
Red Hat Customer Content
Services

Red Hat JBoss Data Virtualization
6.3
Development Guide Volume 6:
Metadata Repository Reference
Guide

This guide is for developers wanting to develop for the Metadata
Repository.

Red Hat JBoss Data Virtualization 6.3 Development Guide Volume 6:
Metadata Repository Reference Guide

This guide is for developers wanting to develop for the Metadata
Repository.

Red Hat Customer Content Services

Legal Notice

Copyright © 2016 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This document provides information on concepts and tasks relating to interfacing to Red Hat JBoss
Data Virtualization from within client applications.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Chapter 1. Read Me
1.1. Back Up Your Data
1.2. Variable Name: EAP_HOME
1.3. Variable Name: MODE
1.4. Red Hat Documentation Site
1.5. Target Audience

Chapter 2. In-Memory Connector
2.1. The In-Memory Connector
2.2. In-Memory Connector Properties
2.3. Configuring an In-Memory Connector

Chapter 3. File System Connector
3.1. The File System Connector
3.2. File System Connector Properties
3.3. Configuring a File System Connector

Chapter 4. JPA Connector
4.1. The JPA Connector
4.2. JPA Connector Properties
4.3. Configuring a JPA Connector
4.4. Simple Model

Chapter 5. Disk Connector
5.1. The Disk Connector
5.2. Disk Connector Properties
5.3. Configuring a Disk Connector

Chapter 6. Compact Node Definition Sequencer
6.1. The Compact Node Definition Sequencer
6.2. CND Sequencer Example
6.3. Configuring a CND Sequencer

Chapter 7. XML Document Sequencer
7.1. The XML Document Sequencer
7.2. XML Document Sequencer Properties
7.3. XML Document Sequencer Example
7.4. Configuring an XML Document Sequencer

Chapter 8. ZIP File Sequencer
8.1. The ZIP File Sequencer
8.2. ZIP File Sequencer Example
8.3. ZIP File Sequencer Node Types
8.4. Configuring a ZIP File Sequencer

Chapter 9. DDL File Sequencer
9.1. The DDL File Sequencer
9.2. DDL File Sequencer Properties
9.3. DDL File Sequencer Example
9.4. Configuring a DDL File Sequencer

Chapter 10. Text Sequencers
10.1. Text Sequencers
10.2. Abstract Text Sequencer
10.3. Abstract Text Sequencer Properties

6
6
6
6
6
6

7
7
7
7

9
9
9
9

12
12
12
12
13

15
15
15
15

17
17
17
18

19
19
19
19
21

22
22
22
22
22

24
24
24
25
26

28
28
28
28

Table of Contents

1

. .

. .

. .

. .

. .

. .

10.3. Abstract Text Sequencer Properties
10.4. Delimited Text Sequencer
10.5. Delimited Text Sequencer Properties
10.6. Configuring a Delimited Text Sequencer
10.7. Fixed Width Text Sequencer
10.8. Fixed Width Text Sequencer Properties
10.9. Configuring a Fixed Width Text Sequencer

Chapter 11. Red Hat JBoss Data Virtualization Relational Model Sequencer
11.1. Relational Model Sequencer
11.2. Relational Model Sequencer Properties
11.3. Relational Model Sequencer UUIDs
11.4. Relational Model Sequencer Node Types
11.5. Compact Node Definitions for the xmi Namespace
11.6. Compact Node Definitions for the mmcore Namespace
11.7. Compact Node Definitions for the relational Namespace
11.8. Compact Node Definitions for the jdbcs Namespace
11.9. Compact Node Definitions for the transform Namespace
11.10. Default Values
11.11. Annotations
11.12. Tags
11.13. Transformation
11.14. Relational Model Sequencer Example
11.15. Configuring a Red Hat JBoss Data Virtualization Relational Model Sequencer

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer
12.1. VDB Sequencer
12.2. VDB Sequencer UUIDs and References
12.3. VDB Sequencer Node Types
12.4. Content Node Definitions for the vdb Namespace
12.5. Red Hat JBoss Data Virtualization VDB Sequencer Example
12.6. Configuring a Red Hat JBoss Data Virtualization VDB Sequencer

Chapter 13. Red Hat JBoss Data Virtualization Text Extractor
13.1. Text Extractor
13.2. Configuring Your Text Extractor

Chapter 14. Custom Text Extractors
14.1. Custom Extractors

Chapter 15. Web Console
15.1. Web Console
15.2. The Web Console and ModeShape
15.3. Web Console: ModeShape Dashboard
15.4. ModeShape Dashboard: Control
15.5. Web Console: Repositories Dashboard
15.6. Repositories Dashboard: Metrics
15.7. Web Console: Sequencing Service Dashboard
15.8. Sequencing Service Dashboard: Metrics
15.9. Web Console: Sequencers Dashboard
15.10. Web Console: Connectors Dashboard
15.11. Connectors Dashboard: Metrics
15.12. Connectors Dashboard: Control

Chapter 16. Modeshape Core Concepts
16.1. Modeshape is Deprecated

28
28
28
29
29
29
29

31
31
31
31
32
33
33
34
38
38
39
39
39
40
40
45

47
47
47
47
47
48
64

66
66
66

67
67

68
68
68
68
68
68
69
69
69
69
70
70
70

71
71

Development Guide Volume 6: Metadata Repository Reference Guide

2

16.1. Modeshape is Deprecated
16.2. Core Modules
16.3. Other Essential Modules
16.4. Miscellaneous Optional Modules
16.5. Modules for Use with Web Applications
16.6. Modules for Deploying Modeshape in JBoss
16.7. Utility Modules
16.8. Dependency Injection
16.9. Execution Context
16.10. Execution Context Class
16.11. Create an Execution Context
16.12. Security
16.13. JAAS Security
16.14. Configuring Users
16.15. Configuring Roles
16.16. Web Application Security
16.17. Namespace Registry
16.18. Classloaders
16.19. Text Extractors
16.20. Property Factory and Value Factory
16.21. Graph Model
16.22. Names
16.23. Name Interface
16.24. Name Factories
16.25. Paths
16.26. Path Interface
16.27. Path Segment Interface
16.28. Properties
16.29. Property Interface
16.30. Property Factory
16.31. Property Values
16.32. Value Factories
16.33. Value Factory Interface
16.34. Subinterfaces of a Value Factory
16.35. Name Value Factory Interface
16.36. DateTimeFactory Interface
16.37. PathFactory Interface
16.38. BinaryFactory Interface
16.39. Readable Interface
16.40. Text Encoder Interface
16.41. Locations
16.42. Graph API
16.43. Using Workspaces
16.44. Working with Nodes
16.45. Requests
16.46. Read Requests
16.47. Change Requests
16.48. Workspace Read Requests
16.49. Workspace Change Requests
16.50. Search Requests
16.51. Request Processors
16.52. Observation Framework
16.53. Observable Interface

71
71
71
72
73
73
74
74
74
75
76
76
77
77
78
78
79
81
82
84
84
85
85
85
86
86
88
88
89
90
90
90
91
93
93
93
94
95
96
97
98
99
99

100
102
102
104
105
106
106
107
107
107

Table of Contents

3

. .

16.54. Observers
16.55. Change Class
16.56. Connectors
16.57. Connector Types
16.58. Connector Terminology
16.59. Example Use of Connector Components
16.60. Provided Connectors
16.61. Create a Custom Connector
16.62. Implementing a Repository Source
16.63. Implementing a Repository Connection
16.64. RepositoryConnection Interface
16.65. Using a Request Processor
16.66. Broadcasting Events
16.67. Cache Policy
16.68. Leveraging JNDI
16.69. Capabilities
16.70. Security and Authentication
16.71. ModeShape Sequencing
16.72. Sequencers
16.73. Stream Sequencers
16.74. Path Expressions
16.75. Simple Input Path Examples
16.76. Advanced Input Path Examples
16.77. Input Paths with Source and Workspace Names
16.78. Creating Custom Sequencers

Chapter 17. Using ModeShape
17.1. Using ModeShape Within Your Application
17.2. ModeShape Configuration Options
17.3. Loading Your Configuration from a File
17.4. Loading Your Configuration from a Repository
17.5. JCR Repository Options
17.6. Repository System Content
17.7. Example: Defining a Source for System Content
17.8. Query Index Directory
17.9. Security Index Modules
17.10. Available Security Providers
17.11. Custom Providers
17.12. Example: Implement a Custom Provider
17.13. Clustering with ModeShape
17.14. Enabling Clustering in ModeShape
17.15. JGroups Configuration
17.16. Using ModeShape in Web Applications
17.17. Configuring a Predefined Node Hierarchy
17.18. The ModeShape REST Server
17.19. Supported Resources and Methods
17.20. Return a List of Accessible Repositories
17.21. Return a List of Workspaces for a Repository
17.22. Access a Repository Item
17.23. Modify Repository Content
17.24. Query the Content Repository
17.25. Query Content Types
17.26. Binary Properties
17.27. ModeShape REST Client API

108
108
108
109
109
110
110
110
111
111
111
113
114
114
115
115
116
116
116
116
118
118
119
119
120

121
121
121
121
123
124
131
132
134
134
136
137
137
140
141
142
143
144
144
144
145
145
146
146
149
149
150
150

Development Guide Volume 6: Metadata Repository Reference Guide

4

. .

17.27. ModeShape REST Client API
17.28. Publish a File Using the REST Client API
17.29. Repository Providers

Appendix A. Revision History

150
151
151

153

Table of Contents

5

Chapter 1. Read Me

1.1. Back Up Your Data

Warning

Red Hat recommends that you back up your system settings and data before undertaking any of the
configuration tasks mentioned in this book.

1.2. Variable Name: EAP_HOME

EAP_HOME refers to the root directory of the Red Hat JBoss Enterprise Application Platform installation on
which JBoss Data Virtualization has been deployed.

1.3. Variable Name: MODE

MODE will either be standalone or domain depending on whether JBoss Data Virtualization is running in
standalone or domain mode. Substitute one of these whenever you see MODE in a file path in this
documentation. (You need to set this variable yourself, based on where the product has been installed in your
directory structure.)

1.4. Red Hat Documentation Site

Red Hat's official documentation site is available at https://access.redhat.com/site/documentation/. There you
will find the latest version of every book, including this one.

1.5. Target Audience

This reference guide is for application developers that want a better understanding of how ModeShape
works, how to take advantage of its advanced features, and how to extend the functionality. This document is
also very valuable for community developers because it covers the design and implementation of most of the
components that make up ModeShape.

For a higher-level introduction to ModeShape, see the ModeShape Getting Started Guide document.

Development Guide Volume 6: Metadata Repository Reference Guide

6

https://access.redhat.com/site/documentation/

Chapter 2. In-Memory Connector

2.1. The In-Memory Connector

The in-memory repository connector is a simple connector that creates a transient, in-memory repository.
This repository is used as a very simple in-memory cache or as a standalone transient repository. This
connector works well for a readable and writable repository source with small to moderate sized content that
need not be permanently saved.

2.2. In-Memory Connector Properties

The InMemoryRepositorySource class provides a number of JavaBean properties that control its
behavior. For more information about these properties, refer to
org.modeshape.graph.connector.inmemory.InMemoryRepositorySource in the Data Services
JavaDoc.

2.3. Configuring an In-Memory Connector

One way to configure the in-memory connector is to create JcrEngine instance with a repository source that
uses the InMemoryRepositorySource class. For example:

JcrConfiguration config = ...
config.repositorySource("IMR Store")
 .usingClass(InMemoryRepositorySource.class)
 .setDescription("The repository for our content")
 .setProperty("predefinedWorkspaceNames", new String[] { "staging",
"dev"})
 .setProperty("defaultWorkspaceName", workspaceName);

Another way to configure the in-memory connector is to create JcrConfiguration instance and load an
XML configuration file that contains a repository source that uses the InMemoryRepositorySource class.
For example a file named configRepository.xml can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:mode="http://www.modeshape.org/1.0"
xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <!--
 Define the sources for the content. These sources are directly
accessible using the
 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR
implementation works. You
 can think of these as being similar to JDBC DataSource objects, except
that they expose
 graph content via the Graph API instead of records via SQL or JDBC.
 -->
 <mode:sources jcr:primaryType="nt:unstructured">
 <!--
 The 'IMR Store' repository is an in-memory source with a single
default workspace (though
 others could be created, too).
 -->

Chapter 2. In-Memory Connector

7

 <mode:source jcr:name="IMR Store"

mode:classname="org.modeshape.graph.connector.inmemory.InMemoryRepositorySou
rce"
 mode:description="The repository for our content"
 mode:defaultWorkspaceName="default">

<mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>
 <mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>
 </mode:source>

 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->
</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new
JcrConfiguration().loadFrom("/configRepository.xml");

Development Guide Volume 6: Metadata Repository Reference Guide

8

Chapter 3. File System Connector

3.1. The File System Connector

This connector exposes an area of the local file system as a graph of "nt:file" and "nt:folder" nodes. The
connector can be configured so that the workspace name is either a path to the directory on the file system
that represents the root of that workspace or the name of subdirectory within a root directory (see the
workspaceRootPath property below). Each connector can define whether it allows new workspaces to be
created. If the directory for a workspace does not exist, this connector will attempt to create the directory (and
any missing parent directories).

By default, this connector is not capable of storing extra properties other than those defined on the nt:file,
nt:folder and nt:resource node types. This is because such properties cannot be represented natively
on the file system. When the connector is asked to store such properties, the default behavior is to log
warnings and then to ignore these extra properties. Obviously this is probably not sufficient for production
(unless only the standard properties are to be used). To explicitly turn on this behavior, set the
"extraPropertiesBehavior" to "log".

However, the connector can be configured differently. If the "extraPropertiesBehavior" is set to "ignore", then
these extra properties will be silently ignored and lost: none will be stored, none will be loaded, and no
warnings will be logged. If the "extraPropertiesBehavior" is set to "error", the connector will throw an
exception if any extra properties are used.

Perhaps the best setting for general use, however, is to set the "extraPropertiesBehavior" to "store". In this
mode, any extra properties are written to files on the file system that are adjacent to the actual file or folder.
For example, given a "nt:folder" node that represents the "folder1" directory, all extra properties will be stored
in a text file named "folder1.modeshape" in the same parent directory as the "folder1" directory. Similarly,
given a "nt:file" node that represents the "file1" file on the file system, all extra properties will be stored in a
text file named "file1.modeshape" located next to the "file1" file. Note that the "nt:resource" node for our
"nt:file" node also is stored in the same location, so we can't use the "file1.modeshape" file (it is already used
for the "nt:file" node), so the connector uses the "file1.content.modeshape" file instead.

Note

The "store" behavior may result in the creation of many "*.modeshape" files, and because of this the
"store" behavior is not the default.

3.2. File System Connector Properties

The FileSystemSource class provides a number of JavaBean properties that control its behavior. For
more information about these properties, refer to
org.modeshape.connector.filesystem.FileSystemSource in the Data Services JavaDoc.

3.3. Configuring a File System Connector

One way to configure the file system connector is to create JcrConfiguration instance with a repository
source that uses the FileSystemSource class. For example:

JcrConfiguration config = ...
config.repositorySource("FS Store")

Chapter 3. File System Connector

9

 .usingClass(FileSystemSource.class)
 .setDescription("The repository for our content")
 .setProperty("workspaceRootPath", "/home/content/someApp")
 .setProperty("defaultWorkspaceName", "prod")
 .setProperty("predefinedWorkspaceNames", new String[] { "staging",
"dev"})
 .setProperty("rootNodeUuid", UUID.fromString("fd129c12-81a8-42ed-aa4b-
820dba49e6f0")
 .setProperty("updatesAllowed", "true")
 .setProperty("creatingWorkspaceAllowed", "false");

Another way to configure the file system connector is to create JcrConfiguration instance and load an
XML configuration file that contains a repository source that uses the FileSystemSource class. For
example a file named configRepository.xml can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:mode="http://www.modeshape.org/1.0"
xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <!--
 Define the sources for the content. These sources are directly
accessible using the
 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR
implementation works. You can
 think of these as being similar to JDBC DataSource objects, except that
they expose graph
 content via the Graph API instead of records via SQL or JDBC.
 -->
 <mode:sources jcr:primaryType="nt:unstructured">
 <!--
 The 'FS Store' repository is a file system source with a three
predefined workspaces
 ("prod", "staging", and "dev").
 -->
 <mode:source jcr:name="FS Store"

mode:classname="org.modeshape.connector.filesystem.FileSystemSource"
 mode:description="The repository for our content"
 mode:workspaceRootPath="/home/content/someApp"
 mode:defaultWorkspaceName="prod"
 mode:creatingWorkspacesAllowed="false"
 mode:rootNodeUuid="fd129c12-81a8-42ed-aa4b-820dba49e6f0"
 mode:updatesAllowed="true" >

<mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>

<mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>
 <!--
 If desired, specify a cache policy that caches items in memory
for 5 minutes (300 s).
 This fragment can be left out if the connector should not cache
any content.
 -->
 <mode:cachePolicy jcr:name="nodeCachePolicy"

mode:classname="org.modeshape.graph.connector.base.cache.InMemoryNodeCache$P

Development Guide Volume 6: Metadata Repository Reference Guide

10

athCachePolicy"
 mode:timeToLive="300" />
 </mode:source>
 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->
</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new
JcrConfiguration().loadFrom("/configRepository.xml");

Chapter 3. File System Connector

11

Chapter 4. JPA Connector

4.1. The JPA Connector

This connector stores a graph of any structure or size in a relational database, using a JPA provider on top of
a JDBC driver. Currently this connector relies upon some Hibernate-specific capabilities. The schema of the
database is dictated by this connector and is optimized for storing a graph structure. (In other words, this
connector does not expose as a graph the data in an existing database with an arbitrary schema.)

4.2. JPA Connector Properties

The JpaSource class provides a number of JavaBean properties that control its behavior. For more
information about these properties, refer to org.modeshape.connector.store.jpa.JpaSource in the
JavaDoc.

4.3. Configuring a JPA Connector

One way to configure the JPA connector is to create JcrConfiguration instance with a repository source
that uses the JpaSource class. For example:

JcrConfiguration config = ...
config.repositorySource("JPA Store")
 .usingClass(JpaSource.class)
 .setDescription("The database store for our content")
 .setProperty("dataSourceJndiName", "java:/MyDataSource")
 .setProperty("defaultWorkspaceName", "My Default Workspace")
 .setProperty("autoGenerateSchema", "validate");

Of course, setting other more advanced properties would entail calling setProperty(...) for each. Since
almost all of the properties have acceptable default values, however, we don't need to set very many of them.

Another way to configure the JPA connector is to create JcrConfiguration instance and load an XML
configuration file that contains a repository source that uses the JpaSource class. For example a file named
configRepository.xml can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:mode="http://www.modeshape.org/1.0"
xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <!--
 Define the sources for the content. These sources are directly
accessible using the
 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR
implementation works. You
 can think of these as being similar to JDBC DataSource objects, except
that they expose
 graph content via the Graph API instead of records via SQL or JDBC.
 -->
 <mode:sources jcr:primaryType="nt:unstructured">
 <!--
 The 'JPA Store' repository is an JPA source with a single default
workspace (though

Development Guide Volume 6: Metadata Repository Reference Guide

12

 others could be created, too).
 -->
 <mode:source jcr:name="JPA Store"

mode:classname="org.modeshape.connector.store.jpa.JpaSource"
 mode:description="The database store for our content"
 mode:dataSourceJndiName="java:/MyDataSource"
 mode:defaultWorkspaceName="default"
 mode:autoGenerateSchema="validate"/>
 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->
</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new
JcrConfiguration().loadFrom("/configRepository.xml");

4.4. Simple Model

This database schema model stores node properties as opaque records in the same row as transparent
values like the node's namespace, local name, and same-name-sibling index. Large property values are
stored separately.

The set of tables used in this model includes:

Workspaces - the set of workspaces and their names.

Namespaces - the set of namespace URIs used in paths, property names, and property values.

Nodes - the nodes in the repository, where each node and its properties are represented by a single
record. This approach makes it possible to efficiently work with nodes containing large numbers of
children, where adding and removing child nodes is largely independent of the number of children. Since
the primary consumer of ModeShape graph information is the JCR layer, and the JCR layer always
retrieves the nodes' properties for retrieved nodes, the properties have been moved in-row with the
nodes. Properties are still store in an opaque, serialized (and optionally compressed) form.

Large values - property values larger than a certain size will be broken out into this table, where they are
tracked by their SHA-1 has and shared by all properties that have that same value. The values are stored
in a binary (and optionally compressed) form.

Subgraph - a working area for efficiently computing the space of a subgraph; see below

Options - the parameters for this store's configuration (common to all models)

This database model contains two tables that are used in an efficient mechanism to find all of the nodes in
the subgraph below a certain node. This process starts by creating a record for the subgraph query, and then
proceeds by executing a join to find all the children of the top-level node, and inserting them into the
database (in a working area associated with the subgraph query). Then, another join finds all the children of
those children and inserts them into the same working area. This continues until the maximum depth has

Chapter 4. JPA Connector

13

been reached, or until there are no more children (whichever comes first). All of the nodes in the subgraph
are then represented by records in the working area, and can be used to quickly and efficient work with the
subgraph nodes. When finished, the mechanism deletes the records in the working area associated with the
subgraph query.

This subgraph query mechanism is extremely efficient, performing one join/insert statement per level of the
subgraph, and is completely independent of the number of nodes in the subgraph. For example, consider a
subgraph of node A, where A has 10 children, and each child contains 10 children, and each grandchild
contains 10 children. This subgraph has a total of 1111 nodes (1 root + 10 children + 10*10 grandchildren +
10*10*10 great-grandchildren). Finding the nodes in this subgraph would normally require 1 query per node
(in other words, 1111 queries). But with this subgraph query mechanism, all of the nodes in the subgraph can
be found with 1 insert plus 4 additional join/inserts.

This mechanism has the added benefit that the set of nodes in the subgraph are kept in a working area in the
database, meaning they don't have to be pulled into memory.

In the Simple model, subgraph queries are used to efficiently process a number of different requests,
including ReadBranchRequest and DeleteBranchRequest. Processing each of these kinds of requests
requires knowledge of the subgraph, and in fact all but the ReadBranchRequest need to know the complete
subgraph.

Warning

Most DBMS systems have built-in sizes for LOB columns (although many allow DB admins to control
the size), and thus do not require any special consideration. However, Apache Derby and IBM DB2
require explicit sizes on LOB columns. Currently, the ModeShape database schema has two such
columns: the MODE_SIMPLE_NODE.DATA and MODE_LARGE_VALUES.DATA columns. The sizes of
these columns are sufficiently large (1MB and 1GB, respectively), but attempts to store larger values
than these sizes will fail.

Therefore, when using IBM DB2 and Apache Derby, determine the appropriate size of these columns
for your environment. For production systems, ModeShape recommends using the DDL generation
utility (provided with ModeShape, see above) to generate the DDL for your particular DBMS, and its
very easy to adjust that file to specify alternative sizes for the two columns. Alternatively, database
administrators can alter the two tables by increasing the size of these columns.

Other databases do not seem to be affected by this issue.

Development Guide Volume 6: Metadata Repository Reference Guide

14

Chapter 5. Disk Connector

5.1. The Disk Connector

This connector stores content in a ModeShape-specific file format on disk. Although this may seem similar in
concept to the File System Connector, this connector actually serves a very different purpose. While the File
System Connector is designed to expose existing files and folders on the disk and allows ModeShape users
to create content that can be read directly by other applications, the Disk Connector is designed for efficiency
and stores content in a serialized representation that is not readily accessible to other applications.
Conversely, the Disk Connector supports referenceable nodes and can efficiently access nodes by UUID,
unlike the File System Connector.

5.2. Disk Connector Properties

The DiskSource class provides a number of JavaBean properties that control its behavior. For more
information about these properties, refer to org.modeshape.connector.disk.DiskSource in the Red
Hat JBoss Data Virtualization JavaDoc.

5.3. Configuring a Disk Connector

One way to configure the file system connector is to create a JcrConfiguration instance with a repository
source that uses the DiskSource class. For example:

JcrConfiguration config = ...
config.repositorySource("Disk Store")
 .usingClass(DiskSource.class)
 .setDescription("The repository for our content")
 .setProperty("repositoryRootPath", "/home/content/someApp")
 .setProperty("defaultWorkspaceName", "prod")
 .setProperty("predefinedWorkspaceNames", new String[] { "staging",
"dev"})
 .setProperty("rootNodeUuid", UUID.fromString("fd129c12-81a8-42ed-aa4b-
820dba49e6f0")
 .setProperty("updatesAllowed", "true")
 .setProperty("creatingWorkspaceAllowed", "false");

Another way to configure the file system connector is to create a JcrConfiguration instance and load an
XML configuration file that contains a repository source that uses the DiskSource class. For example a file
named configRepository.xml can be created with these contents:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:mode="http://www.modeshape.org/1.0"
xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <!--
 Define the sources for the content. These sources are directly
accessible using the
 ModeShape-specific Graph API. In fact, this is how the ModeShape JCR
implementation works. You can
 think of these as being similar to JDBC DataSource objects, except that
they expose graph
 content via the Graph API instead of records via SQL or JDBC.

Chapter 5. Disk Connector

15

 -->
 <mode:sources jcr:primaryType="nt:unstructured">
 <!--
 The 'Disk Store' repository is a disk source with a three predefined
workspaces
 ("prod", "staging", and "dev").
 -->
 <mode:source jcr:name="Disk Store"
 mode:classname="org.modeshape.connector.disk.DiskSource"
 mode:description="The repository for our content"
 mode:repositoryRootPath="/home/content/someApp"
 mode:defaultWorkspaceName="prod"
 mode:creatingWorkspacesAllowed="false"
 mode:rootNodeUuid="fd129c12-81a8-42ed-aa4b-820dba49e6f0"
 mode:updatesAllowed="true" >

<mode:predefinedWorkspaceNames>staging</mode:predefinedWorkspaceNames>

<mode:predefinedWorkspaceNames>dev</mode:predefinedWorkspaceNames>
 <!--
 If desired, specify a cache policy that caches items in memory
for 5 minutes (300 s).
 This fragment can be left out if the connector should not cache
any content.
 -->
 <mode:cachePolicy jcr:name="nodeCachePolicy"

mode:classname="org.modeshape.graph.connector.base.cache.InMemoryNodeCache$M
apCachePolicy"
 mode:timeToLive="300" />
 </mode:source>
 </mode:sources>

 <!-- MIME type detectors and JCR repositories would be defined below -->
</configuration>

The configuration can then be loaded from Java like this:

JcrConfiguration config = new
JcrConfiguration().loadFrom("/configRepository.xml");

Development Guide Volume 6: Metadata Repository Reference Guide

16

Chapter 6. Compact Node Definition Sequencer

6.1. The Compact Node Definition Sequencer

The Compact Node Definition (CND) Sequencer processes JCR CND files to extract nodes and their
definitions, inserting them into the repository using JCR built-in types. The node structure generated by this
sequencer is equivalent to the node structure used in /jcr:system/jcr:nodeTypes.

6.2. CND Sequencer Example

This sequencer generates a graph structure that corresponds to what can be found in the
/jcr:system/jcr:nodeTypes subtree. As an example, the CND file below:

<mode = "http://www.modeshape.org/1.0">

// My CND type
[mode:example] mixin
- mode:name (string) multiple copy
+ mode:child (mode:example) = mode:example version

The resulting graph structure (listed in the JCR document view) contains the node type information from the
CND file above. Note that comments are not sequenced.

<mode:example jcr:primaryType="nt:nodeType"
 jcr:mixinTypes="mode:derived"
 mode:derivedAt="2011-05-13T13:12:03.925Z"
 mode:derivedFrom="/files/docForReferenceGuide.xml"
 jcr:nodeTypeName="mode:example"
 jcr:supertypes="nt:base"
 jcr:isAbstract="false"
 jcr:isMixin="true"
 jcr:isQueryable="true"
 jcr:hasOrderableChildNodes="false">
 <nt:propertyDefinition jcr:name="mode:name"
 jcr:autoCreated="false"
 jcr:mandatory="false"
 jcr:isFullTextSearchable="true"
 jcr:isQueryOrderable="true"
 jcr:onParentVersion="copy"
 jcr:protected="false"
 jcr:requiredType="STRING"
 jcr:availableQueryOperators="= > >= < <= <> LIKE"
 jcr:multiple="true" />
 <nt:childNodeDefinition jcr:name="mode:child"
 jcr:autoCreated="false"
 jcr:mandatory="false"
 jcr:onParentVersion="VERSION"
 jcr:protected="false"
 jcr:requiredPrimaryTypes="mode:example"
 jcr:defaultPrimaryType="mode:example"
 jcr:sameNameSiblings="false" />
</mode:example>

Chapter 6. Compact Node Definition Sequencer

17

6.3. Configuring a CND Sequencer

1. Include the relevant libraries

Include modeshape-sequencer-cnd-VERSION.jar in your application.

2. Choose one of the following for sequencing configuration

A. Define sequencing configuration based on standard example provided in SOA-
ROOT/eds/modeshape/resources/modeshape-config-standard.xml:

<mode:sequencer jcr:name="CND File Sequencer"
mode:classname="org.modeshape.sequencer.cnd.CndSequencer">
 <mode:description>
 Sequences CND files loaded under '/files', extracting the
contained node type definitions.
 </mode:description>
 <mode:pathExpression>
 eds-store:default:/files(//(*.cnd[*]))/jcr:content[@jcr:data] =>
eds-store:default:/sequenced/cnd/$1
 </mode:pathExpression>
</mode:sequencer>

B. Configure via org.modeshape.jcr.JcrConfiguration:

JcrConfiguration config = ...

config.sequencer("CND File Sequencer")
 .usingClass("org.modeshape.sequencer.cnd.CndSequencer")
 .loadedFromClasspath()
 .setDescription("Sequences CND files loaded under '/files',
extracting the contained node type definitions.")
 .sequencingFrom("/files(//(*.cnd[*]))/jcr:content[@jcr:data]")
 .andOutputtingTo("/sequenced/cnd/$1");

Note

Refer to SOA-ROOT/eds/modeshape/resources/modeshape-config-standard.xml
for more information.

Development Guide Volume 6: Metadata Repository Reference Guide

18

Chapter 7. XML Document Sequencer

7.1. The XML Document Sequencer

This sequencer stores the structure and data of an XML file in the repository. DTD, entity, comments, and
other content are maintained by the sequencer in the output structure.

7.2. XML Document Sequencer Properties

For information about configurable properties relating to the XML Document Sequencer, refer to the
org.modeshape.sequencer.xml.XmlSequencer class in the Red Hat JBoss Data Virtualization
JavaDoc.

7.3. XML Document Sequencer Example

For this XML document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN" "http://www.oasis-
open.org/docbook/xml/4.4/docbookx.dtd" [
<!ENTITY % RH-ENTITIES SYSTEM "Common_Config/rh-entities.ent">
<!ENTITY versionNumber "0.1">
<!ENTITY copyrightYear "2008">
<!ENTITY copyrightHolder "Red Hat Middleware, LLC.">]>
<?target content ?>
<?target2 other stuff ?>
<Cars xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <!-- This is a comment -->
 <Hybrid>
 <car jcr:name="Toyota Prius"/>
 </Hybrid>
 <Sports>
 </Sports>
</Cars>

The sequencer will generate this content (listed in document view) if the sequencer outputtingTo property
generates an output path ending in "myxml":

 xml jcr:primaryType=nt:unstructured
 <myxml jcr:primaryType="modexml:document"
 jcr:mixinTypes="mode:derived"
 mode:derivedAt="2011-05-13T13:12:03.925Z"
 mode:derivedFrom="/files/docForReferenceGuide.xml"
 modedtd:name="book"
 modedtd:publicId="-//OASIS//DTD DocBook XML V4.4//EN"
 modedtd:systemId="http://www.oasis-
open.org/docbook/xml/4.4/docbookx.dtd">
 <modedtd:entity jcr:primaryType="modedtd:entity"
 modedtd:name="%RH-ENTITIES"
 modedtd:systemId="Common_Config/rh-entities.ent" />
 <modedtd:entity[2] jcr:primaryType="modedtd:entity"
 modedtd:name="versionNumber"

Chapter 7. XML Document Sequencer

19

 modedtd:value="0.1" />
 <modedtd:entity[3] jcr:primaryType="modedtd:entity"
 modedtd:name="copyrightYear"
 modedtd:value="2008" />
 <modedtd:entity[4] jcr:primaryType="modedtd:entity"
 modedtd:name="copyrightHolder"
 modedtd:value="Red Hat Middleware, LLC." />
 <modexml:processingInstruction
jcr:primaryType="modexml:processingInstruction"

modexml:processingInstructionContent="content"
 modexml:target="target" />
 <modexml:processingInstruction[2]
jcr:primaryType="modexml:processingInstruction"

modexml:processingInstructionContent="other stuff"
 modexml:target="target2" />
 <Cars jcr:primaryType="modexml:element">
 <modexml:comment jcr:primaryType="modexml:comment"
 modexml:commentContent="This is a comment" />
 <Hybrid jcr:primaryType="modexml:element">
 <car jcr:primaryType="modexml:element" />
 </Hybrid>
 <Sports jcr:primaryType="modexml:element" />
 </Cars>
</myxml>

The CND used by this sequencer is provided below. Note that the XML sequencer will parse CDATA into its
own node in the sequenced output even though the example above does not explicitly demonstrate this.

<modexml='http://www.modeshape.org/xml/1.0'>
<modedtd='http://www.modeshape.org/dtd/1.0'>

[modexml:document] > nt:unstructured, mix:mimeType
 - modexml:cDataContent (string)

[modexml:comment] > nt:unstructured
 - modexml:commentContent (string)

[modexml:element] > nt:unstructured

[modexml:elementContent] > nt:unstructured
 - modexml:elementContent (string)

[modexml:cData] > nt:unstructured
 - modexml:cDataContent (string)

[modexml:processingInstruction] > nt:unstructured
 - modexml:processingInstruction (string)
 - modexml:target (string)

[modedtd:entity] > nt:unstructured
 - modexml:name (string)
 - modexml:value (string)

Development Guide Volume 6: Metadata Repository Reference Guide

20

 - modexml:publicId (string)
 - modexml:systemId (string)

7.4. Configuring an XML Document Sequencer

1. Include the relevant libraries

Include modeshape-sequencer-xml-VERSION.jar in your application.

2. Choose one of the following for sequencing configuration

A. Define sequencing configuration based on standard example provided in SOA-
ROOT/eds/modeshape/resources/modeshape-config-standard.xml:

<mode:sequencer jcr:name="XML File Sequencer"
mode:classname="org.modeshape.sequencer.xml.XmlSequencer">
 <mode:description>
 Sequences XML files loaded under '/files', extracting the
contents into the equivalent JCR graph structure.
 </mode:description>
 <mode:pathExpression>
 eds-store:default:/files(//)*.xml[*]/jcr:content[@jcr:data] =>
eds-store:default:/sequenced/xml/$1
 </mode:pathExpression>
</mode:sequencer>

B. Configure via org.modeshape.jcr.JcrConfiguration:

JcrConfiguration config = ...

config.sequencer("XML File Sequencer")
 .usingClass("org.modeshape.sequencer.xml.XmlSequencer")
 .loadedFromClasspath()
 .setDescription("Sequences XML files loaded under '/files',
extracting the contents into the equivalent JCR graph structure.")
 .sequencingFrom("/files(//)*.xml[*]/jcr:content[@jcr:data]")
 .andOutputtingTo("/sequenced/xml/$1");

Note

Refer to SOA-ROOT/eds/modeshape/resources/modeshape-config-standard.xml
for more information.

Chapter 7. XML Document Sequencer

21

Chapter 8. ZIP File Sequencer

8.1. The ZIP File Sequencer

The ZIP file sequencer is included in ModeShape and extracts the files and folders contained in the ZIP
archive file, extracting the files and folders into the repository using JCR's nt:file and nt:folder built-in
node types. The structure of the output thus matches the logical structure of the contents of the ZIP file.

8.2. ZIP File Sequencer Example

This sequencer generates a graph structure that maps to the files and folders in the ZIP file. An example
(listed in the JCR document view) from sequencing a ZIP file written into /a/foo and containing one file,
/x/y/z.txt is provided below:

<foo jcr:primaryType="zip:file"
 jcr:mixinTypes="mode:derived"
 mode:derivedAt="2011-05-13T13:12:03.925Z"
 mode:derivedFrom="/files/docForReferenceGuide.xml" >
 <x jcr:primaryType="nt:folder"
 jcr:created="2011-05-12T20:07Z"
 jcr:createdBy="currentJcrUser">
 <y jcr:primaryType="nt:folder"
 jcr:created="2011-05-12T20:09Z"
 jcr:createdBy="currentJcrUser">
 <z.txt jcr:primaryType="nt:file">
 <jcr:content jcr:primaryType="nt:resource"
 jcr:data="This is the file content"
 jcr:lastModified="2011-05-12T20:12Z"
 jcr:lastModifiedBy="currentJcrUser"
 jcr:mimeType="text/plain" />
 </z.txt>
 </y>
 </x>
</foo>

8.3. ZIP File Sequencer Node Types

The CND for the zip:file node type is listed below.

[zip:file] > nt:folder, mix:mimeType

8.4. Configuring a ZIP File Sequencer

1. Include the relevant libraries

Include modeshape-sequencer-zip-VERSION.jar in your application.

2. Choose one of the following for sequencing configuration

Development Guide Volume 6: Metadata Repository Reference Guide

22

A. Define sequencing configuration based on standard example provided in SOA-
ROOT/eds/modeshape/resources/modeshape-config-standard.xml:

<mode:sequencer jcr:name="ZIP File Sequencer"
mode:classname="org.modeshape.sequencer.zip.ZipSequencer">
 <mode:description>
 Sequences ZIP files loaded under '/files', extracting the
archive file contents into the equivalent JCR graph structure of
'nt:file' and 'nt:folder' nodes.
 </mode:description>
 <mode:pathExpression>
 eds-store:default:/files(//)(*.zip[*])/jcr:content[@jcr:data] =>
eds-store:default:/sequenced/zip/$1
 </mode:pathExpression>
</mode:sequencer>

B. Configure via org.modeshape.jcr.JcrConfiguration:

JcrConfiguration config = ...

config.sequencer("ZIP File Sequencer")
 .usingClass("org.modeshape.sequencer.zip.ZipSequencer")
 .loadedFromClasspath()
 .setDescription("Sequences ZIP files loaded under '/files',
extracting the archive file contents into the equivalent JCR graph
structure of 'nt:file' and 'nt:folder' nodes.")
 .sequencingFrom("/files(//)
(*.zip[*])/jcr:content[@jcr:data]")
 .andOutputtingTo("/sequenced/zip/$1");

Note

Refer to SOA-ROOT/eds/modeshape/resources/modeshape-config-standard.xml
for more information.

Chapter 8. ZIP File Sequencer

23

Chapter 9. DDL File Sequencer

9.1. The DDL File Sequencer

The DDL file sequencer included in ModeShape is capable of parsing the more important DDL statements
from SQL-92, Oracle, Derby, and PostgreSQL, and constructing a graph structure containing a structured
representation of these statements. The resulting graph structure is largely the same for all dialects, though
some dialects have non-standard additions to their grammar, and thus require dialect-specific additions to the
graph structure.

The sequencer is designed to behave as intelligently as possible with as little configuration. Thus, the
sequencer automatically determines the dialect used by a given DDL stream. This can be tricky, of course,
since most dialects are very similar and the distinguishing features of a dialect may only be apparent in some
of the statements.

To get around this, the sequencer uses a "best fit" algorithm: run the DDL stream through the parser for each
of the dialects, and determine which parser was able to successfully read the greatest number of statements
and tokens.

Note

It is possible to define which DDL dialects (or grammars) should be considered during sequencing
using the "grammars" property in the sequencer configuration. Set the values of this property to the
names of the grammars (e.g., "oracle", "postgres", "standard", or "derby"), specified in the order they
should be used. To use a custom DDL parser not provided by ModeShape, provide the fully-qualified
class name of the DdlParser implementation class.

One very interesting capability of this sequencer is that, although only a subset of the (more common) DDL
statements are supported, the sequencer is still extremely functional since it does still add all statements into
the output graph, just without much detail other than just the statement text and the position in the DDL file.
Thus, if a DDL file contains statements the sequencer understands and statements the sequencer does not
understand, the graph will still contain all statements, where those statements understood by the sequencer
will have full detail. Since the underlying parsers are able to operate upon a single statement, it is possible to
go back later (after the parsers have been enhanced to support additional DDL statements) and re-parse only
those incomplete statements in the graph.

At this time, the sequencer supports SQL-92 standard DDL as well as dialects from Oracle, Derby, and
PostgreSQL. It supports:

Detailed parsing of CREATE SCHEMA, CREATE TABLE and ALTER TABLE.

Partial parsing of DROP statements

General parsing of remaining schema definition statements (i.e. CREATE VIEW, CREATE DOMAIN, etc.

Note that the sequencer does not perform detailed parsing of SQL (i.e. SELECT, INSERT, UPDATE, etc....)
statements.

9.2. DDL File Sequencer Properties

For information about configurable properties relating to the DDL File Sequencer, refer to the
org.modeshape.sequencer.ddl.DdlSequencer class in the Red Hat JBoss Data Virtualization
JavaDoc.

Development Guide Volume 6: Metadata Repository Reference Guide

24

9.3. DDL File Sequencer Example

Sequencing results in graph nodes basically representing the BNF structure of each DDL statement. Below is
an example DDL schema definition statement containing table and view definition statements.

CREATE SCHEMA hollywood
 CREATE TABLE films (title varchar(255), release date, producerName
varchar(255))
 CREATE VIEW winners AS SELECT title, release FROM films WHERE
producerName IS NOT NULL;

The resulting graph structure contains the raw statement expression, pertinent table, column and key
reference information and position of the statement in the text stream (e.g., line number, column number and
character index) so the statement can be tied back to the original DDL:

<nt:unstructured jcr:name="statements"
 jcr:mixinTypes = "mode:derived"
 mode:derivedAt="2011-05-13T13:12:03.925Z"
 mode:derivedFrom="/files/foo.sql"
 ddl:parserId="POSTGRES">
 <nt:unstructured jcr:name="hollywood"
jcr:mixinTypes="ddl:createSchemaStatement"
 ddl:startLineNumber="1"
 ddl:startColumnNumber="1"
 ddl:expression="CREATE SCHEMA hollywood"
 ddl:startCharIndex="0">
 <nt:unstructured jcr:name="films"
jcr:mixinTypes="ddl:createTableStatement"
 ddl:startLineNumber="2"
 ddl:startColumnNumber="5"
 ddl:expression="CREATE TABLE films (title varchar(255),
release date, producerName varchar(255))"
 ddl:startCharIndex="28"/>
 <nt:unstructured jcr:name="title" jcr:mixinTypes="ddl:columnDefinition"
 ddl:datatypeName="VARCHAR"
 ddl:datatypeLength="255"/>
 <nt:unstructured jcr:name="release"
jcr:mixinTypes="ddl:columnDefinition"
 ddl:datatypeName="DATE"/>
 <nt:unstructured jcr:name="producerName"
jcr:mixinTypes="ddl:columnDefinition"
 ddl:datatypeName="VARCHAR"
 ddl:datatypeLength="255"/>
 <nt:unstructured jcr:name="winners"
jcr:mixinTypes="ddl:createViewStatement"
 ddl:startLineNumber="3"
 ddl:startColumnNumber="5"
 ddl:expression="CREATE VIEW winners AS SELECT title,
release FROM films WHERE producerName IS NOT NULL;"
 ddl:queryExpression="SELECT title, release FROM films
WHERE producerName IS NOT NULL"
 ddl:startCharIndex="113"/>
</nt:unstructured>

Chapter 9. DDL File Sequencer

25

Note that all nodes are of type nt:unstructured while the type of statement is identified using mixins.
Also, each of the nodes representing a statement contain: a ddl:expression property with the exact
statement as it appeared in the original DDL stream; a ddl:startLineNumber and
ddl:startColumnNumber property defining the position in the original DDL stream of the first character in
the expression; and a ddl:startCharIndex property that defines the integral index of the first character in
the expression as found in the DDL stream. All of these properties make sure the statement can be traced
back to its location in the original DDL.

9.4. Configuring a DDL File Sequencer

1. Include the relevant libraries

Include modeshape-sequencer-ddl-VERSION.jar in your application.

2. Choose one of the following for sequencing configuration

A. Define sequencing configuration based on standard example provided in SOA-
ROOT/eds/modeshape/resources/modeshape-config-standard.xml:

<mode:sequencer jcr:name="DDL File Sequencer"
mode:classname="org.modeshape.sequencer.ddl.DdlSequencer">
 <mode:description>
 Sequences DDL files loaded under '/files', extracting the
structured abstract syntax tree of the DDL commands and expressions.
 </mode:description>
 <mode:pathExpression>
 eds-store:default:/files(//(*.ddl[*]))/jcr:content[@jcr:data] =>
eds-store:default:/sequenced/ddl/$1
 </mode:pathExpression>
</mode:sequencer>

B. Configure via org.modeshape.jcr.JcrConfiguration:

JcrConfiguration config = ...

config.sequencer("DDL File Sequencer")
 .usingClass("org.modeshape.sequencer.ddl.DdlSequencer")
 .loadedFromClasspath()
 .setDescription("Sequences DDL files loaded under '/files',
extracting the structured abstract syntax tree of the DDL commands
and expressions.")
 .sequencingFrom("/files(//(*.ddl[*]))/jcr:content[@jcr:data]")
 .andOutputtingTo("/sequenced/ddl/$1");

This will use all of the built-in grammars (e.g., "standard", "oracle", "postgres", and "derby"). To
specify a different order or subset of the grammars, use the setProperty(...) method. The
following example uses the standard grammar followed by the PostgreSQL grammar:

config.sequencer("DDL File Sequencer")
 .usingClass("org.modeshape.sequencer.ddl.DdlSequencer")
 .loadedFromClasspath()
 .setDescription("Sequences DDL files loaded under '/files',
extracting the structured abstract syntax tree of the DDL commands

Development Guide Volume 6: Metadata Repository Reference Guide

26

and expressions.")
 .setProperty("grammar","standard","postgres")
 .sequencingFrom("/files(//(*.ddl[*]))/jcr:content[@jcr:data]")
 .andOutputtingTo("/sequenced/ddl/$1");

To use a custom implementation of DdlParser , use the fully-qualified name of the implementation
class (which must have a no-arg constructor) as the name of the grammar:

config.sequencer("DDL File Sequencer")
 .usingClass("org.modeshape.sequencer.ddl.DdlSequencer")
 .loadedFromClasspath()
 .setDescription("Sequences DDL files loaded under '/files',
extracting the structured abstract syntax tree of the DDL commands
and expressions.")

.setProperty("grammar","standard","postgres","org.example.ddl.MyCust
omDdlParser")
 .sequencingFrom("/files(//(*.ddl[*]))/jcr:content[@jcr:data]")
 .andOutputtingTo("/sequenced/ddl/$1");

Note

Refer to SOA-ROOT/eds/modeshape/resources/modeshape-config-standard.xml
for more information.

Chapter 9. DDL File Sequencer

27

Chapter 10. Text Sequencers

10.1. Text Sequencers

Text sequencers extract data from text streams. There are separate sequencers for character-delimited
sequencing and fixed width sequencing, but both treat the incoming text stream as a series of rows
(separated by line-terminators, as defined in BufferedReader.readLine() with each row consisting of one
or more columns. As noted above, each text sequencer provides its own mechanism for splitting the row into
columns.

10.2. Abstract Text Sequencer

When using the AbstractTextSequencer, the default row factory creates one node in the output location
for each row sequenced from the source and adds each column with the row as a child node of the row node.
The output graph takes the following form (all nodes have primary type nt:unstructured:

 <graph root jcr:mixinTypes = mode:derived,
 mode:derivedAt="2011-05-13T13:12:03.925Z",
 mode:derivedFrom="/files/foo.dat">
 + text:row[1]
 | + text:column[1] (jcr:mixinTypes = text:column, text:data =
<column1 data>)
 | + ...
 | + text:column[n] (jcr:mixinTypes = text:column, text:data =
<columnN data>)
 + ...
 + text:row[m]
 + text:column[1] (jcr:mixinTypes = text:column, text:data =
<column1 data>)
 + ...
 + text:column[n] (jcr:mixinTypes = text:column, text:data =
<columnN data>)

10.3. Abstract Text Sequencer Properties

For information about configurable properties relating to the Abstract Text Sequencer, refer to the
org.modeshape.sequencer.text.AbstractTextSequencer class in the Red Hat JBoss Data
Virtualization JavaDoc.

10.4. Delimited Text Sequencer

The DelimitedTextSequencer splits rows into columns based on a regular expression pattern. Although
the default pattern is a comma, any regular expression can be provided allowing for more sophisticated
splitting patterns.

10.5. Delimited Text Sequencer Properties

For information about configurable properties relating to the Delimited Text Sequencer, refer to the
org.modeshape.sequencer.text.DelimitedTextSequencer class in the Red Hat JBoss Data

Development Guide Volume 6: Metadata Repository Reference Guide

28

http://docs.oracle.com/javase/6/docs/api/java/io/BufferedReader.html

Virtualization JavaDoc.

10.6. Configuring a Delimited Text Sequencer

To use this sequencer, include the modeshape-sequencer-text JAR in your application and configure the
JcrConfiguration to use this sequencer using something similar to:

JcrConfiguration config = ...

config.sequencer("Delimited Text Sequencer")
 .usingClass("org.modeshape.sequencer.text.DelimitedTextSequencer")
 .loadedFromClasspath()
 .setDescription("Sequences delimited files to extract values")
 .sequencingFrom("//(*.(txt)[*])/jcr:content[@jcr:data]")
 .setProperty("splitPattern", "|")
 .andOutputtingTo("/txt/$1");

10.7. Fixed Width Text Sequencer

The FixedWidthTextSequencer splits rows into columns based on predefined positions. The default
setting is to have a single column per row.

10.8. Fixed Width Text Sequencer Properties

For information about configurable properties relating to the Fixed Width Text Sequencer, refer to the
org.modeshape.sequencer.text.FixedWidthTextSequencer class in the Red Hat JBoss Data
Virtualization JavaDoc.

10.9. Configuring a Fixed Width Text Sequencer

1. Include the relevant libraries

Include modeshape-sequencer-text-VERSION.jar in your application.

2. Choose one of the following for sequencing configuration

A. Define sequencing configuration based on standard example provided in SOA-
ROOT/eds/modeshape/resources/modeshape-config-standard.xml:

<mode:sequencer jcr:name="Fixed Width Text File Sequencer"
mode:classname="org.modeshape.sequencer.text.FixedWidthTextSequencer
">
 <mode:description>
 Sequences *.txt fixed-width text files loaded under '/files',
extracting splitting rows into columns based on predefined
positions.
 </mode:description>
 <mode:pathExpression>
 eds-store:default:/files//(*.txt[*])/jcr:content[@jcr:data] =>

Chapter 10. Text Sequencers

29

eds-store:default:/sequenced/text/fixedWidth/$1
 </mode:pathExpression>
 <mode:columnStartPositions/>
</mode:sequencer>

Note

The columnStartPositions property defines the 0-based column start positions.
Everything before the first start position is treated as the first column. The default value is
the empty string (implying that each row should be treated as a single column). There is
an implicit column start position of 0 that never needs to be specified.

B. Configure via org.modeshape.jcr.JcrConfiguration:

JcrConfiguration config = ...

config.sequencer("Fixed Width Text Sequencer")

.usingClass("org.modeshape.sequencer.text.FixedWidthTextSequencer")
 .loadedFromClasspath()
 .setDescription("Sequences *.txt fixed-width text files
loaded under '/files', extracting splitting rows into columns based
on predefined positions.")
 .sequencingFrom("/files//(*.txt[*])/jcr:content[@jcr:data]")
 .setProperty("columnStartPositions", "3,6,15")
 .andOutputtingTo("/sequenced/text/fixedWidth/$1");

Note

Refer to SOA-ROOT/eds/modeshape/resources/modeshape-config-standard.xml
for more information.

Development Guide Volume 6: Metadata Repository Reference Guide

30

Chapter 11. Red Hat JBoss Data Virtualization Relational Model
Sequencer

11.1. Relational Model Sequencer

Teiid Designer is a visual tool that enables rapid, model-driven definition, integration, management and
testing of Red Hat JBoss Data Virtualization without programming using the Red Hat JBoss Data
Virtualization runtime engine. It is capable of modeling several different kinds of data structures, but the most
common and widely-used are relational models that describe a relational database schema, including the
catalogs/schemas, tables, views, columns, primary keys, foreign keys, indexes, procedures, procedure
results, procedure results, and logical relationships. Teiid Designer can reverse-engineer a relational model
from a JDBC relational database or DDL file. It can also define "virtual" models that are transformations of
other models (where the transformations are defined in terms of SQL select, insert, update, and delete
statements). These models can then be packaged into a virtual database, which can be deployed to a Red
Hat JBoss Data Virtualization runtime engine.

Red Hat JBoss Data Virtualization is a high-performance database virtualization engine that allows JDBC and
ODBC client applications access the virtual database as if it were a real database, using relational, XML,
XQuery and procedural queries. Red Hat JBoss Data Virtualization dynamically (and in real-time) figures out
how to answer the queries and operations issued by clients by efficiently accessing and manipulating the data
inside the underlying data sources. The sophisticated engine is able to plan and optimize these operations,
even when multiple heterogeneous relational and non-relational data sources must be accessed to obtain the
required information.

The Red Hat JBoss Data Virtualization relational model sequencer parses the model files produced by the
Teiid Designer, and extracts the structured relational data model described by the XMI file. This means that
when these models are uploaded into a ModeShape repository, the sequencer writes to the repository all this
relational metadata, where it can be queried and accessed by JCR , RESTful, and even JDBC clients.

11.2. Relational Model Sequencer Properties

For information about configurable properties relating to the Red Hat JBoss Data Virtualization Relational
Model Sequencer, refer to the org.modeshape.sequencer.classfile.ClassFileSequencer class in
the Red Hat JBoss Data Virtualization JavaDoc.

11.3. Relational Model Sequencer UUIDs

As mentioned above, the Red Hat JBoss Data Virtualization model sequencer can operate in two modes. The
behavior you choose will dramatically change what you can do with the sequenced relational models.

The first mode reuses the "xmi:uuid" identifiers on each object in the model as the "jcr:uuid" node
identifiers. In this mode, the sequencer represents each model reference as a JCR WEAKREFERENCE,
making it very easy to navigate and query relationships. However, there is one major disadvantage of this
approach: each time a model is uploaded into the repository, the sequencer will override any output
generated by earlier sequencing operations upon that file (or other versions of it). Thus, the sequenced
representation of an uploaded model can ever appear only once within the repository, even though different
versions of that model might exist in the repository at different locations. This may be desirable in some
situations, but for most situations it is not acceptable.

In the second mode of operation (which is the default mode), there is no correlation between the model's
"xmi:uuid" and "jcr:uuid" node identifiers. Various versions of a given model can be uploaded into the
repository at multiple locations, yet each model's relational schema will exist in the repository. The downside
of this approach is that references are no longer simply WEAKREFERENCE properties. Instead, each single-

Chapter 11. Red Hat JBoss Data Virtualization Relational Model Sequencer

31

valued reference will be represented as a series of four properties:

{referenceName}Href - stores the href literal value from the XMI file; this is always set

{referenceName}XmiUuid - stores the XMI UUID to the referenced node; this is set only if the href
had an embedded UUID (hrefs to data types and XSD components don't use UUIDs)

{referenceName}Name - stores the name of the resolved node, though this may not be set if the object
being referenced is in another model

{referenceName} - stores the JCR weak reference to the resolve node, though this may not be set if
the object being referenced is in another model

where "{referenceName}" is the name of the model reference. Multi-value references are also represented as
a series of four properties, but with a slightly different naming pattern:

{singularReferenceName}Href - stores the href literal values from the XMI file; this is always set

{singularReferenceName}XmiUuid - stores the XMI UUID to the referenced nodes; this is set only if
the hrefs have an embedded UUID (hrefs to data types and XSD components don't use UUIDs)

{singularReferenceName}Name - stores the name of the resolved nodes, though this may not be set
if the object being referenced is in another model

{pluralReferenceName} - stores the JCR weak reference to the resolve nodes, though this may not
be set if the object being referenced is in another model

Here, "{singularReferenceName}" is the singular form of the model reference name, and "
{pluralReferenceName}" is the plural form of the model reference name. For example, for a reference named
"columns", the "{singularReferenceName}" value would be "column" and the plural form is "columns". If the
reference name is "properties", the singular form is "property" and the plural form is "properties".
(ModeShape uses a novel algorithm to determine the singular and plural forms of many English words.)

References to model objects within the same model are easily resolved upon sequencing, and so we set all
of the properties (regardless of the mode). However, references to objects in other models cannot be
resolved at sequencing time.

Note

The Red Hat JBoss Data Virtualization VDB sequencer behavior is unrelated to this mode, since it
always sequences models with new "jcr:uuid" identifiers that are unrelated to the "xmi:uuid"
values. In this manner, each sequencing of a VDB will produce the relational model representation for
each model in the VDB (with all valid references resolved between all models), independent of any
generated output from the Red Hat JBoss Data Virtualization model sequencer.

11.4. Relational Model Sequencer Node Types

The model sequencer follows JCR best-practices by defining all nodes to have a primary type of
"nt:unstructured" (or a node type that extends "nt:unstructured"), meaning it is possible and valid
for any node to have any property (with single or multiple values). However, it is still useful to capture the
metadata about what that node represents, and so the sequencer use mixins for this. For example, there is a
"xmi:referenceable" mixin with a single "xmi:uuid" property (patterned after the built-in
"mix:referenceable" mixin). Since all model objects have mmuuids, all nodes produced by this
sequencer will have this mixin.

Development Guide Volume 6: Metadata Repository Reference Guide

32

The rest of this section covers the various (and many!) node types defined for and used by this sequencer.
Note that these are non-normative definitions of the node types; see the CND files in the "modeshape-
sequencer-teiid" JAR file (or source) for the official definitions.

11.5. Compact Node Definitions for the xmi Namespace

The compact node definitions for the "xmi" namespace are as follows:

<nt = "http://www.jcp.org/jcr/nt/1.0">
<xmi = "http://www.omg.org/XMI">

//--

// N O D E T Y P E S
//--

[xmi:referenceable] mixin
 - xmi:uuid (string) mandatory

[xmi:model] > nt:unstructured, xmi:referenceable orderable
 - xmi:version (double) = '2.0'

11.6. Compact Node Definitions for the mmcore Namespace

The compact node definitions for the mmcore namespace are as follows:

<nt = "http://www.jcp.org/jcr/nt/1.0">
<xmi = "http://www.omg.org/XMI">
<mmcore = "http://www.metamatrix.com/metamodels/Core">
<mode = "http://www.modeshape.org/1.0">

[mmcore:model] > xmi:referenceable, mode:hashed mixin
 - mmcore:modelType (string) = 'UNKNOWN' <
'PHYSICAL','VIRTUAL','TYPE','VDB_ARCHIVE',

'UNKNOWN','FUNCTION','CONFIGURATION','METAMODEL',

'EXTENSION','LOGICAL','MATERIALIZATION'
 - mmcore:primaryMetamodelUri (string)
 - mmcore:description (string)
 - mmcore:nameInSource (string)
 - mmcore:maxSetSize (long) = '100'
 - mmcore:visible (boolean) = 'true'
 - mmcore:supportsDistinct (boolean) = 'true'
 - mmcore:supportsJoin (boolean) = 'true'
 - mmcore:supportsOrderBy (boolean) = 'true'
 - mmcore:supportsOuterJoin (boolean) = 'true'
 - mmcore:supportsWhereAll (boolean) = 'true'
 - mmcore:supportsDistinct (boolean) = 'true'
 - mmcore:producerName (string)
 - mmcore:producerVersion (string)
 - mmcore:originalFile (string)

Chapter 11. Red Hat JBoss Data Virtualization Relational Model Sequencer

33

 - mmcore:sha1 (string)

[mmcore:import] > nt:unstructured, xmi:referenceable orderable
 - mmcore:modelType (string) = 'UNKNOWN' <
'PHYSICAL','VIRTUAL','TYPE','VDB_ARCHIVE',

'UNKNOWN','FUNCTION','CONFIGURATION','METAMODEL',

'EXTENSION','LOGICAL','MATERIALIZATION'
 - mmcore:primaryMetamodelUri (string)
 - mmcore:path (string)
 - mmcore:name (string)
 - mmcore:modelLocation (string)

[mmcore:annotated] mixin
 - mmcore:description (string)
 - mmcore:keywords (string) multiple

[mmcore:tags] mixin
 - * (undefined) multiple
 - * (undefined)

11.7. Compact Node Definitions for the relational Namespace

The compact node definitions for the "relational" namespace are as follows:

<nt = "http://www.jcp.org/jcr/nt/1.0">
<relational='http://www.metamatrix.com/metamodels/Relational'>
<xmi = "http://www.omg.org/XMI">

//--

// N O D E T Y P E S
//--

[relational:relationalEntity] > xmi:referenceable abstract mixin
 - relational:nameInSource (string)

[relational:relationship] > nt:unstructured, relational:relationalEntity
abstract

// ---
// Columns and Column Sets
// ---

[relational:column] > nt:unstructured, relational:relationalEntity
 - relational:nativeType (string)
 - relational:type (weakreference)
 - relational:typeHref (string)
 - relational:typeXmiUuid (string)
 - relational:typeName (string)
 - relational:length (long)
 - relational:fixedLength (boolean)
 - relational:precision (long)

Development Guide Volume 6: Metadata Repository Reference Guide

34

 - relational:scale (long)
 - relational:nullable (string) = 'NULLABLE' < 'NO_NULLS', 'NULLABLE',
'NULLABLE_UNKNOWN'
 - relational:autoIncremented (boolean) = 'false'
 - relational:defaultValue (string)
 - relational:minimumValue (string)
 - relational:maximumValue (string)
 - relational:format (string)
 - relational:characterSetName (string)
 - relational:collationName (string)
 - relational:selectable (boolean) = 'true'
 - relational:updateable (boolean) = 'true'
 - relational:caseSensitive (boolean) = 'true'
 - relational:searchability (string) = 'SEARCHABLE' < 'SEARCHABLE',
 'ALL_EXCEPT_LIKE', 'LIKE_ONLY',
'UNSEARCHABLE'
 - relational:currency (boolean) = 'false'
 - relational:radix (long) = '10'
 - relational:signed (boolean) = 'true'
 - relational:distinctValueCount (long) = '-1'
 - relational:nullValueCount (long) = '-1'
 - relational:uniqueKeys (weakreference) multiple
 - relational:uniqueKeyHrefs (string) multiple
 - relational:uniqueKeyXmiUuids (string) multiple
 - relational:uniqueKeyNames (string) multiple
 - relational:indexes (weakreference) multiple
 - relational:indexHrefs (string) multiple
 - relational:indexXmiUuids (string) multiple
 - relational:indexNames (string) multiple
 - relational:foreignKeys (weakreference) multiple
 - relational:foreignKeyHrefs (string) multiple
 - relational:foreignKeyXmiUuids (string) multiple
 - relational:foreignKeyNames (string) multiple
 - relational:accessPatterns (weakreference) multiple
 - relational:accessPatternHrefs (string) multiple
 - relational:accessPatternXmiUuids (string) multiple
 - relational:accessPatternNames (string) multiple

[relational:columnSet] > nt:unstructured, relational:relationalEntity
abstract orderable
 + * (relational:column) = relational:column copy

// ---
// Constraints
// ---

[relational:uniqueKey] > nt:unstructured, relational:relationalEntity
abstract
 - relational:columns (weakreference) multiple
 - relational:columnXmiUuids (string) multiple
 - relational:columnNames (string) multiple
 - relational:foreignKeys (weakreference) multiple
 - relational:foreignKeyHrefs (string) multiple
 - relational:foreignKeyXmiUuids (string) multiple
 - relational:foreignKeyNames (string) multiple

Chapter 11. Red Hat JBoss Data Virtualization Relational Model Sequencer

35

[relational:uniqueConstraint] > relational:uniqueKey

[relational:primaryKey] > relational:uniqueKey

[relational:foreignKey] > relational:relationship
 - relational:foreignKeyMultiplicity (string) = 'ZERO_TO_MANY' < 'ONE',
'MANY',
 'ZERO_TO_ONE',
'ZERO_TO_MANY', 'UNSPECIFIED'
 - relational:primaryKeyMultiplicity (string) = 'ONE' < 'ONE', 'MANY',
'ZERO_TO_ONE',
 'ZERO_TO_MANY',
'UNSPECIFIED'
 - relational:columns (weakreference) multiple
 - relational:columnXmiUuids (string) multiple
 - relational:columnNames (string) multiple
 - relational:uniqueKeys (weakreference) multiple
 - relational:uniqueKeyHrefs (string) multiple
 - relational:uniqueKeyXmiUuids (string) multiple
 - relational:uniqueKeyNames (string) multiple

[relational:index] > nt:unstructured, relational:relationalEntity
 - relational:filterCondition (string)
 - relational:nullable (boolean) = 'true'
 - relational:autoUpdate (boolean)
 - relational:unique (boolean)
 - relational:columns (weakreference) multiple
 - relational:columnXmiUuids (string) multiple
 - relational:columnNames (string) multiple

[relational:accessPattern] > nt:unstructured, relational:relationalEntity
orderable
 - relational:columns (UNDEFINED) multiple

// ---
// Tables and Views
// ---

[relational:table] > relational:columnSet abstract orderable
 - relational:system (boolean) = 'false'
 - relational:cardinality (long)
 - relational:supportsUpdate (boolean) = 'true'
 - relational:materialized (boolean) = 'false'
 - relational:logicalRelationships (weakreference) multiple
 - relational:logicalRelationshipHrefs (string) multiple
 - relational:logicalRelationshipXmiUuids (string) multiple
 - relational:logicalRelationshipNames (string) multiple
 + * (relational:primaryKey) = relational:primaryKey copy
 + * (relational:foreignKey) = relational:foreignKey copy
 + * (relational:accessPattern) = relational:accessPattern copy sns

[relational:baseTable] > relational:table orderable

[relational:view] > relational:table orderable

Development Guide Volume 6: Metadata Repository Reference Guide

36

// ---
// Procedures
// ---

[relational:procedureParameter] > nt:unstructured,
relational:relationalEntity
 - relational:direction (string) < 'IN', 'OUT', 'INOUT', 'RETURN', 'UNKNOWN'
 - relational:defaultValue (string)
 - relational:nativeType (string)
 - relational:type (weakreference)
 - relational:typeXmiUuid (string)
 - relational:typeName (string)
 - relational:length (long)
 - relational:precision (long)
 - relational:scale (long)
 - relational:nullable (string) = 'NULLABLE' < 'NO_NULLS', 'NULLABLE',
'NULLABLE_UNKNOWN'
 - relational:radix (long) = '10'

[relational:procedureResult] > relational:columnSet orderable

[relational:procedure] > nt:unstructured, relational:relationalEntity
orderable
 - relational:function (boolean)
 - relational:updateCount (string) < 'AUTO', 'ZERO', 'ONE', 'MULTIPLE'
 + * (relational:procedureParameter) = relational:procedureParameter copy sns
 + * (relational:procedureResult) = relational:procedureResult copy

// ---
// Logical Relationships
// ---

[relational:logicalRelationshipEnd] > nt:unstructured,
relational:relationalEntity
 - relational:multiplicity (string) < 'ONE', 'MANY', 'ZERO_TO_ONE',
'ZERO_TO_MANY', 'UNSPECIFIED'
 - relational:table (weakreference)
 - relational:tableHref (string)
 - relational:tableXmiUuid (string)
 - relational:tableName (string)

[relational:logicalRelationship] > relational:relationship orderable
 + * (relational:logicalRelationshipEnd) = relational:logicalRelationshipEnd
copy sns

// ---
// Catalogs and Schemas
// ---

[relational:schema] > nt:unstructured, relational:relationalEntity orderable
 + * (relational:table) = relational:baseTable copy
 + * (relational:procedure) = relational:procedure copy sns
 + * (relational:index) = relational:index copy
 + * (relational:logicalRelationship) = relational:logicalRelationship copy

Chapter 11. Red Hat JBoss Data Virtualization Relational Model Sequencer

37

[relational:catalog] > nt:unstructured, relational:relationalEntity
orderable
 + * (relational:schema) = relational:schema copy
 + * (relational:table) = relational:baseTable copy
 + * (relational:procedure) = relational:procedure copy sns
 + * (relational:index) = relational:index copy
 + * (relational:logicalRelationship) = relational:logicalRelationship copy

11.8. Compact Node Definitions for the jdbcs Namespace

The compact node definitions for the "jdbcs" namespace are as follows:

<nt = "http://www.jcp.org/jcr/nt/1.0">
<xmi = "http://www.omg.org/XMI">
<jdbcs = "http://www.metamatrix.com/metamodels/JDBC">

//--

// N O D E T Y P E S
//--

[jdbcs:source] > nt:unstructured, xmi:referenceable
 - jdbcs:name (string)
 - jdbcs:driverName (string)
 - jdbcs:driverClass (string)
 - jdbcs:username (string)
 - jdbcs:url (string)

[jdbcs:imported] > nt:unstructured, xmi:referenceable
 - jdbcs:createCatalogsInModel (boolean) = 'true'
 - jdbcs:createSchemasInModel (boolean) = 'true'
 - jdbcs:convertCaseInModel (string) < 'NONE', 'TO_UPPERCASE',
'TO_LOWERCASE'
 - jdbcs:generateSourceNamesInModel (string) = 'UNQUALIFIED' < 'NONE',
'UNQUALIFIED', 'FULLY_QUALIFIED'
 - jdbcs:includedCatalogPaths (string) multiple
 - jdbcs:includedSchemaPaths (string) multiple
 - jdbcs:excludedObjectPaths (string) multiple
 - jdbcs:includeForeignKeys (boolean) = 'true'
 - jdbcs:includeIndexes (boolean) = 'true'
 - jdbcs:includeProcedures (boolean) = 'false'
 - jdbcs:includeApproximateIndexes (boolean) = 'true'
 - jdbcs:includeUniqueIndexes (boolean) = 'false'
 - jdbcs:includedTableTypes (string) multiple

11.9. Compact Node Definitions for the transform Namespace

The compact node definitions for the "transform" namespace are as follows:

<transform='http://www.metamatrix.com/metamodels/Transformation'>

//--

Development Guide Volume 6: Metadata Repository Reference Guide

38

// N O D E T Y P E S
//--

[transform:transformed] mixin
 - transform:transformedFrom (weakreference)
 - transform:transformedFromHrefs (string)
 - transform:transformedFromXmiUuids (string)
 - transform:transformedFromNames (string)

[transform:withSql] mixin
 - transform:selectSql (string)
 - transform:insertSql (string)
 - transform:updateSql (string)
 - transform:deleteSql (string)
 - transform:insertAllowed (boolean) = 'true'
 - transform:updateAllowed (boolean) = 'true'
 - transform:deleteAllowed (boolean) = 'true'
 - transform:outputLocked (boolean) = 'false'
 - transform:insertSqlDefault (boolean) = 'true'
 - transform:updateSqlDefault (boolean) = 'true'
 - transform:deleteSqlDefault (boolean) = 'true'

11.10. Default Values

Teiid Designer does not persist default values in the XMI files. The sequencer knows these default values,
and includes them in the sequenced output so that they can be accessed and queried.

11.11. Annotations

Rather than creating a separate "Annotation" object like what exist in the XMI models, the annotation's
description and keywords are simply recorded as a "mmcore:description" and "mmcore:keywords"
properties on the node created for the target of the annotation. This is really nice, because if a description is
placed on a relational column object in a model, then that description appears as a property directly on the
corresponding "relational:column" node. Note that when any annotation properties are placed on a
node, the "mmcore:annotated" mixin is added to that node.

11.12. Tags

Tags are also stored on "Annotation" objects, and each tag consist of a key-value pair. The sequencer does
two things depending upon what the key looks like. When the key is a simple string without a ':', then a
property is created on the annotation's target object using this string as the property name and the tag's value
as the property's value. More recently Teiid Designer has started to use tags with keys of the form
"namespace:name", where "namespace" is really informal and can theoretically be any string value. While
this format is the same as JCR property names, treating them as namespaced JCR property names would
require there be a namespace URI registered with the prefix matching the "namespace" value.

The sequencer tries to parse the tag key as a property name, and if it works then the tag is added as a
property just as mentioned earlier. However, if the namespace does not exist, then the sequencer splits the
key into the two parts, where the first is used to identify a child node and the second is used as a property
name.

Chapter 11. Red Hat JBoss Data Virtualization Relational Model Sequencer

39

For example, a tag on the "ID" column object under the "MyTable" base table:

foo="bar"

will be stored as a property "foo" with value "bar" on the "MyTable/ID" node. However, the

connection:driver-class="oracle.jdbc.OracleDriver"

tag on the same object would be stored as the "driver-class" property (with value
"oracle.jdbc.OracleDriver") on the "MyTable/ID/connection" object.

11.13. Transformation

The transformation information, like with annotations, is projected onto the nodes representing the model
objects that are the "output" of the transformation, where the objects that are "inputs" to the transformation are
recorded as a (potentially multi-valued) property on the "output" object, and the "transform:transformed"
mixin is added to the output node. In other words, virtual base tables, columns, procedures, etc., are marked
as "transform:transformed" and have an "input" property pointing to the node(s) that are the inputs for the
transformation. The SQL statements, supports flags, and defaults flags are also added as properties on the
output virtual base table and procedures, and the "transform:withSql" mixin that defines these properties
is added to that output node.

11.14. Relational Model Sequencer Example

Here is a representation of the nodes output by the sequencing of an example virtual relational model:

PartsVirtual jcr:primaryType="xmi:model"
 - jcr:mixinTypes=["mmcore:model","mix:referenceable","xmi:referenceable",
"mode:derived"]
 - mode:derivedAt="2011-05-13T13:12:03.925Z"
 - mode:derivedFrom="/files/foo.xmi"
 - jcr:uuid="d1a1b82f-055b-4db2-a3e7-a9668f3a70b6"
 - mmcore:maxSetSize="100"
 - mmcore:modelType="VIRTUAL"
 - mmcore:originalFile="/model/parts/PartsVirtual.xmi"
 -
mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"
 - mmcore:producerName="Teiid Designer"
 - mmcore:producerVersion="6.0"
 - mode:sha1="84a77940f9140a358861d12d4bbb4160afadc08c"
 - mmcore:supportsDistinct="true"
 - mmcore:supportsJoin="true"
 - mmcore:supportsOrderBy="true"
 - mmcore:supportsOuterJoin="true"
 - mmcore:supportsWhereAll="true"
 - xmi:uuid="fb52cb80-128a-1eec-8518-c32201e76066"
 - xmi:version="2.0"
 - mmcore:visible="true"
 PartSupplier_SourceB jcr:primaryType="mmcore:import"
 - jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]
 - jcr:uuid="c3a98bf2-7dbf-4c46-8baa-bf32e389cddd"
 - mmcore:modelType="PHYSICAL"
 -

Development Guide Volume 6: Metadata Repository Reference Guide

40

mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"
 - xmi:uuid="mmuuid:980de782-b1e5-1f55-853c-ed5dfdd1bb78"
 PartsSupplier_SourceA jcr:primaryType="mmcore:import"
 - jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]
 - jcr:uuid="55385418-01c9-4d5c-9f79-91b8e10c6946"
 - mmcore:modelType="PHYSICAL"
 -
mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"
 - xmi:uuid="mmuuid:980de784-b1e5-1f55-853c-ed5dfdd1bb78"
 XMLSchema jcr:primaryType="mmcore:import"
 - jcr:mixinTypes=["mix:referenceable","xmi:referenceable"]
 - jcr:uuid="8b5c2268-0770-405b-a4d8-12a868cc27a4"
 - mmcore:modelType="PHYSICAL"
 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"
 - xmi:uuid="mmuuid:a6591280-bf1d-1f2c-9911-b53abd16b14e"
 SupplierInfo jcr:primaryType="relational:baseTable"
 - jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
 - jcr:uuid="37bf368e-0618-4f2f-b4c2-2ab4c0729502"
 - transform:deleteAllowed="true"
 - transform:deleteSqlDefault="true"
 - transform:inputHrefs="PartsSupplier_SourceA.xmi#mmuuid/bc400080-1284-
1eec-8518-c32201e76066"
 - transform:inputXmiUuids="bc400080-1284-1eec-8518-c32201e76066"
 - transform:insertAllowed="true"
 - transform:insertSqlDefault="true"
 - relational:materialized="false"
 - transform:selectSql="SELECT
PartSupplier_Oracle.SUPPLIER_PARTS.SUPPLIER_ID,
PartSupplier_Oracle.SUPPLIER_PARTS.PART_ID,
PartSupplier_Oracle.SUPPLIER_PARTS.QUANTITY,
PartSupplier_Oracle.SUPPLIER_PARTS.SHIPPER_ID,
PartsSupplier_SQLServer.SUPPLIER.SUPPLIER_NAME,
PartsSupplier_SQLServer.SUPPLIER.SUPPLIER_STATUS,
PartsSupplier_SQLServer.SUPPLIER.SUPPLIER_CITY,
PartsSupplier_SQLServer.SUPPLIER.SUPPLIER_STATE FROM
PartSupplier_Oracle.SUPPLIER_PARTS, PartsSupplier_SQLServer.SUPPLIER WHERE
PartSupplier_Oracle.SUPPLIER_PARTS.SUPPLIER_ID =
PartsSupplier_SQLServer.SUPPLIER.SUPPLIER_ID"
 - relational:supportsUpdate="true"
 - relational:system="false"
 - transform:updateAllowed="true"
 - transform:updateSqlDefault="true"
 - xmi:uuid="2473dbc0-128c-1eec-8518-c32201e76066"
 SUPPLIER_ID jcr:primaryType="relational:column"
 - jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
 - jcr:uuid="5f62a519-7948-4c9d-95df-131b489cec8e"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="PartSupplier_SourceB.xmi#mmuuid/55e12d01-
1275-1eec-8518-c32201e76066"
 - transform:inputXmiUuids="55e12d01-1275-1eec-8518-c32201e76066"
 - relational:length="10"

Chapter 11. Red Hat JBoss Data Virtualization Relational Model Sequencer

41

 - relational:nativeType="VARCHAR2"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="143ff680-1291-1eec-8518-c32201e76066"
 PART_ID jcr:primaryType="relational:column"
 - jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
 - jcr:uuid="bcce191f-acfd-48b9-8be8-ea04c0d37283"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:fixedLength="true"
 - transform:inputHrefs="PartSupplier_SourceB.xmi#mmuuid/54ed0902-
1275-1eec-8518-c32201e76066"
 - transform:inputXmiUuids="54ed0902-1275-1eec-8518-c32201e76066"
 - relational:length="4"
 - relational:nativeType="CHAR"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="1d9b97c0-1291-1eec-8518-c32201e76066"
 QUANTITY jcr:primaryType="relational:column"
 - jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
 - jcr:uuid="126d6138-ce5e-40e3-92d9-48a239453dbb"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:fixedLength="true"
 - transform:inputHrefs="PartSupplier_SourceB.xmi#mmuuid/55e12d02-
1275-1eec-8518-c32201e76066"
 - transform:inputXmiUuids="55e12d02-1275-1eec-8518-c32201e76066"
 - relational:nativeType="NUMBER"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:precision="3"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"

Development Guide Volume 6: Metadata Repository Reference Guide

42

 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#short"
 - relational:typeName="short"
 - relational:typeXmiUuid="5bbcf140-b9ae-1e21-b812-969c8fc8b016"
 - relational:updateable="true"
 - xmi:uuid="250ef100-1291-1eec-8518-c32201e76066"
 SHIPPER_ID jcr:primaryType="relational:column"
 - jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
 - jcr:uuid="d9856363-6950-40ea-9c9a-44c4af43ec38"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:fixedLength="true"
 - transform:inputHrefs="PartSupplier_SourceB.xmi#mmuuid/54ed0903-
1275-1eec-8518-c32201e76066"
 - transform:inputXmiUuids="54ed0903-1275-1eec-8518-c32201e76066"
 - relational:nativeType="NUMBER"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:precision="2"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#short"
 - relational:typeName="short"
 - relational:typeXmiUuid="5bbcf140-b9ae-1e21-b812-969c8fc8b016"
 - relational:updateable="true"
 - xmi:uuid="2b8e2640-1291-1eec-8518-c32201e76066"
 SUPPLIER_NAME jcr:primaryType="relational:column"
 - jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
 - jcr:uuid="d0b9d5cc-f95a-4e97-a3f9-59571f58e206"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="PartsSupplier_SourceA.xmi#mmuuid/bc400084-
1284-1eec-8518-c32201e76066"
 - transform:inputXmiUuids="bc400084-1284-1eec-8518-c32201e76066"
 - relational:length="30"
 - relational:nativeType="varchar"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="34da8540-1291-1eec-8518-c32201e76066"
 SUPPLIER_STATUS jcr:primaryType="relational:column"

Chapter 11. Red Hat JBoss Data Virtualization Relational Model Sequencer

43

 - jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
 - jcr:uuid="06253965-9f6f-4d6e-8219-2eb70a2745ed"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:fixedLength="true"
 - transform:inputHrefs="PartsSupplier_SourceA.xmi#mmuuid/bc400083-
1284-1eec-8518-c32201e76066"
 - transform:inputXmiUuids="bc400083-1284-1eec-8518-c32201e76066"
 - relational:nativeType="numeric"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:precision="2"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#short"
 - relational:typeName="short"
 - relational:typeXmiUuid="5bbcf140-b9ae-1e21-b812-969c8fc8b016"
 - relational:updateable="true"
 - xmi:uuid="3c4dde80-1291-1eec-8518-c32201e76066"
 SUPPLIER_CITY jcr:primaryType="relational:column"
 - jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
 - jcr:uuid="a9cfd1fd-1a99-4b7d-83dc-3dbeb86c7f0a"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="PartsSupplier_SourceA.xmi#mmuuid/bc400081-
1284-1eec-8518-c32201e76066"
 - transform:inputXmiUuids="bc400081-1284-1eec-8518-c32201e76066"
 - relational:length="30"
 - relational:nativeType="varchar"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="43c137c0-1291-1eec-8518-c32201e76066"
 SUPPLIER_STATE jcr:primaryType="relational:column"
 - jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
 - jcr:uuid="8e040c5d-acf8-407f-a090-4bc1feac45cc"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"

Development Guide Volume 6: Metadata Repository Reference Guide

44

 - transform:inputHrefs="PartsSupplier_SourceA.xmi#mmuuid/bc400082-
1284-1eec-8518-c32201e76066"
 - transform:inputXmiUuids="bc400082-1284-1eec-8518-c32201e76066"
 - relational:length="2"
 - relational:nativeType="varchar"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="4a4faf40-1291-1eec-8518-c32201e76066"

11.15. Configuring a Red Hat JBoss Data Virtualization Relational Model
Sequencer

1. Include the relevant libraries

Include modeshape-sequencer-teiid-VERSION.jar in your application.

2. Choose one of the following for sequencing configuration

A. Define sequencing configuration based on standard example provided in SOA-
ROOT/eds/modeshape/resources/modeshape-config-standard.xml:

<mode:sequencer jcr:name="Teiid Model Sequencer"
mode:classname="org.modeshape.sequencer.teiid.ModelSequencer">
 <mode:description>
 Sequences Teiid relational models (e.g., *.xmi) loaded under
'/files', extracting the structure defined in the models.
 </mode:description>
 <mode:pathExpression>
 eds-store:default:/files(//)(*.xmi[*])/jcr:content[@jcr:data] =>
eds-store:default:/sequenced/teiid/models$1
 </mode:pathExpression>
</mode:sequencer>

B. Configure via org.modeshape.jcr.JcrConfiguration:

JcrConfiguration config = ...

config.sequencer("Teiid Model Sequencer")
 .usingClass("org.modeshape.sequencer.teiid.ModelSequencer")
 .loadedFromClasspath()
 .setDescription("Sequences Teiid relational models (e.g.,
*.xmi) loaded under '/files', extracting the structure defined in
the models.")
 .sequencingFrom("/files(//)
(*.xmi[*])/jcr:content[@jcr:data]")
 .andOutputtingTo("/sequenced/teiid/models$1");

Chapter 11. Red Hat JBoss Data Virtualization Relational Model Sequencer

45

Note

Refer to SOA-ROOT/eds/modeshape/resources/modeshape-config-standard.xml
for more information.

Development Guide Volume 6: Metadata Repository Reference Guide

46

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer

12.1. VDB Sequencer

Teiid Designer is a visual tool that enables rapid, model-driven definition, integration, management and
testing of Red Hat JBoss Data Virtualization without programming using the Red Hat JBoss Data
Virtualization runtime engine. It is capable of modeling several different kinds of data structures, but the most
common and widely-used are relational models that describe a relational database schema, including the
catalogs/schemas, tables, views, columns, primary keys, foreign keys, indexes, procedures, procedure
results, procedure results, and logical relationships. Teiid Designer can reverse-engineer a relational model
from a JDBC relational database or DDL file. It can also define "virtual" models that are transformations of
other models (where the transformations are defined in terms of SQL select, insert, update, and delete
statements). These models can then be packaged into a virtual database, which can be deployed to a Red
Hat JBoss Data Virtualization runtime engine.

Red Hat JBoss Data Virtualization is a high-performance database virtualization engine that allows JDBC and
ODBC client applications access the virtual database as if it were a real database, using relational, XML,
XQuery and procedural queries. Red Hat JBoss Data Virtualization dynamically (and in real-time) figures out
how to answer the queries and operations issued by clients by efficiently accessing and manipulating the data
inside the underlying data sources. The sophisticated engine is able to plan and optimize these operations,
even when multiple heterogeneous relational and non-relational data sources must be accessed to obtain the
required information.

The Red Hat JBoss Data Virtualization VDB sequencer parses the VDB archive files produced by the Teiid
Designer, and extracts the structured relational data model described by each of the contained XMI files.
This means that when VDB files are uploaded into a ModeShape repository, the sequencer writes to the
repository all this virtual database and relational metadata contained in the VDB, where it can be queried and
accessed by JCR , RESTful, and even JDBC clients.

The VdbSequencer has no properties for changing behavior.

12.2. VDB Sequencer UUIDs and References

A Red Hat JBoss Data Virtualization virtual database file is entirely self-contained: it contains all of the models
required for the VDB. No model can contain references to objects outside of these models, so the entire VDB
archive is consistent and complete. When the sequencer extracts the relational information from these
models, it automatically resolves all references. Also, the resulting content is independent of any the content
from all other previous sequencing operations, including that of the Red Hat JBoss Data Virtualization Model
Sequencer.

12.3. VDB Sequencer Node Types

The VDB sequencer follows JCR best-practices by defining all nodes to have a primary type of
"nt:unstructured" (or a node type that extends "nt:unstructured"), meaning it is possible and valid
for any node to have any property (with single or multiple values). However, it is still useful to capture the
metadata about what that node represents, and so the sequencer use mixins for this.

The VDB sequencer reuses all of the node types from the Red Hat JBoss Data Virtualization Model
Sequencer, plus several new node types that are used for the VDB-specific metadata, as described below.
Note that these are non-normative definitions of the node types; see the CND files in the "modeshape-
sequencer-teiid" JAR file (or source) for the official definitions.

12.4. Content Node Definitions for the vdb Namespace

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer

47

12.4. Content Node Definitions for the vdb Namespace

The compact node definitions for the "vdb" namespace are as follows:

<nt = "http://www.jcp.org/jcr/nt/1.0">
<xmi = "http://www.omg.org/XMI">
<vdb = "http://www.metamatrix.com/metamodels/VirtualDatabase">
<mmcore = "http://www.metamatrix.com/metamodels/Core">

//--

// N O D E T Y P E S
//--

[vdb:virtualDatabase] > nt:unstructured
 - vdb:description (string)
 - vdb:version (long) = '1'
 - vdb:preview (boolean) = 'false'
 - vdb:originalFile (string)
 - mmcore:sha1 (string)

[vdb:model] > xmi:model, mmcore:model
 - vdb:visible (boolean) = 'true'
 - vdb:checksum (long)
 - vdb:builtIn (boolean) = 'false'
 - vdb:pathInVdb (string)
 - vdb:sourceTranslator (string)
 - vdb:sourceJndiName (string)
 - vdb:sourceName (string)
 + vdb:markers (vdb:markers) = vdb:markers copy

[vdb:markers] > nt:unstructured
 + vdb:marker (vdb:marker) = vdb:marker copy sns

[vdb:marker] > nt:unstructured
 - vdb:severity (string) = 'WARNING' < 'WARNING','ERROR','INFO'
 - vdb:path (string)
 - vdb:message (string)

12.5. Red Hat JBoss Data Virtualization VDB Sequencer Example

Here is a representation of the nodes output by the sequencing of an example "qe.2.vdb" virtual database:

qe jcr:primaryType="vdb:virtualDatabase"
 - jcr:mixinTypes=["mix:referenceable", "mode:derived"]
 - jcr:uuid="1d110326-f8e9-4f5e-becd-2f3e4d63296e"
 - mode:derivedAt="2011-05-13T13:12:03.925Z"
 - mode:derivedFrom="/files/foo.vdb"
 - vdb:description="This VDB is for testing Recursive XML documents and Text
Sources"
 - vdb:originalFile="/vdb/qe.vdb"
 - vdb:preview="false"
 - mode:sha1="4cec9166f20a8d3772a1cfddb493329e35c3adb7"
 - vdb:version="2"

Development Guide Volume 6: Metadata Repository Reference Guide

48

 text jcr:primaryType="vdb:model" jcr:mixinTypes=
["mmcore:model","mix:referenceable","xmi:referenceable"] jcr:uuid="5cffd0ee-
2edd-44af-8a8d-46459d849afe"
 - vdb:builtIn="true"
 - vdb:checksum="958072371"
 - mmcore:maxSetSize="100"
 - mmcore:modelType="PHYSICAL"
 - mmcore:originalFile="/vdb/qe.vdb"
 - vdb:pathInVdb="QuickText/text.xmi"
 -
mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"
 - mmcore:producerName="Teiid Designer"
 - mmcore:producerVersion="7.0.0.v20100807-1026-H168-M1"
 - mode:sha1="893accdcb0745f8061626b4ab60079daeb3eb74f"
 - vdb:sourceJndiName="empdata-file"
 - vdb:sourceName="text"
 - vdb:sourceTranslator="file"
 - mmcore:supportsDistinct="true"
 - mmcore:supportsJoin="true"
 - mmcore:supportsOrderBy="true"
 - mmcore:supportsOuterJoin="true"
 - mmcore:supportsWhereAll="true"
 - xmi:uuid="ba1f1ca6-b9a7-44f8-9d89-8d9ba9f801ba"
 - xmi:version="2.0"
 - mmcore:visible="true"
 - vdb:visible="true"
 vdb:markers jcr:primaryType="vdb:markers"
 vdb:marker jcr:primaryType="vdb:marker"
 - vdb:message="Missing or invalid Length on column with a
string/character datatype (See validation Preferences)"
 - vdb:path="getTextFiles/NewProcedureResult/filePath"
 - vdb:severity="WARNING"
 XMLSchema jcr:primaryType="mmcore:import" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="1787cc24-d545-437c-a7ef-
e18569eec9c3"
 - mmcore:modelType="TYPE"
 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"
 - xmi:uuid="mmuuid:5a23faba-871a-490e-9799-efdffea80b6b"
 SimpleDatatypes-instance jcr:primaryType="mmcore:import" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="4e11258b-06e2-4d39-8a10-
7e6b8e02dc37"
 - mmcore:modelType="TYPE"
 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"
 - xmi:uuid="mmuuid:b09c455c-1c5a-4de4-8373-e823482ce517"
 getTextFiles jcr:primaryType="relational:procedure" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="137968e0-e375-43c3-b25a-
03953ff975ff"
 - xmi:uuid="bf60b5cb-fd8c-474a-9f4c-68eb42ca40f2"
 pathAndPattern jcr:primaryType="relational:procedureParameter"
jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="2a2de9a3-
561d-4d14-82cf-8155b965d2bb"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer

49

 - xmi:uuid="f44bb026-8bdf-413b-b705-65dcd40bf437"
 NewProcedureResult jcr:primaryType="relational:procedureResult"
jcr:mixinTypes=["mix:referenceable","xmi:referenceable"] jcr:uuid="b5d7be35-
9a73-477e-ab20-5a4b9248da9f"
 - xmi:uuid="eb2f5c65-bede-4dd2-8c85-441c240ebca1"
 file jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="2ebe184b-25ce-4cb4-89f4-
0e6289112c68"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 -
relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-
instance#clob"
 - relational:typeName="clob"
 - relational:typeXmiUuid="559646c0-4941-1ece-b22b-f49159d22ad3"
 - relational:updateable="true"
 - xmi:uuid="092a2a85-7ec6-40da-9437-afd0812eccbb"
 filePath jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="ec43aa0d-20df-49ff-8b4f-
ed95961aa9a5"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="232d5fd7-e5a6-49a7-bd5f-e5d6b7e753a3"
 Employees jcr:primaryType="vdb:model" jcr:mixinTypes=
["mmcore:model","mix:referenceable","xmi:referenceable"] jcr:uuid="88ca643b-
ebab-43a1-902c-462f3ea17fd8"
 - vdb:builtIn="true"
 - vdb:checksum="1269937912"
 - mmcore:maxSetSize="100"
 - mmcore:modelType="VIRTUAL"
 - mmcore:originalFile="/vdb/qe.vdb"
 - vdb:pathInVdb="QuickEmployees/Employees.xmi"
 -
mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"
 - mmcore:producerName="Teiid Designer"
 - mmcore:producerVersion="7.0.0.v20100807-1026-H168-M1"

Development Guide Volume 6: Metadata Repository Reference Guide

50

 - mode:sha1="a63c108098232739aad1d6ab4cf0d3cc1911aa12"
 - mmcore:supportsDistinct="true"
 - mmcore:supportsJoin="true"
 - mmcore:supportsOrderBy="true"
 - mmcore:supportsOuterJoin="true"
 - mmcore:supportsWhereAll="true"
 - xmi:uuid="9c034c0d-10c7-4fa5-beae-ff602bfcf88e"
 - xmi:version="2.0"
 - mmcore:visible="true"
 - vdb:visible="true"
 vdb:markers jcr:primaryType="vdb:markers"
 vdb:marker jcr:primaryType="vdb:marker"
 - vdb:message="Possible cross-join: Group/s '[f, emp]' are not
joined either directly or transitively to other groups through a join
criteria. Check all queries in the transformation."
 - vdb:path="EmpTable"
 - vdb:severity="WARNING"
 text jcr:primaryType="mmcore:import" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="ee4b288a-47b0-4c81-98e5-
ddf01f8a4cda"
 - mmcore:modelType="PHYSICAL"
 -
mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"
 - xmi:uuid="mmuuid:46ba6b40-bb81-43ba-996e-6f3ebaffea3b"
 SimpleDatatypes-instance jcr:primaryType="mmcore:import" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="98b1dbae-5ad6-4439-adb0-
64d6e5d0a42f"
 - mmcore:modelType="TYPE"
 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"
 - xmi:uuid="mmuuid:36a2080b-7243-445c-a153-79a19d42f558"
 XMLSchema jcr:primaryType="mmcore:import" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="71eba18c-195e-47ec-b925-
415f981bcd45"
 - mmcore:modelType="TYPE"
 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"
 - xmi:uuid="mmuuid:ea4a1ff7-fa32-4348-b5a2-192c554b70a4"
 EmpTable jcr:primaryType="relational:baseTable" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="6209d827-62eb-4909-8e66-edbf615a42db"
 - transform:deleteAllowed="true"
 - transform:deleteSqlDefault="true"
 - transform:inputHrefs="../QuickText/text.xmi#mmuuid/bf60b5cb-fd8c-
474a-9f4c-68eb42ca40f2"
 - transform:inputNames="getTextFiles"
 - transform:inputXmiUuids="bf60b5cb-fd8c-474a-9f4c-68eb42ca40f2"
 - transform:inputs="137968e0-e375-43c3-b25a-03953ff975ff"
 - transform:insertAllowed="true"
 - transform:insertSqlDefault="true"
 - relational:materialized="false"
 - transform:selectSql="SELECT * FROM (EXEC
text.getTextFiles('EmpData.txt')) AS f, TEXTTABLE(F.file COLUMNS lastName
string, firstName string, middleName string, empId biginteger, department
string, annualSalary double, title string, homePhone string, mgrId
biginteger, street string, city string, state string, ZipCode string HEADER
3) AS emp"
 - relational:supportsUpdate="true"

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer

51

 - relational:system="false"
 - transform:updateAllowed="true"
 - transform:updateSqlDefault="true"
 - xmi:uuid="6179a495-7b7e-4e12-9da3-998e4f709de4"
 file jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="de7902d1-9782-4137-a002-85681e45c0c6"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="../QuickText/text.xmi#mmuuid/092a2a85-7ec6-
40da-9437-afd0812eccbb"
 - transform:inputNames="file"
 - transform:inputXmiUuids="092a2a85-7ec6-40da-9437-afd0812eccbb"
 - transform:inputs="2ebe184b-25ce-4cb4-89f4-0e6289112c68"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 -
relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-
instance#clob"
 - relational:typeName="clob"
 - relational:typeXmiUuid="559646c0-4941-1ece-b22b-f49159d22ad3"
 - relational:updateable="true"
 - xmi:uuid="5ca79549-8edc-4972-9d05-cb3066d41676"
 filePath jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="4b19a0f6-d65b-4b5b-845f-f30027947f6c"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="../QuickText/text.xmi#mmuuid/232d5fd7-e5a6-
49a7-bd5f-e5d6b7e753a3"
 - transform:inputNames="filePath"
 - transform:inputXmiUuids="232d5fd7-e5a6-49a7-bd5f-e5d6b7e753a3"
 - transform:inputs="ec43aa0d-20df-49ff-8b4f-ed95961aa9a5"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="fea43d8f-94e4-41f3-9743-3286f8c28590"
 lastName jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="6672adb4-1ded-4289-989d-
3b707fc7384b"

Development Guide Volume 6: Metadata Repository Reference Guide

52

 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="f0b80cce-dd11-44b7-ab2d-4e382befd701"
 firstName jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="13986096-1e2f-483b-b603-
3e7098bc0897"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="aae0eea7-fb09-4b46-9a41-8815bf5331db"
 middleName jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="53ba886e-e6b7-4771-8a70-
bf0e6c9cad63"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="74333281-f3f8-4907-8ac1-4c819dfc76a8"
 empId jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="80fcf4ac-d51d-4d24-b84f-

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer

53

3db7dbbcfa2b"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 -
relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-
instance#biginteger"
 - relational:typeName="biginteger"
 - relational:typeXmiUuid="822b9a40-a066-1e26-9b08-d6079ebe1f0d"
 - relational:updateable="true"
 - xmi:uuid="5e42fcfc-fe7a-476d-8b55-8a5ce0cd7050"
 department jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="8c805831-d1f9-4070-9e4b-
a95234e6a7d7"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="36ea6df0-ddc0-4311-be2e-f4a6cbe2b580"
 annualSalary jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="d9ee87bd-3567-4446-80f8-
17bead52dd4b"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#double"
 - relational:typeName="double"
 - relational:typeXmiUuid="1f18b140-c4a3-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="79c7b080-c9de-42c9-b252-a449d44e5d34"
 title jcr:primaryType="relational:column" jcr:mixinTypes=

Development Guide Volume 6: Metadata Repository Reference Guide

54

["mix:referenceable","xmi:referenceable"] jcr:uuid="794a1e06-6160-4255-8f7a-
23f30e5e9af5"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="001ac238-21c6-45f3-8959-3fa0c7bea6c6"
 homePhone jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="24edebac-093d-4aaf-8063-
2b4e48c9f08d"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="432c3937-e7ad-40de-9cb4-deb9d52511b2"
 mgrId jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="c61173a4-27c8-41c2-bebf-
05e24fa82f94"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 -
relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-
instance#biginteger"
 - relational:typeName="biginteger"
 - relational:typeXmiUuid="822b9a40-a066-1e26-9b08-d6079ebe1f0d"
 - relational:updateable="true"

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer

55

 - xmi:uuid="9c7b26dc-bbf6-4b83-9f03-438ad6a0b3f0"
 street jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="ae505cbf-13bd-4c87-b020-
526dece5c8b9"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="1181dfe5-0d2b-4331-b10b-5d6409dd6cbe"
 city jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="7f32a1c1-622f-40ff-8005-
ab42bb02a857"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="60792162-1659-416b-a6da-b78119429247"
 state jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="41067115-320e-44e3-a70a-
8a71e85fa8d8"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"

Development Guide Volume 6: Metadata Repository Reference Guide

56

 - relational:updateable="true"
 - xmi:uuid="67ed3d16-7fd6-43bb-b16a-61579a49db91"
 ZipCode jcr:primaryType="relational:column" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="93c47676-fec3-46fa-aa19-
777be6136de2"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="2c2267b6-bddf-4d42-aef8-7d24e7527b65"
 EmpV jcr:primaryType="vdb:model" jcr:mixinTypes=
["mmcore:model","mix:referenceable","xmi:referenceable"] jcr:uuid="c9722b47-
03ad-4cdd-81d1-d75e639517a1"
 - vdb:builtIn="true"
 - vdb:checksum="2273245105"
 - mmcore:maxSetSize="100"
 - mmcore:modelType="VIRTUAL"
 - mmcore:originalFile="/vdb/qe.vdb"
 - vdb:pathInVdb="QuickEmployees/EmpV.xmi"
 -
mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"
 - mmcore:producerName="Teiid Designer"
 - mmcore:producerVersion="7.0.0.v20100807-1026-H168-M1"
 - mode:sha1="502cc1e3dbec4c5cd880662473e8dc2a668d5e78"
 - mmcore:supportsDistinct="true"
 - mmcore:supportsJoin="true"
 - mmcore:supportsOrderBy="true"
 - mmcore:supportsOuterJoin="true"
 - mmcore:supportsWhereAll="true"
 - xmi:uuid="e17f3917-d880-4bad-9a19-7d0f8f3d2135"
 - xmi:version="2.0"
 - mmcore:visible="true"
 - vdb:visible="true"
 vdb:markers jcr:primaryType="vdb:markers"
 vdb:marker jcr:primaryType="vdb:marker"
 - vdb:message="Missing or invalid Precision on column with a numeric
datatype (See validation Preferences)"
 - vdb:path="EmpTable/empId"
 - vdb:severity="WARNING"
 XMLSchema jcr:primaryType="mmcore:import" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="54a5401e-3bab-4918-81cb-
4a278d0263c4"
 - mmcore:modelType="TYPE"
 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"
 - xmi:uuid="mmuuid:deb854d2-af4d-4158-9846-4ac17f207291"

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer

57

 SimpleDatatypes-instance jcr:primaryType="mmcore:import" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="699f153e-7301-4ef4-bffa-
7522475f8c0a"
 - mmcore:modelType="TYPE"
 - mmcore:primaryMetamodelUri="http://www.eclipse.org/xsd/2002/XSD"
 - xmi:uuid="mmuuid:6471e823-eeee-46e8-8d7d-fb00b336cfe7"
 Employees jcr:primaryType="mmcore:import" jcr:mixinTypes=
["mix:referenceable","xmi:referenceable"] jcr:uuid="5f672add-38cd-469f-a180-
ac75306298b5"
 - mmcore:modelType="VIRTUAL"
 -
mmcore:primaryMetamodelUri="http://www.metamatrix.com/metamodels/Relational"
 - xmi:uuid="mmuuid:5806eb6e-fc70-4ad7-b7ff-13f14ec00ca2"
 EmpTable jcr:primaryType="relational:baseTable" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="0568b4b9-44c9-4798-9bee-662094015d67"
 - transform:deleteAllowed="true"
 - transform:deleteSqlDefault="true"
 - transform:inputHrefs="Employees.xmi#mmuuid/6179a495-7b7e-4e12-9da3-
998e4f709de4"
 - transform:inputNames="EmpTable"
 - transform:inputXmiUuids="6179a495-7b7e-4e12-9da3-998e4f709de4"
 - transform:inputs="6209d827-62eb-4909-8e66-edbf615a42db"
 - transform:insertAllowed="true"
 - transform:insertSqlDefault="true"
 - relational:materialized="false"
 - transform:selectSql="SELECT "Employees.EmpTable.lastName",
"Employees.EmpTable.firstName", "Employees.EmpTable.middleName",
"Employees.EmpTable.empId", "Employees.EmpTable.department",
"Employees.EmpTable.annualSalary", "Employees.EmpTable.title",
"Employees.EmpTable.homePhone", "Employees.EmpTable.mgrId",
"Employees.EmpTable.street", "Employees.EmpTable.city",
"Employees.EmpTable.state", "Employees.EmpTable.ZipCode" FROM
"Employees.EmpTable""
 - relational:supportsUpdate="true"
 - relational:system="false"
 - transform:updateAllowed="true"
 - transform:updateSqlDefault="true"
 - xmi:uuid="92cbc96b-f080-42d6-85dc-95cd07edd682"
 lastName jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="cf26def7-de5a-4a1a-8276-f48d988439e4"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/f0b80cce-dd11-44b7-
ab2d-4e382befd701"
 - transform:inputNames="lastName"
 - transform:inputXmiUuids="f0b80cce-dd11-44b7-ab2d-4e382befd701"
 - transform:inputs="6672adb4-1ded-4289-989d-3b707fc7384b"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"

Development Guide Volume 6: Metadata Repository Reference Guide

58

 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="a4c30553-7f10-445b-971b-c54cee534639"
 firstName jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="5b932651-6de2-4e89-917f-0d515a5270b0"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/aae0eea7-fb09-4b46-
9a41-8815bf5331db"
 - transform:inputNames="firstName"
 - transform:inputXmiUuids="aae0eea7-fb09-4b46-9a41-8815bf5331db"
 - transform:inputs="13986096-1e2f-483b-b603-3e7098bc0897"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="a48c7515-d271-45ed-8920-22cf8c9d01bb"
 middleName jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="ac7511b4-4b3d-4d42-886e-26ea5b669b5b"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/74333281-f3f8-4907-
8ac1-4c819dfc76a8"
 - transform:inputNames="middleName"
 - transform:inputXmiUuids="74333281-f3f8-4907-8ac1-4c819dfc76a8"
 - transform:inputs="53ba886e-e6b7-4771-8a70-bf0e6c9cad63"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="1d792d5e-ae70-4855-b59f-3eb7dceeb5a3"
 empId jcr:primaryType="relational:column" jcr:mixinTypes=

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer

59

["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="d1a61bb1-f94d-40c9-bee7-f91d12b26d80"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/5e42fcfc-fe7a-476d-
8b55-8a5ce0cd7050"
 - transform:inputNames="empId"
 - transform:inputXmiUuids="5e42fcfc-fe7a-476d-8b55-8a5ce0cd7050"
 - transform:inputs="80fcf4ac-d51d-4d24-b84f-3db7dbbcfa2b"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 -
relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-
instance#biginteger"
 - relational:typeName="biginteger"
 - relational:typeXmiUuid="822b9a40-a066-1e26-9b08-d6079ebe1f0d"
 - relational:updateable="true"
 - xmi:uuid="d9cc45f7-c9de-44f9-b22e-3674b1a7d33c"
 department jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="46c5910c-0cb0-481c-bbad-577e52ac9c96"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/36ea6df0-ddc0-4311-
be2e-f4a6cbe2b580"
 - transform:inputNames="department"
 - transform:inputXmiUuids="36ea6df0-ddc0-4311-be2e-f4a6cbe2b580"
 - transform:inputs="8c805831-d1f9-4070-9e4b-a95234e6a7d7"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="19932ef1-4794-496d-a98b-027971cb5599"
 annualSalary jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="61cb7c5a-c7f8-420d-b84a-0a4cabceed81"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/79c7b080-c9de-42c9-

Development Guide Volume 6: Metadata Repository Reference Guide

60

b252-a449d44e5d34"
 - transform:inputNames="annualSalary"
 - transform:inputXmiUuids="79c7b080-c9de-42c9-b252-a449d44e5d34"
 - transform:inputs="d9ee87bd-3567-4446-80f8-17bead52dd4b"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#double"
 - relational:typeName="double"
 - relational:typeXmiUuid="1f18b140-c4a3-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="925999e2-15a5-4728-a76e-e0c9ae235d80"
 title jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="e2db3e5e-d2c9-462c-9581-24c700792f0c"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/001ac238-21c6-45f3-
8959-3fa0c7bea6c6"
 - transform:inputNames="title"
 - transform:inputXmiUuids="001ac238-21c6-45f3-8959-3fa0c7bea6c6"
 - transform:inputs="794a1e06-6160-4255-8f7a-23f30e5e9af5"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="36cf25e4-5164-4c9f-81a9-572d0fc11e8b"
 homePhone jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="6ef5a18f-db08-44e6-beb0-d7e6842f3ca5"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/432c3937-e7ad-40de-
9cb4-deb9d52511b2"
 - transform:inputNames="homePhone"
 - transform:inputXmiUuids="432c3937-e7ad-40de-9cb4-deb9d52511b2"
 - transform:inputs="24edebac-093d-4aaf-8063-2b4e48c9f08d"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer

61

 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="8a782b60-0296-4e10-85b1-e0ec03b34d00"
 mgrId jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="11a41f81-5a32-434a-8cd9-04bbbdc4b00c"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/9c7b26dc-bbf6-4b83-
9f03-438ad6a0b3f0"
 - transform:inputNames="mgrId"
 - transform:inputXmiUuids="9c7b26dc-bbf6-4b83-9f03-438ad6a0b3f0"
 - transform:inputs="c61173a4-27c8-41c2-bebf-05e24fa82f94"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 -
relational:typeHref="http://www.metamatrix.com/metamodels/SimpleDatatypes-
instance#biginteger"
 - relational:typeName="biginteger"
 - relational:typeXmiUuid="822b9a40-a066-1e26-9b08-d6079ebe1f0d"
 - relational:updateable="true"
 - xmi:uuid="4f0439b3-8899-44f9-99a6-30971c4a563f"
 street jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="8b7dea23-1a6b-4a76-9fbf-5b4770b8cac9"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/1181dfe5-0d2b-4331-
b10b-5d6409dd6cbe"
 - transform:inputNames="street"
 - transform:inputXmiUuids="1181dfe5-0d2b-4331-b10b-5d6409dd6cbe"
 - transform:inputs="ae505cbf-13bd-4c87-b020-526dece5c8b9"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="c68dfbeb-bc26-4932-ae0b-d354ed000a4e"

Development Guide Volume 6: Metadata Repository Reference Guide

62

 city jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="a1c94897-33ae-4d9e-9dd5-7c9a09e7ebf2"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/60792162-1659-416b-
a6da-b78119429247"
 - transform:inputNames="city"
 - transform:inputXmiUuids="60792162-1659-416b-a6da-b78119429247"
 - transform:inputs="7f32a1c1-622f-40ff-8005-ab42bb02a857"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="b27874ae-4c7b-4545-84f1-5d95c6a70b3a"
 state jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="d5fded76-1ddc-4a87-af76-a566bb5919dc"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/67ed3d16-7fd6-43bb-
b16a-61579a49db91"
 - transform:inputNames="state"
 - transform:inputXmiUuids="67ed3d16-7fd6-43bb-b16a-61579a49db91"
 - transform:inputs="41067115-320e-44e3-a70a-8a71e85fa8d8"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="248a034b-7331-46ee-a4a4-5db5176ce1bc"
 ZipCode jcr:primaryType="relational:column" jcr:mixinTypes=
["transform:transformed","mix:referenceable","xmi:referenceable"]
jcr:uuid="a73b2a7c-9b19-4697-ae83-f7be5cca7778"
 - relational:autoIncremented="false"
 - relational:caseSensitive="true"
 - relational:currency="false"
 - relational:distinctValueCount="-1"
 - transform:inputHrefs="Employees.xmi#mmuuid/2c2267b6-bddf-4d42-

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer

63

aef8-7d24e7527b65"
 - transform:inputNames="ZipCode"
 - transform:inputXmiUuids="2c2267b6-bddf-4d42-aef8-7d24e7527b65"
 - transform:inputs="93c47676-fec3-46fa-aa19-777be6136de2"
 - relational:length="10"
 - relational:nullValueCount="-1"
 - relational:nullable="NULLABLE"
 - relational:radix="10"
 - relational:searchability="SEARCHABLE"
 - relational:selectable="true"
 - relational:signed="true"
 - relational:typeHref="http://www.w3.org/2001/XMLSchema#string"
 - relational:typeName="string"
 - relational:typeXmiUuid="bf6c34c0-c442-1e24-9b01-c8207cd53eb7"
 - relational:updateable="true"
 - xmi:uuid="836656b4-30b1-4c57-a64b-f810763a4a0c"

12.6. Configuring a Red Hat JBoss Data Virtualization VDB Sequencer

1. Include the relevant libraries

Include modeshape-sequencer-teiid-VERSION.jar in your application.

2. Choose one of the following for sequencing configuration

A. Define sequencing configuration based on standard example provided in SOA-
ROOT/eds/modeshape/resources/modeshape-config-standard.xml:

<mode:sequencer jcr:name="Teiid VDB Sequencer"
mode:classname="org.modeshape.sequencer.teiid.VdbSequencer">
 <mode:description>
 Sequences Teiid Virtual Databases (e.g., *.vdb) loaded under
'/files', extracting the VDB metadata and the structure defined in
the VDB's relational models.
 </mode:description>
 <mode:pathExpression>
 eds-store:default:/files(//)(*.vdb[*])/jcr:content[@jcr:data] =>
eds-store:default:/sequenced/teiid/vdbs$1
 </mode:pathExpression>
</mode:sequencer>

B. Configure via org.modeshape.jcr.JcrConfiguration:

JcrConfiguration config = ...

config.sequencer("Teiid VDB Sequencer")
 .usingClass("org.modeshape.sequencer.teiid.VdbSequencer")
 .loadedFromClasspath()
 .setDescription("Sequences Teiid Virtual Databases (e.g.,
*.vdb) loaded under '/files', extracting the VDB metadata and the
structure defined in the VDB's relational models.")
 .sequencingFrom("/files(//)
(*.vdb[*])/jcr:content[@jcr:data]")
 .andOutputtingTo("/sequenced/teiid/vdbs$1");

Development Guide Volume 6: Metadata Repository Reference Guide

64

Note

Refer to SOA-ROOT/eds/modeshape/resources/modeshape-config-standard.xml
for more information.

Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer

65

Chapter 13. Red Hat JBoss Data Virtualization Text Extractor

13.1. Text Extractor

The TeiidVdbTextExtractor class is an implementation of TextExtractor that extracts from Red Hat
JBoss Data Virtualization virtual database (i.e., ".vdb") files the virtual database's logical name, description,
and version, plus the logical name, description, source name, source translator name, and JNDI name for
each of the virtual database's models.

13.2. Configuring Your Text Extractor

This sequencer is not enabled by default, but it is very easy to add this text extractor to the ModeShape
configuration. To do so in a configuration file, add the following fragment under the "<mode:textExtractors>"
element (which should be immediately under the "<configuration>" root element):

<mode:textExtractor jcr:name="VDB Text Extractors">
 <mode:description>Extract text from Red Hat JBoss Data Virtualization VDB
files</mode:description>

<mode:classname>org.modeshape.extractor.teiid.TeiidVdbTextExtractor</mode:cl
assname>
</mode:textExtractor>

Then include the "modeshape-sequencer-teiid-VERSION.jar" file in your application.

Development Guide Volume 6: Metadata Repository Reference Guide

66

Chapter 14. Custom Text Extractors

14.1. Custom Extractors

Creating a custom text extractor involves the following steps:

Implement the TextExtractor interface with your own implementation, and create unit tests to verify the
functionality and expected behavior; and

Deploy the JAR file with your implementation (as well as any dependencies), and make them available to
ModeShape in your application via ModeShape's configuration.

Chapter 14. Custom Text Extractors

67

Chapter 15. Web Console

15.1. Web Console

The Web Console is a tool that allows system administrators to monitor and configure services deployed
within a running Enterprise Application Platform instance.

15.2. The Web Console and ModeShape

When Red Hat JBoss Data Virtualization is installed on top of the Red Hat JBoss Enterprise Application
Platform (EAP), a plug-in is added to the Web Console. This allows system administrators to monitor and
configure Data Virtualization services deployed within a running EAP instance via a web interface.

The following dashboards, specific to ModeShape, are available in the tree hierarchy presented on the left
side of the Admin Console:

ModeShape

Repositories

Sequencing Service

Sequencers

Connectors

15.3. Web Console: ModeShape Dashboard

From the ModeShape dashboard, system administrators have access to the following items:

Summary

Control

From the Control tab administrators can start/restart and stop the ModeShape engine.

15.4. ModeShape Dashboard: Control

Within the Web Console, system administrators can issue the following commands from the Control tab of
the ModeShape Dashboard:

Table 15.1. ModeShape Control Commands Available via the Web Console

Command Description
Start/restart Start the ModeShape engine (or restart the ModeShape engine if it is

already running).
Shutdown Stop the ModeShape engine.

15.5. Web Console: Repositories Dashboard

From the Repositories dashboard, the Summary tab displays all repositories and indicates whether they
are "UP" or "DOWN".

Development Guide Volume 6: Metadata Repository Reference Guide

68

For a selected repository, system administrators have access to the following items:

Summary

Configuration

Metrics

Note

The configuration cannot be modified via Web Console.

15.6. Repositories Dashboard: Metrics

Having selected a repository from the Summary tab of the Repositories dashboard, system administrators
can then monitor the following metrics from the Metrics tab for the selected repository:

Table 15.2. Repository Metrics Available via Web Console

Name Description
Total Active Sessions The number of JCR sessions that are currently active.

15.7. Web Console: Sequencing Service Dashboard

From the Sequencing Service dashboard, system administrators have access to the following items:

Summary

Metrics

15.8. Sequencing Service Dashboard: Metrics

Within the Web Console, system administrators can monitor the following metrics from the Metrics tab of
the Sequencing Service dashboard:

Table 15.3. Sequencing Throughput Metrics Available via the Web Console

Name Description
Number Of Nodes Sequenced The number of nodes sequenced.
Number of Nodes Skipped The number of nodes that were skipped because no sequencers

applied.

15.9. Web Console: Sequencers Dashboard

From the Sequencers dashboard, the Summary tab displays all sequencers deployed to the ModeShape
instance and indicates whether they are "UP" or "DOWN".

For a selected sequencer, system administrators have access to the following items:

Summary

Chapter 15. Web Console

69

Configuration

Note

The configuration cannot be modified via the Web Console.

15.10. Web Console: Connectors Dashboard

From the Connectors dashboard, the Summary tab displays all connectors and indicates whether they are
"UP" or "DOWN".

For a selected connector, system administrators have access to the following items:

Configuration

Metrics

Control

Note

The configuration cannot be modified via the Web Console.

15.11. Connectors Dashboard: Metrics

Having selected a connector from the Summary tab of the Connectors dashboard, system administrators
can then monitor the following metrics from the Metrics tab for the selected connector:

Table 15.4. Connector Utilization Metrics Available via Admin Console

Name Description
Total Connections in Use The number of connections in use.

15.12. Connectors Dashboard: Control

Having selected a connector from the Summary tab of the Connectors dashboard, system administrators
then have access to the following controls from the Control tab for the selected connector:

Table 15.5. Connector Control Commands Available via the Web Console

Name Description
Ping Ping the connector to test availability.

Development Guide Volume 6: Metadata Repository Reference Guide

70

Chapter 16. Modeshape Core Concepts

16.1. Modeshape is Deprecated

Warning

Modeshape is deprecated. New users should not adopt the features discussed in this section.

16.2. Core Modules

The following modules make up the core components of the system:

modeshape-jcr contains ModeShape's implementation of the JCR 2.0 API . If you're using ModeShape as
a JCR repository, this is the top-level dependency that you'll want to use. The module defines all required
dependencies, except for the repository connector(s) and any sequencer implementations needed by your
configuration. As we'll see later on, using ModeShape as a JCR repository is as easy as defining a
configuration, obtaining the JCR Repository object for your repository using the RepositoryFactory , and
then using the standard JCR API. This module also uses the JCR unit tests from the reference
implementation to verify the behavior of the ModeShape implementation. modeshape-jcr also provides
two essential connectors: the In-Memory Connector and the Federation Connector.

modeshape-jcr-api is a small module containing ModeShape's public API, which extends the standard
JCR API to expose ModeShape-specific functionality. For example, this module defines a Repositories
interface, implemented by the ModeShape JcrEngine, that defines a way to look up javax.jcr.Repository
instances by name. It also defines several new interfaces that extend the JCR 2.0 API's Query Object
Model with additional behavior, including more criteria options (such as BETWEEN, the mode:Depth and
jcr:path pseudo-columns, and the REFERENCE function), formal LIMIT and OFFSET clauses, and a set
query operator for unions, intersects, and difference queries. Client applications can depend only upon
this module without having to depend on the modeshape-jcr interfaces or its dependencies.

16.3. Other Essential Modules

Several other modules are also essential, but for the most part are hidden to client applications as they
provide components used within the JCR implementation:

modeshape-repository provides the core ModeShape graph engine and services for managing repository
connections, sequencers, MIME type detectors, and observation. If you're using ModeShape repositories
via our graph API rather than JCR , then this is where you'd start.

modeshape-cnd provides a self-contained utility for parsing CND (Compact Node Definition) files and
transforming the node definitions into a graph notation compatible with ModeShape's JCR
implementation.

modeshape-graph defines the Application Programming Interface (API) for ModeShape's low-level graph
model, including a fluent-style API for working with graph content. This module also defines the APIs
necessary to implement custom connectors, sequencers, and MIME type detectors.

modeshape-common is a small low-level library of common utilities and frameworks, including logging,
progress monitoring, internationalization/localization, text translators, component management, and class
loader factories.

16.4. Miscellaneous Optional Modules

Chapter 16. Modeshape Core Concepts

71

16.4. Miscellaneous Optional Modules

Most of the ModeShape modules, however, are optional extensions. The following modules are provided.

modeshape-clustering contains ModeShape's clustering components and are needed only when two or
more ModeShape engines are to be clustered together (so listeners in one session get notifications made
from within any of the engines). ModeShape clustering uses the powerful, flexible and mature JGroups
reliable multicast communication library. Simply enable clustering in ModeShape's configuration, include
this library, and start your cluster. Engines can be dynamically added and removed from the cluster.

modeshape-connector-filesystem is a ModeShape repository connector that accesses the files and folders
on (a part of) the local file system, providing that content in the form of nt:file and nt:folder nodes.
This connector does support updating the file system when changes are made to the nt:file and
nt:folder nodes. However, this connector does not support storing other kinds of nodes.

modeshape-connector-store-jpa is a ModeShape repository connector that stores content in a JDBC
database, using the Java Persistence API (JPA) and the very highly-regarded and widely-used Hibernate
implementation. This connector is capable of storing any kind of content, and dictates the schema in
which it stores the content. Therefore, this connector cannot be used to access the data in existing
created by/for other applications.

modeshape-connector-disk is a ModeShape repository connector that stores content in a ModeShape
specific file format on disk. Content is stored in a serialized representation for efficiency. It supports
referenceable nodes and can efficiently access nodes by UUID, unlike the File System Connector.

modeshape-sequencer-cnd is a ModeShape sequencer that extracts JCR node definitions from JCR
Compact Node Definition (CND) files.

modeshape-sequencer-ddl is a ModeShape sequencer that extracts the structure and content from DDL
files. This is still under development and includes support for the basic DDL statements in in the Oracle,
PostgreSQL, Derby, and standard DDL dialects.

modeshape-sequencer-zip is a ModeShape sequencer that extracts the files (with content) and directories
from ZIP archives.

modeshape-sequencer-xml is a ModeShape sequencer that extracts the structure and content from XML
files.

modeshape-sequencer-xsd is a ModeShape sequencer that extracts the structure and content from XML
Schema Definition (XSD) files.

modeshape-sequencer-wsdl is a ModeShape sequencer that extracts the structure and content from Web
Service Definition Language (WSDL) 1.1 files.

modeshape-sequencer-sramp is a library with reusable node types patterned after the core model of S-
RAMP, and used by other ModeShape sequencers.

modeshape-sequencer-teiid contains two sequencers. ModelSequencer extracts the structured data
model contained with a Data Services relational XMI model, including the catalogs, schemas, tables,
views, columns, primary keys, foreign keys, indexes, procedures, procedure parameters, procedure
results, logical relationships, and the JDBC source from which the model was imported. Data Services
VDB files contain several models, so the VdbSequencer extracts the virtual database metadata and the
structured data model from each of the models contained within the VDB.

modeshape-sequencer-text is a ModeShape sequencer that extracts data from text streams. There are
separate sequencers for character-delimited sequencing and fixed width sequencing, but both treat the
incoming text stream as a series of rows separated by line-terminators with each row consisting of one or
more columns.

Development Guide Volume 6: Metadata Repository Reference Guide

72

http://jgroups.org
http://www.hibernate.org

modeshape-search-lucene is an implementation of the SearchEngine interface that uses the Lucene
library. This module is one of the few extensions that is used directly by the modeshape-jcr module.

16.5. Modules for Use with Web Applications

The following modules make up the various web application projects. You may be able to use these artifacts
"out of the box", but more likely the configuration defined in the WAR files will not be exactly what you want
for your environment. In this case, you can replicate one of our "-war" modules and customize the
configuration settings to easily assemble a custom WAR.

modeshape-web-jcr-webdav provides a WebDAV server for Java Content Repositories. This project
provides integration with ModeShape's JCR implementation (of course) but also contains a service
provider interface (SPI) that can be used to integrate other JCR implementations with these WebDAV
services in the future. For ease of packaging, these classes are provided as a JAR that can be placed in
the WEB-INF/lib of a deployed WebDAV server WAR.

modeshape-web-jcr-webdav-war wraps the WebDAV services from the modeshape-web-jcr-webdav JAR
into a WAR and provides in-container integration tests. This project can be consulted as a template for
how to deploy the WebDAV services in a custom implementation.

modeshape-web-jcr-rest provides a set of JSR-311 (JAX-RS) objects that form the basis of a RESTful
server for Java Content Repositories. This project provides integration with ModeShape's JCR
implementation (of course) but also contains a service provider interface (SPI) that can be used to
integrate other JCR implementations with these RESTful services in the future. For ease of packaging,
these classes are provided as a JAR that can be placed in the WEB-INF/lib of a deployed RESTful server
WAR.

modeshape-web-jcr-rest-war wraps the RESTful services from the modeshape-web-jcr-rest JAR into a
WAR and provides in-container integration tests. This project can be consulted as a template for how to
deploy the RESTful services in a custom implementation.

modeshape-web-jcr-rest-client is a library that uses POJOs to access the REST web service. This module
eliminates the need for applications to know how to create HTTP request URLs and payloads, and how to
parse the JSON responses. It can be used to publish (upload) and unpublish (delete) files from
ModeShape repositories. This module is included within the modeshape-client library.

modeshape-web-jcr provides a reusable library for web applications using JCR , and is used by the
modeshape-web-jcr-rest and modeshape-web-jcr-webdav modules.

16.6. Modules for Deploying Modeshape in JBoss

ModeShape recently added several modules that make it very easy to deploy ModeShape in JBoss EAP as a
full-fledged, central, shared service that can be monitored and administered using the embedded console and
used directly by web applications deployed to the application server.

modeshape-jbossas-service provides several components that are deployed through the microcontainer
in JBoss EAP, registered in JNDI, and exposed through the Profile Service for monitoring and
management. This service leverages the JAAS support within the application server. The corresponsing
JAR can be found in SOA_ROOT/server/PROFILE/deploy/modeshape-services.jar.

modeshape-jbossas-console defines the plugin for RHQ that enables administration, monitoring, alerting,
operational control and configuration. All of the major components within a ModeShape engine are
exposed as RHQ resources, and the plugin provides a number of metrics and administrative operations as
well as exposing most configuration properties. (We plan to add more metrics and operations over the
next few releases, as we gain more experience using the ModeShape RHQ plugin.) The corresponsing
JAR can be found in SOA_ROOT/server/PROFILE/deploy/admin-console.war/plugins/.

Chapter 16. Modeshape Core Concepts

73

http://lucene.apache.org/java/
http://support.rhq-project.org/display/RHQ/Home

modeshape-jbossas-web-rest-war defines a variant of the more general modeshape-web-rest-war
that is tailored for deployment on JBoss EAP, since it reuses the same ModeShape service deployed into
the application server. Corresponsing libraries can be found in
SOA_ROOT/server/PROFILE/deploy/modeshape-rest.war/.

modeshape-jbossas-web-webdav-war defines a variant of the more general modeshape-web-webdav-
war that is tailored for deployment on JBoss EAP, since it reuses the same ModeShape service deployed
into the application server. Corresponsing libraries can be found in
SOA_ROOT/server/PROFILE/deploy/modeshape-webdav.war/.

16.7. Utility Modules

There are several utility modules:

modeshape-jdbc-local provides a JDBC driver implementation that allows JDBC clients to query the
contents of a local JCR repository using JCR-SQL2. The driver supports JDBC metadata, making it
possible to dynamically discover the tables and columns available for querying (which are determined
from the node types). It can be configured as a data source in JBoss EAP, and can leverage the
ModeShape service, allowing JDBC-based access by clients deployed to that JBoss EAP instance to
query the repository content. This library is lightweight and fast, since it directly accesses the repository
using the JCR API.

modeshape-jdbc provides a JDBC driver implementation that allows JDBC clients to query the contents
of a local or remote JCR repository using JCR-SQL2. The driver supports JDBC metadata, making it
possible to dynamically discover the tables and columns available for querying (which are determined
from the node types). It can be configured as a data source in JBoss EAP, and can leverage the
ModeShape service, allowing JDBC-based access to the same repository content available via the JCR
API , RESTful service, or WebDAV. This module is included within the
SOA_ROOT/eds/modeshape/client/modeshape-client.jar file.

Note

Refer to SOA_ROOT/jboss-as/server/PROFILE/deploy/modeshape-jdbc-ds.xml for an
example data source file for access to a local repository.

16.8. Dependency Injection

The various components of ModeShape are designed as plain old Java objects, or POJOs (Plain Old Java
Objects). And rather than making assumptions about their environment, each component instead requires
that any external dependencies necessary for it to operate must be supplied to it. This pattern is known as
Dependency Injection, and it allows the components to be simpler and allows for a great deal of flexibility and
customization in how the components are configured.

16.9. Execution Context

The approach that ModeShape takes is simple: a simple POJO that represents everything about the
environment in which components operate. Called ExecutionContext, it contains references to most of
the essential facilities, including: security (authentication and authorization); namespace registry; name
factories; factories for properties and property values; logging; and access to class loaders (given a
classpath). Most of the ModeShape components require an ExecutionContext and thus have access to all
these facilities.

Development Guide Volume 6: Metadata Repository Reference Guide

74

The fact that so many of the ModeShape components take ExecutionContext instances gives us some
interesting possibilities. For example, one execution context instance can be used as the highest-level (or
application-level) context for all of the services (e.g., RepositoryService, SequencingService, etc.).
Then, an execution context could be created for each user that will be performing operations, and that user's
context can be passed around to not only provide security information about the user but also to allow the
activities being performed to be recorded for user feedback, monitoring and/or auditing purposes.

16.10. Execution Context Class

The ExecutionContext is a concrete class that is instantiated with the no-argument constructor:

public class ExecutionContext implements ClassLoaderFactory {

 /**
 * Create an instance of an execution context, with default
implementations for all components.
 */
 public ExecutionContext() { ... }

 /**
 * Get the factories that should be used to create values for {@link
Property properties}.
 * @return the property value factory; never null
 */
 public ValueFactories getValueFactories() {...}

 /**
 * Get the namespace registry for this context.
 * @return the namespace registry; never null
 */
 public NamespaceRegistry getNamespaceRegistry() {...}

 /**
 * Get the factory for creating {@link Property} objects.
 * @return the property factory; never null
 */
 public PropertyFactory getPropertyFactory() {...}

 /**
 * Get the security context for this environment.
 * @return the security context; never null
 */
 public SecurityContext getSecurityContext() {...}

 /**
 * Return a logger associated with this context. This logger records
only those activities within the
 * context and provide a way to capture the context-specific activities.
All log messages are also
 * sent to the system logger, so classes that log via this mechanism
should not also
 * {@link Logger#getLogger(Class) obtain a system logger}.
 * @param clazz the class that is doing the logging
 * @return the logger, named after clazz; never null
 */

Chapter 16. Modeshape Core Concepts

75

 public Logger getLogger(Class<?> clazz) {...}

 /**
 * Return a logger associated with this context. This logger records only
those activities within the
 * context and provide a way to capture the context-specific activities.
All log messages are also
 * sent to the system logger, so classes that log via this mechanism
should not also
 * {@link Logger#getLogger(Class) obtain a system logger}.
 * @param name the name for the logger
 * @return the logger, named after clazz; never null
 */
 public Logger getLogger(String name) {...}

 ...
}

16.11. Create an Execution Context

As mentioned above, the starting point is to create a default execution context, which will have all the default
components:

ExecutionContext context = new ExecutionContext();

Once you have this top-level context, you can start creating subcontexts with different components, and
different security contexts. (Of course, you can create a subcontext from any ExecutionContext
instance.) To create a subcontext, use one of the with(...) methods on the parent context. We'll show
examples later on in this chapter.

16.12. Security

ModeShape uses a simple abstraction layer to isolate it from the security infrastructure used within an
application. A SecurityContext represents the context of an authenticated user, and is defined as an interface:

public interface SecurityContext {

 /**
 * Get the name of the authenticated user.
 * @return the authenticated user's name
 */
 String getUserName();

 /**
 * Determine whether the authenticated user has the given role.
 * @param roleName the name of the role to check
 * @return true if the user has the role and is logged in; false
otherwise
 */
 boolean hasRole(String roleName);

 /**
 * Logs the user out of the authentication mechanism.

Development Guide Volume 6: Metadata Repository Reference Guide

76

 * For some authentication mechanisms, this will be implemented as a no-
op.
 */
 void logout();
}

Every ExecutionContext has a SecurityContext instance, though the top-level (default) execution context
does not represent an authenticated user. But you can create a subcontext for a user authenticated via JAAS
:

ExecutionContext context = ...
String username = ...
char[] password = ...
String jaasRealm = ...
SecurityContext securityContext = new JaasSecurityContext(jaasRealm,
username, password);
ExecutionContext userContext = context.with(securityContext);

In the case of JAAS , you might not have the password but would rather prompt the user. In that case, create
a subcontext with a different security context:

ExecutionContext context = ...
String jaasRealm = ...
CallbackHandlercallbackHandler = ...
ExecutionContext userContext = context.with(new
JaasSecurityContext(jaasRealm, callbackHandler);

Of course if your application has a non- JAAS authentication and authorization system, you can provide your
own implementation of SecurityContext :

ExecutionContext context = ...
SecurityContext mySecurityContext = ...
ExecutionContext myAppContext = context.with(mySecurityContext);

These ExecutionContexts then represent the authenticated user in any component that uses the context.

16.13. JAAS Security

One of the SecurityContext implementations provided by ModeShape is the JaasSecurityContext, which
delegates any authentication or authorization requests to a Java Authentication and Authorization Service (
JAAS) provider. This is the standard approach for authenticating and authorizing in Java.

EDS uses JAAS for all authentication and authorization in ModeShape, using the 'modeshape' policy defined
in the 'jboss-as/server/<config>/conf/login-config.xml' file. This policy references the usernames defined in
soa-users.properties and the roles defined in soa-roles.properties. (The
ModeShapeEDSRepoDbRealm defines the credentials used for the data source in which ModeShape stores
its content.)

Modify the 'soa-users.properties' and 'soa-roles.properties' files as required.

16.14. Configuring Users

Chapter 16. Modeshape Core Concepts

77

Each line of the soa-users.properties file defines a new user and the roles to which that user belongs,
and is of the following form.

<username>=<role>[,<role>,...]

<username> is the name of the user

<role> is the name of a role defined in the soa-roles.properties file.

For example, adding "jsmith=admin,reviewer" would define the user 'jsmith' with assigned roles, 'admin'
and 'reviewer'.

16.15. Configuring Roles

Each line of the soa-roles.properties file defines a new role of the following form.

<role>=<privilege>[.<repositoryName>[.<workspaceName>]]

<privilege> is one of "admin", "readonly", "readwrite", or (for WebDAV and RESTful access) "connect"

<repositoryName> is the name of the repository source to which the role is granted; if absent, the role will
be granted for all repository sources

<workspaceName> is the name of the repository workspace to which the role is granted; if absent, the
role will be granted for all workspaces in the repository

For example, one of the existing lines is admin=admin,connect,readonly,readwrite, which defines
the "admin" role as having all privileges. However, a line such as
editCustomer=readonly,readwrite.customer would define a role allowing read access to all
repositories and workspaces, but write access only to the repositories using the "customer" source.

16.16. Web Application Security

If ModeShape is being used within a web application, then it is probably desirable to reuse the security
infrastructure of the application server. This can be accomplished by implementing the SecurityContext
interface with an implementation that delegates to the HttpServletRequest. Then, for each request, create a
SecurityContextCredentials instance around your SecurityContext, and use these credentials to obtain a JCR
Session.

Here is an example of the SecurityContext implementation that uses the servlet request:

@Immutable
public class ServletSecurityContext implements SecurityContext {

 private final String userName;
 private final HttpServletRequest request;

 /**
 * Create a {@link ServletSecurityContext} with the supplied
 * {@link HttpServletRequest servlet information}.
 *
 * @param request the servlet request; may not be null
 */
 public ServletSecurityContext(HttpServletRequest request) {

Development Guide Volume 6: Metadata Repository Reference Guide

78

 this.request = request;
 this.userName = request.getUserPrincipal() != null ?
request.getUserPrincipal().getName() : null;
 }

 /**
 * Get the name of the authenticated user.
 * @return the authenticated user's name
 */
 public String getUserName() {
 return userName;
 }

 /**
 * Determine whether the authenticated user has the given role.
 * @param roleName the name of the role to check
 * @return true if the user has the role and is logged in; false
otherwise
 */
 boolean hasRole(String roleName) {
 request.isUserInRole(roleName);
 }

 /**
 * Logs the user out of the authentication mechanism.
 * For some authentication mechanisms, this will be implemented as a no-
op.
 */
 public void logout() {
 }
}

Then use this to create a Session:

HttpServletRequest request = ...
Repository repository = engine.getRepository("my repository");
SecurityContext securityContext = new
ServletSecurityContext(httpServletRequest);
ExecutionContext servletContext = context.with(securityContext);

We'll see later how this can be used to obtain a JCR Session for the authenticated user.

16.17. Namespace Registry

As we saw earlier, every ExecutionContext has a registry of namespaces. Namespaces are used throughout
the graph API (as we'll see soon), and the prefix associated with each namespace makes for more readable
string representations. The namespace registry tracks all of these namespaces and prefixes, and allows
registrations to be added, modified, or removed. The interface for the NamespaceRegistry shows how these
operations are done:

public interface NamespaceRegistry {

 /**
 * Return the namespace URI that is currently mapped to the empty
prefix.

Chapter 16. Modeshape Core Concepts

79

 * @return the namespace URI that represents the default namespace,
 * or null if there is no default namespace
 */
 String getDefaultNamespaceUri();

 /**
 * Get the namespace URI for the supplied prefix.
 * @param prefix the namespace prefix
 * @return the namespace URI for the supplied prefix, or null if there
is no
 * namespace currently registered to use that prefix
 * @throws IllegalArgumentException if the prefix is null
 */
 String getNamespaceForPrefix(String prefix);

 /**
 * Return the prefix used for the supplied namespace URI.
 * @param namespaceUri the namespace URI
 * @param generateIfMissing true if the namespace URI has not already
been registered and the
 * method should auto-register the namespace with a generated
prefix, or false if the
 * method should never auto-register the namespace
 * @return the prefix currently being used for the namespace, or "null"
if the namespace has
 * not been registered and "generateIfMissing" is "false"
 * @throws IllegalArgumentException if the namespace URI is null
 * @see #isRegisteredNamespaceUri(String)
 */
 String getPrefixForNamespaceUri(String namespaceUri, boolean
generateIfMissing);

 /**
 * Return whether there is a registered prefix for the supplied
namespace URI.
 * @param namespaceUri the namespace URI
 * @return true if the supplied namespace has been registered with a
prefix, or false otherwise
 * @throws IllegalArgumentException if the namespace URI is null
 */
 boolean isRegisteredNamespaceUri(String namespaceUri);

 /**
 * Register a new namespace using the supplied prefix, returning the
namespace URI previously
 * registered under that prefix.
 * @param prefix the prefix for the namespace, or null if a namesapce
prefix should be generated
 * automatically
 * @param namespaceUri the namespace URI
 * @return the namespace URI that was previously registered with the
supplied prefix, or null if the
 * prefix was not previously bound to a namespace URI
 * @throws IllegalArgumentException if the namespace URI is null
 */
 String register(String prefix, String namespaceUri);

Development Guide Volume 6: Metadata Repository Reference Guide

80

 /**
 * Unregister the namespace with the supplied URI.
 * @param namespaceUri the namespace URI
 * @return true if the namespace was removed, or false if the namespace
was not registered
 * @throws IllegalArgumentException if the namespace URI is null
 * @throws NamespaceException if there is a problem unregistering the
namespace
 */
 boolean unregister(String namespaceUri);

 /**
 * Obtain the set of namespaces that are registered.
 * @return the set of namespace URIs; never null
 */
 Set<String> getRegisteredNamespaceUris();

 /**
 * Obtain a snapshot of all of the {@link Namespace namespaces}
registered at the time this method
 * is called. The resulting set is immutable, and will not reflect
changes made to the registry.
 * @return an immutable set of Namespace objects reflecting a snapshot
of the registry; never null
 */
 Set<Namespace> getNamespaces();
}

This interfaces exposes Namespace objects that are immutable:

@Immutable
interface Namespace extends Comparable<Namespace> {
 /**
 * Get the prefix for the namespace
 * @return the prefix; never null but possibly the empty string
 */
 String getPrefix();

 /**
 * Get the URI for the namespace
 * @return the namespace URI; never null but possibly the empty string
 */
 String getNamespaceUri();
}

ModeShape actually uses several implementations of NamespaceRegistry , but you can even implement your
own and create ExecutionContexts that use it:

NamespaceRegistry myRegistry = ...
ExecutionContext contextWithMyRegistry = context.with(myRegistry);

16.18. Classloaders

Chapter 16. Modeshape Core Concepts

81

ModeShape is designed around extensions: sequencers, connectors, MIME type detectors, and class loader
factories. The core part of ModeShape is relatively small and has few dependencies, while many of the
"interesting" components are extensions that plug into and are used by different parts of the core or by layers
above (such as the JCR implementation). The core does not really care what the extensions do or what
external libraries they require, as long as the extension fulfills its end of the extension contract.

This means that you only need the core modules of ModeShape on the application classpath, while the
extensions do not have to be on the application classpath. And because the core modules of ModeShape
have few dependencies, the risk of ModeShape libraries conflicting with the application's are lower.
Extensions, on the other hand, will likely have a lot of unique dependencies. By separating the core of
ModeShape from the class loaders used to load the extensions, your application is isolated from the
extensions and their dependencies.

Note

Of course, you can put all the JARs on the application classpath, too. This is what the examples in the
ModeShape Getting Started Guide document do.

But in this case, how does ModeShape load all the extension classes? You may have noticed earlier that
ExecutionContext implements the ClassLoaderFactory interface with a single method:

public interface ClassLoaderFactory {
 /**
 * Get a class loader given the supplied classpath. The meaning of the
classpath
 * is implementation-dependent.
 * @param classpath the classpath to use
 * @return the class loader; may not be null
 */
 ClassLoader getClassLoader(String... classpath);
}

This means that any component that has a reference to an ExecutionContext has the ability to create a
class loader with a supplied class path. As we'll see later, the connectors and sequencers are all defined with
a class and optional class path. This is where that class path comes in.

The actual meaning of the class path, however, is a function of the implementation. ModeShape uses a
StandardClassLoaderFactory that just loads the classes using the Thread's current context class loader (or, if
there is none, delegates to the class loader that loaded the StandardClassLoaderFactory class). Of course, it
is possible to implement other ClassLoaderFactory with other implementations. Then, just create a
subcontext with your implementation:

ClassLoaderFactory myClassLoaderFactory = ...
ExecutionContext contextWithMyClassLoaderFactories =
context.with(myClassLoaderFactory);

16.19. Text Extractors

ModeShape can store all kinds of content, and ModeShape makes it easy to perform full-text searches on
that content. To support searching, ModeShape extracts the text from the various properties on each node.
The way it does this for most property types (e.g., STRING, LONG, DATE, PATH, NAME, etc.) is to read and
use the literal values. But BINARY properties are another story: there's no way to indexes the binary content

Development Guide Volume 6: Metadata Repository Reference Guide

82

directly. Instead, ModeShape has a small pluggable framework for extracting useful text from the binary
content, based upon the MIME type of the content itself.

The process works like this: when a BINARY property needs to be indexed for search, ModeShape
determines the MIME type of the content, determines if there is a text extractor capable of handling that
MIME type, and if so it passes the content to the text extractor and gets back a string of text, and it indexes
that text.

The Data Services VDB text extractor operates only upon Data Services virtual database (i.e., ".vdb") files
and extracts the virtual database's logical name, description, and version, plus the logical name, description,
source name, source translator name, and JNDI name for each of the virtual database's models.

Text extraction can be an intensive process, so it is not enabled by default. But enabling the text extractors in
ModeShape's configuration is actually pretty easy. When using a configuration file, add a "
<mode:textExtractors>" fragment under the "<configuration>" root element. Within the "
<mode:textExtractors>" element place one or more "<mode:textExtractor>" fragments specifying at least the
extractor's name and fully-qualified Java class.

For example, here is the fragment that defines the Data Services text extractor.

<mode:textExtractors>
 <mode:textExtractor jcr:name="VDB Text Extractors">
 <mode:description>Extract text from Data Services VDB
files</mode:description>

<mode:classname>org.modeshape.extractor.teiid.TeiidVdbTextExtractor</mode:cl
assname>
 </mode:textExtractor>

It's also possible to define your own text extractors by implementing the TextExtractor interface:

@ThreadSafe
public interface TextExtractor {

 /**
 * Determine if this extractor is capable of processing content with the
supplied MIME type.
 *
 * @param mimeType the MIME type; never null
 * @return true if this extractor can process content with the supplied
MIME type, or false otherwise.
 */
 boolean supportsMimeType(String mimeType);

 /**
 * Sequence the data found in the supplied stream, placing the output
information into the supplied map.
 *
 * ModeShape's SequencingService determines the sequencers that should
be executed by monitoring the changes to one or more
 * workspaces that it is monitoring. Changes in those workspaces are
aggregated and used to determine which sequencers should
 * be called. If the sequencer implements this interface, then this
method is called with the property that is to be sequenced
 * along with the interface used to register the output. The framework
takes care of all the rest.
 *

Chapter 16. Modeshape Core Concepts

83

 *
 * @param stream the stream with the data to be sequenced; never null
 * @param output the output from the sequencing operation; never null
 * @param context the context for the sequencing operation; never null
 * @throws IOException if there is a problem reading the stream
 */
 void extractFrom(InputStream stream,
 TextExtractorOutput output,
 TextExtractorContext context) throws IOException;

}

As mentioned above, the "supportsMimeType" method will be called first, and only if your implementation
returns true for a given MIME type will the "extractFrom" method be called. The supplied
TextExtractorContext object provides information about the text being processed, while the
TextExtractorOutput is a simple interface that your extractor uses to record one or more strings containing the
extracted text.

If you need text extraction in sequencers or connectors, you can always get a TextExtractor instance from
the ExecutionContext. That TextExtractor implementation is actually a composite of all of the text
extractors defined in the configuration.

Of course, you can always use a different TextExtractor by creating a subcontext and supplying your
implementation:

TextExtractor myExtractor = ...
ExecutionContext contextWithMyExtractor = context.with(myExtractor);

16.20. Property Factory and Value Factory

Two other components are made available by the ExecutionContext. The PropertyFactory is an interface
that can be used to create Property instances, which are used throughout the graph API . The
ValueFactories interface provides access to a number of different factories for different kinds of property
values. These will be discussed in much more detail in the next chapter. But like the other components that
are in an ExecutionContext, you can create subcontexts with different implementations:

PropertyFactory myPropertyFactory = ...
ExecutionContext contextWithMyPropertyFactory =
context.with(myPropertyFactory);

and

ValueFactories myValueFactories = ...
ExecutionContext contextWithMyValueFactories =
context.with(myValueFactories);

Of course, implementing your own factories is a pretty advanced topic, and it will likely be something you do
not need to do in your application.

16.21. Graph Model

One of the central concepts within ModeShape is its graph model. Information is structured into a hierarchy of
nodes with properties, where nodes in the hierarchy are identified by their path (and/or identifier properties).

Development Guide Volume 6: Metadata Repository Reference Guide

84

Properties are identified by a name that incorporates a namespace and local name, and contain one or more
property values consisting of normal Java strings, names, paths, URIs, booleans, longs, doubles, decimals,
binary content, dates, UUIDs, references to other nodes, or any other serializable object.

This graph model is used throughout ModeShape: it forms the basis for the connector framework, it is used
by the sequencing framework for the generated output, and it is what the JCR uses internally to access and
operate on the repository content.

16.22. Names

ModeShape uses names to identify different types of objects. As we'll soon see, each property of a node is
given by a name, and each segment in a path is comprised of a name.

ModeShape names consist of a local part that is qualified with a namespace. The local part can consist of
any character, and the namespace is identified by a URI. Namespaces were introduced in the
ExecutionContext and are managed by the ExecutionContext's namespace registry. Namespaces
help reduce the risk of clashes in names that have an equivalent same local part.

All names are immutable, which means that once a Name object is created, it will never change. This
characteristic makes it much easier to write thread-safe code - the objects never change and therefore
require no locks or synchronization to guarantee atomic reads. This is a technique that is more and more
often found in newer languages and frameworks that simplify concurrent operations.

You should use a factory to create Name instances.

16.23. Name Interface

The Name interface is defined as follows:

@Immutable
public interface Name extends Comparable<Name>, Serializable, Readable {

 /**
 * Get the local name part of this qualified name.
 * @return the local name; never null
 */
 String getLocalName();

 /**
 * Get the URI for the namespace used in this qualified name.
 * @return the URI; never null but possibly empty
 */
 String getNamespaceUri();
}

16.24. Name Factories

The use of a factory may seem like a disadvantage and unnecessary complexity, but there actually are
several benefits. First, it hides the concrete implementations, which is very appealing if an optimized
implementation can be chosen for particular situations. It also simplifies the usage, since Name only has a
few methods. Third, it allows the factory to cache or pool instances where appropriate to help conserve
memory. Finally, the very same factory actually serves as a conversion mechanism from other forms. We'll
actually see more of this later in this chapter, when we talk about other kinds of graph properties.

Chapter 16. Modeshape Core Concepts

85

The factory for creating Name objects is called NameFactory and is available within the
ExecutionContext, via the getValueFactories() method.

We'll see how names are used later on, but one more point to make: Name is both serializable and
comparable, and all implementations should support equals(...) and hashCode() so that Name can be
used as a key in a hash-based map. Name also extends the Readable interface, which we'll learn more about
later in this chapter.

16.25. Paths

Another important concept in ModeShape's graph model is the path, which provides a way of locating a node
within a hierarchy. ModeShape's Path object is an immutable ordered sequence of Path.Segment objects.

Like Name , the only way to create a Path or a Path.Segment is to use the PathFactory , which is available
within the ExecutionContext via the getValueFactories() method.

16.26. Path Interface

A portion of the Path interface is shown here:

@Immutable
public interface Path extends Comparable<Path>, Iterable<Path.Segment>,
Serializable, Readable {

 /**
 * Return the number of segments in this path.
 * @return the number of path segments
 */
 public int size();

 /**
 * Return whether this path represents the root path.
 * @return true if this path is the root path, or false otherwise
 */
 public boolean isRoot();

 /**
 * {@inheritDoc}
 */
 public Iterator<Path.Segment> iterator();

 /**
 * Obtain a copy of the segments in this path. None of the segments are
encoded.
 * @return the array of segments as a copy
 */
 public Path.Segment[] getSegmentsArray();

 /**
 * Get an unmodifiable list of the path segments.
 * @return the unmodifiable list of path segments; never null
 */
 public List<Path.Segment> getSegmentsList();
 /**

Development Guide Volume 6: Metadata Repository Reference Guide

86

 * Get the last segment in this path.
 * @return the last segment, or null if the path is empty
 */
 public Path.Segment getLastSegment();

 /**
 * Get the segment at the supplied index.
 * @param index the index
 * @return the segment
 * @throws IndexOutOfBoundsException if the index is out of bounds
 */
 public Path.Segment getSegment(int index);

 /**
 * Return an iterator that walks the paths from the root path down to
this path. This method
 * always returns at least one path (the root returns an iterator
containing itself).
 * @return the path iterator; never null
 */
 public Iterator<Path> pathsFromRoot();

 /**
 * Return a new path consisting of the segments starting at beginIndex
index (inclusive).
 * This is equivalent to calling path.subpath(beginIndex,path.size()-1).
 * @param beginIndex the beginning index, inclusive.
 * @return the specified subpath
 * @exception IndexOutOfBoundsException if the beginIndex is negative or
larger
 * than the length of this Path object
 */
 public Path subpath(int beginIndex);

 /**
 * Return a new path consisting of the segments between the beginIndex
index (inclusive)
 * and the endIndex index (exclusive).
 * @param beginIndex the beginning index, inclusive.
 * @param endIndex the ending index, exclusive.
 * @return the specified subpath
 * @exception IndexOutOfBoundsException if the beginIndex is negative,
or
 * endIndex is larger than the length of this Path
 * object, or beginIndex is larger than endIndex.
 */
 public Path subpath(int beginIndex, int endIndex);

 ...
}

There are actually quite a few methods (not shown above) for obtaining related paths: the path of the parent,
the path of an ancestor, resolving a path relative to this path, normalizing a path (by removing "." and ".."
segments), finding the lowest common ancestor shared with another path, etc. There are also a number of
methods that compare the path with others, including determining whether a path is above, equal to, or below
this path.

Chapter 16. Modeshape Core Concepts

87

16.27. Path Segment Interface

Each Path.Segment is an immutable pair of a Name and same-name-sibling (SNS) index. When two sibling
nodes have the same name, then the first sibling will have SNS index of "1" and the second will be given a
SNS index of "2". (This mirrors the same-name-sibling index behavior of JCR paths.)

@Immutable
public static interface Path.Segment extends Cloneable,
Comparable<Path.Segment>, Serializable, Readable
{

 /**
 * Get the name component of this segment.
 * @return the segment's name
 */
 public Name getName();

 /**
 * Get the index for this segment, which will be 1 by default.
 * @return the index
 */
 public int getIndex();

 /**
 * Return whether this segment has an index that is not "1"
 * @return true if this segment has an index, or false otherwise.
 */
 public boolean hasIndex();

 /**
 * Return whether this segment is a self-reference (or ".").
 * @return true if the segment is a self-reference, or false otherwise.
 */
 public boolean isSelfReference();

 /**
 * Return whether this segment is a reference to a parent (or "..")
 * @return true if the segment is a parent-reference, or false
otherwise.
 */
 public boolean isParentReference();
}

16.28. Properties

The ModeShape graph model allows nodes to hold multiple properties, where each property is identified by a
unique Name and may have one or more values. Like many of the other classes used in the graph model,
Property is an immutable object that, once constructed, can never be changed and therefore provides a
consistent snapshot of the state of a property as it existed at the time it was read.

ModeShape properties can hold a wide range of value objects, including normal Java strings, names, paths,
URIs, booleans, longs, doubles, decimals, binary content, dates, UUIDs, references to other nodes, or any
other serializable object. All but three of these are the standard Java classes: dates are represented by an
immutable DateTime class; binary content is represented by an immutable Binary interface patterned after

Development Guide Volume 6: Metadata Repository Reference Guide

88

the interface of the same name in JSR-283; and Reference is an immutable interface patterned after the
corresponding interface is JSR-170 and JSR-283.

16.29. Property Interface

The Property interface defines methods for obtaining the name and property values:

@Immutable
public interface Property extends Iterable<Object>, Comparable<Property>,
Readable {

 /**
 * Get the name of the property.
 *
 * @return the property name; never null
 */
 Name getName();

 /**
 * Get the number of actual values in this property.
 * @return the number of actual values in this property; always non-
negative
 */
 int size();

 /**
 * Determine whether the property currently has multiple values.
 * @return true if the property has multiple values, or false otherwise.
 */
 boolean isMultiple();

 /**
 * Determine whether the property currently has a single value.
 * @return true if the property has a single value, or false otherwise.
 */
 boolean isSingle();

 /**
 * Determine whether this property has no actual values. This method may
return true
 * regardless of whether the property has a single value or multiple
values.
 * This method is a convenience method that is equivalent to size() ==
0.
 * @return true if this property has no values, or false otherwise
 */
 boolean isEmpty();

 /**
 * Obtain the property's first value in its natural form. This is
equivalent to calling
 * isEmpty() ? null : iterator().next()
 * @return the first value, or null if the property is {@link #isEmpty()
empty}
 */

Chapter 16. Modeshape Core Concepts

89

http://www.jcp.org/en/jsr/detail?id=283

 Object getFirstValue();

 /**
 * Obtain the property's values in their natural form. This is
equivalent to calling iterator().
 * A valid iterator is returned if the property has single valued or
multi-valued.
 * The resulting iterator is immutable, and all property values are
immutable.
 * @return an iterator over the values; never null
 */
 Iterator<?> getValues();

 /**
 * Obtain the property's values as an array of objects in their natural
form.
 * A valid iterator is returned if the property has single valued or
multi-valued, or a
 * null value is returned if the property is {@link #isEmpty() empty}.
 * The resulting array is a copy, guaranteeing immutability for the
property.
 * @return the array of values
 */
 Object[] getValuesAsArray();
}

16.30. Property Factory

Creating Property instances is done by using the PropertyFactory object owned by the ExecutionContext.
This factory defines methods for creating properties with a Name and various representation of values,
including variable-length arguments, arrays, Iterator, and Iterable .

16.31. Property Values

When it comes to using the property values, ModeShape takes a non-traditional approach. Many other graph
models (including JCR) mark each property with a data type and then require all property values adhere to
this data type. When the property values are obtained, they are guaranteed to be of the correct type.
However, many times the property's data type may not match the data type expected by the caller, and so a
conversion may be required and thus has to be coded.

The ModeShape graph model uses a different tact. Because callers almost always have to convert the values
to the types they can handle, ModeShape skips the steps of associating the Property with a data type and
ensuring the values match. Instead, ModeShape provides a very easy mechanism to convert the property
values to the type desired by the caller. In fact, the conversion mechanism is exactly the same as the
factories that create the values in the first place.

16.32. Value Factories

ModeShape properties can hold a variety of value object types: strings, names, paths, URIs, booleans, longs,
doubles, decimals, binary content, dates, UUIDs, references to other nodes, or any other serializable object.
To assist in the creation of these values and conversion into other types, ModeShape defines a ValueFactory
interface. This interface is parameterized with the type of value that is being created, but defines methods for
creating those values from all of the other known value types.

Development Guide Volume 6: Metadata Repository Reference Guide

90

16.33. Value Factory Interface

public interface ValueFactory<T> {

 /**
 * Get the PropertyType of values created by this factory.
 * @return the value type; never null
 */
 PropertyType getPropertyType();

 /*
 * Methods to create a value by converting from another value type.
 * If the supplied value is the same type as returned by this factory,
 * these methods return the supplied value.
 * All of these methods throw a ValueFormatException if the supplied value
 * could not be converted to this type.
 */
 T create(String value) throws ValueFormatException;
 T create(String value, TextDecoder decoder) throws
ValueFormatException;
 T create(int value) throws ValueFormatException;
 T create(long value) throws ValueFormatException;
 T create(boolean value) throws ValueFormatException;
 T create(float value) throws ValueFormatException;
 T create(double value) throws ValueFormatException;
 T create(BigDecimal value) throws ValueFormatException;
 T create(Calendar value) throws ValueFormatException;
 T create(Date value) throws ValueFormatException;
 T create(DateTime value) throws ValueFormatException;
 T create(Name value) throws ValueFormatException;
 T create(Path value) throws ValueFormatException;
 T create(Reference value) throws ValueFormatException;
 T create(URI value) throws ValueFormatException;
 T create(UUID value) throws ValueFormatException;
 T create(byte[] value) throws ValueFormatException;
 T create(Binary value) throws ValueFormatException, IoException;
 T create(InputStream stream, long approximateLength) throws
ValueFormatException, IoException;
 T create(Reader reader, long approximateLength) throws
ValueFormatException, IoException;
 T create(Object value) throws ValueFormatException, IoException;

 /*
 * Methods to create an array of values by converting from another array
of values.
 * If the supplied values are the same type as returned by this factory,
 * these methods return the supplied array.
 * All of these methods throw a ValueFormatException if the supplied
values
 * could not be converted to this type.
 */
 T[] create(String[] values) throws ValueFormatException;
 T[] create(String[] values, TextDecoder decoder) throws
ValueFormatException;
 T[] create(int[] values) throws ValueFormatException;

Chapter 16. Modeshape Core Concepts

91

 T[] create(long[] values) throws ValueFormatException;
 T[] create(boolean[] values) throws ValueFormatException;
 T[] create(float[] values) throws ValueFormatException;
 T[] create(double[] values) throws ValueFormatException;
 T[] create(BigDecimal[] values) throws ValueFormatException;
 T[] create(Calendar[] values) throws ValueFormatException;
 T[] create(Date[] values) throws ValueFormatException;
 T[] create(DateTime[] values) throws ValueFormatException;
 T[] create(Name[] values) throws ValueFormatException;
 T[] create(Path[] values) throws ValueFormatException;
 T[] create(Reference[] values) throws ValueFormatException;
 T[] create(URI[] values) throws ValueFormatException;
 T[] create(UUID[] values) throws ValueFormatException;
 T[] create(byte[][] values) throws ValueFormatException;
 T[] create(Binary[] values) throws ValueFormatException, IoException;
 T[] create(Object[] values) throws ValueFormatException, IoException;

 /**
 * Create an iterator over the values (of an unknown type). The factory
converts any
 * values as required. This is useful when wanting to iterate over the
values of a property,
 * where the resulting iterator exposes the desired type.
 * @param values the values
 * @return the iterator of type T over the values, or null if the
supplied parameter is null
 * @throws ValueFormatException if the conversion from an iterator of
objects could not be performed
 * @throws IoException If an unexpected problem occurs during the
conversion.
 */
 Iterator<T> create(Iterator<?> values) throws ValueFormatException,
IoException;
 Iterable<T> create(Iterable<?> valueIterable) throws
ValueFormatException, IoException;
}

This makes it very easy to convert one or more values (of any type, including mixtures) into corresponding
value(s) that are of the desired type. For example, converting the first value of a property (regardless of type)
to a String is simple:

ValueFactory<String> stringFactory = ...
Property property = ...
String value = stringFactory.create(property.getFirstValue());

Likewise, iterating over the values in a property and converting them is just as easy:

ValueFactory<String> stringFactory = ...
Property property = ...
for (String value : stringFactory.create(property)) {
 // do something with the values
}

Development Guide Volume 6: Metadata Repository Reference Guide

92

What we've glossed over so far, however, is how to obtain the correct ValueFactory for the desired type. If
you remember back in the previous chapter, ExecutionContext has a getValueFactories() method
that return a ValueFactories interface:

This interface exposes a ValueFactory for each of the types, and even has methods to obtain a ValueFactory
given the PropertyType enumeration. So, the previous examples could be expanded a bit:

ValueFactory<String> stringFactory =
context.getValueFactories().getStringFactory();
Property property = ...
String value = stringFactory.create(property.getFirstValue());

and

ValueFactory<String> stringFactory =
context.getValueFactories().getStringFactory();
Property property = ...
for (String value : stringFactory.create(property)) {
 // do something with the values
}

16.34. Subinterfaces of a Value Factory

Several of the ValueFactories methods return subinterfaces of ValueFactory; for example, NameFactory ,
DateTimeFactory , PathFactory , and BinaryFactory . These add type-specific methods that are more
commonly needed in certain cases.

ModeShape provides efficient implementations of all of these interfaces: the ValueFactory interfaces and
subinterfaces; the Path, Path.Segment, Name, Binary, DateTime, and Reference interfaces; and the
ValueFactories interface returned by the ExecutionContext. In fact, some of these interfaces have
multiple implementations that are optimized for specific but frequently-occurring conditions.

16.35. Name Value Factory Interface

public interface NameFactory extends ValueFactory<Name> {

 Name create(String namespaceUri, String localName);
 Name create(String namespaceUri, String localName, TextDecoder decoder
);

 NamespaceRegistry getNamespaceRegistry();
}

16.36. DateTimeFactory Interface

This interface adds methods for creating DateTime values for the current time as well as for specific instants
in time:

public interface DateTimeFactory extends ValueFactory<DateTime> {

Chapter 16. Modeshape Core Concepts

93

 /**
 * Create a date-time instance for the current time in the local time
zone.
 */
 DateTime create();

 /**
 * Create a date-time instance for the current time in UTC.
 */
 DateTime createUtc();

 DateTime create(DateTime original, long offsetInMillis);
 DateTime create(int year, int monthOfYear, int dayOfMonth,
 int hourOfDay, int minuteOfHour, int secondOfMinute,
int millisecondsOfSecond);
 DateTime create(int year, int monthOfYear, int dayOfMonth,
 int hourOfDay, int minuteOfHour, int secondOfMinute,
int millisecondsOfSecond,
 int timeZoneOffsetHours);
 DateTime create(int year, int monthOfYear, int dayOfMonth,
 int hourOfDay, int minuteOfHour, int secondOfMinute,
int millisecondsOfSecond,
 int timeZoneOffsetHours, String timeZoneId);
}

16.37. PathFactory Interface

The PathFactory interface defines methods for creating relative and absolute Path objects using
combinations of other Path objects and Names and Path.Segments, and introduces methods for creating
Path.Segment objects:

public interface PathFactory extends ValueFactory<Path> {

 Path createRootPath();
 Path createAbsolutePath(Name... segmentNames);
 Path createAbsolutePath(Path.Segment... segments);
 Path createAbsolutePath(Iterable<Path.Segment> segments);

 Path createRelativePath();
 Path createRelativePath(Name... segmentNames);
 Path createRelativePath(Path.Segment... segments);
 Path createRelativePath(Iterable<Path.Segment> segments);

 Path create(Path parentPath, Path childPath);
 Path create(Path parentPath, Name segmentName, int index);
 Path create(Path parentPath, String segmentName, int index);
 Path create(Path parentPath, Name... segmentNames);
 Path create(Path parentPath, Path.Segment... segments);
 Path create(Path parentPath, Iterable<Path.Segment> segments);
 Path create(Path parentPath, String subpath);

 Path.Segment createSegment(String segmentName);
 Path.Segment createSegment(String segmentName, TextDecoder decoder);

Development Guide Volume 6: Metadata Repository Reference Guide

94

 Path.Segment createSegment(String segmentName, int index);
 Path.Segment createSegment(Name segmentName);
 Path.Segment createSegment(Name segmentName, int index);
}

16.38. BinaryFactory Interface

The BinaryFactory defines methods for creating Binary objects from a variety of binary formats, as well as a
method that looks for a cached Binary instance given the supplied secure hash:

public interface BinaryFactory extends ValueFactory<Binary> {

 /**
 * Create a value from the binary content given by the supplied input,
the approximate length,
 * and the SHA-1 secure hash of the content. If the secure hash is null,
then a secure hash is
 * computed from the content. If the secure hash is not null, it is
assumed to be the hash for
 * the content and may not be checked.
 */
 Binary create(InputStream stream, long approximateLength, byte[]
secureHash)
 throws ValueFormatException, IoException;
 Binary create(Reader reader, long approximateLength, byte[] secureHash
)
 throws ValueFormatException, IoException;

 /**
 * Create a binary value from the given file.
 */
 Binary create(File file) throws ValueFormatException, IoException;

 /**
 * Find an existing binary value given the supplied secure hash. If no
such binary value exists,
 * null is returned. This method can be used when the caller knows the
secure hash (e.g., from
 * a previously-held Binary object), and would like to reuse an existing
binary value
 * (if possible) rather than recreate the binary value by processing the
stream contents. This is
 * especially true when the size of the binary is quite large.
 *
 * @param secureHash the secure hash of the binary content, which was
probably obtained from a
 * previously-held Binary object; a null or empty value is
allowed, but will always
 * result in returning null
 * @return the existing Binary value that has the same secure hash, or
null if there is no
 * such value available at this time
 */
 Binary find(byte[] secureHash);
}

Chapter 16. Modeshape Core Concepts

95

16.39. Readable Interface

As shown above, the Name, Path.Segment, Path, and Property interfaces all extend the Readable interface,
which defines a number of getString(...) methods that can produce a (readable) string representation of
of that object. Recall that all of these objects contain names with namespace URIs and local names
(consisting of any characters), and so obtaining a readable string representation will require converting the
URIs to prefixes, escaping certain characters in the local names, and formatting the prefix and escaped local
name appropriately. The different getString(...) methods of the Readable interface accept various
combinations of NamespaceRegistry and TextEncoder parameters:

@Immutable
public interface Readable {

 /**
 * Get the string form of the object. A default encoder is used to
encode characters.
 * @return the encoded string
 */
 public String getString();

 /**
 * Get the encoded string form of the object, using the supplied encoder
to encode characters.
 * @param encoder the encoder to use, or null if the default encoder
should be used
 * @return the encoded string
 */
 public String getString(TextEncoder encoder);

 /**
 * Get the string form of the object, using the supplied namespace
registry to convert any
 * namespace URIs to prefixes. A default encoder is used to encode
characters.
 * @param namespaceRegistry the namespace registry that should be used
to obtain the prefix
 * for any namespace URIs
 * @return the encoded string
 * @throws IllegalArgumentException if the namespace registry is null
 */
 public String getString(NamespaceRegistry namespaceRegistry);

 /**
 * Get the encoded string form of the object, using the supplied
namespace registry to convert
 * the any namespace URIs to prefixes.
 * @param namespaceRegistry the namespace registry that should be used
to obtain the prefix for
 * the namespace URIs
 * @param encoder the encoder to use, or null if the default encoder
should be used
 * @return the encoded string
 * @throws IllegalArgumentException if the namespace registry is null
 */

Development Guide Volume 6: Metadata Repository Reference Guide

96

 public String getString(NamespaceRegistry namespaceRegistry,
 TextEncoder encoder);

 /**
 * Get the encoded string form of the object, using the supplied
namespace registry to convert
 * the names' namespace URIs to prefixes and the supplied encoder to
encode characters, and using
 * the second delimiter to encode (or convert) the delimiter used
between the namespace prefix
 * and the local part of any names.
 * @param namespaceRegistry the namespace registry that should be used
to obtain the prefix
 * for the namespace URIs in the names
 * @param encoder the encoder to use for encoding the local part and
namespace prefix of any names,
 * or null if the default encoder should be used
 * @param delimiterEncoder the encoder to use for encoding the delimiter
between the local part
 * and namespace prefix of any names, or null if the standard
delimiter should be used
 * @return the encoded string
 */
 public String getString(NamespaceRegistry namespaceRegistry,
 TextEncoder encoder, TextEncoder
delimiterEncoder);
}

16.40. Text Encoder Interface

We've seen the NamespaceRegistry in the execution context, but we've haven't yet talked about the
TextEncoder interface. A TextEncoder merely does what you'd expect: it encodes the characters in a string
using some implementation-specific algorithm. ModeShape provides a number of TextEncoder
implementations, including:

The Jsr283Encoder escapes characters that are not allowed in JCR names, per the JSR-283
specification. Specifically, these are the '*', '/', ':', '[', ']', and '|' characters, which are escaped by replacing
them with the Unicode characters U+F02A, U+F02F, U+F03A, U+F05B, U+F05D, and U+F07C,
respectively.

The NoOpEncoder does no conversion.

The UrlEncoder converts text to be used within the different parts of a URL, as defined by Section 2.3 of
RFC 2396. Note that this class does not encode a complete URL (since java.net.URLEncoder and
java.net.URLDecoder should be used for such purposes).

The XmlNameEncoder converts any UTF-16 unicode character that is not a valid XML name character
according to the World Wide Web Consortium (W3C) Extensible Markup Language (XML) 1.0 (Fourth
Edition) Recommendation, escaping such characters as _xHHHH_, where HHHH stands for the four-digit
hexadecimal UTF-16 unicode value for the character in the most significant bit first order. For example,
the name "Customer_ID" is encoded as "Customer_x0020_ID".

The XmlValueEncoder escapes characters that are not allowed in XML values. Specifically, these are the
'&', '<', '>', '"', and ''', which are all escaped to "&", '<', '>', '"', and '''.

Chapter 16. Modeshape Core Concepts

97

The FileNameEncoder escapes characters that are not allowed in file names on Linux, OS X, or Windows
XP. Unsafe characters are escaped as described in the UrlEncoder.

The SecureHashTextEncoder performs a secure hash of the input text and returns that hash as the
encoded text. This encoder can be configured to use different secure hash algorithms and to return a
fixed number of characters from the hash.

All of these classes also implement the TextDecoder interface, which defines a method that decodes an
encoded string using the opposite transformation.

Of course, you can provide alternative implementations, and supply them to the appropriate
getString(...) methods as required.

16.41. Locations

In addition to Path objects, nodes can be identified by one or more identification properties. These are
Property instances with names that have a special meaning (usually to the connector framework).
ModeShape also defines a Location class that encapsulates:

the Path to the node;

one or more identification properties that are likely source-specific and that are represented with Property
objects; or

a combination of both.

So, when a client knows the path and/or the identification properties, they can create a Location object and
then use that to identify the node. Location is a class that can be instantiated through factory methods on the
class:

public abstract class Location implements Iterable<Property>,
Comparable<Location> {

 public static Location create(Path path) { ... }
 public static Location create(UUID uuid) { ... }
 public static Location create(Path path, UUID uuid) { ... }
 public static Location create(Path path, Property idProperty) { ... }
 public static Location create(Path path, Property firstIdProperty,
 Property... remainingIdProperties) {
... }
 public static Location create(Path path, Iterable<Property idProperties
) { ... }
 public static Location create(Property idProperty) { ... }
 public static Location create(Property firstIdProperty,
 Property... remainingIdProperties) {
... }
 public static Location create(Iterable<Property> idProperties) { ... }
 public static Location create(List<Property> idProperties) { ... }
 ...
}

Like many of the other classes and interfaces, Location is immutable and cannot be changed once created.
However, there are methods on the class to create a copy of the Location object with a different Path, a
different UUID, or different identification properties:

public abstract class Location implements Iterable<Property>,

Development Guide Volume 6: Metadata Repository Reference Guide

98

Comparable<Location> {
 ...
 public Location with(Property newIdProperty);
 public Path newPath);
 public UUID uuid);
 ...
}

When creating requests, clients usually have an incomplete location (e.g., a path but no identification
properties). When processing the requests, connectors provide an actual location that contains the path and
all identification properties. If actual Location objects are then reused in subsequent requests by the client,
the connectors will have the benefit of having both the path and identification properties and may be able to
more efficiently locate the identified node.

16.42. Graph API

ModeShape's Graph API was designed as a lightweight public API for working with graph information. The
Graph class is the primary class in API , and each instance represents a single, independent view of a single
graph. Graph instances don't maintain state, so every request (or batch of requests) operates against the
underlying graph and then returns immutable snapshots of the requested state at the time the request was
made.

The Graph class represents an internal domain specific language (DSL), designed to be easy to use in an
application. The Graph API makes extensive use of interfaces and method chaining, so that methods return a
simplified interface with relevant methods only. This is made simpler if your IDE has code completion. Under
the hood, a Graph is just building Request objects, submitting them to the connector, and then exposing the
results.

16.43. Using Workspaces

ModeShape graphs have the notion of workspaces that provide different views of the content. Some graphs
may have one workspace, while others may have multiple workspaces. Some graphs will allow a client to
create new workspaces or destroy existing workspaces, while other graphs will not allow adding or removing
workspaces. Some graphs may have workspaces that may show the same (or very similar) content, while
other graphs may have workspaces that contain completely independent content.

The Graph object is always bound to a workspace, which initially is the default workspace. To find out what
the name of the default workspace is, ask for the current workspace after creating the Graph:

Workspace current = graph.getCurrentWorkspace();

To obtain the list of workspaces available in a graph, ask for them:

Set<String> workspaceNames = graph.getWorkspaces();

Once you know the name of a particular workspace, you can specify that the graph should use it:

graph.useWorkspace("myWorkspace");

From this point forward, all requests will apply to the workspace named "myWorkspace". At any time, you
can use a different workspace, which will affect all subsequent requests made using the graph. To go back to
the default workspace, supply a null name:

Chapter 16. Modeshape Core Concepts

99

graph.useWorkspace(null);

Of course, creating a new workspace is just as easy:

graph.createWorkspace().named("newWorkspace");

This will attempt to create a workspace named "newWorkspace", which will fail if that workspace already
exists. You may want to create a new workspace with a name that should be altered if the name you supply
is already used. The following code shows how you can do this:

graph.createWorkspace().namedSomethingLike("newWorkspace");

If there is no existing workspace named "newWorkspace", a new one will be created with this name.
However, if "newWorkspace" already exists, this call will create a workspace with a name that is some
alteration of the supplied name.

You can also clone workspaces, too:

graph.createWorkspace().clonedFrom("original").named("something");

or

graph.createWorkspace().clonedFrom("original").namedSomethingLike("something
");

As you can see, it is very easy to specify which workspace you want to use or to create new workspaces.
You can also find out which workspace the graph is currently using:

String current = graph.getCurrentWorkspaceName();

or, if you want, you can get more information about the workspace:

Workspace current = graph.getCurrentWorkspace();
String name = current.getName();
Location rootLocation = current.getRoot();

16.44. Working with Nodes

Now let's switch to working with nodes. This first example returns a map of properties (keyed by property
name) for a node at a specific Path:

Path path = ...
Map<Name,Property> propertiesByName = graph.getPropertiesByName().on(path);

This next example shows how the graph can be used to obtain and loop over the properties of a node:

Path path = ...
for (Property property : graph.getProperties().on(path)) {
 ...
}

Development Guide Volume 6: Metadata Repository Reference Guide

100

Likewise, the next example shows how the graph can be used to obtain and loop over the children of a node:

Path path = ...
for (Location child : graph.getChildren().of(path)) {
 Path childPath = child.getPath();
 ...
}

Notice that the examples pass a Path instance to the on(...) and of(...) methods. Many of the Graph
API methods take a variety of parameter types, including String, Paths, Locations, UUID, or Property
parameters. This should make it easy to use in many different situations.

Of course, changing content is more interesting and offers more interesting possibilities. Here are a few
examples:

Path path = ...
Location location = ...
Property idProp1 = ...
Property idProp2 = ...
UUID uuid = ...
graph.move(path).into(idProp1, idProp2);
graph.copy(path).into(location);
graph.delete(uuid);
graph.delete(idProp1,idProp2);

The methods shown above work immediately, as soon as each request is built. However, there is another
way to use the Graph object, and that is in a batch mode. Simply create a Graph.Batch object using the
batch() method, create the requests on that batch object, and then execute all of the commands on the
batch by calling its execute() method. That execute() method returns a Results interface that can be
used to read the node information retrieved by the batched requests.

Method chaining works really well with the batch mode, since multiple commands can be assembled together
very easily:

Path path = ...
String path2 = ...
Location location = ...
Property idProp1 = ...
Property idProp2 = ...
UUID uuid = ...
graph.batch().move(path).into(idProp1, idProp2)
 .and().copy(path2).into(location)
 .and().delete(uuid)
 .execute();
Results results = graph.batch().read(path2)
 .and().readChildren().of(idProp1,idProp2)
 .and().readSugraphOfDepth(3).at(uuid2)
 .execute();
for (Location child : results.getNode(path2)) {
 ...
}

Of course, this section provided just a hint of the Graph API . The Graph interface is actually quite complete
and offers a full-featured approach for reading and updating a graph. For more information, see the Graph
JavaDocs.

Chapter 16. Modeshape Core Concepts

101

16.45. Requests

ModeShape Graph objects operate upon the underlying graph content, but we haven't really talked about how
that works. Recall that the Graph objects don't maintain any stateful representation of the content, but instead
submit requests to the underlying graph and return representations of the requested portions of the content.
This section focuses on what those requests look like, since they'll actually become very important when
working with the connector framework in the next chapter.

A graph Request is an encapsulation of a command that is to be executed by the underlying graph owner
(typically a connector). Request objects can take many different forms, as there are different classes for
each kind of request. Each request contains the information needed to complete the processing, and it also is
the place where the results (or error) are recorded.

The Graph object creates the Request objects using Location objects to identify the node (or nodes) that are
the subject of the request. The Graph can either submit the request immediately, or it can batch multiple
requests together into "units of work". The submitted requests are then processed by the underlying system
(e.g., connector) and returned back to the Graph object, which then extracts and returns the results.

16.46. Read Requests

Table 16.1. Types of Read Requests

Name Description
ReadNodeRequest A request to read a node's properties and children from the

named workspace in the source. The node may be specified by
path and/or by identification properties. The connector returns
all properties and the locations for all children, or sets a
PathNotFoundException error on the request if the node did not
exist in the workspace. If the node is found, the connector sets
on the request the actual location of the node (including the
path and identification properties). The connector sets a
InvalidWorkspaceException error on the request if the named
workspace does not exist.

VerifyNodeExistsRequest A request to verify the existence of a node at the specified
location in the named workspace of the source. The connector
returns all the actual location for the node if it exists, or sets a
PathNotFoundException error on the request if the node does
not exist in the workspace. The connector sets a
InvalidWorkspaceException error on the request if the named
workspace does not exist.

ReadAllPropertiesRequest A request to read all of the properties of a node from the named
workspace in the source. The node may be specified by path
and/or by identification properties. The connector returns all
properties that were found on the node, or sets a
PathNotFoundException error on the request if the node did not
exist in the workspace. If the node is found, the connector sets
on the request the actual location of the node (including the
path and identification properties). The connector sets a
InvalidWorkspaceException error on the request if the named
workspace does not exist.

Development Guide Volume 6: Metadata Repository Reference Guide

102

ReadPropertyRequest A request to read a single property of a node from the named
workspace in the source. The node may be specified by path
and/or by identification properties, and the property is specified
by name. The connector returns the property if found on the
node, or sets a PathNotFoundException error on the request if
the node or property did not exist in the workspace. If the node
is found, the connector sets on the request the actual location
of the node (including the path and identification properties).
The connector sets a InvalidWorkspaceException error on the
request if the named workspace does not exist.

ReadAllChildrenRequest A request to read all of the children of a node from the named
workspace in the source. The node may be specified by path
and/or by identification properties. The connector returns an
ordered list of locations for each child found on the node, an
empty list if the node had no children, or sets a
PathNotFoundException error on the request if the node did not
exist in the workspace. If the node is found, the connector sets
on the request the actual location of the parent node (including
the path and identification properties). The connector sets a
InvalidWorkspaceException error on the request if the named
workspace does not exist.

ReadBlockOfChildrenRequest A request to read a block of children of a node, starting with the
nth child from the named workspace in the source. This is

designed to allow paging through the children, which is much
more efficient for large numbers of children. The node may be
specified by path and/or by identification properties, and the
block is defined by a starting index and a count (i.e., the block
size). The connector returns an ordered list of locations for
each of the node's children found in the block, or an empty list
if there are no children in that range. The connector also sets
on the request the actual location of the parent node (including
the path and identification properties) or sets a
PathNotFoundException error on the request if the parent node
did not exist in the workspace. The connector sets a
InvalidWorkspaceException error on the request if the named
workspace does not exist.

ReadNextBlockOfChildrenRequest A request to read a block of children of a node, starting with the
children that immediately follow a previously-returned child
from the named workspace in the source. This is designed to
allow paging through the children, which is much more efficient
for large numbers of children. The node may be specified by
path and/or by identification properties, and the block is defined
by the location of the node immediately preceding the block
and a count (i.e., the block size). The connector returns an
ordered list of locations for each of the node's children found in
the block, or an empty list if there are no children in that range.
The connector also sets on the request the actual location of
the parent node (including the path and identification
properties) or sets a PathNotFoundException error on the
request if the parent node did not exist in the workspace. The
connector sets a InvalidWorkspaceException error on the
request if the named workspace does not exist.

Name Description

Chapter 16. Modeshape Core Concepts

103

ReadBranchRequest A request to read a portion of a subgraph that has as its root a
particular node, up to a maximum depth. This request is an
efficient mechanism when a branch (or part of a branch) is to
be navigated and processed, and replaces some non-trivial
code to read the branch iteratively using multiple
ReadNodeRequests. The connector reads the branch to the
specified maximum depth, returning the properties and children
for all nodes found in the branch. The connector also sets on
the request the actual location of the branch's root node
(including the path and identification properties). The connector
sets a PathNotFoundException error on the request if the node
at the top of the branch does not exist in the workspace. The
connector sets a InvalidWorkspaceException error on the
request if the named workspace does not exist.

CompositeRequest A request comprising multiple requests (none of which will be a
composite). The connector processes all of the requests in the
composite request, but should set on the composite request
any error (usually the first error) that occurs during processing
of the contained requests.

Name Description

16.47. Change Requests

ChangeRequest is a subclass of Request that provides a base class for all the requests that request a
change be made to the content. As we'll see later, these ChangeRequest objects also get reused by the
graph observation system.

Table 16.2. Types of Change Requests

Name Description
CreateNodeRequest A request to create a node at the specified location and setting

on the new node the properties included in the request. The
connector creates the node at the desired location, adjusting
any same-name-sibling indexes as required. (If an SNS index
is provided in the new node's location, existing children with the
same name after that SNS index will have their SNS indexes
adjusted. However, if the requested location does not include a
SNS index, the new node is added after all existing children,
and its SNS index is set accordingly.) The connector also sets
on the request the actual location of the new node (including
the path and identification properties).. The connector sets a
PathNotFoundException error on the request if the parent node
does not exist in the workspace. The connector sets an
InvalidWorkspaceException error on the request if the named
workspace does not exist.

RemovePropertiesRequest A request to remove a set of properties on an existing node.
The request contains the location of the node as well as the
names of the properties to be removed. The connector
performs these changes and sets on the request the actual
location (including the path and identification properties) of the
node. The connector sets a PathNotFoundException error on
the request if the node does not exist in the workspace. The
connector sets a InvalidWorkspaceException error on the
request if the named workspace does not exist.

Development Guide Volume 6: Metadata Repository Reference Guide

104

UpdatePropertiesRequest A request to set or update properties on an existing node. The
request contains the location of the node as well as the
properties to be set and those to be deleted. The connector
performs these changes and sets on the request the actual
location (including the path and identification properties) of the
node. The connector sets a PathNotFoundException error on
the request if the node does not exist in the workspace. The
connector sets a InvalidWorkspaceException error on the
request if the named workspace does not exist.

RenameNodeRequest A request to change the name of a node. The connector
changes the node's name, adjusts all SNS indexes
accordingly, and returns the actual locations (including the path
and identification properties) of both the original location and
the new location. The connector sets a
PathNotFoundException error on the request if the node does
not exist in the workspace. The connector sets a
InvalidWorkspaceException error on the request if the named
workspace does not exist.

CopyBranchRequest A request to copy a portion of a subgraph that has as its root a
particular node, up to a maximum depth. The request includes
the name of the workspace where the original node is located
as well as the name of the workspace where the copy is to be
placed (these may be the same, but may be different). The
connector copies the branch from the original location, up to the
specified maximum depth, and places a copy of the node as a
child of the new location. The connector also sets on the
request the actual location (including the path and identification
properties) of the original location as well as the location of the
new copy. The connector sets a PathNotFoundException error
on the request if the node at the top of the branch does not
exist in the workspace. The connector sets a
InvalidWorkspaceException error on the request if one of the
named workspaces does not exist.

MoveBranchRequest A request to move a subgraph that has a particular node as its
root. The connector moves the branch from the original location
and places it as child of the specified new location. The
connector also sets on the request the actual location (including
the path and identification properties) of the original and new
locations. The connector will adjust SNS indexes accordingly.
The connector sets a PathNotFoundException error on the
request if the node that is to be moved or the new location do
not exist in the workspace. The connector sets a
InvalidWorkspaceException error on the request if the named
workspace does not exist.

DeleteBranchRequest A request to delete an entire branch specified by a single
node's location. The connector deletes the specified node and
all nodes below it, and sets the actual location, including the
path and identification properties, of the node that was deleted.
The connector sets a PathNotFoundException error on the
request if the node being deleted does not exist in the
workspace. The connector sets a InvalidWorkspaceException
error on the request if the named workspace does not exist.

Name Description

16.48. Workspace Read Requests

Chapter 16. Modeshape Core Concepts

105

16.48. Workspace Read Requests

Table 16.3. Types of Workspace Read Requests

Name Description
GetWorkspacesRequest A request to obtain the names of the existing workspaces that

are accessible to the caller.
VerifyWorkspaceRequest A request to verify that a workspace with a particular name

exists. The connector returns the actual location for the root
node if the workspace exists, as well as the actual name of the
workspace (e.g., the default workspace name if a null name is
supplied).

16.49. Workspace Change Requests

Requests that deal with changing workspaces extend ChangeRequest.

Table 16.4. Types of Workspace Change Requests

Name Description
CreateWorkspaceRequest A request to create a workspace with a particular name. The

connector returns the actual location for the root node if the
workspace exists, as well as the actual name of the workspace
(e.g., the default workspace name if a null name is supplied).
The connector sets a InvalidWorkspaceException error on the
request if the named workspace already exists.

DestroyWorkspaceRequest A request to destroy a workspace with a particular name. The
connector sets a InvalidWorkspaceException error on the
request if the named workspace does not exist.

CloneWorkspaceRequest A request to clone one named workspace as another new
named workspace. The connector sets a
InvalidWorkspaceException error on the request if the original
workspace does not exist, or if the new workspace already
exists.

16.50. Search Requests

Several requests are designed to push searches and queries down to the connector, if connectors support
such operations:

Table 16.5. Types of Search Requests

Name Description
SearchRequest A request to query a named workspace using a supplied query.

The connector returns tuples containing the columns and
resulting values, plus statistics about the execution of the
query.

FullTextSearchRequest A request to search a named workspace using a supplied full-
text search string and optional offset and limit values. The
connector returns tuples containing the columns and resulting
values, plus statistics about the execution of the query.

Development Guide Volume 6: Metadata Repository Reference Guide

106

FunctionRequest A request that executes a supplied function at a particular
location within a named workspace. The inputs to the function
can be set on the request (as a series of name-value pairs) and
when executed, the function will set the outputs as name-value
pairs on the request. This request is extremely useful for
(complex) operations that must first read information from the
workspace and then perform other actions.

Name Description

16.51. Request Processors

ModeShape connectors are typically the components that receive these Request objects. Before we look
further into the connector framework, there is one more component related to Requests that should be
discussed.

The RequestProcessor class is an abstract class that defines a process(...) method for each concrete
Request subclass. In other words, there is a process(CompositeRequest) method, a
process(ReadNodeRequest) method, and so on. This makes it easy to implement behavior that responds
to the different kinds of Request classes: subclass the RequestProcessor, override all of the abstract
methods, and optionally overriding any of the other methods that have a default implementation.

Note

The RequestProcessor abstract class contains default implementations for quite a few of the
process(...) methods, and these will be sufficient but probably not efficient or optimum. If you can
provide a more efficient implementation given your source, feel free to do so. However, if performance
is not a big issue, all of the concrete methods will provide the correct behavior. Keep things simple to
start out - you can always provide better implementations later.

16.52. Observation Framework

The ModeShape graph model also incorporates an observation framework that allows components to register
and be notified when changes occur within the content owned by a graph.

Many event frameworks define the listeners and sources as interfaces. While this is often useful, it requires
that the implementations properly address the thread-safe semantics of managing and calling the listeners.
The ModeShape observation framework uses abstract or concrete classes to minimize the effort required for
implementing ChangeObserver or Observable. These abstract classes provide implementations for a number
of utility methods (such as the unregister() method on ChangeObserver) that also save effort and code.

However, one of the more important reasons for providing classes is that ChangeObserver uses weak
references to track the Observable instances, and the ChangeObservers class uses weak references for the
listeners. This means that an observer does not prevent Observable instances from being garbage collected,
nor do observers prevent Observable instances from being garbage collected. These abstract class provide
all this functionality for free.

Each connector is responsible for propagating ChangeRequest objects to the connector's Observer. The
sequencing system uses Observers to monitor for changes in the graph content to determine which, if any,
sequencers should be run. The JCR implementation also uses the observation framework to propagate those
changes to JCR clients.

16.53. Observable Interface

Chapter 16. Modeshape Core Concepts

107

16.53. Observable Interface

Any component that can have changes and be observed can implement the Observable interface. This
interface allows Observers to register (or be registered) to receive notifications of the changes. However, a
concrete and thread-safe implementation of this interface, called ChangeObservers, is available and should
be used where possible, since it automatically manages the registered ChangeObserver instances and
properly implements the register and unregister mechanisms.

16.54. Observers

Components that are to receive notifications of changes are called observers. To create an observer, extend
the ChangeObserver abstract class and provide an implementation of the notify(Changes) method. Then,
register the observer with an Observable using its register(ChangeObserver) method. The observer's
notify(Changes) method will then be called with the changes that have been made to the Observable.

When an observer is no longer needed, it should be unregistered from all Observable instances with which it
was registered. The ChangeObserver class automatically tracks which Observable instances it is registered
with, and calling the observer's unregister() will unregister the observer from all of these Observables.
Alternatively, an observer can be unregistered from a single Observable using the Observable's
unregister(ChangeObserver) method.

16.55. Change Class

The Changes class represents the set of individual changes that have been made during a single, atomic
operation. Each Changes instance has information about the source of the changes, the timestamp at which
the changes occurred, and the individual changes that were made. These individual changes take the form of
ChangeRequest objects, which we'll see more of in the next chapter. Each request is frozen, meaning it is
immutable and will not change. Also none of the change requests will be marked as canceled.

Using the actual ChangeRequest objects as the "events" has a number of advantages:

The existing ChangeRequest subclasses already contain the information to accurately and completely
describe the operation. Reusing these classes means we don't need a duplicate class structure or come
up with a generic event class.

The requests have all the state required for an event, plus they often will have more. For example, the
DeleteBranchRequest has the actual location of the branch that was deleted (and in this way is not much
different than a more generic event), but the CreateNodeRequest has the actual location of the created
node along with the properties of that node. Additionally, the RemovePropertyRequest has the actual
location of the node along with the name of the property that was removed. In many cases, these
requests have all the information a more general event class might have but then hopefully enough
information for many observers to use directly without having to read the graph to decide what actually
changed.

The requests that make up a Changes instance can actually be replayed. Consider the case of a cache
that is backed by a JcrRepositorySource, which might use an observer to keep the cache in sync. As the
cache is notified of Changes, the cache can replay the changes against its source.

16.56. Connectors

With ModeShape, your applications use the JCR 2.0 API to work with the repository, but the ModeShape
repository transparently fetches information from different kinds of repositories and storage systems, as
opposed to a single, purpose-built store.

Development Guide Volume 6: Metadata Repository Reference Guide

108

http://www.jcp.org/en/jsr/detail?id=283

At the heart of ModeShape and its JCR implementation is a simple graph-based connector system.
Essentially, ModeShape's JCR implementation uses a single connector to access all content.

16.57. Connector Types

A single repository connector could be any one of the following:

In-Memory Connector – to access a transient, in-memory repository

JDBC Connector – to access a JDBC database used as a store for repository content

File System Connector – to access a file system to present its files and directory structure as (updatable)
repository content

Disk Connector – to access data stored in a serialized format on disk

However, it may also be the following special type of connector:

Federation Connector – to facilitate access of multiple other systems, provding a unified, updatable view
of multiple sources (which is coordinated via multiple other connectors)

The federated connector provides many options, since we can use that connector on top of several
connectors to other individual sources. This simple connector architecture is fundamentally what makes
ModeShape so powerful and flexible.

It is also possible to put a different API layer on top of the connectors. For example, the JSR-203 API allows
you to build new file system providers. It would be straightforward to put on top of a JCR implementation, but
it could be even simpler by putting it on top of a ModeShape connector. In both cases, it would be a trivial
mapping from nodes that represent files and folders into JSR-203 files and directories, with events on those
nodes translated into JSR-203 watch events. Then, choose a ModeShape connector and configure it to use
the source you want to use.

16.58. Connector Terminology

Connector

A connector is the runnable code packaged in one or more JAR files that contains implementations
of several interfaces (described below). A Java developer writes a connector to a type of source,
such as a particular database management system, LDAP directory, or source code management
system. It is then packaged into one or more JAR files (including dependent JARs) and deployed
for use in applications that use ModeShape repositories.

Repository Source

The description of a particular source system (e.g., the "Customer" database, or the company
LDAP system) is called a repository source. ModeShape provides a RepositorySource interface
providing various features (including a method for establishing connections). A connector will have
a class that implements this interface and that has JavaBean properties for all of the connector-
specific properties required to describe an instance of the system. Use of JavaBean properties is
not required, but it is recommended, as it enables reflective configuration and administration.
Applications using ModeShape create an instance of the connector's RepositorySource and set the
properties for the external source (that the application wants to access) with that connector.

Repository Connection

A RepositorySource instance is then used to establish connections to that source. A connector
provides an implementation of the RepositoryConnection interface, which defines methods for

Chapter 16. Modeshape Core Concepts

109

http://www.jcp.org/en/jsr/detail?id=203

interacting with the external system. In particular, the execute(...) method takes an
ExecutionContext instance and a Request object. The ExecutionContext object defines
the environment in which the processing is occurring, while the Request object describes the
requested operations on the content, with different subclasses representing each type of activity.
Examples of commands include getting a node, moving a node, creating a node, changing a node,
and deleting a node. If the repository source is able to participate in JTA/JTS distributed
transactions, then the RepositoryConnection must implement the getXaResource() method by
returning a valid javax.transaction.xa.XAResource object that can be used by the
transaction monitor.

16.59. Example Use of Connector Components

As an example, consider if we wanted ModeShape to give us access through JCR to the information
contained in a relational database. We first have to develop a connector that allows us to interact with
relational databases using JDBC. That connector would contain a JdbcAccessSource class that
implements RepositorySource , and that has the various JavaBean properties for setting the name of the
driver class, URL, username, password, and other properties. If we add a JavaBean property defining the
JNDI name, our connector could look in JNDI to find a JDBC DataSource instance, perhaps already
configured to use connection pools.

Our new connector might also have a JdbcAccessConnection Java class that implements the
RepositoryConnection interface. This class would probably wrap a JDBC database connection, and would
implement the execute(...) method such that the nodes exposed by the connector describe the database
tables and their contents. For example, the connector might represent each database table as a node with
the table's name, with properties that describe the table (e.g., the description, whether it is a temporary
table), and with child nodes that represent rows in the table.

To use our connector in an application that uses ModeShape, we would need to create an instance of the
JdbcAccessSource for each database instance that we want to access. If we have 3 MySQL databases, 9
Oracle databases, and 4 PostgreSQL databases, then we'd need to create a total of 16 JdbcAccessSource
instances, each with the properties describing a single database instance. Those sources are then available
for use by ModeShape components, including the JCR implementation.

16.60. Provided Connectors

Before you develop a connector, you should check the list of connectors ModeShape already provides.

16.61. Create a Custom Connector

Creating a custom connector involves the following steps:

1. Implement the RepositorySource interface, using JavaBean properties for each bit of information the
implementation will need to establish a connection to the source system. Then, implement the
RepositoryConnection interface with a class that represents a connection to the source. The
execute(ExecutionContext, Request) method should process any and all requests that may
come down the pike, and the results of each request can be put directly on that request. This
approach is pretty straightforward, and gives you ultimate freedom in terms of your class structure.

Alternatively, an easier way to get a complete read-write connector would be to extend one of our two
abstract RepositorySource implementations. If the content your connector exposes has unique keys
(such as a unique string, UUID or other identifier), consider implementing MapRepositorySource,
subclassing MapRepository, and using the existing MapRepositoryConnection
implementation. This MapRepositoryConnection does most of the work already, relying upon

Development Guide Volume 6: Metadata Repository Reference Guide

110

http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/html/provided-connectors-part.html

your MapRepository subclass for anything that might be source-specific. (See the JavaDoc for
details.) Or, if the content your connector exposes is path-based, consider implementing
PathRepositorySource, subclassing PathRepository, and using the existing
PathRepositoryConnection implementation. Again, PathRepositoryConnection class does
almost all of the work and delegates to your PathRepository subclass for anything that might be
source-specific. (See the JavaDoc for details.)

Don't forget unit tests that verify the connector is doing what it is expected to do. (If you'll be
committing the connector code to the ModeShape project, please ensure that the unit tests can be
run by others that may not have access to the source system. In this case, consider writing
integration tests that can be easily configured to use different sources in different environments, and
try to make the failure messages clear when the tests can't connect to the underlying source.)

2. Configure ModeShape to use your connector. This may involve just registering the source with the
RepositoryService, or it may involve adding a source to a configuration repository used by the
federated repository.

3. Deploy the JAR file with your connector (as well as any dependencies), and make them available to
ModeShape in your application.

16.62. Implementing a Repository Source

Perhaps the most important class that makes up a connector is the implementation of the RepositorySource .
This class is analogous to JDBC's DataSource in that it is instantiated to represent a single instance of a
system that will be accessed, and it contains enough information (in the form of JavaBean properties) so that
it can create connections to the source.

Why is the RepositorySource implementation a JavaBean? Well, this is the class that is instantiated, usually
reflectively, and so a no-arg constructor is required. Using JavaBean properties makes it possible to reflect
upon the object's class to determine the properties that can be set (using setters) and read (using getters).
This means that an administrative application can instantiate, configure, and manage the objects that
represent the actual sources, without having to know anything about the actual implementation.

So, your connector will need a public class that implements RepositorySource and provides JavaBean
properties for any kind of inputs or options required to establish a connection to and interact with the
underlying source. Most of the semantics of the class are defined by the RepositorySource and inherited
interface.

16.63. Implementing a Repository Connection

One job of the RepositorySource is to create connections to the underlying sources. Connections are
represented by classes that implement the RepositoryConnection interface, and creating this class is the next
step in writing a connector. This is what we'll cover in this section.

16.64. RepositoryConnection Interface

/**
 * A connection to a repository source.
 *
 * These connections need not support concurrent operations by multiple
threads.
 */
@NotThreadSafe
public interface RepositoryConnection {

Chapter 16. Modeshape Core Concepts

111

http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/map/package-summary.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/path/package-summary.html

 /**
 * Get the name for this repository source. This value should be the
same as that returned
 * by the same RepositorySource that created this connection.
 *
 * @return the identifier; never null or empty
 */
 String getSourceName();

 /**
 * Return the transactional resource associated with this connection.
The transaction manager
 * will use this resource to manage the participation of this connection
in a distributed transaction.
 *
 * @return the XA resource, or null if this connection is not aware of
distributed transactions
 */
 XAResource getXAResource();

 /**
 * Ping the underlying system to determine if the connection is still
valid and alive.
 *
 * @param time the length of time to wait before timing out
 * @param unit the time unit to use; may not be null
 * @return true if this connection is still valid and can still be used,
or false otherwise
 * @throws InterruptedException if the thread has been interrupted
during the operation
 */
 boolean ping(long time, TimeUnit unit) throws InterruptedException;

 /**
 * Get the default cache policy for this repository. If none is
provided, a global cache policy
 * will be used.
 *
 * @return the default cache policy
 */
 CachePolicy getDefaultCachePolicy();

 /**
 * Execute the supplied commands against this repository source.
 *
 * @param context the environment in which the commands are being
executed; never null
 * @param request the request to be executed; never null
 * @throws RepositorySourceException if there is a problem loading the
node data
 */
 void execute(ExecutionContext context, Request request) throws
RepositorySourceException;

 /**

Development Guide Volume 6: Metadata Repository Reference Guide

112

 * Close this connection to signal that it is no longer needed and that
any accumulated
 * resources are to be released.
 */
 void close();
}

While most of these methods are straightforward, a few warrant additional information. The ping(...)
method allows ModeShape to check the connection to see if it is alive. This method can be used in a variety
of situations, ranging from verifying that a RepositorySource 's JavaBean properties are correct to ensuring
that a connection is still alive before returning the connection from a connection pool.

The most important method on this interface, though, is the execute(...) method, which serves as the
mechanism by which the component using the connector access and manipulates the content exposed by the
connector. The first parameter to this method is the ExecutionContext, which contains the information
about environment as well as the subject performing the request. This was discussed earlier.

The second parameter, however, represents a Request that is to be processed by the connector. Request
objects can take many different forms, as there are different classes for each kind of request (see the
previous chapter for details). Each request contains the information a connector needs to do the processing,
and it also is the place where the connector places the results (or the error, if one occurs).

A connector is technically free to implement the execute(...) method in any way, as long as the
semantics are maintained. But as discussed in the previous chapter, ModeShape provides a
RequestProcessor class that can simplify writing your own connector and at the same time help insulate
your connector from new kinds of requests that may be added in the future. The RequestProcessor is an
abstract class that defines a process(...) method for each concrete Request subclass. In other words,
there is a process(CompositeRequest) method, a process(ReadNodeRequest) method, and so on.

16.65. Using a Request Processor

Create a subclass of RequestProcessor, overriding all of the abstract methods and optionally overriding
any of the other methods that have a default implementation.

Note

The RequestProcessor abstract class contains default implementations for quite a few of the
process(...) methods, and these will be sufficient but probably not efficient or optimum. If you can
provide a more efficient implementation given your source, feel free to do so. However, if performance
is not a big issue, all of the concrete methods will provide the correct behavior. Keep things simple to
start out - you can always provide better implementations later.

Also, make sure your RequestProcessor is properly broadcasting the changes made during execution.
The RequestProcessor class has a recordChange(ChangeRequest) method that can be called from
each of the process(...) methods that take a ChangeRequest. The RequestProcessor enqueues
these requests, and when the RequestProcessor is closed, the default implementation is to send a
Changes to the Observer supplied into the constructor.

Then, in your connector's execute(ExecutionContext, Request) method, instantiate your
RequestProcessor subclass and call its process(Request) method, passing in the execute(...)
method's Request parameter. The RequestProcessor will determine the appropriate method given the
actual Request object and will then invoke that method:

Chapter 16. Modeshape Core Concepts

113

public void execute(final ExecutionContext context,
 final Request request) throws
RepositorySourceException {
 String sourceName = // from the RepositorySource
 Observer observer = // from the RepositoryContext
 RequestProcessor processor = new
CustomRequestProcessor(sourceName,context,observer);
 try {
 processor.process(request);
 } finally {
 processor.close(); // sends the accumulated ChangeRequests as a
Changes to the Observer
 }
}
}

If you do this, the bulk of your connector implementation may be in the RequestProcessor implementation
methods. This not only is pretty maintainable, it also lends itself to easier testing. And should any new
request types be added in the future, your connector may work just fine without any changes. In fact, if the
RequestProcessor class can implement meaningful methods for those new request types, your connector
may "just work". Or, at least your connector will still be binary compatible, even if your connector won't
support any of the new features.

Finally, how should the connector handle exceptions? As mentioned above, each Request object has a slot
where the connector can set any exception encountered during processing. This not only handles the
exception, but in the case of CompositeRequests it also correctly associates the problem with the request.
However, it is perfectly acceptable to throw an exception if the connection becomes invalid (e.g., there is a
communication failure) or if a fatal error would prevent subsequent requests from being processed.

16.66. Broadcasting Events

When your RepositorySource instance is put into the library within a running ModeShape system, the
initialize(RepositoryContext) method will be called on the instance. The supplied
RepositoryContext object represents the context in which the RepositorySource is running, and provides
access to an ExecutionContext, a RepositoryConnectionFactory that can be used to obtain connections
to other sources, and an Observer of your source that should be called with events describing the Changes
being made within the source, either as a result of ChangeRequest operations being performed on this
source, or as a result of operations being performed on the content from outside the source.

16.67. Cache Policy

Each connector is responsible for determining whether and how long ModeShape is to cache the content
made available by the connector. This is referred to as the caching policy, and consists of a time to live value
representing the number of milliseconds that a piece of data may be cached. After the TTL has passed, the
information is no longer used.

ModeShape allows a connector to use a flexible and powerful caching policy. First, each connection returns
the default caching policy for all information returned by that connection. Often this policy can be configured
via properties on the RepositorySource implementation. This is optional, meaning the connector can return
null if it does not wish to have a default caching policy.

Second, the connector is able to override its default caching policy on individual requests. Again, this is
optional, meaning that a null caching policy on a request implies that the request has no overridden caching
policy.

Development Guide Volume 6: Metadata Repository Reference Guide

114

Third, if the connector has no default caching policy and none is set on the individual requests, ModeShape
uses whatever caching policy is set up for that component using the connector. For example, the federating
connector allows a default caching policy to be specified, and this policy is used should the sources being
federated not define their own caching policy.

In summary, a connector has total control over whether and for how long the information it provides is
cached.

Note

At this time, not every connector takes advantage of cache policies. However, it is anticipated that this
will change.

16.68. Leveraging JNDI

Sometimes it is necessary (or easier) for a RepositorySource implementation to look up an object in JNDI.
One example of this is the JBoss Cache connector: while the connector can instantiate a new JBoss Cache
instance, more interesting use cases involve JBoss Cache instances that are set up for clustering and
replication, something that is generally difficult to configure in a single JavaBean. Therefore the
JBossCacheSource has optional JavaBean properties that define how it is to look up a JBoss Cache
instance in JNDI.

This is a simple pattern that you may find useful in your connector. Basically, if your source implementation
can look up an object in JNDI, use a single JavaBean String property that defines the full name that should be
used to locate that object in JNDI. Usually it is best to include "Jndi" in the JavaBean property name so that
administrative users understand the purpose of the property. (And some may suggest that any optional
property also use the word "optional" in the property name.)

16.69. Capabilities

Another characteristic of a RepositorySource implementation is that it provides some hint as to whether it
supports several features. This is defined on the interface as a method that returns a
RepositorySourceCapabilities object. This class currently provides methods that say whether the
connector supports updates, whether it supports same-name-siblings (SNS), and whether the connector
supports listeners and events.

Note that these may be hard-coded values, or the connector's response may be determined at runtime by
various factors. For example, a connector may interrogate the underlying system to decide whether it can
support updates.

The RepositorySourceCapabilities class can be used as is (the class is immutable), or it can be
subclassed to provide more complex behavior. It is important, however, that the capabilities remain constant
throughout the lifetime of the RepositorySource instance.

Note

Why a concrete class and not an interface? By using a concrete class, connectors inherit the default
behavior. If additional capabilities need to be added to the class in future releases, connectors may
not have to override the defaults. This provides some insulation against future enhancements to the
connector framework.

Chapter 16. Modeshape Core Concepts

115

16.70. Security and Authentication

As we'll see in the next section, the main method that connectors use to process requests takes an
ExecutionContext, which contains the JAAS security information of the subject performing the request.
This means that the connector can use this to determine authentication and authorization information for each
request.

Sometimes that is not sufficient. For example, it may be that the connector needs its own authorization
information so that it can establish a connection (even if user-level privileges still use the
ExecutionContext provided with each request). In this case, the RepositorySource implementation will
probably need JavaBean properties that represent the connector's authentication information. This may take
the form of a username and password, or it may be properties that are used to delegate authentication to
JAAS . Either way, just realize that it is perfectly acceptable for the connector to require its own security
properties.

16.71. ModeShape Sequencing

Many repositories are used (at least in part) to manage files and other artifacts, including service definitions,
policy files, images, media, documents, presentations, application components, reusable libraries,
configuration files, application installations, databases schemas, management scripts, and so on. Unlocking
the information buried within all of those files is what ModeShape sequencing is all about. As files are loaded
into the repository, you ModeShape instance can automatically sequence these files to extract from their
content meaningful information that can be stored in the repository, where it can then be searched, accessed,
and analyzed using the JCR API.

16.72. Sequencers

Sequencers are POJOs that implement a specific interface, and their job is to process a stream of data
(supplied by ModeShape) to extract meaningful content that usually takes the form of a structured graph.
Exactly what content is up to each sequencer implementation. For example, ModeShape comes with a
Compact Node Definition (CND) sequencer that processes the CND files to extract and produce a structured
representation of the node type definitions, property definitions, and child node definitions contained within
the file.

Sequencers are configured to identify the kinds of nodes that the sequencers can work against. When
content in the repository changes, ModeShape looks to see which (if any) sequencers might be able to run on
the changed content. If any sequencer configurations do match, those sequencers are run against the
content, and the structured graph output of the sequencers is then written back into the repository (at a
location dictated by the sequencer configuration). And once that information is in the repository, it can be
easily found and accessed via the standard JCR API.

In other words, ModeShape uses sequencers to help you extract more meaning from the artifacts you already
are managing, and makes it much easier for applications to find and use all that valuable information. All
without your applications doing anything extra.

16.73. Stream Sequencers

The StreamSequencer interface defines the single method that must be implemented by a sequencer:

public interface StreamSequencer {

 /**
 * Sequence the data found in the supplied stream, placing the output

Development Guide Volume 6: Metadata Repository Reference Guide

116

 * information into the supplied map.
 *
 * @param stream the stream with the data to be sequenced; never null
 * @param output the output from the sequencing operation; never null
 * @param context the context for the sequencing operation; never null
 */
 void sequence(InputStream stream, SequencerOutput output,
StreamSequencerContext context);
}

A new instance is created for each sequencing operation, so there is no need for the class to be
synchronized or thread-safe. Additionally, when a sequencer configuration includes properties, ModeShape
will set those properties on the StreamSequencer implementation using JavaBean-style setter methods. This
makes it easy to define sequencer-specific properties on the sequencer configurations, while making it easy
to implement with JavaBean-style setter methods.

Implementations are responsible for processing the content in the supplied InputStream content and
generating structured content using the supplied SequencerOutput interface. The StreamSequencerContext
provides additional details about the information that is being sequenced, including the location and
properties of the node being sequenced, the MIME type of the node being sequenced, and a Problems object
where the sequencer can record problems that aren't severe enough to warrant throwing an exception. The
StreamSequencerContext also provides access to the ValueFactories that can be used to create Path, Name,
and any other value objects.

The SequencerOutput interface is fairly easy to use, and its job is to hide from the sequencer all the specifics
about where the output is being written. Therefore, the interface has only a few methods for implementations
to call. Two methods set the property values on a node, while the other sets references to other nodes in the
repository. Use these methods to describe the properties of the nodes you want to create, using relative
paths for the nodes and valid JCR property names for properties and references. ModeShape will ensure that
nodes are created or updated whenever they're needed.

public interface SequencerOutput {

 /**
 * Set the supplied property on the supplied node. The allowable
 * values are any of the following:
 * - primitives (which will be autoboxed)
 * - String instances
 * - String arrays
 * - byte arrays
 * - InputStream instances
 * - Calendar instances
 *
 * @param nodePath the path to the node containing the property;
 * may not be null
 * @param property the name of the property to be set
 * @param values the value(s) for the property; may be empty if
 * any existing property is to be removed
 */
 void setProperty(String nodePath, String property, Object... values);
 void setProperty(Path nodePath, Name property, Object... values);

 /**
 * Set the supplied reference on the supplied node.
 *
 * @param nodePath the path to the node containing the property;

Chapter 16. Modeshape Core Concepts

117

 * may not be null
 * @param property the name of the property to be set
 * @param paths the paths to the referenced property, which may be
 * absolute paths or relative to the sequencer output node;
 * may be empty if any existing property is to be removed
 */
 void setReference(String nodePath, String property, String... paths);
}

Note

ModeShape will create nodes of type nt:unstructured unless you specify the value for the
jcr:primaryType property. You can also specify the values for the jcr:mixinTypes property if
you want to add mixins to any node.

16.74. Path Expressions

Each sequencer must be configured to describe the areas or types of content that the sequencer is capable
of handling. This is done by specifying these patterns using path expressions that identify the nodes (or node
patterns) that should be sequenced and where to store the output generated by the sequencer. We'll see how
to fully configure a sequencer in the next chapter, but before then let's dive into path expressions in more
detail.

A path expression consist of two parts: a selection criteria (or an input path) and an output path:

 inputPath => outputPath

The inputPath part defines an expression for the path of a node that is to be sequenced. Input paths consist of
'/' separated segments, where each segment represents a pattern for a single node's name (including the
same-name-sibling indexes) and '@' signifies a property name.

16.75. Simple Input Path Examples

Table 16.6. Simple Input Path Examples

Input Path Description
/a/b Match node "b" that is a child of the top level node "a". Neither

node may have any same-name-sibilings.
/a/* Match any child node of the top level node "a".

/a/*.txt Match any child node of the top level node "a" that also has a
name ending in ".txt".

/a/*.txt Match any child node of the top level node "a" that also has a
name ending in ".txt".

/a/b@c Match the property "c" of node "/a/b".

/a/b[2] The second child named "b" below the top level node "a".

/a/b[2,3,4] The second, third or fourth child named "b" below the top level
node "a".

/a/b[*] Any (and every) child named "b" below the top level node "a".

Development Guide Volume 6: Metadata Repository Reference Guide

118

//a/b Any node named "b" that exists below a node named "a",
regardless of where node "a" occurs. Again, neither node may
have any same-name-sibilings.

Input Path Description

With these simple examples, you can probably discern the most important rules.

First, the '*' is a wildcard character that matches any character or sequence of characters in a node's name
(or index if appearing in between square brackets), and can be used in conjunction with other characters
(e.g., "*.txt").

Second, square brackets (i.e., '[' and ']') are used to match a node's same-name-sibiling index. You can put
a single non-negative number or a comma-separated list of non-negative numbers. Use '0' to match a node
that has no same-name-sibilings, or any positive number to match the specific same-name-sibling.

Third, combining two delimiters (e.g., "//") matches any sequence of nodes, regardless of what their names
are or how many nodes. Often used with other patterns to identify nodes at any level matching other
patterns. Three or more sequential slash characters are treated as two.

Many input paths can be created using these simple rules. However, input paths can be more complicated.

16.76. Advanced Input Path Examples

Table 16.7. Advanced Input Path Examples

Input Path Description
/a/(b|c|d) Match children of the top level node "a" that are named "b", "c"

or "d". None of the nodes may have same-name-sibling
indexes.

/a/b[c/d] Match node "b" child of the top level node "a", when node "b"
has a child named "c", and "c" has a child named "d". Node
"b" is the selected node, while nodes "c" and "d" are used as
criteria but are not selected.

/a(/(b|c|d|)/e)[f/g/@something] Match node "/a/b/e", "/a/c/e", "/a/d/e", or "/a/e" when
they also have a child "f" that itself has a child "g" with
property "something". None of the nodes may have same-
name-sibling indexes.

These examples show a few more advanced rules. Parentheses (i.e., '(' and ')') can be used to define a set
of options for names, as shown in the first and third rules. Whatever part of the selected node's path appears
between the parentheses is captured for use within the output path. Thus, the first input path in the previous
table would match node "/a/b", and "b" would be captured and could be used within the output path using
"$1", where the number used in the output path identifies the parentheses.

Square brackets can also be used to specify criteria on a node's properties or children. Whatever appears in
between the square brackets does not appear in the selected node.

16.77. Input Paths with Source and Workspace Names

There are times when it is desirable to configure sequencers to only work against content in a specific source
and/or specific workspace. In these cases, it is possible to specify the repository name and workspace
names before the path.

Chapter 16. Modeshape Core Concepts

119

Table 16.8. Input Paths with Source and Workspace Names

Input Path Description
source:default:/a/(b|c|d) Match nodes in the "default" workspace within the "source"

source that are children of the top level node "a" and named
"b", "c" or "d". None of the nodes may have same-name-
sibling indexes.

:default:/a/(b|c|d) Match nodes in the "default" workspace within any source
source that are children of the top level node "a" and named
"b", "c" or "d". None of the nodes may have same-name-
sibling indexes.

source::/a/(b|c|d) Match nodes in any workspace in the "source" source that
are children of the top level node "a" and named "b", "c" or "d".
None of the nodes may have same-name-sibling indexes.

::/a/(b|c|d) Match nodes in any within any source source that are children
of the top level node "a" and named "b", "c" or "d". None of the
nodes may have same-name-sibling indexes. (This is
equivalent to the path "/a/(b|c|d)".)

Again, the rules are pretty straightforward. You can leave off the repository name and workspace name, or
you can prepend the path with "{sourceNamePattern}:{workspaceNamePattern}:", where
"{sourceNamePattern} is a regular-expression pattern used to match the applicable source names, and
"{workspaceNamePattern} is a regular-expression pattern used to match the applicable workspace
names. A blank pattern implies any match, and is a shorthand notation for ".*". Note that the repository
names may not include forward slashes (e.g., '/') or colons (e.g., ':').

Consider the following code fragment:

 //(*.(jpg|jpeg|gif|bmp|pcx|png)[*])/jcr:content[@jcr:data] => /images/$1

This matches a node named "jcr:content" with property "jcr:data" but no siblings with the same name,
and that is a child of a node whose name ends with ".jpg", ".jpeg", ".gif", ".bmp", ".pcx", or ".png" that
may have any same-name-sibling index. These nodes can appear at any level in the repository. Note how
the input path capture the filename (the segment containing the file extension), including any same-name-
sibling index. This filename is then used in the output path, which is where the sequenced content is placed.

16.78. Creating Custom Sequencers

Creating a custom sequencer involves the following steps:

1. Implement the StreamSequencer interface with your own implementation, and create unit tests to
verify the functionality and expected behavior;

2. Add the sequencer configuration to the ModeShape SequencingService in your application and

3. Deploy the JAR file with your implementation (as well as any dependencies), and make them
available to ModeShape in your application.

Development Guide Volume 6: Metadata Repository Reference Guide

120

Chapter 17. Using ModeShape

17.1. Using ModeShape Within Your Application

Using ModeShape within your application is actually quite straightforward, and with JCR 2.0 it is possible for
your application to do everything using only the JCR 2.0 API . Your application will first obtain a
javax.jcr.Repository instance, and will use that object to create sessions through which your
application will read, modify, search, or monitor content in the repository.

17.2. ModeShape Configuration Options

The following options are available for configuring ModeShape:

Loading configuration from a file is conceptually the most straightforward and requires the
least amount of Java code, but it does requires having a configuration file. This is easy, allows one to
manage configurations in version control, enables your application to use only the standard JCR API , and
will likely be the best approach for most applications. If you're not sure, use this approach.

Loading configuration from a repository is an advanced option allowing multiple JcrEngine
instances (usually in different processes perhaps on different machines) to easily access a (shared)
configuration.

Each of these approaches has different advantages.

17.3. Loading Your Configuration from a File

The modeshape-config.xml file in SOA_ROOT/jboss-as/server/PROFILE/deploy/modeshape-
services.jar is used by default.

Here is an example configuration file used in the repository example covered in the ModeShape Getting
Started Guide document, though it has been simplified for clarity:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:mode="http://www.modeshape.org/1.0"
xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <!--
 Define the JCR repositories
 -->
 <mode:repositories>
 <!--
 Define a JCR repository that accesses the 'Cars' source directly.
 This of course is optional, since we could access the same content
through 'vehicles'.
 -->
 <mode:repository jcr:name="car repository" mode:source="Cars">
 <mode:options jcr:primaryType="mode:options">
 <mode:option jcr:name="jaasLoginConfigName"
mode:value="modeshape-jcr"/>
 </mode:options>
 <mode:descriptors>
 <!--
 This adds a JCR Repository descriptor named "myDescriptor" with
a value of "foo".

Chapter 17. Using ModeShape

121

 So this code:
 Repository repo = ...;
 System.out.println(repo.getDescriptor("myDescriptor");

 Will now print out "foo".
 -->
 <myDescriptor mode:value="foo" />
 </mode:descriptors>
 <!--
 Import the custom node types defined in the named files. The
values
 can be an absolute path to a classpath resource, an absolute
file system
 path, a relative path on the file system (relative to where
the process was
 started from), or a resolvable URL. If more than one node
type definition
 file is needed, the files can be listed as a single comma-
delimited string
 in the 'mode:resource' attribute of the 'jcr:nodeTypes'
element, or listed
 individually using multiple mode:resource child elements (as
shown below).
 -->
 <jcr:nodeTypes>
 <mode:resource>/org/example/my-node-types.cnd</mode:resource>
 <mode:resource>/org/example/additional-node-
types.cnd</mode:resource>
 </jcr:nodeTypes>
 </mode:repository>
 </mode:repositories>
 <!--
 Define the sources for the content. These sources are directly accessible
using the
 ModeShape-specific Graph API.
 -->
 <mode:sources jcr:primaryType="nt:unstructured">
 <mode:source jcr:name="Cars"

mode:classname="org.modeshape.graph.connector.inmemory.InMemoryRepositorySou
rce"
 mode:retryLimit="3" mode:defaultWorkspaceName="workspace1">

<mode:predefinedWorkspaceNames>workspace2</mode:predefinedWorkspaceNames>

<mode:predefinedWorkspaceNames>workspace3</mode:predefinedWorkspaceNames>
 </mode:source>
 </mode:sources>
 <!--
 Define the sequencers. This is an optional section. For this example,
we're not using any sequencers.
 -->
 <mode:sequencers>
 <!--mode:sequencer jcr:name="Image Sequencer">
 <mode:classname>
 org.modeshape.sequencer.image.ImageMetadataSequencer

Development Guide Volume 6: Metadata Repository Reference Guide

122

 </mode:classname>
 <mode:description>Image metadata sequencer</mode:description>
 <mode:pathExpression>/foo/source =>
/foo/target</mode:pathExpression>
 <mode:pathExpression>/bar/source =>
/bar/target</mode:pathExpression>
 </mode:sequencer-->
 </mode:sequencers>
 <mode:mimeTypeDetectors>
 <mode:mimeTypeDetector jcr:name="Detector"
 mode:description="Standard extension-based
MIME type detector"/>
 </mode:mimeTypeDetectors>
</configuration>

Note

This is the recommended approach if your application uses the standard and implementation-
independent RepositoryFactory mechanism to obtain the JCR Repository reference.

17.4. Loading Your Configuration from a Repository

The first step is to create and configure the RepositorySource instance that we'll use to access the repository
where the configuration is stored. Then, create a JcrConfiguration instance and load from this source:

RepositorySource configSource = ...
JcrConfiguration config = new JcrConfiguration();
configuration.loadFrom(configSource);

The loadFrom(...) method can be called any number of times, but each time it is called it completely
wipes out any current notion of the configuration and replaces it with the configuration found in the file.

There is an optional second parameter that defines the name of the workspace in the supplied source where
the configuration content can be found. It is not needed if the workspace is the source's default workspace.
There is an optional third parameter that defines the Path within the configuration repository identifying the
parent node of the various configuration nodes. If not specified, it assumes "/". This makes it possible for the
configuration content to be located at a different location in the hierarchical structure. (This is not often
required, but it is very useful if you ModeShape configuration file is embedded within another XML file.)

Once the JcrConfiguration has been loaded from a RepositorySource , the JcrConfiguration
instance can be used to modify the configuration and then save those changes back to the repository. This
technique can be used to place a configuration into a repository (such as a database) for the first time:

RepositorySource configSource = ... // a RepositorySource to an empty source
JcrConfiguration config = new JcrConfiguration();

// Bind the configuration to the repository source (which is initially
empty)...
configuration.loadFrom(configSource);

// Now load a configuration from a file (or construct one programmatically)
...

Chapter 17. Using ModeShape

123

String pathToFile = ...
configuration.loadFrom(pathToFile);

// Now save the configuration into the source ...
configuration.save();

Now you can load this configuration in multiple processes, using the approach mentioned above.

Note

This is an advanced way of defining your configuration, so this is recommended only for those that are
already very comfortable with ModeShape and its lower-level graph API and connector API.

17.5. JCR Repository Options

ModeShape JCR repositories have a number of behaviors that can be controlled from within the
configuration. These are known as repository options, and all have sensible defaults. However, they do allow
you to better configure the JCR repository instances to best suit your needs.

As mentioned earlier, these options can be set programmatically or within the configuration file. When setting
up the configuration programmatically, the actual enum literal values must be used, and all values are String
literals:

JcrConfiguration config = ...
config.repository("repository A")
 .setOption(JcrRepository.Option.JAAS_LOGIN_CONFIG_NAME, "modeshape-
jcr");

When using a configuration file, you set the option within the "mode:options" fragment under the
"mode:repository" section. Each option fragment looks similar to the following:

<mode:option jcr:name="jaasLoginConfigName" mode:value="modeshape-jcr"/>

where the "jcr:name" XML attribute value contains the lower-camel-case form of the option literal, and the
"mode:value" XML attribute value contains the repository option value. In the example above, the
"jaasLoginConfigName" is the option name, and "modeshape-jcr" is the option value. An alternative
representation is to set the name using the XML element name and set the primary type with an XML
attribute. Thus, this fragment is equivalent to the previous listing:

<jaasLoginConfigName jcr:primaryType="mode:option" mode:value="modeshape-
jcr"/>

The following table describes all of the current repository options.

Table 17.1. JCR Repository Options

Option Description

Development Guide Volume 6: Metadata Repository Reference Guide

124

jaasLoginConfigName The JAAS JAAS application configuration name that specifies
which login module should be used to validate credentials. By
default, "modeshape-jcr" is used. Set the option with an empty
(zero-length) value to completely turn off JAAS authentication.
The enumeration literal is
Option.JAAS_LOGIN_CONFIG_NAME.

systemSourceName The name of the source (and optionally the workspace in the
source) where the "/jcr:system" branch should be stored. The
format is "name of workspace@name of source", or "name of
source" if the default workspace is to be used. If this option is
not used, a transient in-memory source will be used. Note that
all leading and trailing whitespaces is removed for both the
source name and workspace name. Thus, a value of "@"
implies a zero-length workspace name and zero-length source
name. Also, any use of the '@' character in source and
workspace names must be escaped with a preceding
backslash.

The enumeration literal is Option.SYSTEM_SOURCE_NAME.

anonymousUserRoles A comma-delimited list of default roles provided for anonymous
access. A null or empty value for this option means that
anonymous access is disabled. The enumeration literal is
Option.ANONYMOUS_USER_ROLES.

exposeWorkspaceNamesInDescription A boolean flag that indicates whether a complete list of
workspace names should be exposed in the custom repository
descriptor
"org.modeshape.jcr.api.Repository.REPOSITORY_WO
RKSPACES". If this option is set to true, then any code that can
access the repository can retrieve a complete list of workspace
names through the javax.jcr.Repository.getDescriptor(String)
method without logging in. The default value is 'true', meaning
that the descriptor is populated.

Since some ModeShape installations may consider the list of
workspace names to be restricted information and limit the
ability of some or all users to see a complete list of workspace
names, this option can be set to "false" to disable this
capability. If this option is set to "false", the
"org.modeshape.jcr.api.Repository.REPOSITORY_WO
RKSPACES" descriptor will not be set.

The enumeration literal is
Option.EXPOSE_WORKSPACE_NAMES_IN_DESCRIPTOR.

repositoryJndiLocation A string property that when specified tells the JcrEngine
where to put the Repository in JNDI. Assumes that you have
write access to the JNDI tree. If no value set, then the
Repository will not be bound to JNDI. The enumeration literal is
Option.REPOSITORY_JNDI_LOCATION.

Option Description

Chapter 17. Using ModeShape

125

http://docs.oracle.com/javase/6/docs/api/javax/security/auth/login/Configuration.html

queryExecutionEnabled A boolean flag that specifies whether this repository is
expected to execute searches and queries. If client
applications will never perform searches or queries, then
maintaining the query indexes is an unnecessary overhead,
and can be disabled. Note that this is merely a hint, and that
searches and queries might still work when this is set to 'false'.
The default is 'true', meaning that clients can execute searches
and queries. The enumeration literal is
Option.QUERY_EXECUTION_ENABLED.

queryIndexDirectory The system may maintain a set of indexes that improve the
performance of searching and querying the content. These size
of these indexes depend upon the size of the content being
stored, and thus may consume a significant amount of space.
This option defines a location on the file system where this
repository may (if needed) store indexes so they don't
consume large amounts of memory.

If specified, the value must be a valid path to a writable
directory on the file system. If the path specifies a non-existant
location, the repository may attempt to create the missing
directories. The path may be absolute or relative to the location
where this VM was started. If the specified location is not a
readable and writable directory (or cannot be created as such),
then this will generate an exception when the repository is
created.

The default value is null, meaning the search indexes may not
be stored on the local file system and, if needed, will be stored
within memory.

The enumeration literal is
Option.QUERY_INDEX_DIRECTORY.

Option Description

Development Guide Volume 6: Metadata Repository Reference Guide

126

queryIndexesUpdatedSynchronously An advanced boolean flag that specifies whether updates to the
indexes (if used) should be made synchronously, meaning that
a call to Session.save() will not return until the search indexes
have been completely updated. The benefit of synchronous
updates is that a search or query performed immediately after
a save() will operate upon content that was just changed. The
downside is that the save() operation will take longer.

With asynchronous updates, however, the only work done
during a save() invocation is that required to persist the
changes in the underlying repository source, while changes to
the search indexes are made in a different thread that may not
run immediately. In this case, there may be an indeterminate
lag before searching or querying after a save() will operate
upon the changed content.

The default is value 'false', meaning the updates are performed
asynchronously.

The enumeration literal is
Option.QUERY_INDEXES_UPDATED_SYNCHRONOUSLY.

queryIndexesRebuiltSynchronously An advanced boolean flag that specifies whether the indexes
should be rebuilt synchronously when the repository restarts. If
this flag is set to 'true', query indexes for each workspace in
the repository will be rebuilt synchronously the first time that the
repository is accessed (e.g., at the first login). If this flag is set
to 'false', the query indexes for each workspace in the
repository will be rebuilt asynchronously.

Rebuilding the indexes synchronously can cause very
significant latency in the initial repository access if the
repository contains a significant amount of content that must be
reindexed. Updating the indexes asynchronously eliminates
this latency, but repository queries may generate inconsistent
results while the indexes are being updated. That is, query
results may refer to content that is no longer in the repository or
may fail to include appropriate results for nodes that had been
added to the repository.

The default is value 'true', meaning the rebuilds are performed
synchronously.

The enumeration literal is
Option.QUERY_INDEXES_REBUILT_SYNCHRONOUSLY.

Option Description

Chapter 17. Using ModeShape

127

rebuildQueryIndexOnStartup An advanced setting that specifies the strategy used to
determine which query indexes need to be rebuilt when the
repository restarts. ModeShape currently supports two
strategies:

A value of "always" dictates that the query index for every
workspace in the repository will be rebuilt each time that the
repository restarts. This can sharply increase the startup
time for the repository, particularly if the
queryIndexesRebuiltSynchronously option is set to
'true' (the default). However, this strategy ensures that any
repository content that was modified outside of the
repository (e.g., files in a FileSystemSource that were
directly modified on the file system) are properly indexed.
A value of "ifMissing" indicates that indexes should only be
rebuilt if they do not currently exist or are obviously invalid.
This strategy is always the most appropriate strategy for
non-clustered repositories with repository sources that
provide exclusive control over content (e.g., the
InfinispanSource, the JpaSource) as it greatly
reduces repository startup time for repositories with
significant amounts of content.

Note that repositories that do not configure the
queryIndexDirectory option will always use an in-memory
index. This type of index will not be persisted across repository
restarts and will require ModeShape to rebuild the indexes
each time the repository starts up even if the "ifMissing"
strategy is specified.

The "always" strategy is used by default and in cases where
the option's value does not case-independently match the one
of these two values. This was the only strategy available prior
to ModeShape 2.8.1.GA.

The enumeration literal is
Option.QUERY_INDEXES_REBUILT_SYNCHRONOUSLY, and
the values are
RebuildQueryIndexOnStartupOption.ALWAYS and
RebuildQueryIndexOnStartupOption.IF_MISSING.

projectNodeTypes An advanced boolean flag that defines whether or not the node
types should be exposed as content under the
"/jcr:system/jcr:nodeTypes" node. Value is either "true" or
"false" (default). The enumeration literal is
Option.PROJECT_NODE_TYPES.

readDepth An advanced integer flag that specifies the depth of the
subgraphs that should be loaded from the connectors during
normal read operations. The default value is 1. The
enumeration literal is Option.READ_DEPTH.

indexReadDepth An advanced integer flag that specifies the depth of the
subgraphs that should be loaded from the connectors during
indexing operations. The default value is 4. The enumeration
literal is Option.INDEX_READ_DEPTH.

Option Description

Development Guide Volume 6: Metadata Repository Reference Guide

128

tablesIncludeColumnsForInheritedProper
ties

An advanced boolean flag that dictates whether the property
definitions inherited from supertypes should be represented in
the corresponding queryable table with columns. The JCR
specification gives implementations some flexibility, so
ModeShape allows this to be controlled.

When this option is set to "false", then each table has only
those columns representing the (single-valued) property
definitions explicitly defined by the node type. When this option
is set to "true" (the default), each table will contain columns for
each of the (single-valued) property definitions explicitly
defined on the node type and inherited by the node type from
all of the supertypes.

The enumeration literal is
Option.TABLES_INCLUDE_COLUMNS_FOR_INHERITED_PR
OPERTIES.

performReferentialIntegrityChecks An advanced boolean flag that specifies whether referential
integrity checks should be performed upon Session.save(). If
set to "true" (the default), referential integrity checks are
performed to ensure that nodes referenced by other nodes
cannot be removed. If the value is set to "false", then these
referential integrity checks will not be performed when
removing nodes.

Many people generally discourage the use of REFERENCE
properties because of the overhead and the need for referential
integrity. These concerns are somewhat mitigated by the
introduction in JCR 2.0 of the WEAKREFERENCE property
type, which are excluded from referential integrity checks.

This option is available for those cases where REFERENCE
properties are not used within your content, and thus the
referential integrity checks will never find violations. In these
cases, you may disable these checks to slightly improve
performance of delete operations.

The enumeration literal is
Option.PERFORM_REFERENTIAL_INTEGRITY_CHECKS.

Option Description

Chapter 17. Using ModeShape

129

versionHistoryStructure An advanced flag that specifies the structure used to store
version histories under the
"/jcr:system/jcr:versionStorage" branch. The JCR
2.0 specification does not predefine any particular structure,
but ModeShape supports two types:

A value of "flat" dictates that all "nt:versionHistory"
nodes are stored with a name matching the UUID of the
versioned node and directly under the
"/jcr:system/jcr:versionStorage" node. For
example, given a "mix:versionable" node with the UUID
fae2b929-c5ef-4ce5-9fa1-514779ca0ae3, the
corresponding " nt:versionHistory" node will be at
"/jcr:system/jcr:versionStorage/fae2b929-
c5ef-4ce5-9fa1-514779ca0ae3".
A value of "hierarchical" dictates that all
"nt:versionHistory" nodes are stored under a
hierarchical structure created by the first 8 characters of the
UUID string. For example, given a "mix:versionable"
node with the UUID fae2b929-c5ef-4ce5-9fa1-
514779ca0ae3, the corresponding
"nt:versionHistory" node will be at
"/jcr:system/jcr:versionStorage/fa/e2/b9/29/
c5ef-4ce5-9fa1-514779ca0ae3.

The "hierarchical" structure is used by default and in cases
where the option's value does not case-independently match
the one of these two values.

The enumeration literal is
Option.VERSION_HISTORY_STRUCTURE, and the values are
VersionHistoryOption.FLAT and
VersionHistoryOption.HIERARCHICAL.

removeDerivedContentWithOriginal An advanced boolean flag that dictates whether content
derived from other content (e.g., that output by sequencers)
should be automatically (re)moved when the content from
which it was derived is (re)moved from the repository. For
example, consider that a file is uploaded and sequenced, and
that the content derived from the file is stored in the repository.
When that file is (re)moved, this option dictates whether the
derived content should also be (re)moved automatically.

By default this option has a value of "true", ensuring that all
derived content is deleted whenever the original content is
deleted. A value of "false" will leave the derived content.

The enumeration literal is
Option.REMOVE_DERIVED_CONTENT_WITH_ORIGINAL.

Option Description

Development Guide Volume 6: Metadata Repository Reference Guide

130

useAnonymousAccessOnFailedLogin A boolean flag that indicates whether any failed, non-
anonymous login attempts will automatically cause the Session
to be created using the anonymous context. If anonymous
logins are not enabled (with the anonymousUserRoles option),
then the login will still fail.

By default this option has a value of "false", ensuring that non-
anonymous login attempts either succeed as the requested
user or fail.

The enumeration literal is
Option.USE_ANONYMOUS_ACCESS_ON_FAILED_LOGIN.

useSecurityContextCredentials Older versions of ModeShape allowed client applications to
pass in Credentials implementations that had a
getSecurityContext() method that returned a
SecurityContext object, which ModeShape would then use for
authorization. However, since ModeShape now provides
support for customized authentication and authorization
modules, this is no longer needed and has been deprecated. If,
however, your applications were written to use this
SecurityContextCredentials implementation, then you
can enable this option to turn the old behavior back on. Note,
however, that this option will be removed in the next major
release. Value is either "true" or "false" (default). The
enumeration literal is
Option.USE_SECURITY_CONTEXT_CREDENTIALS.

Option Description

Warning

Setting the useAnonymousAccessOnFailedLogin option to "true" and setting the
anonymousUserRoles to a valid value means that all login attempts will succeed, but named login
attempts may actually succeed in an anonymous context. You can programattically determine which
context is being used by checking the value of Session.getUserID().

17.6. Repository System Content

Each JCR repository contains information about the system in the "/jcr:system" area of the repository
content. All of this system content applies to the whole repository (e.g., namespaces, node types, locks,
versions, etc.) and therefore every session for each workspace sees the exact same "/jcr:system"
content.

ModeShape implements this behavior by storing all "/jcr:system" content in a separate workspace, and
then using federation to project that content into each workspace. This ensures that all workspaces see the
same content, without having to duplicate the "/jcr:system" content in each workspace and ensure those
copies stay in sync. Federation is better than duplication.

By default, ModeShape creates this separate system workspace in a transient, in-memory store. This works
great for some simplistic cases, but this does not work when using clustering, , or dynamically registering
namespaces or adding or changing node types. This is because these features all rely upon changing or
adding content in the "/jcr:system" area. For example, version histories are stored under

Chapter 17. Using ModeShape

131

"/jcr:system/jcr:versionStorage", node types under "/jcr:system/jcr:versionStorage", and
namespaces under "/jcr:system/mode:namespaces".

In these situations, it is necessary to persist the system content in a repository source, and if clustering is
enabled this source needs to be accessible to all members of the cluster. Many times, the easiest approach is
to define an extra workspace in your repository source where the system content can be stored. It's also
possible to define a separate repository source with a separate workspace for each repository's system
content. (Using a separate source is required when the repository is using a single repository source that can
only store limited kinds of nodes, like the file system connector or Subversion connector that can only store
nt:file and nt:folder nodes.)

You should always configure each ModeShape repository with a source for its system workspace by using
the SYSTEM_SOURCE_NAME repository option with a value that defines the name of source and name of the
workspace in that source where the system content should be stored, in the format:

 workspaceName@sourceName

This specifies the system content should be stored in the workspace named "workspaceName" in the
"sourceName" repository source.

The system content can be stored in any repository source capable of storing any content and, in the case of
clustering, that is accessible across multiple processes. For most people, this will mean a relational database.

17.7. Example: Defining a Source for System Content

The following is an abbreviated example of an XML configuration that defines a source for the system content
(in a MySQL database) and a repository that uses it:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:mode="http://www.modeshape.org/1.0"
 xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <mode:repositories>
 <mode:repository jcr:name="car repository" mode:source="Cars">
 <mode:options jcr:primaryType="mode:options">
 <!-- Explicitly specify the "system" workspace in the "SystemStore"
source. -->
 <systemSourceName jcr:primaryType="mode:option"
 mode:value="system@SystemStore"/>
 ...
 </mode:options>
 ...
 </mode:repository>
 ...
 </mode:repositories>
 <mode:sources jcr:primaryType="nt:unstructured">
 <!-- One source for the "/jcr:system" content ... -->
 <mode:source jcr:name="SystemStore"

mode:classname="org.modeshape.connector.store.jpa.JpaSource"
 mode:description="The database store for our system
content"
 mode:dialect="org.hibernate.dialect.MySQLDialect"
 mode:dataSourceJndiName="java:/MyDataSource"
 mode:defaultWorkspaceName="system"
 mode:autoGenerateSchema="validate"/>

Development Guide Volume 6: Metadata Repository Reference Guide

132

 </mode:sources>
 <!-- An another source for the regular content ... -->
 <mode:source jcr:name="Cars"

mode:classname="org.modeshape.connector.store.jpa.JpaSource"
 mode:description="The database store for our system
content"
 mode:dialect="org.hibernate.dialect.MySQLDialect"
 mode:dataSourceJndiName="java:/MyDataSource"
 mode:defaultWorkspaceName="workspace1"
 mode:autoGenerateSchema="validate">

<mode:predefinedWorkspaceNames>workspace1</mode:predefinedWorkspaceNames>

<mode:predefinedWorkspaceNames>workspace2</mode:predefinedWorkspaceNames>

<mode:predefinedWorkspaceNames>workspace3</mode:predefinedWorkspaceNames>
 </mode:sources>
 ...
 </mode:sources>
 ...
</configuration>

Of course, you can always use a separate workspace in your primary source, too:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:mode="http://www.modeshape.org/1.0"
xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <mode:repositories>
 <mode:repository jcr:name="car repository" mode:source="Cars">
 <mode:options jcr:primaryType="mode:options">
 <!-- Explicitly specify the "system" workspace in the "Cars" source.
-->
 <systemSourceName jcr:primaryType="mode:option"
mode:value="system@Cars"/>
 ...
 </mode:options>
 ...
 </mode:repository>
 ...
 </mode:repositories>
 <mode:sources jcr:primaryType="nt:unstructured">
 <!--
 Define one source for the regular content with a special workspace for
the system content.
 -->
 <mode:source jcr:name="Cars"

mode:classname="org.modeshape.connector.store.jpa.JpaSource"
 mode:description="The database store for our system
content"
 mode:dialect="org.hibernate.dialect.MySQLDialect"
 mode:dataSourceJndiName="java:/MyDataSource"
 mode:defaultWorkspaceName="workspace1"
 mode:autoGenerateSchema="validate">

Chapter 17. Using ModeShape

133

<mode:predefinedWorkspaceNames>workspace1</mode:predefinedWorkspaceNames>

<mode:predefinedWorkspaceNames>workspace2</mode:predefinedWorkspaceNames>

<mode:predefinedWorkspaceNames>workspace3</mode:predefinedWorkspaceNames>
 <mode:predefinedWorkspaceNames>system</mode:predefinedWorkspaceNames>
 </mode:sources>
 ...
 </mode:sources>
 ...
</configuration>

17.8. Query Index Directory

ModeShape maintains a set of index files that are used to process queries and searches, using the Lucene
search engine. By default, these indexes are kept in memory (primarily because it is easy to configure). But
most production configurations should not store them in-memory but should instead store these index files on
the local file system.

Each ModeShape repository can be configured where the indexes should be stored, using the
"QUERY_INDEX_DIRECTORY" repository option (see JcrRepository.Option) when using the
programmatic API or the "queryIndexDirectory" repository option in a ModeShape configuration file. The
value of this setting should be the absolute or relative path to the folder where the indexes should be stored.
In this directory, ModeShape will store the index files for each workspace in a folder named similarly to the
workspace. Note that ModeShape will dynamically create these workspace folders as required.

For example, here is part of a ModeShape configuration file that specifies these index files should be stored
in the "data/car_repository/indexes" folder, relative to the folder where the JVM process was started:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:mode="http://www.modeshape.org/1.0"
 xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <mode:repositories>
 <mode:repository jcr:name="car repository" mode:source="Cars">
 <mode:options jcr:primaryType="mode:options">
 <!-- Explicitly specify the directory where the index files should
be stored. -->
 <queryIndexDirectory jcr:primaryType="mode:option"
 mode:value="data/car_repository/indexes"/>
 ...
 </mode:options>
 ...
 </mode:repository>
 ...
 </mode:repositories>
 ...
</configuration>

17.9. Security Index Modules

ModeShape has pluggable authentication and authorization modules. Several modules are included and
configured out-of-the-box, but it is now possible to implement and configure customized authentication and
authorization logic. This section describes how these modules work, what's there out-of-the-box, and how to
implement and add your own modules.

Development Guide Volume 6: Metadata Repository Reference Guide

134

http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrRepository.Option.html

The AuthenticationProvider interface defines a single method:

public interface AuthenticationProvider {

 /**
 * Authenticate the user that is using the supplied credentials. If the
supplied
 * credentials are authenticated, this method should construct an
ExecutionContext
 * that reflects the authenticated environment, including the context's
valid
 * SecurityContext that will be used for authorization throughout the
Session.
 * <p>
 * Note that each provider is handed a map into which it can place name-
value
 * pairs that will be used in the Session attributes of the Session that
results
 * from this authentication attempt. ModeShape will ignore any attributes
if
 * this provider does not authenticate the credentials.
 * </p>
 *
 * @param credentials the user's JCR credentials, which may be an
 * AnonymousCredentials if authenticating as an anonymous user
 * @param repositoryName the name of the JCR repository; never null
 * @param workspaceName the name of the JCR workspace; never null
 * @param repositoryContext the execution context of the repository, which
 * may be wrapped by this method
 * @param sessionAttributes the map of name-value pairs that will be
placed
 * into the Session's attributes; never null
 * @return the execution context for the authenticated user, or null if
 * this provider could not authenticate the user
 */
 ExecutionContext authenticate(Credentials credentials,
 String repositoryName,
 String workspaceName,
 ExecutionContext repositoryContext,
 Map<String,Object> sessionAttributes);

}

When a client calls one of the Repository login methods, ModeShape calls the authenticate method on
each of the AuthenticationProvider implementations registered with the Repository. As soon as one
provider returns a non-null ExecutionContext, the caller is authenticated and ModeShape uses that
ExecutionContext within the resulting Session .

When the client uses the Session and attempts to perform actions on the content, ModeShape uses the
ExecutionContext's SecurityContext to determine whether the user has the necessary privileges. If the
SecurityContext object implements the AuthorizationProvider interface, then ModeShape will call the
hasPermission(...) method, passing in the ExecutionContext, the repository name, the name of the
source used for the repository, the workspace name, the path of the node upon which the actions are being
applied, and the array of actions:

Chapter 17. Using ModeShape

135

public interface AuthorizationProvider {

 /**
 * Determine if the supplied execution context has permission for all of
the
 * named actions in the named workspace. If not all actions are allowed,
the
 * method returns false.
 *
 * @param context the context in which the subject is performing the
 * actions on the supplied workspace
 * @param repositoryName the name of the repository containing the
 * workspace content
 * @param repositorySourceName the name of the repository's source
 * @param workspaceName the name of the workspace in which the path exists
 * @param path the path on which the actions are occurring
 * @param actions the list of ModeShapePermissions actions to check
 * @return true if the subject has privilege to perform all of the named
 * actions on the content at the supplied path in the
 * given workspace within the repository, or false otherwise
 */
 boolean hasPermission(ExecutionContext context,
 String repositoryName,
 String repositorySourceName,
 String workspaceName,
 Path path,
 String... actions);
}

If the SecurityContext does not implement AuthorizationProvider, then ModeShape uses role-based
authorization by mapping the actions into roles and then for each role calling the
SecurityContext.hasRole(...) method on SecurityContext. Only if all of these invocations returns
true will the operation be allowed to continue.

17.10. Available Security Providers

ModeShape comes with several AuthorizationProvider implementations that are automatically
configured with every Repository, depending upon other settings and options. These providers are as
follows:

JaasProvider uses JAAS for all authentication and role-based authorization. This provider
authenticates clients that login to the Repository with a SimpleCredentials object, where the
username and password match that in the JAAS policy, or a JaasCredentials constructed with a
specific and already-authenticated JAAS LoginContext. This provider can be disabled by setting the
jaasLoginConfigName configuration options to an empty (i.e., zero-length) value; otherwise, the option
defines the name of the JAAS login configuration and will default to "modeshape-jcr" if not explicitly set.
(This provider also works in some J2EE containers, in which the JAAS Subject is not available via the
standard JAAS API and instead requires use of the JACC API, which many J2EE containers support)

SeamSecurityProvider delegates all authentication and role-based authorization to the Seam
Security framework. This provider authenticates clients that login to the Repository with no need to pass a
Credentials object. Note this does require obtaining a session for each servlet request, which is
actually how the JCR API was intended to be used within web applications. This provider is automatically
enabled when the Seam Security Identity class is found on the classpath.

Development Guide Volume 6: Metadata Repository Reference Guide

136

http://docs.oracle.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html

ServletProvider delegates all authentication and role-based authorization to the servlet framework.
This provider authenticates clients that login to the Repository with a ServletCredentials object,
which can be constructed with the HttpServletRequest. Note this does require obtaining a session for
each servlet request, which is actually how the JCR API was intended to be used within web applications.
This provider is automatically enabled when the HttpServletSession class is found on the classpath.

AnonymousProvider will allow clients without Credentials to operate upon the repository, and will use
role-based authorization based upon the roles defined by the anonymousUserRoles configuration option.
This provider authenticates clients that provide an AnonymousCredentials to the Repository 's
login(...) methods or use one of the login(...) methods that does not take a Credentials object.

Note

The SecurityContextProvider is also configured only when the useSecurityContextCredentials
configuration option is set to 'true'. This provider authenticates clients that pass a
SecurityContextCredentials object, and delegates all authentication to the embedded
SecurityContext. This deprecated approach not enabled by default, and will be removed in the next
major release of ModeShape. It remains in place to enable applications that use this approach to
upgrade to ModeShape 2.6 (or later) without breaking their authentication mechanism.

17.11. Custom Providers

It is possible to provide your own authentication and authorization logic by providing one (or more) classes
that implements the AuthorizationProvider interface, specifying the names of these classes in the
configuration (see below), and making the classes available on the correct classpath.

Implementing the AuthorizationProvider interface is pretty straightforward. Your class needs a no-arg
constructor, and the authenticate method must authenticate the credentials for the named repository and
workspace. If the credentials are not authenticated, return null. Otherwise, create an ExecutionContext
instance (from the ExecutionContext supplied in the repositoryContext parameter) to contain an
appropriate SecurityContext instance for the authenticated user. As mentioned above, the SecurityContext
should also implement the AuthorizationProvider interface for non-role-based authorization.

17.12. Example: Implement a Custom Provider

For example, let's imagine that our JCR application has its own authentication and authorization system. We
can integrate with that by creating a new Credentials implementation called MyAppCredentials to
encapsulate any information needed by the authentication/authorization system, which we'll assume is
accessed by a singleton class SecurityService. We can then implement AuthenticationProvider
as follows:

public class MyAppAuthorizationProvider implements AuthorizationProvider {

 private String appName;

 /**
 * Any public JavaBean properties can be set in the configuration
 */
 public void setApplicationName(String appName) {
 this.appName = appName;
 }

Chapter 17. Using ModeShape

137

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html

 /**
 * Authenticate the user that is using the supplied credentials. If the
supplied
 * credentials are authenticated, this method should construct an
ExecutionContext
 * that reflects the authenticated environment, including the context's
valid
 * SecurityContext that will be used for authorization throughout the
Session.
 * <p>
 * Note that each provider is handed a map into which it can place name-
value
 * pairs that will be used in the Session attributes of the Session that
results
 * from this authentication attempt. ModeShape will ignore any attributes
if
 * this provider does not authenticate the credentials.
 * </p>
 *
 * @param credentials the user's JCR credentials, which may be an
 * AnonymousCredentials if authenticating as an anonymous user
 * @param repositoryName the name of the JCR repository; never null
 * @param workspaceName the name of the JCR workspace; never null
 * @param repositoryContext the execution context of the repository, which
 * may be wrapped by this method
 * @param sessionAttributes the map of name-value pairs that will be
placed
 * into the Session's attributes; never null
 * @return the execution context for the authenticated user, or null if
 * this provider could not authenticate the user
 */
 public ExecutionContext authenticate(Credentials credentials,
 String repositoryName,
 String workspaceName,
 ExecutionContext
repositoryContext,
 Map<String,Object>
sessionAttributes);
 if (credentials instanceof MyAppCredentials) {
 // Try to authenticate ...
 MyAppCredentials appCreds = (MyAppCredentials)credentials;
 String user = appCreds.getUser();
 Object token = appCreds.getToken();
 AppCreds creds = SecurityService.login(appName,user,token);
 if (creds != null) {
 // We're in ...
 SecurityContext securityContext = new MyAppSecurityContext(creds);
 return repositoryContext.with(securityContext);
 }
 }
 return null;
 }
}

where the MyAppSecurityContext is as follows:

Development Guide Volume 6: Metadata Repository Reference Guide

138

public class MyAppSecurityContext
 implements SecurityContext, AuthorizationProvider {
 private final AppCreds creds;
 public MyAppSecurityContext(AppCreds creds) {
 this.creds = creds;
 }

 /**
 * {@inheritDoc SecurityContext#getUserName()}
 *
 * @see SecurityContext#getUserName()
 */
 public final String getUserName() {
 return creds.getUser();
 }

 /**
 * {@inheritDoc SecurityContext#hasRole(String)}
 *
 * @see SecurityContext#hasRole(String)
 */
 public final boolean hasRole(String roleName) {
 // shouldn't be called since we've implemented AuthorizationProvider
 return false;
 }

 /**
 * {@inheritDoc}
 *
 * @see org.modeshape.graph.SecurityContext#logout()
 */
 public void logout() {
 creds.logout();
 }

 /**
 * {@inheritDoc}
 *
 * @see org.modeshape.jcr.security.AuthorizationProvider.hasPermission
 */
 public boolean hasPermission(ExecutionContext context,
 String repositoryName,
 String repositorySourceName,
 String workspaceName,
 Path path,
 String... actions) {
 // This is imaginary and simplistic, but you'd implement any
authorization logic here ...
 return this.creds.isAuthorized(repositoryName,workspaceName,path);
 }
}

Then we just need to configure the Repository to use this provider. In the ModeShape configuration files,
there is an optional "mode:authenticationProviders" child element of "mode:repository", and
within this fragment you can define zero or more authentication providers by specifying a name, the class, an
optional description, and optionally any bean properties that should be called upon instantiation. (Note that the

Chapter 17. Using ModeShape

139

class will be instantiated only once per Repository instance). Here's an example configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:mode="http://www.modeshape.org/1.0"
 xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <mode:repositories>
 <mode:repository jcr:name="MyApp Repository" mode:source="Store">
 ...
 <mode:authenticationProviders>
 <!-- Specify the providers in a manner similar to sequencer
 definitions are defined -->
 <mode:authenticationProvider jcr:name="CustomProviderA"

mode:classname="org.example.MyAppAuthorizationProvider">
 <mode:description>My authentication provider</mode:description>
 <!-- Set JavaBean properties on provider if needed -->
 <mode:appName>MyAppName</mode:appName>
 </mode:authenticationProvider>
 ...
 </mode:authenticationProviders>
 ...
 </mode:repository>
 ...
 </mode:repositories>
 ...
</configuration>

17.13. Clustering with ModeShape

ModeShape has the ability to have a cluster of JcrEngine instances distributed across multiple processes
while behaving as though everything was happening in a single process. With clusters, the workload can be
distributed across multiple machines, increasing tolerance against failure while allowing ModeShape to scale
out to handle more workload.

ModeShape clustering uses the powerful, flexible and mature JGroups library to handle all network
communication within the cluster. JGroups provides a wealth of capabilities, including automatically detecting
new engines in the cluster (called discovery), reliable multicast communication, and automatic determination
of the master node in the cluster. JGroups has a flexible protocol stack, works across firewalls, WANs and
LANs, and supports multiple transport protocols, failure detection, reliable unicast and multicast message
transmission, and encryption.

By default, clustering is not enabled. This means that each JcrEngine instance is self-contained and will not
be aware of changes made in other JcrEngine instances. This is perfect in many lightweight or embedded
scenarios, because it does not introduce any overhead associated with network communication.

However, clustering ModeShape is very easy and requires only a few simple steps:

1. Enable clustering in the ModeShape configuration (more on this in a bit).

2. Include the modeshape-clustering module in your application by JAR file.

3. Start (or deploy) multiple JcrEngine instances using the same configuration. For embedded
scenarios, this means instantiating multiple JcrEngine instances in multiple processes. In other
cases, this means deploying ModeShape to multiple servers (either using the WebDAV server, REST
server, or into JNDI and using with your own applications).

Development Guide Volume 6: Metadata Repository Reference Guide

140

Your JCR-based application does not need to change in any other ways. Any EventListener implementations
registered in Sessions on any of the engines will be notified of all events, regardless of whether those events
were due to changes in the local or remote engines.

It also does not matter how many Repository instances are defined in the configuration and managed by
each JcrEngine instance: each engine in the cluster can manage multiple named repositories. ModeShape
ensures that all Sessions for a named repository see the changes made to that repository, regardless of
where those sessions are located in the cluster. Likewise, those same changes will not be visible to the
sessions for any other named repository.

17.14. Enabling Clustering in ModeShape

A ModeShape configuration can have a "clustering" fragment that defines the name of the cluster and the
JGroups configuration:

<mode:clustering clusterName="modeshape-cluster" configuration="jgroups-
modeshape.xml" />

The "clusterName" is a string that is a logical name of the cluster; all engines connecting to the same name
form a cluster. Any messages multicast from one engine in the cluster will be received by all other members
of the cluster. Again, the cluster name is independent of the repositories managed by th

The "configuration" value is a string that is one of:

the absolute file system path to the file containing the JGroups XML configuration;

the relative file system path to the file containing the JGroups XML configuration, relative to the current
working directory of the Java process;

the name of a resource on the classpath containing the JGroups XML configuration;

the URL that can be resolved to the JGroups XML configuration; or

the string representation of JGroups configuration, either in XML format or the older string format.

If the "configuration" property is not given, ModeShape will use the default JGroups configuration (as
defined by the specific JGroups version).

Note

Note that all engines in the cluster must have the same JGroups configuration. In fact, all engines in
the cluster will almost always have exactly the same ModeShape configuration.

Here is an example of a "clustering" fragment defining a cluster named "modeshape-cluster" using the
JGroups configuration defined in the "jgroups-modeshape.xml" file at the supplied URL:

<clustering clusterName="modeshape-cluster"
 configuration="file://some/path/jgroups-modeshape.xml" />

This next example uses the JGroups configuration defined in the "jgroups-modeshape.xml" resource file on
the classpath (or as an absolute path on a *nix system):

<clustering clusterName="modeshape-cluster"
 configuration="/some/path/jgroups-modeshape.xml" />

Chapter 17. Using ModeShape

141

Next is an example that specifies the JGroups configuration using the older string representation of the form:

<clustering clusterName="modeshape-cluster"
 configuration="PROTOCOL(param=value;param=value):PROTOCOL:PROTOCOL" />

Of course, the "configuration" property can be specified as a child element, too (line breaks added for
readability):

<clustering clusterName="modeshape-cluster">
 <configuration>UDP(max_bundle_size="60000":max_bundle_timeout="30"):
 PING(timeout="2000"):...</configuration>
</clustering>

And finally an example that specifies the JGroups configuration using the newer XML representation (line
breaks added for readability):

<clustering clusterName="modeshape-cluster">
 <configuration><![CDATA[<config><UDP max_bundle_size="60000"
 max_bundle_timeout="30".../><PING timeout="2000"/>...</config>]]>
 </configuration>
</clustering>

Note that the this example uses a child XML element for the "configuration", along with a CDATA
section, so that the XML configuration can be nested within the ModeShape configuration.

Warning

Remember to specify the system workspace name for each repository that is clustered.

17.15. JGroups Configuration

The JGroups configuration defines a protocol stack that is used for messaging, starting with the bottom-most
protocol and ending with the top-most protocol.

An example of the recommended JGroups XML format follows:

<config>
 <UDP
 mcast_addr="${jgroups.udp.mcast_addr:228.10.10.10}"
 mcast_port="${jgroups.udp.mcast_port:45588}"
 discard_incompatible_packets="true"
 max_bundle_size="60000"
 max_bundle_timeout="30"
 ip_ttl="${jgroups.udp.ip_ttl:2}"
 enable_bundling="true"
 thread_pool.enabled="true"
 thread_pool.min_threads="1"
 thread_pool.max_threads="25"
 thread_pool.keep_alive_time="5000"
 thread_pool.queue_enabled="false"

Development Guide Volume 6: Metadata Repository Reference Guide

142

 thread_pool.queue_max_size="100"
 thread_pool.rejection_policy="Run"
 oob_thread_pool.enabled="true"
 oob_thread_pool.min_threads="1"
 oob_thread_pool.max_threads="8"
 oob_thread_pool.keep_alive_time="5000"
 oob_thread_pool.queue_enabled="false"
 oob_thread_pool.queue_max_size="100"
 oob_thread_pool.rejection_policy="Run"/>
 <PING timeout="2000"
 num_initial_members="3"/>
 <MERGE2 max_interval="30000"
 min_interval="10000"/>
 <FD_SOCK/>
 <FD timeout="10000" max_tries="5" />
 <VERIFY_SUSPECT timeout="1500" />
 <BARRIER />
 <pbcast.NAKACK
 use_mcast_xmit="false" gc_lag="0"
 retransmit_timeout="300,600,1200,2400,4800"
 discard_delivered_msgs="true"/>
 <UNICAST timeout="300,600,1200,2400,3600"/>
 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
 max_bytes="400000"/>
 <VIEW_SYNC avg_send_interval="60000" />
 <pbcast.GMS print_local_addr="true" join_timeout="3000"
 view_bundling="true"/>
 <FC max_credits="20000000"
 min_threshold="0.10"/>
 <FRAG2 frag_size="60000" />
 <pbcast.STATE_TRANSFER />
</config>

For more details on how to configure the JGroups stack, see the JGroups Manual.

Note

JGroups is also used in Infinispan, JBoss EAP, and other open source projects, and many of the
JGroups configurations will work with ModeShape deployed in those same environments. For
example, this blog post describes how to configure JGroups with three autodiscovery options
available on Amazon EC2.

17.16. Using ModeShape in Web Applications

Your web application or JBoss service can use one of the JCR Repository instances running inside the
ModeShape service with a URL such as:

 jndi:jcr/local?repositoryName=repository

Be sure to use the correct repository name.

Since the JCR API JAR is on the global classpath, your web application can use the JCR API without having
to include the JAR file in your application's WAR file. In fact, your application will likely get

Chapter 17. Using ModeShape

143

http://jgroups.org/ug.html
http://infinispan.blogspot.com/2010/05/infinispan-ec2-demo.html

ClassCastExceptions if it does include the JCR API in its WAR file. Plus, if needed, your application can use
ModeShape's "org.modeshape.jcr.api" extensions to the JCR API (again, on the global classpath), and
should not need or use any of the classes or interfaces in the ModeShape implementation.

17.17. Configuring a Predefined Node Hierarchy

The SOA_ROOT/jboss-as/server/PROFILE/deploy/modeshape-services.jar/modeshape-
initial-content.xml file is an optional XML file which can be added to the main ModeShape
configuration file:

<mode:initialContent mode:workspaces="default"
mode:applyToNewWorkspaces="true" mode:content="modeshape-initial-
content.xml"/>

Its purpose is to allow users to configure, at repository startup, a predefined node hierarchy with which the
repository will be pre-populated. In other words, once the repository has started up, the node hierarchy from
the XML file will be already present in the repository. The name of the XML element will be the name of the
node, while the XML structure itself (the nested elements) will define the hierarchy.

To define a specific JCR type for a node (or for that matter any other valid JCR property), one needs to define
the JCR namespace:

<files xmlns:jcr="http://www.jcp.org/jcr/1.0" jcr:primaryType="nt:folder"
jcr:mixinTypes="mode:publishArea">

This shows the definition of a "files" node, of type "nt:folder" and which has the mixin "mode:publishArea".

17.18. The ModeShape REST Server

Metadata Repository provides a RESTful interface to its JCR implementation that allows HTTP-based access
and updating of content.

The REST server is deployed in /modeshape-rest.

17.19. Supported Resources and Methods

The REST server currently supports the URIs and HTTP methods described below.

Table 17.2. Supported URIs for the Metadata Repository REST Server

URI Pattern Description HTTP
Methods

http://<host>:<port>/modeshape-rest Returns a list of
accessible repositories

GET

http://<host>:<port>/modeshape-rest/{repositoryName}> Returns a list of
accessible workspaces
within that repository

GET

http://<host>:<port>/modeshape-
rest/{repositoryName}/{workspaceName}

Returns a list of available
operations within the
workspace

GET

Development Guide Volume 6: Metadata Repository Reference Guide

144

http://<host>:<port>/modeshape-
rest/{repositoryName}/{workspaceName}/item/{path}

Accesses the item (node
or property) at the path

GET,
POST,
PUT,
DELETE

http://<host>:<port>/modeshape-
rest/{repositoryName}/{workspaceName}/query

Executes the query in
the request body

POST

URI Pattern Description HTTP
Methods

17.20. Return a List of Accessible Repositories

A typical conversation might start with a request to the server to dynamically discover the available
repositories.

GET http://www.example.com/modeshape-rest

This request would generate a response that mapped the names of the available repositories to metadata
information about the repositories:

{
 "eds" : {
 "repository" :
 {
 "name" : "eds",
 "resources" : { "workspaces":"/modeshape-rest/eds" }
 }
 }
}

The actual response would not be pretty-printed like the example, but the format would be the same. The
name of the repository ("repository" URL-encoded) is mapped to a repository object that contains a name (the
redundant "repository") and a list of available resources within the repository and their respective URIs. Note
that Metadata Repository supports deploying multiple JCR repositories side-by-side on the same server, so
this response could easily contain multiple repositories in a real deployment.

17.21. Return a List of Workspaces for a Repository

Once you know the name of an accessible repository, you can retrieve a list of its workspaces:

GET http://www.example.com/modeshape-rest/eds

This request (and all of the following requests) actually create a JCR session (javax.jcr.Session) to
service the request and require that security be configured. The response looks similar to the following:

{
 "default" : {
 "workspace" : {
 "name" : "default",
 "resources" : {
 "items":"/modeshape-rest/eds/default/items",
 "query":"/modeshape-rest/eds/default/query"

Chapter 17. Using ModeShape

145

 },
 }
 }
}

Like the first response, this response consists of a list of workspace names mapped to metadata about the
workspaces. The example above only lists one workspace for simplicity, but there could be many different
workspaces returned in a real deployment. Note that the "items" resource builds the full URI to the root of the
items hierarchy, including the encoding of the repository name and the workspace name and the "query"
resource builds the full URI needed to execute queries.

17.22. Access a Repository Item

Once you know the path to a repository's workspaces, you can retrieve the root item of the repository:

GET http://www.example.com/modeshape-rest/eds/default/items

Any other item in the repository could be accessed by appending its path to the URI above. In a default
repository with no content, this would return the following response:

{
 "properties": {
 "jcr:primaryType": "mode:root",
 "jcr:uuid": "97d7e2ef-996e-4d99-8ec2-dc623e6c2239"
 },
 "children": ["jcr:system"]

The response contains a mapping of property names to their values and an array of child names. Had one of
the properties been multi-valued, the values for that property would have been provided as an array as well,
as will shortly be shown.

The items resource also contains an option query parameter: mode:depth. This parameter, which defaults
to 1, controls how deep the hierarchy of returned nodes should be. Had the request had the parameter:

GET http://www.example.com/modeshape-rest/eds/default/items?mode:depth=2

Then the response would have contained details for the children of the root node as well.

{
 "properties": {
 "jcr:primaryType": "mode:root",
 "jcr:uuid": "163bc5e5-3b57-4e63-b2ae-ededf43d3445"
 },
 "children": {
 "jcr:system": {
 "properties": {"jcr:primaryType": "mode:system"},
 "children": ["mode:namespaces"]
 }
 }
}

17.23. Modify Repository Content

Development Guide Volume 6: Metadata Repository Reference Guide

146

It is also possible to use the RESTful API to add, modify and remove repository content. Removal is simple -
a DELETE request with no body returns a response with no body.

DELETE http://www.example.com/modeshape-
rest/eds/default/items/path/to/deletedNode

Adding content requires a POST to the name of the relative root node of the content that you wish to add and
a request body in the same format as the response from a GET. Adding multiple nodes at once is supported,
as shown below.

POST http://www.example.com/modeshape-rest/eds/default/items/newNode
{
 "properties": {
 "jcr:primaryType": "nt:unstructured",
 "jcr:mixinTypes": "mix:referenceable",
 "someProperty": "foo"
 },
 "children": {
 "newChildNode": {
 "properties": {"jcr:primaryType": "nt:unstructured"}
 }
 }
}

Note that protected properties like jcr:uuid are not provided but that the primary type and mixin types are
provided as properties. The REST server will translate these into the appropriate calls behind the scenes.
The JSON-encoded response from the request will contain the node that you just posted, including any
autocreated properties and child nodes.

If you do not need this information, add mode:includeNode=false as a query parameter to your URL.

POST http://www.example.com/modeshape-rest/eds/default/items/newNode?
mode:includeNode=false

{
 "properties": {
 "jcr:primaryType": "nt:unstructured",
 "jcr:mixinTypes": "mix:referenceable",
 "someProperty": "foo"
 },
 "children": {
 "newChildNode": {
 "properties": {"jcr:primaryType": "nt:unstructured"}
 }
 }
}

This will instruct the REST server to only return the path of the newly-created node in the response.

The PUT method allows for updates of nodes and properties. If the URI points to a property, the body of the
request must contain the new JSON-encoded value for the property, which includes the property name,
allowing proper determination of whether the values are binary.

PUT http://www.example.com/modeshape-
rest/eds/default/items/some/existing/node/someProperty

Chapter 17. Using ModeShape

147

{
 "someProperty" : "bar"
}

Setting multiple properties at once can be performed by providing a URI to a node instead of a property. The
body of the request should then be a JSON object that maps property names to their new values.

PUT http://www.example.com/modeshape-
rest/eds/default/items/some/existing/node

{
 "someProperty": "foobar",
 "someOtherProperty": "newValue"
}

The JSON request can even contain a properties container:

PUT http://www.example.com/modeshape-
rest/eds/default/items/some/existing/node

{
 "properties": {
 "someProperty": "foobar",
 "someOtherProperty": "newValue"
 }
}

A subgraph can be updated all at once using a PUT against a URI of the top node in the subgraph. Note that,
in this case, every node in the subgraph must be provided in the JSON request (any node not in the request
will be removed). This method will attempt to set all of the properties to the new values as specified in the
JSON request, plus any descendant node in the JSON request that does not reflect an existing node will be
created while any existing node not reflected in the JSON request will be removed. Any specifications of
jcr:primaryType are ignored if the node already exists. In other words, the request only needs to contain
the properties that are changed. Of course, if a node is being added, all of its properties need to be included
in the request.

Here is an example:

PUT http://www.example.com/modeshape-
rest/eds/default/items/some/existing/node

{
 "properties": {
 "jcr:primaryType": "nt:unstructured",
 "jcr:mixinTypes": "mix:referenceable",
 "someProperty": "foo"
 },
 "children": {
 "childNode": {
 "properties": {"jcr:primaryType": "nt:unstructured"}
 }
 }
}

Development Guide Volume 6: Metadata Repository Reference Guide

148

This will update the existing node at /some/existing/node with the specified properties, and ensure that it
contains one child node named childNode. Note that the body of this request is identical in structure to that
of the POST requests.

17.24. Query the Content Repository

Queries can be executed through the REST interface by sending a POST request to the query URI with the
query statement in the body of the request. The query language must be specified by setting the appropriate
MIME type.

All queries for a given workspace are posted to the same URI and the request body is not JSON-encoded.

POST http://www.example.com/modeshape-rest/eds/default/query

/a/b/c/d[@foo='bar']

Assuming that the above request was a POST with a content type of application/jcr+xpath, a
response would be generated that consisted of a JSON object that contained a property named rows. The
rows property would contain an array of rows with each element being a JSON object that represented one
row in the query result set.

{
 "types": {
 "someProperty": "STRING",
 "someOtherProperty": "BOOLEAN",
 "jcr:path": "STRING",
 "jcr:score": "DECIMAL"
 },
 "rows": {
 {
 "someProperty": "foobar",
 "someOtherProperty": "true",
 "jcr:path" : "/a/b/c/d",
 "jcr:score" : 0.9327
 },
 {
 "someProperty": "localValue",
 "someOtherProperty": "false",
 "jcr:path" : "/a/b/c/d[2]",
 "jcr:score" : 0.8143
 }
 }
}

The JSON object in the response also contains a types property. The value of the types property is a JSON
object that maps column names to their JCR type.

17.25. Query Content Types

Table 17.3. Query Content Types for the Metadata Repository REST Server

Query Language Content Type
XPath application/jcr+xpath

Chapter 17. Using ModeShape

149

JCR-SQL application/jcr+sql
JCR-SQL2 application/jcr+sql2
Full Text Search application/jcr+search

Query Language Content Type

If no content type is specified or the content type for the request is not one of the content types listed above,
the request will generate a response code of 400 (BAD REQUEST).

17.26. Binary Properties

Binary property values are included in any of the responses or requests, but are represented as string values
containing the Base64 encoding of the binary content. Any such property is explicitly annotated such that
/base64/ is appended to the property name. This makes it very clear to the client and service which
properties are encoded, allowing them to properly decode the values before use. The /base64/ suffix cannot
be used in a real property name without escaping.

Here's an example of a node containing a jcr:primaryType property with a single string value, a
jcr:uuid property with another single UUID value, another options property that has two integer values,
and a fourth content property that has a single binary value:

{
 "properties": {
 "jcr:primaryType": "nt:unstructured",
 "jcr:uuid": "163bc5e5-3b57-4e63-b2ae-ededf43d3445"
 "options": ["1", "2"]
 "content/base64/":

"TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGJ5IGhpcyByZWFzb24sIGJ1dCBieSB0aGl
z
IHNpbmd1bGFyIHBhc3Npb24gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaCBpcyBhIGx1c3Qgb2Yg
dGhlIG1pbmQsIHRoYXQgYnkgYSBwZXJzZXZlcmFuY2Ugb2YgZGVsaWdodCBpbiB0aGUgY29udGlu
dWVkIGFuZCBpbmRlZmF0aWdhYmxlIGdlbmVyYXRpb24gb2Yga25vd2xlZGdlLCBleGNlZWRzIHRo
ZSBzaG9ydCB2ZWhlbWVuY2Ugb2YgYW55IGNhcm5hbCBwbGVhc3VyZS4="
 },
}

All values of a property will always be Base64 encoded if at least one of the values is binary. If there are
multiple values, then they will be separated by commas and will appear within brackets ([]) like other
properties.

17.27. ModeShape REST Client API

The ModeShape REST Client API provides a way of using the ModeShape REST web service to publish
(upload) and unpublish (delete) files from ModeShape repositories. Java objects open the HTTP connection,
create the HTTP request URLs, attach the payload associated with PUT and POST requests, parse the HTTP
JSON response back into Java objects, and close the HTTP connection.

The eds/modeshape/client/modeshape-client.jar JAR file contains the ModeShape REST Client
API.

The org.modeshape.web.jcr.rest.client.domain package contains the following required objects:

Server - hosts one or more ModeShape JCR repositories,

Development Guide Volume 6: Metadata Repository Reference Guide

150

Repository - a ModeShape JCR repository containing one or more workspaces, and

Workspace - a ModeShape JCR repository workspace.

Publish and unpublish operations are performed using a class that implements the
org.modeshape.web.jcr.rest.client.IRestClient interface.

Note

The only included implementation of IRestClient is
org.modeshape.web.jcr.rest.client.json.JsonRestClient which uses JSON as its data
format.

17.28. Publish a File Using the REST Client API

// Setup POJOs
Server server = new Server("http://localhost:8080", "username", "password");
Repository repository = new Repository("repositoryName", server);
Workspace workspace = new Workspace("workspaceName", repository);

// Publish
File file = new File("/path/to/file");
IRestClient restClient = new JsonRestClient();
Status status = restClient.publish(workspace, "/workspace/path/", file);

if (status.isError()
{
 // Handle error here
}

Successfully executing the above code results in the creation of a JCR folder node (nt:folder) for each
segment of the workspace path (if the folder didn't already exist). Also, a JCR file node (a node with primary
type nt:file) is created or updated under the last folder node and the file contents are encoded and
uploaded into a child node of that file node.

Refer to the quickstart example in the SOA_ROOT/jboss-
as/samples/quickstarts/modeshape_helloworld_publish/ directory.

17.29. Repository Providers

The ModeShape REST and ModeShape WebDAV servers can provide access to other JCR repositories by
implementing the org.modeshape.web.jcr.spi.RepositoryProvider interface.

There are four methods defined by the RepositoryProvider interface: startup, getJcrRepositoryNames,
getSession and shutdown. When org.modeshape.web.jcr.ModeShapeJcrDeployer starts, it will
call the RepositoryProvider startup method which will load the configuration (for example, from a
web.xml file) and initialize the repository.

As an example, here's the ModeShape JCR provider implementation of this method with exception handling
omitted for brevity.

Chapter 17. Using ModeShape

151

public void startup(ServletContext context) {
 String configFile = context.getInitParameter(CONFIG_FILE);

 InputStream configFileInputStream =
getClass().getResourceAsStream(configFile);
 jcrEngine = new
JcrConfiguration().loadFrom(configFileInputStream).build();
 jcrEngine.start();
}

The name of configuration file for the JcrEngine is read from the servlet context and used to initialize the
engine. Once the repository has been started, it is ready to accept the main methods that provide the
interface to the repository.

The first method returns the set of repository names supported by this repository.

public Set<String> getJcrRepositoryNames() {
 return new HashSet<String>(jcrEngine.getRepositoryNames());
}

The ModeShape JCR repository does support multiple repositories on the same server. Other JCR
implementations that don't support multiple repositories are free to return a singleton set containing any
string from this method.

The other required method returns an open JCR Session for the user from the current request in a given
repository and workspace. The provider can use the HttpServletRequest to get the authentication
credentials for the HTTP user.

public Session getSession(HttpServletRequest request,
 String repositoryName,
 String workspaceName) throws
RepositoryException {
 Repository repository = getRepository(repositoryName);

 SecurityContext context = new ServletSecurityContext(request);
 Credentials credentials = new SecurityContextCredentials(context);
 return repository.login(credentials, workspaceName);
}

The getSession(...) method is used by most of the REST server methods to access the JCR repository
and return results as needed.

Finally, the shutdown() method signals that the web context is being undeployed and the JCR repository
should shutdown and clean up any resources that are in use.

Development Guide Volume 6: Metadata Repository Reference Guide

152

http://java.sun.com/javaee/6/docs/api/javax/servlet/http/HttpServletRequest.html

Appendix A. Revision History

Revision 6.3.0-06 Mon Oct 21 2016 David Le Sage
Updates for 6.3.

Appendix A. Revision History

153

	Table of Contents
	Chapter 1. Read Me
	1.1. Back Up Your Data
	1.2. Variable Name: EAP_HOME
	1.3. Variable Name: MODE
	1.4. Red Hat Documentation Site
	1.5. Target Audience

	Chapter 2. In-Memory Connector
	2.1. The In-Memory Connector
	2.2. In-Memory Connector Properties
	2.3. Configuring an In-Memory Connector

	Chapter 3. File System Connector
	3.1. The File System Connector
	3.2. File System Connector Properties
	3.3. Configuring a File System Connector

	Chapter 4. JPA Connector
	4.1. The JPA Connector
	4.2. JPA Connector Properties
	4.3. Configuring a JPA Connector
	4.4. Simple Model

	Chapter 5. Disk Connector
	5.1. The Disk Connector
	5.2. Disk Connector Properties
	5.3. Configuring a Disk Connector

	Chapter 6. Compact Node Definition Sequencer
	6.1. The Compact Node Definition Sequencer
	6.2. CND Sequencer Example
	6.3. Configuring a CND Sequencer

	Chapter 7. XML Document Sequencer
	7.1. The XML Document Sequencer
	7.2. XML Document Sequencer Properties
	7.3. XML Document Sequencer Example
	7.4. Configuring an XML Document Sequencer

	Chapter 8. ZIP File Sequencer
	8.1. The ZIP File Sequencer
	8.2. ZIP File Sequencer Example
	8.3. ZIP File Sequencer Node Types
	8.4. Configuring a ZIP File Sequencer

	Chapter 9. DDL File Sequencer
	9.1. The DDL File Sequencer
	9.2. DDL File Sequencer Properties
	9.3. DDL File Sequencer Example
	9.4. Configuring a DDL File Sequencer

	Chapter 10. Text Sequencers
	10.1. Text Sequencers
	10.2. Abstract Text Sequencer
	10.3. Abstract Text Sequencer Properties
	10.4. Delimited Text Sequencer
	10.5. Delimited Text Sequencer Properties
	10.6. Configuring a Delimited Text Sequencer
	10.7. Fixed Width Text Sequencer
	10.8. Fixed Width Text Sequencer Properties
	10.9. Configuring a Fixed Width Text Sequencer

	Chapter 11. Red Hat JBoss Data Virtualization Relational Model Sequencer
	11.1. Relational Model Sequencer
	11.2. Relational Model Sequencer Properties
	11.3. Relational Model Sequencer UUIDs
	11.4. Relational Model Sequencer Node Types
	11.5. Compact Node Definitions for the xmi Namespace
	11.6. Compact Node Definitions for the mmcore Namespace
	11.7. Compact Node Definitions for the relational Namespace
	11.8. Compact Node Definitions for the jdbcs Namespace
	11.9. Compact Node Definitions for the transform Namespace
	11.10. Default Values
	11.11. Annotations
	11.12. Tags
	11.13. Transformation
	11.14. Relational Model Sequencer Example
	11.15. Configuring a Red Hat JBoss Data Virtualization Relational Model Sequencer

	Chapter 12. Red Hat JBoss Data Virtualization VDB Sequencer
	12.1. VDB Sequencer
	12.2. VDB Sequencer UUIDs and References
	12.3. VDB Sequencer Node Types
	12.4. Content Node Definitions for the vdb Namespace
	12.5. Red Hat JBoss Data Virtualization VDB Sequencer Example
	12.6. Configuring a Red Hat JBoss Data Virtualization VDB Sequencer

	Chapter 13. Red Hat JBoss Data Virtualization Text Extractor
	13.1. Text Extractor
	13.2. Configuring Your Text Extractor

	Chapter 14. Custom Text Extractors
	14.1. Custom Extractors

	Chapter 15. Web Console
	15.1. Web Console
	15.2. The Web Console and ModeShape
	15.3. Web Console: ModeShape Dashboard
	15.4. ModeShape Dashboard: Control
	15.5. Web Console: Repositories Dashboard
	15.6. Repositories Dashboard: Metrics
	15.7. Web Console: Sequencing Service Dashboard
	15.8. Sequencing Service Dashboard: Metrics
	15.9. Web Console: Sequencers Dashboard
	15.10. Web Console: Connectors Dashboard
	15.11. Connectors Dashboard: Metrics
	15.12. Connectors Dashboard: Control

	Chapter 16. Modeshape Core Concepts
	16.1. Modeshape is Deprecated
	16.2. Core Modules
	16.3. Other Essential Modules
	16.4. Miscellaneous Optional Modules
	16.5. Modules for Use with Web Applications
	16.6. Modules for Deploying Modeshape in JBoss
	16.7. Utility Modules
	16.8. Dependency Injection
	16.9. Execution Context
	16.10. Execution Context Class
	16.11. Create an Execution Context
	16.12. Security
	16.13. JAAS Security
	16.14. Configuring Users
	16.15. Configuring Roles
	16.16. Web Application Security
	16.17. Namespace Registry
	16.18. Classloaders
	16.19. Text Extractors
	16.20. Property Factory and Value Factory
	16.21. Graph Model
	16.22. Names
	16.23. Name Interface
	16.24. Name Factories
	16.25. Paths
	16.26. Path Interface
	16.27. Path Segment Interface
	16.28. Properties
	16.29. Property Interface
	16.30. Property Factory
	16.31. Property Values
	16.32. Value Factories
	16.33. Value Factory Interface
	16.34. Subinterfaces of a Value Factory
	16.35. Name Value Factory Interface
	16.36. DateTimeFactory Interface
	16.37. PathFactory Interface
	16.38. BinaryFactory Interface
	16.39. Readable Interface
	16.40. Text Encoder Interface
	16.41. Locations
	16.42. Graph API
	16.43. Using Workspaces
	16.44. Working with Nodes
	16.45. Requests
	16.46. Read Requests
	16.47. Change Requests
	16.48. Workspace Read Requests
	16.49. Workspace Change Requests
	16.50. Search Requests
	16.51. Request Processors
	16.52. Observation Framework
	16.53. Observable Interface
	16.54. Observers
	16.55. Change Class
	16.56. Connectors
	16.57. Connector Types
	16.58. Connector Terminology
	16.59. Example Use of Connector Components
	16.60. Provided Connectors
	16.61. Create a Custom Connector
	16.62. Implementing a Repository Source
	16.63. Implementing a Repository Connection
	16.64. RepositoryConnection Interface
	16.65. Using a Request Processor
	16.66. Broadcasting Events
	16.67. Cache Policy
	16.68. Leveraging JNDI
	16.69. Capabilities
	16.70. Security and Authentication
	16.71. ModeShape Sequencing
	16.72. Sequencers
	16.73. Stream Sequencers
	16.74. Path Expressions
	16.75. Simple Input Path Examples
	16.76. Advanced Input Path Examples
	16.77. Input Paths with Source and Workspace Names
	16.78. Creating Custom Sequencers

	Chapter 17. Using ModeShape
	17.1. Using ModeShape Within Your Application
	17.2. ModeShape Configuration Options
	17.3. Loading Your Configuration from a File
	17.4. Loading Your Configuration from a Repository
	17.5. JCR Repository Options
	17.6. Repository System Content
	17.7. Example: Defining a Source for System Content
	17.8. Query Index Directory
	17.9. Security Index Modules
	17.10. Available Security Providers
	17.11. Custom Providers
	17.12. Example: Implement a Custom Provider
	17.13. Clustering with ModeShape
	17.14. Enabling Clustering in ModeShape
	17.15. JGroups Configuration
	17.16. Using ModeShape in Web Applications
	17.17. Configuring a Predefined Node Hierarchy
	17.18. The ModeShape REST Server
	17.19. Supported Resources and Methods
	17.20. Return a List of Accessible Repositories
	17.21. Return a List of Workspaces for a Repository
	17.22. Access a Repository Item
	17.23. Modify Repository Content
	17.24. Query the Content Repository
	17.25. Query Content Types
	17.26. Binary Properties
	17.27. ModeShape REST Client API
	17.28. Publish a File Using the REST Client API
	17.29. Repository Providers

	Appendix A. Revision History

