6.11, “Check if a Sensitive String is in the Password Vault”.
				

					To remove a sensitive string from Password Vault, refer Section 18.6.12, “Remove a Sensitive String from the Password Vault”.
				

		Report a bug
	

 ⁠18.6.3. Obtain Keystore Password From External Source

		You can also the use the EXT, EXTC, CMD, CMDC or CLASS methods in Vault configuration for obtaining the Java keystore password.
​
​<vault-option name="KEYSTORE_PASSWORD" value="[here]"

	

		The description for the methods are listed as:
	
	
				{EXT}...: Refers to the exact command, where ‘…’ is the exact command. For example: {EXT}/usr/bin/getmypassword --section 1 --query company, run the /usr/bin/getmypassword command, which displays the password on standard output and use it as password for Security Vault's keystore. In this example, the command is using two options: --section 1 and --query company.
			

	
				{EXTC[:expiration_in_millis]}...: Refers to the exact command, where the '...' is the exact command line that is passed to the Runtime.exec(String) method to execute a platform command. The first line of the command output is used as the password. EXTC variant caches the passwords for expiration_in_millis milliseconds. Default cache expiration is 0 (zero), meaning items in the cache never expire. For example: {EXTC:120000}/usr/bin/getmypassword --section 1 --query company Verify if cache contains /usr/bin/getmypassword output, if it contains the output then use it. If it does not contain the output, run the command to output it to cache and use it. In this example, the cache expires in 2 minute (120000 milliseconds).
			

	
				{CMD}... or {CMDC[:expiration_in_millis]}...: The general command is a string delimited by ',' where the first part is the actual command and further parts represents the parameters. The comma can be backslashed to keep it as a part of the parameter. For example, {CMD}/usr/bin/getmypassword,--section,1,--query,company
			

	
				{CLASS[@jboss_module_spec]}classname[:ctorargs]: Where the '[:ctorargs]' is an optional string delimited by the ':' from the classname is passed to the classname ctor. The ctorargs is a comma delimited list of strings. For example, {CLASS@org.test.passwd}org.test.passwd.ExternamPassworProvider. In this example, we load org.test.passwd.ExternamPassworProvider class from org.test.passwd module and use the toCharArray() method to get the password. If toCharArray() is not available use toString() method. The org.test.passwd.ExternamPassworProvider class must have the default constructor.
			

		Report a bug
	

 ⁠18.6.4. Create a Java Keystore to Store Sensitive Strings

Prerequisites
	
				The keytool utility, provided by the Java Runtime Environment (JRE). Locate the path for the file, which on Red Hat Enterprise Linux is /usr/bin/keytool.
			

Warning

			JCEKS keystore implementations differ between Java vendors so you must generate the keystore using the keytool utility from the same vendor as the Java development kit you use.
		

			Using a keystore generated by the keytool from one vendor's Java development kit in a JBoss EAP instance running on a Java development kit from a different vendor results in the following exception:
		
java.io.IOException: com.sun.crypto.provider.SealedObjectForKeyProtector

 ⁠Procedure 18.8. Set up a Java Keystore
	Create a directory to store your keystore and other encrypted information.

				Create a directory to store your keystore and other important information. The rest of this procedure assumes that the directory is EAP_HOME/vault/. Since this directory will contain sensitive information it should be accessible to only limited users. At a minimum the user account under which JBoss EAP is running requires read-write access.
			

	Determine the parameters to use with keytool utility.

				Decide on values for the following parameters:
			
	alias
	
							The alias is a unique identifier for the vault or other data stored in the keystore. Aliases are case-insensitive.
						

	 storetype
	
							The storetype specifies the keystore type. The value jceks is recommended.
						

	keyalg
	
							The algorithm to use for encryption. Use the documentation for your JRE and operating system to see which other choices may be available to you.
						

	keysize
	
							The size of an encryption key impacts how difficult it is to decrypt through brute force. For information on appropriate values, see the documentation distributed with the keytool utility.
						

	 storepass
	
							The value of storepass is the password is used to authenticate to the keystore so that the key can be read. The password must be at least 6 characters long and must be provided when the keystore is accessed. If you omit this parameter, you will be prompted to enter it when you execute the command.
						

	 keypass
	
							The value of keypass is the password used to access the specific key and must match the value of the storepass parameter.
						

	 validity
	
							The value of validity is the period (in days) for which the key will be valid.
						

	keystore
	
							The value of keystore is the filepath and filename in which the keystore's values are to be stored. The keystore file is created when data is first added to it.
						

							Ensure you use the correct file path separator: / (forward slash) for Red Hat Enterprise Linux and similar operating systems, \ (backslash) for Microsoft Windows Server.
						

				The keytool utility has many other options. See the documentation for your JRE or your operating system for more details.
			

	Run the keytool command

				Launch your operating system's command line interface and run the keytool utility, supplying the information that you gathered.
			

 ⁠Example 18.40. Create a Java Keystore
$ keytool -genseckey -alias vault -storetype jceks -keyalg AES -keysize 128 -storepass vault22 -keypass vault22 -validity 730 -keystore EAP_HOME/vault/vault.keystore

Result

			In this a keystore has been created in the file EAP_HOME/vault/vault.keystore. It stores a single key, with the alias vault, which will be used to store encrypted strings, such as passwords, for JBoss EAP.
		

		Report a bug
	

 ⁠18.6.5. Initialize the Password Vault

Prerequisites
	
				Section 18.6.4, “Create a Java Keystore to Store Sensitive Strings”
			

Overview

			The Password Vault can be initialized either interactively, where you are prompted for each parameter's value, or non-interactively, where you provide all parameters' values on the commmand line. Each method gives the same result, so choose whichever method you prefer.
		

		Refer to the following list when using either method.
	

 ⁠Parameter Values
	Keystore URL (KEYSTORE_URL)
	
					The file system path or URI of the keystore file. The examples use EAP_HOME/vault/vault.keystore.
				

	 Keystore password (KEYSTORE_PASSWORD)
	
					The password used to access the keystore.
				

	 Salt (SALT)
	
					The salt value is a random string of eight characters used, together with the iteration count, to encrypt the content of the keystore.
				

	 Keystore Alias (KEYSTORE_ALIAS)
	
					The alias by which the keystore is known.
				

	 Iteration Count (ITERATION_COUNT)
	
					The number of times the encryption algorithm is run.
				

	 Directory to store encrypted files (ENC_FILE_DIR)
	
					The path in which the encrypted files are to be stored. This is typically the directory containing the password vault.
				

					It is convenient but not mandatory to store all of your encrypted information in the same place as the key store. This directory should be only accessible to limited users. At a minimum the user account under which JBoss EAP is running requires read-write access. If you followed Section 18.6.4, “Create a Java Keystore to Store Sensitive Strings”, your keystore is in a directory called EAP_HOME/vault/.
				
Note

						The trailing backslash or forward slash on the directory name is required. Ensure you use the correct file path separator: / (forward slash) for Red Hat Enterprise Linux and similar operating systems, \ (backslash) for Microsoft Windows Server.
					

	 Vault Block (VAULT_BLOCK)
	
					The name to be given to this block in the password vault. Choose a value which is significant to you.
				

	 Attribute (ATTRIBUTE)
	
					The name to be given to the attribute being stored. Choose a value which is significant to you. For example, you could choose a name which you associate with a datasource.
				

	 Security Attribute (SEC-ATTR)
	
					The password which is being stored in the password vault.
				

 ⁠Procedure 18.9. Run the Password Vault Command Interactively

			Use this method if you would prefer to be prompted for the value of each parameter.
		
	 Launch the Password Vault command interactively.

				Launch your operating system's command line interface and run EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on Microsoft Windows Server). Start a new interactive session by typing 0 (zero).
			

	Complete the prompted parameters.

				Follow the prompts to input the required parameters.
			

	Make a note of the masked password information.

				The masked password, salt, and iteration count are printed to standard output. Make a note of them in a secure location. They are required to add entries to the Password Vault. Access to the keystore file and these values could allow an attacker access to obtain access to sensitive information in the Password Vault.
			

	Exit the interactive console.

				Type 3 (three) to exit the interactive console.
			

 ⁠Example 18.41. Run the Password Vault command interactively
Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password: vault22
Enter Keystore password again: vault22
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Oct 17, 2014 12:58:11 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete

 ⁠Procedure 18.10. Run the Password Vault Command Non-interactively

			Use this method if you would prefer to provide all parameters' values at once.
		
	
				Launch your operating system's command line interface and run the Password Vault command. Refer to the Parameter Values list, substituting the placeholder values with your preferred values.
			

				Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on Microsoft Windows Server).
			

vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD --alias KEYSTORE_ALIAS --vault-block VAULT_BLOCK --attribute ATTRIBUTE --sec-attr SEC-ATTR --enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --salt SALT

 ⁠Example 18.42. Run the Password Vault command non-interactively
vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22 --alias vault --vault-block vb --attribute password --sec-attr 0penS3sam3 --enc-dir EAP_HOME/vault/ --iteration 120 --salt 1234abcd

					Command output
				
===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

Oct 17, 2014 2:23:43 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Secured attribute value has been stored in vault.
Please make note of the following:
**
Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1
**
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**

Result

			Your keystore password has been masked for use in configuration files and deployments. In addition, your vault is initialized and ready to use.
		

		Report a bug
	

 ⁠18.6.6. Configure JBoss EAP 6 to Use the Password Vault

Overview

			Before you can mask passwords and other sensitive attributes in configuration files, you need to make JBoss EAP 6 aware of the password vault which stores and decrypts them.
		
Prerequisites
	
				Section 18.6.5, “Initialize the Password Vault”
			

 ⁠Procedure 18.11. Enable the Password Vault
	

				Run the following Management CLI command, substituting the placeholder values with those from the output of the Password Vault command in Section 18.6.5, “Initialize the Password Vault”.
			
Note

					If you use Microsoft Windows Server, use two backslashes (\\) in the file path where you would normally use one. For example, C:\\data\\vault\\vault.keystore. This is because a single backslash character (\) is used for character escaping.
				

/core-service=vault:add(vault-options=[("KEYSTORE_URL" => "PATH_TO_KEYSTORE"), ("KEYSTORE_PASSWORD" => "MASKED_PASSWORD"), ("KEYSTORE_ALIAS" => "ALIAS"), ("SALT" => "SALT"),("ITERATION_COUNT" => "ITERATION_COUNT"), ("ENC_FILE_DIR" => "ENC_FILE_DIR")])

 ⁠Example 18.43. Enable the Password Vault

			
/core-service=vault:add(vault-options=[("KEYSTORE_URL" => "EAP_HOME/vault/vault.keystore"), ("KEYSTORE_PASSWORD" => "MASK-5dOaAVafCSd"), ("KEYSTORE_ALIAS" => "vault"), ("SALT" => "1234abcd"),("ITERATION_COUNT" => "120"), ("ENC_FILE_DIR" => "EAP_HOME/vault/")])

		

Result

			JBoss EAP 6 is configured to decrypt masked strings stored in the Password Vault. To add strings to the Password Vault and use them in your configuration, see Section 18.6.8, “Store a Sensitive String in the Password Vault”.
		

		Report a bug
	

 ⁠18.6.7. Configure JBoss EAP 6 to Use a Custom Implementation of the Password Vault

Overview

			You can use your own implementation of SecurityVault to mask passwords and other sensitive attributes in configuration files.
		
Prerequisites
	
				Section 18.6.5, “Initialize the Password Vault”
			

 ⁠Procedure 18.12. Use a Custom Implementation of the Password Vault
	
				Create a class that implements the interface SecurityVault.
			

	
				Create a module containing the class from the previous step, and specify a dependency on org.picketbox where the interface is SecurityVault.
			

	
				Enable the custom Password Vault in the JBoss EAP server configuration by adding the vault element with the following attributes:
			
	 code
	
							The fully qualified name of class that implements SecurityVault.
						

	 module
	
							The name of the module that contains the custom class.
						

				Optionally, you can use vault-options parameters to initialize the custom class for a Password Vault.
			

 ⁠Example 18.44. Use vault-options Parameters to Initialize the Custom Class
/core-service=vault:add(code="custom.vault.implementation.CustomSecurityVault", module="custom.vault.module", vault-options=[("KEYSTORE_URL" => "PATH_TO_KEYSTORE"), ("KEYSTORE_PASSWORD" => "MASKED_PASSWORD"), ("KEYSTORE_ALIAS" => "ALIAS"), ("SALT" => "SALT"),("ITERATION_COUNT" => "ITERATION_COUNT"), ("ENC_FILE_DIR" => "ENC_FILE_DIR")])

Result

			JBoss EAP 6 is configured to decrypt masked strings using a custom implementation of the password vault.
		

		Report a bug
	

 ⁠18.6.8. Store a Sensitive String in the Password Vault

Overview

			Including passwords and other sensitive strings in plaintext configuration files is a security risk. Store these strings instead in the Password Vault for improved security, where they can then be referenced in configuration files, Management CLI commands and applications in their masked form.
		

		Sensitive strings can be store in the Password Vault either interactively, where you are prompted for each parameter's value, or non-interactively, where you provide all parameters' values on the commmand line. Each method gives the same result, so choose whichever method you prefer. For a description of all parameters, see Section 18.6.5, “Initialize the Password Vault”.
	
Prerequisites
	
				Section 18.6.6, “Configure JBoss EAP 6 to Use the Password Vault”
			

 ⁠Procedure 18.13. Store a Sensitive String Interactively

			Use this method if you would prefer to be prompted for the value of each parameter.
		
	Run the Password Vault command

				Launch your operating system's command line interface and run the Password Vault command. Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on Microsoft Windows Server). Start a new interactive session by typing 0 (zero).
			

	Complete the prompted parameters about the Password Vault

				Follow the prompts to input the required authentication parameters. These values must match those provided when the Password Vault was created.
			
Note

					The keystore password must be given in plaintext form, not masked form.
				

	Complete the prompted parameters about the sensitive string

				Enter 0 (zero) to start storing the sensitive string. Follow the prompts to input the required parameters.
			

	Make note of the information about the masked string

				A message prints to standard output, showing the vault block, attribute name, masked string, and advice about using the string in your configuration. Make note of this information in a secure location. An extract of sample output is as follows:
			
Vault Block:ds_Example1
Attribute Name:password
Configuration should be done as follows:
VAULT::ds_Example1::password::1

	Exit the interactive console

				Enter 3 (three) to exit the interactive console.
			

 ⁠Example 18.45. Store a Sensitive String Interactively
===

 JBoss Vault

 JBOSS_HOME: EAP_HOME/jboss-eap-6.4

 JAVA: java

===

**** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:11:18:46,086 INFO [org.jboss.security] (management-handler-thread - 4) PBOX0
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Oct 21, 2014 11:20:49 AM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2: Remove secured attribute 3: Exit
0
Task: Store a secured attribute
Please enter secured attribute value (such as password):
Please enter secured attribute value (such as password) again:
Values match
Enter Vault Block:ds_Example1
Enter Attribute Name:password
Secured attribute value has been stored in vault.
Please make note of the following:
**
Vault Block:ds_Example1
Attribute Name:password
Configuration should be done as follows:
VAULT::ds_Example1::password::1
**
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2: Remove secured attribute 3: Exit

 ⁠Procedure 18.14. Store a Sensitive String Non-interactively

			Use this method if you would prefer to provide all parameters' values at once.
		
	
				Launch your operating system's command line interface and run the Password Vault command. Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on Microsoft Windows Server).
			

				Substitute the placeholder values with your own values. The values for parameters KEYSTORE_URL, KEYSTORE_PASSWORD and KEYSTORE_ALIAS must match those provided when the Password Vault was created.
			
Note

					The keystore password must be given in plaintext form, not masked form.
				

EAP_HOME/bin/vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD --alias KEYSTORE_ALIAS --vault-block VAULT_BLOCK --attribute ATTRIBUTE --sec-attr SEC-ATTR --enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --salt SALT

	Make note of the information about the masked string

				A message prints to standard output, showing the vault block, attribute name, masked string, and advice about using the string in your configuration. Make note of this information in a secure location. An extract of sample output is as follows:
			
Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1

 ⁠Example 18.46. Run the Password Vault command non-interactively
EAP_HOME/bin/vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22 --alias vault --vault-block vb --attribute password --sec-attr 0penS3sam3 --enc-dir EAP_HOME/vault/ --iteration 120 --salt 1234abcd

			Command output
		
===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

Oct 22, 2014 9:24:43 AM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Secured attribute value has been stored in vault.
Please make note of the following:
**
Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1
**
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="vault22"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/vault/"/>
</vault><management> ...
**

Result

			The sensitive string has now been stored in the Password Vault and can be used in configuration files, Management CLI commands and applications in its masked form.
		

		Report a bug
	

 ⁠18.6.9. Use an Encrypted Sensitive String in Configuration

Prerequisites
	
				Section 18.6.8, “Store a Sensitive String in the Password Vault”
			

		Any sensitive string which has been encrypted can be used in a configuration file or Management CLI command in its masked form, providing expressions are allowed.
	

		To confirm if expressions are allowed within a particular subsystem, run the following Management CLI command against that subsystem.
	
Note

			Add the prefix /host=HOST_NAME to the command for a managed domain.
		

/core-service=SUBSYSTEM:read-resource-description(recursive=true)

 ⁠Example 18.47. List the Description of all Resources in the Management Subsystem

			
/core-service=management:read-resource-description(recursive=true)

		

		From the output of running this command, look for the value of the expressions-allowed parameter. If this is true, then you can use expressions within the configuration of this subsystem.
	

		Use the following syntax to replace any plaintext string with the masked form.
	
${VAULT::VAULT_BLOCK::ATTRIBUTE_NAME::MASKED_STRING}

 ⁠Example 18.48. Datasource Definition Using a Password in Masked Form

			In this example the vault block is ds_ExampleDS and the attribute is password.
		

			

...
 <subsystem xmlns="urn:jboss:domain:datasources:1.0">
 <datasources>
 <datasource jndi-name="java:jboss/datasources/ExampleDS" enabled="true" use-java-context="true" pool-name="H2DS">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>
 <driver>h2</driver>
 <pool></pool>
 <security>
 <user-name>sa</user-name>
 <password>${VAULT::ds_ExampleDS::password::1}</password>
 </security>
 </datasource>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>
 </driver>
 </drivers>
 </datasources>
 </subsystem>
...

		

		Report a bug
	

 ⁠18.6.10. Use an Encrypted Sensitive String in an Application

Prerequisites
	
				Section 18.6.8, “Store a Sensitive String in the Password Vault”
			

		Encrypted strings stored in the Password Vault can be used in your application's source code.
	

 ⁠Example 18.49. Servlet Using a Vaulted Password

			This example is an extract of a servlet's source code, illustrating the use of a masked password in a datasource definition, instead of the plaintext password. The plaintext version is commented out so that you can see the difference.
		
​
​/*@DataSourceDefinition(
​ name = "java:jboss/datasources/LoginDS",
​ user = "sa",
​ password = "sa",
​ className = "org.h2.jdbcx.JdbcDataSource",
​ url = "jdbc:h2:tcp://localhost/mem:test"
​)*/
​@DataSourceDefinition(
​ name = "java:jboss/datasources/LoginDS",
​ user = "sa",
​ password = "VAULT::DS::thePass::1",
​ className = "org.h2.jdbcx.JdbcDataSource",
​ url = "jdbc:h2:tcp://localhost/mem:test"
​)

		Report a bug
	

 ⁠18.6.11. Check if a Sensitive String is in the Password Vault

 Overview

			Before attempting to store or use a sensitive string in the Password Vault it can be useful to first confirm if it is already stored.
		

		This check can be done either interactively, where you are prompted for each parameter's value, or non-interactively, where you provide all parameters' values on the commmand line. Each method gives the same result, so choose whichever method you prefer.
	

 ⁠Procedure 18.15. Check For a Sensitive String Interactively

			Use this method if you would prefer to be prompted for the value of each parameter.
		
	Run the Password Vault command

				Launch your operating system's command line interface and run the Password Vault command. Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on Microsoft Windows Server). Start a new interactive session by typing 0 (zero).
			

	Complete the prompted parameters about the Password Vault

				Follow the prompts to input the required authentication parameters. These values must match those provided when the Password Vault was created.
			
Note

					The keystore password must be given in plaintext form, not masked form.
				

	
				Enter 1 (one) to select “Check whether a secured attribute exists”.
			

	
				Enter the name of the vault block in which the sensitive string is stored.
			

	
				Enter the name of the sensitive string to be checked.
			

 Result

			If the sensitive string is stored in the vault block specified, a confirmation message like the following will be output.
		
A value exists for (VAULT_BLOCK, ATTRIBUTE)

		If the sensitive string is not stored in the specified block, a message like the following will be output.
	
No value has been store for (VAULT_BLOCK, ATTRIBUTE)

 ⁠Example 18.50. Check For a Sensitive String Interactively
===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

**** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Oct 22, 2014 12:53:56 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2: Remove secured attribute 3: Exit
1
Task: Verify whether a secured attribute exists
Enter Vault Block:vb
Enter Attribute Name:password
A value exists for (vb, password)
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2: Remove secured attribute 3: Exit

 ⁠Procedure 18.16. Check For a Sensitive String Non-Interactively

			Use this method if you would prefer to provide all parameters' values at once. For a description of all parameters, see Section 18.6.5, “Initialize the Password Vault”.
		
	
				Launch your operating system's command line interface and run the Password Vault command. Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on Microsoft Windows Server).
			

				Substitute the placeholder values with your own values. The values for parameters KEYSTORE_URL, KEYSTORE_PASSWORD-password and KEYSTORE_ALIAS must match those provided when the Password Vault was created.
			
Note

					The keystore password must be given in plaintext form, not masked form.
				

EAP_HOME/bin/vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD --alias KEYSTORE_ALIAS --check-sec-attr --vault-block VAULT_BLOCK --attribute ATTRIBUTE --enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --salt SALT

 Result

			If the sensitive string is stored in the vault block specified, the following message will be output.
		
Password already exists.

		If the value is not stored in the specified block, the following message will be output.
	
Password doesn't exist.

		Report a bug
	

 ⁠18.6.12. Remove a Sensitive String from the Password Vault

Overview

			For security reasons it is best to remove sensitive strings from the Password Vault when they are no longer required. For example, if you are decommissioning an application, any sensitive strings used in datasource definitions should be removed at the same time.
		
 Prerequisite

			Before removing a sensitive string from the Password Vault, confirm if it is used in the configuration of JBoss EAP. One method of doing this is to use the ‘grep’ utility to search configuration files for instances of the masked string. On Red Hat Enterprise Linux (and similar operating systems), grep is installed by default but for Microsoft Windows Server it must be installed manually.
		

		The Password Vault utility provides two modes: interactive and non-interactive. Interactive mode prompts you for each parameter’s value, where non-interactive mode requires you to provide all parameters’ values in a single command.
	

 ⁠Procedure 18.17. Remove a Sensitive String Interactively

			Use this method if you would prefer to be prompted for the value of each parameter.
		
	Run the Password Vault command

				Launch your operating system's command line interface and run EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on Microsoft Windows Server). Start a new interactive session by typing 0 (zero).
			

	 Provide Authentication Details

				Follow the prompts to input the required authentication parameters. These values must match those provided when the Password Vault was created.
			
Note

					The keystore password must be given in plaintext form, not masked form.
				

	
				Enter 2 (two) to choose option Remove secured attribute.
			

	
				Enter the name of the vault block in which the sensitive string is stored.
			

	
				Enter the name of the sensitive string to be removed.
			

Result

			If the sensitive string is successfully removed, a confirmation message like the following will be output.
		
Secured attribute [VAULT_BLOCK::ATTRIBUTE] has been successfully removed from vault

		If the sensitive string is not removed, a message like the following will be output.
	
Secured attribute [VAULT_BLOCK::ATTRIBUTE] was not removed from vault, check whether it exist

 ⁠Example 18.51. Remove a Sensitive String Interactively

**** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Dec 23, 2014 1:40:56 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in configuration file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2: Remove secured attribute 3: Exit
2
Task: Remove secured attribute
Enter Vault Block:craft
Enter Attribute Name:password
Secured attribute [craft::password] has been successfully removed from vault

		

 ⁠Procedure 18.18. Remove a Sensitive String Non-interactively

			Use this method if you would prefer to provide all parameters' values at once. For a description of all parameters, see Section 18.6.5, “Initialize the Password Vault”.
		
	
				Launch your operating system's command line interface and run the Password Vault command. Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on Microsoft Windows Server).
			

				Substitute the placeholder values with your own values. The values for parameters KEYSTORE_URL, KEYSTORE_PASSWORD and KEYSTORE_ALIAS must match those provided when the Password Vault was created.
			
Note

					The keystore password must be given in plaintext form, not masked form.
				

EAP_HOME/bin/vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD --alias KEYSTORE_ALIAS --remove-sec-attr --vault-block VAULT_BLOCK --attribute ATTRIBUTE --enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --salt SALT

Result

			If the sensitive string is successfully removed, a confirmation message like the following will be output.
		
Secured attribute [VAULT_BLOCK::ATTRIBUTE] has been successfully removed from vault

		If the sensitive string is not removed, a message like the following will be output.
	
Secured attribute [VAULT_BLOCK::ATTRIBUTE] was not removed from vault, check whether it exist

 ⁠Example 18.52. Remove a Sensitive String Non-interactively

			
./vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22 --alias vault --remove-sec-attr --vault-block craft --attribute password --enc-dir ../vault/ --iteration 120 --salt 1234abcd
===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

Dec 23, 2014 1:54:24 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Secured attribute [craft::password] has been successfully removed from vault

		

		Report a bug
	

 ⁠18.7. Java Authorization Contract for Containers (JACC)

 ⁠18.7.1. About Java Authorization Contract for Containers (JACC)

		Java Authorization Contract for Containers (JACC) is a standard which defines a contract between containers and authorization service providers, which results in the implementation of providers for use by containers. It was defined in JSR-115, which can be found on the Java Community Process website at http://jcp.org/en/jsr/detail?id=115. It has been part of the core Java Enterprise Edition (Java EE) specification since Java EE version 1.3.
	

		JBoss EAP 6 implements support for JACC within the security functionality of the security subsystem.
	

		Report a bug
	

 ⁠18.7.2. Configure Java Authorization Contract for Containers (JACC) Security

		To configure Java Authorization Contract for Containers (JACC), you need to configure your security domain with the correct module, and then modify your jboss-web.xml to include the correct parameters.
	
Add JACC Support to the Security Domain

			To add JACC support to the security domain, add the JACC authorization policy to the authorization stack of the security domain, with the required flag set. The following is an example of a security domain with JACC support. However, the security domain is configured in the Management Console or Management CLI, rather than directly in the XML.
		
​
​<security-domain name="jacc" cache-type="default">
​ <authentication>
​ <login-module code="UsersRoles" flag="required">
​ </login-module>
​ </authentication>
​ <authorization>
​ <policy-module code="JACC" flag="required"/>
​ </authorization>
​</security-domain>

Configure a Web Application to Use JACC

			The jboss-web.xml is located in the WEB-INF/ directory of your deployment, and contains overrides and additional JBoss-specific configuration for the web container. To use your JACC-enabled security domain, you need to include the <security-domain> element, and also set the <use-jboss-authorization> element to true. The following application is properly configured to use the JACC security domain above.
		
​
​<jboss-web>
​ <security-domain>jacc</security-domain>
​ <use-jboss-authorization>true</use-jboss-authorization>
​</jboss-web>

Configure an EJB Application to Use JACC

			Configuring EJBs to use a security domain and to use JACC differs from Web Applications. For an EJB, you can declare method permissions on a method or group of methods, in the ejb-jar.xml descriptor. Within the <ejb-jar> element, any child <method-permission> elements contain information about JACC roles. Refer to the example configuration for more details. The EJBMethodPermission class is part of the Java Enterprise Edition 6 API, and is documented at http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html.
		

 ⁠Example 18.53. Example JACC Method Permissions in an EJB
​<ejb-jar>
​ <assembly-descriptor>
​ <method-permission>
​ <description>The employee and temp-employee roles may access any method of the EmployeeService bean </description>
​ <role-name>employee</role-name>
​ <role-name>temp-employee</role-name>
​ <method>
​ <ejb-name>EmployeeService</ejb-name>
​ <method-name>*</method-name>
​ </method>
​ </method-permission>
​ </assembly-descriptor>
​</ejb-jar>

		You can also constrain the authentication and authorization mechanisms for an EJB by using a security domain, just as you can do for a web application. Security domains are declared in the jboss-ejb3.xml descriptor, in the <security> child element. In addition to the security domain, you can also specify the <run-as-principal>, which changes the principal the EJB runs as.
	

 ⁠Example 18.54. Example Security Domain Declaration in an EJB
​<ejb-jar>
​	<assembly-descriptor>
​		<security>
​ 		<ejb-name>*</ejb-name>
​ 		<security-domain>myDomain</security-domain>
​ 		<run-as-principal>myPrincipal</run-as-principal>
​		</security>
​ 	</assembly-descriptor>
​</ejb-jar>

		Report a bug
	

 ⁠18.8. Java Authentication SPI for Containers (JASPI)

 ⁠18.8.1. About Java Authentication SPI for Containers (JASPI) Security

		Java Authentication SPI for Containers (JASPI or JASPIC) is a pluggable interface for Java applications. It is defined in JSR-196 of the Java Community Process. Refer to http://www.jcp.org/en/jsr/detail?id=196 for details about the specification.
	

		Report a bug
	

 ⁠18.8.2. Configure Java Authentication SPI for Containers (JASPI) Security

		To authenticate against a JASPI provider, add a <authentication-jaspi> element to your security domain. The configuration is similar to a standard authentication module, but login module elements are enclosed in a <login-module-stack> element. The structure of the configuration is:
	

 ⁠Example 18.55. Structure of the authentication-jaspi element
​
​<authentication-jaspi>
​	<login-module-stack name="...">
​	 <login-module code="..." flag="...">
​	 <module-option name="..." value="..."/>
​	 </login-module>
​	</login-module-stack>
​	<auth-module code="..." login-module-stack-ref="...">
​	 <module-option name="..." value="..."/>
​	</auth-module>
​</authentication-jaspi>
​

		The login module itself is configured in exactly the same way as a standard authentication module.
	

		Because the web-based management console does not expose the configuration of JASPI authentication modules, you need to stop JBoss EAP 6 completely before adding the configuration directly to EAP_HOME/domain/configuration/domain.xml or EAP_HOME/standalone/configuration/standalone.xml.
	

		Report a bug
	

 ⁠Chapter 19. Single Sign On (SSO)

 ⁠19.1. About Single Sign On (SSO) for Web Applications

Overview

			Single Sign On (SSO) allows authentication to one resource to implicitly allow access to other resources.
		
Clustered and Non-Clustered SSO

			Non-clustered SSO limits the sharing of access information to applications on the same virtual host. In addition, there is no resiliency in the event of a host failure. Clustered SSO data can be shared between applications in multiple hosts, and is resilient to failover. In addition, clustered SSO is able to receive requests from a load balancer.
		
How SSO Works

			If a resource is unprotected, a user is not challenged to authenticate at all. If a user accesses a protected resource, the user is required to authenticate.
		

		Upon successful authentication, the roles associated with the user are stored and used for authentication of all other associated resources.
	

		If the user logs out of an application, or an application invalidates the session programmatically, all persisted authentication data is removed, and the process starts over.
	

		A session timeout does not invalidate the SSO session if other sessions are still valid.
	

		Report a bug
	

 ⁠19.2. About Clustered Single Sign On (SSO) for Web Applications

		Single Sign On (SSO) is the ability for users to authenticate to a single web application, and by means of a successful authentication, will successfully authenticate to multiple other applications without needing to be prompted at each one. Clustered SSO stores the authentication information in a clustered cache. This allows for applications on multiple different servers to share the information, and also makes the information resilient to a failure of one of the hosts.
	

		Some of the supported SSO mechanisms (for example, Kerberos, PicketLink SAML) need valves to work correctly. Valves have a similar function as the servlet filters, but they are processed before the container managed authentication. Valves for web applications can be defined in the jboss-web.xml deployment descriptor.
	

		Report a bug
	

 ⁠19.3. Choose the Right SSO Implementation

		JBoss EAP 6 runs Java Enterprise Edition (EE) applications, which may be web applications, EJB applications, web services, or other types. Single Sign On (SSO) allows you to propagate security context and identity information between these applications. Several SSO solutions are available but choosing the right solution depends on your requirements.
	

		Note that there is a distinct difference between a clustered web application and clustered SSO. A clustered web application is one which is distributed across the nodes of a cluster to spread the load of hosting that application. If marked as distributable, all new sessions, and changes to existing sessions are replicated to other members of the cluster. An application is marked as able to be distributed across cluster nodes with the <distributable/> tag in the web.xml deployment descriptor. Clustered SSO allows for replication of security context and identity information, regardless of whether or not the applications are themselves clustered. Although these technologies may be used together they are separate concepts.
	
Kerberos-Based Desktop SSO

			If your organization already uses a Kerberos-based authentication and authorization system, such as Microsoft Active Directory, you can use the same systems to transparently authenticate to your enterprise applications running on JBoss EAP 6.
		
Non-Clustered Web Application SSO

			If you are running multiple applications on a single instance and need to enable SSO session replication for those applications, non-clustered SSO will meet your requirements.
		
Clustered Web Application SSO

			If you are running either a single application, or multiple applications, across a cluster and need to enable SSO session replication for those applications, clustered SSO will meet your requirements.
		

		Report a bug
	

 ⁠19.4. Use Single Sign On (SSO) In A Web Application

Overview

			Single Sign On (SSO) capabilities are provided by the web and Infinispan subsystems. Use this procedure to configure SSO in web applications.
		
Prerequisites
	
				A configured security domain which handles authentication and access.
			

	
				The infinispan subsystem. By default, it is present in all the profiles for managed domain and standalone server.
			

	
				The web cache-container and SSO replicated-cache. The initial configuration files already contain the web cache-container, and some of the configurations already contain the SSO replicated-cache as well. Use the following commands to check for and enable the SSO replicated-cache. Note that these commands modify the ha profile of a managed domain. You can change the commands to use a different profile, or remove the /profile=ha portion of the command, for a standalone server.
			

 ⁠Example 19.1. Check for the web cache-container

					The profiles and configurations mentioned above include the web cache-container by default. Use the following command to verify its presence. If you use a different profile, substitute its name instead of ha.
				
/profile=ha/subsystem=infinispan/cache-container=web/:read-resource(recursive=false,proxies=false,include-runtime=false,include-defaults=true)

					If the result is success the subsystem is present. Otherwise, you need to add it.
				

 ⁠Example 19.2. Add the web cache-container

					Use the following three commands to enable the web cache-container to your configuration. Modify the name of the profile as appropriate, as well as the other parameters. The parameters here are the ones used in a default configuration.
				
/profile=ha/subsystem=infinispan/cache-container=web:add(aliases=["standard-session-cache"],default-cache="repl",module="org.jboss.as.clustering.web.infinispan")
/profile=ha/subsystem=infinispan/cache-container=web/transport=TRANSPORT:add(lock-timeout=60000)
/profile=ha/subsystem=infinispan/cache-container=web/replicated-cache=repl:add(mode="ASYNC",batching=true)

 ⁠Example 19.3. Check for the SSO replicated-cache

					Run the following Management CLI command:
				
/profile=ha/subsystem=infinispan/cache-container=web/:read-resource(recursive=true,proxies=false,include-runtime=false,include-defaults=true)

					Look for output like the following: "sso" => {
				

					If you do not find it, the SSO replicated-cache is not present in your configuration.
				

 ⁠Example 19.4. Add the SSO replicated-cache
/profile=ha/subsystem=infinispan/cache-container=web/replicated-cache=sso:add(mode="SYNC", batching=true)

Configure Clustered SSO for a Managed Domain

		

		The web subsystem needs to be configured to use SSO. The following command enables SSO on the virtual server called default-host, and the cookie domain domain.com. The cache name is sso, and reauthentication is disabled.
	
/profile=ha/subsystem=web/virtual-server=default-host/sso=configuration:add(cache-container="web",cache-name="sso",reauthenticate="false",domain="domain.com")

		Each application which will share the SSO information must be configured to use the same <security-domain> in its jboss-web.xml deployment descriptor and the same Realm in its web.xml configuration file.
	
Configure Clustered or Non-Clustered SSO for a Standalone Server

			Configure sso under the web subsystem in the server profile. The ClusteredSingleSignOn version is used when attribute cache-container is present, otherwise standard SingleSignOn class is used.
		

 ⁠Example 19.5. Example Non-Clustered SSO Configuration
/subsystem=web/virtual-server=default-host/sso=configuration:add(reauthenticate="false")

Invalidate a Session

			An application can programmatically invalidate a session by invoking method javax.servlet.http.HttpSession.invalidate().
		

		Report a bug
	

 ⁠19.5. About Kerberos

		Kerberos is a network authentication protocol for client/server applications. It allows authentication across a non-secure network in a secure way, using secret-key symmetric cryptography.
	

		Kerberos uses security tokens called tickets. To use a secured service, you need to obtain a ticket from the Ticket Granting Service (TGS), which is a service running on a server on the network. After obtaining the ticket, you request a Service Ticket (ST) from an Authentication Service (AS), which is another service running on the network. You then use the ST to authenticate to the service you want to use. The TGS and the AS both run inside an enclosing service called the Key Distribution Center (KDC).
	

		Kerberos is designed to be used in a client-server environment, and is rarely used in Web applications or thin client environments. However, many organizations already use a Kerberos system for desktop authentication, and prefer to reuse their existing system rather than create a second one for their Web Applications. Kerberos is an integral part of Microsoft Active Directory, and is also used in many Red Hat Enterprise Linux environments.
	

		Report a bug
	

 ⁠19.6. About SPNEGO

		Simple and Protected GSS_API Negotiation Mechanism (SPNEGO) provides a mechanism for extending a Kerberos-based Single Sign On (SSO) environment for use in Web applications.
	

		When an application on a client computer, such as a web browser, attempts to access a protect page on the web server, the server responds that authorization is required. The application then requests a service ticket from the Kerberos Key Distribution Center (KDC). After the ticket is obtained, the application wraps it in a request formatted for SPNEGO, and sends it back to the Web application, via the browser. The web container running the deployed Web application unpacks the request and authenticates the ticket. Upon successful authentication, access is granted.
	

		SPNEGO works with all types of Kerberos providers, including the Kerberos service included in Red Hat Enterprise Linux and the Kerberos server which is an integral part of Microsoft Active Directory.
	

		Report a bug
	

 ⁠19.7. About Microsoft Active Directory

		Microsoft Active Directory is a directory service developed by Microsoft to authenticate users and computers in a Microsoft Windows domain. It is included as part of Microsoft Windows Server. The computer in the Microsoft Windows Server is referred to as the domain controller. Red Hat Enterprise Linux servers running the Samba service can also act as the domain controller in this type of network.
	

		Active Directory relies on three core technologies which work together:
	
	
				Lightweight Directory Access Protocol (LDAP), for storing information about users, computers, passwords, and other resources.
			

	
				Kerberos, for providing secure authentication over the network.
			

	
				Domain Name Service (DNS) for providing mappings between IP addresses and host names of computers and other devices on the network.
			

		Report a bug
	

 ⁠19.8. Configure Kerberos or Microsoft Active Directory Desktop SSO for Web Applications

Introduction

			To authenticate your web or EJB applications using your organization's existing Kerberos-based authentication and authorization infrastructure, such as Microsoft Active Directory, you can use the JBoss Negotiation capabilities built into JBoss EAP 6. If you configure your web application properly, a successful desktop or network login is sufficient to transparently authenticate against your web application, so no additional login prompt is required.
		
Difference from Previous Versions of the Platform

			There are a few noticeable differences between JBoss EAP 6 and earlier versions:
		
	
				Security domains are configured for each profile of a managed domain, or for each standalone server. They are not part of the deployment itself. The security domain a deployment should use is named in the deployment's jboss-web.xml or jboss-ejb3.xml file.
			

	
				Security properties are configured as part of a security domain. They are not part of the deployment.
			

	
				You can no longer override the authenticators as part of your deployment. However, you can add a NegotiationAuthenticator valve to your jboss-web.xml descriptor to achieve the same effect. The valve still requires the <security-constraint> and <login-config> elements to be defined in the web.xml. These are used to decide which resources are secured. However, the chosen auth-method will be overridden by the NegotiationAuthenticator valve in the jboss-web.xml.
			

	
				The CODE attributes in security domains now use a simple name instead of a fully-qualified class name. The following table shows the mappings between the classes used for JBoss Negotiation, and their classes.
			

 ⁠Table 19.1. Login Module Codes and Class Names
	 Simple Name 	 Class Name 	 Purpose
	 Kerberos 	
						com.sun.security.auth.module.Krb5LoginModule
					

					

					

					
						com.ibm.security.auth.module.Krb5LoginModule
					

					 	
						Kerberos login module when using the Oracle JDK
					

					

					

					
						Kerberos login module when using the IBM Java development kit
					

					
	 SPNEGO 	 org.jboss.security.negotiation.spnego.SPNEGOLoginModule 	 The mechanism which enables your Web applications to authenticate to your Kerberos authentication server.
	 AdvancedLdap 	 org.jboss.security.negotiation.AdvancedLdapLoginModule 	 Used with LDAP servers other than Microsoft Active Directory.
	 AdvancedAdLdap 	 org.jboss.security.negotiation.AdvancedADLoginModule 	 Used with Microsoft Active Directory LDAP servers.

JBoss Negotiation Toolkit

			The JBoss Negotiation Toolkit is a debugging tool which is available for download from https://community.jboss.org/servlet/JiveServlet/download/16876-2-34629/jboss-negotiation-toolkit.war. It is provided as an extra tool to help you to debug and test the authentication mechanisms before introducing your application into production. It is an unsupported tool, but is considered to be very helpful, as SPNEGO can be difficult to configure for web applications.
		

 ⁠Procedure 19.1. Setup SSO Authentication for your Web or EJB Applications
	Configure one security domain to represent the identity of the server. Set system properties if necessary.

				The first security domain authenticates the container itself to the directory service. It needs to use a login module which accepts some type of static login mechanism, because a real user is not involved. This example uses a static principal and references a keytab file which contains the credential.
			

				The XML code is given here for clarity, but you should use the Management Console or Management CLI to configure your security domains.
			
​<security-domain name="host" cache-type="default">
​ <authentication>
​ <login-module code="Kerberos" flag="required">
​ <module-option name="storeKey" value="true"/>
​ <module-option name="useKeyTab" value="true"/>
​ <module-option name="principal" value="host/testserver@MY_REALM"/>
​ <module-option name="keyTab" value="/home/username/service.keytab"/>
​ <module-option name="doNotPrompt" value="true"/>
​ <module-option name="debug" value="false"/>
​ </login-module>
​ </authentication>
​</security-domain>

	Configure a second security domain to secure the web application or applications. Set system properties if necessary.

				The second security domain is used to authenticate the individual user to the Kerberos or SPNEGO authentication server. You need at least one login module to authenticate the user, and another to search for the roles to apply to the user. The following XML code shows an example SPNEGO security domain. It includes an authorization module to map roles to individual users. You can also use a module which searches for the roles on the authentication server itself.
			
​<security-domain name="SPNEGO" cache-type="default">
​ <authentication>
​ <!-- Check the username and password -->
​ <login-module code="SPNEGO" flag="requisite">
​ <module-option name="password-stacking" value="useFirstPass"/>
​ <module-option name="serverSecurityDomain" value="host"/>
​ </login-module>
​ <!-- Search for roles -->
​ <login-module code="UsersRoles" flag="required">
​ <module-option name="password-stacking" value="useFirstPass" />
​ <module-option name="usersProperties" value="spnego-users.properties" />
​ <module-option name="rolesProperties" value="spnego-roles.properties" />
​ </login-module>
​ </authentication>
​</security-domain>

	Specify the security-constraint and login-config in the web.xml

				The web.xml descriptor contain information about security constraints and login configuration. The following are example values for each.
			
​<security-constraint>
​ <display-name>Security Constraint on Conversation</display-name>
​ <web-resource-collection>
​ <web-resource-name>examplesWebApp</web-resource-name>
​ <url-pattern>/*</url-pattern>
​ </web-resource-collection>
​ <auth-constraint>
​ <role-name>RequiredRole</role-name>
​ </auth-constraint>
​</security-constraint>
​
​<login-config>
​ <auth-method>SPNEGO</auth-method>
​ <realm-name>SPNEGO</realm-name>
​</login-config>
​
​<security-role>
​ <description> role required to log in to the Application</description>
​ <role-name>RequiredRole</role-name>
​</security-role>

	Specify the security domain and other settings in the jboss-web.xml descriptor.

				Specify the name of the client-side security domain (the second one in this example) in the jboss-web.xml descriptor of your deployment, to direct your application to use this security domain.
			

				You can no longer override authenticators directly. Instead, you can add the NegotiationAuthenticator as a valve to your jboss-web.xml descriptor, if you need to. The <jacc-star-role-allow> allows you to use the asterisk (*) character to match multiple role names, and is optional.
			
​<jboss-web>
​ <security-domain>SPNEGO</security-domain>
​ <valve>
​ <class-name>org.jboss.security.negotiation.NegotiationAuthenticator</class-name>
​ </valve>
​ <jacc-star-role-allow>true</jacc-star-role-allow>
​</jboss-web>

	Add a dependency to your application's MANIFEST.MF, to locate the Negotiation classes.

				The web application needs a dependency on class org.jboss.security.negotiation to be added to the deployment's META-INF/MANIFEST.MF manifest, in order to locate the JBoss Negotiation classes. The following shows a properly-formatted entry.
			
Manifest-Version: 1.0
Build-Jdk: 1.6.0_24
Dependencies: org.jboss.security.negotiation

					
						As an alternative, add a dependency to your application by editing the META-INF/jboss-deployment-structure.xml file:
					
​<?xml version="1.0" encoding="UTF-8"?>
​<jboss-deployment-structure>
​ <deployment>
​ <dependencies>
​	<module name='org.jboss.security.negotiation'/>
​ </dependencies>
​ </deployment>
​</jboss-deployment-structure>

			

Note

			You can use only one Kerberos login module in a security domain.
		

Result

			Your web application accepts and authenticates credentials against your Kerberos, Microsoft Active Directory, or other SPNEGO-compatible directory service. If the user runs the application from a system which is already logged into the directory service, and where the required roles are already applied to the user, the web application does not prompt for authentication, and SSO capabilities are achieved.
		

		Report a bug
	

 ⁠19.9. Configure SPNEGO Fall Back to Form Authentication

		Follow the procedure below to setup a SPNEGO fall back to form authentication. ⁠
	

 ⁠Procedure 19.2. SPNEGO security with fall back to form authentication
	Set up SPNEGO

				Refer the procedure described in Section 19.8, “Configure Kerberos or Microsoft Active Directory Desktop SSO for Web Applications”
			

	Modify web.xml

				Add a login-config element to your application and setup the login and error pages in web.xml:
<login-config>
 <auth-method>SPNEGO</auth-method>
 <realm-name>SPNEGO</realm-name>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/error.jsp</form-error-page>
 </form-login-config>
 </login-config>

			

	Add web content

				Add references of login.html and error.html to web.xml. These files are added to web application archive to the place specified in form-login-config configuration. For more information refer Enable Form-based Authentication section in the Security Guide for JBoss EAP 6. A typical login.html looks like this:
<html>
 <head>
 <title>Vault Form Authentication</title>
 </head>
 <body>
 <h1>Vault Login Page</h1>
 <p>
 <form method="post" action="j_security_check">
 <table>
 <tr>
 <td>Username</td><td>-</td>
 <td><input type="text" name="j_username"></td>
 </tr>
 <tr>
 <td>Password</td><td>-</td>
 <td><input type="password" name="j_password"></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit"></td>
 </tr>
 </table>
 </form>
 </p>
 <hr>
 </body>
</html>

			

Note

			The fallback to FORM logic is only available in the case when no SPNEGO (or NTLM) tokens are present. As a result, a login form is not presented to the browser if the browser sends an NTLM token.
		

		Report a bug
	

 ⁠19.10. About SAML Web Browser Based SSO

		PicketLink in JBoss EAP provides a platform to implement federated identity based services. This includes centralized identity services and Single Sign-On (SSO) for applications.
	

		The SAML profile has support for both the HTTP/POST and the HTTP/Redirect bindings with centralized identity services to enable web SSO for your applications. The architecture for the SAML v2 based Web SSO follows the hub and spoke architecture of identity management. In this architecture an identity provider (IDP) acts as the central source (hub) for identity and role information to all the applications (Service Providers). The spokes are the service providers (SP).
	
Important

			If one HTTP client (web browser) connects to more SPs pointing to the same IDP, the IDP does not distinguish between the different SPs. If more requests from one client come simultaneously, the IDP handles the most recent request from an SP and sends back SAML assertion about the authenticated user. It means the SAML response from the IDP can be in such case forwarded to incorrect SP. To get back to the older SP, you will need to reenter the SP URL in the browser.
		

Note

			For more information, refer Red Hat JBoss Enterprise Application Platform 6.4 How to Setup SSO with SAML V2 document and Browser-based SSO Using SAML section in the Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture document.
		

		Report a bug
	

 ⁠19.11. Cookie Domain

 ⁠19.11.1. About the Cookie Domain

		The cookie domain refers to the set of hosts able to read a cookie from the client browser which is accessing your application. It is a configuration mechanism to minimize the risk of third parties accessing information your application stores in browser cookies.
	

		The default value for the cookie domain is /. This means that only the issuing host can read the contents of a cookie. Setting a specific cookie domain makes the contents of the cookie available to a wider range of hosts. To set the cookie domain, refer to Section 19.11.2, “Configure the Cookie Domain for Single Sign On”.
	

		Report a bug
	

 ⁠19.11.2. Configure the Cookie Domain for Single Sign On

		To enable your SSO valve to share a SSO context, configure the cookie domain in the valve configuration. The following configuration would allow applications on http://app1.xyz.com and http://app2.xyz.com to share an SSO context, even if these applications run on different servers in a cluster or the virtual host with which they are associated has multiple aliases.
	
Clustered SSO (shared against clustered JBoss EAP instances)

			Using the CLI (in Standalone mode):
		
​/subsystem=web/virtual-server=default-host/sso=configuration:add(cache-container="web",cache-name="sso")

		Editing standlone.xml or domain.xml and append the below to the relevant web subsystem:
	
​
​<subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-host" native="false">
​	<connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"/>
​	<virtual-server name="default-host" enable-welcome-root="true">
​		<alias name="localhost"/>
​		<alias name="example.com"/>
​		<sso cache-container="web" cache-name="sso"/> <!--FIXME: ADD this Line-->
​	</virtual-server>
​</subsystem>

Non-Clustered SSO (SSO only shared against instances within the Jboss EAP instances)

			Using the CLI (in Standalone mode):
		
​
​ /subsystem=web/virtual-server=default-host/sso=configuration:add()

		Editing standlone.xml or domain.xml and append the below to the relevant web subsystem:
	
​
​<subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-host" native="false">
​	<connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"/>
​	<virtual-server name="default-host" enable-welcome-root="true">
​		<alias name="localhost"/>
​		<alias name="example.com"/>
​		<sso/> <!--FIXME: ADD this Line-->
​	</virtual-server>
​</subsystem>

		The Single Sign On (SSO) configuration in JBoss EAP 6 includes a domain attribute that can be specified. For example:
	
​/subsystem=web/virtual-server=default-host/sso=configuration:add(domain="example.com",...)

		Which adds the following SSO configuration:
	
​
​<sso domain="example.com"/>

		Report a bug
	

 ⁠Chapter 20. Development Security References

 ⁠20.1. EJB Security Parameter Reference

 ⁠Table 20.1. EJB security parameter elements
	 Element 	 Description
	
						<security-identity>
					

					 	
						Contains child elements pertaining to the security identity of an EJB.
					

					
	
						<use-caller-identity />
					

					 	
						Indicates that the EJB uses the same security identity as the caller.
					

					
	
						<run-as>
					

					 	
						Contains a <role-name> element.
					

					
	
						<run-as-principal>
					

					 	
						If present, indicates the principal assigned to outgoing calls. If not present, outgoing calls are assigned to a principal named anonymous.
					

					
	
						<role-name>
					

					 	
						Specifies the role the EJB should run as.
					

					
	
						<description>
					

					 	
						Describes the role named in <role-name>
					

					 .

 ⁠Example 20.1. Security identity examples

			The example ejb-jar.xml file below shows each tag described in Table 20.1, “EJB security parameter elements”. They can also be used inside a <session>.
		
​
​<ejb-jar>
​ <enterprise-beans>
​ <session>
​ <ejb-name>ASessionBean</ejb-name>
​ <security-identity>
​ <use-caller-identity/>
​ </security-identity>
​ </session>
​ <session>
​ <ejb-name>RunAsBean</ejb-name>
​ <security-identity>
​ <run-as>
​ <description>A private internal role</description>
​ <role-name>InternalRole</role-name>
​ </run-as>
​ </security-identity>
​ </session>
​		 <session>
​			 <ejb-name>RunAsBean</ejb-name>
​			 <security-identity>
​				<run-as-principal>internal</run-as-principal>
​			 </security-identity>
​		 </session>
​ </enterprise-beans>
​</ejb-jar>

		The above parameters can also be included in the jboss-ejb3.xml file which is discussed in more detail in Section 8.8.4, “jboss-ejb3.xml Deployment Descriptor Reference”.
	

		Report a bug
	

 ⁠Chapter 21. Configuration References

 ⁠21.1. jboss-web.xml Configuration Reference

Introduction

			The jboss-web.xml and web.xml deployment descriptors are both placed in the deployment's WEB-INF directory. The jboss-web.xml is a web application deployment descriptor for JBoss EAP which contains additional configuration options for additional features of JBoss Web. This descriptor can be used to override the settings from web.xml descriptor and to set JBoss EAP specific settings.
		
Mapping Global Resources to WAR Requirements

			Many of the available settings map requirements set in the application's web.xml to local resources. The explanations of the web.xml settings can be found at http://docs.oracle.com/cd/E13222_01/wls/docs81/webapp/web_xml.html.
		

		For instance, if the web.xml requires jdbc/MyDataSource, the jboss-web.xml may map the global datasource java:/DefaultDS to fulfill this need. The WAR uses the global datasource to fill its need for jdbc/MyDataSource.
	

 ⁠Table 21.1. Common Top-Level Attributes of jboss-web.xml
	 Attribute 	 Description
	 servlet 	
						The servlet element specifies servlet specific bindings.
					

					
	 max-active-sessions 	
						Determines the max number of active sessions allowed. If the number of sessions managed by the session manager exceeds this value and passivation is enabled, the excess will be passivated based on the configured passivation-min-idle-time
					

					
						If set to -1, means no limit.
					

					
	 replication-config 	
						The replication-config element is used for configuring session replication in the jboss-web.xml file.
					

					
	 passivation-config 	
						The passivation-config element is used for configuring session passivation in the jboss-web.xml file.
					

					
	 distinct-name 	
						The distinct-name element specifies the EJB 3 distinct name for the web application.
					

					
	 data-source 	
						A mapping to a data-source required by the web.xml.
					

					
	 context-root 	 The root context of the application. The default value is the name of the deployment without the .war suffix.
	 virtual-host 	 The name of the HTTP virtual-host the application accepts requests from. It refers to the contents of the HTTP Host header.
	 annotation 	 Describes an annotation used by the application. Refer to <annotation> for more information.
	 listener 	 Describes a listener used by the application. Refer to <listener> for more information.
	 session-config 	 This element fills the same function as the <session-config> element of the web.xml and is included for compatibility only.
	 valve 	 Describes a valve used by the application. Refer to <valve> for more information.
	 overlay 	 The name of an overlay to add to the application.
	 security-domain 	 The name of the security domain used by the application. The security domain itself is configured in the web-based management console or the management CLI.
	 security-role 	 This element fills the same function as the <security-role> element of the web.xml and is included for compatibility only.
	 jacc-star-role-allow 	
						The jacc-star-role-allow element specifies whether the jacc permission generating agent in the web layer needs to generate a WebResourcePermission permission such that the jacc provider can make a decision as to bypass authorization or not.
					

					
	 use-jboss-authorization 	 If this element is present and contains the case insensitive value "true", the JBoss web authorization stack is used. If it is not present or contains any value that is not "true", then only the authorization mechanisms specified in the Java Enterprise Edition specifications are used. This element is new to JBoss EAP 6.
	 disable-audit 	 Set this boolean element to false to enable and true to disable web auditing. Web security auditing is not part of the Java EE specification. This element is new to JBoss EAP 6.
	 disable-cross-context 	 If false, the application is able to call another application context. Defaults to true.
	 enable-websockets 	 Set this element to true in jboss-web.xml to specify if websockets access should be enabled for the web application.

		The following elements each have child elements.
	

 ⁠
		<annotation>
	

		Describes an annotation used by the application. The following table lists the child elements of an <annotation>.
	

 ⁠Table 21.2. Annotation Configuration Elements
	 Attribute 	 Description
	 class-name 	
						Name of the class of the annotation
					

					
	 servlet-security 	
						The element, such as @ServletSecurity, which represents servlet security.
					

					
	 run-as 	
						The element, such as @RunAs, which represents the run-as information.
					

					
	 multipart-config 	
						The element, such as @MultiPart, which represents the multipart-config information.
					

					

 ⁠
		<listener>
	

		Describes a listener. The following table lists the child elements of a <listener>.
	

 ⁠Table 21.3. Listener Configuration Elements
	 Attribute 	 Description
	 class-name 	
						Name of the class of the listener
					

					
	 listener-type 	
						List of condition elements, which indicate what kind of listener to add to the Context of the application. Valid choices are:
					

					 	CONTAINER
	
									Adds a ContainerListener to the Context.
								

	LIFECYCLE
	
									Adds a LifecycleListener to the Context.
								

	SERVLET_INSTANCE
	
									Adds an InstanceListener to the Context.
								

	SERVLET_CONTAINER
	
									Adds a WrapperListener to the Context.
								

	SERVLET_LIFECYCLE
	
									Adds a WrapperLifecycle to the Context.
								

					
	 module 	
						The name of the module containing the listener class.
					

					
	 param 	
						A parameter. Contains two child elements, <param-name> and <param-value>.
					

					

 ⁠
		<valve>
	

		Describes a valve of the application. Similar to the <listener>, has class-name, module and param elements.
	

		Report a bug
	

 ⁠Chapter 22. Supplemental References

 ⁠22.1. Types of Java Archives

		JBoss EAP 6 recognizes several different types of archive files. Archive files are used to package deployable services and applications.
	

		In general, archive files are Zip archives, with specific file extensions and specific directory structures. If the Zip archive is extracted before being deployed on the application server, it is referred to as an exploded archive. In that case, the directory name still contains the file extension, and the directory structure requirements still apply.
	

 ⁠Table 22.1.
	 Archive Type 	 Extension 	 Purpose 	 Directory structure requirements
	 Java Archive 	 .jar 	 Contains Java class libraries. 	
						META-INF/MANIFEST.MF file (optional), which specifies information such as which class is the main class.
					

					
	 Web Archive 	 .war 	
						Contains Java Server Pages (JSP) files, servlets, and XML files, in addition to Java classes and libraries. The Web Archive's contents are also referred to as a Web Application.
					

					 	
						WEB-INF/web.xml file, which contains information about the structure of the web application. Other files may also be present in WEB-INF/.
					

					
	 Resource Adapter Archive 	 .rar 	
						The directory structure is specified by the JCA specification.
					

					 	
						Contains a Java Connector Architecture (JCA) resource adapter. Also called a connector.
					

					
	 Enterprise Archive 	 .ear 	
						Used by Java Enterprise Edition (EE) to package one or more modules into a single archive, so that the modules can be deployed onto the application server simultaneously. Maven and Ant are the most common tools used to build EAR archives.
					

					 	
						META-INF/ directory, which contains one or more XML deployment descriptor files.
					

					
	
							Any of the following types of modules.
						
	
								A Web Archive (WAR).
							

	
								One or more Java Archives (JARs) containing Plain Old Java Objects (POJOs).
							

	
								One or more Enterprise JavaBean (EJB) modules, containing its own META-INF/ directory. This directory includes descriptors for the persistent classes which are deployed.
							

	
								One or more Resource Archives (RARs).
							

					
	 Service Archive 	 .sar 	
						Similar to an Enterprise Archive, but specific to the JBoss EAP.
					

					 	
						META-INF/ directory containing jboss-service.xml or jboss-beans.xml file.
					

					

		Report a bug
	

 ⁠Appendix A. Revision History

			Revision History
	Revision 6.4.0-48	Thursday November 16 2017	Red Hat Customer Content Services
	
						 Red Hat JBoss Enterprise Application Platform 6.4.0.GA Continuous Release

				

	

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/documentation.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.woff2

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.woff2

OEBPS/Common_Content/images/26.png

OEBPS/Common_Content/fonts/overpass_light-web.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.woff

OEBPS/images/4715.png
Maven Repositories

Configure Maven Repositories

User settings: /home/usemame/.m2/settings.xml

™

Repositories

jposs-earlyaccess-plugin-repository-http://maven.repository.redhat.com/earlyaccess/all/

jboss-ga-repository-http://maven.repository.redhat.com/techpreview/all

(Reme]

‘ Remove Al ‘

| Add Repositry...|

[Edit Repository... |

Preview:

Old settings

New settings

17--><settings xmlns="http://maven.apache.or
18
15 <profiles>

20 </profiles>
21
22 <activeProfiles>

237 </activeProfiless
24

25 </settings>

26

Cancel

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.eot

OEBPS/Common_Content/fonts/overpass_regular-web.eot

OEBPS/images/4713.png
Add Maven Repository

Add Maven Repository E

Profile

Profile ID: [jho5s-ga-repository @|Active by default]

Repository

L2 ‘Jbuss*ga'repus\mry

Name: [j5os5-ga-repository

R ‘M’tp Iimaven.repository.redhat.com/techpreview/all

Recognize JBoss Maven Enterprise Repositories... |

@ Cancel. oK

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.woff

OEBPS/Common_Content/images/rhlogo.png
& RedHat

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.eot

OEBPS/Common_Content/scripts/css_conflicts.js
function fixCSSConflicts() {}

OEBPS/Common_Content/images/34.png

OEBPS/images/48.png
Add and Remove

Modify the resources that are configured on the server

Move resources to the right to configure them on the server
Available: Configured:

& payment-arrangments

Add >

< Remove

Add Al >>

emove All

If server is started, publish changes immediately

@ <sack | wex> |[cancel][Finish

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/5.png

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.woff

OEBPS/images/4709.png
Profile As >

Debug As R Search 3 OpenShift Explorer

Run iFEHALEHX R

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.woff2

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.woff2

OEBPS/images/47.png
File Edit Navigate Search Project Run Window He
| esv |~ ovav @y ov ||

mangments
Deployment Descriptor: payment-arrangments
[Entity Beans (Lx-2.x)
[Message-Driven Beans
[3 Session Beans
v 2 JAXWS Web Services
(& Service Endpoint Interfaces
& Web Services
~ @ ejbModule
~ @ METAINF
¥ ejb-jarxml
MANIFESTMF
b =i JRE System Library [java-1.6.0-openjdk-1.6.0.0.x8(

b =))Boss Enterprise Application Platform 6.x Runtime
=\ EAR Libraries
b ¢ build

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/37.png

OEBPS/images/6493.png
Import Maven Projects

Maven Projects

Select Maven projects

Root Directory: |/home/usemame jboss-eap-quickstarts/helloworld v | [srowse.. |
Projects

@ /pom.xml org.jboss.quickstarts.eapijboss-helloworld:6.4.0.G A:war | selectau |

| Deselect Al |

[setectree |

| Desetect ree |

| Refresh |

7 Add project(s) to working set

Working set: |][More. |

» Advanced

@ Gl oo | e

OEBPS/images/6585.png
New EJB Project

EJB Project

Create an EJB Project and add it to a new or existing Enterprise Application.

Project name: [\]
Project location

@ Use default location

Location: [/home/usemame/workspz(e

Target runtime

| JBoss EAP 6.1+ Runtime

EJB module version

131

Configuration

| Default Configuration for JBoss EAP 6.1+ Runtime v | Moty

A good starting point for working with JBoss EAP 6.1+ Runtime runtime. Additional
facets can later be installed to add new functionality to the project.

EAR membership

") Add project to an EAR

EAR project name: [EAR v \ [New Project.. \

Working sets

) Add project to working sets

Working sets: V][setect.. |

@ <Back H Next > H Cancel H Finish

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/scripts/menu.js
/* global window document labels lang_menu_2_div hljs */
var docs = (function(docs){
 /*
 * NOTE: The docs module will not work properly unless the init function is called, as the jQuery object is dynamically
 * loaded using requirejs.
 */
 var jQuery = window.jQuery;
 var listeners = [];
 var ready = false;

 // BEGIN UTIL FUNCTIONS
 docs.utils = (function() {
 var exports = {};

 exports.setCookie = function(name, value, expires, path, domain, secure) {
 document.cookie = name + "=" + value +
 ((expires) ? ";expires=" + expires.toGMTString() : "") +
 ((path) ? ";path=" + path : "");
 // +
 //		((domain) ? ";domain=" + domain : "") +
 //		((secure) ? ";secure" : "");
 };

 exports.isSafari = function() {
 return navigator.userAgent.indexOf("Safari") != -1 && navigator.userAgent.indexOf("Chrome") == -1;
 };

 exports.scrollToTarget = function() {
 if (jQuery(window.location.hash).length > 0) {
 jQuery('html, body').animate({ scrollTop: jQuery(window.location.hash).offset().top}, 1000);
 }
 };

 exports.getCurrentPageName = function() {
 return window.location.href.substr(window.location.href.lastIndexOf("/") + 1);
 };

 exports.escapeElementId = function(elem) {
 return elem.replace('&', '\\&');
 };

 return exports;
 }());
 // END UTIL FUNCTIONS

 // BEGIN TOC FUNCTIONS
 docs.toc = (function(utils) {
 var num_days = 7;
 var name_menu = window.location.hostname + '-publican-menu';

 function init() {
 // New toc
 var navigation = jQuery('#navigation');
 if (navigation.is(":visible")) {
 initNewToc(navigation);
 }

 // Old selectbox toc
 var docToc = jQuery(".doctoc");
 if (docToc.is(":visible")) {
 initOldToc(docToc);
 }
 }

 function initOldToc(docToc) {
 checkToc();
 docToc.load('index.html .toc:eq(0)', function () {
 loadDocNav();
 });
 utils.scrollToTarget();
 }

 function initNewToc(navigation) {
 navigation.load('index.html div > div.toc:eq(0), section > div.toc:eq(0)', function () {
 // Add the close button and bind the click event
 var tocButton = jQuery('<button class="menu-toggle"></button>');
 navigation.append(tocButton);
 tocButton.click(function (e) {
 toggleToc();
 });

 // Check the saved state and apply the toc styling
 styleToc();
 checkToc();

 // Safari has a bug in getBoundingClientRect that needs the page to be loaded to return valid info.
 if (utils.isSafari()) {
 jQuery(window).load(function () {
 styleToc();
 });
 }
 });

 jQuery(window).scroll(function (e) {
 styleToc();
 }).resize(function (e) {
 styleToc();
 });

 // Add a mechanism to handle the the main menu dropdowns.
 // TODO: This is hacky and a better way should be found to handle this.
 jQuery('.primary-nav a').on('click', function () {
 setTimeout(function () {
 styleToc();
 }, 600);
 });
 }

 function loadDocNav() {
 var topDocNav = getTopDocNav();
 var bottomDocNav = getBottomDocNav();

 updateDocNavItems(utils.getCurrentPageName(), topDocNav, bottomDocNav);

 var onChange = function () {
 var currentPage = utils.getCurrentPageName();
 var newSelection = jQuery(this).val();
 window.location = newSelection;
 if (newSelection.indexOf(currentPage) === 0) {
 updateDocNavItems(newSelection, getTopDocNav(), getBottomDocNav());
 }
 };
 topDocNav.change(onChange);
 bottomDocNav.change(onChange);
 }

 function updateDocNavItems(filename, topDocNav, bottomDocNav) {
 topDocNav.val(filename);
 bottomDocNav.val(filename);
 }

 function getTopDocNav() {
 return jQuery(".docnav.top").find(".pageSelect");
 }

 function getBottomDocNav() {
 return jQuery(".docnav.bottom").find("select");
 }

 function styleToc() {
 /* NOTE: We need to use an absolute position due to the portal adding content (ie outage messages), which then makes the toc overlap
 * that. There is a minor effect of some flickering, but it's minimal and currently the best situation since no events are fired by the
 * portal to say it's finished.
 */
 var nav = jQuery('#navigation');
 var navToc = nav.find('.toc');

 var main = jQuery('#legacy-portal');
 var main_rect = main[0].getBoundingClientRect();
 var main_height = main.height();
 var main_bottom = main_rect.bottom;
 var main_top = main_rect.top;

 var my_top = main.offset().top - jQuery('#main').offset().top + 5;
 var height = main_height - 5;
 var pos = "absolute";
 if (main_top <= 0) {
 my_top = 0;
 pos = "fixed";
 }

 if (navToc.is(':visible')) {
 if (pos === "fixed") {
 if (height > ((window.innerHeight || document.documentElement.clientHeight) - my_top)) {
 height = (window.innerHeight || document.documentElement.clientHeight) - my_top;
 }

 if (my_top + height > main_bottom) {
 height = main_bottom - my_top;
 }
 } else {
 if (height > ((window.innerHeight || document.documentElement.clientHeight) - main_top)) {
 height = (window.innerHeight || document.documentElement.clientHeight) - main_top - 5;
 }

 if (height > main_bottom) {
 height = main_bottom;
 }
 }

 nav.attr('style', 'top: ' + my_top + 'px !important; height: ' + height + 'px; position: ' + pos);
 navToc.attr('style', 'top: 0px !important; height: ' + height + 'px;');
 } else {
 nav.attr('style', 'top: ' + my_top + 'px !important; height: 0px; position: ' + pos);
 }
 }

 function checkToc() {
 if (document.cookie) {
 var cookies = document.cookie.split(/ *; */);
 for (var i = 0; i < cookies.length; i++) {
 var current_c = cookies[i].split("=");
 if (current_c[0] == name_menu) {
 var menu_status = current_c[1];
 if (menu_status == "closed") {
 hideToc();
 }
 break;
 }
 }
 }
 }

 function toggleToc() {
 if (jQuery("#navigation .toc").is(':visible')) {
 hideToc();
 } else {
 showToc();
 }
 }

 function hideToc() {
 var nav = jQuery("#navigation");
 nav.find("button").addClass("tocClosed");
 nav.find(".toc").hide();
 jQuery("#main").addClass('noLtoc');
 styleToc();

 var expDate = new Date();
 expDate.setDate(expDate.getDate() + num_days);
 utils.setCookie(name_menu, 'closed', expDate, '/', false, false);
 }

 function showToc() {
 var nav = jQuery("#navigation");
 nav.find("button").removeClass("tocClosed");
 nav.find(".toc").show();
 jQuery("#main").removeClass('noLtoc');
 styleToc();

 var expDate = new Date();
 expDate.setDate(expDate.getDate() + num_days);
 utils.setCookie(name_menu, 'open', expDate, '/', false, false);
 }

 return {
 init: init,
 toggleToc: toggleToc,
 getTopDocNav: getTopDocNav,
 getBottomDocNav: getBottomDocNav
 };
 }(docs.utils));
 // END TOC FUNCTIONS

 // BEGIN BREADCRUMB FUNCTIONS
 docs.breadcrumbs = (function(labels, utils) {
 var work = 1;

 function init(current_product, current_version, current_book) {
 var support_label = labels["trans_strings"]["Support"];
 var doc_label = labels["trans_strings"]["Product_Documentation"];

 // Create the very basic breadcrumb array
 var doc_array = [doc_label];
 var breadcrumbs = [
 [support_label, "/support/"],
 doc_array
];

 // Create the base breadcrumb, which will later be replaced with the extended version
 if (typeof current_product != "undefined" && current_product != '') {
 var prod_label = getProductLabel(current_product);
 var prod_array = [prod_label];
 breadcrumbs.push(prod_array);

 doc_array[1] = "../";

 if (typeof current_version != "undefined" && current_version != '') {
 var version_label = getVersionLabel(current_product, current_version);
 var version_array = [version_label];
 breadcrumbs.push(version_array);

 doc_array[1] = "../../";
 prod_array[1] = "../";

 if (typeof current_book != "undefined" && current_book != '') {
 doc_array[1] = "../../../../";
 prod_array[1] = "../../../";
 version_array[1] = "../../";

 var book_label = getBookLabel(current_product, current_version, current_book);
 breadcrumbs.push([book_label]);
 }
 }
 }

 window.breadcrumbs = breadcrumbs;
 }

 function getProductLabel(current_product) {
 if (current_product !== 'Products') {
 return labels[current_product]["label"];
 } else {
 return labels["trans_strings"]["Products"];
 }
 }

 function getVersionLabel(current_product, current_version) {
 if (current_version !== 'Versions') {
 return labels[current_product][current_version]["label"];
 } else {
 return labels["trans_strings"]["Versions"];
 }
 }

 function getBookLabel(current_product, current_version, current_book) {
 if (current_book !== 'Books') {
 return labels[current_product][current_version][current_book]["label"];
 } else {
 return labels["trans_strings"]["Books"];
 }
 }

 function loadMenus(toc_path, current_product, current_version, current_book) {
 var breadcrumbs = jQuery("#breadcrumbs");

 // Add a small timeout, to try to fix the items not loading
 setTimeout(function () {
 // We only care about fixing up the default breadcrumbs if we have a current product
 if (typeof current_product !== "undefined" && current_product != '') {
 // Build the new breadcrumbs html
 var html = jQuery(buildHTML(toc_path, current_product, current_version, current_book));

 // Remove the dummy Product Documentation text node
 var breadcrumbsDiv = breadcrumbs.get(0);
 while (breadcrumbsDiv.childNodes.length > 1) {
 breadcrumbsDiv.removeChild(breadcrumbsDiv.lastChild);
 }

 // Add the new breadcrumbs
 breadcrumbs.append(html);

 // Add a small timeout, to try to fix the items not loading
 // Load and add the hover menus
 loadMenu("product_menu", toc_path + "/products_menu.html");
 loadMenu("version_menu", toc_path + '/' + current_product + "/versions_menu.html");
 if (typeof current_version !== "undefined" && current_version != '') {
 loadMenu("book_menu", toc_path + '/' + current_product + '/' + current_version + '/' + "/books_menu.html");
 if (typeof current_book != "undefined" && current_book != '') {
 loadMenu("book_lang_menu", toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/lang_menu.html");
 loadMenu("book_format_menu", toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/format_menu.html", true);
 }
 }
 }

 // For splash pages the language menu is loaded in a global javascript variable
 if (typeof lang_menu_2_div != "undefined" && lang_menu_2_div != '') {
 breadcrumbs.append(lang_menu_2_div);
 bindMouseEvents(breadcrumbs, 'lang_menu_2', 'lang_menu_list');
 }

 bindMenuEvents(breadcrumbs, current_version, current_book);
 }, 500);
 }

 function buildHTML(toc_path, current_product, current_version, current_book) {
 // Get the labels
 var prod_label = getProductLabel(current_product);

 // Convert the default menu into something we can use
 var html = '' + labels["trans_strings"]["Product_Documentation"] + '';
 html += '<div id="product_menu"><div>' + prod_label + '</div></div>';
 if (typeof current_version !== "undefined" && current_version !== '') {
 var version_label = getVersionLabel(current_product, current_version);
 html += '<div id="version_menu"><div>' + version_label + '</div></div>';
 if (typeof current_book !== "undefined" && current_book !== '') {
 var book_label = getBookLabel(current_product, current_version, current_book);
 html += '<div id="book_menu"><div>' + book_label + '</div></div>';

 if (current_book !== 'Books') {
 html += '<div id="left-menu"><div id="book_format_menu"><div>' + labels["trans_strings"]["Formats"] + '</div></div>';
 html += '<div id="book_lang_menu"></div></div>';
 }
 }
 }
 return html;
 }

 // Setup the menu expand/retract listeners
 function bindMenuEvents(breadcrumbs, current_version, current_book) {
 bindMouseEvents(breadcrumbs, 'product_menu', 'product_menu_list');

 if (typeof current_version !== "undefined" && current_version !== '') {
 bindMouseEvents(breadcrumbs, 'version_menu', 'version_menu_list');

 if (typeof current_book !== "undefined" && current_book !== '') {
 bindMouseEvents(breadcrumbs, 'book_menu', 'book_menu_list');

 if (current_book !== 'Books') {
 bindMouseEvents(breadcrumbs, 'book_format_menu', 'book_format_menu_list');
 bindMouseEvents(breadcrumbs, 'book_lang_menu', 'book_lang_menu_list');
 }
 }
 }
 }

 function bindMouseEvents(parent_ele, id, menu_id) {
 var menu_ele = jQuery('#' + id, parent_ele);
 menu_ele.on('mouseout', function () {
 work = 1;
 retractMenu(menu_id);
 });
 menu_ele.on('mouseover', function () {
 work = 1;
 expandMenu(menu_id);
 });
 }

 function loadMenu(id, url, replace) {
 jQuery.get(url, function(data) {
 if (replace) {
 jQuery('#' + id).html(data);
 } else {
 jQuery('#' + id).append(data);
 }
 });
 }

 function expandMenu(id) {
 if (work) {
 work = 0;
 var entity = document.getElementById(id);
 if (entity) {
 var my_class = entity.className;
 var my_parent = entity.parentNode;
 if (my_class.indexOf("hidden") != -1) {
 entity.className = my_class.replace(/hidden/, "visible");
 my_parent.className = my_parent.className.replace(/collapsed/, "expanded");
 }
 }
 }
 }

 function retractMenu(id) {
 if (work) {
 work = 0;
 var entity = document.getElementById(id);
 if (entity) {
 var my_class = entity.className;
 var my_parent = entity.parentNode;
 if (my_class.indexOf("visible") != -1) {
 entity.className = my_class.replace(/visible/, "hidden");
 my_parent.className = my_parent.className.replace(/expanded/, "collapsed");
 }
 }
 }
 }

 return {
 init: init,
 loadMenus: loadMenus,
 expandMenu: expandMenu,
 retractMenu: retractMenu
 };
 }(window.labels, docs.utils));
 // END BREADCRUMBS FUNCTIONS

 // START ANALYTICS FUNCTIONS
 docs.analytics = (function() {
 function runAnalytics(ajq) {
 /*
 var pkBaseUrl = (('https:' == document.location.protocol) ? 'https://engstats.redhat.com/piwik/' : 'http://engstats.redhat.com/piwik/');
 var pkUrl = pkBaseUrl + 'piwik.js';
 ajq('body').append('<noscript><p></p></noscript>');
 require([pkUrl], function() {
 try {
 var piwikTracker = Piwik.getTracker(pkBaseUrl + 'piwik.php', 3);
 if (document.location.hostname == 'access.redhat.com') {
 piwikTracker.trackPageView();
 piwikTracker.enableLinkTracking();
 }
 } catch(err) {}
 });
 */
 }

 return {
 runAnalytics: runAnalytics
 };
 }());
 // END ANALYTICS FUNCTIONS

 // START SPLASH PAGE FUNCTIONS
 docs.splash_page = (function(utils) {
 function init() {
 jQuery(window).bind('hashchange', function () {
 if (window.location.hash === "") {
 // activate the default section
 } else {
 //Grab what is after the # from the url bar and remove the #
 var anchorid = window.location.hash.replace("#", "");
 var id = anchorid;
 if (anchorid.match("_")) {
 id = id.replace(/_.*/g, '');
 }
 activateElement2(id + '-selector');
 activateElement(id + '-categories');
 activateElement(id);
 if (anchorid.match("_")) {
 activateElement2(anchorid, 1);
 }
 }
 });
 jQuery(window).trigger('hashchange');
 }

 function _activateElement(ele) {
 ele.addClass('active');
 ele.removeClass('hidden');
 ele.siblings().addClass('hidden');
 ele.siblings().removeClass('active');
 }

 function activateElement(elem) {
 _activateElement(jQuery('#' + utils.escapeElementId(elem)));
 }

 function activateElement2(elem, focus) {
 var ele = jQuery('#' + utils.escapeElementId(elem));
 ele.addClass('active');
 ele.siblings().removeClass('active');
 if (focus) {
 jQuery('html,body').animate({scrollTop: ele.offset().top},'slow');
 }
 }

 function activateParentElement(elem) {
 _activateElement(jQuery('#' + utils.escapeElementId(elem)).parent());
 }

 function resetCategories(categ, vers, me) {
 categ = utils.escapeElementId(categ);
 vers = utils.escapeElementId(vers);
 jQuery('#' + categ).children().removeClass('active');
 jQuery(me).addClass('active');
 jQuery('#' +vers).children().removeClass('active');
 jQuery('#' +vers).children().removeClass('hidden');
 }

 return {
 init: init,
 activateElement: activateElement,
 activateElement2: activateElement2,
 activateParentElement: activateParentElement,
 resetCategories: resetCategories
 }
 }(docs.utils));
 // END SPLASH PAGE FUNCTIONS

 function _init(ajq) {
 // Update the JQuery reference, as jquery may only have been loaded during this call
 jQuery = ajq;

 // The docs module is now ready so fire an event
 fireReady();
 }

 function fireReady() {
 if (!ready) {
 ready = true;

 // Fire the ready event to any listeners
 for (var i = 0; i < listeners.length; i++) {
 listeners[i]();
 }
 }
 }

 docs.whenReady = function(callback) {
 if (ready) {
 callback();
 } else {
 listeners.push(callback);
 }
 };

 docs.isReady = function() {
 return ready;
 };

 docs.init = function(toc_path, current_product, current_version, current_book) {
 // Set the siteMapState variable so that the main tab is highlighted
 window.siteMapState = "products & services";

 // Build the core breadcrumbs window object
 docs.breadcrumbs.init(current_product, current_version, current_book);

 // Load the rest of the content when the chroming is ready
 chrometwo_require(['jquery', 'chrome_lib'], function (ajq, lib) {
 // Init the internals
 _init(ajq);

 // Initialise the table of contents
 docs.toc.init();

 // Enable highlighting
 if (typeof hljs !== "undefined") {
 ajq('pre[class*="language-"]').each(function (i, block) {
 hljs.highlightBlock(block);
 });
 }

 // Load the breadcrumbs menu items
 lib.whenBreadcrumbsReady(function() {
 docs.breadcrumbs.loadMenus(toc_path, current_product, current_version, current_book);
 });
 });
 };

 docs.init_splash_page = function() {
 chrometwo_require(['jquery'], function (ajq) {
 // Init the internals
 _init(ajq);

 // Export some functions to the window, since the templates use window based functions
 window.activateElement = docs.splash_page.activateElement;
 window.activateElement2 = docs.splash_page.activateElement2;
 window.activateParentElement = docs.splash_page.activateParentElement;
 window.resetCategories = docs.splash_page.resetCategories;

 // Initialise the splash page functionality
 docs.splash_page.init();
 });
 };

 // Export some functions to the window for legacy purposes
 window.initializeBreadcrumbs = docs.init;
 window.runAnalytics = docs.analytics.runAnalytics;

 // jQuery may already be available, if that's the case then fire the ready event
 if (typeof jQuery !== 'undefined') {
 fireReady();
 }

 return docs;
}({}));

OEBPS/Common_Content/fonts/overpass_regular-web.woff

OEBPS/images/6422.png
New Server

JBoss Runtime

JBoss Enterprise Application Platform (EAP) 6.1+

@ oy reanat

A JBoss Server runtime references a JBoss installation directory.
It can be used to set up classpaths for projects which depend on this runtime,
as well as by a "server” which will be able to start and stop instances of JBoss.

Name.

JBoss EAP 6.4 Runtime

Home Directory Download and install runtime.
/home/username/tools/jboss-eap-6.4| Browse...
Runtime JRE

© Execution Environment: | JavaSE-1.6 M Environments...

) Alternate JRE: jdk1.7.0_71 Installed JREs..

Configuration base directory: |standalone Browse...

Configuration file: | standalone.xml Browse...

@ <Back Next > Cancel

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/fonts/overpass_light-web.ttf

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.woff2

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.woff2

OEBPS/Common_Content/images/17.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.eot

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/images/6424.png
4 Servers X B Console [2! Problems [Properties " Search G OpenShift Explorer

B %

#1 £, JBoss Enterprise Application Platform 6.4 [Stopped]

OEBPS/images/6423.png
New Server
Define a New Server

Choose the type of server to create

Select the server type:

[type flter text

Download additional server adapters
= & Red Hat JBoss Middleware

4] JBoss Enterprise Application Platform 4.3

4] JBoss Enterprise Application Platform 5.x
4] JBoss Enterprise Application Platform 6.0

¥ JBoss Enterprise Application Platform 6.1+

JBoss Enterprise Application Platform (EAP) 6.1+

Server's host name:

‘I
localhost
Server name:

JBoss Enterprise Application Platform 6.4]

P

Finish |

OEBPS/images/32.png
O select file from Workspace
® Select XML Catalog entry
XML Catalog

Key

[S) http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
[S) http://java.sun.com/xml/ns/persistence/orm_2_0.xsd
[S) http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

[5) http://java.sun.com/xmi/ns/portlet/portlet-app_1_0.xsd

Finish.

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.eot

OEBPS/Common_Content/scripts/jquery-1.7.1.min.js
/*! jQuery v1.7.1 jquery.com | jquery.org/license */
(function(a,b){function cy(a){return f.isWindow(a)?a:a.nodeType===9?a.defaultView||a.parentWindow:!1}function cv(a){if(!ck[a]){var b=c.body,d=f("<"+a+">").appendTo(b),e=d.css("display");d.remove();if(e==="none"||e===""){cl||(cl=c.createElement("iframe"),cl.frameBorder=cl.width=cl.height=0),b.appendChild(cl);if(!cm||!cl.createElement)cm=(cl.contentWindow||cl.contentDocument).document,cm.write((c.compatMode==="CSS1Compat"?"<!doctype html>":"")+"<html><body>"),cm.close();d=cm.createElement(a),cm.body.appendChild(d),e=f.css(d,"display"),b.removeChild(cl)}ck[a]=e}return ck[a]}function cu(a,b){var c={};f.each(cq.concat.apply([],cq.slice(0,b)),function(){c[this]=a});return c}function ct(){cr=b}function cs(){setTimeout(ct,0);return cr=f.now()}function cj(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}function ci(){try{return new a.XMLHttpRequest}catch(b){}}function cc(a,c){a.dataFilter&&(c=a.dataFilter(c,a.dataType));var d=a.dataTypes,e={},g,h,i=d.length,j,k=d[0],l,m,n,o,p;for(g=1;g<i;g++){if(g===1)for(h in a.converters)typeof h=="string"&&(e[h.toLowerCase()]=a.converters[h]);l=k,k=d[g];if(k==="*")k=l;else if(l!=="*"&&l!==k){m=l+" "+k,n=e[m]||e["* "+k];if(!n){p=b;for(o in e){j=o.split(" ");if(j[0]===l||j[0]==="*"){p=e[j[1]+" "+k];if(p){o=e[o],o===!0?n=p:p===!0&&(n=o);break}}}}!n&&!p&&f.error("No conversion from "+m.replace(" "," to ")),n!==!0&&(c=n?n(c):p(o(c)))}}return c}function cb(a,c,d){var e=a.contents,f=a.dataTypes,g=a.responseFields,h,i,j,k;for(i in g)i in d&&(c[g[i]]=d[i]);while(f[0]==="*")f.shift(),h===b&&(h=a.mimeType||c.getResponseHeader("content-type"));if(h)for(i in e)if(e[i]&&e[i].test(h)){f.unshift(i);break}if(f[0]in d)j=f[0];else{for(i in d){if(!f[0]||a.converters[i+" "+f[0]]){j=i;break}k||(k=i)}j=j||k}if(j){j!==f[0]&&f.unshift(j);return d[j]}}function ca(a,b,c,d){if(f.isArray(b))f.each(b,function(b,e){c||bE.test(a)?d(a,e):ca(a+"["+(typeof e=="object"||f.isArray(e)?b:"")+"]",e,c,d)});else if(!c&&b!=null&&typeof b=="object")for(var e in b)ca(a+"["+e+"]",b[e],c,d);else d(a,b)}function b_(a,c){var d,e,g=f.ajaxSettings.flatOptions||{};for(d in c)c[d]!==b&&((g[d]?a:e||(e={}))[d]=c[d]);e&&f.extend(!0,a,e)}function b$(a,c,d,e,f,g){f=f||c.dataTypes[0],g=g||{},g[f]=!0;var h=a[f],i=0,j=h?h.length:0,k=a===bT,l;for(;i<j&&(k||!l);i++)l=h[i](c,d,e),typeof l=="string"&&(!k||g[l]?l=b:(c.dataTypes.unshift(l),l=b$(a,c,d,e,l,g)));(k||!l)&&!g["*"]&&(l=b$(a,c,d,e,"*",g));return l}function bZ(a){return function(b,c){typeof b!="string"&&(c=b,b="*");if(f.isFunction(c)){var d=b.toLowerCase().split(bP),e=0,g=d.length,h,i,j;for(;e<g;e++)h=d[e],j=/^\+/.test(h),j&&(h=h.substr(1)||"*"),i=a[h]=a[h]||[],i[j?"unshift":"push"](c)}}}function bC(a,b,c){var d=b==="width"?a.offsetWidth:a.offsetHeight,e=b==="width"?bx:by,g=0,h=e.length;if(d>0){if(c!=="border")for(;g<h;g++)c||(d-=parseFloat(f.css(a,"padding"+e[g]))||0),c==="margin"?d+=parseFloat(f.css(a,c+e[g]))||0:d-=parseFloat(f.css(a,"border"+e[g]+"Width"))||0;return d+"px"}d=bz(a,b,b);if(d<0||d==null)d=a.style[b]||0;d=parseFloat(d)||0;if(c)for(;g<h;g++)d+=parseFloat(f.css(a,"padding"+e[g]))||0,c!=="padding"&&(d+=parseFloat(f.css(a,"border"+e[g]+"Width"))||0),c==="margin"&&(d+=parseFloat(f.css(a,c+e[g]))||0);return d+"px"}function bp(a,b){b.src?f.ajax({url:b.src,async:!1,dataType:"script"}):f.globalEval((b.text||b.textContent||b.innerHTML||"").replace(bf,"/*$0*/")),b.parentNode&&b.parentNode.removeChild(b)}function bo(a){var b=c.createElement("div");bh.appendChild(b),b.innerHTML=a.outerHTML;return b.firstChild}function bn(a){var b=(a.nodeName||"").toLowerCase();b==="input"?bm(a):b!=="script"&&typeof a.getElementsByTagName!="undefined"&&f.grep(a.getElementsByTagName("input"),bm)}function bm(a){if(a.type==="checkbox"||a.type==="radio")a.defaultChecked=a.checked}function bl(a){return typeof a.getElementsByTagName!="undefined"?a.getElementsByTagName("*"):typeof a.querySelectorAll!="undefined"?a.querySelectorAll("*"):[]}function bk(a,b){var c;if(b.nodeType===1){b.clearAttributes&&b.clearAttributes(),b.mergeAttributes&&b.mergeAttributes(a),c=b.nodeName.toLowerCase();if(c==="object")b.outerHTML=a.outerHTML;else if(c!=="input"||a.type!=="checkbox"&&a.type!=="radio"){if(c==="option")b.selected=a.defaultSelected;else if(c==="input"||c==="textarea")b.defaultValue=a.defaultValue}else a.checked&&(b.defaultChecked=b.checked=a.checked),b.value!==a.value&&(b.value=a.value);b.removeAttribute(f.expando)}}function bj(a,b){if(b.nodeType===1&&!!f.hasData(a)){var c,d,e,g=f._data(a),h=f._data(b,g),i=g.events;if(i){delete h.handle,h.events={};for(c in i)for(d=0,e=i[c].length;d<e;d++)f.event.add(b,c+(i[c][d].namespace?".":"")+i[c][d].namespace,i[c][d],i[c][d].data)}h.data&&(h.data=f.extend({},h.data))}}function bi(a,b){return f.nodeName(a,"table")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function U(a){var b=V.split("|"),c=a.createDocumentFragment();if(c.createElement)while(b.length)c.createElement(b.pop());return c}function T(a,b,c){b=b||0;if(f.isFunction(b))return f.grep(a,function(a,d){var e=!!b.call(a,d,a);return e===c});if(b.nodeType)return f.grep(a,function(a,d){return a===b===c});if(typeof b=="string"){var d=f.grep(a,function(a){return a.nodeType===1});if(O.test(b))return f.filter(b,d,!c);b=f.filter(b,d)}return f.grep(a,function(a,d){return f.inArray(a,b)>=0===c})}function S(a){return!a||!a.parentNode||a.parentNode.nodeType===11}function K(){return!0}function J(){return!1}function n(a,b,c){var d=b+"defer",e=b+"queue",g=b+"mark",h=f._data(a,d);h&&(c==="queue"||!f._data(a,e))&&(c==="mark"||!f._data(a,g))&&setTimeout(function(){!f._data(a,e)&&!f._data(a,g)&&(f.removeData(a,d,!0),h.fire())},0)}function m(a){for(var b in a){if(b==="data"&&f.isEmptyObject(a[b]))continue;if(b!=="toJSON")return!1}return!0}function l(a,c,d){if(d===b&&a.nodeType===1){var e="data-"+c.replace(k,"-$1").toLowerCase();d=a.getAttribute(e);if(typeof d=="string"){try{d=d==="true"?!0:d==="false"?!1:d==="null"?null:f.isNumeric(d)?parseFloat(d):j.test(d)?f.parseJSON(d):d}catch(g){}f.data(a,c,d)}else d=b}return d}function h(a){var b=g[a]={},c,d;a=a.split(/\s+/);for(c=0,d=a.length;c<d;c++)b[a[c]]=!0;return b}var c=a.document,d=a.navigator,e=a.location,f=function(){function J(){if(!e.isReady){try{c.documentElement.doScroll("left")}catch(a){setTimeout(J,1);return}e.ready()}}var e=function(a,b){return new e.fn.init(a,b,h)},f=a.jQuery,g=a.$,h,i=/^(?:[^#<]*(<[\w\W]+>)[^>]*$|#([\w\-]*)$)/,j=/\S/,k=/^\s+/,l=/\s+$/,m=/^<(\w+)\s*\/?>(?:<\/\1>)?$/,n=/^[\],:{}\s]*$/,o=/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g,p=/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g,q=/(?:^|:|,)(?:\s*\[)+/g,r=/(webkit)[\/]([\w.]+)/,s=/(opera)(?:.*version)?[\/]([\w.]+)/,t=/(msie) ([\w.]+)/,u=/(mozilla)(?:.*? rv:([\w.]+))?/,v=/-([a-z]|[0-9])/ig,w=/^-ms-/,x=function(a,b){return(b+"").toUpperCase()},y=d.userAgent,z,A,B,C=Object.prototype.toString,D=Object.prototype.hasOwnProperty,E=Array.prototype.push,F=Array.prototype.slice,G=String.prototype.trim,H=Array.prototype.indexOf,I={};e.fn=e.prototype={constructor:e,init:function(a,d,f){var g,h,j,k;if(!a)return this;if(a.nodeType){this.context=this[0]=a,this.length=1;return this}if(a==="body"&&!d&&c.body){this.context=c,this[0]=c.body,this.selector=a,this.length=1;return this}if(typeof a=="string"){a.charAt(0)!=="<"||a.charAt(a.length-1)!==">"||a.length<3?g=i.exec(a):g=[null,a,null];if(g&&(g[1]||!d)){if(g[1]){d=d instanceof e?d[0]:d,k=d?d.ownerDocument||d:c,j=m.exec(a),j?e.isPlainObject(d)?(a=[c.createElement(j[1])],e.fn.attr.call(a,d,!0)):a=[k.createElement(j[1])]:(j=e.buildFragment([g[1]],[k]),a=(j.cacheable?e.clone(j.fragment):j.fragment).childNodes);return e.merge(this,a)}h=c.getElementById(g[2]);if(h&&h.parentNode){if(h.id!==g[2])return f.find(a);this.length=1,this[0]=h}this.context=c,this.selector=a;return this}return!d||d.jquery?(d||f).find(a):this.constructor(d).find(a)}if(e.isFunction(a))return f.ready(a);a.selector!==b&&(this.selector=a.selector,this.context=a.context);return e.makeArray(a,this)},selector:"",jquery:"1.7.1",length:0,size:function(){return this.length},toArray:function(){return F.call(this,0)},get:function(a){return a==null?this.toArray():a<0?this[this.length+a]:this[a]},pushStack:function(a,b,c){var d=this.constructor();e.isArray(a)?E.apply(d,a):e.merge(d,a),d.prevObject=this,d.context=this.context,b==="find"?d.selector=this.selector+(this.selector?" ":"")+c:b&&(d.selector=this.selector+"."+b+"("+c+")");return d},each:function(a,b){return e.each(this,a,b)},ready:function(a){e.bindReady(),A.add(a);return this},eq:function(a){a=+a;return a===-1?this.slice(a):this.slice(a,a+1)},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},slice:function(){return this.pushStack(F.apply(this,arguments),"slice",F.call(arguments).join(","))},map:function(a){return this.pushStack(e.map(this,function(b,c){return a.call(b,c,b)}))},end:function(){return this.prevObject||this.constructor(null)},push:E,sort:[].sort,splice:[].splice},e.fn.init.prototype=e.fn,e.extend=e.fn.extend=function(){var a,c,d,f,g,h,i=arguments[0]||{},j=1,k=arguments.length,l=!1;typeof i=="boolean"&&(l=i,i=arguments[1]||{},j=2),typeof i!="object"&&!e.isFunction(i)&&(i={}),k===j&&(i=this,--j);for(;j<k;j++)if((a=arguments[j])!=null)for(c in a){d=i[c],f=a[c];if(i===f)continue;l&&f&&(e.isPlainObject(f)||(g=e.isArray(f)))?(g?(g=!1,h=d&&e.isArray(d)?d:[]):h=d&&e.isPlainObject(d)?d:{},i[c]=e.extend(l,h,f)):f!==b&&(i[c]=f)}return i},e.extend({noConflict:function(b){a.$===e&&(a.$=g),b&&a.jQuery===e&&(a.jQuery=f);return e},isReady:!1,readyWait:1,holdReady:function(a){a?e.readyWait++:e.ready(!0)},ready:function(a){if(a===!0&&!--e.readyWait||a!==!0&&!e.isReady){if(!c.body)return setTimeout(e.ready,1);e.isReady=!0;if(a!==!0&&--e.readyWait>0)return;A.fireWith(c,[e]),e.fn.trigger&&e(c).trigger("ready").off("ready")}},bindReady:function(){if(!A){A=e.Callbacks("once memory");if(c.readyState==="complete")return setTimeout(e.ready,1);if(c.addEventListener)c.addEventListener("DOMContentLoaded",B,!1),a.addEventListener("load",e.ready,!1);else if(c.attachEvent){c.attachEvent("onreadystatechange",B),a.attachEvent("onload",e.ready);var b=!1;try{b=a.frameElement==null}catch(d){}c.documentElement.doScroll&&b&&J()}}},isFunction:function(a){return e.type(a)==="function"},isArray:Array.isArray||function(a){return e.type(a)==="array"},isWindow:function(a){return a&&typeof a=="object"&&"setInterval"in a},isNumeric:function(a){return!isNaN(parseFloat(a))&&isFinite(a)},type:function(a){return a==null?String(a):I[C.call(a)]||"object"},isPlainObject:function(a){if(!a||e.type(a)!=="object"||a.nodeType||e.isWindow(a))return!1;try{if(a.constructor&&!D.call(a,"constructor")&&!D.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}var d;for(d in a);return d===b||D.call(a,d)},isEmptyObject:function(a){for(var b in a)return!1;return!0},error:function(a){throw new Error(a)},parseJSON:function(b){if(typeof b!="string"||!b)return null;b=e.trim(b);if(a.JSON&&a.JSON.parse)return a.JSON.parse(b);if(n.test(b.replace(o,"@").replace(p,"]").replace(q,"")))return(new Function("return "+b))();e.error("Invalid JSON: "+b)},parseXML:function(c){var d,f;try{a.DOMParser?(f=new DOMParser,d=f.parseFromString(c,"text/xml")):(d=new ActiveXObject("Microsoft.XMLDOM"),d.async="false",d.loadXML(c))}catch(g){d=b}(!d||!d.documentElement||d.getElementsByTagName("parsererror").length)&&e.error("Invalid XML: "+c);return d},noop:function(){},globalEval:function(b){b&&j.test(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(w,"ms-").replace(v,x)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toUpperCase()===b.toUpperCase()},each:function(a,c,d){var f,g=0,h=a.length,i=h===b||e.isFunction(a);if(d){if(i){for(f in a)if(c.apply(a[f],d)===!1)break}else for(;g<h;)if(c.apply(a[g++],d)===!1)break}else if(i){for(f in a)if(c.call(a[f],f,a[f])===!1)break}else for(;g<h;)if(c.call(a[g],g,a[g++])===!1)break;return a},trim:G?function(a){return a==null?"":G.call(a)}:function(a){return a==null?"":(a+"").replace(k,"").replace(l,"")},makeArray:function(a,b){var c=b||[];if(a!=null){var d=e.type(a);a.length==null||d==="string"||d==="function"||d==="regexp"||e.isWindow(a)?E.call(c,a):e.merge(c,a)}return c},inArray:function(a,b,c){var d;if(b){if(H)return H.call(b,a,c);d=b.length,c=c?c<0?Math.max(0,d+c):c:0;for(;c<d;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,c){var d=a.length,e=0;if(typeof c.length=="number")for(var f=c.length;e<f;e++)a[d++]=c[e];else while(c[e]!==b)a[d++]=c[e++];a.length=d;return a},grep:function(a,b,c){var d=[],e;c=!!c;for(var f=0,g=a.length;f<g;f++)e=!!b(a[f],f),c!==e&&d.push(a[f]);return d},map:function(a,c,d){var f,g,h=[],i=0,j=a.length,k=a instanceof e||j!==b&&typeof j=="number"&&(j>0&&a[0]&&a[j-1]||j===0||e.isArray(a));if(k)for(;i<j;i++)f=c(a[i],i,d),f!=null&&(h[h.length]=f);else for(g in a)f=c(a[g],g,d),f!=null&&(h[h.length]=f);return h.concat.apply([],h)},guid:1,proxy:function(a,c){if(typeof c=="string"){var d=a[c];c=a,a=d}if(!e.isFunction(a))return b;var f=F.call(arguments,2),g=function(){return a.apply(c,f.concat(F.call(arguments)))};g.guid=a.guid=a.guid||g.guid||e.guid++;return g},access:function(a,c,d,f,g,h){var i=a.length;if(typeof c=="object"){for(var j in c)e.access(a,j,c[j],f,g,d);return a}if(d!==b){f=!h&&f&&e.isFunction(d);for(var k=0;k<i;k++)g(a[k],c,f?d.call(a[k],k,g(a[k],c)):d,h);return a}return i?g(a[0],c):b},now:function(){return(new Date).getTime()},uaMatch:function(a){a=a.toLowerCase();var b=r.exec(a)||s.exec(a)||t.exec(a)||a.indexOf("compatible")<0&&u.exec(a)||[];return{browser:b[1]||"",version:b[2]||"0"}},sub:function(){function a(b,c){return new a.fn.init(b,c)}e.extend(!0,a,this),a.superclass=this,a.fn=a.prototype=this(),a.fn.constructor=a,a.sub=this.sub,a.fn.init=function(d,f){f&&f instanceof e&&!(f instanceof a)&&(f=a(f));return e.fn.init.call(this,d,f,b)},a.fn.init.prototype=a.fn;var b=a(c);return a},browser:{}}),e.each("Boolean Number String Function Array Date RegExp Object".split(" "),function(a,b){I["[object "+b+"]"]=b.toLowerCase()}),z=e.uaMatch(y),z.browser&&(e.browser[z.browser]=!0,e.browser.version=z.version),e.browser.webkit&&(e.browser.safari=!0),j.test(" ")&&(k=/^[\s\xA0]+/,l=/[\s\xA0]+$/),h=e(c),c.addEventListener?B=function(){c.removeEventListener("DOMContentLoaded",B,!1),e.ready()}:c.attachEvent&&(B=function(){c.readyState==="complete"&&(c.detachEvent("onreadystatechange",B),e.ready())});return e}(),g={};f.Callbacks=function(a){a=a?g[a]||h(a):{};var c=[],d=[],e,i,j,k,l,m=function(b){var d,e,g,h,i;for(d=0,e=b.length;d<e;d++)g=b[d],h=f.type(g),h==="array"?m(g):h==="function"&&(!a.unique||!o.has(g))&&c.push(g)},n=function(b,f){f=f||[],e=!a.memory||[b,f],i=!0,l=j||0,j=0,k=c.length;for(;c&&l<k;l++)if(c[l].apply(b,f)===!1&&a.stopOnFalse){e=!0;break}i=!1,c&&(a.once?e===!0?o.disable():c=[]:d&&d.length&&(e=d.shift(),o.fireWith(e[0],e[1])))},o={add:function(){if(c){var a=c.length;m(arguments),i?k=c.length:e&&e!==!0&&(j=a,n(e[0],e[1]))}return this},remove:function(){if(c){var b=arguments,d=0,e=b.length;for(;d<e;d++)for(var f=0;f<c.length;f++)if(b[d]===c[f]){i&&f<=k&&(k--,f<=l&&l--),c.splice(f--,1);if(a.unique)break}}return this},has:function(a){if(c){var b=0,d=c.length;for(;b<d;b++)if(a===c[b])return!0}return!1},empty:function(){c=[];return this},disable:function(){c=d=e=b;return this},disabled:function(){return!c},lock:function(){d=b,(!e||e===!0)&&o.disable();return this},locked:function(){return!d},fireWith:function(b,c){d&&(i?a.once||d.push([b,c]):(!a.once||!e)&&n(b,c));return this},fire:function(){o.fireWith(this,arguments);return this},fired:function(){return!!e}};return o};var i=[].slice;f.extend({Deferred:function(a){var b=f.Callbacks("once memory"),c=f.Callbacks("once memory"),d=f.Callbacks("memory"),e="pending",g={resolve:b,reject:c,notify:d},h={done:b.add,fail:c.add,progress:d.add,state:function(){return e},isResolved:b.fired,isRejected:c.fired,then:function(a,b,c){i.done(a).fail(b).progress(c);return this},always:function(){i.done.apply(i,arguments).fail.apply(i,arguments);return this},pipe:function(a,b,c){return f.Deferred(function(d){f.each({done:[a,"resolve"],fail:[b,"reject"],progress:[c,"notify"]},function(a,b){var c=b[0],e=b[1],g;f.isFunction(c)?i[a](function(){g=c.apply(this,arguments),g&&f.isFunction(g.promise)?g.promise().then(d.resolve,d.reject,d.notify):d[e+"With"](this===i?d:this,[g])}):i[a](d[e])})}).promise()},promise:function(a){if(a==null)a=h;else for(var b in h)a[b]=h[b];return a}},i=h.promise({}),j;for(j in g)i[j]=g[j].fire,i[j+"With"]=g[j].fireWith;i.done(function(){e="resolved"},c.disable,d.lock).fail(function(){e="rejected"},b.disable,d.lock),a&&a.call(i,i);return i},when:function(a){function m(a){return function(b){e[a]=arguments.length>1?i.call(arguments,0):b,j.notifyWith(k,e)}}function l(a){return function(c){b[a]=arguments.length>1?i.call(arguments,0):c,--g||j.resolveWith(j,b)}}var b=i.call(arguments,0),c=0,d=b.length,e=Array(d),g=d,h=d,j=d<=1&&a&&f.isFunction(a.promise)?a:f.Deferred(),k=j.promise();if(d>1){for(;c<d;c++)b[c]&&b[c].promise&&f.isFunction(b[c].promise)?b[c].promise().then(l(c),j.reject,m(c)):--g;g||j.resolveWith(j,b)}else j!==a&&j.resolveWith(j,d?[a]:[]);return k}}),f.support=function(){var b,d,e,g,h,i,j,k,l,m,n,o,p,q=c.createElement("div"),r=c.documentElement;q.setAttribute("className","t"),q.innerHTML=" <link/><table></table>a<input type='checkbox'/>",d=q.getElementsByTagName("*"),e=q.getElementsByTagName("a")[0];if(!d||!d.length||!e)return{};g=c.createElement("select"),h=g.appendChild(c.createElement("option")),i=q.getElementsByTagName("input")[0],b={leadingWhitespace:q.firstChild.nodeType===3,tbody:!q.getElementsByTagName("tbody").length,htmlSerialize:!!q.getElementsByTagName("link").length,style:/top/.test(e.getAttribute("style")),hrefNormalized:e.getAttribute("href")==="/a",opacity:/^0.55/.test(e.style.opacity),cssFloat:!!e.style.cssFloat,checkOn:i.value==="on",optSelected:h.selected,getSetAttribute:q.className!=="t",enctype:!!c.createElement("form").enctype,html5Clone:c.createElement("nav").cloneNode(!0).outerHTML!=="<:nav></:nav>",submitBubbles:!0,changeBubbles:!0,focusinBubbles:!1,deleteExpando:!0,noCloneEvent:!0,inlineBlockNeedsLayout:!1,shrinkWrapBlocks:!1,reliableMarginRight:!0},i.checked=!0,b.noCloneChecked=i.cloneNode(!0).checked,g.disabled=!0,b.optDisabled=!h.disabled;try{delete q.test}catch(s){b.deleteExpando=!1}!q.addEventListener&&q.attachEvent&&q.fireEvent&&(q.attachEvent("onclick",function(){b.noCloneEvent=!1}),q.cloneNode(!0).fireEvent("onclick")),i=c.createElement("input"),i.value="t",i.setAttribute("type","radio"),b.radioValue=i.value==="t",i.setAttribute("checked","checked"),q.appendChild(i),k=c.createDocumentFragment(),k.appendChild(q.lastChild),b.checkClone=k.cloneNode(!0).cloneNode(!0).lastChild.checked,b.appendChecked=i.checked,k.removeChild(i),k.appendChild(q),q.innerHTML="",a.getComputedStyle&&(j=c.createElement("div"),j.style.width="0",j.style.marginRight="0",q.style.width="2px",q.appendChild(j),b.reliableMarginRight=(parseInt((a.getComputedStyle(j,null)||{marginRight:0}).marginRight,10)||0)===0);if(q.attachEvent)for(o in{submit:1,change:1,focusin:1})n="on"+o,p=n in q,p||(q.setAttribute(n,"return;"),p=typeof q[n]=="function"),b[o+"Bubbles"]=p;k.removeChild(q),k=g=h=j=q=i=null,f(function(){var a,d,e,g,h,i,j,k,m,n,o,r=c.getElementsByTagName("body")[0];!r||(j=1,k="position:absolute;top:0;left:0;width:1px;height:1px;margin:0;",m="visibility:hidden;border:0;",n="style='"+k+"border:5px solid #000;padding:0;'",o="<div "+n+"><div></div></div>"+"<table "+n+" cellpadding='0' cellspacing='0'>"+"<tr><td></td></tr></table>",a=c.createElement("div"),a.style.cssText=m+"width:0;height:0;position:static;top:0;margin-top:"+j+"px",r.insertBefore(a,r.firstChild),q=c.createElement("div"),a.appendChild(q),q.innerHTML="<table><tr><td style='padding:0;border:0;display:none'></td><td>t</td></tr></table>",l=q.getElementsByTagName("td"),p=l[0].offsetHeight===0,l[0].style.display="",l[1].style.display="none",b.reliableHiddenOffsets=p&&l[0].offsetHeight===0,q.innerHTML="",q.style.width=q.style.paddingLeft="1px",f.boxModel=b.boxModel=q.offsetWidth===2,typeof q.style.zoom!="undefined"&&(q.style.display="inline",q.style.zoom=1,b.inlineBlockNeedsLayout=q.offsetWidth===2,q.style.display="",q.innerHTML="<div style='width:4px;'></div>",b.shrinkWrapBlocks=q.offsetWidth!==2),q.style.cssText=k+m,q.innerHTML=o,d=q.firstChild,e=d.firstChild,h=d.nextSibling.firstChild.firstChild,i={doesNotAddBorder:e.offsetTop!==5,doesAddBorderForTableAndCells:h.offsetTop===5},e.style.position="fixed",e.style.top="20px",i.fixedPosition=e.offsetTop===20||e.offsetTop===15,e.style.position=e.style.top="",d.style.overflow="hidden",d.style.position="relative",i.subtractsBorderForOverflowNotVisible=e.offsetTop===-5,i.doesNotIncludeMarginInBodyOffset=r.offsetTop!==j,r.removeChild(a),q=a=null,f.extend(b,i))});return b}();var j=/^(?:\{.*\}|\[.*\])$/,k=/([A-Z])/g;f.extend({cache:{},uuid:0,expando:"jQuery"+(f.fn.jquery+Math.random()).replace(/\D/g,""),noData:{embed:!0,object:"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000",applet:!0},hasData:function(a){a=a.nodeType?f.cache[a[f.expando]]:a[f.expando];return!!a&&!m(a)},data:function(a,c,d,e){if(!!f.acceptData(a)){var g,h,i,j=f.expando,k=typeof c=="string",l=a.nodeType,m=l?f.cache:a,n=l?a[j]:a[j]&&j,o=c==="events";if((!n||!m[n]||!o&&!e&&!m[n].data)&&k&&d===b)return;n||(l?a[j]=n=++f.uuid:n=j),m[n]||(m[n]={},l||(m[n].toJSON=f.noop));if(typeof c=="object"||typeof c=="function")e?m[n]=f.extend(m[n],c):m[n].data=f.extend(m[n].data,c);g=h=m[n],e||(h.data||(h.data={}),h=h.data),d!==b&&(h[f.camelCase(c)]=d);if(o&&!h[c])return g.events;k?(i=h[c],i==null&&(i=h[f.camelCase(c)])):i=h;return i}},removeData:function(a,b,c){if(!!f.acceptData(a)){var d,e,g,h=f.expando,i=a.nodeType,j=i?f.cache:a,k=i?a[h]:h;if(!j[k])return;if(b){d=c?j[k]:j[k].data;if(d){f.isArray(b)||(b in d?b=[b]:(b=f.camelCase(b),b in d?b=[b]:b=b.split(" ")));for(e=0,g=b.length;e<g;e++)delete d[b[e]];if(!(c?m:f.isEmptyObject)(d))return}}if(!c){delete j[k].data;if(!m(j[k]))return}f.support.deleteExpando||!j.setInterval?delete j[k]:j[k]=null,i&&(f.support.deleteExpando?delete a[h]:a.removeAttribute?a.removeAttribute(h):a[h]=null)}},_data:function(a,b,c){return f.data(a,b,c,!0)},acceptData:function(a){if(a.nodeName){var b=f.noData[a.nodeName.toLowerCase()];if(b)return b!==!0&&a.getAttribute("classid")===b}return!0}}),f.fn.extend({data:function(a,c){var d,e,g,h=null;if(typeof a=="undefined"){if(this.length){h=f.data(this[0]);if(this[0].nodeType===1&&!f._data(this[0],"parsedAttrs")){e=this[0].attributes;for(var i=0,j=e.length;i<j;i++)g=e[i].name,g.indexOf("data-")===0&&(g=f.camelCase(g.substring(5)),l(this[0],g,h[g]));f._data(this[0],"parsedAttrs",!0)}}return h}if(typeof a=="object")return this.each(function(){f.data(this,a)});d=a.split("."),d[1]=d[1]?"."+d[1]:"";if(c===b){h=this.triggerHandler("getData"+d[1]+"!",[d[0]]),h===b&&this.length&&(h=f.data(this[0],a),h=l(this[0],a,h));return h===b&&d[1]?this.data(d[0]):h}return this.each(function(){var b=f(this),e=[d[0],c];b.triggerHandler("setData"+d[1]+"!",e),f.data(this,a,c),b.triggerHandler("changeData"+d[1]+"!",e)})},removeData:function(a){return this.each(function(){f.removeData(this,a)})}}),f.extend({_mark:function(a,b){a&&(b=(b||"fx")+"mark",f._data(a,b,(f._data(a,b)||0)+1))},_unmark:function(a,b,c){a!==!0&&(c=b,b=a,a=!1);if(b){c=c||"fx";var d=c+"mark",e=a?0:(f._data(b,d)||1)-1;e?f._data(b,d,e):(f.removeData(b,d,!0),n(b,c,"mark"))}},queue:function(a,b,c){var d;if(a){b=(b||"fx")+"queue",d=f._data(a,b),c&&(!d||f.isArray(c)?d=f._data(a,b,f.makeArray(c)):d.push(c));return d||[]}},dequeue:function(a,b){b=b||"fx";var c=f.queue(a,b),d=c.shift(),e={};d==="inprogress"&&(d=c.shift()),d&&(b==="fx"&&c.unshift("inprogress"),f._data(a,b+".run",e),d.call(a,function(){f.dequeue(a,b)},e)),c.length||(f.removeData(a,b+"queue "+b+".run",!0),n(a,b,"queue"))}}),f.fn.extend({queue:function(a,c){typeof a!="string"&&(c=a,a="fx");if(c===b)return f.queue(this[0],a);return this.each(function(){var b=f.queue(this,a,c);a==="fx"&&b[0]!=="inprogress"&&f.dequeue(this,a)})},dequeue:function(a){return this.each(function(){f.dequeue(this,a)})},delay:function(a,b){a=f.fx?f.fx.speeds[a]||a:a,b=b||"fx";return this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,c){function m(){--h||d.resolveWith(e,[e])}typeof a!="string"&&(c=a,a=b),a=a||"fx";var d=f.Deferred(),e=this,g=e.length,h=1,i=a+"defer",j=a+"queue",k=a+"mark",l;while(g--)if(l=f.data(e[g],i,b,!0)||(f.data(e[g],j,b,!0)||f.data(e[g],k,b,!0))&&f.data(e[g],i,f.Callbacks("once memory"),!0))h++,l.add(m);m();return d.promise()}});var o=/[\n\t\r]/g,p=/\s+/,q=/\r/g,r=/^(?:button|input)$/i,s=/^(?:button|input|object|select|textarea)$/i,t=/^a(?:rea)?$/i,u=/^(?:autofocus|autoplay|async|checked|controls|defer|disabled|hidden|loop|multiple|open|readonly|required|scoped|selected)$/i,v=f.support.getSetAttribute,w,x,y;f.fn.extend({attr:function(a,b){return f.access(this,a,b,!0,f.attr)},removeAttr:function(a){return this.each(function(){f.removeAttr(this,a)})},prop:function(a,b){return f.access(this,a,b,!0,f.prop)},removeProp:function(a){a=f.propFix[a]||a;return this.each(function(){try{this[a]=b,delete this[a]}catch(c){}})},addClass:function(a){var b,c,d,e,g,h,i;if(f.isFunction(a))return this.each(function(b){f(this).addClass(a.call(this,b,this.className))});if(a&&typeof a=="string"){b=a.split(p);for(c=0,d=this.length;c<d;c++){e=this[c];if(e.nodeType===1)if(!e.className&&b.length===1)e.className=a;else{g=" "+e.className+" ";for(h=0,i=b.length;h<i;h++)~g.indexOf(" "+b[h]+" ")||(g+=b[h]+" ");e.className=f.trim(g)}}}return this},removeClass:function(a){var c,d,e,g,h,i,j;if(f.isFunction(a))return this.each(function(b){f(this).removeClass(a.call(this,b,this.className))});if(a&&typeof a=="string"||a===b){c=(a||"").split(p);for(d=0,e=this.length;d<e;d++){g=this[d];if(g.nodeType===1&&g.className)if(a){h=(" "+g.className+" ").replace(o," ");for(i=0,j=c.length;i<j;i++)h=h.replace(" "+c[i]+" "," ");g.className=f.trim(h)}else g.className=""}}return this},toggleClass:function(a,b){var c=typeof a,d=typeof b=="boolean";if(f.isFunction(a))return this.each(function(c){f(this).toggleClass(a.call(this,c,this.className,b),b)});return this.each(function(){if(c==="string"){var e,g=0,h=f(this),i=b,j=a.split(p);while(e=j[g++])i=d?i:!h.hasClass(e),h[i?"addClass":"removeClass"](e)}else if(c==="undefined"||c==="boolean")this.className&&f._data(this,"__className__",this.className),this.className=this.className||a===!1?"":f._data(this,"__className__")||""})},hasClass:function(a){var b=" "+a+" ",c=0,d=this.length;for(;c<d;c++)if(this[c].nodeType===1&&(" "+this[c].className+" ").replace(o," ").indexOf(b)>-1)return!0;return!1},val:function(a){var c,d,e,g=this[0];{if(!!arguments.length){e=f.isFunction(a);return this.each(function(d){var g=f(this),h;if(this.nodeType===1){e?h=a.call(this,d,g.val()):h=a,h==null?h="":typeof h=="number"?h+="":f.isArray(h)&&(h=f.map(h,function(a){return a==null?"":a+""})),c=f.valHooks[this.nodeName.toLowerCase()]||f.valHooks[this.type];if(!c||!("set"in c)||c.set(this,h,"value")===b)this.value=h}})}if(g){c=f.valHooks[g.nodeName.toLowerCase()]||f.valHooks[g.type];if(c&&"get"in c&&(d=c.get(g,"value"))!==b)return d;d=g.value;return typeof d=="string"?d.replace(q,""):d==null?"":d}}}}),f.extend({valHooks:{option:{get:function(a){var b=a.attributes.value;return!b||b.specified?a.value:a.text}},select:{get:function(a){var b,c,d,e,g=a.selectedIndex,h=[],i=a.options,j=a.type==="select-one";if(g<0)return null;c=j?g:0,d=j?g+1:i.length;for(;c<d;c++){e=i[c];if(e.selected&&(f.support.optDisabled?!e.disabled:e.getAttribute("disabled")===null)&&(!e.parentNode.disabled||!f.nodeName(e.parentNode,"optgroup"))){b=f(e).val();if(j)return b;h.push(b)}}if(j&&!h.length&&i.length)return f(i[g]).val();return h},set:function(a,b){var c=f.makeArray(b);f(a).find("option").each(function(){this.selected=f.inArray(f(this).val(),c)>=0}),c.length||(a.selectedIndex=-1);return c}}},attrFn:{val:!0,css:!0,html:!0,text:!0,data:!0,width:!0,height:!0,offset:!0},attr:function(a,c,d,e){var g,h,i,j=a.nodeType;if(!!a&&j!==3&&j!==8&&j!==2){if(e&&c in f.attrFn)return f(a)[c](d);if(typeof a.getAttribute=="undefined")return f.prop(a,c,d);i=j!==1||!f.isXMLDoc(a),i&&(c=c.toLowerCase(),h=f.attrHooks[c]||(u.test(c)?x:w));if(d!==b){if(d===null){f.removeAttr(a,c);return}if(h&&"set"in h&&i&&(g=h.set(a,d,c))!==b)return g;a.setAttribute(c,""+d);return d}if(h&&"get"in h&&i&&(g=h.get(a,c))!==null)return g;g=a.getAttribute(c);return g===null?b:g}},removeAttr:function(a,b){var c,d,e,g,h=0;if(b&&a.nodeType===1){d=b.toLowerCase().split(p),g=d.length;for(;h<g;h++)e=d[h],e&&(c=f.propFix[e]||e,f.attr(a,e,""),a.removeAttribute(v?e:c),u.test(e)&&c in a&&(a[c]=!1))}},attrHooks:{type:{set:function(a,b){if(r.test(a.nodeName)&&a.parentNode)f.error("type property can't be changed");else if(!f.support.radioValue&&b==="radio"&&f.nodeName(a,"input")){var c=a.value;a.setAttribute("type",b),c&&(a.value=c);return b}}},value:{get:function(a,b){if(w&&f.nodeName(a,"button"))return w.get(a,b);return b in a?a.value:null},set:function(a,b,c){if(w&&f.nodeName(a,"button"))return w.set(a,b,c);a.value=b}}},propFix:{tabindex:"tabIndex",readonly:"readOnly","for":"htmlFor","class":"className",maxlength:"maxLength",cellspacing:"cellSpacing",cellpadding:"cellPadding",rowspan:"rowSpan",colspan:"colSpan",usemap:"useMap",frameborder:"frameBorder",contenteditable:"contentEditable"},prop:function(a,c,d){var e,g,h,i=a.nodeType;if(!!a&&i!==3&&i!==8&&i!==2){h=i!==1||!f.isXMLDoc(a),h&&(c=f.propFix[c]||c,g=f.propHooks[c]);return d!==b?g&&"set"in g&&(e=g.set(a,d,c))!==b?e:a[c]=d:g&&"get"in g&&(e=g.get(a,c))!==null?e:a[c]}},propHooks:{tabIndex:{get:function(a){var c=a.getAttributeNode("tabindex");return c&&c.specified?parseInt(c.value,10):s.test(a.nodeName)||t.test(a.nodeName)&&a.href?0:b}}}}),f.attrHooks.tabindex=f.propHooks.tabIndex,x={get:function(a,c){var d,e=f.prop(a,c);return e===!0||typeof e!="boolean"&&(d=a.getAttributeNode(c))&&d.nodeValue!==!1?c.toLowerCase():b},set:function(a,b,c){var d;b===!1?f.removeAttr(a,c):(d=f.propFix[c]||c,d in a&&(a[d]=!0),a.setAttribute(c,c.toLowerCase()));return c}},v||(y={name:!0,id:!0},w=f.valHooks.button={get:function(a,c){var d;d=a.getAttributeNode(c);return d&&(y[c]?d.nodeValue!=="":d.specified)?d.nodeValue:b},set:function(a,b,d){var e=a.getAttributeNode(d);e||(e=c.createAttribute(d),a.setAttributeNode(e));return e.nodeValue=b+""}},f.attrHooks.tabindex.set=w.set,f.each(["width","height"],function(a,b){f.attrHooks[b]=f.extend(f.attrHooks[b],{set:function(a,c){if(c===""){a.setAttribute(b,"auto");return c}}})}),f.attrHooks.contenteditable={get:w.get,set:function(a,b,c){b===""&&(b="false"),w.set(a,b,c)}}),f.support.hrefNormalized||f.each(["href","src","width","height"],function(a,c){f.attrHooks[c]=f.extend(f.attrHooks[c],{get:function(a){var d=a.getAttribute(c,2);return d===null?b:d}})}),f.support.style||(f.attrHooks.style={get:function(a){return a.style.cssText.toLowerCase()||b},set:function(a,b){return a.style.cssText=""+b}}),f.support.optSelected||(f.propHooks.selected=f.extend(f.propHooks.selected,{get:function(a){var b=a.parentNode;b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex);return null}})),f.support.enctype||(f.propFix.enctype="encoding"),f.support.checkOn||f.each(["radio","checkbox"],function(){f.valHooks[this]={get:function(a){return a.getAttribute("value")===null?"on":a.value}}}),f.each(["radio","checkbox"],function(){f.valHooks[this]=f.extend(f.valHooks[this],{set:function(a,b){if(f.isArray(b))return a.checked=f.inArray(f(a).val(),b)>=0}})});var z=/^(?:textarea|input|select)$/i,A=/^([^\.]*)?(?:\.(.+))?$/,B=/\bhover(\.\S+)?\b/,C=/^key/,D=/^(?:mouse|contextmenu)|click/,E=/^(?:focusinfocus|focusoutblur)$/,F=/^(\w*)(?:#([\w\-]+))?(?:\.([\w\-]+))?$/,G=function(a){var b=F.exec(a);b&&(b[1]=(b[1]||"").toLowerCase(),b[3]=b[3]&&new RegExp("(?:^|\\s)"+b[3]+"(?:\\s|$)"));return b},H=function(a,b){var c=a.attributes||{};return(!b[1]||a.nodeName.toLowerCase()===b[1])&&(!b[2]||(c.id||{}).value===b[2])&&(!b[3]||b[3].test((c["class"]||{}).value))},I=function(a){return f.event.special.hover?a:a.replace(B,"mouseenter$1 mouseleave$1")};
 f.event={add:function(a,c,d,e,g){var h,i,j,k,l,m,n,o,p,q,r,s;if(!(a.nodeType===3||a.nodeType===8||!c||!d||!(h=f._data(a)))){d.handler&&(p=d,d=p.handler),d.guid||(d.guid=f.guid++),j=h.events,j||(h.events=j={}),i=h.handle,i||(h.handle=i=function(a){return typeof f!="undefined"&&(!a||f.event.triggered!==a.type)?f.event.dispatch.apply(i.elem,arguments):b},i.elem=a),c=f.trim(I(c)).split(" ");for(k=0;k<c.length;k++){l=A.exec(c[k])||[],m=l[1],n=(l[2]||"").split(".").sort(),s=f.event.special[m]||{},m=(g?s.delegateType:s.bindType)||m,s=f.event.special[m]||{},o=f.extend({type:m,origType:l[1],data:e,handler:d,guid:d.guid,selector:g,quick:G(g),namespace:n.join(".")},p),r=j[m];if(!r){r=j[m]=[],r.delegateCount=0;if(!s.setup||s.setup.call(a,e,n,i)===!1)a.addEventListener?a.addEventListener(m,i,!1):a.attachEvent&&a.attachEvent("on"+m,i)}s.add&&(s.add.call(a,o),o.handler.guid||(o.handler.guid=d.guid)),g?r.splice(r.delegateCount++,0,o):r.push(o),f.event.global[m]=!0}a=null}},global:{},remove:function(a,b,c,d,e){var g=f.hasData(a)&&f._data(a),h,i,j,k,l,m,n,o,p,q,r,s;if(!!g&&!!(o=g.events)){b=f.trim(I(b||"")).split(" ");for(h=0;h<b.length;h++){i=A.exec(b[h])||[],j=k=i[1],l=i[2];if(!j){for(j in o)f.event.remove(a,j+b[h],c,d,!0);continue}p=f.event.special[j]||{},j=(d?p.delegateType:p.bindType)||j,r=o[j]||[],m=r.length,l=l?new RegExp("(^|\\.)"+l.split(".").sort().join("\\.(?:.*\\.)?")+"(\\.|$)"):null;for(n=0;n<r.length;n++)s=r[n],(e||k===s.origType)&&(!c||c.guid===s.guid)&&(!l||l.test(s.namespace))&&(!d||d===s.selector||d==="**"&&s.selector)&&(r.splice(n--,1),s.selector&&r.delegateCount--,p.remove&&p.remove.call(a,s));r.length===0&&m!==r.length&&((!p.teardown||p.teardown.call(a,l)===!1)&&f.removeEvent(a,j,g.handle),delete o[j])}f.isEmptyObject(o)&&(q=g.handle,q&&(q.elem=null),f.removeData(a,["events","handle"],!0))}},customEvent:{getData:!0,setData:!0,changeData:!0},trigger:function(c,d,e,g){if(!e||e.nodeType!==3&&e.nodeType!==8){var h=c.type||c,i=[],j,k,l,m,n,o,p,q,r,s;if(E.test(h+f.event.triggered))return;h.indexOf("!")>=0&&(h=h.slice(0,-1),k=!0),h.indexOf(".")>=0&&(i=h.split("."),h=i.shift(),i.sort());if((!e||f.event.customEvent[h])&&!f.event.global[h])return;c=typeof c=="object"?c[f.expando]?c:new f.Event(h,c):new f.Event(h),c.type=h,c.isTrigger=!0,c.exclusive=k,c.namespace=i.join("."),c.namespace_re=c.namespace?new RegExp("(^|\\.)"+i.join("\\.(?:.*\\.)?")+"(\\.|$)"):null,o=h.indexOf(":")<0?"on"+h:"";if(!e){j=f.cache;for(l in j)j[l].events&&j[l].events[h]&&f.event.trigger(c,d,j[l].handle.elem,!0);return}c.result=b,c.target||(c.target=e),d=d!=null?f.makeArray(d):[],d.unshift(c),p=f.event.special[h]||{};if(p.trigger&&p.trigger.apply(e,d)===!1)return;r=[[e,p.bindType||h]];if(!g&&!p.noBubble&&!f.isWindow(e)){s=p.delegateType||h,m=E.test(s+h)?e:e.parentNode,n=null;for(;m;m=m.parentNode)r.push([m,s]),n=m;n&&n===e.ownerDocument&&r.push([n.defaultView||n.parentWindow||a,s])}for(l=0;l<r.length&&!c.isPropagationStopped();l++)m=r[l][0],c.type=r[l][1],q=(f._data(m,"events")||{})[c.type]&&f._data(m,"handle"),q&&q.apply(m,d),q=o&&m[o],q&&f.acceptData(m)&&q.apply(m,d)===!1&&c.preventDefault();c.type=h,!g&&!c.isDefaultPrevented()&&(!p._default||p._default.apply(e.ownerDocument,d)===!1)&&(h!=="click"||!f.nodeName(e,"a"))&&f.acceptData(e)&&o&&e[h]&&(h!=="focus"&&h!=="blur"||c.target.offsetWidth!==0)&&!f.isWindow(e)&&(n=e[o],n&&(e[o]=null),f.event.triggered=h,e[h](),f.event.triggered=b,n&&(e[o]=n));return c.result}},dispatch:function(c){c=f.event.fix(c||a.event);var d=(f._data(this,"events")||{})[c.type]||[],e=d.delegateCount,g=[].slice.call(arguments,0),h=!c.exclusive&&!c.namespace,i=[],j,k,l,m,n,o,p,q,r,s,t;g[0]=c,c.delegateTarget=this;if(e&&!c.target.disabled&&(!c.button||c.type!=="click")){m=f(this),m.context=this.ownerDocument||this;for(l=c.target;l!=this;l=l.parentNode||this){o={},q=[],m[0]=l;for(j=0;j<e;j++)r=d[j],s=r.selector,o[s]===b&&(o[s]=r.quick?H(l,r.quick):m.is(s)),o[s]&&q.push(r);q.length&&i.push({elem:l,matches:q})}}d.length>e&&i.push({elem:this,matches:d.slice(e)});for(j=0;j<i.length&&!c.isPropagationStopped();j++){p=i[j],c.currentTarget=p.elem;for(k=0;k<p.matches.length&&!c.isImmediatePropagationStopped();k++){r=p.matches[k];if(h||!c.namespace&&!r.namespace||c.namespace_re&&c.namespace_re.test(r.namespace))c.data=r.data,c.handleObj=r,n=((f.event.special[r.origType]||{}).handle||r.handler).apply(p.elem,g),n!==b&&(c.result=n,n===!1&&(c.preventDefault(),c.stopPropagation()))}}return c.result},props:"attrChange attrName relatedNode srcElement altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(a,b){a.which==null&&(a.which=b.charCode!=null?b.charCode:b.keyCode);return a}},mouseHooks:{props:"button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(a,d){var e,f,g,h=d.button,i=d.fromElement;a.pageX==null&&d.clientX!=null&&(e=a.target.ownerDocument||c,f=e.documentElement,g=e.body,a.pageX=d.clientX+(f&&f.scrollLeft||g&&g.scrollLeft||0)-(f&&f.clientLeft||g&&g.clientLeft||0),a.pageY=d.clientY+(f&&f.scrollTop||g&&g.scrollTop||0)-(f&&f.clientTop||g&&g.clientTop||0)),!a.relatedTarget&&i&&(a.relatedTarget=i===a.target?d.toElement:i),!a.which&&h!==b&&(a.which=h&1?1:h&2?3:h&4?2:0);return a}},fix:function(a){if(a[f.expando])return a;var d,e,g=a,h=f.event.fixHooks[a.type]||{},i=h.props?this.props.concat(h.props):this.props;a=f.Event(g);for(d=i.length;d;)e=i[--d],a[e]=g[e];a.target||(a.target=g.srcElement||c),a.target.nodeType===3&&(a.target=a.target.parentNode),a.metaKey===b&&(a.metaKey=a.ctrlKey);return h.filter?h.filter(a,g):a},special:{ready:{setup:f.bindReady},load:{noBubble:!0},focus:{delegateType:"focusin"},blur:{delegateType:"focusout"},beforeunload:{setup:function(a,b,c){f.isWindow(this)&&(this.onbeforeunload=c)},teardown:function(a,b){this.onbeforeunload===b&&(this.onbeforeunload=null)}}},simulate:function(a,b,c,d){var e=f.extend(new f.Event,c,{type:a,isSimulated:!0,originalEvent:{}});d?f.event.trigger(e,null,b):f.event.dispatch.call(b,e),e.isDefaultPrevented()&&c.preventDefault()}},f.event.handle=f.event.dispatch,f.removeEvent=c.removeEventListener?function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c,!1)}:function(a,b,c){a.detachEvent&&a.detachEvent("on"+b,c)},f.Event=function(a,b){if(!(this instanceof f.Event))return new f.Event(a,b);a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||a.returnValue===!1||a.getPreventDefault&&a.getPreventDefault()?K:J):this.type=a,b&&f.extend(this,b),this.timeStamp=a&&a.timeStamp||f.now(),this[f.expando]=!0},f.Event.prototype={preventDefault:function(){this.isDefaultPrevented=K;var a=this.originalEvent;!a||(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){this.isPropagationStopped=K;var a=this.originalEvent;!a||(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){this.isImmediatePropagationStopped=K,this.stopPropagation()},isDefaultPrevented:J,isPropagationStopped:J,isImmediatePropagationStopped:J},f.each({mouseenter:"mouseover",mouseleave:"mouseout"},function(a,b){f.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c=this,d=a.relatedTarget,e=a.handleObj,g=e.selector,h;if(!d||d!==c&&!f.contains(c,d))a.type=e.origType,h=e.handler.apply(this,arguments),a.type=b;return h}}}),f.support.submitBubbles||(f.event.special.submit={setup:function(){if(f.nodeName(this,"form"))return!1;f.event.add(this,"click._submit keypress._submit",function(a){var c=a.target,d=f.nodeName(c,"input")||f.nodeName(c,"button")?c.form:b;d&&!d._submit_attached&&(f.event.add(d,"submit._submit",function(a){this.parentNode&&!a.isTrigger&&f.event.simulate("submit",this.parentNode,a,!0)}),d._submit_attached=!0)})},teardown:function(){if(f.nodeName(this,"form"))return!1;f.event.remove(this,"._submit")}}),f.support.changeBubbles||(f.event.special.change={setup:function(){if(z.test(this.nodeName)){if(this.type==="checkbox"||this.type==="radio")f.event.add(this,"propertychange._change",function(a){a.originalEvent.propertyName==="checked"&&(this._just_changed=!0)}),f.event.add(this,"click._change",function(a){this._just_changed&&!a.isTrigger&&(this._just_changed=!1,f.event.simulate("change",this,a,!0))});return!1}f.event.add(this,"beforeactivate._change",function(a){var b=a.target;z.test(b.nodeName)&&!b._change_attached&&(f.event.add(b,"change._change",function(a){this.parentNode&&!a.isSimulated&&!a.isTrigger&&f.event.simulate("change",this.parentNode,a,!0)}),b._change_attached=!0)})},handle:function(a){var b=a.target;if(this!==b||a.isSimulated||a.isTrigger||b.type!=="radio"&&b.type!=="checkbox")return a.handleObj.handler.apply(this,arguments)},teardown:function(){f.event.remove(this,"._change");return z.test(this.nodeName)}}),f.support.focusinBubbles||f.each({focus:"focusin",blur:"focusout"},function(a,b){var d=0,e=function(a){f.event.simulate(b,a.target,f.event.fix(a),!0)};f.event.special[b]={setup:function(){d++===0&&c.addEventListener(a,e,!0)},teardown:function(){--d===0&&c.removeEventListener(a,e,!0)}}}),f.fn.extend({on:function(a,c,d,e,g){var h,i;if(typeof a=="object"){typeof c!="string"&&(d=c,c=b);for(i in a)this.on(i,c,d,a[i],g);return this}d==null&&e==null?(e=c,d=c=b):e==null&&(typeof c=="string"?(e=d,d=b):(e=d,d=c,c=b));if(e===!1)e=J;else if(!e)return this;g===1&&(h=e,e=function(a){f().off(a);return h.apply(this,arguments)},e.guid=h.guid||(h.guid=f.guid++));return this.each(function(){f.event.add(this,a,e,d,c)})},one:function(a,b,c,d){return this.on.call(this,a,b,c,d,1)},off:function(a,c,d){if(a&&a.preventDefault&&a.handleObj){var e=a.handleObj;f(a.delegateTarget).off(e.namespace?e.type+"."+e.namespace:e.type,e.selector,e.handler);return this}if(typeof a=="object"){for(var g in a)this.off(g,c,a[g]);return this}if(c===!1||typeof c=="function")d=c,c=b;d===!1&&(d=J);return this.each(function(){f.event.remove(this,a,d,c)})},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},live:function(a,b,c){f(this.context).on(a,this.selector,b,c);return this},die:function(a,b){f(this.context).off(a,this.selector||"**",b);return this},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return arguments.length==1?this.off(a,"**"):this.off(b,a,c)},trigger:function(a,b){return this.each(function(){f.event.trigger(a,b,this)})},triggerHandler:function(a,b){if(this[0])return f.event.trigger(a,b,this[0],!0)},toggle:function(a){var b=arguments,c=a.guid||f.guid++,d=0,e=function(c){var e=(f._data(this,"lastToggle"+a.guid)||0)%d;f._data(this,"lastToggle"+a.guid,e+1),c.preventDefault();return b[e].apply(this,arguments)||!1};e.guid=c;while(d<b.length)b[d++].guid=c;return this.click(e)},hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)}}),f.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){f.fn[b]=function(a,c){c==null&&(c=a,a=null);return arguments.length>0?this.on(b,null,a,c):this.trigger(b)},f.attrFn&&(f.attrFn[b]=!0),C.test(b)&&(f.event.fixHooks[b]=f.event.keyHooks),D.test(b)&&(f.event.fixHooks[b]=f.event.mouseHooks)}),function(){function x(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}if(j.nodeType===1){g||(j[d]=c,j.sizset=h);if(typeof b!="string"){if(j===b){k=!0;break}}else if(m.filter(b,[j]).length>0){k=j;break}}j=j[a]}e[h]=k}}}function w(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}j.nodeType===1&&!g&&(j[d]=c,j.sizset=h);if(j.nodeName.toLowerCase()===b){k=j;break}j=j[a]}e[h]=k}}}var a=/((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^\[\]]*\]|['"][^'"]*['"]|[^\[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,d="sizcache"+(Math.random()+"").replace(".",""),e=0,g=Object.prototype.toString,h=!1,i=!0,j=/\\/g,k=/\r\n/g,l=/\W/;[0,0].sort(function(){i=!1;return 0});var m=function(b,d,e,f){e=e||[],d=d||c;var h=d;if(d.nodeType!==1&&d.nodeType!==9)return[];if(!b||typeof b!="string")return e;var i,j,k,l,n,q,r,t,u=!0,v=m.isXML(d),w=[],x=b;do{a.exec(""),i=a.exec(x);if(i){x=i[3],w.push(i[1]);if(i[2]){l=i[3];break}}}while(i);if(w.length>1&&p.exec(b))if(w.length===2&&o.relative[w[0]])j=y(w[0]+w[1],d,f);else{j=o.relative[w[0]]?[d]:m(w.shift(),d);while(w.length)b=w.shift(),o.relative[b]&&(b+=w.shift()),j=y(b,j,f)}else{!f&&w.length>1&&d.nodeType===9&&!v&&o.match.ID.test(w[0])&&!o.match.ID.test(w[w.length-1])&&(n=m.find(w.shift(),d,v),d=n.expr?m.filter(n.expr,n.set)[0]:n.set[0]);if(d){n=f?{expr:w.pop(),set:s(f)}:m.find(w.pop(),w.length===1&&(w[0]==="~"||w[0]==="+")&&d.parentNode?d.parentNode:d,v),j=n.expr?m.filter(n.expr,n.set):n.set,w.length>0?k=s(j):u=!1;while(w.length)q=w.pop(),r=q,o.relative[q]?r=w.pop():q="",r==null&&(r=d),o.relative[q](k,r,v)}else k=w=[]}k||(k=j),k||m.error(q||b);if(g.call(k)==="[object Array]")if(!u)e.push.apply(e,k);else if(d&&d.nodeType===1)for(t=0;k[t]!=null;t++)k[t]&&(k[t]===!0||k[t].nodeType===1&&m.contains(d,k[t]))&&e.push(j[t]);else for(t=0;k[t]!=null;t++)k[t]&&k[t].nodeType===1&&e.push(j[t]);else s(k,e);l&&(m(l,h,e,f),m.uniqueSort(e));return e};m.uniqueSort=function(a){if(u){h=i,a.sort(u);if(h)for(var b=1;b<a.length;b++)a[b]===a[b-1]&&a.splice(b--,1)}return a},m.matches=function(a,b){return m(a,null,null,b)},m.matchesSelector=function(a,b){return m(b,null,null,[a]).length>0},m.find=function(a,b,c){var d,e,f,g,h,i;if(!a)return[];for(e=0,f=o.order.length;e<f;e++){h=o.order[e];if(g=o.leftMatch[h].exec(a)){i=g[1],g.splice(1,1);if(i.substr(i.length-1)!=="\\"){g[1]=(g[1]||"").replace(j,""),d=o.find[h](g,b,c);if(d!=null){a=a.replace(o.match[h],"");break}}}}d||(d=typeof b.getElementsByTagName!="undefined"?b.getElementsByTagName("*"):[]);return{set:d,expr:a}},m.filter=function(a,c,d,e){var f,g,h,i,j,k,l,n,p,q=a,r=[],s=c,t=c&&c[0]&&m.isXML(c[0]);while(a&&c.length){for(h in o.filter)if((f=o.leftMatch[h].exec(a))!=null&&f[2]){k=o.filter[h],l=f[1],g=!1,f.splice(1,1);if(l.substr(l.length-1)==="\\")continue;s===r&&(r=[]);if(o.preFilter[h]){f=o.preFilter[h](f,s,d,r,e,t);if(!f)g=i=!0;else if(f===!0)continue}if(f)for(n=0;(j=s[n])!=null;n++)j&&(i=k(j,f,n,s),p=e^i,d&&i!=null?p?g=!0:s[n]=!1:p&&(r.push(j),g=!0));if(i!==b){d||(s=r),a=a.replace(o.match[h],"");if(!g)return[];break}}if(a===q)if(g==null)m.error(a);else break;q=a}return s},m.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)};var n=m.getText=function(a){var b,c,d=a.nodeType,e="";if(d){if(d===1||d===9){if(typeof a.textContent=="string")return a.textContent;if(typeof a.innerText=="string")return a.innerText.replace(k,"");for(a=a.firstChild;a;a=a.nextSibling)e+=n(a)}else if(d===3||d===4)return a.nodeValue}else for(b=0;c=a[b];b++)c.nodeType!==8&&(e+=n(c));return e},o=m.selectors={order:["ID","NAME","TAG"],match:{ID:/#((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,CLASS:/\.((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,NAME:/\[name=['"]*((?:[\w\u00c0-\uFFFF\-]|\\.)+)['"]*\]/,ATTR:/\[\s*((?:[\w\u00c0-\uFFFF\-]|\\.)+)\s*(?:(\S?=)\s*(?:(['"])(.*?)\3|(#?(?:[\w\u00c0-\uFFFF\-]|\\.)*)|)|)\s*\]/,TAG:/^((?:[\w\u00c0-\uFFFF*\-]|\\.)+)/,CHILD:/:(only|nth|last|first)-child(?:\(\s*(even|odd|(?:[+\-]?\d+|(?:[+\-]?\d*)?n\s*(?:[+\-]\s*\d+)?))\s*\))?/,POS:/:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^\-]|$)/,PSEUDO:/:((?:[\w\u00c0-\uFFFF\-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/},leftMatch:{},attrMap:{"class":"className","for":"htmlFor"},attrHandle:{href:function(a){return a.getAttribute("href")},type:function(a){return a.getAttribute("type")}},relative:{"+":function(a,b){var c=typeof b=="string",d=c&&!l.test(b),e=c&&!d;d&&(b=b.toLowerCase());for(var f=0,g=a.length,h;f<g;f++)if(h=a[f]){while((h=h.previousSibling)&&h.nodeType!==1);a[f]=e||h&&h.nodeName.toLowerCase()===b?h||!1:h===b}e&&m.filter(b,a,!0)},">":function(a,b){var c,d=typeof b=="string",e=0,f=a.length;if(d&&!l.test(b)){b=b.toLowerCase();for(;e<f;e++){c=a[e];if(c){var g=c.parentNode;a[e]=g.nodeName.toLowerCase()===b?g:!1}}}else{for(;e<f;e++)c=a[e],c&&(a[e]=d?c.parentNode:c.parentNode===b);d&&m.filter(b,a,!0)}},"":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("parentNode",b,f,a,d,c)},"~":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("previousSibling",b,f,a,d,c)}},find:{ID:function(a,b,c){if(typeof b.getElementById!="undefined"&&!c){var d=b.getElementById(a[1]);return d&&d.parentNode?[d]:[]}},NAME:function(a,b){if(typeof b.getElementsByName!="undefined"){var c=[],d=b.getElementsByName(a[1]);for(var e=0,f=d.length;e<f;e++)d[e].getAttribute("name")===a[1]&&c.push(d[e]);return c.length===0?null:c}},TAG:function(a,b){if(typeof b.getElementsByTagName!="undefined")return b.getElementsByTagName(a[1])}},preFilter:{CLASS:function(a,b,c,d,e,f){a=" "+a[1].replace(j,"")+" ";if(f)return a;for(var g=0,h;(h=b[g])!=null;g++)h&&(e^(h.className&&(" "+h.className+" ").replace(/[\t\n\r]/g," ").indexOf(a)>=0)?c||d.push(h):c&&(b[g]=!1));return!1},ID:function(a){return a[1].replace(j,"")},TAG:function(a,b){return a[1].replace(j,"").toLowerCase()},CHILD:function(a){if(a[1]==="nth"){a[2]||m.error(a[0]),a[2]=a[2].replace(/^\+|\s*/g,"");var b=/(-?)(\d*)(?:n([+\-]?\d*))?/.exec(a[2]==="even"&&"2n"||a[2]==="odd"&&"2n+1"||!/\D/.test(a[2])&&"0n+"+a[2]||a[2]);a[2]=b[1]+(b[2]||1)-0,a[3]=b[3]-0}else a[2]&&m.error(a[0]);a[0]=e++;return a},ATTR:function(a,b,c,d,e,f){var g=a[1]=a[1].replace(j,"");!f&&o.attrMap[g]&&(a[1]=o.attrMap[g]),a[4]=(a[4]||a[5]||"").replace(j,""),a[2]==="~="&&(a[4]=" "+a[4]+" ");return a},PSEUDO:function(b,c,d,e,f){if(b[1]==="not")if((a.exec(b[3])||"").length>1||/^\w/.test(b[3]))b[3]=m(b[3],null,null,c);else{var g=m.filter(b[3],c,d,!0^f);d||e.push.apply(e,g);return!1}else if(o.match.POS.test(b[0])||o.match.CHILD.test(b[0]))return!0;return b},POS:function(a){a.unshift(!0);return a}},filters:{enabled:function(a){return a.disabled===!1&&a.type!=="hidden"},disabled:function(a){return a.disabled===!0},checked:function(a){return a.checked===!0},selected:function(a){a.parentNode&&a.parentNode.selectedIndex;return a.selected===!0},parent:function(a){return!!a.firstChild},empty:function(a){return!a.firstChild},has:function(a,b,c){return!!m(c[3],a).length},header:function(a){return/h\d/i.test(a.nodeName)},text:function(a){var b=a.getAttribute("type"),c=a.type;return a.nodeName.toLowerCase()==="input"&&"text"===c&&(b===c||b===null)},radio:function(a){return a.nodeName.toLowerCase()==="input"&&"radio"===a.type},checkbox:function(a){return a.nodeName.toLowerCase()==="input"&&"checkbox"===a.type},file:function(a){return a.nodeName.toLowerCase()==="input"&&"file"===a.type},password:function(a){return a.nodeName.toLowerCase()==="input"&&"password"===a.type},submit:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"submit"===a.type},image:function(a){return a.nodeName.toLowerCase()==="input"&&"image"===a.type},reset:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"reset"===a.type},button:function(a){var b=a.nodeName.toLowerCase();return b==="input"&&"button"===a.type||b==="button"},input:function(a){return/input|select|textarea|button/i.test(a.nodeName)},focus:function(a){return a===a.ownerDocument.activeElement}},setFilters:{first:function(a,b){return b===0},last:function(a,b,c,d){return b===d.length-1},even:function(a,b){return b%2===0},odd:function(a,b){return b%2===1},lt:function(a,b,c){return b<c[3]-0},gt:function(a,b,c){return b>c[3]-0},nth:function(a,b,c){return c[3]-0===b},eq:function(a,b,c){return c[3]-0===b}},filter:{PSEUDO:function(a,b,c,d){var e=b[1],f=o.filters[e];if(f)return f(a,c,b,d);if(e==="contains")return(a.textContent||a.innerText||n([a])||"").indexOf(b[3])>=0;if(e==="not"){var g=b[3];for(var h=0,i=g.length;h<i;h++)if(g[h]===a)return!1;return!0}m.error(e)},CHILD:function(a,b){var c,e,f,g,h,i,j,k=b[1],l=a;switch(k){case"only":case"first":while(l=l.previousSibling)if(l.nodeType===1)return!1;if(k==="first")return!0;l=a;case"last":while(l=l.nextSibling)if(l.nodeType===1)return!1;return!0;case"nth":c=b[2],e=b[3];if(c===1&&e===0)return!0;f=b[0],g=a.parentNode;if(g&&(g[d]!==f||!a.nodeIndex)){i=0;for(l=g.firstChild;l;l=l.nextSibling)l.nodeType===1&&(l.nodeIndex=++i);g[d]=f}j=a.nodeIndex-e;return c===0?j===0:j%c===0&&j/c>=0}},ID:function(a,b){return a.nodeType===1&&a.getAttribute("id")===b},TAG:function(a,b){return b==="*"&&a.nodeType===1||!!a.nodeName&&a.nodeName.toLowerCase()===b},CLASS:function(a,b){return(" "+(a.className||a.getAttribute("class"))+" ").indexOf(b)>-1},ATTR:function(a,b){var c=b[1],d=m.attr?m.attr(a,c):o.attrHandle[c]?o.attrHandle[c](a):a[c]!=null?a[c]:a.getAttribute(c),e=d+"",f=b[2],g=b[4];return d==null?f==="!=":!f&&m.attr?d!=null:f==="="?e===g:f==="*="?e.indexOf(g)>=0:f==="~="?(" "+e+" ").indexOf(g)>=0:g?f==="!="?e!==g:f==="^="?e.indexOf(g)===0:f==="$="?e.substr(e.length-g.length)===g:f==="|="?e===g||e.substr(0,g.length+1)===g+"-":!1:e&&d!==!1},POS:function(a,b,c,d){var e=b[2],f=o.setFilters[e];if(f)return f(a,c,b,d)}}},p=o.match.POS,q=function(a,b){return"\\"+(b-0+1)};for(var r in o.match)o.match[r]=new RegExp(o.match[r].source+/(?![^\[]*\])(?![^\(]*\))/.source),o.leftMatch[r]=new RegExp(/(^(?:.|\r|\n)*?)/.source+o.match[r].source.replace(/\\(\d+)/g,q));var s=function(a,b){a=Array.prototype.slice.call(a,0);if(b){b.push.apply(b,a);return b}return a};try{Array.prototype.slice.call(c.documentElement.childNodes,0)[0].nodeType}catch(t){s=function(a,b){var c=0,d=b||[];if(g.call(a)==="[object Array]")Array.prototype.push.apply(d,a);else if(typeof a.length=="number")for(var e=a.length;c<e;c++)d.push(a[c]);else for(;a[c];c++)d.push(a[c]);return d}}var u,v;c.documentElement.compareDocumentPosition?u=function(a,b){if(a===b){h=!0;return 0}if(!a.compareDocumentPosition||!b.compareDocumentPosition)return a.compareDocumentPosition?-1:1;return a.compareDocumentPosition(b)&4?-1:1}:(u=function(a,b){if(a===b){h=!0;return 0}if(a.sourceIndex&&b.sourceIndex)return a.sourceIndex-b.sourceIndex;var c,d,e=[],f=[],g=a.parentNode,i=b.parentNode,j=g;if(g===i)return v(a,b);if(!g)return-1;if(!i)return 1;while(j)e.unshift(j),j=j.parentNode;j=i;while(j)f.unshift(j),j=j.parentNode;c=e.length,d=f.length;for(var k=0;k<c&&k<d;k++)if(e[k]!==f[k])return v(e[k],f[k]);return k===c?v(a,f[k],-1):v(e[k],b,1)},v=function(a,b,c){if(a===b)return c;var d=a.nextSibling;while(d){if(d===b)return-1;d=d.nextSibling}return 1}),function(){var a=c.createElement("div"),d="script"+(new Date).getTime(),e=c.documentElement;a.innerHTML="",e.insertBefore(a,e.firstChild),c.getElementById(d)&&(o.find.ID=function(a,c,d){if(typeof c.getElementById!="undefined"&&!d){var e=c.getElementById(a[1]);return e?e.id===a[1]||typeof e.getAttributeNode!="undefined"&&e.getAttributeNode("id").nodeValue===a[1]?[e]:b:[]}},o.filter.ID=function(a,b){var c=typeof a.getAttributeNode!="undefined"&&a.getAttributeNode("id");return a.nodeType===1&&c&&c.nodeValue===b}),e.removeChild(a),e=a=null}(),function(){var a=c.createElement("div");a.appendChild(c.createComment("")),a.getElementsByTagName("*").length>0&&(o.find.TAG=function(a,b){var c=b.getElementsByTagName(a[1]);if(a[1]==="*"){var d=[];for(var e=0;c[e];e++)c[e].nodeType===1&&d.push(c[e]);c=d}return c}),a.innerHTML="",a.firstChild&&typeof a.firstChild.getAttribute!="undefined"&&a.firstChild.getAttribute("href")!=="#"&&(o.attrHandle.href=function(a){return a.getAttribute("href",2)}),a=null}(),c.querySelectorAll&&function(){var a=m,b=c.createElement("div"),d="__sizzle__";b.innerHTML="<p class='TEST'></p>";if(!b.querySelectorAll||b.querySelectorAll(".TEST").length!==0){m=function(b,e,f,g){e=e||c;if(!g&&!m.isXML(e)){var h=/^(\w+$)|^\.([\w\-]+$)|^#([\w\-]+$)/.exec(b);if(h&&(e.nodeType===1||e.nodeType===9)){if(h[1])return s(e.getElementsByTagName(b),f);if(h[2]&&o.find.CLASS&&e.getElementsByClassName)return s(e.getElementsByClassName(h[2]),f)}if(e.nodeType===9){if(b==="body"&&e.body)return s([e.body],f);if(h&&h[3]){var i=e.getElementById(h[3]);if(!i||!i.parentNode)return s([],f);if(i.id===h[3])return s([i],f)}try{return s(e.querySelectorAll(b),f)}catch(j){}}else if(e.nodeType===1&&e.nodeName.toLowerCase()!=="object"){var k=e,l=e.getAttribute("id"),n=l||d,p=e.parentNode,q=/^\s*[+~]/.test(b);l?n=n.replace(/'/g,"\\$&"):e.setAttribute("id",n),q&&p&&(e=e.parentNode);try{if(!q||p)return s(e.querySelectorAll("[id='"+n+"'] "+b),f)}catch(r){}finally{l||k.removeAttribute("id")}}}return a(b,e,f,g)};for(var e in a)m[e]=a[e];b=null}}(),function(){var a=c.documentElement,b=a.matchesSelector||a.mozMatchesSelector||a.webkitMatchesSelector||a.msMatchesSelector;if(b){var d=!b.call(c.createElement("div"),"div"),e=!1;try{b.call(c.documentElement,"[test!='']:sizzle")}catch(f){e=!0}m.matchesSelector=function(a,c){c=c.replace(/\=\s*([^'"\]]*)\s*\]/g,"='$1']");if(!m.isXML(a))try{if(e||!o.match.PSEUDO.test(c)&&!/!=/.test(c)){var f=b.call(a,c);if(f||!d||a.document&&a.document.nodeType!==11)return f}}catch(g){}return m(c,null,null,[a]).length>0}}}(),function(){var a=c.createElement("div");a.innerHTML="<div class='test e'></div><div class='test'></div>";if(!!a.getElementsByClassName&&a.getElementsByClassName("e").length!==0){a.lastChild.className="e";if(a.getElementsByClassName("e").length===1)return;o.order.splice(1,0,"CLASS"),o.find.CLASS=function(a,b,c){if(typeof b.getElementsByClassName!="undefined"&&!c)return b.getElementsByClassName(a[1])},a=null}}(),c.documentElement.contains?m.contains=function(a,b){return a!==b&&(a.contains?a.contains(b):!0)}:c.documentElement.compareDocumentPosition?m.contains=function(a,b){return!!(a.compareDocumentPosition(b)&16)}:m.contains=function(){return!1},m.isXML=function(a){var b=(a?a.ownerDocument||a:0).documentElement;return b?b.nodeName!=="HTML":!1};var y=function(a,b,c){var d,e=[],f="",g=b.nodeType?[b]:b;while(d=o.match.PSEUDO.exec(a))f+=d[0],a=a.replace(o.match.PSEUDO,"");a=o.relative[a]?a+"*":a;for(var h=0,i=g.length;h<i;h++)m(a,g[h],e,c);return m.filter(f,e)};m.attr=f.attr,m.selectors.attrMap={},f.find=m,f.expr=m.selectors,f.expr[":"]=f.expr.filters,f.unique=m.uniqueSort,f.text=m.getText,f.isXMLDoc=m.isXML,f.contains=m.contains}();var L=/Until$/,M=/^(?:parents|prevUntil|prevAll)/,N=/,/,O=/^.[^:#\[\.,]*$/,P=Array.prototype.slice,Q=f.expr.match.POS,R={children:!0,contents:!0,next:!0,prev:!0};f.fn.extend({find:function(a){var b=this,c,d;if(typeof a!="string")return f(a).filter(function(){for(c=0,d=b.length;c<d;c++)if(f.contains(b[c],this))return!0});var e=this.pushStack("","find",a),g,h,i;for(c=0,d=this.length;c<d;c++){g=e.length,f.find(a,this[c],e);if(c>0)for(h=g;h<e.length;h++)for(i=0;i<g;i++)if(e[i]===e[h]){e.splice(h--,1);break}}return e},has:function(a){var b=f(a);return this.filter(function(){for(var a=0,c=b.length;a<c;a++)if(f.contains(this,b[a]))return!0})},not:function(a){return this.pushStack(T(this,a,!1),"not",a)},filter:function(a){return this.pushStack(T(this,a,!0),"filter",a)},is:function(a){return!!a&&(typeof a=="string"?Q.test(a)?f(a,this.context).index(this[0])>=0:f.filter(a,this).length>0:this.filter(a).length>0)},closest:function(a,b){var c=[],d,e,g=this[0];if(f.isArray(a)){var h=1;while(g&&g.ownerDocument&&g!==b){for(d=0;d<a.length;d++)f(g).is(a[d])&&c.push({selector:a[d],elem:g,level:h});g=g.parentNode,h++}return c}var i=Q.test(a)||typeof a!="string"?f(a,b||this.context):0;for(d=0,e=this.length;d<e;d++){g=this[d];while(g){if(i?i.index(g)>-1:f.find.matchesSelector(g,a)){c.push(g);break}g=g.parentNode;if(!g||!g.ownerDocument||g===b||g.nodeType===11)break}}c=c.length>1?f.unique(c):c;return this.pushStack(c,"closest",a)},index:function(a){if(!a)return this[0]&&this[0].parentNode?this.prevAll().length:-1;if(typeof a=="string")return f.inArray(this[0],f(a));return f.inArray(a.jquery?a[0]:a,this)},add:function(a,b){var c=typeof a=="string"?f(a,b):f.makeArray(a&&a.nodeType?[a]:a),d=f.merge(this.get(),c);return this.pushStack(S(c[0])||S(d[0])?d:f.unique(d))},andSelf:function(){return this.add(this.prevObject)}}),f.each({parent:function(a){var b=a.parentNode;return b&&b.nodeType!==11?b:null},parents:function(a){return f.dir(a,"parentNode")},parentsUntil:function(a,b,c){return f.dir(a,"parentNode",c)},next:function(a){return f.nth(a,2,"nextSibling")},prev:function(a){return f.nth(a,2,"previousSibling")},nextAll:function(a){return f.dir(a,"nextSibling")},prevAll:function(a){return f.dir(a,"previousSibling")},nextUntil:function(a,b,c){return f.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return f.dir(a,"previousSibling",c)},siblings:function(a){return f.sibling(a.parentNode.firstChild,a)},children:function(a){return f.sibling(a.firstChild)},contents:function(a){return f.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:f.makeArray(a.childNodes)}},function(a,b){f.fn[a]=function(c,d){var e=f.map(this,b,c);L.test(a)||(d=c),d&&typeof d=="string"&&(e=f.filter(d,e)),e=this.length>1&&!R[a]?f.unique(e):e,(this.length>1||N.test(d))&&M.test(a)&&(e=e.reverse());return this.pushStack(e,a,P.call(arguments).join(","))}}),f.extend({filter:function(a,b,c){c&&(a=":not("+a+")");return b.length===1?f.find.matchesSelector(b[0],a)?[b[0]]:[]:f.find.matches(a,b)},dir:function(a,c,d){var e=[],g=a[c];while(g&&g.nodeType!==9&&(d===b||g.nodeType!==1||!f(g).is(d)))g.nodeType===1&&e.push(g),g=g[c];return e},nth:function(a,b,c,d){b=b||1;var e=0;for(;a;a=a[c])if(a.nodeType===1&&++e===b)break;return a},sibling:function(a,b){var c=[];for(;a;a=a.nextSibling)a.nodeType===1&&a!==b&&c.push(a);return c}});var V="abbr|article|aside|audio|canvas|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",W=/ jQuery\d+="(?:\d+|null)"/g,X=/^\s+/,Y=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/ig,Z=/<([\w:]+)/,$=/<tbody/i,_=/<|&#?\w+;/,ba=/<(?:script|style)/i,bb=/<(?:script|object|embed|option|style)/i,bc=new RegExp("<(?:"+V+")","i"),bd=/checked\s*(?:[^=]|=\s*.checked.)/i,be=/\/(java|ecma)script/i,bf=/^\s*<!(?:\[CDATA\[|\-\-)/,bg={option:[1,"<select multiple='multiple'>","</select>"],legend:[1,"<fieldset>","</fieldset>"],thead:[1,"<table>","</table>"],tr:[2,"<table><tbody>","</tbody></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],col:[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],area:[1,"<map>","</map>"],_default:[0,"",""]},bh=U(c);bg.optgroup=bg.option,bg.tbody=bg.tfoot=bg.colgroup=bg.caption=bg.thead,bg.th=bg.td,f.support.htmlSerialize||(bg._default=[1,"div<div>","</div>"]),f.fn.extend({text:function(a){if(f.isFunction(a))return this.each(function(b){var c=f(this);c.text(a.call(this,b,c.text()))});if(typeof a!="object"&&a!==b)return this.empty().append((this[0]&&this[0].ownerDocument||c).createTextNode(a));return f.text(this)},wrapAll:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapAll(a.call(this,b))});if(this[0]){var b=f(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&a.firstChild.nodeType===1)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapInner(a.call(this,b))});return this.each(function(){var b=f(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=f.isFunction(a);return this.each(function(c){f(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){f.nodeName(this,"body")||f(this).replaceWith(this.childNodes)}).end()},append:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.appendChild(a)})},prepend:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.insertBefore(a,this.firstChild)})},before:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this)});if(arguments.length){var a=f.clean(arguments);a.push.apply(a,this.toArray());return this.pushStack(a,"before",arguments)}},after:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this.nextSibling)});if(arguments.length){var a=this.pushStack(this,"after",arguments);a.push.apply(a,f.clean(arguments));return a}},remove:function(a,b){for(var c=0,d;(d=this[c])!=null;c++)if(!a||f.filter(a,[d]).length)!b&&d.nodeType===1&&(f.cleanData(d.getElementsByTagName("*")),f.cleanData([d])),d.parentNode&&d.parentNode.removeChild(d);return this},empty:function()
 {for(var a=0,b;(b=this[a])!=null;a++){b.nodeType===1&&f.cleanData(b.getElementsByTagName("*"));while(b.firstChild)b.removeChild(b.firstChild)}return this},clone:function(a,b){a=a==null?!1:a,b=b==null?a:b;return this.map(function(){return f.clone(this,a,b)})},html:function(a){if(a===b)return this[0]&&this[0].nodeType===1?this[0].innerHTML.replace(W,""):null;if(typeof a=="string"&&!ba.test(a)&&(f.support.leadingWhitespace||!X.test(a))&&!bg[(Z.exec(a)||["",""])[1].toLowerCase()]){a=a.replace(Y,"<$1></$2>");try{for(var c=0,d=this.length;c<d;c++)this[c].nodeType===1&&(f.cleanData(this[c].getElementsByTagName("*")),this[c].innerHTML=a)}catch(e){this.empty().append(a)}}else f.isFunction(a)?this.each(function(b){var c=f(this);c.html(a.call(this,b,c.html()))}):this.empty().append(a);return this},replaceWith:function(a){if(this[0]&&this[0].parentNode){if(f.isFunction(a))return this.each(function(b){var c=f(this),d=c.html();c.replaceWith(a.call(this,b,d))});typeof a!="string"&&(a=f(a).detach());return this.each(function(){var b=this.nextSibling,c=this.parentNode;f(this).remove(),b?f(b).before(a):f(c).append(a)})}return this.length?this.pushStack(f(f.isFunction(a)?a():a),"replaceWith",a):this},detach:function(a){return this.remove(a,!0)},domManip:function(a,c,d){var e,g,h,i,j=a[0],k=[];if(!f.support.checkClone&&arguments.length===3&&typeof j=="string"&&bd.test(j))return this.each(function(){f(this).domManip(a,c,d,!0)});if(f.isFunction(j))return this.each(function(e){var g=f(this);a[0]=j.call(this,e,c?g.html():b),g.domManip(a,c,d)});if(this[0]){i=j&&j.parentNode,f.support.parentNode&&i&&i.nodeType===11&&i.childNodes.length===this.length?e={fragment:i}:e=f.buildFragment(a,this,k),h=e.fragment,h.childNodes.length===1?g=h=h.firstChild:g=h.firstChild;if(g){c=c&&f.nodeName(g,"tr");for(var l=0,m=this.length,n=m-1;l<m;l++)d.call(c?bi(this[l],g):this[l],e.cacheable||m>1&&l<n?f.clone(h,!0,!0):h)}k.length&&f.each(k,bp)}return this}}),f.buildFragment=function(a,b,d){var e,g,h,i,j=a[0];b&&b[0]&&(i=b[0].ownerDocument||b[0]),i.createDocumentFragment||(i=c),a.length===1&&typeof j=="string"&&j.length<512&&i===c&&j.charAt(0)==="<"&&!bb.test(j)&&(f.support.checkClone||!bd.test(j))&&(f.support.html5Clone||!bc.test(j))&&(g=!0,h=f.fragments[j],h&&h!==1&&(e=h)),e||(e=i.createDocumentFragment(),f.clean(a,i,e,d)),g&&(f.fragments[j]=h?e:1);return{fragment:e,cacheable:g}},f.fragments={},f.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){f.fn[a]=function(c){var d=[],e=f(c),g=this.length===1&&this[0].parentNode;if(g&&g.nodeType===11&&g.childNodes.length===1&&e.length===1){e[b](this[0]);return this}for(var h=0,i=e.length;h<i;h++){var j=(h>0?this.clone(!0):this).get();f(e[h])[b](j),d=d.concat(j)}return this.pushStack(d,a,e.selector)}}),f.extend({clone:function(a,b,c){var d,e,g,h=f.support.html5Clone||!bc.test("<"+a.nodeName)?a.cloneNode(!0):bo(a);if((!f.support.noCloneEvent||!f.support.noCloneChecked)&&(a.nodeType===1||a.nodeType===11)&&!f.isXMLDoc(a)){bk(a,h),d=bl(a),e=bl(h);for(g=0;d[g];++g)e[g]&&bk(d[g],e[g])}if(b){bj(a,h);if(c){d=bl(a),e=bl(h);for(g=0;d[g];++g)bj(d[g],e[g])}}d=e=null;return h},clean:function(a,b,d,e){var g;b=b||c,typeof b.createElement=="undefined"&&(b=b.ownerDocument||b[0]&&b[0].ownerDocument||c);var h=[],i;for(var j=0,k;(k=a[j])!=null;j++){typeof k=="number"&&(k+="");if(!k)continue;if(typeof k=="string")if(!_.test(k))k=b.createTextNode(k);else{k=k.replace(Y,"<$1></$2>");var l=(Z.exec(k)||["",""])[1].toLowerCase(),m=bg[l]||bg._default,n=m[0],o=b.createElement("div");b===c?bh.appendChild(o):U(b).appendChild(o),o.innerHTML=m[1]+k+m[2];while(n--)o=o.lastChild;if(!f.support.tbody){var p=$.test(k),q=l==="table"&&!p?o.firstChild&&o.firstChild.childNodes:m[1]==="<table>"&&!p?o.childNodes:[];for(i=q.length-1;i>=0;--i)f.nodeName(q[i],"tbody")&&!q[i].childNodes.length&&q[i].parentNode.removeChild(q[i])}!f.support.leadingWhitespace&&X.test(k)&&o.insertBefore(b.createTextNode(X.exec(k)[0]),o.firstChild),k=o.childNodes}var r;if(!f.support.appendChecked)if(k[0]&&typeof (r=k.length)=="number")for(i=0;i<r;i++)bn(k[i]);else bn(k);k.nodeType?h.push(k):h=f.merge(h,k)}if(d){g=function(a){return!a.type||be.test(a.type)};for(j=0;h[j];j++)if(e&&f.nodeName(h[j],"script")&&(!h[j].type||h[j].type.toLowerCase()==="text/javascript"))e.push(h[j].parentNode?h[j].parentNode.removeChild(h[j]):h[j]);else{if(h[j].nodeType===1){var s=f.grep(h[j].getElementsByTagName("script"),g);h.splice.apply(h,[j+1,0].concat(s))}d.appendChild(h[j])}}return h},cleanData:function(a){var b,c,d=f.cache,e=f.event.special,g=f.support.deleteExpando;for(var h=0,i;(i=a[h])!=null;h++){if(i.nodeName&&f.noData[i.nodeName.toLowerCase()])continue;c=i[f.expando];if(c){b=d[c];if(b&&b.events){for(var j in b.events)e[j]?f.event.remove(i,j):f.removeEvent(i,j,b.handle);b.handle&&(b.handle.elem=null)}g?delete i[f.expando]:i.removeAttribute&&i.removeAttribute(f.expando),delete d[c]}}}});var bq=/alpha\([^)]*\)/i,br=/opacity=([^)]*)/,bs=/([A-Z]|^ms)/g,bt=/^-?\d+(?:px)?$/i,bu=/^-?\d/,bv=/^([\-+])=([\-+.\de]+)/,bw={position:"absolute",visibility:"hidden",display:"block"},bx=["Left","Right"],by=["Top","Bottom"],bz,bA,bB;f.fn.css=function(a,c){if(arguments.length===2&&c===b)return this;return f.access(this,a,c,!0,function(a,c,d){return d!==b?f.style(a,c,d):f.css(a,c)})},f.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=bz(a,"opacity","opacity");return c===""?"1":c}return a.style.opacity}}},cssNumber:{fillOpacity:!0,fontWeight:!0,lineHeight:!0,opacity:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":f.support.cssFloat?"cssFloat":"styleFloat"},style:function(a,c,d,e){if(!!a&&a.nodeType!==3&&a.nodeType!==8&&!!a.style){var g,h,i=f.camelCase(c),j=a.style,k=f.cssHooks[i];c=f.cssProps[i]||i;if(d===b){if(k&&"get"in k&&(g=k.get(a,!1,e))!==b)return g;return j[c]}h=typeof d,h==="string"&&(g=bv.exec(d))&&(d=+(g[1]+1)*+g[2]+parseFloat(f.css(a,c)),h="number");if(d==null||h==="number"&&isNaN(d))return;h==="number"&&!f.cssNumber[i]&&(d+="px");if(!k||!("set"in k)||(d=k.set(a,d))!==b)try{j[c]=d}catch(l){}}},css:function(a,c,d){var e,g;c=f.camelCase(c),g=f.cssHooks[c],c=f.cssProps[c]||c,c==="cssFloat"&&(c="float");if(g&&"get"in g&&(e=g.get(a,!0,d))!==b)return e;if(bz)return bz(a,c)},swap:function(a,b,c){var d={};for(var e in b)d[e]=a.style[e],a.style[e]=b[e];c.call(a);for(e in b)a.style[e]=d[e]}}),f.curCSS=f.css,f.each(["height","width"],function(a,b){f.cssHooks[b]={get:function(a,c,d){var e;if(c){if(a.offsetWidth!==0)return bC(a,b,d);f.swap(a,bw,function(){e=bC(a,b,d)});return e}},set:function(a,b){if(!bt.test(b))return b;b=parseFloat(b);if(b>=0)return b+"px"}}}),f.support.opacity||(f.cssHooks.opacity={get:function(a,b){return br.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?parseFloat(RegExp.$1)/100+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle,e=f.isNumeric(b)?"alpha(opacity="+b*100+")":"",g=d&&d.filter||c.filter||"";c.zoom=1;if(b>=1&&f.trim(g.replace(bq,""))===""){c.removeAttribute("filter");if(d&&!d.filter)return}c.filter=bq.test(g)?g.replace(bq,e):g+" "+e}}),f(function(){f.support.reliableMarginRight||(f.cssHooks.marginRight={get:function(a,b){var c;f.swap(a,{display:"inline-block"},function(){b?c=bz(a,"margin-right","marginRight"):c=a.style.marginRight});return c}})}),c.defaultView&&c.defaultView.getComputedStyle&&(bA=function(a,b){var c,d,e;b=b.replace(bs,"-$1").toLowerCase(),(d=a.ownerDocument.defaultView)&&(e=d.getComputedStyle(a,null))&&(c=e.getPropertyValue(b),c===""&&!f.contains(a.ownerDocument.documentElement,a)&&(c=f.style(a,b)));return c}),c.documentElement.currentStyle&&(bB=function(a,b){var c,d,e,f=a.currentStyle&&a.currentStyle[b],g=a.style;f===null&&g&&(e=g[b])&&(f=e),!bt.test(f)&&bu.test(f)&&(c=g.left,d=a.runtimeStyle&&a.runtimeStyle.left,d&&(a.runtimeStyle.left=a.currentStyle.left),g.left=b==="fontSize"?"1em":f||0,f=g.pixelLeft+"px",g.left=c,d&&(a.runtimeStyle.left=d));return f===""?"auto":f}),bz=bA||bB,f.expr&&f.expr.filters&&(f.expr.filters.hidden=function(a){var b=a.offsetWidth,c=a.offsetHeight;return b===0&&c===0||!f.support.reliableHiddenOffsets&&(a.style&&a.style.display||f.css(a,"display"))==="none"},f.expr.filters.visible=function(a){return!f.expr.filters.hidden(a)});var bD=/%20/g,bE=/\[\]$/,bF=/\r?\n/g,bG=/#.*$/,bH=/^(.*?):[\t]*([^\r\n]*)\r?$/mg,bI=/^(?:color|date|datetime|datetime-local|email|hidden|month|number|password|range|search|tel|text|time|url|week)$/i,bJ=/^(?:about|app|app\-storage|.+\-extension|file|res|widget):$/,bK=/^(?:GET|HEAD)$/,bL=/^\/\//,bM=/\?/,bN=/<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>/gi,bO=/^(?:select|textarea)/i,bP=/\s+/,bQ=/([?&])_=[^&]*/,bR=/^([\w\+\.\-]+:)(?:\/\/([^\/?#:]*)(?::(\d+))?)?/,bS=f.fn.load,bT={},bU={},bV,bW,bX=["*/"]+["*"];try{bV=e.href}catch(bY){bV=c.createElement("a"),bV.href="",bV=bV.href}bW=bR.exec(bV.toLowerCase())||[],f.fn.extend({load:function(a,c,d){if(typeof a!="string"&&bS)return bS.apply(this,arguments);if(!this.length)return this;var e=a.indexOf(" ");if(e>=0){var g=a.slice(e,a.length);a=a.slice(0,e)}var h="GET";c&&(f.isFunction(c)?(d=c,c=b):typeof c=="object"&&(c=f.param(c,f.ajaxSettings.traditional),h="POST"));var i=this;f.ajax({url:a,type:h,dataType:"html",data:c,complete:function(a,b,c){c=a.responseText,a.isResolved()&&(a.done(function(a){c=a}),i.html(g?f("<div>").append(c.replace(bN,"")).find(g):c)),d&&i.each(d,[c,b,a])}});return this},serialize:function(){return f.param(this.serializeArray())},serializeArray:function(){return this.map(function(){return this.elements?f.makeArray(this.elements):this}).filter(function(){return this.name&&!this.disabled&&(this.checked||bO.test(this.nodeName)||bI.test(this.type))}).map(function(a,b){var c=f(this).val();return c==null?null:f.isArray(c)?f.map(c,function(a,c){return{name:b.name,value:a.replace(bF,"\r\n")}}):{name:b.name,value:c.replace(bF,"\r\n")}}).get()}}),f.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "),function(a,b){f.fn[b]=function(a){return this.on(b,a)}}),f.each(["get","post"],function(a,c){f[c]=function(a,d,e,g){f.isFunction(d)&&(g=g||e,e=d,d=b);return f.ajax({type:c,url:a,data:d,success:e,dataType:g})}}),f.extend({getScript:function(a,c){return f.get(a,b,c,"script")},getJSON:function(a,b,c){return f.get(a,b,c,"json")},ajaxSetup:function(a,b){b?b_(a,f.ajaxSettings):(b=a,a=f.ajaxSettings),b_(a,b);return a},ajaxSettings:{url:bV,isLocal:bJ.test(bW[1]),global:!0,type:"GET",contentType:"application/x-www-form-urlencoded",processData:!0,async:!0,accepts:{xml:"application/xml, text/xml",html:"text/html",text:"text/plain",json:"application/json, text/javascript","*":bX},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText"},converters:{"* text":a.String,"text html":!0,"text json":f.parseJSON,"text xml":f.parseXML},flatOptions:{context:!0,url:!0}},ajaxPrefilter:bZ(bT),ajaxTransport:bZ(bU),ajax:function(a,c){function w(a,c,l,m){if(s!==2){s=2,q&&clearTimeout(q),p=b,n=m||"",v.readyState=a>0?4:0;var o,r,u,w=c,x=l?cb(d,v,l):b,y,z;if(a>=200&&a<300||a===304){if(d.ifModified){if(y=v.getResponseHeader("Last-Modified"))f.lastModified[k]=y;if(z=v.getResponseHeader("Etag"))f.etag[k]=z}if(a===304)w="notmodified",o=!0;else try{r=cc(d,x),w="success",o=!0}catch(A){w="parsererror",u=A}}else{u=w;if(!w||a)w="error",a<0&&(a=0)}v.status=a,v.statusText=""+(c||w),o?h.resolveWith(e,[r,w,v]):h.rejectWith(e,[v,w,u]),v.statusCode(j),j=b,t&&g.trigger("ajax"+(o?"Success":"Error"),[v,d,o?r:u]),i.fireWith(e,[v,w]),t&&(g.trigger("ajaxComplete",[v,d]),--f.active||f.event.trigger("ajaxStop"))}}typeof a=="object"&&(c=a,a=b),c=c||{};var d=f.ajaxSetup({},c),e=d.context||d,g=e!==d&&(e.nodeType||e instanceof f)?f(e):f.event,h=f.Deferred(),i=f.Callbacks("once memory"),j=d.statusCode||{},k,l={},m={},n,o,p,q,r,s=0,t,u,v={readyState:0,setRequestHeader:function(a,b){if(!s){var c=a.toLowerCase();a=m[c]=m[c]||a,l[a]=b}return this},getAllResponseHeaders:function(){return s===2?n:null},getResponseHeader:function(a){var c;if(s===2){if(!o){o={};while(c=bH.exec(n))o[c[1].toLowerCase()]=c[2]}c=o[a.toLowerCase()]}return c===b?null:c},overrideMimeType:function(a){s||(d.mimeType=a);return this},abort:function(a){a=a||"abort",p&&p.abort(a),w(0,a);return this}};h.promise(v),v.success=v.done,v.error=v.fail,v.complete=i.add,v.statusCode=function(a){if(a){var b;if(s<2)for(b in a)j[b]=[j[b],a[b]];else b=a[v.status],v.then(b,b)}return this},d.url=((a||d.url)+"").replace(bG,"").replace(bL,bW[1]+"//"),d.dataTypes=f.trim(d.dataType||"*").toLowerCase().split(bP),d.crossDomain==null&&(r=bR.exec(d.url.toLowerCase()),d.crossDomain=!(!r||r[1]==bW[1]&&r[2]==bW[2]&&(r[3]||(r[1]==="http:"?80:443))==(bW[3]||(bW[1]==="http:"?80:443)))),d.data&&d.processData&&typeof d.data!="string"&&(d.data=f.param(d.data,d.traditional)),b$(bT,d,c,v);if(s===2)return!1;t=d.global,d.type=d.type.toUpperCase(),d.hasContent=!bK.test(d.type),t&&f.active++===0&&f.event.trigger("ajaxStart");if(!d.hasContent){d.data&&(d.url+=(bM.test(d.url)?"&":"?")+d.data,delete d.data),k=d.url;if(d.cache===!1){var x=f.now(),y=d.url.replace(bQ,"$1_="+x);d.url=y+(y===d.url?(bM.test(d.url)?"&":"?")+"_="+x:"")}}(d.data&&d.hasContent&&d.contentType!==!1||c.contentType)&&v.setRequestHeader("Content-Type",d.contentType),d.ifModified&&(k=k||d.url,f.lastModified[k]&&v.setRequestHeader("If-Modified-Since",f.lastModified[k]),f.etag[k]&&v.setRequestHeader("If-None-Match",f.etag[k])),v.setRequestHeader("Accept",d.dataTypes[0]&&d.accepts[d.dataTypes[0]]?d.accepts[d.dataTypes[0]]+(d.dataTypes[0]!=="*"?", "+bX+"; q=0.01":""):d.accepts["*"]);for(u in d.headers)v.setRequestHeader(u,d.headers[u]);if(d.beforeSend&&(d.beforeSend.call(e,v,d)===!1||s===2)){v.abort();return!1}for(u in{success:1,error:1,complete:1})v[u](d[u]);p=b$(bU,d,c,v);if(!p)w(-1,"No Transport");else{v.readyState=1,t&&g.trigger("ajaxSend",[v,d]),d.async&&d.timeout>0&&(q=setTimeout(function(){v.abort("timeout")},d.timeout));try{s=1,p.send(l,w)}catch(z){if(s<2)w(-1,z);else throw z}}return v},param:function(a,c){var d=[],e=function(a,b){b=f.isFunction(b)?b():b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};c===b&&(c=f.ajaxSettings.traditional);if(f.isArray(a)||a.jquery&&!f.isPlainObject(a))f.each(a,function(){e(this.name,this.value)});else for(var g in a)ca(g,a[g],c,e);return d.join("&").replace(bD,"+")}}),f.extend({active:0,lastModified:{},etag:{}});var cd=f.now(),ce=/(\=)\?(&|$)|\?\?/i;f.ajaxSetup({jsonp:"callback",jsonpCallback:function(){return f.expando+"_"+cd++}}),f.ajaxPrefilter("json jsonp",function(b,c,d){var e=b.contentType==="application/x-www-form-urlencoded"&&typeof b.data=="string";if(b.dataTypes[0]==="jsonp"||b.jsonp!==!1&&(ce.test(b.url)||e&&ce.test(b.data))){var g,h=b.jsonpCallback=f.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,i=a[h],j=b.url,k=b.data,l="$1"+h+"$2";b.jsonp!==!1&&(j=j.replace(ce,l),b.url===j&&(e&&(k=k.replace(ce,l)),b.data===k&&(j+=(/\?/.test(j)?"&":"?")+b.jsonp+"="+h))),b.url=j,b.data=k,a[h]=function(a){g=[a]},d.always(function(){a[h]=i,g&&f.isFunction(i)&&a[h](g[0])}),b.converters["script json"]=function(){g||f.error(h+" was not called");return g[0]},b.dataTypes[0]="json";return"script"}}),f.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/javascript|ecmascript/},converters:{"text script":function(a){f.globalEval(a);return a}}}),f.ajaxPrefilter("script",function(a){a.cache===b&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),f.ajaxTransport("script",function(a){if(a.crossDomain){var d,e=c.head||c.getElementsByTagName("head")[0]||c.documentElement;return{send:function(f,g){d=c.createElement("script"),d.async="async",a.scriptCharset&&(d.charset=a.scriptCharset),d.src=a.url,d.onload=d.onreadystatechange=function(a,c){if(c||!d.readyState||/loaded|complete/.test(d.readyState))d.onload=d.onreadystatechange=null,e&&d.parentNode&&e.removeChild(d),d=b,c||g(200,"success")},e.insertBefore(d,e.firstChild)},abort:function(){d&&d.onload(0,1)}}}});var cf=a.ActiveXObject?function(){for(var a in ch)ch[a](0,1)}:!1,cg=0,ch;f.ajaxSettings.xhr=a.ActiveXObject?function(){return!this.isLocal&&ci()||cj()}:ci,function(a){f.extend(f.support,{ajax:!!a,cors:!!a&&"withCredentials"in a})}(f.ajaxSettings.xhr()),f.support.ajax&&f.ajaxTransport(function(c){if(!c.crossDomain||f.support.cors){var d;return{send:function(e,g){var h=c.xhr(),i,j;c.username?h.open(c.type,c.url,c.async,c.username,c.password):h.open(c.type,c.url,c.async);if(c.xhrFields)for(j in c.xhrFields)h[j]=c.xhrFields[j];c.mimeType&&h.overrideMimeType&&h.overrideMimeType(c.mimeType),!c.crossDomain&&!e["X-Requested-With"]&&(e["X-Requested-With"]="XMLHttpRequest");try{for(j in e)h.setRequestHeader(j,e[j])}catch(k){}h.send(c.hasContent&&c.data||null),d=function(a,e){var j,k,l,m,n;try{if(d&&(e||h.readyState===4)){d=b,i&&(h.onreadystatechange=f.noop,cf&&delete ch[i]);if(e)h.readyState!==4&&h.abort();else{j=h.status,l=h.getAllResponseHeaders(),m={},n=h.responseXML,n&&n.documentElement&&(m.xml=n),m.text=h.responseText;try{k=h.statusText}catch(o){k=""}!j&&c.isLocal&&!c.crossDomain?j=m.text?200:404:j===1223&&(j=204)}}}catch(p){e||g(-1,p)}m&&g(j,k,m,l)},!c.async||h.readyState===4?d():(i=++cg,cf&&(ch||(ch={},f(a).unload(cf)),ch[i]=d),h.onreadystatechange=d)},abort:function(){d&&d(0,1)}}}});var ck={},cl,cm,cn=/^(?:toggle|show|hide)$/,co=/^([+\-]=)?([\d+.\-]+)([a-z%]*)$/i,cp,cq=[["height","marginTop","marginBottom","paddingTop","paddingBottom"],["width","marginLeft","marginRight","paddingLeft","paddingRight"],["opacity"]],cr;f.fn.extend({show:function(a,b,c){var d,e;if(a||a===0)return this.animate(cu("show",3),a,b,c);for(var g=0,h=this.length;g<h;g++)d=this[g],d.style&&(e=d.style.display,!f._data(d,"olddisplay")&&e==="none"&&(e=d.style.display=""),e===""&&f.css(d,"display")==="none"&&f._data(d,"olddisplay",cv(d.nodeName)));for(g=0;g<h;g++){d=this[g];if(d.style){e=d.style.display;if(e===""||e==="none")d.style.display=f._data(d,"olddisplay")||""}}return this},hide:function(a,b,c){if(a||a===0)return this.animate(cu("hide",3),a,b,c);var d,e,g=0,h=this.length;for(;g<h;g++)d=this[g],d.style&&(e=f.css(d,"display"),e!=="none"&&!f._data(d,"olddisplay")&&f._data(d,"olddisplay",e));for(g=0;g<h;g++)this[g].style&&(this[g].style.display="none");return this},_toggle:f.fn.toggle,toggle:function(a,b,c){var d=typeof a=="boolean";f.isFunction(a)&&f.isFunction(b)?this._toggle.apply(this,arguments):a==null||d?this.each(function(){var b=d?a:f(this).is(":hidden");f(this)[b?"show":"hide"]()}):this.animate(cu("toggle",3),a,b,c);return this},fadeTo:function(a,b,c,d){return this.filter(":hidden").css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){function g(){e.queue===!1&&f._mark(this);var b=f.extend({},e),c=this.nodeType===1,d=c&&f(this).is(":hidden"),g,h,i,j,k,l,m,n,o;b.animatedProperties={};for(i in a){g=f.camelCase(i),i!==g&&(a[g]=a[i],delete a[i]),h=a[g],f.isArray(h)?(b.animatedProperties[g]=h[1],h=a[g]=h[0]):b.animatedProperties[g]=b.specialEasing&&b.specialEasing[g]||b.easing||"swing";if(h==="hide"&&d||h==="show"&&!d)return b.complete.call(this);c&&(g==="height"||g==="width")&&(b.overflow=[this.style.overflow,this.style.overflowX,this.style.overflowY],f.css(this,"display")==="inline"&&f.css(this,"float")==="none"&&(!f.support.inlineBlockNeedsLayout||cv(this.nodeName)==="inline"?this.style.display="inline-block":this.style.zoom=1))}b.overflow!=null&&(this.style.overflow="hidden");for(i in a)j=new f.fx(this,b,i),h=a[i],cn.test(h)?(o=f._data(this,"toggle"+i)||(h==="toggle"?d?"show":"hide":0),o?(f._data(this,"toggle"+i,o==="show"?"hide":"show"),j[o]()):j[h]()):(k=co.exec(h),l=j.cur(),k?(m=parseFloat(k[2]),n=k[3]||(f.cssNumber[i]?"":"px"),n!=="px"&&(f.style(this,i,(m||1)+n),l=(m||1)/j.cur()*l,f.style(this,i,l+n)),k[1]&&(m=(k[1]==="-="?-1:1)*m+l),j.custom(l,m,n)):j.custom(l,h,""));return!0}var e=f.speed(b,c,d);if(f.isEmptyObject(a))return this.each(e.complete,[!1]);a=f.extend({},a);return e.queue===!1?this.each(g):this.queue(e.queue,g)},stop:function(a,c,d){typeof a!="string"&&(d=c,c=a,a=b),c&&a!==!1&&this.queue(a||"fx",[]);return this.each(function(){function h(a,b,c){var e=b[c];f.removeData(a,c,!0),e.stop(d)}var b,c=!1,e=f.timers,g=f._data(this);d||f._unmark(!0,this);if(a==null)for(b in g)g[b]&&g[b].stop&&b.indexOf(".run")===b.length-4&&h(this,g,b);else g[b=a+".run"]&&g[b].stop&&h(this,g,b);for(b=e.length;b--;)e[b].elem===this&&(a==null||e[b].queue===a)&&(d?e[b](!0):e[b].saveState(),c=!0,e.splice(b,1));(!d||!c)&&f.dequeue(this,a)})}}),f.each({slideDown:cu("show",1),slideUp:cu("hide",1),slideToggle:cu("toggle",1),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){f.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),f.extend({speed:function(a,b,c){var d=a&&typeof a=="object"?f.extend({},a):{complete:c||!c&&b||f.isFunction(a)&&a,duration:a,easing:c&&b||b&&!f.isFunction(b)&&b};d.duration=f.fx.off?0:typeof d.duration=="number"?d.duration:d.duration in f.fx.speeds?f.fx.speeds[d.duration]:f.fx.speeds._default;if(d.queue==null||d.queue===!0)d.queue="fx";d.old=d.complete,d.complete=function(a){f.isFunction(d.old)&&d.old.call(this),d.queue?f.dequeue(this,d.queue):a!==!1&&f._unmark(this)};return d},easing:{linear:function(a,b,c,d){return c+d*a},swing:function(a,b,c,d){return(-Math.cos(a*Math.PI)/2+.5)*d+c}},timers:[],fx:function(a,b,c){this.options=b,this.elem=a,this.prop=c,b.orig=b.orig||{}}}),f.fx.prototype={update:function(){this.options.step&&this.options.step.call(this.elem,this.now,this),(f.fx.step[this.prop]||f.fx.step._default)(this)},cur:function(){if(this.elem[this.prop]!=null&&(!this.elem.style||this.elem.style[this.prop]==null))return this.elem[this.prop];var a,b=f.css(this.elem,this.prop);return isNaN(a=parseFloat(b))?!b||b==="auto"?0:b:a},custom:function(a,c,d){function h(a){return e.step(a)}var e=this,g=f.fx;this.startTime=cr||cs(),this.end=c,this.now=this.start=a,this.pos=this.state=0,this.unit=d||this.unit||(f.cssNumber[this.prop]?"":"px"),h.queue=this.options.queue,h.elem=this.elem,h.saveState=function(){e.options.hide&&f._data(e.elem,"fxshow"+e.prop)===b&&f._data(e.elem,"fxshow"+e.prop,e.start)},h()&&f.timers.push(h)&&!cp&&(cp=setInterval(g.tick,g.interval))},show:function(){var a=f._data(this.elem,"fxshow"+this.prop);this.options.orig[this.prop]=a||f.style(this.elem,this.prop),this.options.show=!0,a!==b?this.custom(this.cur(),a):this.custom(this.prop==="width"||this.prop==="height"?1:0,this.cur()),f(this.elem).show()},hide:function(){this.options.orig[this.prop]=f._data(this.elem,"fxshow"+this.prop)||f.style(this.elem,this.prop),this.options.hide=!0,this.custom(this.cur(),0)},step:function(a){var b,c,d,e=cr||cs(),g=!0,h=this.elem,i=this.options;if(a||e>=i.duration+this.startTime){this.now=this.end,this.pos=this.state=1,this.update(),i.animatedProperties[this.prop]=!0;for(b in i.animatedProperties)i.animatedProperties[b]!==!0&&(g=!1);if(g){i.overflow!=null&&!f.support.shrinkWrapBlocks&&f.each(["","X","Y"],function(a,b){h.style["overflow"+b]=i.overflow[a]}),i.hide&&f(h).hide();if(i.hide||i.show)for(b in i.animatedProperties)f.style(h,b,i.orig[b]),f.removeData(h,"fxshow"+b,!0),f.removeData(h,"toggle"+b,!0);d=i.complete,d&&(i.complete=!1,d.call(h))}return!1}i.duration==Infinity?this.now=e:(c=e-this.startTime,this.state=c/i.duration,this.pos=f.easing[i.animatedProperties[this.prop]](this.state,c,0,1,i.duration),this.now=this.start+(this.end-this.start)*this.pos),this.update();return!0}},f.extend(f.fx,{tick:function(){var a,b=f.timers,c=0;for(;c<b.length;c++)a=b[c],!a()&&b[c]===a&&b.splice(c--,1);b.length||f.fx.stop()},interval:13,stop:function(){clearInterval(cp),cp=null},speeds:{slow:600,fast:200,_default:400},step:{opacity:function(a){f.style(a.elem,"opacity",a.now)},_default:function(a){a.elem.style&&a.elem.style[a.prop]!=null?a.elem.style[a.prop]=a.now+a.unit:a.elem[a.prop]=a.now}}}),f.each(["width","height"],function(a,b){f.fx.step[b]=function(a){f.style(a.elem,b,Math.max(0,a.now)+a.unit)}}),f.expr&&f.expr.filters&&(f.expr.filters.animated=function(a){return f.grep(f.timers,function(b){return a===b.elem}).length});var cw=/^t(?:able|d|h)$/i,cx=/^(?:body|html)$/i;"getBoundingClientRect"in c.documentElement?f.fn.offset=function(a){var b=this[0],c;if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);try{c=b.getBoundingClientRect()}catch(d){}var e=b.ownerDocument,g=e.documentElement;if(!c||!f.contains(g,b))return c?{top:c.top,left:c.left}:{top:0,left:0};var h=e.body,i=cy(e),j=g.clientTop||h.clientTop||0,k=g.clientLeft||h.clientLeft||0,l=i.pageYOffset||f.support.boxModel&&g.scrollTop||h.scrollTop,m=i.pageXOffset||f.support.boxModel&&g.scrollLeft||h.scrollLeft,n=c.top+l-j,o=c.left+m-k;return{top:n,left:o}}:f.fn.offset=function(a){var b=this[0];if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);var c,d=b.offsetParent,e=b,g=b.ownerDocument,h=g.documentElement,i=g.body,j=g.defaultView,k=j?j.getComputedStyle(b,null):b.currentStyle,l=b.offsetTop,m=b.offsetLeft;while((b=b.parentNode)&&b!==i&&b!==h){if(f.support.fixedPosition&&k.position==="fixed")break;c=j?j.getComputedStyle(b,null):b.currentStyle,l-=b.scrollTop,m-=b.scrollLeft,b===d&&(l+=b.offsetTop,m+=b.offsetLeft,f.support.doesNotAddBorder&&(!f.support.doesAddBorderForTableAndCells||!cw.test(b.nodeName))&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),e=d,d=b.offsetParent),f.support.subtractsBorderForOverflowNotVisible&&c.overflow!=="visible"&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),k=c}if(k.position==="relative"||k.position==="static")l+=i.offsetTop,m+=i.offsetLeft;f.support.fixedPosition&&k.position==="fixed"&&(l+=Math.max(h.scrollTop,i.scrollTop),m+=Math.max(h.scrollLeft,i.scrollLeft));return{top:l,left:m}},f.offset={bodyOffset:function(a){var b=a.offsetTop,c=a.offsetLeft;f.support.doesNotIncludeMarginInBodyOffset&&(b+=parseFloat(f.css(a,"marginTop"))||0,c+=parseFloat(f.css(a,"marginLeft"))||0);return{top:b,left:c}},setOffset:function(a,b,c){var d=f.css(a,"position");d==="static"&&(a.style.position="relative");var e=f(a),g=e.offset(),h=f.css(a,"top"),i=f.css(a,"left"),j=(d==="absolute"||d==="fixed")&&f.inArray("auto",[h,i])>-1,k={},l={},m,n;j?(l=e.position(),m=l.top,n=l.left):(m=parseFloat(h)||0,n=parseFloat(i)||0),f.isFunction(b)&&(b=b.call(a,c,g)),b.top!=null&&(k.top=b.top-g.top+m),b.left!=null&&(k.left=b.left-g.left+n),"using"in b?b.using.call(a,k):e.css(k)}},f.fn.extend({position:function(){if(!this[0])return null;var a=this[0],b=this.offsetParent(),c=this.offset(),d=cx.test(b[0].nodeName)?{top:0,left:0}:b.offset();c.top-=parseFloat(f.css(a,"marginTop"))||0,c.left-=parseFloat(f.css(a,"marginLeft"))||0,d.top+=parseFloat(f.css(b[0],"borderTopWidth"))||0,d.left+=parseFloat(f.css(b[0],"borderLeftWidth"))||0;return{top:c.top-d.top,left:c.left-d.left}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||c.body;while(a&&!cx.test(a.nodeName)&&f.css(a,"position")==="static")a=a.offsetParent;return a})}}),f.each(["Left","Top"],function(a,c){var d="scroll"+c;f.fn[d]=function(c){var e,g;if(c===b){e=this[0];if(!e)return null;g=cy(e);return g?"pageXOffset"in g?g[a?"pageYOffset":"pageXOffset"]:f.support.boxModel&&g.document.documentElement[d]||g.document.body[d]:e[d]}return this.each(function(){g=cy(this),g?g.scrollTo(a?f(g).scrollLeft():c,a?c:f(g).scrollTop()):this[d]=c})}}),f.each(["Height","Width"],function(a,c){var d=c.toLowerCase();f.fn["inner"+c]=function(){var a=this[0];return a?a.style?parseFloat(f.css(a,d,"padding")):this[d]():null},f.fn["outer"+c]=function(a){var b=this[0];return b?b.style?parseFloat(f.css(b,d,a?"margin":"border")):this[d]():null},f.fn[d]=function(a){var e=this[0];if(!e)return a==null?null:this;if(f.isFunction(a))return this.each(function(b){var c=f(this);c[d](a.call(this,b,c[d]()))});if(f.isWindow(e)){var g=e.document.documentElement["client"+c],h=e.document.body;return e.document.compatMode==="CSS1Compat"&&g||h&&h["client"+c]||g}if(e.nodeType===9)return Math.max(e.documentElement["client"+c],e.body["scroll"+c],e.documentElement["scroll"+c],e.body["offset"+c],e.documentElement["offset"+c]);if(a===b){var i=f.css(e,d),j=parseFloat(i);return f.isNumeric(j)?j:i}return this.css(d,typeof a=="string"?a:a+"px")}}),a.jQuery=a.$=f,typeof define=="function"&&define.amd&&define.amd.jQuery&&define("jquery",[],function(){return f})})(window);

OEBPS/Common_Content/fonts/overpass_bold-web.eot

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.eot

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.woff

OEBPS/Common_Content/images/33.png

OEBPS/Common_Content/images/4.png

OEBPS/images/49.png
b 2 JAX-WS Web Services
< @@ ejoModule
¥ & META-INF
MANIFEST.MF

b = JRE System Library [java-1.6.0-5un-1.6.0.29.x
b =i JBoss Enterprise Application Platform 6.x Ru

=\ EAR Libraries
b & build

Close Project

Close Unrelated Projects

\mport...
Export >
Refresh F5

Debug As
Profile As

OEBPS/Common_Content/fonts/overpass_bold-web.woff

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.woff2

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.eot

OEBPS/Common_Content/images/38.png

OEBPS/images/6421.png
New Server
Create a new Server Adapter

JBoss Enterprise Application Platform (EAP) 6.1+

@ oy reanat

A Server Adapter manages starting and stopping instances of your server. It manages
command line arguments and keeps track of which modules have been deployed.

The serveris: @ ooyl

) Remote

Controlled by: § Filesystem and shell operations

) Management Operations

The selected profile requires a runtime.

™ Assign a runt

his server
Create new runtime (next page)
Runtime Details

JRE:

Home Directory:
Base Directory:

Configuration Fi

@ <Back || Next>

Cancel

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.woff

OEBPS/images/6586.png
New JPA Project
JPA Project
Configure JPA project settings. ﬁ

Project name: “ ‘

Project location
¥ Use default location

Locatior

: [Inome/usemamefworkspace

Target runtime

b

JPA version

(2 v

Configuration

| Basic JPA Configuration v || Moary.. |

A general starting point for a JPA application.

EAR membership

") Add project to an EAR

EAR project name: v | [New Project

Working sets

) Add project to working sets

Working sets: V][setect..

@ oo [ves | (e [e

OEBPS/Common_Content/images/8.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.eot

OEBPS/Common_Content/images/h1-bg.png

OEBPS/content.opf
 6.4_idm140070613213056 Development Guide This book provides references and examples for Java EE 6 developers using Red Hat JBoss Enterprise Application Platform 6 and its patch releases. Red Hat Customer Content Services en

OEBPS/Common_Content/images/shine.png

OEBPS/Common_Content/images/shade.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.woff2

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/image_right.png

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.woff

OEBPS/images/4707.png
Import

select ~
Import Existing Maven Projects =

Select an import source:

type filter text d

4 & General
= & cvs

[+ & EB

[& Git

4 & Install

4 & Java EE

= & Maven

3, Check out Maven Projects from SCM

Existing Maven Projects

O, Install or deploy an artifact to a Maven repository

1 Materialize Maven Projects from SCM

OEBPS/images/45.png
File Edit Source Refactor

o

@ % ovar|arer|®

Navigate Search Project Run Window Help

Em|e|2|a|rn

(25 Project Exp 52 s Type Hiera ‘ =0
5 v

~ & payment-arrangement

Deployment Descriptor: payment-al

b A JAX-WS Web Services
~ @ ejbModule
~ g com.company.collections

b [3) InterestCalculatorLocal java
b @ META-INF
b =i JRE System Library [java-1.6.0-open
b =i JBoss Enterprise Application Platforr
= EAR Libraries
b e build

package com. conpany . collections;

@ idnport javax.ejb.LocalBean;]

e
* Session Bean implementation class InterestCalculator
*/

@stateless

@LocatBean
public class InterestCalculator inplements InterestCalculatorLocal {

o
* Default constructor
*/
& public InterestCalcutator() {

// 00O Auto-generated canstructor stub
¥

OEBPS/Common_Content/images/28.png

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.woff2

OEBPS/images/51.png
Add and Remove

Modify the resources that are configured on the server

Move resources to the right to configure them on the server
Available: Configured:

Add > (& CollectionsAppE|B

< Remove

Add All >>

<< Remove All

If server is started, publish changes immediately

OEBPS/Common_Content/images/image_left.png
& RedHat

OEBPS/Common_Content/fonts/overpass_regular-web.ttf

OEBPS/images/3313.png
JBoss Maven Integration

When importing Maven projects configure the following

@ Seam

¥ Seam Runtime

@ Seam Artifacts (view folder, model source folder, package ...)
@ JBoss Portlet Core facet

@ JBoss JSF Portlet facet

@ JBoss Seam Portlet facet

¥ CDI facet

¥ Hibernate

Configure Maven Repositories

OEBPS/Common_Content/images/16.png

OEBPS/images/4764.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.woff2

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.eot

OEBPS/images/5242.png
mod_cluster/1.2.8.Final 1

Auto Refresh show DUMP output show INFO output

Virtual Host 1: 4

Contexts:

/clusterbench, Status: ENABLED Request um

Aliases:

exanple..con
Tocalhost
default-host

Enable Contesxts Di
Balancer: qaclustel

xts Stop Contexts
,LBGroup: Flushpackets: Off Flushwait: 10000,Ping: 10000000,Smax: 1,Ttl: 60000000,Status: OK, Elected: 1,Read: 15, Transferred: 0,Connected: on

Virtual Host 1: 9

Contexts:
/clusterbench, Status: ENABLED Request: 0 Disable Stop
Aliases:

default-host
Tocalhost
exanple. con

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.woff2

OEBPS/images/6205.png
Run On Server.
Run On Server

Select which server to use

How do you want to select the server?

© [Choose an existing server

7 Manually define a new server

Select the server that you want to use:

ype filter text]

Server

= & localhost

¥ JBoss EAP 6.1+ Runtime Server

State

JBoss Enterprise Application Platform (EAP) 6.1+

") Always use this server when running this project

Columns..

Cancel

OEBPS/Common_Content/fonts/overpass_bold-web.ttf

OEBPS/Common_Content/images/Enterprise_title_logo.png
& RedHat

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.woff

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.eot

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/images/title_logo.png
& RedHat

OEBPS/Common_Content/images/Online_title_logo.png
& RedHat

OEBPS/Common_Content/images/7.png

OEBPS/images/44.png
Create EJB 3.x Session Bean

Specify class file destination.

Project: [payment-arrangement &

‘Source foider: [/payment-arrangement/ejohodule [Browse.
Java package: | [Browse..|
Glass name:

Superclass: | [Browse...|
Statetype: | Stateless &

Create business interface

0 Remote | J

O Local |)

¥ No-interface View

OEBPS/Common_Content/images/warning.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.woff

OEBPS/Common_Content/images/important.png

OEBPS/images/6186.png
Edit Configuration

Edit configuration and launch. @

[Covan., =

JRE| " Refresh| & Source| B Environment | 5] Common

Base directory:

| Ihomefusername/jboss-eap-quickstarts/bean-validation

| Browse Workspace... || Browse File System... | Variables...

Goals: ‘clean test -Parq-jbossas-remote| ‘ ‘ Select...

Profiles: ‘

) Offline) Update Snapshots
) Debug Output 1 Skip Tests | Non-recursive

) Resolve Workspace artifacts

~ | Threads

Parameter Nam« Value

| appy || Rever

@ ‘ Close H Run

OEBPS/Common_Content/images/35.png

OEBPS/images/4714.png
Add Maven Repository

Add Maven Repository

™

Profile

el ‘Jbuss*earkya((ess*repus\mry

ctive by default

Repository

L2 ‘Jbuss*earkya((ess—repus\mry

R ‘Jbuss*earkya((ess*repus\mry

R ‘M’tp Iimaven.repository.redhat.com/earlyaccess/all/

Recognize JBoss Maven Enterprise Repositories... |

@ Cancel. oK

S

OEBPS/Common_Content/images/19.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.woff

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.woff

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.woff

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/images/20.png

OEBPS/images/4698.png
4 Servers 33 | B Console [2(Problems =l Properties 4" Search G OpenShift

No servers are available. Click this link to create a new server.

OEBPS/images/111.png
Create EJB 3.x Message-Driven Bean

Specty class file destnation EO

Project: [payment-arrangement &
Source folder: [/payment-arrangement/ejoodule | [Browse...|
— | (Browse

Class rame: |)

S|

{

Deatiation name:)

Jus

Destiation type: [Queve B

®@ <Back | new> |[camwe][Enisr

OEBPS/Common_Content/fonts/overpass_light-web.eot

OEBPS/Common_Content/scripts/highlight.pack.js
/*! highlight.js v9.2.0 | BSD3 License | git.io/hljslicense */
!function(e){var n="object"==typeof window&&window||"object"==typeof self&&self;"undefined"!=typeof exports?e(exports):n&&(n.hljs=e({}),"function"==typeof define&&define.amd&&define([],function(){return n.hljs}))}(function(e){function n(e){return e.replace(/&/gm,"&").replace(/</gm,"<").replace(/>/gm,">")}function t(e){return e.nodeName.toLowerCase()}function r(e,n){var t=e&&e.exec(n);return t&&0==t.index}function a(e){return/^(no-?highlight|plain|text)$/i.test(e)}function i(e){var n,t,r,i=e.className+" ";if(i+=e.parentNode?e.parentNode.className:"",t=/\blang(?:uage)?-([\w-]+)\b/i.exec(i))return w(t[1])?t[1]:"no-highlight";for(i=i.split(/\s+/),n=0,r=i.length;r>n;n++)if(w(i[n])||a(i[n]))return i[n]}function o(e,n){var t,r={};for(t in e)r[t]=e[t];if(n)for(t in n)r[t]=n[t];return r}function u(e){var n=[];return function r(e,a){for(var i=e.firstChild;i;i=i.nextSibling)3==i.nodeType?a+=i.nodeValue.length:1==i.nodeType&&(n.push({event:"start",offset:a,node:i}),a=r(i,a),t(i).match(/br|hr|img|input/)||n.push({event:"stop",offset:a,node:i}));return a}(e,0),n}function c(e,r,a){function i(){return e.length&&r.length?e[0].offset!=r[0].offset?e[0].offset<r[0].offset?e:r:"start"==r[0].event?e:r:e.length?e:r}function o(e){function r(e){return" "+e.nodeName+'="'+n(e.value)+'"'}f+="<"+t(e)+Array.prototype.map.call(e.attributes,r).join("")+">"}function u(e){f+="</"+t(e)+">"}function c(e){("start"==e.event?o:u)(e.node)}for(var s=0,f="",l=[];e.length||r.length;){var g=i();if(f+=n(a.substr(s,g[0].offset-s)),s=g[0].offset,g==e){l.reverse().forEach(u);do c(g.splice(0,1)[0]),g=i();while(g==e&&g.length&&g[0].offset==s);l.reverse().forEach(o)}else"start"==g[0].event?l.push(g[0].node):l.pop(),c(g.splice(0,1)[0])}return f+n(a.substr(s))}function s(e){function n(e){return e&&e.source||e}function t(t,r){return new RegExp(n(t),"m"+(e.cI?"i":"")+(r?"g":""))}function r(a,i){if(!a.compiled){if(a.compiled=!0,a.k=a.k||a.bK,a.k){var u={},c=function(n,t){e.cI&&(t=t.toLowerCase()),t.split(" ").forEach(function(e){var t=e.split("|");u[t[0]]=[n,t[1]?Number(t[1]):1]})};"string"==typeof a.k?c("keyword",a.k):Object.keys(a.k).forEach(function(e){c(e,a.k[e])}),a.k=u}a.lR=t(a.l||/\b\w+\b/,!0),i&&(a.bK&&(a.b="\\b("+a.bK.split(" ").join("|")+")\\b"),a.b||(a.b=/\B|\b/),a.bR=t(a.b),a.e||a.eW||(a.e=/\B|\b/),a.e&&(a.eR=t(a.e)),a.tE=n(a.e)||"",a.eW&&i.tE&&(a.tE+=(a.e?"|":"")+i.tE)),a.i&&(a.iR=t(a.i)),void 0===a.r&&(a.r=1),a.c||(a.c=[]);var s=[];a.c.forEach(function(e){e.v?e.v.forEach(function(n){s.push(o(e,n))}):s.push("self"==e?a:e)}),a.c=s,a.c.forEach(function(e){r(e,a)}),a.starts&&r(a.starts,i);var f=a.c.map(function(e){return e.bK?"\\.?("+e.b+")\\.?":e.b}).concat([a.tE,a.i]).map(n).filter(Boolean);a.t=f.length?t(f.join("|"),!0):{exec:function(){return null}}}}r(e)}function f(e,t,a,i){function o(e,n){for(var t=0;t<n.c.length;t++)if(r(n.c[t].bR,e))return n.c[t]}function u(e,n){if(r(e.eR,n)){for(;e.endsParent&&e.parent;)e=e.parent;return e}return e.eW?u(e.parent,n):void 0}function c(e,n){return!a&&r(n.iR,e)}function g(e,n){var t=N.cI?n[0].toLowerCase():n[0];return e.k.hasOwnProperty(t)&&e.k[t]}function p(e,n,t,r){var a=r?"":E.classPrefix,i='<span class="'+a,o=t?"":"";return i+=e+'">',i+n+o}function h(){if(!k.k)return n(M);var e="",t=0;k.lR.lastIndex=0;for(var r=k.lR.exec(M);r;){e+=n(M.substr(t,r.index-t));var a=g(k,r);a?(B+=a[1],e+=p(a[0],n(r[0]))):e+=n(r[0]),t=k.lR.lastIndex,r=k.lR.exec(M)}return e+n(M.substr(t))}function d(){var e="string"==typeof k.sL;if(e&&!R[k.sL])return n(M);var t=e?f(k.sL,M,!0,y[k.sL]):l(M,k.sL.length?k.sL:void 0);return k.r>0&&(B+=t.r),e&&(y[k.sL]=t.top),p(t.language,t.value,!1,!0)}function b(){L+=void 0!==k.sL?d():h(),M=""}function v(e,n){L+=e.cN?p(e.cN,"",!0):"",k=Object.create(e,{parent:{value:k}})}function m(e,n){if(M+=e,void 0===n)return b(),0;var t=o(n,k);if(t)return t.skip?M+=n:(t.eB&&(M+=n),b(),t.rB||t.eB||(M=n)),v(t,n),t.rB?0:n.length;var r=u(k,n);if(r){var a=k;a.skip?M+=n:(a.rE||a.eE||(M+=n),b(),a.eE&&(M=n));do k.cN&&(L+=""),k.skip||(B+=k.r),k=k.parent;while(k!=r.parent);return r.starts&&v(r.starts,""),a.rE?0:n.length}if(c(n,k))throw new Error('Illegal lexeme "'+n+'" for mode "'+(k.cN||"<unnamed>")+'"');return M+=n,n.length||1}var N=w(e);if(!N)throw new Error('Unknown language: "'+e+'"');s(N);var x,k=i||N,y={},L="";for(x=k;x!=N;x=x.parent)x.cN&&(L=p(x.cN,"",!0)+L);var M="",B=0;try{for(var C,j,I=0;;){if(k.t.lastIndex=I,C=k.t.exec(t),!C)break;j=m(t.substr(I,C.index-I),C[0]),I=C.index+j}for(m(t.substr(I)),x=k;x.parent;x=x.parent)x.cN&&(L+="");return{r:B,value:L,language:e,top:k}}catch(O){if(-1!=O.message.indexOf("Illegal"))return{r:0,value:n(t)};throw O}}function l(e,t){t=t||E.languages||Object.keys(R);var r={r:0,value:n(e)},a=r;return t.forEach(function(n){if(w(n)){var t=f(n,e,!1);t.language=n,t.r>a.r&&(a=t),t.r>r.r&&(a=r,r=t)}}),a.language&&(r.second_best=a),r}function g(e){return E.tabReplace&&(e=e.replace(/^((<[^>]+>|\t)+)/gm,function(e,n){return n.replace(/\t/g,E.tabReplace)})),E.useBR&&(e=e.replace(/\n/g,"
")),e}function p(e,n,t){var r=n?x[n]:t,a=[e.trim()];return e.match(/\bhljs\b/)||a.push("hljs"),-1===e.indexOf(r)&&a.push(r),a.join(" ").trim()}function h(e){var n=i(e);if(!a(n)){var t;E.useBR?(t=document.createElementNS("http://www.w3.org/1999/xhtml","div"),t.innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[\/]*>/g,"\n")):t=e;var r=t.textContent,o=n?f(n,r,!0):l(r),s=u(t);if(s.length){var h=document.createElementNS("http://www.w3.org/1999/xhtml","div");h.innerHTML=o.value,o.value=c(s,u(h),r)}o.value=g(o.value),e.innerHTML=o.value,e.className=p(e.className,n,o.language),e.result={language:o.language,re:o.r},o.second_best&&(e.second_best={language:o.second_best.language,re:o.second_best.r})}}function d(e){E=o(E,e)}function b(){if(!b.called){b.called=!0;var e=document.querySelectorAll("pre code");Array.prototype.forEach.call(e,h)}}function v(){addEventListener("DOMContentLoaded",b,!1),addEventListener("load",b,!1)}function m(n,t){var r=R[n]=t(e);r.aliases&&r.aliases.forEach(function(e){x[e]=n})}function N(){return Object.keys(R)}function w(e){return e=(e||"").toLowerCase(),R[e]||R[x[e]]}var E={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0},R={},x={};return e.highlight=f,e.highlightAuto=l,e.fixMarkup=g,e.highlightBlock=h,e.configure=d,e.initHighlighting=b,e.initHighlightingOnLoad=v,e.registerLanguage=m,e.listLanguages=N,e.getLanguage=w,e.inherit=o,e.IR="[a-zA-Z]\\w*",e.UIR="[a-zA-Z_]\\w*",e.NR="\\b\\d+(\\.\\d+)?",e.CNR="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",e.BNR="\\b(0b[01]+)",e.RSR="!|!=|!==|%|%=|&|&&|&=|*|*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",e.BE={b:"\\\\[\\s\\S]",r:0},e.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[e.BE]},e.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[e.BE]},e.PWM={b:/\b(a|an|the|are|I|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|like)\b/},e.C=function(n,t,r){var a=e.inherit({cN:"comment",b:n,e:t,c:[]},r||{});return a.c.push(e.PWM),a.c.push({cN:"doctag",b:"(?:TODO|FIXME|NOTE|BUG|XXX):",r:0}),a},e.CLCM=e.C("//","$"),e.CBCM=e.C("/*","*/"),e.HCM=e.C("#","$"),e.NM={cN:"number",b:e.NR,r:0},e.CNM={cN:"number",b:e.CNR,r:0},e.BNM={cN:"number",b:e.BNR,r:0},e.CSSNM={cN:"number",b:e.NR+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",r:0},e.RM={cN:"regexp",b:/\//,e:/\/[gimuy]*/,i:/\n/,c:[e.BE,{b:/\[/,e:/\]/,r:0,c:[e.BE]}]},e.TM={cN:"title",b:e.IR,r:0},e.UTM={cN:"title",b:e.UIR,r:0},e.METHOD_GUARD={b:"\\.\\s*"+e.UIR,r:0},e});hljs.registerLanguage("basic",function(E){return{cI:!0,i:"^.",l:"[a-zA-Z][a-zA-Z0-9_$%!#]*",k:{keyword:"ABS ASC AND ATN AUTO|0 BEEP BLOAD|10 BSAVE|10 CALL CALLS CDBL CHAIN CHDIR CHR$|10 CINT CIRCLE CLEAR CLOSE CLS COLOR COM COMMON CONT COS CSNG CSRLIN CVD CVI CVS DATA DATE$ DEFDBL DEFINT DEFSNG DEFSTR DEF|0 SEG USR DELETE DIM DRAW EDIT END ENVIRON ENVIRON$ EOF EQV ERASE ERDEV ERDEV$ ERL ERR ERROR EXP FIELD FILES FIX FOR|0 FRE GET GOSUB|10 GOTO HEX$ IF|0 THEN ELSE|0 INKEY$ INP INPUT INPUT# INPUT$ INSTR IMP INT IOCTL IOCTL$ KEY ON OFF LIST KILL LEFT$ LEN LET LINE LLIST LOAD LOC LOCATE LOF LOG LPRINT USING LSET MERGE MID$ MKDIR MKD$ MKI$ MKS$ MOD NAME NEW NEXT NOISE NOT OCT$ ON OR PEN PLAY STRIG OPEN OPTION BASE OUT PAINT PALETTE PCOPY PEEK PMAP POINT POKE POS PRINT PRINT] PSET PRESET PUT RANDOMIZE READ REM RENUM RESET|0 RESTORE RESUME RETURN|0 RIGHT$ RMDIR RND RSET RUN SAVE SCREEN SGN SHELL SIN SOUND SPACE$ SPC SQR STEP STICK STOP STR$ STRING$ SWAP SYSTEM TAB TAN TIME$ TIMER TROFF TRON TO USR VAL VARPTR VARPTR$ VIEW WAIT WHILE WEND WIDTH WINDOW WRITE XOR"},c:[E.QSM,E.C("REM","$",{r:10}),E.C("'","$",{r:0}),{cN:"symbol",b:"^[0-9]+ ",r:10},{cN:"number",b:"\\b([0-9]+[0-9edED.]*[#!]?)",r:0},{cN:"number",b:"(&[hH][0-9a-fA-F]{1,4})"},{cN:"number",b:"(&[oO][0-7]{1,6})"}]}});hljs.registerLanguage("vbnet",function(e){return{aliases:["vb"],cI:!0,k:{keyword:"addhandler addressof alias and andalso aggregate ansi as assembly auto binary by byref byval call case catch class compare const continue custom declare default delegate dim distinct do each equals else elseif end enum erase error event exit explicit finally for friend from function get global goto group handles if implements imports in inherits interface into is isfalse isnot istrue join key let lib like loop me mid mod module mustinherit mustoverride mybase myclass namespace narrowing new next not notinheritable notoverridable of off on operator option optional or order orelse overloads overridable overrides paramarray partial preserve private property protected public raiseevent readonly redim rem removehandler resume return select set shadows shared skip static step stop structure strict sub synclock take text then throw to try unicode until using when where while widening with withevents writeonly xor",built_in:"boolean byte cbool cbyte cchar cdate cdec cdbl char cint clng cobj csbyte cshort
csng cstr ctype date decimal directcast double gettype getxmlnamespace iif integer long object sbyte short single string trycast typeof uinteger ulong ushort",literal:"true false nothing"},i:"//|{|}|endif|gosub|variant|wend",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C("'","$",{rB:!0,c:[{cN:"doctag",b:"'''|<!--|-->",c:[e.PWM]},{cN:"doctag",b:"</?",e:">",c:[e.PWM]}]}),e.CNM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elseif end region externalsource"}}]}});hljs.registerLanguage("dockerfile",function(e){return{aliases:["docker"],cI:!0,k:"from maintainer cmd expose add copy entrypoint volume user workdir onbuild run env label",c:[e.HCM,{k:"run cmd entrypoint volume add copy workdir onbuild label",b:/^ *(onbuild +)?(run|cmd|entrypoint|volume|add|copy|workdir|label) +/,starts:{e:/[^\\]\n/,sL:"bash"}},{k:"from maintainer expose env user onbuild",b:/^ *(onbuild +)?(from|maintainer|expose|env|user|onbuild) +/,e:/[^\\]\n/,c:[e.ASM,e.QSM,e.NM,e.HCM]}]}});hljs.registerLanguage("php",function(e){var c={b:"\\$+[a-zA-Z_�-ÿ][a-zA-Z0-9_�-ÿ]*"},a={cN:"meta",b:/<\?(php)?|\?>/},i={cN:"string",c:[e.BE,a],v:[{b:'b"',e:'"'},{b:"b'",e:"'"},e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},t={v:[e.BNM,e.CNM]};return{aliases:["php3","php4","php5","php6"],cI:!0,k:"and include_once list abstract global private echo interface as static endswitch array null if endwhile or const for endforeach self var while isset public protected exit foreach throw elseif include __FILE__ empty require_once do xor return parent clone use __CLASS__ __LINE__ else break print eval new catch __METHOD__ case exception default die require __FUNCTION__ enddeclare final try switch continue endfor endif declare unset true false trait goto instanceof insteadof __DIR__ __NAMESPACE__ yield finally",c:[e.HCM,e.C("//","$",{c:[a]}),e.C("/*","*/",{c:[{cN:"doctag",b:"@[A-Za-z]+"}]}),e.C("__halt_compiler.+?;",!1,{eW:!0,k:"__halt_compiler",l:e.UIR}),{cN:"string",b:/<<<['"]?\w+['"]?$/,e:/^\w+;?$/,c:[e.BE,{cN:"subst",v:[{b:/\$\w+/},{b:/\{\$/,e:/\}/}]}]},a,c,{b:/(::|->)+[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/},{cN:"function",bK:"function",e:/[;{]/,eE:!0,i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:["self",c,e.CBCM,i,t]}]},{cN:"class",bK:"class interface",e:"{",eE:!0,i:/[:\(\$"]/,c:[{bK:"extends implements"},e.UTM]},{bK:"namespace",e:";",i:/[\.']/,c:[e.UTM]},{bK:"use",e:";",c:[e.UTM]},{b:"=>"},i,t]}});hljs.registerLanguage("haml",function(s){return{cI:!0,c:[{cN:"meta",b:"^!!!((5|1\\.1|Strict|Frameset|Basic|Mobile|RDFa|XML\\b.*))?$",r:10},s.C("^\\s*(!=#|=#|-#|/).*$",!1,{r:0}),{b:"^\\s*(-|=|!=)(?!#)",starts:{e:"\\n",sL:"ruby"}},{cN:"tag",b:"^\\s*%",c:[{cN:"selector-tag",b:"\\w+"},{cN:"selector-id",b:"#[\\w-]+"},{cN:"selector-class",b:"\\.[\\w-]+"},{b:"{\\s*",e:"\\s*}",c:[{b:":\\w+\\s*=>",e:",\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:":\\w+"},s.ASM,s.QSM,{b:"\\w+",r:0}]}]},{b:"\\(\\s*",e:"\\s*\\)",eE:!0,c:[{b:"\\w+\\s*=",e:"\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:"\\w+",r:0},s.ASM,s.QSM,{b:"\\w+",r:0}]}]}]},{b:"^\\s*[=~]\\s*"},{b:"#{",starts:{e:"}",sL:"ruby"}}]}});hljs.registerLanguage("perl",function(e){var t="getpwent getservent quotemeta msgrcv scalar kill dbmclose undef lc ma syswrite tr send umask sysopen shmwrite vec qx utime local oct semctl localtime readpipe do return format read sprintf dbmopen pop getpgrp not getpwnam rewinddir qqfileno qw endprotoent wait sethostent bless s|0 opendir continue each sleep endgrent shutdown dump chomp connect getsockname die socketpair close flock exists index shmgetsub for endpwent redo lstat msgctl setpgrp abs exit select print ref gethostbyaddr unshift fcntl syscall goto getnetbyaddr join gmtime symlink semget splice x|0 getpeername recv log setsockopt cos last reverse gethostbyname getgrnam study formline endhostent times chop length gethostent getnetent pack getprotoent getservbyname rand mkdir pos chmod y|0 substr endnetent printf next open msgsnd readdir use unlink getsockopt getpriority rindex wantarray hex system getservbyport endservent int chr untie rmdir prototype tell listen fork shmread ucfirst setprotoent else sysseek link getgrgid shmctl waitpid unpack getnetbyname reset chdir grep split require caller lcfirst until warn while values shift telldir getpwuid my getprotobynumber delete and sort uc defined srand accept package seekdir getprotobyname semop our rename seek if q|0 chroot sysread setpwent no crypt getc chown sqrt write setnetent setpriority foreach tie sin msgget map stat getlogin unless elsif truncate exec keys glob tied closedirioctl socket readlink eval xor readline binmode setservent eof ord bind alarm pipe atan2 getgrent exp time push setgrent gt lt or ne m|0 break given say state when",r={cN:"subst",b:"[$@]\\{",e:"\\}",k:t},s={b:"->{",e:"}"},n={v:[{b:/\$\d/},{b:/[\$%@](\^\w\b|#\w+(::\w+)*|{\w+}|\w+(::\w*)*)/},{b:/[\$%@][^\s\w{]/,r:0}]},i=[e.BE,r,n],o=[n,e.HCM,e.C("^\\=\\w","\\=cut",{eW:!0}),s,{cN:"string",c:i,v:[{b:"q[qwxr]?\\s*\\(",e:"\\)",r:5},{b:"q[qwxr]?\\s*\\[",e:"\\]",r:5},{b:"q[qwxr]?\\s*\\{",e:"\\}",r:5},{b:"q[qwxr]?\\s*\\|",e:"\\|",r:5},{b:"q[qwxr]?\\s*\\<",e:"\\>",r:5},{b:"qw\\s+q",e:"q",r:5},{b:"'",e:"'",c:[e.BE]},{b:'"',e:'"'},{b:"`",e:"`",c:[e.BE]},{b:"{\\w+}",c:[],r:0},{b:"-?\\w+\\s*\\=\\>",c:[],r:0}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\/\\/|"+e.RSR+"|\\b(split|return|print|reverse|grep)\\b)\\s*",k:"split return print reverse grep",r:0,c:[e.HCM,{cN:"regexp",b:"(s|tr|y)/(\\\\.|[^/])*/(\\\\.|[^/])*/[a-z]*",r:10},{cN:"regexp",b:"(m|qr)?/",e:"/[a-z]*",c:[e.BE],r:0}]},{cN:"function",bK:"sub",e:"(\\s*\\(.*?\\))?[;{]",eE:!0,r:5,c:[e.TM]},{b:"-\\w\\b",r:0},{b:"^__DATA__$",e:"^__END__$",sL:"mojolicious",c:[{b:"^@@.*",e:"$",cN:"comment"}]}];return r.c=o,s.c=o,{aliases:["pl"],k:t,c:o}});hljs.registerLanguage("accesslog",function(T){return{c:[{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+\\b",r:0},{cN:"string",b:'"(GET|POST|HEAD|PUT|DELETE|CONNECT|OPTIONS|PATCH|TRACE)',e:'"',k:"GET POST HEAD PUT DELETE CONNECT OPTIONS PATCH TRACE",i:"\\n",r:10},{cN:"string",b:/\[/,e:/\]/,i:"\\n"},{cN:"string",b:'"',e:'"',i:"\\n"}]}});hljs.registerLanguage("d",function(e){var t={keyword:"abstract alias align asm assert auto body break byte case cast catch class const continue debug default delete deprecated do else enum export extern final finally for foreach foreach_reverse|10 goto if immutable import in inout int interface invariant is lazy macro mixin module new nothrow out override package pragma private protected public pure ref return scope shared static struct super switch synchronized template this throw try typedef typeid typeof union unittest version void volatile while with __FILE__ __LINE__ __gshared|10 __thread __traits __DATE__ __EOF__ __TIME__ __TIMESTAMP__ __VENDOR__ __VERSION__",built_in:"bool cdouble cent cfloat char creal dchar delegate double dstring float function idouble ifloat ireal long real short string ubyte ucent uint ulong ushort wchar wstring",literal:"false null true"},r="(0|[1-9][\\d_]*)",a="(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d)",i="0[bB][01_]+",n="([\\da-fA-F][\\da-fA-F_]*|_[\\da-fA-F][\\da-fA-F_]*)",_="0[xX]"+n,c="([eE][+-]?"+a+")",d="("+a+"(\\.\\d*|"+c+")|\\d+\\."+a+a+"|\\."+r+c+"?)",o="(0[xX]("+n+"\\."+n+"|\\.?"+n+")[pP][+-]?"+a+")",s="("+r+"|"+i+"|"+_+")",l="("+o+"|"+d+")",u="\\\\(['\"\\?\\\\abfnrtv]|u[\\dA-Fa-f]{4}|[0-7]{1,3}|x[\\dA-Fa-f]{2}|U[\\dA-Fa-f]{8})|&[a-zA-Z\\d]{2,};",b={cN:"number",b:"\\b"+s+"(L|u|U|Lu|LU|uL|UL)?",r:0},f={cN:"number",b:"\\b("+l+"([fF]|L|i|[fF]i|Li)?|"+s+"(i|[fF]i|Li))",r:0},g={cN:"string",b:"'("+u+"|.)",e:"'",i:"."},h={b:u,r:0},p={cN:"string",b:'"',c:[h],e:'"[cwd]?'},m={cN:"string",b:'[rq]"',e:'"[cwd]?',r:5},w={cN:"string",b:"`",e:"`[cwd]?"},N={cN:"string",b:'x"[\\da-fA-F\\s\\n\\r]*"[cwd]?',r:10},A={cN:"string",b:'q"\\{',e:'\\}"'},F={cN:"meta",b:"^#!",e:"$",r:5},y={cN:"meta",b:"#(line)",e:"$",r:5},L={cN:"keyword",b:"@[a-zA-Z_][a-zA-Z_\\d]*"},v=e.C("\\/\\+","\\+\\/",{c:["self"],r:10});return{l:e.UIR,k:t,c:[e.CLCM,e.CBCM,v,N,p,m,w,A,f,b,g,F,y,L]}});hljs.registerLanguage("csp",function(r){return{cI:!1,l:"[a-zA-Z][a-zA-Z0-9_-]*",k:{keyword:"base-uri child-src connect-src default-src font-src form-action frame-ancestors frame-src img-src media-src object-src plugin-types report-uri sandbox script-src style-src"},c:[{cN:"string",b:"'",e:"'"},{cN:"attribute",b:"^Content",e:":",eE:!0}]}});hljs.registerLanguage("apache",function(e){var r={cN:"number",b:"[\\$%]\\d+"};return{aliases:["apacheconf"],cI:!0,c:[e.HCM,{cN:"section",b:"</?",e:">"},{cN:"attribute",b:/\w+/,r:0,k:{nomarkup:"order deny allow setenv rewriterule rewriteengine rewritecond documentroot sethandler errordocument loadmodule options header listen serverroot servername"},starts:{e:/$/,r:0,k:{literal:"on off all"},c:[{cN:"meta",b:"\\s\\[",e:"\\]$"},{cN:"variable",b:"[\\$%]\\{",e:"\\}",c:["self",r]},r,e.QSM]}}],i:/\S/}});hljs.registerLanguage("prolog",function(c){var b={b:/[a-z][A-Za-z0-9_]*/,r:0},r={cN:"symbol",v:[{b:/[A-Z][a-zA-Z0-9_]*/},{b:/_[A-Za-z0-9_]*/}],r:0},e={b:/\(/,e:/\)/,r:0},n={b:/\[/,e:/\]/},a={cN:"comment",b:/%/,e:/$/,c:[c.PWM]},t={cN:"string",b:/`/,e:/`/,c:[c.BE]},g={cN:"string",b:/0\'(\\\'|.)/},s={cN:"string",b:/0\'\\s/},o={b:/:-/},N=[b,r,e,o,n,a,c.CBCM,c.QSM,c.ASM,t,g,s,c.CNM];return e.c=N,n.c=N,{c:N.concat([{b:/\.$/}])}});hljs.registerLanguage("lisp",function(b){var e="[a-zA-Z_\\-\\+*\\/\\<\\=\\>\\&\\#][a-zA-Z0-9_\\-\\+*\\/\\<\\=\\>\\&\\#!]*",c="\\|[^]*?\\|",r="(\\-|\\+)?\\d+(\\.\\d+|\\/\\d+)?((d|e|f|l|s|D|E|F|L|S)(\\+|\\-)?\\d+)?",a={cN:"meta",b:"^#!",e:"$"},l={cN:"literal",b:"\\b(t{1}|nil)\\b"},n={cN:"number",v:[{b:r,r:0},{b:"#(b|B)[0-1]+(/[0-1]+)?"},{b:"#(o|O)[0-7]+(/[0-7]+)?"},{b:"#(x|X)[0-9a-fA-F]+(/[0-9a-fA-F]+)?"},{b:"#(c|C)\\("+r+" +"+r,e:"\\)"}]},i=b.inherit(b.QSM,{i:null}),t=b.C(";","$",{r:0}),s={b:"*",e:"*"},u={cN:"symbol",b:"[:&]"+e},d={b:e,r:0},f={b:c},m={b:"\\(",e:"\\)",c:["self",l,i,n,d]},o={c:[n,i,s,u,m,d],v:[{b:"['`]\\(",e:"\\)"},{b:"\\(quote
",e:"\\)",k:{name:"quote"}},{b:"'"+c}]},v={v:[{b:"'"+e},{b:"#'"+e+"(::"+e+")*"}]},N={b:"\\(\\s*",e:"\\)"},A={eW:!0,r:0};return N.c=[{cN:"name",v:[{b:e},{b:c}]},A],A.c=[o,v,N,l,n,i,t,s,u,f,d],{i:/\S/,c:[n,a,l,i,t,o,v,N,d]}});hljs.registerLanguage("swift",function(e){var i={keyword:"__COLUMN__ __FILE__ __FUNCTION__ __LINE__ as as! as? associativity break case catch class continue convenience default defer deinit didSet do dynamic dynamicType else enum extension fallthrough false final for func get guard if import in indirect infix init inout internal is lazy left let mutating nil none nonmutating operator optional override postfix precedence prefix private protocol Protocol public repeat required rethrows return right self Self set static struct subscript super switch throw throws true try try! try? Type typealias unowned var weak where while willSet",literal:"true false nil",built_in:"abs advance alignof alignofValue anyGenerator assert assertionFailure bridgeFromObjectiveC bridgeFromObjectiveCUnconditional bridgeToObjectiveC bridgeToObjectiveCUnconditional c contains count countElements countLeadingZeros debugPrint debugPrintln distance dropFirst dropLast dump encodeBitsAsWords enumerate equal fatalError filter find getBridgedObjectiveCType getVaList indices insertionSort isBridgedToObjectiveC isBridgedVerbatimToObjectiveC isUniquelyReferenced isUniquelyReferencedNonObjC join lazy lexicographicalCompare map max maxElement min minElement numericCast overlaps partition posix precondition preconditionFailure print println quickSort readLine reduce reflect reinterpretCast reverse roundUpToAlignment sizeof sizeofValue sort split startsWith stride strideof strideofValue swap toString transcode underestimateCount unsafeAddressOf unsafeBitCast unsafeDowncast unsafeUnwrap unsafeReflect withExtendedLifetime withObjectAtPlusZero withUnsafePointer withUnsafePointerToObject withUnsafeMutablePointer withUnsafeMutablePointers withUnsafePointer withUnsafePointers withVaList zip"},t={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n=e.C("/*","*/",{c:["self"]}),r={cN:"subst",b:/\\\(/,e:"\\)",k:i,c:[]},a={cN:"number",b:"\\b([\\d_]+(\\.[\\deE_]+)?|0x[a-fA-F0-9_]+(\\.[a-fA-F0-9p_]+)?|0b[01_]+|0o[0-7_]+)\\b",r:0},o=e.inherit(e.QSM,{c:[r,e.BE]});return r.c=[a],{k:i,c:[o,e.CLCM,n,t,a,{cN:"function",bK:"func",e:"{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/,i:/\(/}),{b:/</,e:/>/,i:/>/},{cN:"params",b:/\(/,e:/\)/,endsParent:!0,k:i,c:["self",a,o,e.CBCM,{b:":"}],i:/["']/}],i:/\[|%/},{cN:"class",bK:"struct protocol class extension enum",k:i,e:"\\{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/})]},{cN:"meta",b:"(@warn_unused_result|@exported|@lazy|@noescape|@NSCopying|@NSManaged|@objc|@convention|@required|@noreturn|@IBAction|@IBDesignable|@IBInspectable|@IBOutlet|@infix|@prefix|@postfix|@autoclosure|@testable|@available|@nonobjc|@NSApplicationMain|@UIApplicationMain)"},{bK:"import",e:/$/,c:[e.CLCM,n]}]}});hljs.registerLanguage("java",function(e){var a=e.UIR+"(<"+e.UIR+"(\\s*,\\s*"+e.UIR+")*>)?",t="false synchronized int abstract float private char boolean static null if const for true while long strictfp finally protected import native final void enum else break transient catch instanceof byte super volatile case assert short package default double public try this switch continue throws protected public private",r="\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\d]+[\\d_]+[\\d]+|[\\d]+)(\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))?|\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))([eE][-+]?\\d+)?)[lLfF]?",c={cN:"number",b:r,r:0};return{aliases:["jsp"],k:t,i:/<\/|#/,c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"new throw return else",r:0},{cN:"function",b:"("+a+"\\s+)+"+e.UIR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},c,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("objectivec",function(e){var t={cN:"built_in",b:"(AV|CA|CF|CG|CI|MK|MP|NS|UI|XC)\\w+"},i={keyword:"int float while char export sizeof typedef const struct for union unsigned long volatile static bool mutable if do return goto void enum else break extern asm case short default double register explicit signed typename this switch continue wchar_t inline readonly assign readwrite self @synchronized id typeof nonatomic super unichar IBOutlet IBAction strong weak copy in out inout bycopy byref oneway __strong __weak __block __autoreleasing @private @protected @public @try @property @end @throw @catch @finally @autoreleasepool @synthesize @dynamic @selector @optional @required",literal:"false true FALSE TRUE nil YES NO NULL",built_in:"BOOL dispatch_once_t dispatch_queue_t dispatch_sync dispatch_async dispatch_once"},n=/[a-zA-Z@][a-zA-Z0-9_]*/,o="@interface @class @protocol @implementation";return{aliases:["mm","objc","obj-c"],k:i,l:n,i:"</",c:[t,e.CLCM,e.CBCM,e.CNM,e.QSM,{cN:"string",v:[{b:'@"',e:'"',i:"\\n",c:[e.BE]},{b:"'",e:"[^\\\\]'",i:"[^\\\\][^']"}]},{cN:"meta",b:"#",e:"$",c:[{cN:"meta-string",v:[{b:'"',e:'"'},{b:"<",e:">"}]}]},{cN:"class",b:"("+o.split(" ").join("|")+")\\b",e:"({|$)",eE:!0,k:o,l:n,c:[e.UTM]},{b:"\\."+e.UIR,r:0}]}});hljs.registerLanguage("json",function(e){var i={literal:"true false null"},n=[e.QSM,e.CNM],r={e:",",eW:!0,eE:!0,c:n,k:i},t={b:"{",e:"}",c:[{cN:"attr",b:/"/,e:/"/,c:[e.BE],i:"\\n"},e.inherit(r,{b:/:/})],i:"\\S"},c={b:"\\[",e:"\\]",c:[e.inherit(r)],i:"\\S"};return n.splice(n.length,0,t,c),{c:n,k:i,i:"\\S"}});hljs.registerLanguage("cmake",function(e){return{aliases:["cmake.in"],cI:!0,k:{keyword:"add_custom_command add_custom_target add_definitions add_dependencies add_executable add_library add_subdirectory add_test aux_source_directory break build_command cmake_minimum_required cmake_policy configure_file create_test_sourcelist define_property else elseif enable_language enable_testing endforeach endfunction endif endmacro endwhile execute_process export find_file find_library find_package find_path find_program fltk_wrap_ui foreach function get_cmake_property get_directory_property get_filename_component get_property get_source_file_property get_target_property get_test_property if include include_directories include_external_msproject include_regular_expression install link_directories load_cache load_command macro mark_as_advanced message option output_required_files project qt_wrap_cpp qt_wrap_ui remove_definitions return separate_arguments set set_directory_properties set_property set_source_files_properties set_target_properties set_tests_properties site_name source_group string target_link_libraries try_compile try_run unset variable_watch while build_name exec_program export_library_dependencies install_files install_programs install_targets link_libraries make_directory remove subdir_depends subdirs use_mangled_mesa utility_source variable_requires write_file qt5_use_modules qt5_use_package qt5_wrap_cpp on off true false and or equal less greater strless strgreater strequal matches"},c:[{cN:"variable",b:"\\${",e:"}"},e.HCM,e.QSM,e.NM]}});hljs.registerLanguage("bash",function(e){var t={cN:"variable",v:[{b:/\$[\w\d#@][\w\d_]*/},{b:/\$\{(.*?)}/}]},s={cN:"string",b:/"/,e:/"/,c:[e.BE,t,{cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]}]},a={cN:"string",b:/'/,e:/'/};return{aliases:["sh","zsh"],l:/-?[a-z\.]+/,k:{keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},c:[{cN:"meta",b:/^#![^\n]+sh\s*$/,r:10},{cN:"function",b:/\w[\w\d_]*\s*\(\s*\)\s*\{/,rB:!0,c:[e.inherit(e.TM,{b:/\w[\w\d_]*/})],r:0},e.HCM,s,a,t]}});hljs.registerLanguage("cs",function(e){var t="abstract as base bool break byte case catch char checked const continue decimal dynamic default delegate do double else enum event explicit extern false finally fixed float for foreach goto if implicit in int interface internal is lock long null when object operator out override params private protected public readonly ref sbyte sealed short sizeof stackalloc static string struct switch this true try typeof uint ulong unchecked unsafe ushort using virtual volatile void while async protected public private internal ascending descending from get group into join let orderby partial select set value var where yield",r=e.IR+"(<"+e.IR+">)?";return{aliases:["csharp"],k:t,i:/::/,c:[e.C("///","$",{rB:!0,c:[{cN:"doctag",v:[{b:"///",r:0},{b:"<!--|-->"},{b:"</?",e:">"}]}]}),e.CLCM,e.CBCM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line region endregion pragma checksum"}},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},e.ASM,e.QSM,e.CNM,{bK:"class interface",e:/[{;=]/,i:/[^\s:]/,c:[e.TM,e.CLCM,e.CBCM]},{bK:"namespace",e:/[{;=]/,i:/[^\s:]/,c:[e.inherit(e.TM,{b:"[a-zA-Z](\\.?\\w)*"}),e.CLCM,e.CBCM]},{bK:"new return throw
await",r:0},{cN:"function",b:"("+r+"\\s+)+"+e.IR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.IR+"\\s*\\(",rB:!0,c:[e.TM],r:0},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]}]}});hljs.registerLanguage("livescript",function(e){var t={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger case default function var with then unless until loop of by when and or is isnt not it that otherwise from to til fallthrough super case default function var void const let enum export import native __hasProp __extends __slice __bind __indexOf",literal:"true false null undefined yes no on off it that void",built_in:"npm require console print module global window document"},s="[A-Za-z$_](?:-[0-9A-Za-z$_]|[0-9A-Za-z$_])*",n=e.inherit(e.TM,{b:s}),i={cN:"subst",b:/#\{/,e:/}/,k:t},r={cN:"subst",b:/#[A-Za-z$_]/,e:/(?:\-[0-9A-Za-z$_]|[0-9A-Za-z$_])*/,k:t},c=[e.BNM,{cN:"number",b:"(\\b0[xX][a-fA-F0-9_]+)|(\\b\\d(\\d|_\\d)*(\\.(\\d(\\d|_\\d)*)?)?(_*[eE]([-+]\\d(_\\d|\\d)*)?)?[_a-z]*)",r:0,starts:{e:"(\\s*/)?",r:0}},{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,i,r]},{b:/"/,e:/"/,c:[e.BE,i,r]},{b:/\\/,e:/(\s|$)/,eE:!0}]},{cN:"regexp",v:[{b:"//",e:"//[gim]*",c:[i,e.HCM]},{b:/\/(?![*])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+s},{b:"``",e:"``",eB:!0,eE:!0,sL:"javascript"}];i.c=c;var a={cN:"params",b:"\\(",rB:!0,c:[{b:/\(/,e:/\)/,k:t,c:["self"].concat(c)}]};return{aliases:["ls"],k:t,i:/\/*/,c:c.concat([e.C("\\/*","*\\/"),e.HCM,{cN:"function",c:[n,a],rB:!0,v:[{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B\\->*?",e:"\\->*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?!?(\\(.*\\))?\\s*\\B[-~]{1,2}>*?",e:"[-~]{1,2}>*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B!?[-~]{1,2}>*?",e:"!?[-~]{1,2}>*?"}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[n]},n]},{b:s+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("makefile",function(e){var a={cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]};return{aliases:["mk","mak"],c:[e.HCM,{b:/^\w+\s*\W*=/,rB:!0,r:0,starts:{e:/\s*\W*=/,eE:!0,starts:{e:/$/,r:0,c:[a]}}},{cN:"section",b:/^[\w]+:\s*$/},{cN:"meta",b:/^\.PHONY:/,e:/$/,k:{"meta-keyword":".PHONY"},l:/[\.\w]+/},{b:/^\t+/,e:/$/,r:0,c:[e.QSM,a]}]}});hljs.registerLanguage("yaml",function(e){var a={literal:"{ } true false yes no Yes No True False null"},b="^[\\-]*",r="[a-zA-Z_][\\w\\-]*",t={cN:"attr",v:[{b:b+r+":"},{b:b+'"'+r+'":'},{b:b+"'"+r+"':"}]},c={cN:"template-variable",v:[{b:"{{",e:"}}"},{b:"%{",e:"}"}]},l={cN:"string",r:0,v:[{b:/'/,e:/'/},{b:/"/,e:/"/}],c:[e.BE,c]};return{cI:!0,aliases:["yml","YAML","yaml"],c:[t,{cN:"meta",b:"^---s*$",r:10},{cN:"string",b:"[\\|>] *$",rE:!0,c:l.c,e:t.v[0].b},{b:"<%[%=-]?",e:"[%-]?%>",sL:"ruby",eB:!0,eE:!0,r:0},{cN:"type",b:"!!"+e.UIR},{cN:"meta",b:"&"+e.UIR+"$"},{cN:"meta",b:"*"+e.UIR+"$"},{cN:"bullet",b:"^ *-",r:0},l,e.HCM,e.CNM],k:a}});hljs.registerLanguage("dns",function(d){return{aliases:["bind","zone"],k:{keyword:"IN A AAAA AFSDB APL CAA CDNSKEY CDS CERT CNAME DHCID DLV DNAME DNSKEY DS HIP IPSECKEY KEY KX LOC MX NAPTR NS NSEC NSEC3 NSEC3PARAM PTR RRSIG RP SIG SOA SRV SSHFP TA TKEY TLSA TSIG TXT"},c:[d.C(";","$"),{cN:"meta",b:/^\$(TTL|GENERATE|INCLUDE|ORIGIN)\b/},{cN:"number",b:"((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:)))\\b"},{cN:"number",b:"((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]).){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])\\b"},d.inherit(d.NM,{b:/\b\d+[dhwm]?/})]}});hljs.registerLanguage("sql",function(e){var t=e.C("--","$");return{cI:!0,i:/[<>{}*]/,c:[{bK:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke",e:/;/,eW:!0,k:{keyword:"abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias allocate allow alter always analyze ancillary and any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical
logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second section securefile security seed segment select self sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",literal:"true false null",built_in:"array bigint binary bit blob boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text varchar varying void"},c:[{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]},{cN:"string",b:'"',e:'"',c:[e.BE,{b:'""'}]},{cN:"string",b:"`",e:"`",c:[e.BE]},e.CNM,e.CBCM,t]},e.CBCM,t]}});hljs.registerLanguage("python",function(e){var r={cN:"meta",b:/^(>>>|\.\.\.) /},b={cN:"string",c:[e.BE],v:[{b:/(u|b)?r?'''/,e:/'''/,c:[r],r:10},{b:/(u|b)?r?"""/,e:/"""/,c:[r],r:10},{b:/(u|r|ur)'/,e:/'/,r:10},{b:/(u|r|ur)"/,e:/"/,r:10},{b:/(b|br)'/,e:/'/},{b:/(b|br)"/,e:/"/},e.ASM,e.QSM]},a={cN:"number",r:0,v:[{b:e.BNR+"[lLjJ]?"},{b:"\\b(0o[0-7]+)[lLjJ]?"},{b:e.CNR+"[lLjJ]?"}]},l={cN:"params",b:/\(/,e:/\)/,c:["self",r,a,b]};return{aliases:["py","gyp"],k:{keyword:"and elif is global as in if from raise for except finally print import pass return exec else break not with class assert yield try while continue del or def lambda async await nonlocal|10 None True False",built_in:"Ellipsis NotImplemented"},i:/(<\/|->|\?)/,c:[r,a,b,e.HCM,{v:[{cN:"function",bK:"def",r:10},{cN:"class",bK:"class"}],e:/:/,i:/[${=;\n,]/,c:[e.UTM,l,{b:/->/,eW:!0,k:"None"}]},{cN:"meta",b:/^[\t]*@/,e:/$/},{b:/\b(print|exec)\(/}]}});hljs.registerLanguage("mercury",function(e){var i={keyword:"module use_module import_module include_module end_module initialise mutable initialize finalize finalise interface implementation pred mode func type inst solver any_pred any_func is semidet det nondet multi erroneous failure cc_nondet cc_multi typeclass instance where pragma promise external trace atomic or_else require_complete_switch require_det require_semidet require_multi require_nondet require_cc_multi require_cc_nondet require_erroneous require_failure",meta:"inline no_inline type_spec source_file fact_table obsolete memo loop_check minimal_model terminates does_not_terminate check_termination promise_equivalent_clauses foreign_proc foreign_decl foreign_code foreign_type foreign_import_module foreign_export_enum foreign_export foreign_enum may_call_mercury will_not_call_mercury thread_safe not_thread_safe maybe_thread_safe promise_pure promise_semipure tabled_for_io local untrailed trailed attach_to_io_state can_pass_as_mercury_type stable will_not_throw_exception may_modify_trail will_not_modify_trail may_duplicate may_not_duplicate affects_liveness does_not_affect_liveness doesnt_affect_liveness no_sharing unknown_sharing sharing",built_in:"some all not if then else true fail false try catch catch_any semidet_true semidet_false semidet_fail impure_true impure semipure"},r=e.C("%","$"),t={cN:"number",b:"0'.\\|0[box][0-9a-fA-F]*"},_=e.inherit(e.ASM,{r:0}),n=e.inherit(e.QSM,{r:0}),a={cN:"subst",b:"\\\\[abfnrtv]\\|\\\\x[0-9a-fA-F]*\\\\\\|%[-+# *.0-9]*[dioxXucsfeEgGp]",r:0};n.c.push(a);var o={cN:"built_in",v:[{b:"<=>"},{b:"<=",r:0},{b:"=>",r:0},{b:"/\\\\"},{b:"\\\\/"}]},l={cN:"built_in",v:[{b:":-\\|-->"},{b:"=",r:0}]};return{aliases:["m","moo"],k:i,c:[o,l,r,e.CBCM,t,e.NM,_,n,{b:/:-/}]}});hljs.registerLanguage("haskell",function(e){var i={v:[e.C("--","$"),e.C("{-","-}",{c:["self"]})]},a={cN:"meta",b:"{-#",e:"#-}"},l={cN:"meta",b:"^#",e:"$"},c={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n={b:"\\(",e:"\\)",i:'"',c:[a,l,{cN:"type",b:"\\b[A-Z][\\w]*(\\((\\.\\.|,|\\w+)\\))?"},e.inherit(e.TM,{b:"[_a-z][\\w']*"}),i]},s={b:"{",e:"}",c:n.c};return{aliases:["hs"],k:"let in if then else case of where do module import hiding qualified type data newtype deriving class instance as default infix infixl infixr foreign export ccall stdcall cplusplus jvm dotnet safe unsafe family forall mdo proc rec",c:[{bK:"module",e:"where",k:"module where",c:[n,i],i:"\\W\\.|;"},{b:"\\bimport\\b",e:"$",k:"import qualified as hiding",c:[n,i],i:"\\W\\.|;"},{cN:"class",b:"^(\\s*)?(class|instance)\\b",e:"where",k:"class family instance where",c:[c,n,i]},{cN:"class",b:"\\b(data|(new)?type)\\b",e:"$",k:"data family type
newtype deriving",c:[a,c,n,s,i]},{bK:"default",e:"$",c:[c,n,i]},{bK:"infix infixl infixr",e:"$",c:[e.CNM,i]},{b:"\\bforeign\\b",e:"$",k:"foreign import export ccall stdcall cplusplus jvm dotnet safe unsafe",c:[c,e.QSM,i]},{cN:"meta",b:"#!\\/usr\\/bin\\/env runhaskell",e:"$"},a,l,e.QSM,e.CNM,c,e.inherit(e.TM,{b:"^[_a-z][\\w']*"}),i,{b:"->|<-"}]}});hljs.registerLanguage("applescript",function(e){var t=e.inherit(e.QSM,{i:""}),r={cN:"params",b:"\\(",e:"\\)",c:["self",e.CNM,t]},i=e.C("--","$"),o=e.C("\\(*","*\\)",{c:["self",i]}),n=[i,o,e.HCM];return{aliases:["osascript"],k:{keyword:"about above after against and around as at back before beginning behind below beneath beside between but by considering contain contains continue copy div does eighth else end equal equals error every exit fifth first for fourth from front get given global if ignoring in into is it its last local me middle mod my ninth not of on onto or over prop property put ref reference repeat returning script second set seventh since sixth some tell tenth that the|0 then third through thru timeout times to transaction try until where while whose with without",literal:"AppleScript false linefeed return pi quote result space tab true",built_in:"alias application boolean class constant date file integer list number real record string text activate beep count delay launch log offset read round run say summarize write character characters contents day frontmost id item length month name paragraph paragraphs rest reverse running time version weekday word words year"},c:[t,e.CNM,{cN:"built_in",b:"\\b(clipboard info|the clipboard|info for|list (disks|folder)|mount volume|path to|(close|open for) access|(get|set) eof|current date|do shell script|get volume settings|random number|set volume|system attribute|system info|time to GMT|(load|run|store) script|scripting components|ASCII (character|number)|localized string|choose (application|color|file|file name|folder|from list|remote application|URL)|display (alert|dialog))\\b|^\\s*return\\b"},{cN:"literal",b:"\\b(text item delimiters|current application|missing value)\\b"},{cN:"keyword",b:"\\b(apart from|aside from|instead of|out of|greater than|isn't|(doesn't|does not) (equal|come before|come after|contain)|(greater|less) than(or equal)?|(starts?|ends|begins?) with|contained by|comes (before|after)|a (ref|reference)|POSIX file|POSIX path|(date|time) string|quoted form)\\b"},{bK:"on",i:"[${=;\\n]",c:[e.UTM,r]}].concat(n),i:"//|->|=>|\\[\\["}});hljs.registerLanguage("scala",function(e){var t={cN:"meta",b:"@[A-Za-z]+"},a={cN:"subst",v:[{b:"\\$[A-Za-z0-9_]+"},{b:"\\${",e:"}"}]},r={cN:"string",v:[{b:'"',e:'"',i:"\\n",c:[e.BE]},{b:'"""',e:'"""',r:10},{b:'[a-z]+"',e:'"',i:"\\n",c:[e.BE,a]},{cN:"string",b:'[a-z]+"""',e:'"""',c:[a],r:10}]},c={cN:"symbol",b:"'\\w[\\w\\d_]*(?!')"},i={cN:"type",b:"\\b[A-Z][A-Za-z0-9_]*",r:0},s={cN:"title",b:/[^0-9\n\t "'(),.`{}\[\]:;][^\n\t "'(),.`{}\[\]:;]+|[^0-9\n\t "'(),.`{}\[\]:;=]/,r:0},n={cN:"class",bK:"class object trait type",e:/[:={\[\n;]/,eE:!0,c:[{bK:"extends with",r:10},{b:/\[/,e:/\]/,eB:!0,eE:!0,r:0,c:[i]},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,r:0,c:[i]},s]},l={cN:"function",bK:"def",e:/[:={\[(\n;]/,eE:!0,c:[s]};return{k:{literal:"true false null",keyword:"type yield lazy override def with val var sealed abstract private trait object if forSome for while throw finally protected extends import final return else break new catch super class case package default try this match continue throws implicit"},c:[e.CLCM,e.CBCM,r,c,i,l,n,e.CNM,t]}});hljs.registerLanguage("erlang",function(e){var r="[a-z'][a-zA-Z0-9_']*",c="("+r+":"+r+"|"+r+")",b={keyword:"after and andalso|10 band begin bnot bor bsl bzr bxor case catch cond div end fun if let not of orelse|10 query receive rem try when xor",literal:"false true"},i=e.C("%","$"),n={cN:"number",b:"\\b(\\d+#[a-fA-F0-9]+|\\d+(\\.\\d+)?([eE][-+]?\\d+)?)",r:0},a={b:"fun\\s+"+r+"/\\d+"},d={b:c+"\\(",e:"\\)",rB:!0,r:0,c:[{b:c,r:0},{b:"\\(",e:"\\)",eW:!0,rE:!0,r:0}]},o={b:"{",e:"}",r:0},t={b:"\\b_([A-Z][A-Za-z0-9_]*)?",r:0},f={b:"[A-Z][a-zA-Z0-9_]*",r:0},l={b:"#"+e.UIR,r:0,rB:!0,c:[{b:"#"+e.UIR,r:0},{b:"{",e:"}",r:0}]},s={bK:"fun receive if try case",e:"end",k:b};s.c=[i,a,e.inherit(e.ASM,{cN:""}),s,d,e.QSM,n,o,t,f,l];var u=[i,a,s,d,e.QSM,n,o,t,f,l];d.c[1].c=u,o.c=u,l.c[1].c=u;var h={cN:"params",b:"\\(",e:"\\)",c:u};return{aliases:["erl"],k:b,i:"(</|*=|\\+=|-=|/*|*/|\\(*|*\\))",c:[{cN:"function",b:"^"+r+"\\s*\\(",e:"->",rB:!0,i:"\\(|#|//|/*|\\\\|:|;",c:[h,e.inherit(e.TM,{b:r})],starts:{e:";|\\.",k:b,c:u}},i,{b:"^-",e:"\\.",r:0,eE:!0,rB:!0,l:"-"+e.IR,k:"-module -record -undef -export -ifdef -ifndef -author -copyright -doc -vsn -import -include -include_lib -compile -define -else -endif -file -behaviour -behavior -spec",c:[h]},n,e.QSM,l,t,f,o,{b:/\.$/}]}});hljs.registerLanguage("powershell",function(e){var t={b:"`[\\s\\S]",r:0},r={cN:"variable",v:[{b:/\$[\w\d][\w\d_:]*/}]},o={cN:"literal",b:/\$(null|true|false)\b/},a={cN:"string",b:/"/,e:/"/,c:[t,r,{cN:"variable",b:/\$[A-z]/,e:/[^A-z]/}]},i={cN:"string",b:/'/,e:/'/};return{aliases:["ps"],l:/-?[A-z\.\-]+/,cI:!0,k:{keyword:"if else foreach return function do while until elseif begin for trap data dynamicparam end break throw param continue finally in switch exit filter try process catch",built_in:"Add-Content Add-History Add-Member Add-PSSnapin Clear-Content Clear-Item Clear-Item Property Clear-Variable Compare-Object ConvertFrom-SecureString Convert-Path ConvertTo-Html ConvertTo-SecureString Copy-Item Copy-ItemProperty Export-Alias Export-Clixml Export-Console Export-Csv ForEach-Object Format-Custom Format-List Format-Table Format-Wide Get-Acl Get-Alias Get-AuthenticodeSignature Get-ChildItem Get-Command Get-Content Get-Credential Get-Culture Get-Date Get-EventLog Get-ExecutionPolicy Get-Help Get-History Get-Host Get-Item Get-ItemProperty Get-Location Get-Member Get-PfxCertificate Get-Process Get-PSDrive Get-PSProvider Get-PSSnapin Get-Service Get-TraceSource Get-UICulture Get-Unique Get-Variable Get-WmiObject Group-Object Import-Alias Import-Clixml Import-Csv Invoke-Expression Invoke-History Invoke-Item Join-Path Measure-Command Measure-Object Move-Item Move-ItemProperty New-Alias New-Item New-ItemProperty New-Object New-PSDrive New-Service New-TimeSpan New-Variable Out-Default Out-File Out-Host Out-Null Out-Printer Out-String Pop-Location Push-Location Read-Host Remove-Item Remove-ItemProperty Remove-PSDrive Remove-PSSnapin Remove-Variable Rename-Item Rename-ItemProperty Resolve-Path Restart-Service Resume-Service Select-Object Select-String Set-Acl Set-Alias Set-AuthenticodeSignature Set-Content Set-Date Set-ExecutionPolicy Set-Item Set-ItemProperty Set-Location Set-PSDebug Set-Service Set-TraceSource Set-Variable Sort-Object Split-Path Start-Service Start-Sleep Start-Transcript Stop-Process Stop-Service Stop-Transcript Suspend-Service Tee-Object Test-Path Trace-Command Update-FormatData Update-TypeData Where-Object Write-Debug Write-Error Write-Host Write-Output Write-Progress Write-Verbose Write-Warning",nomarkup:"-ne -eq -lt -gt -ge -le -not -like -notlike -match -notmatch -contains -notcontains -in -notin -replace"},c:[e.HCM,e.NM,a,i,o,r]}});hljs.registerLanguage("dust",function(e){var t="if eq ne lt lte gt gte select default math sep";return{aliases:["dst"],cI:!0,sL:"xml",c:[{cN:"template-tag",b:/\{[#\/]/,e:/\}/,i:/;/,c:[{cN:"name",b:/[a-zA-Z\.-]+/,starts:{eW:!0,r:0,c:[e.QSM]}}]},{cN:"template-variable",b:/\{/,e:/\}/,i:/;/,k:t}]}});hljs.registerLanguage("clojure",function(e){var t={"builtin-name":"def defonce cond apply if-not if-let if not not= = < > <= >= == + / * - rem quot neg? pos? delay? symbol? keyword? true? false? integer? empty? coll? list? set? ifn? fn? associative? sequential? sorted? counted? reversible? number? decimal? class? distinct? isa? float? rational? reduced? ratio? odd? even? char? seq? vector? string? map? nil? contains? zero? instance? not-every? not-any? libspec? -> ->> .. . inc compare do dotimes mapcat take remove take-while drop letfn drop-last take-last drop-while while intern condp case reduced cycle split-at split-with repeat replicate iterate range merge zipmap declare line-seq sort comparator sort-by dorun doall nthnext nthrest partition eval doseq await await-for let agent atom send send-off release-pending-sends add-watch mapv filterv remove-watch agent-error restart-agent set-error-handler error-handler set-error-mode! error-mode shutdown-agents quote var fn loop recur throw try monitor-enter monitor-exit defmacro defn defn- macroexpand macroexpand-1 for dosync and or when when-not when-let comp juxt partial sequence memoize constantly complement identity assert peek pop doto proxy defstruct first rest cons defprotocol cast coll deftype defrecord last butlast sigs reify second ffirst fnext nfirst nnext defmulti defmethod meta with-meta ns in-ns create-ns import refer keys select-keys vals key val rseq name namespace promise into transient persistent! conj! assoc! dissoc! pop! disj! use class type num float double short byte boolean bigint biginteger bigdec print-method print-dup throw-if printf format load compile get-in update-in pr pr-on newline flush read slurp read-line subvec with-open memfn time re-find re-groups rand-int rand mod locking assert-valid-fdecl alias resolve ref deref refset swap! reset! set-validator! compare-and-set! alter-meta! reset-meta! commute get-validator alter ref-set ref-history-count ref-min-history ref-max-history ensure sync io! new next conj set! to-array future future-call into-array aset gen-class reduce map filter find empty hash-map hash-set sorted-map sorted-map-by sorted-set sorted-set-by vec vector seq flatten reverse assoc dissoc list disj get union difference intersection extend extend-type extend-protocol int nth delay count concat chunk chunk-buffer chunk-append chunk-first chunk-rest max min dec unchecked-inc-int unchecked-inc unchecked-dec-inc unchecked-dec unchecked-negate unchecked-add-int unchecked-add
unchecked-subtract-int unchecked-subtract chunk-next chunk-cons chunked-seq? prn vary-meta lazy-seq spread list* str find-keyword keyword symbol gensym force rationalize"},r="a-zA-Z_\\-!.?+*=<>&#'",n="["+r+"]["+r+"0-9/;:]*",a="[-+]?\\d+(\\.\\d+)?",o={b:n,r:0},s={cN:"number",b:a,r:0},i=e.inherit(e.QSM,{i:null}),c=e.C(";","$",{r:0}),d={cN:"literal",b:/\b(true|false|nil)\b/},l={b:"[\\[\\{]",e:"[\\]\\}]"},m={cN:"comment",b:"\\^"+n},p=e.C("\\^\\{","\\}"),u={cN:"symbol",b:"[:]"+n},f={b:"\\(",e:"\\)"},h={eW:!0,r:0},y={k:t,l:n,cN:"name",b:n,starts:h},b=[f,i,m,p,c,u,l,s,d,o];return f.c=[e.C("comment",""),y,h],h.c=b,l.c=b,{aliases:["clj"],i:/\S/,c:[f,i,m,p,c,u,l,s,d]}});hljs.registerLanguage("go",function(e){var t={keyword:"break default func interface select case map struct chan else goto package switch const fallthrough if range type continue for import return var go defer bool byte complex64 complex128 float32 float64 int8 int16 int32 int64 string uint8 uint16 uint32 uint64 int uint uintptr rune",literal:"true false iota nil",built_in:"append cap close complex copy imag len make new panic print println real recover delete"};return{aliases:["golang"],k:t,i:"</",c:[e.CLCM,e.CBCM,e.QSM,{cN:"string",b:"'",e:"[^\\\\]'"},{cN:"string",b:"`",e:"`"},{cN:"number",b:e.CNR+"[dflsi]?",r:0},e.CNM]}});hljs.registerLanguage("tcl",function(e){return{aliases:["tk"],k:"after append apply array auto_execok auto_import auto_load auto_mkindex auto_mkindex_old auto_qualify auto_reset bgerror binary break catch cd chan clock close concat continue dde dict encoding eof error eval exec exit expr fblocked fconfigure fcopy file fileevent filename flush for foreach format gets glob global history http if incr info interp join lappend|10 lassign|10 lindex|10 linsert|10 list llength|10 load lrange|10 lrepeat|10 lreplace|10 lreverse|10 lsearch|10 lset|10 lsort|10 mathfunc mathop memory msgcat namespace open package parray pid pkg::create pkg_mkIndex platform platform::shell proc puts pwd read refchan regexp registry regsub|10 rename return safe scan seek set socket source split string subst switch tcl_endOfWord tcl_findLibrary tcl_startOfNextWord tcl_startOfPreviousWord tcl_wordBreakAfter tcl_wordBreakBefore tcltest tclvars tell time tm trace unknown unload unset update uplevel upvar variable vwait while",c:[e.C(";[\\t]*#","$"),e.C("^[\\t]*#","$"),{bK:"proc",e:"[\\{]",eE:!0,c:[{cN:"title",b:"[\\t\\n\\r]+(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"[\\t\\n\\r]",eW:!0,eE:!0}]},{eE:!0,v:[{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*\\(([a-zA-Z0-9_])*\\)",e:"[^a-zA-Z0-9_\\}\\$]"},{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"(\\))?[^a-zA-Z0-9_\\}\\$]"}]},{cN:"string",c:[e.BE],v:[e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},{cN:"number",v:[e.BNM,e.CNM]}]}});hljs.registerLanguage("twig",function(e){var t={cN:"params",b:"\\(",e:"\\)"},a="attribute block constant cycle date dump include max min parent random range source template_from_string",r={bK:a,k:{name:a},r:0,c:[t]},c={b:/\|[A-Za-z_]+:?/,k:"abs batch capitalize convert_encoding date date_modify default escape first format join json_encode keys last length lower merge nl2br number_format raw replace reverse round slice sort split striptags title trim upper url_encode",c:[r]},s="autoescape block do embed extends filter flush for if import include macro sandbox set spaceless use verbatim";return s=s+" "+s.split(" ").map(function(e){return"end"+e}).join(" "),{aliases:["craftcms"],cI:!0,sL:"xml",c:[e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:s,starts:{eW:!0,c:[c,r],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:["self",c,r]}]}});hljs.registerLanguage("vhdl",function(e){var r="\\d(_|\\d)*",t="[eE][-+]?"+r,o=r+"(\\."+r+")?("+t+")?",n="\\w+",i=r+"#"+n+"(\\."+n+")?#("+t+")?",a="\\b("+i+"|"+o+")";return{cI:!0,k:{keyword:"abs access after alias all and architecture array assert attribute begin block body buffer bus case component configuration constant context cover disconnect downto default else elsif end entity exit fairness file for force function generate generic group guarded if impure in inertial inout is label library linkage literal loop map mod nand new next nor not null of on open or others out package port postponed procedure process property protected pure range record register reject release rem report restrict restrict_guarantee return rol ror select sequence severity shared signal sla sll sra srl strong subtype then to transport type unaffected units until use variable vmode vprop vunit wait when while with xnor xor",built_in:"boolean bit character severity_level integer time delay_length natural positive string bit_vector file_open_kind file_open_status std_ulogic std_ulogic_vector std_logic std_logic_vector unsigned signed boolean_vector integer_vector real_vector time_vector"},i:"{",c:[e.CBCM,e.C("--","$"),e.QSM,{cN:"number",b:a,r:0},{cN:"literal",b:"'(U|X|0|1|Z|W|L|H|-)'",c:[e.BE]},{cN:"symbol",b:"'[A-Za-z](_?[A-Za-z0-9])*",c:[e.BE]}]}});hljs.registerLanguage("javascript",function(e){return{aliases:["js","jsx"],k:{keyword:"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise"},c:[{cN:"meta",r:10,b:/^\s*['"]use (strict|asm)['"]/},{cN:"meta",b:/^#!/,e:/$/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM,{b:/</,e:/(\/\w+|\w+\/)>/,sL:"xml",c:[{b:/<\w+\/>/,skip:!0},{b:/<\w+/,e:/(\/\w+|\w+\/)>/,skip:!0,c:["self"]}]}],r:0},{cN:"function",bK:"function",e:/\{/,eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[e.CLCM,e.CBCM]}],i:/\[|%/},{b:/\$[(.]/},e.METHOD_GUARD,{cN:"class",bK:"class",e:/[{;=]/,eE:!0,i:/[:"\[\]]/,c:[{bK:"extends"},e.UTM]},{bK:"constructor",e:/\{/,eE:!0}],i:/#(?!!)/}});hljs.registerLanguage("less",function(e){var r="[\\w-]+",t="("+r+"|@{"+r+"})",a=[],c=[],s=function(e){return{cN:"string",b:"~?"+e+".*?"+e}},b=function(e,r,t){return{cN:e,b:r,r:t}},i={b:"\\(",e:"\\)",c:c,r:0};c.push(e.CLCM,e.CBCM,s("'"),s('"'),e.CSSNM,{b:"(url|data-uri)\\(",starts:{cN:"string",e:"[\\)\\n]",eE:!0}},b("number","#[0-9A-Fa-f]+\\b"),i,b("variable","@@?"+r,10),b("variable","@{"+r+"}"),b("built_in","~?`[^`]*?`"),{cN:"attribute",b:r+"\\s*:",e:":",rB:!0,eE:!0},{cN:"meta",b:"!important"});var n=c.concat({b:"{",e:"}",c:a}),o={bK:"when",eW:!0,c:[{bK:"and not"}].concat(c)},u={cN:"attribute",b:t,e:":",eE:!0,c:[e.CLCM,e.CBCM],i:/\S/,starts:{e:"[;}]",rE:!0,c:c,i:"[<=$]"}},C={cN:"keyword",b:"@(import|media|charset|font-face|(-[a-z]+-)?keyframes|supports|document|namespace|page|viewport|host)\\b",starts:{e:"[;{}]",rE:!0,c:c,r:0}},l={cN:"variable",v:[{b:"@"+r+"\\s*:",r:15},{b:"@"+r}],starts:{e:"[;}]",rE:!0,c:n}},p={v:[{b:"[\\.#:&\\[]",e:"[;{}]"},{b:t+"[^;]*{",e:"{"}],rB:!0,rE:!0,i:"[<='$\"]",c:[e.CLCM,e.CBCM,o,b("keyword","all\\b"),b("variable","@{"+r+"}"),b("selector-tag",t+"%?",0),b("selector-id","#"+t),b("selector-class","\\."+t,0),b("selector-tag","&",0),{cN:"selector-attr",b:"\\[",e:"\\]"},{b:"\\(",e:"\\)",c:n},{b:"!important"}]};return a.push(e.CLCM,e.CBCM,C,l,p,u),{cI:!0,i:"[=>'/<($\"]",c:a}});hljs.registerLanguage("q",function(e){var s={keyword:"do while select delete by update from",literal:"0b 1b",built_in:"neg not null string reciprocal floor ceiling signum mod xbar xlog and or each scan over prior mmu lsq inv md5 ltime gtime count first var dev med cov cor all any rand sums prds mins maxs fills deltas ratios avgs differ prev next rank reverse iasc idesc asc desc msum mcount mavg mdev xrank mmin mmax xprev rotate distinct group where flip type key til get value attr cut set upsert raze union inter except cross sv vs sublist enlist read0 read1 hopen hclose hdel hsym hcount peach system ltrim rtrim trim lower upper ssr view tables views cols xcols keys xkey xcol xasc xdesc fkeys meta lj aj aj0 ij pj asof uj ww wj wj1 fby xgroup ungroup ej save load rsave rload show csv parse eval min max avg wavg wsum sin cos tan sum",type:"`float `double int `timestamp `timespan `datetime `time `boolean `symbol `char `byte `short `long `real `month `date `minute `second `guid"};return{aliases:["k","kdb"],k:s,l:/(`?)[A-Za-z0-9_]+\b/,c:[e.CLCM,e.QSM,e.CNM]}});hljs.registerLanguage("gherkin",function(e){return{aliases:["feature"],k:"Feature Background Ability Business Need Scenario Scenarios Scenario Outline Scenario Template Examples Given And Then But When",c:[{cN:"keyword",b:"*"},{cN:"meta",b:"@[^@\\s]+"},{b:"\\|",e:"\\|\\w*$",c:[{cN:"string",b:"[^|]+"}]},{cN:"variable",b:"<",e:">"},e.HCM,{cN:"string",b:'"""',e:'"""'},e.QSM]}});hljs.registerLanguage("nginx",function(e){var r={cN:"variable",v:[{b:/\$\d+/},{b:/\$\{/,e:/}/},{b:"[\\$\\@]"+e.UIR}]},b={eW:!0,l:"[a-z/_]+",k:{literal:"on off yes no true false none blocked debug info notice warn error crit select break last permanent redirect kqueue rtsig epoll poll /dev/poll"},r:0,i:"=>",c:[e.HCM,{cN:"string",c:[e.BE,r],v:[{b:/"/,e:/"/},{b:/'/,e:/'/}]},{b:"([a-z]+):/",e:"\\s",eW:!0,eE:!0,c:[r]},{cN:"regexp",c:[e.BE,r],v:[{b:"\\s\\^",e:"\\s|{|;",rE:!0},{b:"~*?\\s+",e:"\\s|{
;",rE:!0},{b:"*(\\.[a-z\\-]+)+"},{b:"([a-z\\-]+\\.)+*"}]},{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+[kKmMgGdshdwy]*\\b",r:0},r]};return{aliases:["nginxconf"],c:[e.HCM,{b:e.UIR+"\\s+{",rB:!0,e:"{",c:[{cN:"section",b:e.UIR}],r:0},{b:e.UIR+"\\s",e:";|{",rB:!0,c:[{cN:"attribute",b:e.UIR,starts:b}],r:0}],i:"[^\\s\\}]"}});hljs.registerLanguage("rust",function(e){var t="([uif](8|16|32|64|size))?",r=e.inherit(e.CBCM);r.c.push("self");var n="Copy Send Sized Sync Drop Fn FnMut FnOnce drop Box ToOwned Clone PartialEq PartialOrd Eq Ord AsRef AsMut Into From Default Iterator Extend IntoIterator DoubleEndedIterator ExactSizeIterator Option Result SliceConcatExt String ToString Vec assert! assert_eq! bitflags! bytes! cfg! col! concat! concat_idents! debug_assert! debug_assert_eq! env! panic! file! format! format_args! include_bin! include_str! line! local_data_key! module_path! option_env! print! println! select! stringify! try! unimplemented! unreachable! vec! write! writeln! macro_rules!";return{aliases:["rs"],k:{keyword:"alignof as be box break const continue crate do else enum extern false fn for if impl in let loop match mod mut offsetof once priv proc pub pure ref return self Self sizeof static struct super trait true type typeof unsafe unsized use virtual while where yield int i8 i16 i32 i64 uint u8 u32 u64 float f32 f64 str char bool",literal:"true false Some None Ok Err",built_in:n},l:e.IR+"!?",i:"</",c:[e.CLCM,r,e.inherit(e.QSM,{b:/b?"/,i:null}),{cN:"string",v:[{b:/r(#*)".*?"\1(?!#)/},{b:/b?'\\?(x\w{2}|u\w{4}|U\w{8}|.)'/}]},{cN:"symbol",b:/'[a-zA-Z_][a-zA-Z0-9_]*/},{cN:"number",v:[{b:"\\b0b([01_]+)"+t},{b:"\\b0o([0-7_]+)"+t},{b:"\\b0x([A-Fa-f0-9_]+)"+t},{b:"\\b(\\d[\\d_]*(\\.[0-9_]+)?([eE][+-]?[0-9_]+)?)"+t}],r:0},{cN:"function",bK:"fn",e:"(\\(|<)",eE:!0,c:[e.UTM]},{cN:"meta",b:"#\\!?\\[",e:"\\]",c:[{cN:"meta-string",b:/"/,e:/"/}]},{cN:"class",bK:"type",e:";",c:[e.inherit(e.UTM,{endsParent:!0})],i:"\\S"},{cN:"class",bK:"trait enum struct",e:"{",c:[e.inherit(e.UTM,{endsParent:!0})],i:"[\\w\\d]"},{b:e.IR+"::",k:{built_in:n}},{b:"->"}]}});hljs.registerLanguage("groovy",function(e){return{k:{literal:"true false null",keyword:"byte short char int long boolean float double void def as in assert trait super this abstract static volatile transient public private protected synchronized final class interface enum if else for while switch case break default continue throw throws try catch finally implements extends new import package return instanceof"},c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,{cN:"string",b:'"""',e:'"""'},{cN:"string",b:"'''",e:"'''"},{cN:"string",b:"\\$/",e:"/\\$",r:10},e.ASM,{cN:"regexp",b:/~?\/[^\/\n]+\//,c:[e.BE]},e.QSM,{cN:"meta",b:"^#!/usr/bin/env",e:"$",i:"\n"},e.BNM,{cN:"class",bK:"class interface trait enum",e:"{",i:":",c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{cN:"string",b:/[^\?]{0}[A-Za-z0-9_$]+ *:/},{b:/\?/,e:/\:/},{cN:"symbol",b:"^\\s*[A-Za-z0-9_$]+:",r:0}],i:/#|<\//}});hljs.registerLanguage("aspectj",function(e){var t="false synchronized int abstract float private char boolean static null if const for true while long throw strictfp finally protected import native final return void enum else extends implements break transient new catch instanceof byte super volatile case assert short package default double public try this switch continue throws privileged aspectOf adviceexecution proceed cflowbelow cflow initialization preinitialization staticinitialization withincode target within execution getWithinTypeName handler thisJoinPoint thisJoinPointStaticPart thisEnclosingJoinPointStaticPart declare parents warning error soft precedence thisAspectInstance",i="get set args call";return{k:t,i:/<\/|#/,c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"aspect",e:/[{;=]/,eE:!0,i:/[:;"\[\]]/,c:[{bK:"extends implements pertypewithin perthis pertarget percflowbelow percflow issingleton"},e.UTM,{b:/\([^\)]*/,e:/[)]+/,k:t+" "+i,eE:!1}]},{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,r:0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"pointcut after before around throwing returning",e:/[)]/,eE:!1,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",rB:!0,c:[e.UTM]}]},{b:/[:]/,rB:!0,e:/[{;]/,r:0,eE:!1,k:t,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",k:t+" "+i},e.QSM]},{bK:"new throw",r:0},{cN:"function",b:/\w+ +\w+(\.)?\w+\s*\([^\)]*\)\s*((throws)[\w\s,]+)?[\{;]/,rB:!0,e:/[{;=]/,k:t,eE:!0,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,r:0,k:t,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("actionscript",function(e){var a="[a-zA-Z_$][a-zA-Z0-9_$]*",t="([*]|[a-zA-Z_$][a-zA-Z0-9_$]*)",c={cN:"rest_arg",b:"[.]{3}",e:a,r:10};return{aliases:["as"],k:{keyword:"as break case catch class const continue default delete do dynamic each else extends final finally for function get if implements import in include instanceof interface internal is namespace native new override package private protected public return set static super switch this throw try typeof use var void while with",literal:"true false null undefined"},c:[e.ASM,e.QSM,e.CLCM,e.CBCM,e.CNM,{cN:"class",bK:"package",e:"{",c:[e.TM]},{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.TM]},{cN:"meta",bK:"import include",e:";",k:{"meta-keyword":"import include"}},{cN:"function",bK:"function",e:"[{;]",eE:!0,i:"\\S",c:[e.TM,{cN:"params",b:"\\(",e:"\\)",c:[e.ASM,e.QSM,e.CLCM,e.CBCM,c]},{b:":\\s*"+t}]},e.METHOD_GUARD],i:/#/}});hljs.registerLanguage("diff",function(e){return{aliases:["patch"],c:[{cN:"meta",r:10,v:[{b:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{b:/^*** +\d+,\d+ +****$/},{b:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{cN:"comment",v:[{b:/Index: /,e:/$/},{b:/=====/,e:/=====$/},{b:/^\-\-\-/,e:/$/},{b:/^*{3} /,e:/$/},{b:/^\+\+\+/,e:/$/},{b:/*{5}/,e:/*{5}$/}]},{cN:"addition",b:"^\\+",e:"$"},{cN:"deletion",b:"^\\-",e:"$"},{cN:"addition",b:"^\\!",e:"$"}]}});hljs.registerLanguage("ini",function(e){var b={cN:"string",c:[e.BE],v:[{b:"'''",e:"'''",r:10},{b:'"""',e:'"""',r:10},{b:'"',e:'"'},{b:"'",e:"'"}]};return{aliases:["toml"],cI:!0,i:/\S/,c:[e.C(";","$"),e.HCM,{cN:"section",b:/^\s*\[+/,e:/\]+/},{b:/^[a-z0-9\[\]_-]+\s*=\s*/,e:"$",rB:!0,c:[{cN:"attr",b:/[a-z0-9\[\]_-]+/},{b:/=/,eW:!0,r:0,c:[{cN:"literal",b:/\bon|off|true|false|yes|no\b/},{cN:"variable",v:[{b:/\$[\w\d"][\w\d_]*/},{b:/\$\{(.*?)}/}]},b,{cN:"number",b:/([\+\-]+)?[\d]+_[\d_]+/},e.NM]}]}]}});hljs.registerLanguage("fortran",function(e){var t={cN:"params",b:"\\(",e:"\\)"},n={literal:".False. .True.",keyword:"kind do while private call intrinsic where elsewhere type endtype endmodule endselect endinterface end enddo endif if forall endforall only contains default return stop then public subroutine|10 function program .and. .or. .not. .le. .eq. .ge. .gt. .lt. goto save else use module select case access blank direct exist file fmt form formatted iostat name named nextrec number opened rec recl sequential status unformatted unit continue format pause cycle exit c_null_char c_alert c_backspace c_form_feed flush wait decimal round iomsg synchronous nopass non_overridable pass protected volatile abstract extends import non_intrinsic value deferred generic final enumerator class associate bind enum c_int c_short c_long c_long_long c_signed_char c_size_t c_int8_t c_int16_t c_int32_t c_int64_t c_int_least8_t c_int_least16_t c_int_least32_t c_int_least64_t c_int_fast8_t c_int_fast16_t c_int_fast32_t c_int_fast64_t c_intmax_t C_intptr_t c_float c_double c_long_double c_float_complex c_double_complex c_long_double_complex c_bool c_char c_null_ptr c_null_funptr c_new_line c_carriage_return c_horizontal_tab c_vertical_tab iso_c_binding c_loc c_funloc c_associated c_f_pointer c_ptr c_funptr iso_fortran_env character_storage_size error_unit file_storage_size input_unit iostat_end iostat_eor numeric_storage_size output_unit c_f_procpointer ieee_arithmetic ieee_support_underflow_control ieee_get_underflow_mode ieee_set_underflow_mode newunit contiguous recursive pad position action delim readwrite eor advance nml interface procedure namelist include sequence elemental pure integer real character complex logical dimension allocatable|10 parameter external implicit|10 none double precision assign intent optional pointer target in out common equivalence data",built_in:"alog alog10 amax0 amax1 amin0 amin1 amod cabs ccos cexp clog csin csqrt dabs dacos dasin datan datan2 dcos dcosh ddim dexp dint dlog dlog10 dmax1 dmin1 dmod dnint dsign dsin dsinh dsqrt dtan dtanh float iabs idim idint idnint ifix isign max0 max1 min0 min1 sngl algama cdabs cdcos cdexp cdlog cdsin cdsqrt cqabs cqcos cqexp cqlog cqsin cqsqrt dcmplx dconjg derf derfc dfloat dgamma dimag dlgama iqint qabs qacos qasin qatan qatan2 qcmplx qconjg qcos qcosh qdim qerf qerfc qexp qgamma qimag qlgama qlog qlog10 qmax1 qmin1 qmod qnint qsign qsin qsinh qsqrt qtan qtanh abs acos aimag aint anint asin atan atan2 char cmplx conjg cos cosh exp ichar index int log log10 max min nint sign sin sinh sqrt tan tanh print write dim lge lgt lle llt mod nullify allocate deallocate adjustl adjustr all allocated any associated bit_size btest ceiling count cshift date_and_time digits dot_product eoshift epsilon exponent floor fraction huge iand ibclr ibits ibset ieor ior ishft ishftc lbound len_trim matmul maxexponent maxloc maxval merge minexponent minloc minval modulo mvbits nearest pack present product radix random_number random_seed range repeat reshape rrspacing scale scan selected_int_kind selected_real_kind set_exponent shape size spacing spread sum system_clock tiny transpose trim ubound unpack verify achar iachar transfer dble entry dprod cpu_time command_argument_count get_command get_command_argument get_environment_variable is_iostat_end ieee_arithmetic ieee_support_underflow_control
ieee_get_underflow_mode ieee_set_underflow_mode is_iostat_eor move_alloc new_line selected_char_kind same_type_as extends_type_ofacosh asinh atanh bessel_j0 bessel_j1 bessel_jn bessel_y0 bessel_y1 bessel_yn erf erfc erfc_scaled gamma log_gamma hypot norm2 atomic_define atomic_ref execute_command_line leadz trailz storage_size merge_bits bge bgt ble blt dshiftl dshiftr findloc iall iany iparity image_index lcobound ucobound maskl maskr num_images parity popcnt poppar shifta shiftl shiftr this_image"};return{cI:!0,aliases:["f90","f95"],k:n,i:/\/*/,c:[e.inherit(e.ASM,{cN:"string",r:0}),e.inherit(e.QSM,{cN:"string",r:0}),{cN:"function",bK:"subroutine function program",i:"[${=\\n]",c:[e.UTM,t]},e.C("!","$",{r:0}),{cN:"number",b:"(?=\\b|\\+|\\-|\\.)(?=\\.\\d|\\d)(?:\\d+)?(?:\\.?\\d*)(?:[de][+-]?\\d+)?\\b\\.?",r:0}]}});hljs.registerLanguage("tex",function(c){var e={cN:"tag",b:/\\/,r:0,c:[{cN:"name",v:[{b:/[a-zA-Zа-яА-я]+[*]?/},{b:/[^a-zA-Zа-яА-я0-9]/}],starts:{eW:!0,r:0,c:[{cN:"string",v:[{b:/\[/,e:/\]/},{b:/\{/,e:/\}/}]},{b:/\s*=\s*/,eW:!0,r:0,c:[{cN:"number",b:/-?\d*\.?\d+(pt|pc|mm|cm|in|dd|cc|ex|em)?/}]}]}}]};return{c:[e,{cN:"formula",c:[e],r:0,v:[{b:/\$\$/,e:/\$\$/},{b:/\$/,e:/\$/}]},c.C("%","$",{r:0})]}});hljs.registerLanguage("typescript",function(e){var r={keyword:"in if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const class public private protected get set super static implements enum export import declare type namespace abstract",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document any number boolean string void"};return{aliases:["ts"],k:r,c:[{cN:"meta",b:/^\s*['"]use strict['"]/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM],r:0},{cN:"function",b:"function",e:/[\{;]/,eE:!0,k:r,c:["self",e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:r,c:[e.CLCM,e.CBCM],i:/["'\(]/}],i:/\[|%/,r:0},{bK:"constructor",e:/\{/,eE:!0},{bK:"module",e:/\{/,eE:!0},{bK:"interface",e:/\{/,eE:!0,k:"interface extends"},{b:/\$[(.]/},{b:"\\."+e.IR,r:0}]}});hljs.registerLanguage("scss",function(e){var t="[a-zA-Z-][a-zA-Z0-9_-]*",i={cN:"variable",b:"(\\$"+t+")\\b"},r={cN:"number",b:"#[0-9A-Fa-f]+"};({cN:"attribute",b:"[A-Z_\\.\\-]+",e:":",eE:!0,i:"[^\\s]",starts:{eW:!0,eE:!0,c:[r,e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"meta",b:"!important"}]}});return{cI:!0,i:"[=/|']",c:[e.CLCM,e.CBCM,{cN:"selector-id",b:"\\#[A-Za-z0-9_-]+",r:0},{cN:"selector-class",b:"\\.[A-Za-z0-9_-]+",r:0},{cN:"selector-attr",b:"\\[",e:"\\]",i:"$"},{cN:"selector-tag",b:"\\b(a|abbr|acronym|address|area|article|aside|audio|b|base|big|blockquote|body|br|button|canvas|caption|cite|code|col|colgroup|command|datalist|dd|del|details|dfn|div|dl|dt|em|embed|fieldset|figcaption|figure|footer|form|frame|frameset|(h[1-6])|head|header|hgroup|hr|html|i|iframe|img|input|ins|kbd|keygen|label|legend|li|link|map|mark|meta|meter|nav|noframes|noscript|object|ol|optgroup|option|output|p|param|pre|progress|q|rp|rt|ruby|samp|script|section|select|small|span|strike|strong|style|sub|sup|table|tbody|td|textarea|tfoot|th|thead|time|title|tr|tt|ul|var|video)\\b",r:0},{b:":(visited|valid|root|right|required|read-write|read-only|out-range|optional|only-of-type|only-child|nth-of-type|nth-last-of-type|nth-last-child|nth-child|not|link|left|last-of-type|last-child|lang|invalid|indeterminate|in-range|hover|focus|first-of-type|first-line|first-letter|first-child|first|enabled|empty|disabled|default|checked|before|after|active)"},{b:"::(after|before|choices|first-letter|first-line|repeat-index|repeat-item|selection|value)"},i,{cN:"attribute",b:"\\b(z-index|word-wrap|word-spacing|word-break|width|widows|white-space|visibility|vertical-align|unicode-bidi|transition-timing-function|transition-property|transition-duration|transition-delay|transition|transform-style|transform-origin|transform|top|text-underline-position|text-transform|text-shadow|text-rendering|text-overflow|text-indent|text-decoration-style|text-decoration-line|text-decoration-color|text-decoration|text-align-last|text-align|tab-size|table-layout|right|resize|quotes|position|pointer-events|perspective-origin|perspective|page-break-inside|page-break-before|page-break-after|padding-top|padding-right|padding-left|padding-bottom|padding|overflow-y|overflow-x|overflow-wrap|overflow|outline-width|outline-style|outline-offset|outline-color|outline|orphans|order|opacity|object-position|object-fit|normal|none|nav-up|nav-right|nav-left|nav-index|nav-down|min-width|min-height|max-width|max-height|mask|marks|margin-top|margin-right|margin-left|margin-bottom|margin|list-style-type|list-style-position|list-style-image|list-style|line-height|letter-spacing|left|justify-content|initial|inherit|ime-mode|image-orientation|image-resolution|image-rendering|icon|hyphens|height|font-weight|font-variant-ligatures|font-variant|font-style|font-stretch|font-size-adjust|font-size|font-language-override|font-kerning|font-feature-settings|font-family|font|float|flex-wrap|flex-shrink|flex-grow|flex-flow|flex-direction|flex-basis|flex|filter|empty-cells|display|direction|cursor|counter-reset|counter-increment|content|column-width|column-span|column-rule-width|column-rule-style|column-rule-color|column-rule|column-gap|column-fill|column-count|columns|color|clip-path|clip|clear|caption-side|break-inside|break-before|break-after|box-sizing|box-shadow|box-decoration-break|bottom|border-width|border-top-width|border-top-style|border-top-right-radius|border-top-left-radius|border-top-color|border-top|border-style|border-spacing|border-right-width|border-right-style|border-right-color|border-right|border-radius|border-left-width|border-left-style|border-left-color|border-left|border-image-width|border-image-source|border-image-slice|border-image-repeat|border-image-outset|border-image|border-color|border-collapse|border-bottom-width|border-bottom-style|border-bottom-right-radius|border-bottom-left-radius|border-bottom-color|border-bottom|border|background-size|background-repeat|background-position|background-origin|background-image|background-color|background-clip|background-attachment|background-blend-mode|background|backface-visibility|auto|animation-timing-function|animation-play-state|animation-name|animation-iteration-count|animation-fill-mode|animation-duration|animation-direction|animation-delay|animation|align-self|align-items|align-content)\\b",i:"[^\\s]"},{b:"\\b(whitespace|wait|w-resize|visible|vertical-text|vertical-ideographic|uppercase|upper-roman|upper-alpha|underline|transparent|top|thin|thick|text|text-top|text-bottom|tb-rl|table-header-group|table-footer-group|sw-resize|super|strict|static|square|solid|small-caps|separate|se-resize|scroll|s-resize|rtl|row-resize|ridge|right|repeat|repeat-y|repeat-x|relative|progress|pointer|overline|outside|outset|oblique|nowrap|not-allowed|normal|none|nw-resize|no-repeat|no-drop|newspaper|ne-resize|n-resize|move|middle|medium|ltr|lr-tb|lowercase|lower-roman|lower-alpha|loose|list-item|line|line-through|line-edge|lighter|left|keep-all|justify|italic|inter-word|inter-ideograph|inside|inset|inline|inline-block|inherit|inactive|ideograph-space|ideograph-parenthesis|ideograph-numeric|ideograph-alpha|horizontal|hidden|help|hand|groove|fixed|ellipsis|e-resize|double|dotted|distribute|distribute-space|distribute-letter|distribute-all-lines|disc|disabled|default|decimal|dashed|crosshair|collapse|col-resize|circle|char|center|capitalize|break-word|break-all|bottom|both|bolder|bold|block|bidi-override|below|baseline|auto|always|all-scroll|absolute|table|table-cell)\\b"},{b:":",e:";",c:[i,r,e.CSSNM,e.QSM,e.ASM,{cN:"meta",b:"!important"}]},{b:"@",e:"[{;]",k:"mixin include extend for if else each while charset import debug media page content font-face namespace warn",c:[i,e.QSM,e.ASM,r,e.CSSNM,{b:"\\s[A-Za-z0-9_.-]+",r:0}]}]}});hljs.registerLanguage("puppet",function(e){var s={keyword:"and case default else elsif false if in import enherits node or true undef unless main settings $string ",literal:"alias audit before loglevel noop require subscribe tag owner ensure group mode name|0 changes context force incl lens load_path onlyif provider returns root show_diff type_check en_address ip_address realname command environment hour monute month monthday special target weekday creates cwd ogoutput refresh refreshonly tries try_sleep umask backup checksum content ctime force ignore links mtime purge recurse recurselimit replace selinux_ignore_defaults selrange selrole seltype seluser source souirce_permissions sourceselect validate_cmd validate_replacement allowdupe attribute_membership auth_membership forcelocal gid ia_load_module members system host_aliases ip allowed_trunk_vlans description device_url duplex encapsulation etherchannel native_vlan speed principals allow_root auth_class auth_type authenticate_user k_of_n mechanisms rule session_owner shared options device fstype enable hasrestart directory present absent link atboot blockdevice device dump pass remounts poller_tag use message withpath adminfile allow_virtual allowcdrom category configfiles flavor install_options instance package_settings platform responsefile status uninstall_options vendor unless_system_user unless_uid binary control flags hasstatus manifest pattern
restart running start stop allowdupe auths expiry gid groups home iterations key_membership keys managehome membership password password_max_age password_min_age profile_membership profiles project purge_ssh_keys role_membership roles salt shell uid baseurl cost descr enabled enablegroups exclude failovermethod gpgcheck gpgkey http_caching include includepkgs keepalive metadata_expire metalink mirrorlist priority protect proxy proxy_password proxy_username repo_gpgcheck s3_enabled skip_if_unavailable sslcacert sslclientcert sslclientkey sslverify mounted",built_in:"architecture augeasversion blockdevices boardmanufacturer boardproductname boardserialnumber cfkey dhcp_servers domain ec2_ ec2_userdata facterversion filesystems ldom fqdn gid hardwareisa hardwaremodel hostname id|0 interfaces ipaddress ipaddress_ ipaddress6 ipaddress6_ iphostnumber is_virtual kernel kernelmajversion kernelrelease kernelversion kernelrelease kernelversion lsbdistcodename lsbdistdescription lsbdistid lsbdistrelease lsbmajdistrelease lsbminordistrelease lsbrelease macaddress macaddress_ macosx_buildversion macosx_productname macosx_productversion macosx_productverson_major macosx_productversion_minor manufacturer memoryfree memorysize netmask metmask_ network_ operatingsystem operatingsystemmajrelease operatingsystemrelease osfamily partitions path physicalprocessorcount processor processorcount productname ps puppetversion rubysitedir rubyversion selinux selinux_config_mode selinux_config_policy selinux_current_mode selinux_current_mode selinux_enforced selinux_policyversion serialnumber sp_ sshdsakey sshecdsakey sshrsakey swapencrypted swapfree swapsize timezone type uniqueid uptime uptime_days uptime_hours uptime_seconds uuid virtual vlans xendomains zfs_version zonenae zones zpool_version"},r=e.C("#","$"),a="([A-Za-z_]|::)(\\w|::)*",i=e.inherit(e.TM,{b:a}),o={cN:"variable",b:"\\$"+a},t={cN:"string",c:[e.BE,o],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]};return{aliases:["pp"],c:[r,o,t,{bK:"class",e:"\\{|;",i:/=/,c:[i,r]},{bK:"define",e:/\{/,c:[{cN:"section",b:e.IR,endsParent:!0}]},{b:e.IR+"\\s+\\{",rB:!0,e:/\S/,c:[{cN:"keyword",b:e.IR},{b:/\{/,e:/\}/,k:s,r:0,c:[t,r,{b:"[a-zA-Z_]+\\s*=>",rB:!0,e:"=>",c:[{cN:"attr",b:e.IR}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},o]}],r:0}]}});hljs.registerLanguage("cpp",function(t){var e={cN:"keyword",b:"\\b[a-z\\d_]*_t\\b"},r={cN:"string",v:[t.inherit(t.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[t.BE]},{b:"'\\\\?.",e:"'",i:"."}]},i={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:t.CNR}],r:0},s={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line pragma ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[t.inherit(r,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},r,t.CLCM,t.CBCM]},a=t.IR+"\\s*\\(",c={keyword:"int float while private char catch export virtual operator sizeof dynamic_cast|10 typedef const_cast|10 const struct for static_cast|10 union namespace unsigned long volatile static protected bool template mutable if public friend do goto auto void enum else break extern using class asm case typeid short reinterpret_cast|10 default double register explicit signed typename try this switch continue inline delete alignof constexpr decltype noexcept static_assert thread_local restrict _Bool complex _Complex _Imaginary atomic_bool atomic_char atomic_schar atomic_uchar atomic_short atomic_ushort atomic_int atomic_uint atomic_long atomic_ulong atomic_llong atomic_ullong",built_in:"std string cin cout cerr clog stdin stdout stderr stringstream istringstream ostringstream auto_ptr deque list queue stack vector map set bitset multiset multimap unordered_set unordered_map unordered_multiset unordered_multimap array shared_ptr abort abs acos asin atan2 atan calloc ceil cosh cos exit exp fabs floor fmod fprintf fputs free frexp fscanf isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct isspace isupper isxdigit tolower toupper labs ldexp log10 log malloc realloc memchr memcmp memcpy memset modf pow printf putchar puts scanf sinh sin snprintf sprintf sqrt sscanf strcat strchr strcmp strcpy strcspn strlen strncat strncmp strncpy strpbrk strrchr strspn strstr tanh tan vfprintf vprintf vsprintf endl initializer_list unique_ptr",literal:"true false nullptr NULL"};return{aliases:["c","cc","h","c++","h++","hpp"],k:c,i:"</",c:[e,t.CLCM,t.CBCM,i,r,s,{b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:c,c:["self",e]},{b:t.IR+"::",k:c},{bK:"new throw return else",r:0},{cN:"function",b:"("+t.IR+"[*&\\s]+)+"+a,rB:!0,e:/[{;=]/,eE:!0,k:c,i:/[^\w\s*&]/,c:[{b:a,rB:!0,c:[t.TM],r:0},{cN:"params",b:/\(/,e:/\)/,k:c,r:0,c:[t.CLCM,t.CBCM,r,i]},t.CLCM,t.CBCM,s]}]}});hljs.registerLanguage("gradle",function(e){return{cI:!0,k:{keyword:"task project allprojects subprojects artifacts buildscript configurations dependencies repositories sourceSets description delete from into include exclude source classpath destinationDir includes options sourceCompatibility targetCompatibility group flatDir doLast doFirst flatten todir fromdir ant def abstract break case catch continue default do else extends final finally for if implements instanceof native new private protected public return static switch synchronized throw throws transient try volatile while strictfp package import false null super this true antlrtask checkstyle codenarc copy boolean byte char class double float int interface long short void compile runTime file fileTree abs any append asList asWritable call collect compareTo count div dump each eachByte eachFile eachLine every find findAll flatten getAt getErr getIn getOut getText grep immutable inject inspect intersect invokeMethods isCase join leftShift minus multiply newInputStream newOutputStream newPrintWriter newReader newWriter next plus pop power previous print println push putAt read readBytes readLines reverse reverseEach round size sort splitEachLine step subMap times toInteger toList tokenize upto waitForOrKill withPrintWriter withReader withStream withWriter withWriterAppend write writeLine"},c:[e.CLCM,e.CBCM,e.ASM,e.QSM,e.NM,e.RM]}});hljs.registerLanguage("elixir",function(e){var r="[a-zA-Z_][a-zA-Z0-9_]*(\\!|\\?)?",n="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|**|[-/+%^&*~`|]|\\[\\]=?",b="and false then defined module in return redo retry end for true self when next until do begin unless nil break not case cond alias while ensure or include use alias fn quote",c={cN:"subst",b:"#\\{",e:"}",l:r,k:b},a={cN:"string",c:[e.BE,c],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]},i={cN:"function",bK:"def defp defmacro",e:/\B\b/,c:[e.inherit(e.TM,{b:r,endsParent:!0})]},s=e.inherit(i,{cN:"class",bK:"defmodule defrecord",e:/\bdo\b|$|;/}),l=[a,e.HCM,s,i,{cN:"symbol",b:":",c:[a,{b:n}],r:0},{cN:"symbol",b:r+":",r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{cN:"variable",b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"->"},{b:"("+e.RSR+")\\s*",c:[e.HCM,{cN:"regexp",i:"\\n",c:[e.BE,c],v:[{b:"/",e:"/[a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}],r:0}];return c.c=l,{l:r,k:b,c:l}});hljs.registerLanguage("http",function(e){var t="HTTP/[0-9\\.]+";return{aliases:["https"],i:"\\S",c:[{b:"^"+t,e:"$",c:[{cN:"number",b:"\\b\\d{3}\\b"}]},{b:"^[A-Z]+ (.*?) "+t+"$",rB:!0,e:"$",c:[{cN:"string",b:" ",e:" ",eB:!0,eE:!0},{b:t},{cN:"keyword",b:"[A-Z]+"}]},{cN:"attribute",b:"^\\w",e:": ",eE:!0,i:"\\n|\\s|=",starts:{e:"$",r:0}},{b:"\\n\\n",starts:{sL:[],eW:!0}}]}});hljs.registerLanguage("delphi",function(e){var r="exports register file shl array record property for mod while set ally label uses raise not stored class safecall var interface or private static exit index inherited to else stdcall override shr asm far resourcestring finalization packed virtual out and protected library do xorwrite goto near function end div overload object unit begin string on inline repeat until destructor write message program with read initialization except default nil if case cdecl in downto threadvar of try pascal const external constructor type public then implementation finally published procedure",t=[e.CLCM,e.C(/\{/,/\}/,{r:0}),e.C(/\(*/,/*\)/,{r:10})],a={cN:"string",b:/'/,e:/'/,c:[{b:/''/}]},i={cN:"string",b:/(#\d+)+/},c={b:e.IR+"\\s*=\\s*class\\s*\\(",rB:!0,c:[e.TM]},o={cN:"function",bK:"function constructor destructor procedure",e:/[:;]/,k:"function constructor|10 destructor|10 procedure|10",c:[e.TM,{cN:"params",b:/\(/,e:/\)/,k:r,c:[a,i]}].concat(t)};return{aliases:["dpr","dfm","pas","pascal","freepascal","lazarus","lpr","lfm"],cI:!0,k:r,i:/"|\$[G-Zg-z]|\/*|<\/|\|/,c:[a,i,e.NM,c,o].concat(t)}});hljs.registerLanguage("ruby",function(e){var b="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|**|[-/+%^&*~`|]|\\[\\]=?",c="and false then defined module in return redo if BEGIN retry end for true self when next until do begin unless END rescue nil else break undef not super class case require yield alias while ensure elsif or include attr_reader attr_writer attr_accessor",r={cN:"doctag",b:"@[A-Za-z]+"},a={b:"#<",e:">"},s=[e.C("#","$",{c:[r]}),e.C("^\\=begin","^\\=end",{c:[r],r:10}),e.C("^__END__","\\n$")],n={cN:"subst",b:"#\\{",e:"}",k:c},t={cN:"string",c:[e.BE,n],v:[{b:/'/,e:/'/},{b:/"/,e:/"/},{b:/`/,e:/`/},{b:"%[qQwWx]?\\(",e:"\\)"},{b:"%[qQwWx]?\\[",e:"\\]"},{b:"%[qQwWx]?{",e:"}"},{b:"%[qQwWx]?<",e:">"},{b:"%[qQwWx]?/",e:"/"},{b:"%[qQwWx]?%",e:"%"},{b:"%[qQwWx]?-",e:"-"},{b:"%[qQwWx]?\\|",e:"\\|"},{b:/\B\?(\\\d{1,3}|\\x[A-Fa-f0-9]{1,2}|\\u[A-Fa-f0-9]{4}|\\?\S)\b/}]},i={cN:"params",b:"\\(",e:"\\)",endsParent:!0,k:c},d=[t,a,{cN:"class",bK:"class module",e:"$|;",i:/=/,c:[e.inherit(e.TM,{b:"[A-Za-z_]\\w*(::\\w+)*(\\?|\\!)?"}),{b:"<\\s*",c:[{b:"("+e.IR+"::)?"+e.IR}]}].concat(s)},{cN:"function",bK:"def",e:"$
;",c:[e.inherit(e.TM,{b:b}),i].concat(s)},{cN:"symbol",b:e.UIR+"(\\!|\\?)?:",r:0},{cN:"symbol",b:":",c:[t,{b:b}],r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"("+e.RSR+")\\s*",c:[a,{cN:"regexp",c:[e.BE,n],i:/\n/,v:[{b:"/",e:"/[a-z]*"},{b:"%r{",e:"}[a-z]*"},{b:"%r\\(",e:"\\)[a-z]*"},{b:"%r!",e:"![a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}].concat(s),r:0}].concat(s);n.c=d,i.c=d;var o="[>?]>",l="[\\w#]+\\(\\w+\\):\\d+:\\d+>",u="(\\w+-)?\\d+\\.\\d+\\.\\d(p\\d+)?[^>]+>",w=[{b:/^\s*=>/,starts:{e:"$",c:d}},{cN:"meta",b:"^("+o+"|"+l+"|"+u+")",starts:{e:"$",c:d}}];return{aliases:["rb","gemspec","podspec","thor","irb"],k:c,i:/\/*/,c:s.concat(w).concat(d)}});hljs.registerLanguage("ceylon",function(e){var a="assembly module package import alias class interface object given value assign void function new of extends satisfies abstracts in out return break continue throw assert dynamic if else switch case for while try catch finally then let this outer super is exists nonempty",t="shared abstract formal default actual variable late native deprecatedfinal sealed annotation suppressWarnings small",s="doc by license see throws tagged",n={cN:"subst",eB:!0,eE:!0,b:/``/,e:/``/,k:a,r:10},r=[{cN:"string",b:'"""',e:'"""',r:10},{cN:"string",b:'"',e:'"',c:[n]},{cN:"string",b:"'",e:"'"},{cN:"number",b:"#[0-9a-fA-F_]+|\\$[01_]+|[0-9_]+(?:\\.[0-9_](?:[eE][+-]?\\d+)?)?[kMGTPmunpf]?",r:0}];return n.c=r,{k:{keyword:a+" "+t,meta:s},i:"\\$[^01]|#[^0-9a-fA-F]",c:[e.CLCM,e.C("/*","*/",{c:["self"]}),{cN:"meta",b:'@[a-z]\\w*(?:\\:"[^"]*")?'}].concat(r)}});hljs.registerLanguage("dts",function(e){var a={cN:"string",v:[e.inherit(e.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[e.BE]},{b:"'\\\\?.",e:"'",i:"."}]},c={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:e.CNR}],r:0},b={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[e.inherit(a,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},a,e.CLCM,e.CBCM]},i={cN:"variable",b:"\\&[a-z\\d_]*\\b"},r={cN:"meta-keyword",b:"/[a-z][a-z\\d-]*/"},d={cN:"symbol",b:"^\\s*[a-zA-Z_][a-zA-Z\\d_]*:"},n={cN:"params",b:"<",e:">",c:[c,i]},s={cN:"class",b:/[a-zA-Z_][a-zA-Z\d_@]*\s{/,e:/[{;=]/,rB:!0,eE:!0},t={cN:"class",b:"/\\s*{",e:"};",r:10,c:[i,r,d,s,n,e.CLCM,e.CBCM,c,a]};return{k:"",c:[t,i,r,d,s,n,e.CLCM,e.CBCM,c,a,b,{b:e.IR+"::",k:""}]}});hljs.registerLanguage("django",function(e){var t={b:/\|[A-Za-z]+:?/,k:{name:"truncatewords removetags linebreaksbr yesno get_digit timesince random striptags filesizeformat escape linebreaks length_is ljust rjust cut urlize fix_ampersands title floatformat capfirst pprint divisibleby add make_list unordered_list urlencode timeuntil urlizetrunc wordcount stringformat linenumbers slice date dictsort dictsortreversed default_if_none pluralize lower join center default truncatewords_html upper length phone2numeric wordwrap time addslashes slugify first escapejs force_escape iriencode last safe safeseq truncatechars localize unlocalize localtime utc timezone"},c:[e.QSM,e.ASM]};return{aliases:["jinja"],cI:!0,sL:"xml",c:[e.C(/\{%\s*comment\s*%}/,/\{%\s*endcomment\s*%}/),e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:{name:"comment endcomment load templatetag ifchanged endifchanged if endif firstof for endfor ifnotequal endifnotequal widthratio extends include spaceless endspaceless regroup ifequal endifequal ssi now with cycle url filter endfilter debug block endblock else autoescape endautoescape csrf_token empty elif endwith static trans blocktrans endblocktrans get_static_prefix get_media_prefix plural get_current_language language get_available_languages get_current_language_bidi get_language_info get_language_info_list localize endlocalize localtime endlocaltime timezone endtimezone get_current_timezone verbatim"},starts:{eW:!0,k:"in by as",c:[t],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:[t]}]}});hljs.registerLanguage("css",function(e){var c="[a-zA-Z-][a-zA-Z0-9_-]*",t={b:/[A-Z_\.\-]+\s*:/,rB:!0,e:";",eW:!0,c:[{cN:"attribute",b:/\S/,e:":",eE:!0,starts:{eW:!0,eE:!0,c:[{b:/[\w-]+\(/,rB:!0,c:[{cN:"built_in",b:/[\w-]+/},{b:/\(/,e:/\)/,c:[e.ASM,e.QSM]}]},e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"number",b:"#[0-9A-Fa-f]+"},{cN:"meta",b:"!important"}]}}]};return{cI:!0,i:/[=\/|'\$]/,c:[e.CBCM,{cN:"selector-id",b:/#[A-Za-z0-9_-]+/},{cN:"selector-class",b:/\.[A-Za-z0-9_-]+/},{cN:"selector-attr",b:/\[/,e:/\]/,i:"$"},{cN:"selector-pseudo",b:/:(:)?[a-zA-Z0-9_\-\+\(\)"'.]+/},{b:"@(font-face|page)",l:"[a-z-]+",k:"font-face page"},{b:"@",e:"[{;]",c:[{cN:"keyword",b:/\S+/},{b:/\s/,eW:!0,eE:!0,r:0,c:[e.ASM,e.QSM,e.CSSNM]}]},{cN:"selector-tag",b:c,r:0},{b:"{",e:"}",i:/\S/,c:[e.CBCM,t]}]}});hljs.registerLanguage("qml",function(r){var e={keyword:"in of on if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Behavior bool color coordinate date double enumeration font geocircle georectangle geoshape int list matrix4x4 parent point quaternion real rect size string url var variant vector2d vector3d vector4dPromise"},t="[a-zA-Z_][a-zA-Z0-9\\._]*",a={cN:"string",b:"(\\b|\"|')",e:"(//|/*|$)",i:"\\n",c:[r.BE]},n={bK:"import",e:"$",starts:{cN:"string",e:"(//|/*|$)",rE:!0},c:[a]},o={cN:"keyword",b:"\\bproperty\\b",starts:{cN:"string",e:"(:|=|;|,|//|/*|$)",rE:!0},r:0},i={cN:"keyword",b:"\\bsignal\\b",starts:{cN:"string",e:"(\\(|:|=|;|,|//|/*|$)",rE:!0},r:10},c={cN:"attribute",b:"\\bid\\s*:",starts:{cN:"emphasis",e:t,rE:!1},r:10},s={b:t+"\\s*:",rB:!0,c:[{cN:"attribute",b:t,includeBegin:!0,e:"\\s*:",eE:!0}],r:0},b={b:t+"\\s*{",rB:!0,c:[{cN:"decorator",k:e,b:t,includeBegin:!0,e:"\\s*{",eE:!0}],r:0};return{aliases:["qt"],cI:!1,k:e,c:[{cN:"pi",b:/^\s*['"]use (strict|asm)['"]/},r.ASM,r.QSM,{cN:"string",b:"`",e:"`",c:[r.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},r.CLCM,r.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:r.CNR}],r:0},{b:"("+r.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[r.CLCM,r.CBCM,r.RM,{b:/</,e:/>\s*[);\]]/,r:0,sL:"xml"}],r:0},n,i,o,{cN:"function",bK:"function",e:/\{/,eE:!0,c:[r.inherit(r.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[r.CLCM,r.CBCM]}],i:/\[|%/},{b:"\\."+r.IR,r:0},c,s,b],i:/#/}});hljs.registerLanguage("coffeescript",function(e){var c={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger super then unless until loop of by when and or is isnt not",literal:"true false null undefined yes no on off",built_in:"npm require console print module global window document"},n="[A-Za-z$_][0-9A-Za-z$_]*",r={cN:"subst",b:/#\{/,e:/}/,k:c},s=[e.BNM,e.inherit(e.CNM,{starts:{e:"(\\s*/)?",r:0}}),{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,r]},{b:/"/,e:/"/,c:[e.BE,r]}]},{cN:"regexp",v:[{b:"///",e:"///",c:[r,e.HCM]},{b:"//[gim]*",r:0},{b:/\/(?![*])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+n},{b:"`",e:"`",eB:!0,eE:!0,sL:"javascript"}];r.c=s;var i=e.inherit(e.TM,{b:n}),t="(\\(.*\\))?\\s*\\B[-=]>",o={cN:"params",b:"\\([^\\(]",rB:!0,c:[{b:/\(/,e:/\)/,k:c,c:["self"].concat(s)}]};return{aliases:["coffee","cson","iced"],k:c,i:/\/*/,c:s.concat([e.C("###","###"),e.HCM,{cN:"function",b:"^\\s*"+n+"\\s*=\\s*"+t,e:"[-=]>",rB:!0,c:[i,o]},{b:/[:\(,=]\s*/,r:0,c:[{cN:"function",b:t,e:"[-=]>",rB:!0,c:[o]}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[i]},i]},{b:n+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("vbscript",function(e){return{aliases:["vbs"],cI:!0,k:{keyword:"call class const dim do loop erase execute executeglobal exit for each next function if then else on error option explicit new private property let get public randomize redim rem select case set stop sub while wend with end to elseif is or xor and not class_initialize class_terminate default preserve in me byval byref step resume goto",built_in:"lcase month vartype instrrev ubound setlocale getobject rgb getref string weekdayname rnd dateadd monthname now day minute isarray cbool round formatcurrency conversions csng timevalue second year space abs clng timeserial fixs len asc isempty maths dateserial atn timer isobject filter weekday datevalue ccur isdate instr datediff formatdatetime replace isnull right sgn array snumeric log cdbl hex chr lbound msgbox ucase getlocale cos cdate cbyte rtrim join hour oct typename trim strcomp int createobject loadpicture tan formatnumber mid scriptenginebuildversion scriptengine split scriptengineminorversion cint sin datepart ltrim sqr scriptenginemajorversion time derived eval date formatpercent exp inputbox left ascw chrw regexp server response request cstr err",literal:"true false null nothing empty"},i:"//",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C(/'/,/$/,{r:0}),e.CNM]}});hljs.registerLanguage("fsharp",function(e){var t={b:"<",e:">",c:[e.inherit(e.TM,{b:/'[a-zA-Z0-9_]+/})]};return{aliases:["fs"],k:"abstract and as assert base begin class default delegate do done downcast downto elif else end exception extern false finally for fun function global if in inherit inline interface internal lazy let match member module mutable namespace new null of
open or override private public rec return sig static struct then to true try type upcast use val void when while with yield",i:/\/*/,c:[{cN:"keyword",b:/\b(yield|return|let|do)!/},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},{cN:"string",b:'"""',e:'"""'},e.C("\\(*","*\\)"),{cN:"class",bK:"type",e:"\\(|=|$",eE:!0,c:[e.UTM,t]},{cN:"meta",b:"\\[<",e:">\\]",r:10},{cN:"symbol",b:"\\B('[A-Za-z])\\b",c:[e.BE]},e.CLCM,e.inherit(e.QSM,{i:null}),e.CNM]}});hljs.registerLanguage("dart",function(e){var t={cN:"subst",b:"\\$\\{",e:"}",k:"true false null this is new super"},r={cN:"string",v:[{b:"r'''",e:"'''"},{b:'r"""',e:'"""'},{b:"r'",e:"'",i:"\\n"},{b:'r"',e:'"',i:"\\n"},{b:"'''",e:"'''",c:[e.BE,t]},{b:'"""',e:'"""',c:[e.BE,t]},{b:"'",e:"'",i:"\\n",c:[e.BE,t]},{b:'"',e:'"',i:"\\n",c:[e.BE,t]}]};t.c=[e.CNM,r];var n={keyword:"assert async await break case catch class const continue default do else enum extends false final finally for if in is new null rethrow return super switch sync this throw true try var void while with yield abstract as dynamic export external factory get implements import library operator part set static typedef",built_in:"print Comparable DateTime Duration Function Iterable Iterator List Map Match Null Object Pattern RegExp Set Stopwatch String StringBuffer StringSink Symbol Type Uri bool double int num document window querySelector querySelectorAll Element ElementList"};return{k:n,c:[r,e.C("/**","*/",{sL:"markdown"}),e.C("///","$",{sL:"markdown"}),e.CLCM,e.CBCM,{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{b:"=>"}]}});hljs.registerLanguage("asciidoc",function(e){return{aliases:["adoc"],c:[e.C("^/{4,}\\n","\\n/{4,}$",{r:10}),e.C("^//","$",{r:0}),{cN:"title",b:"^\\.\\w.*$"},{b:"^[=*]{4,}\\n",e:"\\n^[=*]{4,}$",r:10},{cN:"section",r:10,v:[{b:"^(={1,5}) .+?(\\1)?$"},{b:"^[^\\[\\]\\n]+?\\n[=\\-~\\^\\+]{2,}$"}]},{cN:"meta",b:"^:.+?:",e:"\\s",eE:!0,r:10},{cN:"meta",b:"^\\[.+?\\]$",r:0},{cN:"quote",b:"^_{4,}\\n",e:"\\n_{4,}$",r:10},{cN:"code",b:"^[\\-\\.]{4,}\\n",e:"\\n[\\-\\.]{4,}$",r:10},{b:"^\\+{4,}\\n",e:"\\n\\+{4,}$",c:[{b:"<",e:">",sL:"xml",r:0}],r:10},{cN:"bullet",b:"^(*+|\\-+|\\.+|[^\\n]+?::)\\s+"},{cN:"symbol",b:"^(NOTE|TIP|IMPORTANT|WARNING|CAUTION):\\s+",r:10},{cN:"strong",b:"\\B*(?![*\\s])",e:"(\\n{2}|*)",c:[{b:"*\\w",r:0}]},{cN:"emphasis",b:"\\B'(?!['\\s])",e:"(\\n{2}|')",c:[{b:"\\\\'\\w",r:0}],r:0},{cN:"emphasis",b:"_(?![_\\s])",e:"(\\n{2}|_)",r:0},{cN:"string",v:[{b:"``.+?''"},{b:"`.+?'"}]},{cN:"code",b:"(`.+?`|\\+.+?\\+)",r:0},{cN:"code",b:"^[\\t]",e:"$",r:0},{b:"^'{3,}[\\t]*$",r:10},{b:"(link:)?(http|https|ftp|file|irc|image:?):\\S+\\[.*?\\]",rB:!0,c:[{b:"(link|image:?):",r:0},{cN:"link",b:"\\w",e:"[^\\[]+",r:0},{cN:"string",b:"\\[",e:"\\]",eB:!0,eE:!0,r:0}],r:10}]}});hljs.registerLanguage("dos",function(e){var r=e.C(/@?rem\b/,/$/,{r:10}),t={cN:"symbol",b:"^\\s*[A-Za-z._?][A-Za-z0-9_$#@~.?]*(:|\\s+label)",r:0};return{aliases:["bat","cmd"],cI:!0,i:/\/*/,k:{keyword:"if else goto for in do call exit not exist errorlevel defined equ neq lss leq gtr geq",built_in:"prn nul lpt3 lpt2 lpt1 con com4 com3 com2 com1 aux shift cd dir echo setlocal endlocal set pause copy append assoc at attrib break cacls cd chcp chdir chkdsk chkntfs cls cmd color comp compact convert date dir diskcomp diskcopy doskey erase fs find findstr format ftype graftabl help keyb label md mkdir mode more move path pause print popd pushd promt rd recover rem rename replace restore rmdir shiftsort start subst time title tree type ver verify vol ping net ipconfig taskkill xcopy ren del"},c:[{cN:"variable",b:/%%[^]|%[^]+?%|![^]+?!/},{cN:"function",b:t.b,e:"goto:eof",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),r]},{cN:"number",b:"\\b\\d+",r:0},r]}});hljs.registerLanguage("lua",function(e){var t="\\[=*\\[",a="\\]=*\\]",r={b:t,e:a,c:["self"]},n=[e.C("--(?!"+t+")","$"),e.C("--"+t,a,{c:[r],r:10})];return{l:e.UIR,k:{keyword:"and break do else elseif end false for if in local nil not or repeat return then true until while",built_in:"_G _VERSION assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstring module next pairs pcall print rawequal rawget rawset require select setfenv setmetatable tonumber tostring type unpack xpcall coroutine debug io math os package string table"},c:n.concat([{cN:"function",bK:"function",e:"\\)",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),{cN:"params",b:"\\(",eW:!0,c:n}].concat(n)},e.CNM,e.ASM,e.QSM,{cN:"string",b:t,e:a,c:[r],r:5}])}});hljs.registerLanguage("julia",function(e){var r={keyword:"in abstract baremodule begin bitstype break catch ccall const continue do else elseif end export finally for function global if immutable import importall let local macro module quote return try type typealias using while",literal:"true false ARGS CPU_CORES C_NULL DL_LOAD_PATH DevNull ENDIAN_BOM ENV I|0 Inf Inf16 Inf32 InsertionSort JULIA_HOME LOAD_PATH MS_ASYNC MS_INVALIDATE MS_SYNC MergeSort NaN NaN16 NaN32 OS_NAME QuickSort RTLD_DEEPBIND RTLD_FIRST RTLD_GLOBAL RTLD_LAZY RTLD_LOCAL RTLD_NODELETE RTLD_NOLOAD RTLD_NOW RoundDown RoundFromZero RoundNearest RoundToZero RoundUp STDERR STDIN STDOUT VERSION WORD_SIZE catalan cglobal e|0 eu|0 eulergamma golden im nothing pi γ π φ Inf64 NaN64 RoundNearestTiesAway RoundNearestTiesUp ",built_in:"ANY ASCIIString AbstractArray AbstractRNG AbstractSparseArray Any ArgumentError Array Associative Base64Pipe Bidiagonal BigFloat BigInt BitArray BitMatrix BitVector Bool BoundsError Box CFILE Cchar Cdouble Cfloat Char CharString Cint Clong Clonglong ClusterManager Cmd Coff_t Colon Complex Complex128 Complex32 Complex64 Condition Cptrdiff_t Cshort Csize_t Cssize_t Cuchar Cuint Culong Culonglong Cushort Cwchar_t DArray DataType DenseArray Diagonal Dict DimensionMismatch DirectIndexString Display DivideError DomainError EOFError EachLine Enumerate ErrorException Exception Expr Factorization FileMonitor FileOffset Filter Float16 Float32 Float64 FloatRange FloatingPoint Function GetfieldNode GotoNode Hermitian IO IOBuffer IOStream IPv4 IPv6 InexactError Int Int128 Int16 Int32 Int64 Int8 IntSet Integer InterruptException IntrinsicFunction KeyError LabelNode LambdaStaticData LineNumberNode LoadError LocalProcess MIME MathConst MemoryError MersenneTwister Method MethodError MethodTable Module NTuple NewvarNode Nothing Number ObjectIdDict OrdinalRange OverflowError ParseError PollingFileWatcher ProcessExitedException ProcessGroup Ptr QuoteNode Range Range1 Ranges Rational RawFD Real Regex RegexMatch RemoteRef RepString RevString RopeString RoundingMode Set SharedArray Signed SparseMatrixCSC StackOverflowError Stat StatStruct StepRange String SubArray SubString SymTridiagonal Symbol SymbolNode Symmetric SystemError Task TextDisplay Timer TmStruct TopNode Triangular Tridiagonal Type TypeConstructor TypeError TypeName TypeVar UTF16String UTF32String UTF8String UdpSocket Uint Uint128 Uint16 Uint32 Uint64 Uint8 UndefRefError UndefVarError UniformScaling UnionType UnitRange Unsigned Vararg VersionNumber WString WeakKeyDict WeakRef Woodbury Zip AbstractChannel AbstractFloat AbstractString AssertionError Base64DecodePipe Base64EncodePipe BufferStream CapturedException CartesianIndex CartesianRange Channel Cintmax_t CompositeException Cstring Cuintmax_t Cwstring Date DateTime Dims Enum GenSym GlobalRef HTML InitError InvalidStateException Irrational LinSpace LowerTriangular NullException Nullable OutOfMemoryError Pair PartialQuickSort Pipe RandomDevice ReadOnlyMemoryError ReentrantLock Ref RemoteException SegmentationFault SerializationState SimpleVector TCPSocket Text Tuple UDPSocket UInt UInt128 UInt16 UInt32 UInt64 UInt8 UnicodeError Union UpperTriangular Val Void WorkerConfig AbstractMatrix AbstractSparseMatrix AbstractSparseVector AbstractVecOrMat AbstractVector DenseMatrix DenseVecOrMat DenseVector Matrix SharedMatrix SharedVector StridedArray StridedMatrix StridedVecOrMat StridedVector VecOrMat Vector "},t="[A-Za-z_\\u00A1-\\uFFFF][A-Za-z_0-9\\u00A1-\\uFFFF]*",a={l:t,k:r,i:/<\//},n={cN:"type",b:/::/},o={cN:"type",b:/<:/},i={cN:"number",b:/(\b0x[\d_]*(\.[\d_]*)?|0x\.\d[\d_]*)p[-+]?\d+|\b0[box][a-fA-F0-9][a-fA-F0-9_]*|(\b\d[\d_]*(\.[\d_]*)?|\.\d[\d_]*)([eEfF][-+]?\d+)?/,r:0},l={cN:"string",b:/'(.|\\[xXuU][a-zA-Z0-9]+)'/},c={cN:"subst",b:/\$\(/,e:/\)/,k:r},s={cN:"variable",b:"\\$"+t},d={cN:"string",c:[e.BE,c,s],v:[{b:/\w*"""/,e:/"""\w*/,r:10},{b:/\w*"/,e:/"\w*/}]},S={cN:"string",c:[e.BE,c,s],b:"`",e:"`"},u={cN:"meta",b:"@"+t},g={cN:"comment",v:[{b:"#=",e:"=#",r:10},{b:"#",e:"$"}]};return a.c=[i,l,n,o,d,S,u,g,e.HCM],c.c=a.c,a});hljs.registerLanguage("matlab",function(e){var a=[e.CNM,{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]}],s={r:0,c:[{b:/'['\.]*/}]};return{k:{keyword:"break case catch classdef continue else elseif end enumerated events for function global if methods otherwise parfor persistent properties return spmd switch try while",built_in:"sin sind sinh asin asind asinh cos cosd cosh acos acosd acosh tan tand tanh atan atand atan2 atanh sec secd sech asec asecd asech csc cscd csch acsc acscd acsch cot cotd coth acot acotd acoth hypot exp expm1 log log1p log10 log2 pow2 realpow reallog realsqrt sqrt nthroot nextpow2 abs angle complex conj imag real unwrap isreal cplxpair fix floor ceil round mod rem sign airy besselj bessely besselh besseli besselk beta betainc betaln ellipj ellipke erf erfc erfcx erfinv expint gamma gammainc gammaln psi legendre cross dot factor isprime primes gcd lcm rat rats perms nchoosek factorial cart2sph cart2pol pol2cart sph2cart hsv2rgb rgb2hsv zeros ones eye repmat rand randn linspace logspace freqspace meshgrid accumarray size length ndims numel disp isempty isequal isequalwithequalnans cat reshape diag blkdiag tril triu fliplr flipud flipdim rot90 find sub2ind ind2sub bsxfun ndgrid permute ipermute shiftdim circshift squeeze isscalar isvector ans eps realmax realmin pi i inf nan isnan isinf isfinite j why compan
gallery hadamard hankel hilb invhilb magic pascal rosser toeplitz vander wilkinson"},i:'(//|"|#|/*|\\s+/\\w+)',c:[{cN:"function",bK:"function",e:"$",c:[e.UTM,{cN:"params",v:[{b:"\\(",e:"\\)"},{b:"\\[",e:"\\]"}]}]},{b:/[a-zA-Z_][a-zA-Z_0-9]*'['\.]*/,rB:!0,r:0,c:[{b:/[a-zA-Z_][a-zA-Z_0-9]*/,r:0},s.c[0]]},{b:"\\[",e:"\\]",c:a,r:0,starts:s},{b:"\\{",e:/}/,c:a,r:0,starts:s},{b:/\)/,r:0,starts:s},e.C("^\\s*\\%\\{\\s*$","^\\s*\\%\\}\\s*$"),e.C("\\%","$")].concat(a)}});hljs.registerLanguage("markdown",function(e){return{aliases:["md","mkdown","mkd"],c:[{cN:"section",v:[{b:"^#{1,6}",e:"$"},{b:"^.+?\\n[=-]{2,}$"}]},{b:"<",e:">",sL:"xml",r:0},{cN:"bullet",b:"^([*+-]|(\\d+\\.))\\s+"},{cN:"strong",b:"[*_]{2}.+?[*_]{2}"},{cN:"emphasis",v:[{b:"*.+?*"},{b:"_.+?_",r:0}]},{cN:"quote",b:"^>\\s+",e:"$"},{cN:"code",v:[{b:"`.+?`"},{b:"^({4}|)",e:"$",r:0}]},{b:"^[-*]{3,}",e:"$"},{b:"\\[.+?\\][\\(\\[].*?[\\)\\]]",rB:!0,c:[{cN:"string",b:"\\[",e:"\\]",eB:!0,rE:!0,r:0},{cN:"link",b:"\\]\\(",e:"\\)",eB:!0,eE:!0},{cN:"symbol",b:"\\]\\[",e:"\\]",eB:!0,eE:!0}],r:10},{b:"^\\[.+\\]:",rB:!0,c:[{cN:"symbol",b:"\\[",e:"\\]:",eB:!0,eE:!0,starts:{cN:"link",e:"$"}}]}]}});hljs.registerLanguage("vim",function(e){return{l:/[!#@\w]+/,k:{keyword:"N|0 P|0 X|0 a|0 ab abc abo al am an|0 ar arga argd arge argdo argg argl argu as au aug aun b|0 bN ba bad bd be bel bf bl bm bn bo bp br brea breaka breakd breakl bro bufdo buffers bun bw c|0 cN cNf ca cabc caddb cad caddf cal cat cb cc ccl cd ce cex cf cfir cgetb cgete cg changes chd che checkt cl cla clo cm cmapc cme cn cnew cnf cno cnorea cnoreme co col colo com comc comp con conf cope cp cpf cq cr cs cst cu cuna cunme cw delm deb debugg delc delf dif diffg diffo diffp diffpu diffs diffthis dig di dl dell dj dli do doautoa dp dr ds dsp e|0 ea ec echoe echoh echom echon el elsei em en endfo endf endt endw ene ex exe exi exu f|0 files filet fin fina fini fir fix fo foldc foldd folddoc foldo for fu go gr grepa gu gv ha helpf helpg helpt hi hid his ia iabc if ij il im imapc ime ino inorea inoreme int is isp iu iuna iunme j|0 ju k|0 keepa kee keepj lN lNf l|0 lad laddb laddf la lan lat lb lc lch lcl lcs le lefta let lex lf lfir lgetb lgete lg lgr lgrepa lh ll lla lli lmak lm lmapc lne lnew lnf ln loadk lo loc lockv lol lope lp lpf lr ls lt lu lua luad luaf lv lvimgrepa lw m|0 ma mak map mapc marks mat me menut mes mk mks mksp mkv mkvie mod mz mzf nbc nb nbs new nm nmapc nme nn nnoreme noa no noh norea noreme norm nu nun nunme ol o|0 om omapc ome on ono onoreme opt ou ounme ow p|0 profd prof pro promptr pc ped pe perld po popu pp pre prev ps pt ptN ptf ptj ptl ptn ptp ptr pts pu pw py3 python3 py3d py3f py pyd pyf quita qa rec red redi redr redraws reg res ret retu rew ri rightb rub rubyd rubyf rund ru rv sN san sa sal sav sb sbN sba sbf sbl sbm sbn sbp sbr scrip scripte scs se setf setg setl sf sfir sh sim sig sil sl sla sm smap smapc sme sn sni sno snor snoreme sor so spelld spe spelli spellr spellu spellw sp spr sre st sta startg startr star stopi stj sts sun sunm sunme sus sv sw sy synti sync tN tabN tabc tabdo tabe tabf tabfir tabl tabm tabnew tabn tabo tabp tabr tabs tab ta tags tc tcld tclf te tf th tj tl tm tn to tp tr try ts tu u|0 undoj undol una unh unl unlo unm unme uns up ve verb vert vim vimgrepa vi viu vie vm vmapc vme vne vn vnoreme vs vu vunme windo w|0 wN wa wh wi winc winp wn wp wq wqa ws wu wv x|0 xa xmapc xm xme xn xnoreme xu xunme y|0 z|0 ~ Next Print append abbreviate abclear aboveleft all amenu anoremenu args argadd argdelete argedit argglobal arglocal argument ascii autocmd augroup aunmenu buffer bNext ball badd bdelete behave belowright bfirst blast bmodified bnext botright bprevious brewind break breakadd breakdel breaklist browse bunload bwipeout change cNext cNfile cabbrev cabclear caddbuffer caddexpr caddfile call catch cbuffer cclose center cexpr cfile cfirst cgetbuffer cgetexpr cgetfile chdir checkpath checktime clist clast close cmap cmapclear cmenu cnext cnewer cnfile cnoremap cnoreabbrev cnoremenu copy colder colorscheme command comclear compiler continue confirm copen cprevious cpfile cquit crewind cscope cstag cunmap cunabbrev cunmenu cwindow delete delmarks debug debuggreedy delcommand delfunction diffupdate diffget diffoff diffpatch diffput diffsplit digraphs display deletel djump dlist doautocmd doautoall deletep drop dsearch dsplit edit earlier echo echoerr echohl echomsg else elseif emenu endif endfor endfunction endtry endwhile enew execute exit exusage file filetype find finally finish first fixdel fold foldclose folddoopen folddoclosed foldopen function global goto grep grepadd gui gvim hardcopy help helpfind helpgrep helptags highlight hide history insert iabbrev iabclear ijump ilist imap imapclear imenu inoremap inoreabbrev inoremenu intro isearch isplit iunmap iunabbrev iunmenu join jumps keepalt keepmarks keepjumps lNext lNfile list laddexpr laddbuffer laddfile last language later lbuffer lcd lchdir lclose lcscope left leftabove lexpr lfile lfirst lgetbuffer lgetexpr lgetfile lgrep lgrepadd lhelpgrep llast llist lmake lmap lmapclear lnext lnewer lnfile lnoremap loadkeymap loadview lockmarks lockvar lolder lopen lprevious lpfile lrewind ltag lunmap luado luafile lvimgrep lvimgrepadd lwindow move mark make mapclear match menu menutranslate messages mkexrc mksession mkspell mkvimrc mkview mode mzscheme mzfile nbclose nbkey nbsart next nmap nmapclear nmenu nnoremap nnoremenu noautocmd noremap nohlsearch noreabbrev noremenu normal number nunmap nunmenu oldfiles open omap omapclear omenu only onoremap onoremenu options ounmap ounmenu ownsyntax print profdel profile promptfind promptrepl pclose pedit perl perldo pop popup ppop preserve previous psearch ptag ptNext ptfirst ptjump ptlast ptnext ptprevious ptrewind ptselect put pwd py3do py3file python pydo pyfile quit quitall qall read recover redo redir redraw redrawstatus registers resize retab return rewind right rightbelow ruby rubydo rubyfile rundo runtime rviminfo substitute sNext sandbox sargument sall saveas sbuffer sbNext sball sbfirst sblast sbmodified sbnext sbprevious sbrewind scriptnames scriptencoding scscope set setfiletype setglobal setlocal sfind sfirst shell simalt sign silent sleep slast smagic smapclear smenu snext sniff snomagic snoremap snoremenu sort source spelldump spellgood spellinfo spellrepall spellundo spellwrong split sprevious srewind stop stag startgreplace startreplace startinsert stopinsert stjump stselect sunhide sunmap sunmenu suspend sview swapname syntax syntime syncbind tNext tabNext tabclose tabedit tabfind tabfirst tablast tabmove tabnext tabonly tabprevious tabrewind tag tcl tcldo tclfile tearoff tfirst throw tjump tlast tmenu tnext topleft tprevious trewind tselect tunmenu undo undojoin undolist unabbreviate unhide unlet unlockvar unmap unmenu unsilent update vglobal version verbose vertical vimgrep vimgrepadd visual viusage view vmap vmapclear vmenu vnew vnoremap vnoremenu vsplit vunmap vunmenu write wNext wall while winsize wincmd winpos wnext wprevious wqall wsverb wundo wviminfo xit xall xmapclear xmap xmenu xnoremap xnoremenu xunmap xunmenu yank",built_in:"synIDtrans atan2 range matcharg did_filetype asin feedkeys xor argv complete_check add getwinposx getqflist getwinposy screencol clearmatches empty extend getcmdpos mzeval garbagecollect setreg ceil sqrt diff_hlID inputsecret get getfperm getpid filewritable shiftwidth max sinh isdirectory synID system inputrestore winline atan visualmode inputlist tabpagewinnr round getregtype mapcheck hasmapto histdel argidx findfile sha256 exists toupper getcmdline taglist string getmatches bufnr strftime winwidth bufexists strtrans tabpagebuflist setcmdpos remote_read printf setloclist getpos getline bufwinnr float2nr len getcmdtype diff_filler luaeval resolve libcallnr foldclosedend reverse filter has_key bufname str2float strlen setline getcharmod setbufvar index searchpos shellescape undofile foldclosed setqflist buflisted strchars str2nr virtcol floor remove undotree remote_expr winheight gettabwinvar reltime cursor tabpagenr finddir localtime acos getloclist search tanh matchend rename gettabvar strdisplaywidth type abs py3eval setwinvar tolower wildmenumode log10 spellsuggest bufloaded synconcealed nextnonblank server2client complete settabwinvar executable input wincol setmatches getftype hlID inputsave searchpair or screenrow line settabvar histadd deepcopy strpart remote_peek and eval getftime submatch screenchar winsaveview matchadd mkdir screenattr getfontname libcall reltimestr getfsize winnr invert pow getbufline byte2line soundfold repeat fnameescape tagfiles sin strwidth spellbadword trunc maparg log lispindent hostname setpos globpath remote_foreground getchar synIDattr fnamemodify cscope_connection stridx winbufnr indent min complete_add nr2char searchpairpos inputdialog values matchlist items hlexists strridx browsedir expand fmod pathshorten line2byte argc count getwinvar glob foldtextresult getreg foreground cosh matchdelete has char2nr simplify histget searchdecl iconv winrestcmd pumvisible writefile foldlevel haslocaldir keys cos matchstr foldtext histnr tan tempname getcwd byteidx getbufvar islocked escape eventhandler remote_send serverlist winrestview synstack pyeval prevnonblank readfile cindent filereadable changenr exp"},i:/[{:]/,c:[e.NM,e.ASM,{cN:"string",b:/"(\\"|\n\\|[^"\n])*"/},e.C('"',"$"),{cN:"variable",b:/[bwtglsav]:[\w\d_]*/},{cN:"function",bK:"function function!",e:"$",r:0,c:[e.TM,{cN:"params",b:"\\(",e:"\\)"}]},{cN:"symbol",b:/<[\w-]+>/}]}});hljs.registerLanguage("ruleslanguage",function(T){return{k:{keyword:"BILL_PERIOD BILL_START BILL_STOP RS_EFFECTIVE_START RS_EFFECTIVE_STOP RS_JURIS_CODE RS_OPCO_CODE INTDADDATTRIBUTE|5 INTDADDVMSG|5 INTDBLOCKOP|5 INTDBLOCKOPNA|5 INTDCLOSE|5 INTDCOUNT|5 INTDCOUNTSTATUSCODE|5 INTDCREATEMASK|5 INTDCREATEDAYMASK|5 INTDCREATEFACTORMASK|5 INTDCREATEHANDLE|5 INTDCREATEOVERRIDEDAYMASK|5 INTDCREATEOVERRIDEMASK|5 INTDCREATESTATUSCODEMASK|5 INTDCREATETOUPERIOD|5
INTDDELETE|5 INTDDIPTEST|5 INTDEXPORT|5 INTDGETERRORCODE|5 INTDGETERRORMESSAGE|5 INTDISEQUAL|5 INTDJOIN|5 INTDLOAD|5 INTDLOADACTUALCUT|5 INTDLOADDATES|5 INTDLOADHIST|5 INTDLOADLIST|5 INTDLOADLISTDATES|5 INTDLOADLISTENERGY|5 INTDLOADLISTHIST|5 INTDLOADRELATEDCHANNEL|5 INTDLOADSP|5 INTDLOADSTAGING|5 INTDLOADUOM|5 INTDLOADUOMDATES|5 INTDLOADUOMHIST|5 INTDLOADVERSION|5 INTDOPEN|5 INTDREADFIRST|5 INTDREADNEXT|5 INTDRECCOUNT|5 INTDRELEASE|5 INTDREPLACE|5 INTDROLLAVG|5 INTDROLLPEAK|5 INTDSCALAROP|5 INTDSCALE|5 INTDSETATTRIBUTE|5 INTDSETDSTPARTICIPANT|5 INTDSETSTRING|5 INTDSETVALUE|5 INTDSETVALUESTATUS|5 INTDSHIFTSTARTTIME|5 INTDSMOOTH|5 INTDSORT|5 INTDSPIKETEST|5 INTDSUBSET|5 INTDTOU|5 INTDTOURELEASE|5 INTDTOUVALUE|5 INTDUPDATESTATS|5 INTDVALUE|5 STDEV INTDDELETEEX|5 INTDLOADEXACTUAL|5 INTDLOADEXCUT|5 INTDLOADEXDATES|5 INTDLOADEX|5 INTDLOADEXRELATEDCHANNEL|5 INTDSAVEEX|5 MVLOAD|5 MVLOADACCT|5 MVLOADACCTDATES|5 MVLOADACCTHIST|5 MVLOADDATES|5 MVLOADHIST|5 MVLOADLIST|5 MVLOADLISTDATES|5 MVLOADLISTHIST|5 IF FOR NEXT DONE SELECT END CALL ABORT CLEAR CHANNEL FACTOR LIST NUMBER OVERRIDE SET WEEK DISTRIBUTIONNODE ELSE WHEN THEN OTHERWISE IENUM CSV INCLUDE LEAVE RIDER SAVE DELETE NOVALUE SECTION WARN SAVE_UPDATE DETERMINANT LABEL REPORT REVENUE EACH IN FROM TOTAL CHARGE BLOCK AND OR CSV_FILE RATE_CODE AUXILIARY_DEMAND UIDACCOUNT RS BILL_PERIOD_SELECT HOURS_PER_MONTH INTD_ERROR_STOP SEASON_SCHEDULE_NAME ACCOUNTFACTOR ARRAYUPPERBOUND CALLSTOREDPROC GETADOCONNECTION GETCONNECT GETDATASOURCE GETQUALIFIER GETUSERID HASVALUE LISTCOUNT LISTOP LISTUPDATE LISTVALUE PRORATEFACTOR RSPRORATE SETBINPATH SETDBMONITOR WQ_OPEN BILLINGHOURS DATE DATEFROMFLOAT DATETIMEFROMSTRING DATETIMETOSTRING DATETOFLOAT DAY DAYDIFF DAYNAME DBDATETIME HOUR MINUTE MONTH MONTHDIFF MONTHHOURS MONTHNAME ROUNDDATE SAMEWEEKDAYLASTYEAR SECOND WEEKDAY WEEKDIFF YEAR YEARDAY YEARSTR COMPSUM HISTCOUNT HISTMAX HISTMIN HISTMINNZ HISTVALUE MAXNRANGE MAXRANGE MINRANGE COMPIKVA COMPKVA COMPKVARFROMKQKW COMPLF IDATTR FLAG LF2KW LF2KWH MAXKW POWERFACTOR READING2USAGE AVGSEASON MAXSEASON MONTHLYMERGE SEASONVALUE SUMSEASON ACCTREADDATES ACCTTABLELOAD CONFIGADD CONFIGGET CREATEOBJECT CREATEREPORT EMAILCLIENT EXPBLKMDMUSAGE EXPMDMUSAGE EXPORT_USAGE FACTORINEFFECT GETUSERSPECIFIEDSTOP INEFFECT ISHOLIDAY RUNRATE SAVE_PROFILE SETREPORTTITLE USEREXIT WATFORRUNRATE TO TABLE ACOS ASIN ATAN ATAN2 BITAND CEIL COS COSECANT COSH COTANGENT DIVQUOT DIVREM EXP FABS FLOOR FMOD FREPM FREXPN LOG LOG10 MAX MAXN MIN MINNZ MODF POW ROUND ROUND2VALUE ROUNDINT SECANT SIN SINH SQROOT TAN TANH FLOAT2STRING FLOAT2STRINGNC INSTR LEFT LEN LTRIM MID RIGHT RTRIM STRING STRINGNC TOLOWER TOUPPER TRIM NUMDAYS READ_DATE STAGING",built_in:"IDENTIFIER OPTIONS XML_ELEMENT XML_OP XML_ELEMENT_OF DOMDOCCREATE DOMDOCLOADFILE DOMDOCLOADXML DOMDOCSAVEFILE DOMDOCGETROOT DOMDOCADDPI DOMNODEGETNAME DOMNODEGETTYPE DOMNODEGETVALUE DOMNODEGETCHILDCT DOMNODEGETFIRSTCHILD DOMNODEGETSIBLING DOMNODECREATECHILDELEMENT DOMNODESETATTRIBUTE DOMNODEGETCHILDELEMENTCT DOMNODEGETFIRSTCHILDELEMENT DOMNODEGETSIBLINGELEMENT DOMNODEGETATTRIBUTECT DOMNODEGETATTRIBUTEI DOMNODEGETATTRIBUTEBYNAME DOMNODEGETBYNAME"},c:[T.CLCM,T.CBCM,T.ASM,T.QSM,T.CNM,{cN:"literal",v:[{b:"#\\s+[a-zA-Z\\ \\.]*",r:0},{b:"#[a-zA-Z\\ \\.]+"}]}]}});hljs.registerLanguage("xml",function(s){var e="[A-Za-z0-9\\._:-]+",t={eW:!0,i:/</,r:0,c:[{cN:"attr",b:e,r:0},{b:"=",r:0,c:[{cN:"string",v:[{b:/"/,e:/"/},{b:/'/,e:/'/},{b:/[^\s\/>]+/}]}]}]};return{aliases:["html","xhtml","rss","atom","xsl","plist"],cI:!0,c:[{cN:"meta",b:"<!DOCTYPE",e:">",r:10,c:[{b:"\\[",e:"\\]"}]},s.C("<!--","-->",{r:10}),{b:"<\\!\\[CDATA\\[",e:"\\]\\]>",r:10},{b:/<\?(php)?/,e:/\?>/,sL:"php",c:[{b:"/*",e:"*/",skip:!0}]},{cN:"tag",b:"<style(?=\\s|>|$)",e:">",k:{name:"style"},c:[t],starts:{e:"</style>",rE:!0,sL:["css","xml"]}},{cN:"tag",b:"<script(?=\\s|>|$)",e:">",k:{name:"script"},c:[t],starts:{e:"</script>",rE:!0,sL:["actionscript","javascript","handlebars","xml"]}},{cN:"meta",v:[{b:/<\?xml/,e:/\?>/,r:10},{b:/<\?\w+/,e:/\?>/}]},{cN:"tag",b:"</?",e:"/?>",c:[{cN:"name",b:/[^\/><\s]+/,r:0},t]}]}});hljs.registerLanguage("autoit",function(e){var t="ByRef Case Const ContinueCase ContinueLoop Default Dim Do Else ElseIf EndFunc EndIf EndSelect EndSwitch EndWith Enum Exit ExitLoop For Func Global If In Local Next ReDim Return Select Static Step Switch Then To Until Volatile WEnd While With",r="True False And Null Not Or",i="Abs ACos AdlibRegister AdlibUnRegister Asc AscW ASin Assign ATan AutoItSetOption AutoItWinGetTitle AutoItWinSetTitle Beep Binary BinaryLen BinaryMid BinaryToString BitAND BitNOT BitOR BitRotate BitShift BitXOR BlockInput Break Call CDTray Ceiling Chr ChrW ClipGet ClipPut ConsoleRead ConsoleWrite ConsoleWriteError ControlClick ControlCommand ControlDisable ControlEnable ControlFocus ControlGetFocus ControlGetHandle ControlGetPos ControlGetText ControlHide ControlListView ControlMove ControlSend ControlSetText ControlShow ControlTreeView Cos Dec DirCopy DirCreate DirGetSize DirMove DirRemove DllCall DllCallAddress DllCallbackFree DllCallbackGetPtr DllCallbackRegister DllClose DllOpen DllStructCreate DllStructGetData DllStructGetPtr DllStructGetSize DllStructSetData DriveGetDrive DriveGetFileSystem DriveGetLabel DriveGetSerial DriveGetType DriveMapAdd DriveMapDel DriveMapGet DriveSetLabel DriveSpaceFree DriveSpaceTotal DriveStatus EnvGet EnvSet EnvUpdate Eval Execute Exp FileChangeDir FileClose FileCopy FileCreateNTFSLink FileCreateShortcut FileDelete FileExists FileFindFirstFile FileFindNextFile FileFlush FileGetAttrib FileGetEncoding FileGetLongName FileGetPos FileGetShortcut FileGetShortName FileGetSize FileGetTime FileGetVersion FileInstall FileMove FileOpen FileOpenDialog FileRead FileReadLine FileReadToArray FileRecycle FileRecycleEmpty FileSaveDialog FileSelectFolder FileSetAttrib FileSetEnd FileSetPos FileSetTime FileWrite FileWriteLine Floor FtpSetProxy FuncName GUICreate GUICtrlCreateAvi GUICtrlCreateButton GUICtrlCreateCheckbox GUICtrlCreateCombo GUICtrlCreateContextMenu GUICtrlCreateDate GUICtrlCreateDummy GUICtrlCreateEdit GUICtrlCreateGraphic GUICtrlCreateGroup GUICtrlCreateIcon GUICtrlCreateInput GUICtrlCreateLabel GUICtrlCreateList GUICtrlCreateListView GUICtrlCreateListViewItem GUICtrlCreateMenu GUICtrlCreateMenuItem GUICtrlCreateMonthCal GUICtrlCreateObj GUICtrlCreatePic GUICtrlCreateProgress GUICtrlCreateRadio GUICtrlCreateSlider GUICtrlCreateTab GUICtrlCreateTabItem GUICtrlCreateTreeView GUICtrlCreateTreeViewItem GUICtrlCreateUpdown GUICtrlDelete GUICtrlGetHandle GUICtrlGetState GUICtrlRead GUICtrlRecvMsg GUICtrlRegisterListViewSort GUICtrlSendMsg GUICtrlSendToDummy GUICtrlSetBkColor GUICtrlSetColor GUICtrlSetCursor GUICtrlSetData GUICtrlSetDefBkColor GUICtrlSetDefColor GUICtrlSetFont GUICtrlSetGraphic GUICtrlSetImage GUICtrlSetLimit GUICtrlSetOnEvent GUICtrlSetPos GUICtrlSetResizing GUICtrlSetState GUICtrlSetStyle GUICtrlSetTip GUIDelete GUIGetCursorInfo GUIGetMsg GUIGetStyle GUIRegisterMsg GUISetAccelerators GUISetBkColor GUISetCoord GUISetCursor GUISetFont GUISetHelp GUISetIcon GUISetOnEvent GUISetState GUISetStyle GUIStartGroup GUISwitch Hex HotKeySet HttpSetProxy HttpSetUserAgent HWnd InetClose InetGet InetGetInfo InetGetSize InetRead IniDelete IniRead IniReadSection IniReadSectionNames IniRenameSection IniWrite IniWriteSection InputBox Int IsAdmin IsArray IsBinary IsBool IsDeclared IsDllStruct IsFloat IsFunc IsHWnd IsInt IsKeyword IsNumber IsObj IsPtr IsString Log MemGetStats Mod MouseClick MouseClickDrag MouseDown MouseGetCursor MouseGetPos MouseMove MouseUp MouseWheel MsgBox Number ObjCreate ObjCreateInterface ObjEvent ObjGet ObjName OnAutoItExitRegister OnAutoItExitUnRegister Opt Ping PixelChecksum PixelGetColor PixelSearch ProcessClose ProcessExists ProcessGetStats ProcessList ProcessSetPriority ProcessWait ProcessWaitClose ProgressOff ProgressOn ProgressSet Ptr Random RegDelete RegEnumKey RegEnumVal RegRead RegWrite Round Run RunAs RunAsWait RunWait Send SendKeepActive SetError SetExtended ShellExecute ShellExecuteWait Shutdown Sin Sleep SoundPlay SoundSetWaveVolume SplashImageOn SplashOff SplashTextOn Sqrt SRandom StatusbarGetText StderrRead StdinWrite StdioClose StdoutRead String StringAddCR StringCompare StringFormat StringFromASCIIArray StringInStr StringIsAlNum StringIsAlpha StringIsASCII StringIsDigit StringIsFloat StringIsInt StringIsLower StringIsSpace StringIsUpper StringIsXDigit StringLeft StringLen StringLower StringMid StringRegExp StringRegExpReplace StringReplace StringReverse StringRight StringSplit StringStripCR StringStripWS StringToASCIIArray StringToBinary StringTrimLeft StringTrimRight StringUpper Tan TCPAccept TCPCloseSocket TCPConnect TCPListen TCPNameToIP TCPRecv TCPSend TCPShutdown TCPStartup TimerDiff TimerInit ToolTip TrayCreateItem TrayCreateMenu TrayGetMsg TrayItemDelete TrayItemGetHandle TrayItemGetState TrayItemGetText TrayItemSetOnEvent TrayItemSetState TrayItemSetText TraySetClick TraySetIcon TraySetOnEvent TraySetPauseIcon TraySetState TraySetToolTip TrayTip UBound UDPBind UDPCloseSocket UDPOpen UDPRecv UDPSend UDPShutdown UDPStartup VarGetType WinActivate WinActive WinClose WinExists WinFlash WinGetCaretPos WinGetClassList WinGetClientSize WinGetHandle WinGetPos WinGetProcess WinGetState WinGetText WinGetTitle WinKill WinList WinMenuSelectItem WinMinimizeAll WinMinimizeAllUndo WinMove WinSetOnTop WinSetState WinSetTitle WinSetTrans WinWait WinWaitActive WinWaitClose WinWaitNotActive Array1DToHistogram ArrayAdd ArrayBinarySearch ArrayColDelete ArrayColInsert ArrayCombinations ArrayConcatenate ArrayDelete ArrayDisplay ArrayExtract ArrayFindAll ArrayInsert ArrayMax ArrayMaxIndex ArrayMin ArrayMinIndex ArrayPermute ArrayPop ArrayPush ArrayReverse ArraySearch ArrayShuffle ArraySort ArraySwap ArrayToClip ArrayToString ArrayTranspose ArrayTrim ArrayUnique Assert ChooseColor ChooseFont ClipBoard_ChangeChain ClipBoard_Close ClipBoard_CountFormats ClipBoard_Empty ClipBoard_EnumFormats ClipBoard_FormatStr ClipBoard_GetData ClipBoard_GetDataEx
ClipBoard_GetFormatName ClipBoard_GetOpenWindow ClipBoard_GetOwner ClipBoard_GetPriorityFormat ClipBoard_GetSequenceNumber ClipBoard_GetViewer ClipBoard_IsFormatAvailable ClipBoard_Open ClipBoard_RegisterFormat ClipBoard_SetData ClipBoard_SetDataEx ClipBoard_SetViewer ClipPutFile ColorConvertHSLtoRGB ColorConvertRGBtoHSL ColorGetBlue ColorGetCOLORREF ColorGetGreen ColorGetRed ColorGetRGB ColorSetCOLORREF ColorSetRGB Crypt_DecryptData Crypt_DecryptFile Crypt_DeriveKey Crypt_DestroyKey Crypt_EncryptData Crypt_EncryptFile Crypt_GenRandom Crypt_HashData Crypt_HashFile Crypt_Shutdown Crypt_Startup DateAdd DateDayOfWeek DateDaysInMonth DateDiff DateIsLeapYear DateIsValid DateTimeFormat DateTimeSplit DateToDayOfWeek DateToDayOfWeekISO DateToDayValue DateToMonth Date_Time_CompareFileTime Date_Time_DOSDateTimeToArray Date_Time_DOSDateTimeToFileTime Date_Time_DOSDateTimeToStr Date_Time_DOSDateToArray Date_Time_DOSDateToStr Date_Time_DOSTimeToArray Date_Time_DOSTimeToStr Date_Time_EncodeFileTime Date_Time_EncodeSystemTime Date_Time_FileTimeToArray Date_Time_FileTimeToDOSDateTime Date_Time_FileTimeToLocalFileTime Date_Time_FileTimeToStr Date_Time_FileTimeToSystemTime Date_Time_GetFileTime Date_Time_GetLocalTime Date_Time_GetSystemTime Date_Time_GetSystemTimeAdjustment Date_Time_GetSystemTimeAsFileTime Date_Time_GetSystemTimes Date_Time_GetTickCount Date_Time_GetTimeZoneInformation Date_Time_LocalFileTimeToFileTime Date_Time_SetFileTime Date_Time_SetLocalTime Date_Time_SetSystemTime Date_Time_SetSystemTimeAdjustment Date_Time_SetTimeZoneInformation Date_Time_SystemTimeToArray Date_Time_SystemTimeToDateStr Date_Time_SystemTimeToDateTimeStr Date_Time_SystemTimeToFileTime Date_Time_SystemTimeToTimeStr Date_Time_SystemTimeToTzSpecificLocalTime Date_Time_TzSpecificLocalTimeToSystemTime DayValueToDate DebugBugReportEnv DebugCOMError DebugOut DebugReport DebugReportEx DebugReportVar DebugSetup Degree EventLog__Backup EventLog__Clear EventLog__Close EventLog__Count EventLog__DeregisterSource EventLog__Full EventLog__Notify EventLog__Oldest EventLog__Open EventLog__OpenBackup EventLog__Read EventLog__RegisterSource EventLog__Report Excel_BookAttach Excel_BookClose Excel_BookList Excel_BookNew Excel_BookOpen Excel_BookOpenText Excel_BookSave Excel_BookSaveAs Excel_Close Excel_ColumnToLetter Excel_ColumnToNumber Excel_ConvertFormula Excel_Export Excel_FilterGet Excel_FilterSet Excel_Open Excel_PictureAdd Excel_Print Excel_RangeCopyPaste Excel_RangeDelete Excel_RangeFind Excel_RangeInsert Excel_RangeLinkAddRemove Excel_RangeRead Excel_RangeReplace Excel_RangeSort Excel_RangeValidate Excel_RangeWrite Excel_SheetAdd Excel_SheetCopyMove Excel_SheetDelete Excel_SheetList FileCountLines FileCreate FileListToArray FileListToArrayRec FilePrint FileReadToArray FileWriteFromArray FileWriteLog FileWriteToLine FTP_Close FTP_Command FTP_Connect FTP_DecodeInternetStatus FTP_DirCreate FTP_DirDelete FTP_DirGetCurrent FTP_DirPutContents FTP_DirSetCurrent FTP_FileClose FTP_FileDelete FTP_FileGet FTP_FileGetSize FTP_FileOpen FTP_FilePut FTP_FileRead FTP_FileRename FTP_FileTimeLoHiToStr FTP_FindFileClose FTP_FindFileFirst FTP_FindFileNext FTP_GetLastResponseInfo FTP_ListToArray FTP_ListToArray2D FTP_ListToArrayEx FTP_Open FTP_ProgressDownload FTP_ProgressUpload FTP_SetStatusCallback GDIPlus_ArrowCapCreate GDIPlus_ArrowCapDispose GDIPlus_ArrowCapGetFillState GDIPlus_ArrowCapGetHeight GDIPlus_ArrowCapGetMiddleInset GDIPlus_ArrowCapGetWidth GDIPlus_ArrowCapSetFillState GDIPlus_ArrowCapSetHeight GDIPlus_ArrowCapSetMiddleInset GDIPlus_ArrowCapSetWidth GDIPlus_BitmapApplyEffect GDIPlus_BitmapApplyEffectEx GDIPlus_BitmapCloneArea GDIPlus_BitmapConvertFormat GDIPlus_BitmapCreateApplyEffect GDIPlus_BitmapCreateApplyEffectEx GDIPlus_BitmapCreateDIBFromBitmap GDIPlus_BitmapCreateFromFile GDIPlus_BitmapCreateFromGraphics GDIPlus_BitmapCreateFromHBITMAP GDIPlus_BitmapCreateFromHICON GDIPlus_BitmapCreateFromHICON32 GDIPlus_BitmapCreateFromMemory GDIPlus_BitmapCreateFromResource GDIPlus_BitmapCreateFromScan0 GDIPlus_BitmapCreateFromStream GDIPlus_BitmapCreateHBITMAPFromBitmap GDIPlus_BitmapDispose GDIPlus_BitmapGetHistogram GDIPlus_BitmapGetHistogramEx GDIPlus_BitmapGetHistogramSize GDIPlus_BitmapGetPixel GDIPlus_BitmapLockBits GDIPlus_BitmapSetPixel GDIPlus_BitmapUnlockBits GDIPlus_BrushClone GDIPlus_BrushCreateSolid GDIPlus_BrushDispose GDIPlus_BrushGetSolidColor GDIPlus_BrushGetType GDIPlus_BrushSetSolidColor GDIPlus_ColorMatrixCreate GDIPlus_ColorMatrixCreateGrayScale GDIPlus_ColorMatrixCreateNegative GDIPlus_ColorMatrixCreateSaturation GDIPlus_ColorMatrixCreateScale GDIPlus_ColorMatrixCreateTranslate GDIPlus_CustomLineCapClone GDIPlus_CustomLineCapCreate GDIPlus_CustomLineCapDispose GDIPlus_CustomLineCapGetStrokeCaps GDIPlus_CustomLineCapSetStrokeCaps GDIPlus_Decoders GDIPlus_DecodersGetCount GDIPlus_DecodersGetSize GDIPlus_DrawImageFX GDIPlus_DrawImageFXEx GDIPlus_DrawImagePoints GDIPlus_EffectCreate GDIPlus_EffectCreateBlur GDIPlus_EffectCreateBrightnessContrast GDIPlus_EffectCreateColorBalance GDIPlus_EffectCreateColorCurve GDIPlus_EffectCreateColorLUT GDIPlus_EffectCreateColorMatrix GDIPlus_EffectCreateHueSaturationLightness GDIPlus_EffectCreateLevels GDIPlus_EffectCreateRedEyeCorrection GDIPlus_EffectCreateSharpen GDIPlus_EffectCreateTint GDIPlus_EffectDispose GDIPlus_EffectGetParameters GDIPlus_EffectSetParameters GDIPlus_Encoders GDIPlus_EncodersGetCLSID GDIPlus_EncodersGetCount GDIPlus_EncodersGetParamList GDIPlus_EncodersGetParamListSize GDIPlus_EncodersGetSize GDIPlus_FontCreate GDIPlus_FontDispose GDIPlus_FontFamilyCreate GDIPlus_FontFamilyCreateFromCollection GDIPlus_FontFamilyDispose GDIPlus_FontFamilyGetCellAscent GDIPlus_FontFamilyGetCellDescent GDIPlus_FontFamilyGetEmHeight GDIPlus_FontFamilyGetLineSpacing GDIPlus_FontGetHeight GDIPlus_FontPrivateAddFont GDIPlus_FontPrivateAddMemoryFont GDIPlus_FontPrivateCollectionDispose GDIPlus_FontPrivateCreateCollection GDIPlus_GraphicsClear GDIPlus_GraphicsCreateFromHDC GDIPlus_GraphicsCreateFromHWND GDIPlus_GraphicsDispose GDIPlus_GraphicsDrawArc GDIPlus_GraphicsDrawBezier GDIPlus_GraphicsDrawClosedCurve GDIPlus_GraphicsDrawClosedCurve2 GDIPlus_GraphicsDrawCurve GDIPlus_GraphicsDrawCurve2 GDIPlus_GraphicsDrawEllipse GDIPlus_GraphicsDrawImage GDIPlus_GraphicsDrawImagePointsRect GDIPlus_GraphicsDrawImageRect GDIPlus_GraphicsDrawImageRectRect GDIPlus_GraphicsDrawLine GDIPlus_GraphicsDrawPath GDIPlus_GraphicsDrawPie GDIPlus_GraphicsDrawPolygon GDIPlus_GraphicsDrawRect GDIPlus_GraphicsDrawString GDIPlus_GraphicsDrawStringEx GDIPlus_GraphicsFillClosedCurve GDIPlus_GraphicsFillClosedCurve2 GDIPlus_GraphicsFillEllipse GDIPlus_GraphicsFillPath GDIPlus_GraphicsFillPie GDIPlus_GraphicsFillPolygon GDIPlus_GraphicsFillRect GDIPlus_GraphicsFillRegion GDIPlus_GraphicsGetCompositingMode GDIPlus_GraphicsGetCompositingQuality GDIPlus_GraphicsGetDC GDIPlus_GraphicsGetInterpolationMode GDIPlus_GraphicsGetSmoothingMode GDIPlus_GraphicsGetTransform GDIPlus_GraphicsMeasureCharacterRanges GDIPlus_GraphicsMeasureString GDIPlus_GraphicsReleaseDC GDIPlus_GraphicsResetClip GDIPlus_GraphicsResetTransform GDIPlus_GraphicsRestore GDIPlus_GraphicsRotateTransform GDIPlus_GraphicsSave GDIPlus_GraphicsScaleTransform GDIPlus_GraphicsSetClipPath GDIPlus_GraphicsSetClipRect GDIPlus_GraphicsSetClipRegion GDIPlus_GraphicsSetCompositingMode GDIPlus_GraphicsSetCompositingQuality GDIPlus_GraphicsSetInterpolationMode GDIPlus_GraphicsSetPixelOffsetMode GDIPlus_GraphicsSetSmoothingMode GDIPlus_GraphicsSetTextRenderingHint GDIPlus_GraphicsSetTransform GDIPlus_GraphicsTransformPoints GDIPlus_GraphicsTranslateTransform GDIPlus_HatchBrushCreate GDIPlus_HICONCreateFromBitmap GDIPlus_ImageAttributesCreate GDIPlus_ImageAttributesDispose GDIPlus_ImageAttributesSetColorKeys GDIPlus_ImageAttributesSetColorMatrix GDIPlus_ImageDispose GDIPlus_ImageGetDimension GDIPlus_ImageGetFlags GDIPlus_ImageGetGraphicsContext GDIPlus_ImageGetHeight GDIPlus_ImageGetHorizontalResolution GDIPlus_ImageGetPixelFormat GDIPlus_ImageGetRawFormat GDIPlus_ImageGetThumbnail GDIPlus_ImageGetType GDIPlus_ImageGetVerticalResolution GDIPlus_ImageGetWidth GDIPlus_ImageLoadFromFile GDIPlus_ImageLoadFromStream GDIPlus_ImageResize GDIPlus_ImageRotateFlip GDIPlus_ImageSaveToFile GDIPlus_ImageSaveToFileEx GDIPlus_ImageSaveToStream GDIPlus_ImageScale GDIPlus_LineBrushCreate GDIPlus_LineBrushCreateFromRect GDIPlus_LineBrushCreateFromRectWithAngle GDIPlus_LineBrushGetColors GDIPlus_LineBrushGetRect GDIPlus_LineBrushMultiplyTransform GDIPlus_LineBrushResetTransform GDIPlus_LineBrushSetBlend GDIPlus_LineBrushSetColors GDIPlus_LineBrushSetGammaCorrection GDIPlus_LineBrushSetLinearBlend GDIPlus_LineBrushSetPresetBlend GDIPlus_LineBrushSetSigmaBlend GDIPlus_LineBrushSetTransform GDIPlus_MatrixClone GDIPlus_MatrixCreate GDIPlus_MatrixDispose GDIPlus_MatrixGetElements GDIPlus_MatrixInvert GDIPlus_MatrixMultiply GDIPlus_MatrixRotate GDIPlus_MatrixScale GDIPlus_MatrixSetElements GDIPlus_MatrixShear GDIPlus_MatrixTransformPoints GDIPlus_MatrixTranslate GDIPlus_PaletteInitialize GDIPlus_ParamAdd GDIPlus_ParamInit GDIPlus_ParamSize GDIPlus_PathAddArc GDIPlus_PathAddBezier GDIPlus_PathAddClosedCurve GDIPlus_PathAddClosedCurve2 GDIPlus_PathAddCurve GDIPlus_PathAddCurve2 GDIPlus_PathAddCurve3 GDIPlus_PathAddEllipse GDIPlus_PathAddLine GDIPlus_PathAddLine2 GDIPlus_PathAddPath GDIPlus_PathAddPie GDIPlus_PathAddPolygon GDIPlus_PathAddRectangle GDIPlus_PathAddString GDIPlus_PathBrushCreate GDIPlus_PathBrushCreateFromPath GDIPlus_PathBrushGetCenterPoint GDIPlus_PathBrushGetFocusScales GDIPlus_PathBrushGetPointCount GDIPlus_PathBrushGetRect GDIPlus_PathBrushGetWrapMode GDIPlus_PathBrushMultiplyTransform GDIPlus_PathBrushResetTransform GDIPlus_PathBrushSetBlend GDIPlus_PathBrushSetCenterColor GDIPlus_PathBrushSetCenterPoint GDIPlus_PathBrushSetFocusScales GDIPlus_PathBrushSetGammaCorrection GDIPlus_PathBrushSetLinearBlend GDIPlus_PathBrushSetPresetBlend GDIPlus_PathBrushSetSigmaBlend GDIPlus_PathBrushSetSurroundColor
GDIPlus_PathBrushSetSurroundColorsWithCount GDIPlus_PathBrushSetTransform GDIPlus_PathBrushSetWrapMode GDIPlus_PathClone GDIPlus_PathCloseFigure GDIPlus_PathCreate GDIPlus_PathCreate2 GDIPlus_PathDispose GDIPlus_PathFlatten GDIPlus_PathGetData GDIPlus_PathGetFillMode GDIPlus_PathGetLastPoint GDIPlus_PathGetPointCount GDIPlus_PathGetPoints GDIPlus_PathGetWorldBounds GDIPlus_PathIsOutlineVisiblePoint GDIPlus_PathIsVisiblePoint GDIPlus_PathIterCreate GDIPlus_PathIterDispose GDIPlus_PathIterGetSubpathCount GDIPlus_PathIterNextMarkerPath GDIPlus_PathIterNextSubpathPath GDIPlus_PathIterRewind GDIPlus_PathReset GDIPlus_PathReverse GDIPlus_PathSetFillMode GDIPlus_PathSetMarker GDIPlus_PathStartFigure GDIPlus_PathTransform GDIPlus_PathWarp GDIPlus_PathWiden GDIPlus_PathWindingModeOutline GDIPlus_PenCreate GDIPlus_PenCreate2 GDIPlus_PenDispose GDIPlus_PenGetAlignment GDIPlus_PenGetColor GDIPlus_PenGetCustomEndCap GDIPlus_PenGetDashCap GDIPlus_PenGetDashStyle GDIPlus_PenGetEndCap GDIPlus_PenGetMiterLimit GDIPlus_PenGetWidth GDIPlus_PenSetAlignment GDIPlus_PenSetColor GDIPlus_PenSetCustomEndCap GDIPlus_PenSetDashCap GDIPlus_PenSetDashStyle GDIPlus_PenSetEndCap GDIPlus_PenSetLineCap GDIPlus_PenSetLineJoin GDIPlus_PenSetMiterLimit GDIPlus_PenSetStartCap GDIPlus_PenSetWidth GDIPlus_RectFCreate GDIPlus_RegionClone GDIPlus_RegionCombinePath GDIPlus_RegionCombineRect GDIPlus_RegionCombineRegion GDIPlus_RegionCreate GDIPlus_RegionCreateFromPath GDIPlus_RegionCreateFromRect GDIPlus_RegionDispose GDIPlus_RegionGetBounds GDIPlus_RegionGetHRgn GDIPlus_RegionTransform GDIPlus_RegionTranslate GDIPlus_Shutdown GDIPlus_Startup GDIPlus_StringFormatCreate GDIPlus_StringFormatDispose GDIPlus_StringFormatGetMeasurableCharacterRangeCount GDIPlus_StringFormatSetAlign GDIPlus_StringFormatSetLineAlign GDIPlus_StringFormatSetMeasurableCharacterRanges GDIPlus_TextureCreate GDIPlus_TextureCreate2 GDIPlus_TextureCreateIA GetIP GUICtrlAVI_Close GUICtrlAVI_Create GUICtrlAVI_Destroy GUICtrlAVI_IsPlaying GUICtrlAVI_Open GUICtrlAVI_OpenEx GUICtrlAVI_Play GUICtrlAVI_Seek GUICtrlAVI_Show GUICtrlAVI_Stop GUICtrlButton_Click GUICtrlButton_Create GUICtrlButton_Destroy GUICtrlButton_Enable GUICtrlButton_GetCheck GUICtrlButton_GetFocus GUICtrlButton_GetIdealSize GUICtrlButton_GetImage GUICtrlButton_GetImageList GUICtrlButton_GetNote GUICtrlButton_GetNoteLength GUICtrlButton_GetSplitInfo GUICtrlButton_GetState GUICtrlButton_GetText GUICtrlButton_GetTextMargin GUICtrlButton_SetCheck GUICtrlButton_SetDontClick GUICtrlButton_SetFocus GUICtrlButton_SetImage GUICtrlButton_SetImageList GUICtrlButton_SetNote GUICtrlButton_SetShield GUICtrlButton_SetSize GUICtrlButton_SetSplitInfo GUICtrlButton_SetState GUICtrlButton_SetStyle GUICtrlButton_SetText GUICtrlButton_SetTextMargin GUICtrlButton_Show GUICtrlComboBoxEx_AddDir GUICtrlComboBoxEx_AddString GUICtrlComboBoxEx_BeginUpdate GUICtrlComboBoxEx_Create GUICtrlComboBoxEx_CreateSolidBitMap GUICtrlComboBoxEx_DeleteString GUICtrlComboBoxEx_Destroy GUICtrlComboBoxEx_EndUpdate GUICtrlComboBoxEx_FindStringExact GUICtrlComboBoxEx_GetComboBoxInfo GUICtrlComboBoxEx_GetComboControl GUICtrlComboBoxEx_GetCount GUICtrlComboBoxEx_GetCurSel GUICtrlComboBoxEx_GetDroppedControlRect GUICtrlComboBoxEx_GetDroppedControlRectEx GUICtrlComboBoxEx_GetDroppedState GUICtrlComboBoxEx_GetDroppedWidth GUICtrlComboBoxEx_GetEditControl GUICtrlComboBoxEx_GetEditSel GUICtrlComboBoxEx_GetEditText GUICtrlComboBoxEx_GetExtendedStyle GUICtrlComboBoxEx_GetExtendedUI GUICtrlComboBoxEx_GetImageList GUICtrlComboBoxEx_GetItem GUICtrlComboBoxEx_GetItemEx GUICtrlComboBoxEx_GetItemHeight GUICtrlComboBoxEx_GetItemImage GUICtrlComboBoxEx_GetItemIndent GUICtrlComboBoxEx_GetItemOverlayImage GUICtrlComboBoxEx_GetItemParam GUICtrlComboBoxEx_GetItemSelectedImage GUICtrlComboBoxEx_GetItemText GUICtrlComboBoxEx_GetItemTextLen GUICtrlComboBoxEx_GetList GUICtrlComboBoxEx_GetListArray GUICtrlComboBoxEx_GetLocale GUICtrlComboBoxEx_GetLocaleCountry GUICtrlComboBoxEx_GetLocaleLang GUICtrlComboBoxEx_GetLocalePrimLang GUICtrlComboBoxEx_GetLocaleSubLang GUICtrlComboBoxEx_GetMinVisible GUICtrlComboBoxEx_GetTopIndex GUICtrlComboBoxEx_GetUnicode GUICtrlComboBoxEx_InitStorage GUICtrlComboBoxEx_InsertString GUICtrlComboBoxEx_LimitText GUICtrlComboBoxEx_ReplaceEditSel GUICtrlComboBoxEx_ResetContent GUICtrlComboBoxEx_SetCurSel GUICtrlComboBoxEx_SetDroppedWidth GUICtrlComboBoxEx_SetEditSel GUICtrlComboBoxEx_SetEditText GUICtrlComboBoxEx_SetExtendedStyle GUICtrlComboBoxEx_SetExtendedUI GUICtrlComboBoxEx_SetImageList GUICtrlComboBoxEx_SetItem GUICtrlComboBoxEx_SetItemEx GUICtrlComboBoxEx_SetItemHeight GUICtrlComboBoxEx_SetItemImage GUICtrlComboBoxEx_SetItemIndent GUICtrlComboBoxEx_SetItemOverlayImage GUICtrlComboBoxEx_SetItemParam GUICtrlComboBoxEx_SetItemSelectedImage GUICtrlComboBoxEx_SetMinVisible GUICtrlComboBoxEx_SetTopIndex GUICtrlComboBoxEx_SetUnicode GUICtrlComboBoxEx_ShowDropDown GUICtrlComboBox_AddDir GUICtrlComboBox_AddString GUICtrlComboBox_AutoComplete GUICtrlComboBox_BeginUpdate GUICtrlComboBox_Create GUICtrlComboBox_DeleteString GUICtrlComboBox_Destroy GUICtrlComboBox_EndUpdate GUICtrlComboBox_FindString GUICtrlComboBox_FindStringExact GUICtrlComboBox_GetComboBoxInfo GUICtrlComboBox_GetCount GUICtrlComboBox_GetCueBanner GUICtrlComboBox_GetCurSel GUICtrlComboBox_GetDroppedControlRect GUICtrlComboBox_GetDroppedControlRectEx GUICtrlComboBox_GetDroppedState GUICtrlComboBox_GetDroppedWidth GUICtrlComboBox_GetEditSel GUICtrlComboBox_GetEditText GUICtrlComboBox_GetExtendedUI GUICtrlComboBox_GetHorizontalExtent GUICtrlComboBox_GetItemHeight GUICtrlComboBox_GetLBText GUICtrlComboBox_GetLBTextLen GUICtrlComboBox_GetList GUICtrlComboBox_GetListArray GUICtrlComboBox_GetLocale GUICtrlComboBox_GetLocaleCountry GUICtrlComboBox_GetLocaleLang GUICtrlComboBox_GetLocalePrimLang GUICtrlComboBox_GetLocaleSubLang GUICtrlComboBox_GetMinVisible GUICtrlComboBox_GetTopIndex GUICtrlComboBox_InitStorage GUICtrlComboBox_InsertString GUICtrlComboBox_LimitText GUICtrlComboBox_ReplaceEditSel GUICtrlComboBox_ResetContent GUICtrlComboBox_SelectString GUICtrlComboBox_SetCueBanner GUICtrlComboBox_SetCurSel GUICtrlComboBox_SetDroppedWidth GUICtrlComboBox_SetEditSel GUICtrlComboBox_SetEditText GUICtrlComboBox_SetExtendedUI GUICtrlComboBox_SetHorizontalExtent GUICtrlComboBox_SetItemHeight GUICtrlComboBox_SetMinVisible GUICtrlComboBox_SetTopIndex GUICtrlComboBox_ShowDropDown GUICtrlDTP_Create GUICtrlDTP_Destroy GUICtrlDTP_GetMCColor GUICtrlDTP_GetMCFont GUICtrlDTP_GetMonthCal GUICtrlDTP_GetRange GUICtrlDTP_GetRangeEx GUICtrlDTP_GetSystemTime GUICtrlDTP_GetSystemTimeEx GUICtrlDTP_SetFormat GUICtrlDTP_SetMCColor GUICtrlDTP_SetMCFont GUICtrlDTP_SetRange GUICtrlDTP_SetRangeEx GUICtrlDTP_SetSystemTime GUICtrlDTP_SetSystemTimeEx GUICtrlEdit_AppendText GUICtrlEdit_BeginUpdate GUICtrlEdit_CanUndo GUICtrlEdit_CharFromPos GUICtrlEdit_Create GUICtrlEdit_Destroy GUICtrlEdit_EmptyUndoBuffer GUICtrlEdit_EndUpdate GUICtrlEdit_Find GUICtrlEdit_FmtLines GUICtrlEdit_GetCueBanner GUICtrlEdit_GetFirstVisibleLine GUICtrlEdit_GetLimitText GUICtrlEdit_GetLine GUICtrlEdit_GetLineCount GUICtrlEdit_GetMargins GUICtrlEdit_GetModify GUICtrlEdit_GetPasswordChar GUICtrlEdit_GetRECT GUICtrlEdit_GetRECTEx GUICtrlEdit_GetSel GUICtrlEdit_GetText GUICtrlEdit_GetTextLen GUICtrlEdit_HideBalloonTip GUICtrlEdit_InsertText GUICtrlEdit_LineFromChar GUICtrlEdit_LineIndex GUICtrlEdit_LineLength GUICtrlEdit_LineScroll GUICtrlEdit_PosFromChar GUICtrlEdit_ReplaceSel GUICtrlEdit_Scroll GUICtrlEdit_SetCueBanner GUICtrlEdit_SetLimitText GUICtrlEdit_SetMargins GUICtrlEdit_SetModify GUICtrlEdit_SetPasswordChar GUICtrlEdit_SetReadOnly GUICtrlEdit_SetRECT GUICtrlEdit_SetRECTEx GUICtrlEdit_SetRECTNP GUICtrlEdit_SetRectNPEx GUICtrlEdit_SetSel GUICtrlEdit_SetTabStops GUICtrlEdit_SetText GUICtrlEdit_ShowBalloonTip GUICtrlEdit_Undo GUICtrlHeader_AddItem GUICtrlHeader_ClearFilter GUICtrlHeader_ClearFilterAll GUICtrlHeader_Create GUICtrlHeader_CreateDragImage GUICtrlHeader_DeleteItem GUICtrlHeader_Destroy GUICtrlHeader_EditFilter GUICtrlHeader_GetBitmapMargin GUICtrlHeader_GetImageList GUICtrlHeader_GetItem GUICtrlHeader_GetItemAlign GUICtrlHeader_GetItemBitmap GUICtrlHeader_GetItemCount GUICtrlHeader_GetItemDisplay GUICtrlHeader_GetItemFlags GUICtrlHeader_GetItemFormat GUICtrlHeader_GetItemImage GUICtrlHeader_GetItemOrder GUICtrlHeader_GetItemParam GUICtrlHeader_GetItemRect GUICtrlHeader_GetItemRectEx GUICtrlHeader_GetItemText GUICtrlHeader_GetItemWidth GUICtrlHeader_GetOrderArray GUICtrlHeader_GetUnicodeFormat GUICtrlHeader_HitTest GUICtrlHeader_InsertItem GUICtrlHeader_Layout GUICtrlHeader_OrderToIndex GUICtrlHeader_SetBitmapMargin GUICtrlHeader_SetFilterChangeTimeout GUICtrlHeader_SetHotDivider GUICtrlHeader_SetImageList GUICtrlHeader_SetItem GUICtrlHeader_SetItemAlign GUICtrlHeader_SetItemBitmap GUICtrlHeader_SetItemDisplay GUICtrlHeader_SetItemFlags GUICtrlHeader_SetItemFormat GUICtrlHeader_SetItemImage GUICtrlHeader_SetItemOrder GUICtrlHeader_SetItemParam GUICtrlHeader_SetItemText GUICtrlHeader_SetItemWidth GUICtrlHeader_SetOrderArray GUICtrlHeader_SetUnicodeFormat GUICtrlIpAddress_ClearAddress GUICtrlIpAddress_Create GUICtrlIpAddress_Destroy GUICtrlIpAddress_Get GUICtrlIpAddress_GetArray GUICtrlIpAddress_GetEx GUICtrlIpAddress_IsBlank GUICtrlIpAddress_Set GUICtrlIpAddress_SetArray GUICtrlIpAddress_SetEx GUICtrlIpAddress_SetFocus GUICtrlIpAddress_SetFont GUICtrlIpAddress_SetRange GUICtrlIpAddress_ShowHide GUICtrlListBox_AddFile GUICtrlListBox_AddString GUICtrlListBox_BeginUpdate GUICtrlListBox_ClickItem GUICtrlListBox_Create GUICtrlListBox_DeleteString GUICtrlListBox_Destroy GUICtrlListBox_Dir GUICtrlListBox_EndUpdate GUICtrlListBox_FindInText GUICtrlListBox_FindString GUICtrlListBox_GetAnchorIndex GUICtrlListBox_GetCaretIndex GUICtrlListBox_GetCount GUICtrlListBox_GetCurSel GUICtrlListBox_GetHorizontalExtent GUICtrlListBox_GetItemData GUICtrlListBox_GetItemHeight GUICtrlListBox_GetItemRect GUICtrlListBox_GetItemRectEx GUICtrlListBox_GetListBoxInfo
GUICtrlListBox_GetLocale GUICtrlListBox_GetLocaleCountry GUICtrlListBox_GetLocaleLang GUICtrlListBox_GetLocalePrimLang GUICtrlListBox_GetLocaleSubLang GUICtrlListBox_GetSel GUICtrlListBox_GetSelCount GUICtrlListBox_GetSelItems GUICtrlListBox_GetSelItemsText GUICtrlListBox_GetText GUICtrlListBox_GetTextLen GUICtrlListBox_GetTopIndex GUICtrlListBox_InitStorage GUICtrlListBox_InsertString GUICtrlListBox_ItemFromPoint GUICtrlListBox_ReplaceString GUICtrlListBox_ResetContent GUICtrlListBox_SelectString GUICtrlListBox_SelItemRange GUICtrlListBox_SelItemRangeEx GUICtrlListBox_SetAnchorIndex GUICtrlListBox_SetCaretIndex GUICtrlListBox_SetColumnWidth GUICtrlListBox_SetCurSel GUICtrlListBox_SetHorizontalExtent GUICtrlListBox_SetItemData GUICtrlListBox_SetItemHeight GUICtrlListBox_SetLocale GUICtrlListBox_SetSel GUICtrlListBox_SetTabStops GUICtrlListBox_SetTopIndex GUICtrlListBox_Sort GUICtrlListBox_SwapString GUICtrlListBox_UpdateHScroll GUICtrlListView_AddArray GUICtrlListView_AddColumn GUICtrlListView_AddItem GUICtrlListView_AddSubItem GUICtrlListView_ApproximateViewHeight GUICtrlListView_ApproximateViewRect GUICtrlListView_ApproximateViewWidth GUICtrlListView_Arrange GUICtrlListView_BeginUpdate GUICtrlListView_CancelEditLabel GUICtrlListView_ClickItem GUICtrlListView_CopyItems GUICtrlListView_Create GUICtrlListView_CreateDragImage GUICtrlListView_CreateSolidBitMap GUICtrlListView_DeleteAllItems GUICtrlListView_DeleteColumn GUICtrlListView_DeleteItem GUICtrlListView_DeleteItemsSelected GUICtrlListView_Destroy GUICtrlListView_DrawDragImage GUICtrlListView_EditLabel GUICtrlListView_EnableGroupView GUICtrlListView_EndUpdate GUICtrlListView_EnsureVisible GUICtrlListView_FindInText GUICtrlListView_FindItem GUICtrlListView_FindNearest GUICtrlListView_FindParam GUICtrlListView_FindText GUICtrlListView_GetBkColor GUICtrlListView_GetBkImage GUICtrlListView_GetCallbackMask GUICtrlListView_GetColumn GUICtrlListView_GetColumnCount GUICtrlListView_GetColumnOrder GUICtrlListView_GetColumnOrderArray GUICtrlListView_GetColumnWidth GUICtrlListView_GetCounterPage GUICtrlListView_GetEditControl GUICtrlListView_GetExtendedListViewStyle GUICtrlListView_GetFocusedGroup GUICtrlListView_GetGroupCount GUICtrlListView_GetGroupInfo GUICtrlListView_GetGroupInfoByIndex GUICtrlListView_GetGroupRect GUICtrlListView_GetGroupViewEnabled GUICtrlListView_GetHeader GUICtrlListView_GetHotCursor GUICtrlListView_GetHotItem GUICtrlListView_GetHoverTime GUICtrlListView_GetImageList GUICtrlListView_GetISearchString GUICtrlListView_GetItem GUICtrlListView_GetItemChecked GUICtrlListView_GetItemCount GUICtrlListView_GetItemCut GUICtrlListView_GetItemDropHilited GUICtrlListView_GetItemEx GUICtrlListView_GetItemFocused GUICtrlListView_GetItemGroupID GUICtrlListView_GetItemImage GUICtrlListView_GetItemIndent GUICtrlListView_GetItemParam GUICtrlListView_GetItemPosition GUICtrlListView_GetItemPositionX GUICtrlListView_GetItemPositionY GUICtrlListView_GetItemRect GUICtrlListView_GetItemRectEx GUICtrlListView_GetItemSelected GUICtrlListView_GetItemSpacing GUICtrlListView_GetItemSpacingX GUICtrlListView_GetItemSpacingY GUICtrlListView_GetItemState GUICtrlListView_GetItemStateImage GUICtrlListView_GetItemText GUICtrlListView_GetItemTextArray GUICtrlListView_GetItemTextString GUICtrlListView_GetNextItem GUICtrlListView_GetNumberOfWorkAreas GUICtrlListView_GetOrigin GUICtrlListView_GetOriginX GUICtrlListView_GetOriginY GUICtrlListView_GetOutlineColor GUICtrlListView_GetSelectedColumn GUICtrlListView_GetSelectedCount GUICtrlListView_GetSelectedIndices GUICtrlListView_GetSelectionMark GUICtrlListView_GetStringWidth GUICtrlListView_GetSubItemRect GUICtrlListView_GetTextBkColor GUICtrlListView_GetTextColor GUICtrlListView_GetToolTips GUICtrlListView_GetTopIndex GUICtrlListView_GetUnicodeFormat GUICtrlListView_GetView GUICtrlListView_GetViewDetails GUICtrlListView_GetViewLarge GUICtrlListView_GetViewList GUICtrlListView_GetViewRect GUICtrlListView_GetViewSmall GUICtrlListView_GetViewTile GUICtrlListView_HideColumn GUICtrlListView_HitTest GUICtrlListView_InsertColumn GUICtrlListView_InsertGroup GUICtrlListView_InsertItem GUICtrlListView_JustifyColumn GUICtrlListView_MapIDToIndex GUICtrlListView_MapIndexToID GUICtrlListView_RedrawItems GUICtrlListView_RegisterSortCallBack GUICtrlListView_RemoveAllGroups GUICtrlListView_RemoveGroup GUICtrlListView_Scroll GUICtrlListView_SetBkColor GUICtrlListView_SetBkImage GUICtrlListView_SetCallBackMask GUICtrlListView_SetColumn GUICtrlListView_SetColumnOrder GUICtrlListView_SetColumnOrderArray GUICtrlListView_SetColumnWidth GUICtrlListView_SetExtendedListViewStyle GUICtrlListView_SetGroupInfo GUICtrlListView_SetHotItem GUICtrlListView_SetHoverTime GUICtrlListView_SetIconSpacing GUICtrlListView_SetImageList GUICtrlListView_SetItem GUICtrlListView_SetItemChecked GUICtrlListView_SetItemCount GUICtrlListView_SetItemCut GUICtrlListView_SetItemDropHilited GUICtrlListView_SetItemEx GUICtrlListView_SetItemFocused GUICtrlListView_SetItemGroupID GUICtrlListView_SetItemImage GUICtrlListView_SetItemIndent GUICtrlListView_SetItemParam GUICtrlListView_SetItemPosition GUICtrlListView_SetItemPosition32 GUICtrlListView_SetItemSelected GUICtrlListView_SetItemState GUICtrlListView_SetItemStateImage GUICtrlListView_SetItemText GUICtrlListView_SetOutlineColor GUICtrlListView_SetSelectedColumn GUICtrlListView_SetSelectionMark GUICtrlListView_SetTextBkColor GUICtrlListView_SetTextColor GUICtrlListView_SetToolTips GUICtrlListView_SetUnicodeFormat GUICtrlListView_SetView GUICtrlListView_SetWorkAreas GUICtrlListView_SimpleSort GUICtrlListView_SortItems GUICtrlListView_SubItemHitTest GUICtrlListView_UnRegisterSortCallBack GUICtrlMenu_AddMenuItem GUICtrlMenu_AppendMenu GUICtrlMenu_CalculatePopupWindowPosition GUICtrlMenu_CheckMenuItem GUICtrlMenu_CheckRadioItem GUICtrlMenu_CreateMenu GUICtrlMenu_CreatePopup GUICtrlMenu_DeleteMenu GUICtrlMenu_DestroyMenu GUICtrlMenu_DrawMenuBar GUICtrlMenu_EnableMenuItem GUICtrlMenu_FindItem GUICtrlMenu_FindParent GUICtrlMenu_GetItemBmp GUICtrlMenu_GetItemBmpChecked GUICtrlMenu_GetItemBmpUnchecked GUICtrlMenu_GetItemChecked GUICtrlMenu_GetItemCount GUICtrlMenu_GetItemData GUICtrlMenu_GetItemDefault GUICtrlMenu_GetItemDisabled GUICtrlMenu_GetItemEnabled GUICtrlMenu_GetItemGrayed GUICtrlMenu_GetItemHighlighted GUICtrlMenu_GetItemID GUICtrlMenu_GetItemInfo GUICtrlMenu_GetItemRect GUICtrlMenu_GetItemRectEx GUICtrlMenu_GetItemState GUICtrlMenu_GetItemStateEx GUICtrlMenu_GetItemSubMenu GUICtrlMenu_GetItemText GUICtrlMenu_GetItemType GUICtrlMenu_GetMenu GUICtrlMenu_GetMenuBackground GUICtrlMenu_GetMenuBarInfo GUICtrlMenu_GetMenuContextHelpID GUICtrlMenu_GetMenuData GUICtrlMenu_GetMenuDefaultItem GUICtrlMenu_GetMenuHeight GUICtrlMenu_GetMenuInfo GUICtrlMenu_GetMenuStyle GUICtrlMenu_GetSystemMenu GUICtrlMenu_InsertMenuItem GUICtrlMenu_InsertMenuItemEx GUICtrlMenu_IsMenu GUICtrlMenu_LoadMenu GUICtrlMenu_MapAccelerator GUICtrlMenu_MenuItemFromPoint GUICtrlMenu_RemoveMenu GUICtrlMenu_SetItemBitmaps GUICtrlMenu_SetItemBmp GUICtrlMenu_SetItemBmpChecked GUICtrlMenu_SetItemBmpUnchecked GUICtrlMenu_SetItemChecked GUICtrlMenu_SetItemData GUICtrlMenu_SetItemDefault GUICtrlMenu_SetItemDisabled GUICtrlMenu_SetItemEnabled GUICtrlMenu_SetItemGrayed GUICtrlMenu_SetItemHighlighted GUICtrlMenu_SetItemID GUICtrlMenu_SetItemInfo GUICtrlMenu_SetItemState GUICtrlMenu_SetItemSubMenu GUICtrlMenu_SetItemText GUICtrlMenu_SetItemType GUICtrlMenu_SetMenu GUICtrlMenu_SetMenuBackground GUICtrlMenu_SetMenuContextHelpID GUICtrlMenu_SetMenuData GUICtrlMenu_SetMenuDefaultItem GUICtrlMenu_SetMenuHeight GUICtrlMenu_SetMenuInfo GUICtrlMenu_SetMenuStyle GUICtrlMenu_TrackPopupMenu GUICtrlMonthCal_Create GUICtrlMonthCal_Destroy GUICtrlMonthCal_GetCalendarBorder GUICtrlMonthCal_GetCalendarCount GUICtrlMonthCal_GetColor GUICtrlMonthCal_GetColorArray GUICtrlMonthCal_GetCurSel GUICtrlMonthCal_GetCurSelStr GUICtrlMonthCal_GetFirstDOW GUICtrlMonthCal_GetFirstDOWStr GUICtrlMonthCal_GetMaxSelCount GUICtrlMonthCal_GetMaxTodayWidth GUICtrlMonthCal_GetMinReqHeight GUICtrlMonthCal_GetMinReqRect GUICtrlMonthCal_GetMinReqRectArray GUICtrlMonthCal_GetMinReqWidth GUICtrlMonthCal_GetMonthDelta GUICtrlMonthCal_GetMonthRange GUICtrlMonthCal_GetMonthRangeMax GUICtrlMonthCal_GetMonthRangeMaxStr GUICtrlMonthCal_GetMonthRangeMin GUICtrlMonthCal_GetMonthRangeMinStr GUICtrlMonthCal_GetMonthRangeSpan GUICtrlMonthCal_GetRange GUICtrlMonthCal_GetRangeMax GUICtrlMonthCal_GetRangeMaxStr GUICtrlMonthCal_GetRangeMin GUICtrlMonthCal_GetRangeMinStr GUICtrlMonthCal_GetSelRange GUICtrlMonthCal_GetSelRangeMax GUICtrlMonthCal_GetSelRangeMaxStr GUICtrlMonthCal_GetSelRangeMin GUICtrlMonthCal_GetSelRangeMinStr GUICtrlMonthCal_GetToday GUICtrlMonthCal_GetTodayStr GUICtrlMonthCal_GetUnicodeFormat GUICtrlMonthCal_HitTest GUICtrlMonthCal_SetCalendarBorder GUICtrlMonthCal_SetColor GUICtrlMonthCal_SetCurSel GUICtrlMonthCal_SetDayState GUICtrlMonthCal_SetFirstDOW GUICtrlMonthCal_SetMaxSelCount GUICtrlMonthCal_SetMonthDelta GUICtrlMonthCal_SetRange GUICtrlMonthCal_SetSelRange GUICtrlMonthCal_SetToday GUICtrlMonthCal_SetUnicodeFormat GUICtrlRebar_AddBand GUICtrlRebar_AddToolBarBand GUICtrlRebar_BeginDrag GUICtrlRebar_Create GUICtrlRebar_DeleteBand GUICtrlRebar_Destroy GUICtrlRebar_DragMove GUICtrlRebar_EndDrag GUICtrlRebar_GetBandBackColor GUICtrlRebar_GetBandBorders GUICtrlRebar_GetBandBordersEx GUICtrlRebar_GetBandChildHandle GUICtrlRebar_GetBandChildSize GUICtrlRebar_GetBandCount GUICtrlRebar_GetBandForeColor GUICtrlRebar_GetBandHeaderSize GUICtrlRebar_GetBandID GUICtrlRebar_GetBandIdealSize GUICtrlRebar_GetBandLength GUICtrlRebar_GetBandLParam GUICtrlRebar_GetBandMargins GUICtrlRebar_GetBandMarginsEx GUICtrlRebar_GetBandRect GUICtrlRebar_GetBandRectEx GUICtrlRebar_GetBandStyle GUICtrlRebar_GetBandStyleBreak GUICtrlRebar_GetBandStyleChildEdge GUICtrlRebar_GetBandStyleFixedBMP GUICtrlRebar_GetBandStyleFixedSize GUICtrlRebar_GetBandStyleGripperAlways GUICtrlRebar_GetBandStyleHidden GUICtrlRebar_GetBandStyleHideTitle
GUICtrlRebar_GetBandStyleNoGripper GUICtrlRebar_GetBandStyleTopAlign GUICtrlRebar_GetBandStyleUseChevron GUICtrlRebar_GetBandStyleVariableHeight GUICtrlRebar_GetBandText GUICtrlRebar_GetBarHeight GUICtrlRebar_GetBarInfo GUICtrlRebar_GetBKColor GUICtrlRebar_GetColorScheme GUICtrlRebar_GetRowCount GUICtrlRebar_GetRowHeight GUICtrlRebar_GetTextColor GUICtrlRebar_GetToolTips GUICtrlRebar_GetUnicodeFormat GUICtrlRebar_HitTest GUICtrlRebar_IDToIndex GUICtrlRebar_MaximizeBand GUICtrlRebar_MinimizeBand GUICtrlRebar_MoveBand GUICtrlRebar_SetBandBackColor GUICtrlRebar_SetBandForeColor GUICtrlRebar_SetBandHeaderSize GUICtrlRebar_SetBandID GUICtrlRebar_SetBandIdealSize GUICtrlRebar_SetBandLength GUICtrlRebar_SetBandLParam GUICtrlRebar_SetBandStyle GUICtrlRebar_SetBandStyleBreak GUICtrlRebar_SetBandStyleChildEdge GUICtrlRebar_SetBandStyleFixedBMP GUICtrlRebar_SetBandStyleFixedSize GUICtrlRebar_SetBandStyleGripperAlways GUICtrlRebar_SetBandStyleHidden GUICtrlRebar_SetBandStyleHideTitle GUICtrlRebar_SetBandStyleNoGripper GUICtrlRebar_SetBandStyleTopAlign GUICtrlRebar_SetBandStyleUseChevron GUICtrlRebar_SetBandStyleVariableHeight GUICtrlRebar_SetBandText GUICtrlRebar_SetBarInfo GUICtrlRebar_SetBKColor GUICtrlRebar_SetColorScheme GUICtrlRebar_SetTextColor GUICtrlRebar_SetToolTips GUICtrlRebar_SetUnicodeFormat GUICtrlRebar_ShowBand GUICtrlRichEdit_AppendText GUICtrlRichEdit_AutoDetectURL GUICtrlRichEdit_CanPaste GUICtrlRichEdit_CanPasteSpecial GUICtrlRichEdit_CanRedo GUICtrlRichEdit_CanUndo GUICtrlRichEdit_ChangeFontSize GUICtrlRichEdit_Copy GUICtrlRichEdit_Create GUICtrlRichEdit_Cut GUICtrlRichEdit_Deselect GUICtrlRichEdit_Destroy GUICtrlRichEdit_EmptyUndoBuffer GUICtrlRichEdit_FindText GUICtrlRichEdit_FindTextInRange GUICtrlRichEdit_GetBkColor GUICtrlRichEdit_GetCharAttributes GUICtrlRichEdit_GetCharBkColor GUICtrlRichEdit_GetCharColor GUICtrlRichEdit_GetCharPosFromXY GUICtrlRichEdit_GetCharPosOfNextWord GUICtrlRichEdit_GetCharPosOfPreviousWord GUICtrlRichEdit_GetCharWordBreakInfo GUICtrlRichEdit_GetFirstCharPosOnLine GUICtrlRichEdit_GetFont GUICtrlRichEdit_GetLineCount GUICtrlRichEdit_GetLineLength GUICtrlRichEdit_GetLineNumberFromCharPos GUICtrlRichEdit_GetNextRedo GUICtrlRichEdit_GetNextUndo GUICtrlRichEdit_GetNumberOfFirstVisibleLine GUICtrlRichEdit_GetParaAlignment GUICtrlRichEdit_GetParaAttributes GUICtrlRichEdit_GetParaBorder GUICtrlRichEdit_GetParaIndents GUICtrlRichEdit_GetParaNumbering GUICtrlRichEdit_GetParaShading GUICtrlRichEdit_GetParaSpacing GUICtrlRichEdit_GetParaTabStops GUICtrlRichEdit_GetPasswordChar GUICtrlRichEdit_GetRECT GUICtrlRichEdit_GetScrollPos GUICtrlRichEdit_GetSel GUICtrlRichEdit_GetSelAA GUICtrlRichEdit_GetSelText GUICtrlRichEdit_GetSpaceUnit GUICtrlRichEdit_GetText GUICtrlRichEdit_GetTextInLine GUICtrlRichEdit_GetTextInRange GUICtrlRichEdit_GetTextLength GUICtrlRichEdit_GetVersion GUICtrlRichEdit_GetXYFromCharPos GUICtrlRichEdit_GetZoom GUICtrlRichEdit_GotoCharPos GUICtrlRichEdit_HideSelection GUICtrlRichEdit_InsertText GUICtrlRichEdit_IsModified GUICtrlRichEdit_IsTextSelected GUICtrlRichEdit_Paste GUICtrlRichEdit_PasteSpecial GUICtrlRichEdit_PauseRedraw GUICtrlRichEdit_Redo GUICtrlRichEdit_ReplaceText GUICtrlRichEdit_ResumeRedraw GUICtrlRichEdit_ScrollLineOrPage GUICtrlRichEdit_ScrollLines GUICtrlRichEdit_ScrollToCaret GUICtrlRichEdit_SetBkColor GUICtrlRichEdit_SetCharAttributes GUICtrlRichEdit_SetCharBkColor GUICtrlRichEdit_SetCharColor GUICtrlRichEdit_SetEventMask GUICtrlRichEdit_SetFont GUICtrlRichEdit_SetLimitOnText GUICtrlRichEdit_SetModified GUICtrlRichEdit_SetParaAlignment GUICtrlRichEdit_SetParaAttributes GUICtrlRichEdit_SetParaBorder GUICtrlRichEdit_SetParaIndents GUICtrlRichEdit_SetParaNumbering GUICtrlRichEdit_SetParaShading GUICtrlRichEdit_SetParaSpacing GUICtrlRichEdit_SetParaTabStops GUICtrlRichEdit_SetPasswordChar GUICtrlRichEdit_SetReadOnly GUICtrlRichEdit_SetRECT GUICtrlRichEdit_SetScrollPos GUICtrlRichEdit_SetSel GUICtrlRichEdit_SetSpaceUnit GUICtrlRichEdit_SetTabStops GUICtrlRichEdit_SetText GUICtrlRichEdit_SetUndoLimit GUICtrlRichEdit_SetZoom GUICtrlRichEdit_StreamFromFile GUICtrlRichEdit_StreamFromVar GUICtrlRichEdit_StreamToFile GUICtrlRichEdit_StreamToVar GUICtrlRichEdit_Undo GUICtrlSlider_ClearSel GUICtrlSlider_ClearTics GUICtrlSlider_Create GUICtrlSlider_Destroy GUICtrlSlider_GetBuddy GUICtrlSlider_GetChannelRect GUICtrlSlider_GetChannelRectEx GUICtrlSlider_GetLineSize GUICtrlSlider_GetLogicalTics GUICtrlSlider_GetNumTics GUICtrlSlider_GetPageSize GUICtrlSlider_GetPos GUICtrlSlider_GetRange GUICtrlSlider_GetRangeMax GUICtrlSlider_GetRangeMin GUICtrlSlider_GetSel GUICtrlSlider_GetSelEnd GUICtrlSlider_GetSelStart GUICtrlSlider_GetThumbLength GUICtrlSlider_GetThumbRect GUICtrlSlider_GetThumbRectEx GUICtrlSlider_GetTic GUICtrlSlider_GetTicPos GUICtrlSlider_GetToolTips GUICtrlSlider_GetUnicodeFormat GUICtrlSlider_SetBuddy GUICtrlSlider_SetLineSize GUICtrlSlider_SetPageSize GUICtrlSlider_SetPos GUICtrlSlider_SetRange GUICtrlSlider_SetRangeMax GUICtrlSlider_SetRangeMin GUICtrlSlider_SetSel GUICtrlSlider_SetSelEnd GUICtrlSlider_SetSelStart GUICtrlSlider_SetThumbLength GUICtrlSlider_SetTic GUICtrlSlider_SetTicFreq GUICtrlSlider_SetTipSide GUICtrlSlider_SetToolTips GUICtrlSlider_SetUnicodeFormat GUICtrlStatusBar_Create GUICtrlStatusBar_Destroy GUICtrlStatusBar_EmbedControl GUICtrlStatusBar_GetBorders GUICtrlStatusBar_GetBordersHorz GUICtrlStatusBar_GetBordersRect GUICtrlStatusBar_GetBordersVert GUICtrlStatusBar_GetCount GUICtrlStatusBar_GetHeight GUICtrlStatusBar_GetIcon GUICtrlStatusBar_GetParts GUICtrlStatusBar_GetRect GUICtrlStatusBar_GetRectEx GUICtrlStatusBar_GetText GUICtrlStatusBar_GetTextFlags GUICtrlStatusBar_GetTextLength GUICtrlStatusBar_GetTextLengthEx GUICtrlStatusBar_GetTipText GUICtrlStatusBar_GetUnicodeFormat GUICtrlStatusBar_GetWidth GUICtrlStatusBar_IsSimple GUICtrlStatusBar_Resize GUICtrlStatusBar_SetBkColor GUICtrlStatusBar_SetIcon GUICtrlStatusBar_SetMinHeight GUICtrlStatusBar_SetParts GUICtrlStatusBar_SetSimple GUICtrlStatusBar_SetText GUICtrlStatusBar_SetTipText GUICtrlStatusBar_SetUnicodeFormat GUICtrlStatusBar_ShowHide GUICtrlTab_ActivateTab GUICtrlTab_ClickTab GUICtrlTab_Create GUICtrlTab_DeleteAllItems GUICtrlTab_DeleteItem GUICtrlTab_DeselectAll GUICtrlTab_Destroy GUICtrlTab_FindTab GUICtrlTab_GetCurFocus GUICtrlTab_GetCurSel GUICtrlTab_GetDisplayRect GUICtrlTab_GetDisplayRectEx GUICtrlTab_GetExtendedStyle GUICtrlTab_GetImageList GUICtrlTab_GetItem GUICtrlTab_GetItemCount GUICtrlTab_GetItemImage GUICtrlTab_GetItemParam GUICtrlTab_GetItemRect GUICtrlTab_GetItemRectEx GUICtrlTab_GetItemState GUICtrlTab_GetItemText GUICtrlTab_GetRowCount GUICtrlTab_GetToolTips GUICtrlTab_GetUnicodeFormat GUICtrlTab_HighlightItem GUICtrlTab_HitTest GUICtrlTab_InsertItem GUICtrlTab_RemoveImage GUICtrlTab_SetCurFocus GUICtrlTab_SetCurSel GUICtrlTab_SetExtendedStyle GUICtrlTab_SetImageList GUICtrlTab_SetItem GUICtrlTab_SetItemImage GUICtrlTab_SetItemParam GUICtrlTab_SetItemSize GUICtrlTab_SetItemState GUICtrlTab_SetItemText GUICtrlTab_SetMinTabWidth GUICtrlTab_SetPadding GUICtrlTab_SetToolTips GUICtrlTab_SetUnicodeFormat GUICtrlToolbar_AddBitmap GUICtrlToolbar_AddButton GUICtrlToolbar_AddButtonSep GUICtrlToolbar_AddString GUICtrlToolbar_ButtonCount GUICtrlToolbar_CheckButton GUICtrlToolbar_ClickAccel GUICtrlToolbar_ClickButton GUICtrlToolbar_ClickIndex GUICtrlToolbar_CommandToIndex GUICtrlToolbar_Create GUICtrlToolbar_Customize GUICtrlToolbar_DeleteButton GUICtrlToolbar_Destroy GUICtrlToolbar_EnableButton GUICtrlToolbar_FindToolbar GUICtrlToolbar_GetAnchorHighlight GUICtrlToolbar_GetBitmapFlags GUICtrlToolbar_GetButtonBitmap GUICtrlToolbar_GetButtonInfo GUICtrlToolbar_GetButtonInfoEx GUICtrlToolbar_GetButtonParam GUICtrlToolbar_GetButtonRect GUICtrlToolbar_GetButtonRectEx GUICtrlToolbar_GetButtonSize GUICtrlToolbar_GetButtonState GUICtrlToolbar_GetButtonStyle GUICtrlToolbar_GetButtonText GUICtrlToolbar_GetColorScheme GUICtrlToolbar_GetDisabledImageList GUICtrlToolbar_GetExtendedStyle GUICtrlToolbar_GetHotImageList GUICtrlToolbar_GetHotItem GUICtrlToolbar_GetImageList GUICtrlToolbar_GetInsertMark GUICtrlToolbar_GetInsertMarkColor GUICtrlToolbar_GetMaxSize GUICtrlToolbar_GetMetrics GUICtrlToolbar_GetPadding GUICtrlToolbar_GetRows GUICtrlToolbar_GetString GUICtrlToolbar_GetStyle GUICtrlToolbar_GetStyleAltDrag GUICtrlToolbar_GetStyleCustomErase GUICtrlToolbar_GetStyleFlat GUICtrlToolbar_GetStyleList GUICtrlToolbar_GetStyleRegisterDrop GUICtrlToolbar_GetStyleToolTips GUICtrlToolbar_GetStyleTransparent GUICtrlToolbar_GetStyleWrapable GUICtrlToolbar_GetTextRows GUICtrlToolbar_GetToolTips GUICtrlToolbar_GetUnicodeFormat GUICtrlToolbar_HideButton GUICtrlToolbar_HighlightButton GUICtrlToolbar_HitTest GUICtrlToolbar_IndexToCommand GUICtrlToolbar_InsertButton GUICtrlToolbar_InsertMarkHitTest GUICtrlToolbar_IsButtonChecked GUICtrlToolbar_IsButtonEnabled GUICtrlToolbar_IsButtonHidden GUICtrlToolbar_IsButtonHighlighted GUICtrlToolbar_IsButtonIndeterminate GUICtrlToolbar_IsButtonPressed GUICtrlToolbar_LoadBitmap GUICtrlToolbar_LoadImages GUICtrlToolbar_MapAccelerator GUICtrlToolbar_MoveButton GUICtrlToolbar_PressButton GUICtrlToolbar_SetAnchorHighlight GUICtrlToolbar_SetBitmapSize GUICtrlToolbar_SetButtonBitMap GUICtrlToolbar_SetButtonInfo GUICtrlToolbar_SetButtonInfoEx GUICtrlToolbar_SetButtonParam GUICtrlToolbar_SetButtonSize GUICtrlToolbar_SetButtonState GUICtrlToolbar_SetButtonStyle GUICtrlToolbar_SetButtonText GUICtrlToolbar_SetButtonWidth GUICtrlToolbar_SetCmdID GUICtrlToolbar_SetColorScheme GUICtrlToolbar_SetDisabledImageList GUICtrlToolbar_SetDrawTextFlags GUICtrlToolbar_SetExtendedStyle GUICtrlToolbar_SetHotImageList GUICtrlToolbar_SetHotItem GUICtrlToolbar_SetImageList GUICtrlToolbar_SetIndent GUICtrlToolbar_SetIndeterminate GUICtrlToolbar_SetInsertMark GUICtrlToolbar_SetInsertMarkColor GUICtrlToolbar_SetMaxTextRows GUICtrlToolbar_SetMetrics GUICtrlToolbar_SetPadding GUICtrlToolbar_SetParent GUICtrlToolbar_SetRows GUICtrlToolbar_SetStyle GUICtrlToolbar_SetStyleAltDrag
GUICtrlToolbar_SetStyleCustomErase GUICtrlToolbar_SetStyleFlat GUICtrlToolbar_SetStyleList GUICtrlToolbar_SetStyleRegisterDrop GUICtrlToolbar_SetStyleToolTips GUICtrlToolbar_SetStyleTransparent GUICtrlToolbar_SetStyleWrapable GUICtrlToolbar_SetToolTips GUICtrlToolbar_SetUnicodeFormat GUICtrlToolbar_SetWindowTheme GUICtrlTreeView_Add GUICtrlTreeView_AddChild GUICtrlTreeView_AddChildFirst GUICtrlTreeView_AddFirst GUICtrlTreeView_BeginUpdate GUICtrlTreeView_ClickItem GUICtrlTreeView_Create GUICtrlTreeView_CreateDragImage GUICtrlTreeView_CreateSolidBitMap GUICtrlTreeView_Delete GUICtrlTreeView_DeleteAll GUICtrlTreeView_DeleteChildren GUICtrlTreeView_Destroy GUICtrlTreeView_DisplayRect GUICtrlTreeView_DisplayRectEx GUICtrlTreeView_EditText GUICtrlTreeView_EndEdit GUICtrlTreeView_EndUpdate GUICtrlTreeView_EnsureVisible GUICtrlTreeView_Expand GUICtrlTreeView_ExpandedOnce GUICtrlTreeView_FindItem GUICtrlTreeView_FindItemEx GUICtrlTreeView_GetBkColor GUICtrlTreeView_GetBold GUICtrlTreeView_GetChecked GUICtrlTreeView_GetChildCount GUICtrlTreeView_GetChildren GUICtrlTreeView_GetCount GUICtrlTreeView_GetCut GUICtrlTreeView_GetDropTarget GUICtrlTreeView_GetEditControl GUICtrlTreeView_GetExpanded GUICtrlTreeView_GetFirstChild GUICtrlTreeView_GetFirstItem GUICtrlTreeView_GetFirstVisible GUICtrlTreeView_GetFocused GUICtrlTreeView_GetHeight GUICtrlTreeView_GetImageIndex GUICtrlTreeView_GetImageListIconHandle GUICtrlTreeView_GetIndent GUICtrlTreeView_GetInsertMarkColor GUICtrlTreeView_GetISearchString GUICtrlTreeView_GetItemByIndex GUICtrlTreeView_GetItemHandle GUICtrlTreeView_GetItemParam GUICtrlTreeView_GetLastChild GUICtrlTreeView_GetLineColor GUICtrlTreeView_GetNext GUICtrlTreeView_GetNextChild GUICtrlTreeView_GetNextSibling GUICtrlTreeView_GetNextVisible GUICtrlTreeView_GetNormalImageList GUICtrlTreeView_GetParentHandle GUICtrlTreeView_GetParentParam GUICtrlTreeView_GetPrev GUICtrlTreeView_GetPrevChild GUICtrlTreeView_GetPrevSibling GUICtrlTreeView_GetPrevVisible GUICtrlTreeView_GetScrollTime GUICtrlTreeView_GetSelected GUICtrlTreeView_GetSelectedImageIndex GUICtrlTreeView_GetSelection GUICtrlTreeView_GetSiblingCount GUICtrlTreeView_GetState GUICtrlTreeView_GetStateImageIndex GUICtrlTreeView_GetStateImageList GUICtrlTreeView_GetText GUICtrlTreeView_GetTextColor GUICtrlTreeView_GetToolTips GUICtrlTreeView_GetTree GUICtrlTreeView_GetUnicodeFormat GUICtrlTreeView_GetVisible GUICtrlTreeView_GetVisibleCount GUICtrlTreeView_HitTest GUICtrlTreeView_HitTestEx GUICtrlTreeView_HitTestItem GUICtrlTreeView_Index GUICtrlTreeView_InsertItem GUICtrlTreeView_IsFirstItem GUICtrlTreeView_IsParent GUICtrlTreeView_Level GUICtrlTreeView_SelectItem GUICtrlTreeView_SelectItemByIndex GUICtrlTreeView_SetBkColor GUICtrlTreeView_SetBold GUICtrlTreeView_SetChecked GUICtrlTreeView_SetCheckedByIndex GUICtrlTreeView_SetChildren GUICtrlTreeView_SetCut GUICtrlTreeView_SetDropTarget GUICtrlTreeView_SetFocused GUICtrlTreeView_SetHeight GUICtrlTreeView_SetIcon GUICtrlTreeView_SetImageIndex GUICtrlTreeView_SetIndent GUICtrlTreeView_SetInsertMark GUICtrlTreeView_SetInsertMarkColor GUICtrlTreeView_SetItemHeight GUICtrlTreeView_SetItemParam GUICtrlTreeView_SetLineColor GUICtrlTreeView_SetNormalImageList GUICtrlTreeView_SetScrollTime GUICtrlTreeView_SetSelected GUICtrlTreeView_SetSelectedImageIndex GUICtrlTreeView_SetState GUICtrlTreeView_SetStateImageIndex GUICtrlTreeView_SetStateImageList GUICtrlTreeView_SetText GUICtrlTreeView_SetTextColor GUICtrlTreeView_SetToolTips GUICtrlTreeView_SetUnicodeFormat GUICtrlTreeView_Sort GUIImageList_Add GUIImageList_AddBitmap GUIImageList_AddIcon GUIImageList_AddMasked GUIImageList_BeginDrag GUIImageList_Copy GUIImageList_Create GUIImageList_Destroy GUIImageList_DestroyIcon GUIImageList_DragEnter GUIImageList_DragLeave GUIImageList_DragMove GUIImageList_Draw GUIImageList_DrawEx GUIImageList_Duplicate GUIImageList_EndDrag GUIImageList_GetBkColor GUIImageList_GetIcon GUIImageList_GetIconHeight GUIImageList_GetIconSize GUIImageList_GetIconSizeEx GUIImageList_GetIconWidth GUIImageList_GetImageCount GUIImageList_GetImageInfoEx GUIImageList_Remove GUIImageList_ReplaceIcon GUIImageList_SetBkColor GUIImageList_SetIconSize GUIImageList_SetImageCount GUIImageList_Swap GUIScrollBars_EnableScrollBar GUIScrollBars_GetScrollBarInfoEx GUIScrollBars_GetScrollBarRect GUIScrollBars_GetScrollBarRGState GUIScrollBars_GetScrollBarXYLineButton GUIScrollBars_GetScrollBarXYThumbBottom GUIScrollBars_GetScrollBarXYThumbTop GUIScrollBars_GetScrollInfo GUIScrollBars_GetScrollInfoEx GUIScrollBars_GetScrollInfoMax GUIScrollBars_GetScrollInfoMin GUIScrollBars_GetScrollInfoPage GUIScrollBars_GetScrollInfoPos GUIScrollBars_GetScrollInfoTrackPos GUIScrollBars_GetScrollPos GUIScrollBars_GetScrollRange GUIScrollBars_Init GUIScrollBars_ScrollWindow GUIScrollBars_SetScrollInfo GUIScrollBars_SetScrollInfoMax GUIScrollBars_SetScrollInfoMin GUIScrollBars_SetScrollInfoPage GUIScrollBars_SetScrollInfoPos GUIScrollBars_SetScrollRange GUIScrollBars_ShowScrollBar GUIToolTip_Activate GUIToolTip_AddTool GUIToolTip_AdjustRect GUIToolTip_BitsToTTF GUIToolTip_Create GUIToolTip_Deactivate GUIToolTip_DelTool GUIToolTip_Destroy GUIToolTip_EnumTools GUIToolTip_GetBubbleHeight GUIToolTip_GetBubbleSize GUIToolTip_GetBubbleWidth GUIToolTip_GetCurrentTool GUIToolTip_GetDelayTime GUIToolTip_GetMargin GUIToolTip_GetMarginEx GUIToolTip_GetMaxTipWidth GUIToolTip_GetText GUIToolTip_GetTipBkColor GUIToolTip_GetTipTextColor GUIToolTip_GetTitleBitMap GUIToolTip_GetTitleText GUIToolTip_GetToolCount GUIToolTip_GetToolInfo GUIToolTip_HitTest GUIToolTip_NewToolRect GUIToolTip_Pop GUIToolTip_PopUp GUIToolTip_SetDelayTime GUIToolTip_SetMargin GUIToolTip_SetMaxTipWidth GUIToolTip_SetTipBkColor GUIToolTip_SetTipTextColor GUIToolTip_SetTitle GUIToolTip_SetToolInfo GUIToolTip_SetWindowTheme GUIToolTip_ToolExists GUIToolTip_ToolToArray GUIToolTip_TrackActivate GUIToolTip_TrackPosition GUIToolTip_Update GUIToolTip_UpdateTipText HexToString IEAction IEAttach IEBodyReadHTML IEBodyReadText IEBodyWriteHTML IECreate IECreateEmbedded IEDocGetObj IEDocInsertHTML IEDocInsertText IEDocReadHTML IEDocWriteHTML IEErrorNotify IEFormElementCheckBoxSelect IEFormElementGetCollection IEFormElementGetObjByName IEFormElementGetValue IEFormElementOptionSelect IEFormElementRadioSelect IEFormElementSetValue IEFormGetCollection IEFormGetObjByName IEFormImageClick IEFormReset IEFormSubmit IEFrameGetCollection IEFrameGetObjByName IEGetObjById IEGetObjByName IEHeadInsertEventScript IEImgClick IEImgGetCollection IEIsFrameSet IELinkClickByIndex IELinkClickByText IELinkGetCollection IELoadWait IELoadWaitTimeout IENavigate IEPropertyGet IEPropertySet IEQuit IETableGetCollection IETableWriteToArray IETagNameAllGetCollection IETagNameGetCollection IE_Example IE_Introduction IE_VersionInfo INetExplorerCapable INetGetSource INetMail INetSmtpMail IsPressed MathCheckDiv Max MemGlobalAlloc MemGlobalFree MemGlobalLock MemGlobalSize MemGlobalUnlock MemMoveMemory MemVirtualAlloc MemVirtualAllocEx MemVirtualFree MemVirtualFreeEx Min MouseTrap NamedPipes_CallNamedPipe NamedPipes_ConnectNamedPipe NamedPipes_CreateNamedPipe NamedPipes_CreatePipe NamedPipes_DisconnectNamedPipe NamedPipes_GetNamedPipeHandleState NamedPipes_GetNamedPipeInfo NamedPipes_PeekNamedPipe NamedPipes_SetNamedPipeHandleState NamedPipes_TransactNamedPipe NamedPipes_WaitNamedPipe Net_Share_ConnectionEnum Net_Share_FileClose Net_Share_FileEnum Net_Share_FileGetInfo Net_Share_PermStr Net_Share_ResourceStr Net_Share_SessionDel Net_Share_SessionEnum Net_Share_SessionGetInfo Net_Share_ShareAdd Net_Share_ShareCheck Net_Share_ShareDel Net_Share_ShareEnum Net_Share_ShareGetInfo Net_Share_ShareSetInfo Net_Share_StatisticsGetSvr Net_Share_StatisticsGetWrk Now NowCalc NowCalcDate NowDate NowTime PathFull PathGetRelative PathMake PathSplit ProcessGetName ProcessGetPriority Radian ReplaceStringInFile RunDos ScreenCapture_Capture ScreenCapture_CaptureWnd ScreenCapture_SaveImage ScreenCapture_SetBMPFormat ScreenCapture_SetJPGQuality ScreenCapture_SetTIFColorDepth ScreenCapture_SetTIFCompression Security__AdjustTokenPrivileges Security__CreateProcessWithToken Security__DuplicateTokenEx Security__GetAccountSid Security__GetLengthSid Security__GetTokenInformation Security__ImpersonateSelf Security__IsValidSid Security__LookupAccountName Security__LookupAccountSid Security__LookupPrivilegeValue Security__OpenProcessToken Security__OpenThreadToken Security__OpenThreadTokenEx Security__SetPrivilege Security__SetTokenInformation Security__SidToStringSid Security__SidTypeStr Security__StringSidToSid SendMessage SendMessageA SetDate SetTime Singleton SoundClose SoundLength SoundOpen SoundPause SoundPlay SoundPos SoundResume SoundSeek SoundStatus SoundStop SQLite_Changes SQLite_Close SQLite_Display2DResult SQLite_Encode SQLite_ErrCode SQLite_ErrMsg SQLite_Escape SQLite_Exec SQLite_FastEncode SQLite_FastEscape SQLite_FetchData SQLite_FetchNames SQLite_GetTable SQLite_GetTable2d SQLite_LastInsertRowID SQLite_LibVersion SQLite_Open SQLite_Query SQLite_QueryFinalize SQLite_QueryReset SQLite_QuerySingleRow SQLite_SafeMode SQLite_SetTimeout SQLite_Shutdown SQLite_SQLiteExe SQLite_Startup SQLite_TotalChanges StringBetween StringExplode StringInsert StringProper StringRepeat StringTitleCase StringToHex TCPIpToName TempFile TicksToTime Timer_Diff Timer_GetIdleTime Timer_GetTimerID Timer_Init Timer_KillAllTimers Timer_KillTimer Timer_SetTimer TimeToTicks VersionCompare viClose viExecCommand viFindGpib viGpibBusReset viGTL viInteractiveControl viOpen viSetAttribute viSetTimeout WeekNumberISO WinAPI_AbortPath WinAPI_ActivateKeyboardLayout WinAPI_AddClipboardFormatListener WinAPI_AddFontMemResourceEx WinAPI_AddFontResourceEx WinAPI_AddIconOverlay WinAPI_AddIconTransparency WinAPI_AddMRUString WinAPI_AdjustBitmap WinAPI_AdjustTokenPrivileges WinAPI_AdjustWindowRectEx WinAPI_AlphaBlend WinAPI_AngleArc WinAPI_AnimateWindow WinAPI_Arc WinAPI_ArcTo WinAPI_ArrayToStruct WinAPI_AssignProcessToJobObject
WinAPI_AssocGetPerceivedType WinAPI_AssocQueryString WinAPI_AttachConsole WinAPI_AttachThreadInput WinAPI_BackupRead WinAPI_BackupReadAbort WinAPI_BackupSeek WinAPI_BackupWrite WinAPI_BackupWriteAbort WinAPI_Beep WinAPI_BeginBufferedPaint WinAPI_BeginDeferWindowPos WinAPI_BeginPaint WinAPI_BeginPath WinAPI_BeginUpdateResource WinAPI_BitBlt WinAPI_BringWindowToTop WinAPI_BroadcastSystemMessage WinAPI_BrowseForFolderDlg WinAPI_BufferedPaintClear WinAPI_BufferedPaintInit WinAPI_BufferedPaintSetAlpha WinAPI_BufferedPaintUnInit WinAPI_CallNextHookEx WinAPI_CallWindowProc WinAPI_CallWindowProcW WinAPI_CascadeWindows WinAPI_ChangeWindowMessageFilterEx WinAPI_CharToOem WinAPI_ChildWindowFromPointEx WinAPI_ClientToScreen WinAPI_ClipCursor WinAPI_CloseDesktop WinAPI_CloseEnhMetaFile WinAPI_CloseFigure WinAPI_CloseHandle WinAPI_CloseThemeData WinAPI_CloseWindow WinAPI_CloseWindowStation WinAPI_CLSIDFromProgID WinAPI_CoInitialize WinAPI_ColorAdjustLuma WinAPI_ColorHLSToRGB WinAPI_ColorRGBToHLS WinAPI_CombineRgn WinAPI_CombineTransform WinAPI_CommandLineToArgv WinAPI_CommDlgExtendedError WinAPI_CommDlgExtendedErrorEx WinAPI_CompareString WinAPI_CompressBitmapBits WinAPI_CompressBuffer WinAPI_ComputeCrc32 WinAPI_ConfirmCredentials WinAPI_CopyBitmap WinAPI_CopyCursor WinAPI_CopyEnhMetaFile WinAPI_CopyFileEx WinAPI_CopyIcon WinAPI_CopyImage WinAPI_CopyRect WinAPI_CopyStruct WinAPI_CoTaskMemAlloc WinAPI_CoTaskMemFree WinAPI_CoTaskMemRealloc WinAPI_CoUninitialize WinAPI_Create32BitHBITMAP WinAPI_Create32BitHICON WinAPI_CreateANDBitmap WinAPI_CreateBitmap WinAPI_CreateBitmapIndirect WinAPI_CreateBrushIndirect WinAPI_CreateBuffer WinAPI_CreateBufferFromStruct WinAPI_CreateCaret WinAPI_CreateColorAdjustment WinAPI_CreateCompatibleBitmap WinAPI_CreateCompatibleBitmapEx WinAPI_CreateCompatibleDC WinAPI_CreateDesktop WinAPI_CreateDIB WinAPI_CreateDIBColorTable WinAPI_CreateDIBitmap WinAPI_CreateDIBSection WinAPI_CreateDirectory WinAPI_CreateDirectoryEx WinAPI_CreateEllipticRgn WinAPI_CreateEmptyIcon WinAPI_CreateEnhMetaFile WinAPI_CreateEvent WinAPI_CreateFile WinAPI_CreateFileEx WinAPI_CreateFileMapping WinAPI_CreateFont WinAPI_CreateFontEx WinAPI_CreateFontIndirect WinAPI_CreateGUID WinAPI_CreateHardLink WinAPI_CreateIcon WinAPI_CreateIconFromResourceEx WinAPI_CreateIconIndirect WinAPI_CreateJobObject WinAPI_CreateMargins WinAPI_CreateMRUList WinAPI_CreateMutex WinAPI_CreateNullRgn WinAPI_CreateNumberFormatInfo WinAPI_CreateObjectID WinAPI_CreatePen WinAPI_CreatePoint WinAPI_CreatePolygonRgn WinAPI_CreateProcess WinAPI_CreateProcessWithToken WinAPI_CreateRect WinAPI_CreateRectEx WinAPI_CreateRectRgn WinAPI_CreateRectRgnIndirect WinAPI_CreateRoundRectRgn WinAPI_CreateSemaphore WinAPI_CreateSize WinAPI_CreateSolidBitmap WinAPI_CreateSolidBrush WinAPI_CreateStreamOnHGlobal WinAPI_CreateString WinAPI_CreateSymbolicLink WinAPI_CreateTransform WinAPI_CreateWindowEx WinAPI_CreateWindowStation WinAPI_DecompressBuffer WinAPI_DecryptFile WinAPI_DeferWindowPos WinAPI_DefineDosDevice WinAPI_DefRawInputProc WinAPI_DefSubclassProc WinAPI_DefWindowProc WinAPI_DefWindowProcW WinAPI_DeleteDC WinAPI_DeleteEnhMetaFile WinAPI_DeleteFile WinAPI_DeleteObject WinAPI_DeleteObjectID WinAPI_DeleteVolumeMountPoint WinAPI_DeregisterShellHookWindow WinAPI_DestroyCaret WinAPI_DestroyCursor WinAPI_DestroyIcon WinAPI_DestroyWindow WinAPI_DeviceIoControl WinAPI_DisplayStruct WinAPI_DllGetVersion WinAPI_DllInstall WinAPI_DllUninstall WinAPI_DPtoLP WinAPI_DragAcceptFiles WinAPI_DragFinish WinAPI_DragQueryFileEx WinAPI_DragQueryPoint WinAPI_DrawAnimatedRects WinAPI_DrawBitmap WinAPI_DrawEdge WinAPI_DrawFocusRect WinAPI_DrawFrameControl WinAPI_DrawIcon WinAPI_DrawIconEx WinAPI_DrawLine WinAPI_DrawShadowText WinAPI_DrawText WinAPI_DrawThemeBackground WinAPI_DrawThemeEdge WinAPI_DrawThemeIcon WinAPI_DrawThemeParentBackground WinAPI_DrawThemeText WinAPI_DrawThemeTextEx WinAPI_DuplicateEncryptionInfoFile WinAPI_DuplicateHandle WinAPI_DuplicateTokenEx WinAPI_DwmDefWindowProc WinAPI_DwmEnableBlurBehindWindow WinAPI_DwmEnableComposition WinAPI_DwmExtendFrameIntoClientArea WinAPI_DwmGetColorizationColor WinAPI_DwmGetColorizationParameters WinAPI_DwmGetWindowAttribute WinAPI_DwmInvalidateIconicBitmaps WinAPI_DwmIsCompositionEnabled WinAPI_DwmQueryThumbnailSourceSize WinAPI_DwmRegisterThumbnail WinAPI_DwmSetColorizationParameters WinAPI_DwmSetIconicLivePreviewBitmap WinAPI_DwmSetIconicThumbnail WinAPI_DwmSetWindowAttribute WinAPI_DwmUnregisterThumbnail WinAPI_DwmUpdateThumbnailProperties WinAPI_DWordToFloat WinAPI_DWordToInt WinAPI_EjectMedia WinAPI_Ellipse WinAPI_EmptyWorkingSet WinAPI_EnableWindow WinAPI_EncryptFile WinAPI_EncryptionDisable WinAPI_EndBufferedPaint WinAPI_EndDeferWindowPos WinAPI_EndPaint WinAPI_EndPath WinAPI_EndUpdateResource WinAPI_EnumChildProcess WinAPI_EnumChildWindows WinAPI_EnumDesktops WinAPI_EnumDesktopWindows WinAPI_EnumDeviceDrivers WinAPI_EnumDisplayDevices WinAPI_EnumDisplayMonitors WinAPI_EnumDisplaySettings WinAPI_EnumDllProc WinAPI_EnumFiles WinAPI_EnumFileStreams WinAPI_EnumFontFamilies WinAPI_EnumHardLinks WinAPI_EnumMRUList WinAPI_EnumPageFiles WinAPI_EnumProcessHandles WinAPI_EnumProcessModules WinAPI_EnumProcessThreads WinAPI_EnumProcessWindows WinAPI_EnumRawInputDevices WinAPI_EnumResourceLanguages WinAPI_EnumResourceNames WinAPI_EnumResourceTypes WinAPI_EnumSystemGeoID WinAPI_EnumSystemLocales WinAPI_EnumUILanguages WinAPI_EnumWindows WinAPI_EnumWindowsPopup WinAPI_EnumWindowStations WinAPI_EnumWindowsTop WinAPI_EqualMemory WinAPI_EqualRect WinAPI_EqualRgn WinAPI_ExcludeClipRect WinAPI_ExpandEnvironmentStrings WinAPI_ExtCreatePen WinAPI_ExtCreateRegion WinAPI_ExtFloodFill WinAPI_ExtractIcon WinAPI_ExtractIconEx WinAPI_ExtSelectClipRgn WinAPI_FatalAppExit WinAPI_FatalExit WinAPI_FileEncryptionStatus WinAPI_FileExists WinAPI_FileIconInit WinAPI_FileInUse WinAPI_FillMemory WinAPI_FillPath WinAPI_FillRect WinAPI_FillRgn WinAPI_FindClose WinAPI_FindCloseChangeNotification WinAPI_FindExecutable WinAPI_FindFirstChangeNotification WinAPI_FindFirstFile WinAPI_FindFirstFileName WinAPI_FindFirstStream WinAPI_FindNextChangeNotification WinAPI_FindNextFile WinAPI_FindNextFileName WinAPI_FindNextStream WinAPI_FindResource WinAPI_FindResourceEx WinAPI_FindTextDlg WinAPI_FindWindow WinAPI_FlashWindow WinAPI_FlashWindowEx WinAPI_FlattenPath WinAPI_FloatToDWord WinAPI_FloatToInt WinAPI_FlushFileBuffers WinAPI_FlushFRBuffer WinAPI_FlushViewOfFile WinAPI_FormatDriveDlg WinAPI_FormatMessage WinAPI_FrameRect WinAPI_FrameRgn WinAPI_FreeLibrary WinAPI_FreeMemory WinAPI_FreeMRUList WinAPI_FreeResource WinAPI_GdiComment WinAPI_GetActiveWindow WinAPI_GetAllUsersProfileDirectory WinAPI_GetAncestor WinAPI_GetApplicationRestartSettings WinAPI_GetArcDirection WinAPI_GetAsyncKeyState WinAPI_GetBinaryType WinAPI_GetBitmapBits WinAPI_GetBitmapDimension WinAPI_GetBitmapDimensionEx WinAPI_GetBkColor WinAPI_GetBkMode WinAPI_GetBoundsRect WinAPI_GetBrushOrg WinAPI_GetBufferedPaintBits WinAPI_GetBufferedPaintDC WinAPI_GetBufferedPaintTargetDC WinAPI_GetBufferedPaintTargetRect WinAPI_GetBValue WinAPI_GetCaretBlinkTime WinAPI_GetCaretPos WinAPI_GetCDType WinAPI_GetClassInfoEx WinAPI_GetClassLongEx WinAPI_GetClassName WinAPI_GetClientHeight WinAPI_GetClientRect WinAPI_GetClientWidth WinAPI_GetClipboardSequenceNumber WinAPI_GetClipBox WinAPI_GetClipCursor WinAPI_GetClipRgn WinAPI_GetColorAdjustment WinAPI_GetCompressedFileSize WinAPI_GetCompression WinAPI_GetConnectedDlg WinAPI_GetCurrentDirectory WinAPI_GetCurrentHwProfile WinAPI_GetCurrentObject WinAPI_GetCurrentPosition WinAPI_GetCurrentProcess WinAPI_GetCurrentProcessExplicitAppUserModelID WinAPI_GetCurrentProcessID WinAPI_GetCurrentThemeName WinAPI_GetCurrentThread WinAPI_GetCurrentThreadId WinAPI_GetCursor WinAPI_GetCursorInfo WinAPI_GetDateFormat WinAPI_GetDC WinAPI_GetDCEx WinAPI_GetDefaultPrinter WinAPI_GetDefaultUserProfileDirectory WinAPI_GetDesktopWindow WinAPI_GetDeviceCaps WinAPI_GetDeviceDriverBaseName WinAPI_GetDeviceDriverFileName WinAPI_GetDeviceGammaRamp WinAPI_GetDIBColorTable WinAPI_GetDIBits WinAPI_GetDiskFreeSpaceEx WinAPI_GetDlgCtrlID WinAPI_GetDlgItem WinAPI_GetDllDirectory WinAPI_GetDriveBusType WinAPI_GetDriveGeometryEx WinAPI_GetDriveNumber WinAPI_GetDriveType WinAPI_GetDurationFormat WinAPI_GetEffectiveClientRect WinAPI_GetEnhMetaFile WinAPI_GetEnhMetaFileBits WinAPI_GetEnhMetaFileDescription WinAPI_GetEnhMetaFileDimension WinAPI_GetEnhMetaFileHeader WinAPI_GetErrorMessage WinAPI_GetErrorMode WinAPI_GetExitCodeProcess WinAPI_GetExtended WinAPI_GetFileAttributes WinAPI_GetFileID WinAPI_GetFileInformationByHandle WinAPI_GetFileInformationByHandleEx WinAPI_GetFilePointerEx WinAPI_GetFileSizeEx WinAPI_GetFileSizeOnDisk WinAPI_GetFileTitle WinAPI_GetFileType WinAPI_GetFileVersionInfo WinAPI_GetFinalPathNameByHandle WinAPI_GetFinalPathNameByHandleEx WinAPI_GetFocus WinAPI_GetFontMemoryResourceInfo WinAPI_GetFontName WinAPI_GetFontResourceInfo WinAPI_GetForegroundWindow WinAPI_GetFRBuffer WinAPI_GetFullPathName WinAPI_GetGeoInfo WinAPI_GetGlyphOutline WinAPI_GetGraphicsMode WinAPI_GetGuiResources WinAPI_GetGUIThreadInfo WinAPI_GetGValue WinAPI_GetHandleInformation WinAPI_GetHGlobalFromStream WinAPI_GetIconDimension WinAPI_GetIconInfo WinAPI_GetIconInfoEx WinAPI_GetIdleTime WinAPI_GetKeyboardLayout WinAPI_GetKeyboardLayoutList WinAPI_GetKeyboardState WinAPI_GetKeyboardType WinAPI_GetKeyNameText WinAPI_GetKeyState WinAPI_GetLastActivePopup WinAPI_GetLastError WinAPI_GetLastErrorMessage WinAPI_GetLayeredWindowAttributes WinAPI_GetLocaleInfo WinAPI_GetLogicalDrives WinAPI_GetMapMode WinAPI_GetMemorySize WinAPI_GetMessageExtraInfo WinAPI_GetModuleFileNameEx WinAPI_GetModuleHandle WinAPI_GetModuleHandleEx WinAPI_GetModuleInformation WinAPI_GetMonitorInfo WinAPI_GetMousePos WinAPI_GetMousePosX WinAPI_GetMousePosY WinAPI_GetMUILanguage WinAPI_GetNumberFormat WinAPI_GetObject WinAPI_GetObjectID WinAPI_GetObjectInfoByHandle WinAPI_GetObjectNameByHandle WinAPI_GetObjectType WinAPI_GetOpenFileName
WinAPI_GetOutlineTextMetrics WinAPI_GetOverlappedResult WinAPI_GetParent WinAPI_GetParentProcess WinAPI_GetPerformanceInfo WinAPI_GetPEType WinAPI_GetPhysicallyInstalledSystemMemory WinAPI_GetPixel WinAPI_GetPolyFillMode WinAPI_GetPosFromRect WinAPI_GetPriorityClass WinAPI_GetProcAddress WinAPI_GetProcessAffinityMask WinAPI_GetProcessCommandLine WinAPI_GetProcessFileName WinAPI_GetProcessHandleCount WinAPI_GetProcessID WinAPI_GetProcessIoCounters WinAPI_GetProcessMemoryInfo WinAPI_GetProcessName WinAPI_GetProcessShutdownParameters WinAPI_GetProcessTimes WinAPI_GetProcessUser WinAPI_GetProcessWindowStation WinAPI_GetProcessWorkingDirectory WinAPI_GetProfilesDirectory WinAPI_GetPwrCapabilities WinAPI_GetRawInputBuffer WinAPI_GetRawInputBufferLength WinAPI_GetRawInputData WinAPI_GetRawInputDeviceInfo WinAPI_GetRegionData WinAPI_GetRegisteredRawInputDevices WinAPI_GetRegKeyNameByHandle WinAPI_GetRgnBox WinAPI_GetROP2 WinAPI_GetRValue WinAPI_GetSaveFileName WinAPI_GetShellWindow WinAPI_GetStartupInfo WinAPI_GetStdHandle WinAPI_GetStockObject WinAPI_GetStretchBltMode WinAPI_GetString WinAPI_GetSysColor WinAPI_GetSysColorBrush WinAPI_GetSystemDefaultLangID WinAPI_GetSystemDefaultLCID WinAPI_GetSystemDefaultUILanguage WinAPI_GetSystemDEPPolicy WinAPI_GetSystemInfo WinAPI_GetSystemMetrics WinAPI_GetSystemPowerStatus WinAPI_GetSystemTimes WinAPI_GetSystemWow64Directory WinAPI_GetTabbedTextExtent WinAPI_GetTempFileName WinAPI_GetTextAlign WinAPI_GetTextCharacterExtra WinAPI_GetTextColor WinAPI_GetTextExtentPoint32 WinAPI_GetTextFace WinAPI_GetTextMetrics WinAPI_GetThemeAppProperties WinAPI_GetThemeBackgroundContentRect WinAPI_GetThemeBackgroundExtent WinAPI_GetThemeBackgroundRegion WinAPI_GetThemeBitmap WinAPI_GetThemeBool WinAPI_GetThemeColor WinAPI_GetThemeDocumentationProperty WinAPI_GetThemeEnumValue WinAPI_GetThemeFilename WinAPI_GetThemeFont WinAPI_GetThemeInt WinAPI_GetThemeMargins WinAPI_GetThemeMetric WinAPI_GetThemePartSize WinAPI_GetThemePosition WinAPI_GetThemePropertyOrigin WinAPI_GetThemeRect WinAPI_GetThemeString WinAPI_GetThemeSysBool WinAPI_GetThemeSysColor WinAPI_GetThemeSysColorBrush WinAPI_GetThemeSysFont WinAPI_GetThemeSysInt WinAPI_GetThemeSysSize WinAPI_GetThemeSysString WinAPI_GetThemeTextExtent WinAPI_GetThemeTextMetrics WinAPI_GetThemeTransitionDuration WinAPI_GetThreadDesktop WinAPI_GetThreadErrorMode WinAPI_GetThreadLocale WinAPI_GetThreadUILanguage WinAPI_GetTickCount WinAPI_GetTickCount64 WinAPI_GetTimeFormat WinAPI_GetTopWindow WinAPI_GetUDFColorMode WinAPI_GetUpdateRect WinAPI_GetUpdateRgn WinAPI_GetUserDefaultLangID WinAPI_GetUserDefaultLCID WinAPI_GetUserDefaultUILanguage WinAPI_GetUserGeoID WinAPI_GetUserObjectInformation WinAPI_GetVersion WinAPI_GetVersionEx WinAPI_GetVolumeInformation WinAPI_GetVolumeInformationByHandle WinAPI_GetVolumeNameForVolumeMountPoint WinAPI_GetWindow WinAPI_GetWindowDC WinAPI_GetWindowDisplayAffinity WinAPI_GetWindowExt WinAPI_GetWindowFileName WinAPI_GetWindowHeight WinAPI_GetWindowInfo WinAPI_GetWindowLong WinAPI_GetWindowOrg WinAPI_GetWindowPlacement WinAPI_GetWindowRect WinAPI_GetWindowRgn WinAPI_GetWindowRgnBox WinAPI_GetWindowSubclass WinAPI_GetWindowText WinAPI_GetWindowTheme WinAPI_GetWindowThreadProcessId WinAPI_GetWindowWidth WinAPI_GetWorkArea WinAPI_GetWorldTransform WinAPI_GetXYFromPoint WinAPI_GlobalMemoryStatus WinAPI_GradientFill WinAPI_GUIDFromString WinAPI_GUIDFromStringEx WinAPI_HashData WinAPI_HashString WinAPI_HiByte WinAPI_HideCaret WinAPI_HiDWord WinAPI_HiWord WinAPI_InflateRect WinAPI_InitMUILanguage WinAPI_InProcess WinAPI_IntersectClipRect WinAPI_IntersectRect WinAPI_IntToDWord WinAPI_IntToFloat WinAPI_InvalidateRect WinAPI_InvalidateRgn WinAPI_InvertANDBitmap WinAPI_InvertColor WinAPI_InvertRect WinAPI_InvertRgn WinAPI_IOCTL WinAPI_IsAlphaBitmap WinAPI_IsBadCodePtr WinAPI_IsBadReadPtr WinAPI_IsBadStringPtr WinAPI_IsBadWritePtr WinAPI_IsChild WinAPI_IsClassName WinAPI_IsDoorOpen WinAPI_IsElevated WinAPI_IsHungAppWindow WinAPI_IsIconic WinAPI_IsInternetConnected WinAPI_IsLoadKBLayout WinAPI_IsMemory WinAPI_IsNameInExpression WinAPI_IsNetworkAlive WinAPI_IsPathShared WinAPI_IsProcessInJob WinAPI_IsProcessorFeaturePresent WinAPI_IsRectEmpty WinAPI_IsThemeActive WinAPI_IsThemeBackgroundPartiallyTransparent WinAPI_IsThemePartDefined WinAPI_IsValidLocale WinAPI_IsWindow WinAPI_IsWindowEnabled WinAPI_IsWindowUnicode WinAPI_IsWindowVisible WinAPI_IsWow64Process WinAPI_IsWritable WinAPI_IsZoomed WinAPI_Keybd_Event WinAPI_KillTimer WinAPI_LineDDA WinAPI_LineTo WinAPI_LoadBitmap WinAPI_LoadCursor WinAPI_LoadCursorFromFile WinAPI_LoadIcon WinAPI_LoadIconMetric WinAPI_LoadIconWithScaleDown WinAPI_LoadImage WinAPI_LoadIndirectString WinAPI_LoadKeyboardLayout WinAPI_LoadLibrary WinAPI_LoadLibraryEx WinAPI_LoadMedia WinAPI_LoadResource WinAPI_LoadShell32Icon WinAPI_LoadString WinAPI_LoadStringEx WinAPI_LoByte WinAPI_LocalFree WinAPI_LockDevice WinAPI_LockFile WinAPI_LockResource WinAPI_LockWindowUpdate WinAPI_LockWorkStation WinAPI_LoDWord WinAPI_LongMid WinAPI_LookupIconIdFromDirectoryEx WinAPI_LoWord WinAPI_LPtoDP WinAPI_MAKELANGID WinAPI_MAKELCID WinAPI_MakeLong WinAPI_MakeQWord WinAPI_MakeWord WinAPI_MapViewOfFile WinAPI_MapVirtualKey WinAPI_MaskBlt WinAPI_MessageBeep WinAPI_MessageBoxCheck WinAPI_MessageBoxIndirect WinAPI_MirrorIcon WinAPI_ModifyWorldTransform WinAPI_MonitorFromPoint WinAPI_MonitorFromRect WinAPI_MonitorFromWindow WinAPI_Mouse_Event WinAPI_MoveFileEx WinAPI_MoveMemory WinAPI_MoveTo WinAPI_MoveToEx WinAPI_MoveWindow WinAPI_MsgBox WinAPI_MulDiv WinAPI_MultiByteToWideChar WinAPI_MultiByteToWideCharEx WinAPI_NtStatusToDosError WinAPI_OemToChar WinAPI_OffsetClipRgn WinAPI_OffsetPoints WinAPI_OffsetRect WinAPI_OffsetRgn WinAPI_OffsetWindowOrg WinAPI_OpenDesktop WinAPI_OpenFileById WinAPI_OpenFileDlg WinAPI_OpenFileMapping WinAPI_OpenIcon WinAPI_OpenInputDesktop WinAPI_OpenJobObject WinAPI_OpenMutex WinAPI_OpenProcess WinAPI_OpenProcessToken WinAPI_OpenSemaphore WinAPI_OpenThemeData WinAPI_OpenWindowStation WinAPI_PageSetupDlg WinAPI_PaintDesktop WinAPI_PaintRgn WinAPI_ParseURL WinAPI_ParseUserName WinAPI_PatBlt WinAPI_PathAddBackslash WinAPI_PathAddExtension WinAPI_PathAppend WinAPI_PathBuildRoot WinAPI_PathCanonicalize WinAPI_PathCommonPrefix WinAPI_PathCompactPath WinAPI_PathCompactPathEx WinAPI_PathCreateFromUrl WinAPI_PathFindExtension WinAPI_PathFindFileName WinAPI_PathFindNextComponent WinAPI_PathFindOnPath WinAPI_PathGetArgs WinAPI_PathGetCharType WinAPI_PathGetDriveNumber WinAPI_PathIsContentType WinAPI_PathIsDirectory WinAPI_PathIsDirectoryEmpty WinAPI_PathIsExe WinAPI_PathIsFileSpec WinAPI_PathIsLFNFileSpec WinAPI_PathIsRelative WinAPI_PathIsRoot WinAPI_PathIsSameRoot WinAPI_PathIsSystemFolder WinAPI_PathIsUNC WinAPI_PathIsUNCServer WinAPI_PathIsUNCServerShare WinAPI_PathMakeSystemFolder WinAPI_PathMatchSpec WinAPI_PathParseIconLocation WinAPI_PathRelativePathTo WinAPI_PathRemoveArgs WinAPI_PathRemoveBackslash WinAPI_PathRemoveExtension WinAPI_PathRemoveFileSpec WinAPI_PathRenameExtension WinAPI_PathSearchAndQualify WinAPI_PathSkipRoot WinAPI_PathStripPath WinAPI_PathStripToRoot WinAPI_PathToRegion WinAPI_PathUndecorate WinAPI_PathUnExpandEnvStrings WinAPI_PathUnmakeSystemFolder WinAPI_PathUnquoteSpaces WinAPI_PathYetAnotherMakeUniqueName WinAPI_PickIconDlg WinAPI_PlayEnhMetaFile WinAPI_PlaySound WinAPI_PlgBlt WinAPI_PointFromRect WinAPI_PolyBezier WinAPI_PolyBezierTo WinAPI_PolyDraw WinAPI_Polygon WinAPI_PostMessage WinAPI_PrimaryLangId WinAPI_PrintDlg WinAPI_PrintDlgEx WinAPI_PrintWindow WinAPI_ProgIDFromCLSID WinAPI_PtInRect WinAPI_PtInRectEx WinAPI_PtInRegion WinAPI_PtVisible WinAPI_QueryDosDevice WinAPI_QueryInformationJobObject WinAPI_QueryPerformanceCounter WinAPI_QueryPerformanceFrequency WinAPI_RadialGradientFill WinAPI_ReadDirectoryChanges WinAPI_ReadFile WinAPI_ReadProcessMemory WinAPI_Rectangle WinAPI_RectInRegion WinAPI_RectIsEmpty WinAPI_RectVisible WinAPI_RedrawWindow WinAPI_RegCloseKey WinAPI_RegConnectRegistry WinAPI_RegCopyTree WinAPI_RegCopyTreeEx WinAPI_RegCreateKey WinAPI_RegDeleteEmptyKey WinAPI_RegDeleteKey WinAPI_RegDeleteKeyValue WinAPI_RegDeleteTree WinAPI_RegDeleteTreeEx WinAPI_RegDeleteValue WinAPI_RegDisableReflectionKey WinAPI_RegDuplicateHKey WinAPI_RegEnableReflectionKey WinAPI_RegEnumKey WinAPI_RegEnumValue WinAPI_RegFlushKey WinAPI_RegisterApplicationRestart WinAPI_RegisterClass WinAPI_RegisterClassEx WinAPI_RegisterHotKey WinAPI_RegisterPowerSettingNotification WinAPI_RegisterRawInputDevices WinAPI_RegisterShellHookWindow WinAPI_RegisterWindowMessage WinAPI_RegLoadMUIString WinAPI_RegNotifyChangeKeyValue WinAPI_RegOpenKey WinAPI_RegQueryInfoKey WinAPI_RegQueryLastWriteTime WinAPI_RegQueryMultipleValues WinAPI_RegQueryReflectionKey WinAPI_RegQueryValue WinAPI_RegRestoreKey WinAPI_RegSaveKey WinAPI_RegSetValue WinAPI_ReleaseCapture WinAPI_ReleaseDC WinAPI_ReleaseMutex WinAPI_ReleaseSemaphore WinAPI_ReleaseStream WinAPI_RemoveClipboardFormatListener WinAPI_RemoveDirectory WinAPI_RemoveFontMemResourceEx WinAPI_RemoveFontResourceEx WinAPI_RemoveWindowSubclass WinAPI_ReOpenFile WinAPI_ReplaceFile WinAPI_ReplaceTextDlg WinAPI_ResetEvent WinAPI_RestartDlg WinAPI_RestoreDC WinAPI_RGB WinAPI_RotatePoints WinAPI_RoundRect WinAPI_SaveDC WinAPI_SaveFileDlg WinAPI_SaveHBITMAPToFile WinAPI_SaveHICONToFile WinAPI_ScaleWindowExt WinAPI_ScreenToClient WinAPI_SearchPath WinAPI_SelectClipPath WinAPI_SelectClipRgn WinAPI_SelectObject WinAPI_SendMessageTimeout WinAPI_SetActiveWindow WinAPI_SetArcDirection WinAPI_SetBitmapBits WinAPI_SetBitmapDimensionEx WinAPI_SetBkColor WinAPI_SetBkMode WinAPI_SetBoundsRect WinAPI_SetBrushOrg WinAPI_SetCapture WinAPI_SetCaretBlinkTime WinAPI_SetCaretPos WinAPI_SetClassLongEx WinAPI_SetColorAdjustment WinAPI_SetCompression WinAPI_SetCurrentDirectory WinAPI_SetCurrentProcessExplicitAppUserModelID WinAPI_SetCursor WinAPI_SetDCBrushColor WinAPI_SetDCPenColor WinAPI_SetDefaultPrinter WinAPI_SetDeviceGammaRamp WinAPI_SetDIBColorTable WinAPI_SetDIBits WinAPI_SetDIBitsToDevice
WinAPI_SetDllDirectory WinAPI_SetEndOfFile WinAPI_SetEnhMetaFileBits WinAPI_SetErrorMode WinAPI_SetEvent WinAPI_SetFileAttributes WinAPI_SetFileInformationByHandleEx WinAPI_SetFilePointer WinAPI_SetFilePointerEx WinAPI_SetFileShortName WinAPI_SetFileValidData WinAPI_SetFocus WinAPI_SetFont WinAPI_SetForegroundWindow WinAPI_SetFRBuffer WinAPI_SetGraphicsMode WinAPI_SetHandleInformation WinAPI_SetInformationJobObject WinAPI_SetKeyboardLayout WinAPI_SetKeyboardState WinAPI_SetLastError WinAPI_SetLayeredWindowAttributes WinAPI_SetLocaleInfo WinAPI_SetMapMode WinAPI_SetMessageExtraInfo WinAPI_SetParent WinAPI_SetPixel WinAPI_SetPolyFillMode WinAPI_SetPriorityClass WinAPI_SetProcessAffinityMask WinAPI_SetProcessShutdownParameters WinAPI_SetProcessWindowStation WinAPI_SetRectRgn WinAPI_SetROP2 WinAPI_SetSearchPathMode WinAPI_SetStretchBltMode WinAPI_SetSysColors WinAPI_SetSystemCursor WinAPI_SetTextAlign WinAPI_SetTextCharacterExtra WinAPI_SetTextColor WinAPI_SetTextJustification WinAPI_SetThemeAppProperties WinAPI_SetThreadDesktop WinAPI_SetThreadErrorMode WinAPI_SetThreadExecutionState WinAPI_SetThreadLocale WinAPI_SetThreadUILanguage WinAPI_SetTimer WinAPI_SetUDFColorMode WinAPI_SetUserGeoID WinAPI_SetUserObjectInformation WinAPI_SetVolumeMountPoint WinAPI_SetWindowDisplayAffinity WinAPI_SetWindowExt WinAPI_SetWindowLong WinAPI_SetWindowOrg WinAPI_SetWindowPlacement WinAPI_SetWindowPos WinAPI_SetWindowRgn WinAPI_SetWindowsHookEx WinAPI_SetWindowSubclass WinAPI_SetWindowText WinAPI_SetWindowTheme WinAPI_SetWinEventHook WinAPI_SetWorldTransform WinAPI_SfcIsFileProtected WinAPI_SfcIsKeyProtected WinAPI_ShellAboutDlg WinAPI_ShellAddToRecentDocs WinAPI_ShellChangeNotify WinAPI_ShellChangeNotifyDeregister WinAPI_ShellChangeNotifyRegister WinAPI_ShellCreateDirectory WinAPI_ShellEmptyRecycleBin WinAPI_ShellExecute WinAPI_ShellExecuteEx WinAPI_ShellExtractAssociatedIcon WinAPI_ShellExtractIcon WinAPI_ShellFileOperation WinAPI_ShellFlushSFCache WinAPI_ShellGetFileInfo WinAPI_ShellGetIconOverlayIndex WinAPI_ShellGetImageList WinAPI_ShellGetKnownFolderIDList WinAPI_ShellGetKnownFolderPath WinAPI_ShellGetLocalizedName WinAPI_ShellGetPathFromIDList WinAPI_ShellGetSetFolderCustomSettings WinAPI_ShellGetSettings WinAPI_ShellGetSpecialFolderLocation WinAPI_ShellGetSpecialFolderPath WinAPI_ShellGetStockIconInfo WinAPI_ShellILCreateFromPath WinAPI_ShellNotifyIcon WinAPI_ShellNotifyIconGetRect WinAPI_ShellObjectProperties WinAPI_ShellOpenFolderAndSelectItems WinAPI_ShellOpenWithDlg WinAPI_ShellQueryRecycleBin WinAPI_ShellQueryUserNotificationState WinAPI_ShellRemoveLocalizedName WinAPI_ShellRestricted WinAPI_ShellSetKnownFolderPath WinAPI_ShellSetLocalizedName WinAPI_ShellSetSettings WinAPI_ShellStartNetConnectionDlg WinAPI_ShellUpdateImage WinAPI_ShellUserAuthenticationDlg WinAPI_ShellUserAuthenticationDlgEx WinAPI_ShortToWord WinAPI_ShowCaret WinAPI_ShowCursor WinAPI_ShowError WinAPI_ShowLastError WinAPI_ShowMsg WinAPI_ShowOwnedPopups WinAPI_ShowWindow WinAPI_ShutdownBlockReasonCreate WinAPI_ShutdownBlockReasonDestroy WinAPI_ShutdownBlockReasonQuery WinAPI_SizeOfResource WinAPI_StretchBlt WinAPI_StretchDIBits WinAPI_StrFormatByteSize WinAPI_StrFormatByteSizeEx WinAPI_StrFormatKBSize WinAPI_StrFromTimeInterval WinAPI_StringFromGUID WinAPI_StringLenA WinAPI_StringLenW WinAPI_StrLen WinAPI_StrokeAndFillPath WinAPI_StrokePath WinAPI_StructToArray WinAPI_SubLangId WinAPI_SubtractRect WinAPI_SwapDWord WinAPI_SwapQWord WinAPI_SwapWord WinAPI_SwitchColor WinAPI_SwitchDesktop WinAPI_SwitchToThisWindow WinAPI_SystemParametersInfo WinAPI_TabbedTextOut WinAPI_TerminateJobObject WinAPI_TerminateProcess WinAPI_TextOut WinAPI_TileWindows WinAPI_TrackMouseEvent WinAPI_TransparentBlt WinAPI_TwipsPerPixelX WinAPI_TwipsPerPixelY WinAPI_UnhookWindowsHookEx WinAPI_UnhookWinEvent WinAPI_UnionRect WinAPI_UnionStruct WinAPI_UniqueHardwareID WinAPI_UnloadKeyboardLayout WinAPI_UnlockFile WinAPI_UnmapViewOfFile WinAPI_UnregisterApplicationRestart WinAPI_UnregisterClass WinAPI_UnregisterHotKey WinAPI_UnregisterPowerSettingNotification WinAPI_UpdateLayeredWindow WinAPI_UpdateLayeredWindowEx WinAPI_UpdateLayeredWindowIndirect WinAPI_UpdateResource WinAPI_UpdateWindow WinAPI_UrlApplyScheme WinAPI_UrlCanonicalize WinAPI_UrlCombine WinAPI_UrlCompare WinAPI_UrlCreateFromPath WinAPI_UrlFixup WinAPI_UrlGetPart WinAPI_UrlHash WinAPI_UrlIs WinAPI_UserHandleGrantAccess WinAPI_ValidateRect WinAPI_ValidateRgn WinAPI_VerQueryRoot WinAPI_VerQueryValue WinAPI_VerQueryValueEx WinAPI_WaitForInputIdle WinAPI_WaitForMultipleObjects WinAPI_WaitForSingleObject WinAPI_WideCharToMultiByte WinAPI_WidenPath WinAPI_WindowFromDC WinAPI_WindowFromPoint WinAPI_WordToShort WinAPI_Wow64EnableWow64FsRedirection WinAPI_WriteConsole WinAPI_WriteFile WinAPI_WriteProcessMemory WinAPI_ZeroMemory WinNet_AddConnection WinNet_AddConnection2 WinNet_AddConnection3 WinNet_CancelConnection WinNet_CancelConnection2 WinNet_CloseEnum WinNet_ConnectionDialog WinNet_ConnectionDialog1 WinNet_DisconnectDialog WinNet_DisconnectDialog1 WinNet_EnumResource WinNet_GetConnection WinNet_GetConnectionPerformance WinNet_GetLastError WinNet_GetNetworkInformation WinNet_GetProviderName WinNet_GetResourceInformation WinNet_GetResourceParent WinNet_GetUniversalName WinNet_GetUser WinNet_OpenEnum WinNet_RestoreConnection WinNet_UseConnection Word_Create Word_DocAdd Word_DocAttach Word_DocClose Word_DocExport Word_DocFind Word_DocFindReplace Word_DocGet Word_DocLinkAdd Word_DocLinkGet Word_DocOpen Word_DocPictureAdd Word_DocPrint Word_DocRangeSet Word_DocSave Word_DocSaveAs Word_DocTableRead Word_DocTableWrite Word_Quit",I={
v:[e.C(";","$",{r:0}),e.C("#cs","#ce"),e.C("#comments-start","#comments-end")]},n={b:"\\$[A-z0-9_]+"},l={cN:"string",v:[{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]},o={v:[e.BNM,e.CNM]},a={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"include include-once NoTrayIcon OnAutoItStartRegister RequireAdmin pragma Au3Stripper_Ignore_Funcs Au3Stripper_Ignore_Variables Au3Stripper_Off Au3Stripper_On Au3Stripper_Parameters AutoIt3Wrapper_Add_Constants AutoIt3Wrapper_Au3Check_Parameters AutoIt3Wrapper_Au3Check_Stop_OnWarning AutoIt3Wrapper_Aut2Exe AutoIt3Wrapper_AutoIt3 AutoIt3Wrapper_AutoIt3Dir AutoIt3Wrapper_Change2CUI AutoIt3Wrapper_Compile_Both AutoIt3Wrapper_Compression AutoIt3Wrapper_EndIf AutoIt3Wrapper_Icon AutoIt3Wrapper_If_Compile AutoIt3Wrapper_If_Run AutoIt3Wrapper_Jump_To_First_Error AutoIt3Wrapper_OutFile AutoIt3Wrapper_OutFile_Type AutoIt3Wrapper_OutFile_X64 AutoIt3Wrapper_PlugIn_Funcs AutoIt3Wrapper_Res_Comment Autoit3Wrapper_Res_Compatibility AutoIt3Wrapper_Res_Description AutoIt3Wrapper_Res_Field AutoIt3Wrapper_Res_File_Add AutoIt3Wrapper_Res_FileVersion AutoIt3Wrapper_Res_FileVersion_AutoIncrement AutoIt3Wrapper_Res_Icon_Add AutoIt3Wrapper_Res_Language AutoIt3Wrapper_Res_LegalCopyright AutoIt3Wrapper_Res_ProductVersion AutoIt3Wrapper_Res_requestedExecutionLevel AutoIt3Wrapper_Res_SaveSource AutoIt3Wrapper_Run_After AutoIt3Wrapper_Run_Au3Check AutoIt3Wrapper_Run_Au3Stripper AutoIt3Wrapper_Run_Before AutoIt3Wrapper_Run_Debug_Mode AutoIt3Wrapper_Run_SciTE_Minimized AutoIt3Wrapper_Run_SciTE_OutputPane_Minimized AutoIt3Wrapper_Run_Tidy AutoIt3Wrapper_ShowProgress AutoIt3Wrapper_Testing AutoIt3Wrapper_Tidy_Stop_OnError AutoIt3Wrapper_UPX_Parameters AutoIt3Wrapper_UseUPX AutoIt3Wrapper_UseX64 AutoIt3Wrapper_Version AutoIt3Wrapper_Versioning AutoIt3Wrapper_Versioning_Parameters Tidy_Off Tidy_On Tidy_Parameters EndRegion Region"},c:[{b:/\\\n/,r:0},{bK:"include",k:{"meta-keyword":"include"},e:"$",c:[l,{cN:"meta-string",v:[{b:"<",e:">"},{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]}]},l,I]},_={cN:"symbol",b:"@[A-z0-9_]+"},G={cN:"function",bK:"Func",e:"$",i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:[n,l,o]}]};return{cI:!0,i:/\/*/,k:{keyword:t,built_in:i,literal:r},c:[I,n,l,o,a,_,G]}});hljs.registerLanguage("r",function(e){var r="([a-zA-Z]|\\.[a-zA-Z.])[a-zA-Z0-9._]*";return{c:[e.HCM,{b:r,l:r,k:{keyword:"function if in break next repeat else for return switch while try tryCatch stop warning require library attach detach source setMethod setGeneric setGroupGeneric setClass ...",literal:"NULL NA TRUE FALSE T F Inf NaN NA_integer_|10 NA_real_|10 NA_character_|10 NA_complex_|10"},r:0},{cN:"number",b:"0[xX][0-9a-fA-F]+[Li]?\\b",r:0},{cN:"number",b:"\\d+(?:[eE][+\\-]?\\d*)?L\\b",r:0},{cN:"number",b:"\\d+\\.(?!\\d)(?:i\\b)?",r:0},{cN:"number",b:"\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{b:"`",e:"`",r:0},{cN:"string",c:[e.BE],v:[{b:'"',e:'"'},{b:"'",e:"'"}]}]}});

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.eot

OEBPS/images/4703.png
New Server

Add and Remove

Modify the resources that are configured on the server

Move resources to the right to configure them on the server

Available: Configured:

Add >

< Remove

Add All >>

<< Remove ALl

IR

@ H <Back \H Next > Cancel || Finish

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.eot

OEBPS/images/4711.png
Run On Server
Add and Remove

Modify the resources that are configured on the server

Move resources to the right to configure them on the server

Available: Configured:

% jposs-helloworld
Add >

< Remove

Add All >>

<< Remove ALl

RN

Finish

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.woff2

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.ttf

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.eot

OEBPS/images/1605.png
Search Hibernate Search

Shop All Departments. Computers & Internet

Advanced Search | Browse Subjects | NewRelcases | Bestsellors

Department Books > Computers & Internet > "Hibernate Search™”
< Any Department
Showing 1 - 12 of 15 Results
<Books
Computers & Internet -
Programming : LOOKINSIDEL - Hibernate Search in Action |
Computer Science (4 FoledeAo (3 customer reviews)
Databases (z Formats
Software (2 Paperback
Web Development 2 Ordar i the et hours o get tby
Monday, Apr 18 45

Networking (:
Home Computing

Only ot instock - order soon.

Eligible for FREE Super Saver Shipping.

Format Excerpt - Page 1: breaking the sus|
Paperback Surprise me! See a random page in th
Author
Any Author 2 Spring Persistence with Hib
Joe Vitale (Nov 2, 2010)

Shipping Option (whats tisr) FoAAATY (5 customer rviens)

Any Shipping Option Formats.
Free Super Saver Shipping Paperback
Order in the next 19 hours Lo gettby 44+
Avg. Customer Review Manday, Apr 18
Any Avg. Customer Re Kindle Edition

Auto-delivered wirelessly
g Other Formats: Paperback
‘Some formats eligible for FREE Super S

Excerpt - Page 11: "... In Chapter 10,
resolving these issues. Hibernate-Sear
Surprise me! See a random page in th

Lucene in Action, Second Ed
Hatcher and Otis Gospodnetic |

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.eot

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/14.png

OEBPS/Common_Content/images/1.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.woff2

OEBPS/Common_Content/images/25.png

OEBPS/images/128.png
Preferences

General
Ant User Settings:
Data 0
Forge :

FreeMarker Editor Update Settings
Help

HOL editor
jate

13
13
14
b

Local Repository (From merged user and global setting

Java
Java EE
Java Persistence
Javascript
JBoss Tools
~ Maven
Archetypes
Discovery

Installations
Templates
User Interface

WTP integration
b Plug-in Developme (<

Restore Defaults. Apply

OEBPS/images/6584.png
New EAR Application Project

EAR Application Project

Create a EAR application.

-

fhome/usemarme/workspace
Project location

¥ Use default location

Location: [/home/usemame/workspa(e

Target runtime

| JBoss EAP 6.1+ Runtime

EAR version

(60

Configuration

| Default Configuration for JBoss EAP 6.1+ Runtime V[Modsy.. |

A good starting point for working with JBoss EAP 6.1+ Runtime runtime. Additional
facets can later be installed to add new functionality to the project.

Working sets

) Add project to working sets

Warking sets: v] [Select...

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.woff2

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.woff

