
Red Hat JBoss Data Virtualization 6.2

Development Guide Volume 4: Server
Development

This guide is intended for developers

Last Updated: 2017-10-20

Red Hat JBoss Data Virtualization 6.2 Development Guide Volume 4:

Server Development

This guide is intended for developers

Red Hat Customer Content Services

Legal Notice

Copyright © 2017 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information for developers creating custom solutions.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. READ ME
1.1. BACK UP YOUR DATA
1.2. VARIABLE NAME: EAP_HOME
1.3. VARIABLE NAME: MODE
1.4. RED HAT DOCUMENTATION SITE

CHAPTER 2. EMBEDDED JBOSS DATA VIRTUALIZATION (TECHNOLOGY PREVIEW)
2.1. TECHNOLOGY PREVIEW
2.2. EMBEDDED JBOSS DATA VIRTUALIZATION
2.3. CONFIGURATION
2.4. VDB DEPLOYMENT
2.5. TRANSLATORS
2.6. SOURCES
2.7. EXAMPLE DEPLOYMENT
2.8. TRANSACTIONS
2.9. OTHER DIFFERENCES BETWEEN THE EMBEDDED AND EAP DEPLOYMENTS

CHAPTER 3. DEVELOPING FOR JBOSS DATA VIRTUALIZATION
3.1. DEVELOPING FOR JBOSS DATA VIRTUALIZATION
3.2. JBOSS DATA VIRTUALIZATION CONNECTOR ARCHITECTURE
3.3. TRANSLATORS IN JBOSS DATA VIRTUALIZATION
3.4. RESOURCE ADAPTERS IN JBOSS DATA VIRTUALIZATION
3.5. OTHER JBOSS DATA VIRTUALIZATION DEVELOPMENT
3.6. SETTING THE DEVELOPMENT ENVIRONMENT
3.7. MAVEN REPOSITORY LOCATION

CHAPTER 4. RESOURCE ADAPTER DEVELOPMENT
4.1. DEVELOPING CUSTOM ADAPTERS
4.2. DEFINE A MANAGED CONNECTION FACTORY
4.3. DEFINE A CONNECTION FACTORY
4.4. DEFINE A CONNECTION
4.5. XA TRANSACTIONS
4.6. SPECIFY CONFIGURATION PROPERTIES IN AN RA.XML FILE
4.7. PACKAGING THE ADAPTER
4.8. ADDING DEPENDENT LIBRARIES
4.9. DEPLOYING THE ADAPTER

CHAPTER 5. TRANSLATOR DEVELOPMENT
5.1. DEVELOPING CUSTOM TRANSLATORS
5.2. IMPLEMENTING THE FRAMEWORK

CHAPTER 6. EXTENDING THE EXECUTION FACTORY CLASS
6.1. EXTENDING THE EXECUTIONFACTORY CLASS
6.2. CONFIGURATION PROPERTIES
6.3. INITIALIZING THE TRANSLATOR
6.4. EXTENDED TRANSLATOR CAPABILITIES
6.5. EXECUTION (AND SUB-INTERFACES)
6.6. METADATA
6.7. LOGGING
6.8. EXCEPTIONS
6.9. DEFAULT NAME
6.10. OBTAINING CONNECTIONS
6.11. RELEASING CONNECTIONS

6
6
6
6
6

7
7
7
7
8
9
9
9

10
10

11
11
11
12
13
13
14
14

15
15
15
16
17
17
17
19

20
20

22
22
24

39
39
39
40
40
40
41
43
43
43
43
44

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 7. EXTENDING THE JDBC TRANSLATOR
7.1. EXTENSIONS
7.2. CAPABILITIES EXTENSION
7.3. SQL TRANSLATION EXTENSION
7.4. RESULTS TRANSLATION EXTENSION
7.5. ADDING FUNCTION SUPPORT
7.6. USING FUNCTION MODIFIERS
7.7. INSTALLING EXTENSIONS

CHAPTER 8. TRANSLATOR DEVELOPMENT AND LARGE OBJECTS
8.1. DATA TYPES
8.2. WHY USE LARGE OBJECT SUPPORT?
8.3. HANDLING LARGE OBJECTS
8.4. INSERTING OR UPDATING LARGE OBJECTS

CHAPTER 9. OTHER CONSIDERATIONS FOR TRANSLATOR DEVELOPMENT
9.1. CACHING API
9.2. DEPENDENT JOIN PUSHDOWN
9.3. DELEGATING TRANSLATOR
9.4. ADDING DEPENDENT MODULES

CHAPTER 10. TRANSLATOR CAPABILITIES
10.1. TRANSLATOR CAPABILITIES
10.2. TRANSLATOR CAPABILITIES
10.3. AVAILABLE CAPABILITIES
10.4. COMMAND FORM
10.5. SCALAR FUNCTIONS
10.6. PHYSICAL LIMITS
10.7. UPDATE EXECUTION MODES
10.8. NULL ORDERING

CHAPTER 11. PACKAGING AND DEPLOYING THE TRANSLATOR
11.1. PACKAGING
11.2. TRANSLATOR DEPLOYMENT OVERVIEW
11.3. MODULE DEPLOYMENT
11.4. JAR DEPLOYMENT

CHAPTER 12. USER DEFINED FUNCTIONS
12.1. USER DEFINED FUNCTIONS
12.2. SUPPORT FOR NON-PUSHDOWN USER DEFINED FUNCTIONS
12.3. SOURCE SUPPORTED FUNCTIONS

CHAPTER 13. ADMIN API
13.1. ADMIN API
13.2. CONNECTING
13.3. ADMINISTRATION METHODS

CHAPTER 14. CUSTOM LOGGING
14.1. CUSTOMIZED LOGGING
14.2. COMMAND LOGGING API
14.3. AUDIT LOGGING API
14.4. CONFIGURATION

CHAPTER 15. RUNTIME UPDATES
15.1. DATA UPDATES

45
45
45
45
46
46
47
48

49
49
49
49
49

50
50
51
51
52

53
53
53
56
60
60
61
61
61

63
63
63
63
63

65
65
65
69

72
72
72
72

73
73
73
73
74

75
75

Development Guide Volume 4: Server Development

2

. .

. .

. .

. .

15.2. RUNTIME METADATA UPDATES
15.3. COSTING UPDATES
15.4. SCHEMA UPDATES

CHAPTER 16. CUSTOM METADATA REPOSITORY
16.1. CUSTOM METADATA REPOSITORY
16.2. NATIVE
16.3. DDL
16.4. FILE
16.5. CUSTOM
16.6. USING MULTIPLE IMPORTERS
16.7. DEVELOPMENT CONSIDERATIONS
16.8. PREPARSER

APPENDIX A. EXECUTING COMMANDS
A.1. EXECUTION MODES
A.2. EXECUTIONCONTEXT
A.3. GENERATED KEYS
A.4. SOURCE HINTS
A.5. RESULTSETEXECUTION
A.6. UPDATE EXECUTION
A.7. PROCEDURE EXECUTION
A.8. ASYNCHRONOUS EXECUTIONS
A.9. REUSABLE EXECUTIONS
A.10. BULK EXECUTION
A.11. COMMAND COMPLETION
A.12. COMMAND CANCELLATION

APPENDIX B. COMMAND LANGUAGE
B.1. LANGUAGE
B.2. EXPRESSIONS
B.3. CONDITION
B.4. THE FROM CLAUSE
B.5. QUERYEXPRESSION STRUCTURE
B.6. SELECT STRUCTURE
B.7. SETQUERY STRUCTURE
B.8. WITH STRUCTURE
B.9. INSERT STRUCTURE
B.10. UPDATE STRUCTURE
B.11. DELETE STRUCTURE
B.12. CALL STRUCTURE
B.13. BATCHEDUPDATES STRUCTURE
B.14. THE TYPE FACILITY
B.15. LANGUAGE MANIPULATION
B.16. RUNTIME METADATA
B.17. METADATA OBJECTS
B.18. ACCESS TO RUNTIME METADATA
B.19. VISITOR FRAMEWORK
B.20. PROVIDED VISITORS
B.21. WRITING A VISITOR

APPENDIX C. APPENDIX
C.1. TEMPLATE FOR RA.XML
C.2. DOWNLOAD API DOCUMENTATION

75
76
76

78
78
78
78
79
79
80
81
81

83
83
83
83
83
84
84
84
84
85
85
85
86

87
87
87
88
88
88
89
89
89
89
89
89
89
89
90
90
90
90
91
91
92
92

93
93
94

Table of Contents

3

. .

C.3. JBOSS DATA VIRTUALIZATION FUNCTIONS AND ORDER OF PRECEDENCE

APPENDIX D. REVISION HISTORY

94

96

Development Guide Volume 4: Server Development

4

Table of Contents

5

CHAPTER 1. READ ME

1.1. BACK UP YOUR DATA

WARNING

Red Hat recommends that you back up your system settings and data before
undertaking any of the configuration tasks mentioned in this book.

1.2. VARIABLE NAME: EAP_HOME

EAP_HOME refers to the root directory of the Red Hat JBoss Enterprise Application Platform
installation on which JBoss Data Virtualization has been deployed.

1.3. VARIABLE NAME: MODE

MODE will either be standalone or domain depending on whether JBoss Data Virtualization is
running in standalone or domain mode. Substitute one of these whenever you see MODE in a file path in
this documentation. (You need to set this variable yourself, based on where the product has been
installed in your directory structure.)

1.4. RED HAT DOCUMENTATION SITE

Red Hat's official documentation site is available at https://access.redhat.com/site/documentation/.
There you will find the latest version of every book, including this one.

Development Guide Volume 4: Server Development

6

https://access.redhat.com/site/documentation/

CHAPTER 2. EMBEDDED JBOSS DATA VIRTUALIZATION
(TECHNOLOGY PREVIEW)

2.1. TECHNOLOGY PREVIEW

WARNING

Technology preview features provide early access to upcoming product
innovations, enabling you to test functionality and provide feedback during the
development process. However, these features are not fully supported under
Subscription Level Agreements, may not be functionally complete, and are not
intended for production use. As Red Hat considers making future iterations of
technology preview features generally available, we will attempt to resolve any
issues that customers experience when using these features. During the
development of a technology preview feature, additional components may become
available to the public for testing. Because technology preview features are still
under development, Red Hat cannot guarantee the stability of such features. As a
result, if you are using technology preview features, you may not be able to
seamlessly upgrade to subsequent releases of that feature. While Red Hat intends
to fully support technology preview features in future releases, we may discover
that a feature does not meet the standards for enterprise viability. If this happens,
we cannot guarantee that technology preview features will be released in a
supported manner. Some technology preview features may only be available for
specific hardware architectures.

NOTE

Red Hat JBoss support will provide commercially reasonable efforts to resolve any
reported issues that customers experience when using these features.

2.2. EMBEDDED JBOSS DATA VIRTUALIZATION

Embedded JBoss Data Virtualization is a lightweight version of JBoss Data Virtualization for use in any
Java 6+ JRE. Red Hat JBoss Enterprise Application Platform (or any other application server) is not
required.

NOTE

This feature/kit is still evolving. Consult the source examples and unit tests utilizing the
EmbeddedServer for more guidance.

2.3. CONFIGURATION

The primary way to configure Embedded JBoss Data Virtualization is with the
EmbeddedConfiguration class. It is provided to the EmbeddedServer at start-up. From there the
running server instance can have translators and VDBs deployed as needed.

CHAPTER 2. EMBEDDED JBOSS DATA VIRTUALIZATION (TECHNOLOGY PREVIEW)

7

Your application is responsible for having the appropriate classpath to utilize Teiid embedded.
Typically you will want to include all of the jars from the embedded kit's lib directory. As needed by
your deployment you should include jars from the optional folder along with any jars needed to provide
source access. Hibernate core 4.1.6 or compatible is needed, but not included in the kit, if you wish to
utilize the JDBC translator support for dependent joins using temporary tables.

NOTE

All Teiid jars can also be deployed as bundles in a OSGI container like Karaf. If you are
working with Karaf, a feature.xml file is available in maven repo for your convenience.
Here is the usage pattern:

If you are trying run Teidd Embedded with a Maven-based project and you are using Maven to pull
artifacts, the runtime, admin, connector, translator dependencies are required:

2.4. VDB DEPLOYMENT

VDB deployment can be done directly through VDB metadata objects that are the underpinning of
vdb.xml deployment. Models (schemas) are deployed as a set to form a named VDB (see the
EmbeddedServer.deployVDB method).

Typically there is no concept of VDB versioning.

XML Deployment

Similar to a server based -vdb.xml deployment, an InputStream may be given to a vdb.xml file. See
the EmbeddedServer.deployVDB(InputStream) method.

features:addurl
mvn:org.jboss.teiid/teiid/8.6.0.Final/xml/karaf-features
features:install -v teiid

<dependency>
 <groupId>org.jboss.teiid</groupId>
 <artifactId>teiid-runtime</artifactId>
</dependency>

<dependency>
 <groupId>org.jboss.teiid</groupId>
 <artifactId>teiid-admin</artifactId>
</dependency>

<dependency>
 <groupId>org.jboss.teiid.connectors</groupId>
 <artifactId>translator-SOURCE</artifactId>
</dependency>

<dependency>
 <groupId>org.jboss.teiid.connectors</groupId>
 <artifactId>connector-SOURCE</artifactId>
 <classifier>lib</classifier>
</dependency>

Development Guide Volume 4: Server Development

8

ZIP Deployment

Similar to a server based .vdb deployment, a URL may be given to a ZIP file. See the
EmbeddedServer.deployVDBZip method. The use of the ZIP lib for dependency loading is not
enabled in the embedded version.

2.5. TRANSLATORS

When running JBoss Data Virtualization with JBoss EAP, translator instances are scoped to a VDB
using declarations in a vdb.xml file; however, for Embedded JBoss Data Virtualization, instances of
translators are scoped to the entire EmbeddedServer and must be registered via the
EmbeddedServer.addTranslator method. A new server instance does not assume any translators
are deployed and does not perform any library scanning to find translators.

2.6. SOURCES

The EmbeddedServer will still attempt to lookup the given JNDI connection factory names via JNDI. In
most non-container environments it is likely that no such bindings exist. In this case the embedded
server instance must have ConnectionFactoryProvider instances manually registered using the
EmbeddedServer.addConnectionFactoryProvider method. Note that the embedded server
does not have built-in pooling logic, so to make better use of a standard javax.sql.DataSource or
to enable proper use of javax.sql.XADataSource you must first configure the instance via a third-
party connection pool.

2.7. EXAMPLE DEPLOYMENT

EmbeddedServer es = new EmbeddedServer();
EmbeddedConfiguration ec = new EmbeddedConfiguration();
//set any configuration properties
ec.setUseDisk(false);
es.start(ec);
//example of adding a translator by class - this will make a default
instance available with the default name of oracle
es.addTranslator(OracleExecutionFactory.class);

//add a translator by instance - this is functionally equivalent to using
a vdb.xml translator override
OracleExecutionFactory oef = new OracleExecutionFactory();
//configure and start the instance
oef.setDatabaseVersion("11.0");
oef.start();
es.addTranslator("my-oracle", oef);

//add a connection factory provider if needed
//the default is to perform a jndi lookup of the datasource names given
//however out of a container you will likely need to manually inject the
necessary connection factory

ConnectionFactoryProvider<DataSource> cfp = new
EmbeddedServer.SimpleConnectionFactoryProvider<DataSource>(...);
es.addConnectionFactoryProvider("ora-ds", cfp);

//add a vdb

CHAPTER 2. EMBEDDED JBOSS DATA VIRTUALIZATION (TECHNOLOGY PREVIEW)

9

2.8. TRANSACTIONS

For transaction processing, the TransactionManager used to start the EmbeddedServer must be
set in the EmbeddedConfiguration. A client facing javax.sql.DataSource is not provided for
Embedded JBoss Data Virtualization. However, the use of java.sql.Driver should be sufficient as,
by default, the embedded server can detect thread bound transactions and appropriately propagate
the transaction to threads launched as part of request processing. Use of local connections is also
permitted.

2.9. OTHER DIFFERENCES BETWEEN THE EMBEDDED AND EAP
DEPLOYMENTS

There is no JDBC/ODBC socket transport in Embedded JBoss Data Virtualization. You are
expected to obtain a Driver connection via the EmbeddedServer.getDriver method.

When running JBoss Data Virtualization with JBoss EAP, a MetadataRepository is scoped
to a VDB, but for Embedded JBoss Data Virtualization is scoped to the entire
EmbeddedServer instance and must be registered via the
EmbeddedServer.addMetadataRepository method.

MDC logging values are not available as Java logging lacks the concept of a mapped diagnostic
context.

//physical model
ModelMetaData mmd = new ModelMetaData();
mmd.setName("my-schema");
mmd.addSourceMapping("my-schema", "my-oracle", "ora-ds");

//virtual model
ModelMetaData mmd1 = new ModelMetaData();
mmd1.setName("virt");
mmd1.setModelType(Type.VIRTUAL);
mmd1.setSchemaSourceType("ddl");
mmd1.setSchemaText("create view \"my-view\" OPTIONS (UPDATABLE 'true') as
select * from \"my-table\"");

es.deployVDB("test", mmd, mmd1);

Development Guide Volume 4: Server Development

10

CHAPTER 3. DEVELOPING FOR JBOSS DATA
VIRTUALIZATION

3.1. DEVELOPING FOR JBOSS DATA VIRTUALIZATION

JBoss Data Virtualization provides several translators and resource adapters to enable communication
with various datasources.

If none of the included translators and resource adapters meet your requirements, you can extend
them or create your own. One of the most common examples of custom translator development is the
extension of the JDBC translator for new JDBC drivers and database versions.

3.2. JBOSS DATA VIRTUALIZATION CONNECTOR ARCHITECTURE

The process of integrating data from an enterprise information system into JBoss Data Virtualization
requires one to two components:

1. a translator (mandatory) and

2. a resource adapter (optional), also known as a connector. Most of the time, this will be a Java
EE Connector Architecture (JCA) Adapter.

A translator is used to:

translate JBoss Data Virtualization commands into commands understood by the datasource
for which the translator is being used,

execute those commands,

return batches of results from the datasource, translated into the formats that JBoss Data
Virtualization is expecting.

A resource adapter (or connector):

handles all communications with individual enterprise information systems, (which can include
databases, data feeds, flat files and so forth),

can be a JCA Adapter or any other custom connection provider (the JCA specification ensures
the writing, packaging and configuration are undertaken in a consistent manner),

NOTE

Many software vendors provide JCA Adapters to access different systems. Red
Hat recommends using vendor-supplied JCA Adapters when using JMS with
JCA. See
http://docs.oracle.com/cd/E21764_01/integration.1111/e10231/adptr_jms.htm

removes concerns such as connection information, resource pooling, and authentication for
translators.

With a suitable translator (and optional resource adapter), any datasource or Enterprise Information
System can be integrated with JBoss Data Virtualization.

CHAPTER 3. DEVELOPING FOR JBOSS DATA VIRTUALIZATION

11

http://docs.oracle.com/cd/E21764_01/integration.1111/e10231/adptr_jms.htm

3.3. TRANSLATORS IN JBOSS DATA VIRTUALIZATION

JBoss Data Virtualization provides the following translators:

Apache Cassandra (Technical Preview Only)

WARNING

Technology Preview features are not supported, may not be functionally
complete, and are not intended for production use. These features are included
to provide customers with early access to upcoming product innovations,
enabling them to test functionality and provide feedback during the
development process.

Support of Apache Cassandra brings support for the popular columnar NoSQL database to JDV
customers.

Apache Solr

With Apache Solr, JDV customers will be able to take advantage of enterprise search capabilities
for organized retrieval of structured and unstructured data.

Cloudera Impala

Cloudera Impala support provides for fast SQL query access to data stored in Hadoop.

JDBC Translator

The JDBC Translator works with many relational databases.

JBoss Enterprise Data Services Platform Supported Configurations

File Translator

The File Translator provides a procedural way to access the file system in order to handle text files.

Google Spreadsheet Translator

The Google Spreadsheet Translator is used to connect to a Google Spreadsheet.

JBoss Data Grid 6.3

You can perform reads and writes to JDG. You can use it as an embedded cache or a remote cache.

LDAP Translator

The LDAP Translator provides access to LDAP directory services.

MongoDB Translator

The MongoDB translator, known by the type name mongodb, provides a relational view of data that
resides in a MongoDB database. This translator is capable of converting JBoss Data Virtualization
SQL queries into MongoDB based queries. It supports a full range of SELECT, INSERT, UPDATE and
DELETE calls.

Development Guide Volume 4: Server Development

12

https://access.redhat.com/site/articles/112503

Object Translator

The Object translator is a bridge for reading Java objects from external sources such as JBoss Data
Grid (infinispan-cache) or Map Cache and delivering them to the engine for processing.

OData Translator

The OData translator exposes the OData V2 and V3 data sources and uses the JBoss Data
Virtualization WS resource adapter for making web service calls. This translator is an extension of
the WS Translator.

OLAP Translator

The OLAP Services translator exposes stored procedures for calling analysis services backed by an
OLAP server using MDX query language.

Salesforce Translator

The Salesforce Translator works with Salesforce interfaces.

Web Services Translator

The Web Services Translator provides procedural access to XML content by using web services.

If these translators are not suitable for your system then you can develop a custom one.

3.4. RESOURCE ADAPTERS IN JBOSS DATA VIRTUALIZATION

With the exception of JDBC data sources, JBoss Data Virtualization provides a JCA adapter for each
supported data source. These are the resource adapter identifiers, as specified in the server
configuration file:

File Adapter - file

Google Spreadsheet Adapter - google

Red Hat JBoss Data Grid (6.1 & 6.2) Adapter - infinispan

LDAP Adapter - ldap

Salesforce Adapter - salesforce

Web Services Adapter - webservice

Mongo DB Adapter (technical preview) - mongodb

NOTE

A resource adapter for the JDBC translator is provided with JBoss EAP by default.

3.5. OTHER JBOSS DATA VIRTUALIZATION DEVELOPMENT

JBoss Data Virtualization is highly extensible in other ways:

You can add user defined functions. See Section 12.1, “User Defined Functions” .

CHAPTER 3. DEVELOPING FOR JBOSS DATA VIRTUALIZATION

13

You can adapt logging to your requirements, which is especially useful for custom audit or
command logging. See Section 14.1, “Customized Logging”.

A delegating translator can be used to add custom code to all methods for a given translator.
See Section 9.3, “Delegating Translator” .

You can also customize authentication and authorization modules. See the Red Hat JBoss Data
Virtualization Security Guide.

3.6. SETTING THE DEVELOPMENT ENVIRONMENT

For JBoss Developer Studio, create an empty java project and add "teiid-common-core", "teiid-api"
and JEE "connector-api" JARs as dependencies.

For using Maven, use the following dependencies:

The teiid-version property must be set to the expected version. You must also add the new
declared property connector-api-version. You can find relevant artifacts in the Maven repository.

3.7. MAVEN REPOSITORY LOCATION

The URL of the repository will depend on where the repository is located on the filesystem, or web
server.

File System

JBoss Data Virtualization - file:///path/to/repo/jboss-dv-6.2.0-maven-
repository

Apache Web Server

http://maven.repository.redhat.com/techpreview/all/

 <dependencies>
 <dependency>
 <groupId>org.jboss.teiid</groupId>
 <artifactId>teiid-api</artifactId>
 <version>${teiid-version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.teiid</groupId>
 <artifactId>teiid-common-core</artifactId>
 <version>${teiid-version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax.resource</groupId>
 <artifactId>connector-api</artifactId>
 <version>${connector-api-version}</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

Development Guide Volume 4: Server Development

14

CHAPTER 4. RESOURCE ADAPTER DEVELOPMENT

4.1. DEVELOPING CUSTOM ADAPTERS

For situations in which an existing JCA Adapter (or other connector mechanism) is not suitable, JBoss
Data Virtualization provides a framework for developing custom JCA Adapters.

JBoss Data Virtualization uses standard JCA Adapters. Base classes for all of the required supporting
JCA SPI (Service Provider Interface) classes are provided by the JBoss Data Virtualization API. The
JCA CCI (Common Client Interface) support is not provided because JBoss Data Virtualization uses
the translator API as its common client interface.

NOTE

If you are not familiar with the JCA API, read the JCA 1.5 Specification at
http://docs.oracle.com/cd/E15523_01/integration.1111/e10231/intro.htm.

The process for developing a JBoss Data Virtualization JCA Adapter is as follows (the required classes
can be found in org.teiid.resource.spi):

Define a Managed Connection Factory by extending the BasicManagedConnectionFactory
class

Define a Connection Factory by extending the BasicConnectionFactory class

Define a Connection by extending the BasicConnection class

Specify configuration properties in an ra.xml file

NOTE

The examples contained in this book are simplified and do not include support for
transactions or security which would add significant complexity.

For sample resource adapter code, see the teiid/connectors directory of the JBoss Data
Virtualization VERSION Source Code ZIP file. This ZIP file can be downloaded from the Red Hat
Customer Portal at https://access.redhat.com.

4.2. DEFINE A MANAGED CONNECTION FACTORY

Extend the org.teiid.resource.spi.BasicManagedConnectionFactory class,
providing an implementation for the createConnectionFactory() method. This method
will create and return an instance of a Connection Factory.

Define an attribute for each configuration variable, and then provide both "getter" and "setter"
methods for them. This class will define various configuration variables (such as user,
password, and URL) used to connect to the datasource.

See the following code for an example.

public class MyManagedConnectionFactory extends
BasicManagedConnectionFactory

CHAPTER 4. RESOURCE ADAPTER DEVELOPMENT

15

http://docs.oracle.com/cd/E15523_01/integration.1111/e10231/intro.htm
https://access.redhat.com

IMPORTANT

Use only java.lang objects as the attributes. DO NOT use Java primitives for defining
and accessing the properties.

4.3. DEFINE A CONNECTION FACTORY

Extend the org.teiid.resourse.spi.BasicConnectionFactory class, and provide an
implementation for the getConnection() method. This method will create and return an instance of
a connection.

Since the Managed Connection Factory creates a Connection Factory, it has access to all the
configuration parameters so that the getConnection() method can pass credentials to the
requesting application. Therefore, the Connection Factory can reference the calling user's
javax.security.auth.Subject from within the getConnection() method.

A Subject can give access to logged-in user's credentials and roles that are defined. This may be
null.

{
 @Override
 public Object createConnectionFactory() throws ResourceException
 {
 return new MyConnectionFactory();
 }

 // config property name (metadata for these are defined inside the
ra.xml)
 String userName;
 public String getUserName() { return this.userName; }
 public void setUserName(String name){ this.userName = name; }

 // config property count (metadata for these are defined inside the
ra.xml)
 Integer count;
 public Integer getCount() { return this.count; }
 public void setCount(Integer value) { this.count = value; }

}

public class MyConnectionFactory extends BasicConnectionFactory
{
 @Override
 public MyConnection getConnection() throws ResourceException
 {
 return new MyConnection();
 }
}

Subject subject = ConnectionContext.getSubject();

Development Guide Volume 4: Server Development

16

NOTE

You can define a security-domain for this resource adapter that is separate from the
default JBoss Data Virtualization security-domain for validating the JDBC user.
However, it is the user's responsibility to perform the necessary logins before the
application server's thread accesses this resource adapter.

4.4. DEFINE A CONNECTION

Extend the org.teiid.resource.spi.BasicConnection class, and provide an implementation
based on your access of the Connection object in your translator. If your connection is stateful,
override the isAlive() and cleanup() methods with suitable implementations. These methods are
called to check if a connection is stale and needs flushing from the connection pool by the application
server.

4.5. XA TRANSACTIONS

If the requesting application can participate in XA transactions, then your Connection object must
override the getXAResource() method and provide the XAResource object for the application. To
participate in crash recovery you must also extend the BasicResourceAdapter class and implement
the public XAResource[] getXAResources(ActivationSpec[] specs) method.

JBoss Data Virtualization can make XA-capable resource adapters participate in distributed
transactions. If they are not XA-capable, the datasource can participate in distributed queries but not
distributed transactions. Transaction semantics are determined by how you configured "connection-
factory" in a "resource-adapter" (that is, jta=true/false).

4.6. SPECIFY CONFIGURATION PROPERTIES IN AN RA.XML FILE

Every configuration property defined inside the new Managed Connection Factory class must also be
configured in the ra.xml file. These properties are used to configure each instance of the connector.

public class MyConnection extends BasicConnection
{
 public void doSomeOperation(command)
 {
 // do some operation with requesting application..
 // This is method you use in the Translator, you should know
 // what need to be done here for your source..
 }

 @Override
 public boolean isAlive()
 {
 return true;
 }

 @Override
 public void cleanUp()
 {

 }
}

CHAPTER 4. RESOURCE ADAPTER DEVELOPMENT

17

The ra.xml file is located in
EAP_HOME/modules/system/layers/dv/org/jboss/teiid/resource-adapter/ADAPTER-
NAME/main/META-INF. An example file is provided in Section C.1, “Template for ra.xml” .

The following is the format for a single entry:

For example:

The format and contents of the <description> element may be used as extended metadata for
tooling. This use of the special format and all properties is optional and must follow these rules:

The special format must begin and end with curly braces e.g. { }.

Property names begin with $.

Property names and the associated value are separated with a colon (:).

Double quotes (") identifies a single value.

A pair of square brackets ([]), containing comma separated double quoted entries indicates a
list value.

The following are optional properties:

$display: Display name of the property.

$description: Description about the property.

$required: The property is a required property; or optional and a default is supplied.

$allowed: If property value must be in certain set of legal values, this defines all the allowed
values.

$masked: The tools need to mask the property; Do not show in plain text; used for passwords.

<config-property>
 <description>
 {$display:"display-name",$description:"description",
$allowed:"allowed",
 $required:"true|false", $defaultValue:"default-value"}
 </description>
 <config-property-name>property-name</config-property-name>
 <config-property-type>property-type</config-property-type>
 <config-property-value>optional-property-value</config-property-value>
</config-property>

<config-property>
 <description>
 {$display:"User Name",$description:"The name of the user.",
$required="true"}
 </description>
 <config-property-name>UserName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
</config-property>

Development Guide Volume 4: Server Development

18

$advanced: Notes this as Advanced property.

$readOnly: Property is set to read-only.

NOTE

Although these are optional properties, in the absence of this metadata, JBoss Data
Virtualization tooling may not work as expected.

4.7. PACKAGING THE ADAPTER

When development is complete, the resource adapter files are packaged into a deployable artifact
called a Resource Adapter Archive or RAR file.

NOTE

The file format is defined by the JCA specification and must not be confused with the
RAR file compression format.

The method of creating a RAR artifact will depend on your build system:

JBoss Developer Studio

If you create a Java Connector project in JBoss Developer Studio, it will include a build target that
produces a RAR file.

Apache Ant

When using Apache Ant, you can use the standard rar build task.

Apache Maven

When using Apache Maven, set the value of the <packaging> element to rar. Since JBoss Data
Virtualization uses Maven, you can refer to any of the Connector projects; for example, pom.xml
shown below.

<project>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>connector-{name}</artifactId>
 <groupId>org.company.project</groupId>
 <name>Name Connector</name>
 <packaging>rar</packaging>
 <description>This connector is a sample</description>

 <dependencies>
 <dependency>
 <groupId>org.jboss.teiid</groupId>
 <artifactId>teiid-api</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.teiid</groupId>
 <artifactId>teiid-common-core</artifactId>
 <scope>provided</scope>
 </dependency>

CHAPTER 4. RESOURCE ADAPTER DEVELOPMENT

19

The RAR file under its associated META-INF directory must contain the ra.xml file. If you are using
Apache Maven, see http://maven.apache.org/plugins/maven-rar-plugin/. In the root of the RAR file,
you can embed the JAR file containing your connector code and any dependent library JAR files.

4.8. ADDING DEPENDENT LIBRARIES

Add a MANIFEST.MF file into the META-INF directory, and the following line to add the core JBoss
Data Virtualization API dependencies for the resource adapter.

If your resource adapter depends on any other third party .jar, .dll, or .so files they can be placed at the
root of the RAR file. If any of these libraries are already available as modules in JBoss EAP, then you
can add the module name to the above MANIFEST.MF file to specify them as dependencies.

4.9. DEPLOYING THE ADAPTER

Once the RAR file is built, deploy it using the CLI or Management Console.

Once the adapter's RAR file has been deployed you can create an instance of this connector to use
with your Translator. Creating an instance of this adapter is the same as creating a Connection Factory.
There are two ways you can do this:

1. Edit the server configuration file and add the following XML in the "resource-adapters"
subsystem.

 <dependency>
 <groupId>javax.resource</groupId>
 <artifactId>connector-api</artifactId>
 <scope>provided</scope>
 </dependency>
 </dependencies>

Dependencies: org.jboss.teiid.common-core,org.jboss.teiid.api,javax.api

<!-- If susbsytem is already defined, only copy the contents under
it and edit to suit your needs -->
<subsystem xmlns="urn:jboss:domain:resource-adapters:1.0">
 <resource-adapters>
 <resource-adapter>
 <archive>teiid-connector-sample.rar</archive>
 <transaction-support>NoTransaction</transaction-
support>
 <connection-definitions>
 <connection-definition class-
name="org.teiid.resource.adapter.MyManagedConnectionFactory" jndi-
name="${jndi-name}"
 enabled="true"
 use-java-context="true"
 pool-name="sample-ds">
 <config-property
name="UserName">jdoe</config-property>
 <config-property name="Count">12</config-
property>

Development Guide Volume 4: Server Development

20

http://maven.apache.org/plugins/maven-rar-plugin/

There are more properties that you can define in this file; for example, for pooling,
transactions, and security. Refer to the Red Hat JBoss Enterprise Application Platform
documentation for all the available properties. See
https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.

2. You can use the web-based Management Console to create a new ConnectionFactory.

 </connection-definition>
 </connection-definitions>
 </resource-adapter>
 </resource-adapters>
</subsystem>

CHAPTER 4. RESOURCE ADAPTER DEVELOPMENT

21

https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/

CHAPTER 5. TRANSLATOR DEVELOPMENT

5.1. DEVELOPING CUSTOM TRANSLATORS

To create a new custom translator:

1. Create a new (or reuse an existing) resource adapter for the datasource, to be used with this
translator.

2. Decide whether to use the Teiid archetype template to create your initial custom translator
project and classes or manually create your environment.

3. Create an ExecutionFactory by:

extending the org.teiid.translator.ExecutionFactory class or

extending the org.teiid.translator.jdbc.JDBCExecutionFactory class .

4. Package the translator.

5. Deploy your translator.

6. Deploy a Virtual Database (VDB) that uses your translator.

7. Execute queries via the Teiid engine.

For sample translator code, refer to the teiid/connectors directory of the JBoss Data
Virtualization VERSION Source Code ZIP file which can be downloaded from the Red Hat
Customer Portal at https://access.redhat.com.

To set up the environment for developing a custom translator, you can either manually configure the
build environment, structure and framework classes and resources or use the Teiid Translator
Archetype template to generate the initial project.

To create the build environment in Red Hat JBoss Developer Studio without any Maven integration,
create a Java project and add dependencies to "teiid-common-core", "teiid-api" and JEE "connector-
api" jars. However, if you wish to use Maven, add these dependencies:

<dependencies>
 <dependency>
 <groupId>org.jboss.teiid</groupId>
 <artifactId>teiid-api</artifactId>
 <version>${teiid-version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.teiid</groupId>
 <artifactId>teiid-common-core</artifactId>
 <version>${teiid-version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax.resource</groupId>
 <artifactId>connector-api</artifactId>
 <version>${version.connector.api}</version>
 <scope>provided</scope>

Development Guide Volume 4: Server Development

22

https://access.redhat.com

In this case, the ${teiid-version} property should be set to the expected version, such as 8.9.0.Final.
You can find Teiid artifacts in the JBoss maven repository .

One way to start developing a custom translator is to create a project using the Teiid archetype
template. When the project is created from the template, it will contain the essential classes (in other
words, the ExecutionFactory) and resources for you to begin adding your custom logic. Additionally,
the maven dependencies are defined in the pom.xml file so that you can begin compiling the classes.

The first way to create a translator project is by using JBoss Developer Studio:

Procedure 5.1. Create a Project in JBDS

1. Open the Java perspective

2. From the menu select File - New - Other.

3. In the tree, expand Maven and select Maven Project.

4. Click Next.

5. On the "Select project name and Location" window, you can accept the defaults, so click Next

6. On the "Select an Archetype" window, click the Configure button

7. Add the remote catalog found at
https://repository.jboss.org/nexus/content/repositories/releases/ then click OK to return.

8. Enter "teiid" in the filter to see the Teiid archetypes.

9. Select the translator-archetype 8.7.x and then click Next.

10. Enter all the information (such as Group ID and, Artifact ID) needed to generate the project.

11. Click Finish.

The other method involves using the command line.

Procedure 5.2. Create a Project Using the Command Line

1. Issue the following template command: mvn archetype:generate \ -
DarchetypeGroupId=org.jboss.teiid.arche-types \ -
DarchetypeArtifactId=translator-archetype \ -DarchetypeVersion=8.7.0 \
-DgroupId=${groupId} \ -DartifactId=translator-${translator-name} \ -
Dpackage=org.teiid.translator.${translator-name} \ -Dversion=${version}
\ -Dtranslator-name=${translator-name} \ -Dteiid-version=${teiid-
version}

This is what the instructions mean:

-DarchetypeGroupId - is the group ID for the archetype to use to generate

-DarchetypeArtifactId - is the artifact ID for the archetype to use to generate

 </dependency>
</dependencies>

CHAPTER 5. TRANSLATOR DEVELOPMENT

23

-DarchetypeVersion - is the version for the archetype to use to generate

-DgroupId - (user defined) group ID for the new translator project pom.xml

-DartifactId - (user defined) artifact ID for the new translator project pom.xml

-Dpackage - (user defined) the package structure where the java and resource files will be
created

-Dversion - (user defined) the version that the new connector project pom.xml will be

-Dtranslator-name - (user defined) the name (type) of the new translator project, used to
create the java class names

-Dteiid-version - the Teiid version upon which the connector will depend.

Here is a sample command: mvn archetype:generate \ -
DarchetypeGroupId=org.jboss.teiid.arche-types \ -
DarchetypeArtifactId=translator-archetype \ -DarchetypeVersion=8.7.0 \
-DgroupId=org.jboss.teiid.connector \ -DartifactId=translator-myType \
-Dpackage=org.teiid.translator.myType \ -Dversion=0.0.1-SNAPSHOT \ -
Dtranslator-name=MyType \ -Dteiid-version=8.7.0.Final

2. After you execute it, you will be asked to confirm the properties:

Confirm properties configuration:
groupId: org.jboss.teiid.connector
artifactId: translator-myType
version: 0.0.1-SNAPSHOT
package: org.teiid.translator.myType
teiid-version: 8.7.0.Final
translator-name: MyType
 Y: :

Type Y (for Yes) and click enter.

3. Upon creation, a directory based on the artifactId will be created, that will contain the project.
Navigate to that directory.

4. Execute a test build to confirm the project was created correctly: mvn clean install

It should build successfully. If so, you are now ready to start adding your custom code.

5.2. IMPLEMENTING THE FRAMEWORK

Translators may contribute cache entries to the result set cache by the use of the CacheDirective
object. Translators wishing to participate in caching should return a CacheDirective from the
ExecutionFactory.getCacheDirective method, which is called prior to execution. The command
passed to getCacheDirective will already have been vetted to ensure that the results are eligible for
caching. For example update commands or commands with pushed dependent sets will not be eligible
for caching.

If the translator returns null for the CacheDirective, which is the default implementation, the engine
will not cache the translator results beyond the current command. It is up to your custom translator or
custom delegating translator to implement your desired caching policy.

Development Guide Volume 4: Server Development

24

NOTE

In special circumstances where the translator has performed its own caching, it can
indicate to the engine that the results should not be cached or reused by setting the
Scope to Scope.NONE.

The returned CacheDirective will be set on the ExecutionContext and is available via the
ExecutionContext.getCacheDirective() method. Having ExeuctionFactory.getCacheDirective
called prior to execution allows the translator to potentially be selective about which results to even
attempt to cache. Since there is a resource overhead with creating and storing the cached results it
may not be desirable to attempt to cache all results if it is possible to return large results that have a
low usage factor. If you are unsure about whether to cache a particular command result you may
return an initial CacheDirective then change the Scope to Scope.NONE at any time prior to the final
cache entry being created and the engine will give up creating the entry and release its resources.

NOTE

If you plan on modifying the CacheDirective during execution, ensure that you return a
new instance from the ExecutionFactory.getCacheDirective call, rather than returning a
shared instance.

The CacheDirective readAll Boolean field is used to control whether the entire result should be read if
not all of the results were consumed by the engine. If readAll is false then any partial usage of the
result will not result in it being added as a cache entry. Partial use is determined after any implicit or
explicit limit has been applied. The other fields on the CacheDirective object map to the cache hint
options.

Table 5.1. Options

Option Default

scope Session

ttl rs cache ttl

readAll true

updatable true

prefersMemory false

Teiid sends commands to your Translator in object form. These classes are all defined in the
"org.teiid.language" package. These objects can be combined to represent any possible command that
Teiid may send to the Translator. However, it is possible to notify Teiid that your Translator can only
accept certain kinds of constructs via the capabilities defined on the "ExecutionFactory" class.

The language objects all extend from the LanguageObject interface. Language objects should be
thought of as a tree where each node is a language object that has zero or more child language objects
of types that are dependent on the current node.

All commands sent to your Translator are in the form of these language trees, where the root of the
tree is a subclass of Command. Command has several sub-interfaces, namely:

CHAPTER 5. TRANSLATOR DEVELOPMENT

25

QueryExpression

Insert

Update

Delete

BatchedUpdates

Call

An expression represents a single value in context, although in some cases that value may change as
the query is evaluated. For example, a literal value, such as 5 represents an integer value. An column
reference such as "table.EmployeeName" represents a column in a data source and may take on many
values while the command is being evaluated.

Expression – base expression interface.

ColumnReference – represents an column in the data source.

Literal – represents a literal scalar value.

Parameter – represents a parameter with multiple values. The command should be an instance
of BatchedCommand, which provides all values via getParameterValues.

Function – represents a scalar function with parameters that are also Expressions.

AggregateFunction – represents an aggregate function which can hold a single expression.

WindowFunction – represents an window function which holds an AggregateFunction (which is
also used to represent analytical functions) and a WindowSpecification.

ScalarSubquery – represents a subquery that returns a single value.

SearchedCase, SearchedWhenClause – represents a searched CASE expression. The searched
CASE expression evaluates the criteria in WHEN clauses till one evaluates to TRUE, then
evaluates the associated THEN clause.

Array – represents an array of expressions, used by the engine in multi-attribute dependent
joins.

A criteria is a combination of expressions and operators that evaluates to true, false, or unknown.
Criteria are most commonly used in the WHERE or HAVING clauses.

Condition – the base criteria interface

Not – used to NOT another criteria

AndOr – used to combine other criteria via AND or OR

SubuqeryComparison – represents a comparison criteria with a subquery including a quantifier
such as SOME or ALL

Comparison – represents a comparison criteria with =, >, and so on.

BaseInCondition – base class for an IN criteria

Development Guide Volume 4: Server Development

26

In – represents an IN criteria that has a set of expressions for values

SubqueryIn – represents an IN criteria that uses a subquery to produce the value set

IsNull – represents an IS NULL criteria

Exists – represents an EXISTS criteria that determines whether a subquery will return any
values.

Like – represents a LIKE/SIMILAR TO/LIKE_REGEX criteria that compares string values.

The FROM clause contains a list of TableReferences:

NamedTable – represents a single Table

Join – has a left and right TableReference and information on the join between the items

DerivedTable – represents a table defined by an inline QueryExpression A list of
TableReference are used by default, in the pushdown query when no outer joins are used. If an
outer join is used anywhere in the join tree, there will be a tree of joins with a single root. This
latter form is the ANSI preferred style. If you wish all pushdown queries containing joins to be
in ANSI style have the capability "useAnsiJoin" return true.

QueryExpression is the base for both SELECT queries and set queries. It may optionally take an
OrderBy (representing a SQL ORDER BY clause), a Limit (represent a SQL LIMIT clause), or a With
(represents a SQL WITH clause).

Each QueryExpression can be a Select describing the expressions (typically elements) being selected
and an TableReference specifying the table or tables being selected from, along with any join
information. The Select may optionally also supply an Condition (representing a SQL WHERE clause), a
GroupBy (representing a SQL GROUP BY clause), an an Condition (representing a SQL HAVING
clause).

A QueryExpression can also be a SetQuery that represents on of the SQL set operations (UNION,
INTERSECT, EXCEPT) on two QueryExpression. The all flag may be set to indicate UNION ALL
(currently INTERSECT and EXCEPT ALL are not allowed in Teiid)

A With clause contains named QueryExpressions held by WithItems that can be referenced as tables in
the main QueryExpression.

Each Insert will have a single NamedTable specifying the table being inserted into. It will also has a list
of ColumnReference specifying the columns of the NamedTable that are being inserted into. It also has
InsertValueSource, which will be a list of Expressions (ExpressionValueSource) or a QueryExpression

Each Update will have a single NamedTable specifying the table being updated and list of SetClause
entries that specify ColumnReference and Expression pairs for the update. The Update may optionally
provide a criteria Condition specifying which rows should be updated.

Each Delete will have a single NamedTable specifying the table being deleted from. It may also
optionally have a criteria specifying which rows should be deleted.

Each Call has zero or more Argument objects. The Argument objects describe the input parameters,
the output result set, and the output parameters.

Each BatchedUpdates has a list of Command objects (which must be either Insert, Update or Delete)
that compose the batch.

This section covers utilities available when using, creating, and manipulating the language interfaces.

CHAPTER 5. TRANSLATOR DEVELOPMENT

27

The Translator API contains an interface TypeFacility that defines data types and provides value
translation facilities. This interface can be obtained from calling "getTypeFacility()" method on the
"ExecutionFactory" class.

The TypeFacitlity interface has methods that support data type transformation and detection of
appropriate runtime or JDBC types. The TypeFacility.RUNTIME_TYPES and
TypeFacility.RUNTIME_NAMES interfaces defines constants for all Teiid runtime data types. All
Expression instances define a data type based on this set of types. These constants are often needed in
understanding or creating language interfaces.

In Translators that support a fuller set of capabilities (those that generally are translating to a language
of comparable to SQL), there is often a need to manipulate or create language interfaces to move
closer to the syntax of choice. Some utilities are provided for this purpose:

Similar to the TypeFacility, you can call "getLanguageFactory()" method on the "ExecutionFactory" to
get a reference to the LanguageFactory instance for your translator. This interface is a factory that can
be used to create new instances of all the concrete language interface objects.

Some helpful utilities for working with Condition objects are provided in the LanguageUtil class. This
class has methods to combine Condition with AND or to break an Condition apart based on AND
operators. These utilities are helpful for breaking apart a criteria into individual filters that your
translator can implement.

Teiid uses a library of metadata, known as "runtime metadata" for each virtual database that is
deployed in Teiid. The runtime metadata is a subset of metadata as defined by models in the Teiid
models that compose the virtual database. While building your VDB in the Designer, you can define
what called "Extension Model", that defines any number of arbitary properties on a model and its
objects. At runtime, using this runtime metadata interface, you get access to those set properties
defined during the design time, to define/hint any execution behavior.

Translator gets access to the RuntimeMetadata interface at the time of Excecution creation.
Translators can access runtime metadata by using the interfaces defined in org.teiid.metadata
package. This package defines API representing a Schema, Table, Columns and Procedures, and ways
to navigate these objects.

All the language objects extend AbstractMetadataRecord class:

Column - returns Column metadata record

Table - returns a Table metadata record

Procedure - returns a Procedure metadata record

ProcedureParameter - returns a Procedure Parameter metadata record

Once a metadata record has been obtained, it is possible to use its metadata about that object or to
find other related metadata.

The RuntimeMetadata interface is passed in for the creation of an "Execution". See "createExecution"
method on the "ExecutionFactory" class. It provides the ability to look up metadata records based on
their fully qualified names in the VDB.

The process of getting a Table's properties is sometimes needed for translator development. For
example to get the "NameInSource" property or all extension properties:

//getting the Table metadata from an Table is straight-forward
Table table = runtimeMetadata.getTable("table-name");

Development Guide Volume 4: Server Development

28

The API provides a language visitor framework in the org.teiid.language.visitor package. The
framework provides utilities useful in navigating and extracting information from trees of language
objects.

The visitor framework is a variant of the Visitor design pattern, which is documented in several popular
design pattern references. The visitor pattern encompasses two primary operations: traversing the
nodes of a graph (also known as iteration) and performing some action at each node of the graph. In
this case, the nodes are language interface objects and the graph is really a tree rooted at some node.
The provided framework allows for customization of both aspects of visiting.

The base AbstractLanguageVisitor class defines the visit methods for all leaf language interfaces that
can exist in the tree. The LanguageObject interface defines an acceptVisitor() method – this method
will call back on the visit method of the visitor to complete the contract. A base class with empty visit
methods is provided as AbstractLanguageVisitor. The AbstractLanguageVisitor is just a visitor shell –
it performs no actions when visiting nodes and does not provide any iteration.

The HierarchyVisitor provides the basic code for walking a language object tree. The HierarchyVisitor
performs no action as it walks the tree – it just encapsulates the knowledge of how to walk it. If your
translator wants to provide a custom iteration that walks the objects in a special order (to exclude
nodes, include nodes multiple times, conditionally include nodes, etc) then you must either extend
HierarchyVisitor or build your own iteration visitor. In general, that is not necessary.

The DelegatingHierarchyVisitor is a special subclass of the HierarchyVisitor that provides the ability to
perform a different visitor’s processing before and after iteration. This allows users of this class to
implement either pre- or post-order processing based on the HierarchyVisitor. Two helper methods are
provided on DelegatingHierarchyVisitor to aid in executing pre- and post-order visitors.

The SQLStringVisitor is a special visitor that can traverse a tree of language interfaces and output the
equivalent Teiid SQL. This visitor can be used to print language objects for debugging and logging. The
SQLStringVisitor does not use the HierarchyVisitor described in the last section; it provides both
iteration and processing type functionality in a single custom visitor.

The CollectorVisitor is a handy utility to collect all language objects of a certain type in a tree. Some
additional helper methods exist to do common tasks such as retrieving all elements in a tree, retrieving
all groups in a tree, and so on.

Writing your own visitor can be quite easy if you use the provided facilities. If the normal method of
iterating the language tree is sufficient, then follow these steps:

Procedure 5.3. Write a Visitor

1. Create a subclass of AbstractLanguageVisitor. Override any visit methods needed for your
processing. For instance, if you wanted to count the number of elements in the tree, you need
only override the visit(ColumnReference) method. Collect any state in local variables and
provide accessor methods for that state.

2. Decide whether to use pre-order or post-order iteration. Note that visitation order is based
upon syntax ordering of SQL clauses - not processing order.

3. Write code to execute your visitor using the utility methods on DelegatingHierarchyVisitor:

String contextName = table.getNameInSource();

//The props will contain extension properties
Map<String, String> props = table.getProperties();

CHAPTER 5. TRANSLATOR DEVELOPMENT

29

The extended "ExecutionFactory" must implement the getConnection() method to allow the Connector
Manager to obtain a connection.

Once the Connector Manager has obtained a connection, it will use that connection only for the lifetime
of the request. When the request has completed, the closeConnection() method called on the
"ExecutionFactory". You must also override this method to properly close the connection.

In cases (such as when a connection is stateful and expensive to create), connections should be
pooled. If the resource adapter is JEE JCA connector based, then pooling is automatically provided by
the JBoss EAP container. If your resource adapter does not implement the JEE JCA, then connection
pooling semantics are left to the user to define on their own.

Dependent joins are a technique used in federation to reduce the cost of cross source joins. Join values
from one side of a join are made available to the other side which reduces the number of tuples needed
to preform the join. Translators may indicate support for dependent join pushdown via the
supportsDependentJoin and supportsFullDependentJoin capabilities. The handling of pushdown
dependent join queries can be complicated.

The more simplistic mode of dependent join pushdown is to push only the key (equi-join) values to
effectively evaluate a semi-join - the full join will still be processed by the engine after the retrieval.
The ordering (if present) and all of the non-dependent criteria constructs on the pushdown command
must be honored. The dependent criteria, which will be a Comparison with a Parameter (possibly in
Array form), may be ignored in part or in total to retrieve a superset of the tuples requested.

Pushdown key dependent join queries will be instances of Select with the relevant dependent values
available via Select.getDependentValues(). A dependent value tuple list is associated to Parameters by
id via the Parameter.getDepenentValueId() identifier. The dependent tuple list provide rows that are
referenced by the column positions (available via Parameter.getValueIndex()). Care should be taken
with the tuple values as they may guaranteed to be ordered, but will be unique with respect to all of the
Parameter references against the given dependent value tuple list.

In some scenarios, typically with small independent data sets or extensive processing above the join
that can be pushed to the source, it is advantageous for the source to handle the dependent join
pushdown. This feature is marked as supported by the supportsFullDependentJoin capability. Here the
source is expected to process the command exactly as specified - the dependent join is not optional

Full pushdown dependent join queries will be instances of QueryExpression with the relevant
dependent values available via special common table definitions using QueryExpression.getWith(). The
independent side of a full pushdown join will appear as a common table WithItem with a dependent
value tuple list available via WithItem.getDependentValues(). The dependent value tuples will
positionally match the columns defined by WithItem.getColumns(). The dependent value tuple list is
not guaranteed to be in any particular order.

The Teiid query engine uses the "ExecutionFactory" class to obtain the "Execution" interface for the

// Get object tree
LanguageObject objectTree = …

// Create your visitor initialize as necessary
MyVisitor visitor = new MyVisitor();

// Call the visitor using pre-order visitation
DelegatingHierarchyVisitor.preOrderVisit(visitor, objectTree);

// Retrieve state collected while visiting
int count = visitor.getCount();

Development Guide Volume 4: Server Development

30

command it is executing. The actual queries themselves are sent to translators in the form of a set of
objects, which are further described in Command Language. Translators are allowed to support any
subset of the available execution modes.

Table 5.2. Execution Modes

Execution Interface Command Interface Description

ResultSetExecution QueryExpression A query corresponding to a SQL
SELECT or set query statement.

UpdateExecution Insert, Update, Delete,
BatchedUpdates

An insert, update, or delete,
corresponding to a SQL INSERT,
UPDATE, or DELETE command.

ProcedureExecution Call A procedure execution that may
return a result set and/or output
values.

All of the execution interfaces extend the base Execution interface that defines how executions are
cancelled and closed. ProcedureExecution also extends ResultSetExecution, since procedures may
also return resultsets.

The org.teiid.translator.ExecutionContext provides a considerable amount of information related to the
current execution. An ExecutionContext instance is made available to each Execution. Specific usage
is highlighted in this guide where applicable, but you may use any informational getter method as
desired. Example usage would include calling ExecutionContext.getRequestId(),
ExecutionContext.getSession(), etc. for logging purposes.

An org.teiid.CommandContext is available via the ExecutionContext.getCommandContext() method.
The CommandContext contains information about the current user query, including the VDB, the
ability to add client warnings - addWarning, or handle generated keys - isReturnAutoGeneratedKeys,
returnGeneratedKeys, and getGeneratedKeys.

To see if the user query expects generated keys to be returned, consult the
CommandContext.isReturnAutoGeneratedKeys() method. If you wish to return generated keys, you
must first create a GeneratedKeys instance to hold the keys with the returnGeneratedKeys method
passing the column names and types of the key columns. Only one GeneratedKeys may be associated
with the CommandContext at any given time.

The Teiid source meta-hint is used to provide hints directly to source executions via user or
transformation queries. See the reference for more on source hints. If specified and applicable, the
general and source specific hint will be supplied via the ExecutionContext methods getGeneralHint
and getSourceHint. See the source for the OracleExecutionFactory for an example of how this source
hint information can be utilized.

Typically most commands executed against translators are QueryExpression. While the command is
being executed, the translator provides results via the ResultSetExecution's "next" method. The "next"
method should return null to indicate the end of results. Note: the expected batch size can be obtained
from the ExecutionContext.getBatchSize() method and used as a hint in fetching results from the EIS.

Each execution returns the update count(s) expected by the update command. If possible
BatchedUpdates should be executed atomically. The ExecutionContext.isTransactional() method can
be used to determine if the execution is already under a transaction.

Procedure commands correspond to the execution of a stored procedure or some other functional

CHAPTER 5. TRANSLATOR DEVELOPMENT

31

construct. A procedure takes zero or more input values and can return a result set and zero or more
output values. Examples of procedure execution would be a stored procedure in a relational database
or a call to a web service.

If a result set is expected when a procedure is executed, all rows from it will be retrieved via the
ResultSetExecution interface first. Then, if any output values are expected, they will be retrieved via
the getOutputParameterValues() method.

In some scenarios, a translator needs to execute asynchronously and allow the executing thread to
perform other work. To allow asynchronous execution, you should throw a DataNotAvailableExecption
during a retrieval method, rather than explicitly waiting or sleeping for the results. The
DataNotAvailableException may take a delay parameter or a Date in its constructor to indicate when
to poll next for results. Any non-negative delay value indicates the time in milliseconds until the next
polling should be performed. The DataNotAvailableException.NO_POLLING exception (or any
DataNotAvailableException with a negative delay) can be thrown to indicate that the execution will call
ExecutionContext.dataAvailable() to indicate processing should resume.

IMPORTANT

A DataNotAvailableException should not be thrown by the execute method, as that can
result in the execute method being called multiple times.

IMPORTANT

Since the execution and the associated connection are not closed until the work has
completed, care should be taken if using asynchronous executions that hold a lot of
state.

A positive retry delay is not a guarantee of when the translator will be polled next. If the
DataNotAvailableException is consumed while the engine thinks more work can be performed or there
are other shorter delays issued from other translators, then the plan may be re-queued earlier than
expected. You should simply rethrow a DataNotAvailableException if your execution is not yet ready.
Alternatively the DataNotAvailableException may be marked as strict, which does provide a guarantee
that the Execution will not be called until the delay has expired or the given Date has been reached.
Using the Date constructor makes the DataNotAvailableException automatically strict. Due to engine
thread pool contention, platform time resolution, etc. a strict DataNotAvailableException is not a real-
time guarantee of when the next poll for results will occur, only that it will not occur before then.

IMPORTANT

If your ExecutionFactory returns only asynch executions that perform minimal work,
then consider having ExecutionFactory.isForkable return false so that the engine knows
not to spawn a separate thread for accessing your Execution.

A translator may return instances of ReusableExecutions for the expected Execution objects. There
can be one ReusableExecution per query executing node in the processing plan. The lifecycle of a
ReusableExecution is different that a normal Execution. After a normal creation/execute/close cycle
the ReusableExecution.reset is called for the next execution cycle. This may occur indefinitely
depending on how many times a processing node executes its query. The behavior of the close method
is no different than a regular Execution, it may not be called until the end of the statement if lobs are
detected and any connection associated with the Execution will also be closed. When the user
command is finished, the ReusableExecution.dispose() method will be called.

In general ReusableExecutions are most useful for continuous query execution and will also make use

Development Guide Volume 4: Server Development

32

of the ExecutionCotext.dataAvailable() method for Asynchronous Executions. See the Client
Developer's Guide for executing continuous statements. In continuous mode the user query will be
continuously re-executed. A ReusableExecution allows the same Execution object to be associated
with the processing plan for a given processing node for the lifetime of the user query. This can simplify
asynch resource management, such as establishing queue listeners. Returning a null result from the
next() method ReusableExecution just as with normal Executions indicates that the current pushdown
command results have ended. Once the reset() method has been called, the next set of results should
be returned again terminated with a null result.

Non batched Insert, Update, Delete commands may have multi-valued Parameter objects if the
capabilities shows support for BulkUpdate. Commands with multi-valued Parameters represent
multiple executions of the same command with different values. As with BatchedUpdates, bulk
operations should be executed atomically if possible.

All normal command executions end with the calling of close() on the Execution object. Your
implementation of this method should do the appropriate clean-up work for all state created in the
Execution object.

Commands submitted to Teiid may be aborted in several scenarios:

Client cancellation via the JDBC API (or other client APIs)

Administrative cancellation

Clean-up during session termination

Clean-up if a query fails during processing

Unlike the other execution methods, which are handled in a single-threaded manner, calls to cancel
happen asynchronously with respect to the execution thread.

Your connector implementation may choose to do nothing in response to this cancellation message. In
this instance, Teiid will call close() on the execution object after current processing has completed.
Implementing the cancel() method allows for faster termination of queries being processed and may
allow the underlying data source to terminate its operations faster as well.

The main class in the translator implementation is ExecutionFactory. A base class is provided in the
Teiid API, so a custom translator must extend org.teiid.translator.ExecutionFactory to connect and
query an enterprise data source. This extended class must provide a no-arg constructor that can be
constructed using Java reflection libraries. This Execution Factory needs to define/override the
following elements.

Define the annotation @Translator on extended "ExecutionFactory" class. This annotation defines the
name, which is used as the identifier during deployment, and the description of your translator. This
name is what you will be using in the VDB and else where in the configuration to refer to this
translator.

package org.teiid.translator.custom;

@Translator(name="custom", description="Connect to My EIS")
public class CustomExecutionFactory extends
ExecutionFactory<MyConnectionFactory, MyConnection> {

 public CustomExecutionFactory() {
 }
}

CHAPTER 5. TRANSLATOR DEVELOPMENT

33

ConnectionFactory defines the "ConnectionFactory" interface that is defined in resource adapter. This
is defined as part of the class definition of the extended "ExecutionFactory" class.

Connection defines the "Connection" interface that is defined in the resource adapter. This is defined
as part of class definition of extended "ExecutionFactory" class.

If the translator requires external configuration, that defines ways for the user to alter the behavior of
a program, then define an attribute variable in the class and define "get" and "set" methods for that
attribute. Also, annotate each "get" method with @TranslatorProperty annotation and provide the
metadata about the property.

For example, if you need a property called "foo", by providing the annotation on these properties, the
Teiid tooling can automatically interrogate and provide a graphical way to configure your Translator
while designing your VDB:

The @TranslatorProperty defines the following metadata that you can set about your property:

display: Display name of the property

description: Description about the property

required: The property is a required property

advanced: This is advanced property; A default value must be provided. A property can not be
"advanced" and "required" at same time.

masked: The tools need to mask the property; Do not show in plain text; used for passwords

Only java primitive (int, boolean), primitive object wrapper (java.lang.Integer), or Enum types are
supported as Translator properties. Complex objects are not supported. The default value will be
derived from calling the getter method, if available, on a newly constructed instance. All properties
should have a default value. If there is no applicable default, then the property should be marked in the
annotation as required. Initialization will fail if a required property value is not provided.

Override and implement the start method (be sure to call "super.start()") if your translator needs to do
any initializing before it is used by the Teiid engine. This method will be called by Teiid, once after all
the configuration properties set above are injected into the class.

Extended Translator Capabiities are various methods that typically begin with method signature
"supports" on the "ExecutionFactory" class. These methods need to be overridden to describe the
execution capabilities of the Translator.

Based on types of executions you are supporting, the following methods need to be overridden to
provide implementations for their respective return interfaces:

private String foo = "blah";
@TranslatorProperty(display="Foo property", description="description about
Foo")
public String getFoo()
{
 return foo;
}

public void setFoo(String value)
{
 return this.foo = value;
}

Development Guide Volume 4: Server Development

34

createResultSetExecution - Override if you are doing read based operation that is returning a
rows of results. For ex: select

createUpdateExecution - Override if you are doing write based operations. For example, insert,
update and delete

createProcedureExecution- Overide if you are doing procedure based operations. For
example; stored procedures. This works well for non-relational sources.

You can choose to implement all the execution modes or just what you need.

Override and implement the method getMetadataProcessor(), if you want to expose the metadata
about the source for use in Dynamic VDBs. This defines the tables, column names, procedures,
parameters, etc. for use in the query engine. This method is used by Designer tooling when the Teiid
Connection importer is used. A sample MetadataProcessor may look like this:

If your MetadataProcessor needs external properties that are needed during the import process, you
can define them on MetadataProcessor. For example, to define a import property called "Column Name
Pattern", which can be used to filter which columns are defined on the table, can be defined in the code
like this:

Note the category type. The configuration property defined in the previous section is different from
this one. Configuration properties define the runtime behavior of translator, where as "IMPORT"
properties define the metadata import behavior, and aid in controlling what metadata is exposed by
your translator.

These properties can be automatically injected through "import" properties set through Designer when
using the "Teiid Connection" importer or the properties can be defined under the model construct in
the vdb.xml file, like this:

public class MyMetadataProcessor implements MetadataProcessor<Connection>
{

 public void process(MetadataFactory mf, Connection conn) {
 Object somedata = connection.getSomeMetadata();

 Table table = mf.addTable(tableName);
 Column col1 = mf.addColumn("col1",
TypeFacility.RUNTIME_NAMES.STRING, table);
 column col2 = mf.addColumn("col2",
TypeFacility.RUNTIME_NAMES.STRING, table);
 }
}

@TranslatorProperty(display="Column Name Pattern",
category=PropertyType.IMPORT, description="Pattern to derive column
names")
public String getColumnNamePattern() {
 return columnNamePattern;
}

public void setColumnNamePattern(String columnNamePattern) {
 this.columnNamePattern = columnNamePattern;
}

CHAPTER 5. TRANSLATOR DEVELOPMENT

35

There may be times when implementing a custom translator, the built in metadata about your schema
is not enough to process the incoming query due to variance of semantics with your source query. To
aid this issue, Teiid provides a mechanism called "Extension Metadata", which is a mechanism to define
custom properties and then add those properties on metadata object (table, procedure, function,
column, index etc.). For example, in a custom translator a table represents a file on disk. This is how you
could define such a custom metadata property:

The @ExtensionMetadataProperty defines the following metadata that you can define about your
property:

applicable: Metadata object this is applicable on. This is array of metadata classes like
Table.class, Column.class.

datatype: The java class indicating the data type

display: Display name of the property

description: Description about the property

required: Indicates if the property is a required property

When you define an extension metadata property like above, during the runtime you can obtain the
value of that property. If you get the query object which contains 'SELECT * FROM MyTable', MyTable
will be represented by an object called "NamedTable":

<vdb name="myvdb" version="1">
 <model name="legacydata" type="PHYSICAL">
 <property name="importer.ColumnNamePattern" value="col*"/>

 <source name = .../>
 </model>
</vdb>

public class MyMetadataProcessor implements MetadataProcessor<Connection>
{
 public static final String NAMESPACE = "{http://my.company.corp}";

 @ExtensionMetadataProperty(applicable={Table.class},
datatype=String.class, display="File name", description="File Name",
required=true)
 public static final String FILE_PROP = NAMESAPCE+"FILE";

 public void process(MetadataFactory mf, Connection conn) {
 Object somedata = connection.getSomeMetadata();

 Table table = mf.addTable(tableName);
 table.setProperty(FILE_PROP, somedata.getFileName());

 Column col1 = mf.addColumn("col1",
TypeFacility.RUNTIME_NAMES.STRING, table);
 column col2 = mf.addColumn("col2",
TypeFacility.RUNTIME_NAMES.STRING, table);

 }
}

Development Guide Volume 4: Server Development

36

Now you have accessed the file name you set during the construction of the Table schema object, and
you can use this value however you seem feasible to execute your query. With the combination of built
in metadata properties and extension metadata properties you can design and execute queries for a
variety of sources.

Teiid provides org.teiid.logging.LogManager class for logging purposes. Create a logging context and
use the LogManager to log your messages. These will be automatically sent to the main Teiid logs. You
can edit the "jboss-log4j.xml" inside "conf" directory of the JBoss EAP's profile to add the custom
context. Teiid uses Log4J as its underlying logging system.

If you need to trace any exception use org.teiid.translator.TranslatorException class.

Teiid supports three large object runtime data types: blob, clob, and xml. A blob is a "binary large
object", a clob is a "character large object", and "xml" is a "xml document". Columns modeled as a blob,
clob, or xml are treated similarly by the translator framework to support memory-safe streaming.

Teiid allows a Translator to return a large object through the Teiid translator API by just returning a
reference to the actual large object. Access to that LOB will be streamed as appropriate rather than
retrieved all at once. This is useful for several reasons:

Reduces memory usage when returning the result set to the user.

Improves performance by passing less data in the result set.

Allows access to large objects when needed rather than assuming that users will always use
the large object data.

Allows the passing of arbitrarily large data values.

These benefits can only truly be gained if the Translator itself does not materialize an entire large
object all at once. For example, the Java JDBC API supports a streaming interface for blob and clob
data.

The Translator API automatically handles large objects (Blob/Clob/SQLXML) through the creation of
special purpose wrapper objects when it retrieves results.

Once the wrapped object is returned, the streaming of LOB is automatically supported. These LOB
objects then can for example appear in client results, in user defined functions, or sent to other
translators.

An execution is usually closed and the underlying connection is either closed/released as soon as all
rows for that execution have been retrieved. However, LOB objects may need to be read after their
initial retrieval of results. When LOBs are detected the default closing behavior is prevented by setting
a flag via the ExecutionContext.keepAlive method.

When the "keepAlive" flag is set, then the execution object is only closed when user's statement is
closed:

for (TableReference tr:query.getFrom()) {
 NamedTable t = (NameTable) tr;
 Table table = t.getMetadataObject();
 String file = table.getProperty(FILE_PROP);
 ..
}

executionContext.keepExecutionAlive(true);

CHAPTER 5. TRANSLATOR DEVELOPMENT

37

LOBs will be passed to the Translator in the language objects as Literal containing a java.sql.Blob,
java.sql.Clob, or java.sql.SQLXML. You can use these interfaces to retrieve the data in the large object
and use it for insert or update.

The ExecutionFactory class defines all the methods that describe the capabilities of a Translator.
These are used by the Connector Manager to determine what kinds of commands the translator is
capable of executing. A base ExecutionFactory class implements all the basic capabilities methods,
which says your translator does not support any capabilities. Your extended ExecutionFactory class
must override the necessary methods to specify which capabilities your translator supports. Consult
the debug log of query planning (set showplan debug) to see if the pushdown you desire requires
additional capabilities.

Note capabilities are determined and cached for the lifetime of the translator. Capabilities based on
connection/user are not supported.

These capabilities can be specified in the ExecutionFactory class.

Development Guide Volume 4: Server Development

38

CHAPTER 6. EXTENDING THE EXECUTION FACTORY CLASS

6.1. EXTENDING THE EXECUTIONFACTORY CLASS

A custom translator must extend the org.teiid.translator.ExecutionFactory class to
connect and query a data source. This extended class must provide a constructor with no arguments
that can be constructed using Java reflection libraries.

The following is an example constructor:

Specify the annotation @Translator on the extended "ExecutionFactory" class. This annotation
defines the name and description of your translator, and is also used as an identifier during
deployment. This is the name you would be using in the VDB and elsewhere in the configuration to
refer to this translator.

MyConnectionFactory specifies the type of ConnectionFactory interface that is expected from the
associated resource adapter. This is required as part of the class definition when extending the
ExecutionFactory class.

MyConnection specifies the type of Connection interface that is expected from the associated
resource adapter. This is required as part of class definition when extending the ExecutionFactory
class.

6.2. CONFIGURATION PROPERTIES

If the translator requires configurable properties then:

1. define a variable for every property as an attribute in the extended ExecutionFactory class,

2. define "get" and "set" methods for each attribute,

3. and annotate each "get" method with @TranslatorProperty annotation and provide the
metadata about the property.

For example, if you need a property called foo, by providing the annotation on these properties, JBoss
Data Virtualization will automatically interrogate and provide a graphical way to configure your
Translator while designing your VDB.

package org.teiid.translator.custom;

@Translator(name="custom", description="Connect to My EIS")
public class CustomExecutionFactory extends
ExecutionFactory<MyConnectionFactory, MyConnection> {

 public CustomExecutionFactory() {
 }
}

private String foo = "blah";
@TranslatorProperty(display="Foo property", description="description about
Foo")
public String getFoo()
{
 return foo;

CHAPTER 6. EXTENDING THE EXECUTION FACTORY CLASS

39

Only java primitive (int, boolean), primitive object wrapper (java.lang.Integer), or Enum types
are supported as Translator properties. The default value will be derived from calling the getter, if
available, on a newly constructed instance. All properties should have a default value. If there is no
applicable default, then the property should be marked in the annotation as required. Initialization will
fail if a required property value is not provided.

The @TranslatorProperty defines the following metadata that you can define about your property.

display - the display name of the property.

description - a description about the property.

required - specifies that the property is required.

advanced - an advanced property (a default value must be provided).

masked - tools need to mask the property, that is, do not show it in plain text. Used for
passwords.

NOTE

A property can not be "advanced" and "required" at the same time.

6.3. INITIALIZING THE TRANSLATOR

Override and implement the start() method if your translator needs to do any initialization before it
is used by the JBoss Data Virtualization engine. This method must also call super.start() to
perform any initialization required by the superclass. This method is called by JBoss Data
Virtualization once all the configuration properties are injected into the class.

6.4. EXTENDED TRANSLATOR CAPABILITIES

There are various methods, typically beginning with the method signature supports, that specify
translator capabilities. These methods need to be overridden to describe the execution capabilities of
the Translator. See Section 10.1, “Translator Capabilities” for more information about these methods.

6.5. EXECUTION (AND SUB-INTERFACES)

Based on types of executions you are supporting, the following methods need to be overridden to
provide implementations for their respective return interfaces.

createResultSetExecution - Override if you are doing read based operation that is
returning rows of results. For example, select.

createUpdateExecution - Override if you are doing write based operations. For example,
insert, update, delete.

}

public void setFoo(String value)
{
 return this.foo = value;
}

Development Guide Volume 4: Server Development

40

createProcedureExecution - Override if you are doing procedure based operations. For
example, stored procedures. This works well for non-relational sources.

You can choose to implement all the execution modes or only what you need. Refer to Section A.1,
“Execution Modes” for more information.

6.6. METADATA

You can override and implement the method getMetadataProcessor(), in order to expose the metadata
about the source for use in Dynamic VDBs. This defines the tables, column names, procedures,
parameters, etc. for use in the query engine. This method is used by Designer tooling when the Teiid
Connection importer is used. A sample MetadataProcessor may look like this:

If your MetadataProcessor needs external properties that are needed during the import process, you
can define them on MetadataProcessor. For example, to define a import property called "Column Name
Pattern", which can be used to filter which columns are defined on the table, you can add it like this:

 public class MyMetadataProcessor implements
MetadataProcessor<Connection> {

 public void process(MetadataFactory mf, Connection conn) {
 Object somedata = connection.getSomeMetadata();

 Table table = mf.addTable(tableName);
 Column col1 = mf.addColumn("col1",
TypeFacility.RUNTIME_NAMES.STRING, table);
 column col2 = mf.addColumn("col2",
TypeFacility.RUNTIME_NAMES.STRING, table);

 //add a pushdown function that can also be evaluated in the
engine
 Method method = ...
 Function f = mf.addFunction("func", method);

 //add a pushdown aggregate function that can also be evaluated
in the engine
 Method aggMethod = ...
 Function af = mf.addFunction("agg", aggMethod);
 af.setAggregateAttributes(new AggregateAttributes());
 ...
 }
}

@TranslatorProperty(display="Column Name Pattern",
category=PropertyType.IMPORT, description="Pattern to derive column
names")
public String getColumnNamePattern() {
 return columnNamePattern;
}

public void setColumnNamePattern(String columnNamePattern) {
 this.columnNamePattern = columnNamePattern;
}

CHAPTER 6. EXTENDING THE EXECUTION FACTORY CLASS

41

Note the category type. The configuration property defined in the previous section is different from
this one. Configuration properties define the runtime behavior of translator, where as "IMPORT"
properties define the metadata import behavior, and aid in controlling what metadata is exposed by
your translator.

These properties can be automatically injected through "import" properties set through Designer when
using the "Teiid Connection" importer or the properties can be defined under the model construct in
the vdb.xml file, like

There may be times when implementing a custom translator, the built in metadata about your schema
is not enough to process the incoming query due to variance of semantics with your source query. To
aid this issue, Teiid provides a mechanism called "Extension Metadata", which is a mechanism to define
custom properties and then add those properties on metadata object (table, procedure, function,
column, index etc.). For example, in my custom translator a table represents a file on disk. I could
define a extension metadata property like this:

The @ExtensionMetadataProperty defines the following metadata that you can define about your
property

applicable: Metadata object this is applicable on. This is array of metadata classes like
Table.class, Column.class.

datatype: The java class indicating the data type

display: Display name of the property

<vdb name="myvdb" version="1">
 <model name="legacydata" type="PHYSICAL">
 <property name="importer.ColumnNamePattern" value="col*"/>

 <source name = .../>
 </model>
</vdb>

public class MyMetadataProcessor implements MetadataProcessor<Connection>
{
 public static final String NAMESPACE = "{http://my.company.corp}";

 @ExtensionMetadataProperty(applicable={Table.class},
datatype=String.class, display="File name", description="File Name",
required=true)
 public static final String FILE_PROP = NAMESAPCE+"FILE";

 public void process(MetadataFactory mf, Connection conn) {
 Object somedata = connection.getSomeMetadata();

 Table table = mf.addTable(tableName);
 table.setProperty(FILE_PROP, somedata.getFileName());

 Column col1 = mf.addColumn("col1",
TypeFacility.RUNTIME_NAMES.STRING, table);
 column col2 = mf.addColumn("col2",
TypeFacility.RUNTIME_NAMES.STRING, table);

 }
}

Development Guide Volume 4: Server Development

42

description: Description about the property

required: Indicates if the property is a required property

When you define an extension metadata property like above, during the runtime you can obtain the
value of that property. If you get the query object which contains 'SELECT * FROM MyTable', MyTable
will be represented by an object called "NamedTable".

Now you have accessed the file name you set during the construction of the Table schema object, and
you can use this value however you seem feasible to execute your query. With the combination of built
in metadata properties and extension metadata properties you can design and execute queries for a
variety of sources.

6.7. LOGGING

JBoss Data Virtualization provides the org.teiid.logging.LogManager class for logging
purposes, based on the Apache Log4j logging services.

Logging messages will be sent automatically to the main JBoss Data Virtualization logs. You can
customize logging by editing the corresponding subsystem in the server configuration file or via the
Management Console.

6.8. EXCEPTIONS

When throwing exceptions in translator code, use the
org.teiid.translator.TranslatorException class.

6.9. DEFAULT NAME

You can define a default instance of your Translator by defining the annotation @Translator on the
ExecutionFactory. After deployment, a default instance of this Translator can be used by any VDB
by referencing it by this name in its vdb.xml configuration file.

A VDB can also override the default properties and define another instance of this translator too. The
name you give here is the short name used everywhere else in the JBoss Data Virtualization
configuration to refer to this translator.

NOTE

The translator created here is only available in the scope of the VDB - it is not available
to the whole JBoss Data Virtualization instance.

6.10. OBTAINING CONNECTIONS

The extended ExecutionFactory must implement the getConnection() method to allow the
Connector Manager to obtain a connection.

for (TableReference tr:query.getFrom()) {
 NamedTable t = (NameTable) tr;
 Table table = t.getMetadataObject();
 String file = table.getProperty(FILE_PROP);
 ..
}

CHAPTER 6. EXTENDING THE EXECUTION FACTORY CLASS

43

6.11. RELEASING CONNECTIONS

Connections are only used for the lifetime of the request. When the request completes, the
closeConnection() method is called on the ExecutionFactory. You must override this method to
close the connection properly.

If the resource adapter is JEE JCA Connector based, connection pooling is automatically provided.

NOTE

Red Hat recommends the use of connection pooling when a connection is stateful or
when connections are expensive to create.

Development Guide Volume 4: Server Development

44

CHAPTER 7. EXTENDING THE JDBC TRANSLATOR

7.1. EXTENSIONS

New custom Translators can be created by extending the JDBC Translator. This is one of the most
common use-cases for custom Translator development and is often done to add support for JDBC
drivers and database versions.

To design a JDBC Translator for any relational database management system (RDBMS) that is not
already supported by JBoss Data Virtualization, extend the
org.teiid.translator.jdbc.JDBCExecutionFactory class in the translator-jdbc module.
There are three types of methods that you can override from the base class to define the behavior of
the Translator.

Table 7.1. Extensions

Extension Purpose

Capabilities Specify the SQL syntax and functions the source supports.

SQL Translation Customize what SQL syntax is used, how source-specific functions are
supported, how procedures are executed.

Results Translation Customize how results are retrieved from JDBC and translated.

7.2. CAPABILITIES EXTENSION

This extension must override the methods that begin with "supports" that describe translator
capabilities. Refer to Section 10.3, “Available Capabilities” for all the available translator capabilities.

The most common example is adding support for a scalar function. This requires both declaring that
the translator has the capability to execute the function and often modifying the SQL Translator to
translate the function appropriately for the source.

Another common example is turning off unsupported SQL capabilities (such as outer joins or
subqueries) for less sophisticated JDBC sources.

7.3. SQL TRANSLATION EXTENSION

The JDBCExcecutionFactory provides several methods to modify the command and the string form of
the resulting syntax before it is sent to the JDBC driver, including:

Change basic SQL syntax options. See the useXXX methods, e.g. useSelectLimit returns true
for SQLServer to indicate that limits are applied in the SELECT clause.

Register one or more FunctionModifiers that define how a scalar function is to be modified or
transformed.

Modify a LanguageObject (see the translate, translateXXX, and
FunctionModifiers.translate methods). Modify the passed in object and return null to
indicate that the standard syntax output will be used.

CHAPTER 7. EXTENDING THE JDBC TRANSLATOR

45

Change the way SQL strings are formed for a LanguageObject (see the translate,
translateXXX, and FunctionModifiers.translate methods). Return a list of parts,
which can contain strings and LanguageObjects, that will be appended in order to the SQL
string. If the in coming LanguageObject appears in the returned list it will not be translated
again.

7.4. RESULTS TRANSLATION EXTENSION

The JDBCExecutionFactory provides several methods to modify the java.sql.Statement and
java.sql.ResultSet interactions, including:

1. Overriding the createXXXExecution to subclass the corresponding JDBCXXXExecution. The
JDBCBaseExecution has protected methods to get the appropriate statement (getStatement,
getPreparedStatement, getCallableStatement) and to bind prepared statement values
bindPreparedStatementValues.

2. Retrieve values from the JDBC ResultSet or CallableStatement - see the retrieveValue
methods.

7.5. ADDING FUNCTION SUPPORT

Refer to the section on user defined functions for adding new functions to JBoss Data Virtualization.
This example will show you how to declare support for the function and modify how the function is
passed to the data source.

Following is a summary of all coding steps in supporting a new scalar function:

1. Override the capabilities method to declare support for the function (REQUIRED)

2. Implement a FunctionModifier to change how a function is translated and register it for use
(OPTIONAL)

There is a capabilities method getSupportedFunctions() that declares all supported scalar functions.

An example of an extended capabilities class to add support for the "abs" absolute value function:

In general, it is a good idea to call super.getSupportedFunctions() to ensure that you retain any
function support provided by the translator you are extending.

package my.connector;

import java.util.ArrayList;
import java.util.List;

public class ExtendedJDBCExecutionFactory extends JDBCExecutionFactory
{
 @Override
 public List getSupportedFunctions()
 {
 List supportedFunctions = new ArrayList();
 supportedFunctions.addAll(super.getSupportedFunctions());
 supportedFunctions.add("ABS");
 return supportedFunctions;
 }
}

Development Guide Volume 4: Server Development

46

This may be all that is needed to support a JBoss Data Virtualization function if the JDBC data source
supports the same syntax as JBoss Data Virtualization. The built-in SQL translation will translate most
functions as: "function(arg1, arg2, ...)".

7.6. USING FUNCTION MODIFIERS

In some cases you may need to translate the function differently or even insert additional function calls
above or below the function being translated. The JDBC translator provides an abstract class
FunctionModifier for this purpose.

During the start method a modifier instance can be registered against a given function name via a call
to JDBCExecutionFactory.registerFunctionModifier.

The FunctionModifier has a method called translate. Use the translate method to change the way
the function is represented.

An example of overriding the translate method to change the MOD(a, b) function into an infix operator
for Sybase (a % b). The translate method returns a list of strings and language objects that will be
assembled by the translator into a final string. The strings will be used as is and the language objects
will be further processed by the translator.

In addition to building your own FunctionModifiers, there are a number of pre-built generic function
modifiers that are provided with the translator.

Table 7.2. Common Modifiers

Modifier Description

AliasModifier Handles renaming a function ("ucase" to "upper" for example)

EscapeSyntaxModifier Wraps a function in the standard JDBC escape syntax for functions: {fn
xxxx()}

To register the function modifiers for your supported functions, you must call the
ExecutionFactory.registerFunctionModifier(String name, FunctionModifier
modifier) method.

public class ModFunctionModifier implements FunctionModifier
{
 public List translate(Function function)
 {
 List parts = new ArrayList();
 parts.add("(");
 Expression[] args = function.getParameters();
 parts.add(args[0]);
 parts.add(" % ");
 parts.add(args[1]);
 parts.add(")");
 return parts;
 }
}

public class ExtendedJDBCExecutionFactory extends JDBCExecutionFactory

CHAPTER 7. EXTENDING THE JDBC TRANSLATOR

47

Support for the two functions being registered ("abs" and "concat") must be declared in the
capabilities as well. Functions that do not have modifiers registered will be translated as usual.

7.7. INSTALLING EXTENSIONS

Once you have developed an extension to the JDBC translator, you must install it into the JBoss Data
Virtualization server. The process of packaging or deploying the extended JDBC translators is exactly
as any other translator. Since the RDBMS is accessible already through its JDBC driver, there is no
need to develop a resource adapter for this source as JBoss EAP provides a wrapper JCA connector
(DataSource) for any JDBC driver.

{
 @Override
 public void start()
 {
 super.start();

 // register functions.
 registerFunctionModifier("abs", new MyAbsModifier());
 registerFunctionModifier("concat", new AliasModifier("concat2"));
 }
}

Development Guide Volume 4: Server Development

48

CHAPTER 8. TRANSLATOR DEVELOPMENT AND LARGE
OBJECTS

8.1. DATA TYPES

JBoss Data Virtualization supports three large object runtime data types: BLOB, CLOB, and XML. A
BLOB is a "binary large object", a CLOB is a "character large object", and XML is an "xml document".
Columns modeled as a BLOB, CLOB, or XML are treated similarly by the translator framework to
support memory-safe streaming.

8.2. WHY USE LARGE OBJECT SUPPORT?

JBoss Data Virtualization allows a Translator to return a large object through the translator API by
returning a reference to the actual large object. Access to that LOB will be streamed as appropriate
rather than retrieved all at once. This is useful for several reasons:

1. Reduces memory usage when returning the result set to the user.

2. Improves performance by passing less data in the result set.

3. Allows access to large objects when needed rather than assuming that users will always use
the large object data.

4. Allows the passing of arbitrarily large data values.

However, these benefits can only truly be gained if the Translator itself does not materialize an
entire large object all at once. For example, the Java JDBC API supports a streaming interface
for BLOB and CLOB data.

8.3. HANDLING LARGE OBJECTS

The Translator API automatically handles large objects (BLOB/CLOB/SQLXML) through the creation
of special purpose wrapper objects when it retrieves results.

Once the wrapped object is returned, the streaming of LOB is automatically supported. These LOB
objects can then, for example, appear in client results, in user defined functions, or be sent to other
translators.

An Execution is usually closed and the underlying connection is either closed/released as soon as all
rows for that execution have been retrieved. However, LOB objects may need to be read after their
initial retrieval of results. When LOBs are detected the default closing behavior is prevented by setting
a flag using the ExecutionContext.keepAlive() method.

When the "keepAlive" flag is set, then the execution object is only closed when user's Statement is
closed.

8.4. INSERTING OR UPDATING LARGE OBJECTS

LOBs will be passed to the Translator in the language objects as Literal containing a java.sql.Blob,
java.sql.Clob, or java.sql.SQLXML. You can use these interfaces to retrieve the data in the large object
and use it for insert or update.

executionContext.keepExecutionAlive(true);

CHAPTER 8. TRANSLATOR DEVELOPMENT AND LARGE OBJECTS

49

CHAPTER 9. OTHER CONSIDERATIONS FOR TRANSLATOR
DEVELOPMENT

9.1. CACHING API

Translators may contribute cache entries to the result set cache by the use of the CacheDirective
object. Translators wishing to participate in caching should return a CacheDirective from the
ExecutionFactory.getCacheDirective method, which is called prior to execution. The
commands passed to getCacheDirective will have already been vetted to ensure that the results
are eligible for caching. For example update commands or commands with pushed dependent sets will
not be eligible for caching.

If the translator returns null for the CacheDirective , which is the default implementation, the
engine will not cache the translator results beyond the current command. It is up to your custom
translator or custom delegating translator to implement your desired caching policy.

NOTE

In special circumstances where the translator has performed its own caching, it can
indicate to the engine that the results should not be cached or reused by setting the
Scope to Scope.NONE .

The returned CacheDirective will be set on the ExecutionContext and is available via the
ExecutionContext.getCacheDirective() method. Having
ExeuctionFactory.getCacheDirective called prior to execution allows the translator to
potentially be selective about which results to even attempt to cache. Since there is a resource
overhead with creating and storing the cached results it may not be desirable to attempt to cache all
results if it is possible to return large results that have a low usage factor. If you are unsure about
whether to cache a particular command result you may return an initial CacheDirective then
change the Scope to Scope.NONE at any time prior to the final cache entry being created and the
engine will give up creating the entry and release its resources.

NOTE

If you plan on modifying the CacheDirective during execution, return a new instance
from the ExecutionFactory.getCacheDirective call, rather than returning a
shared instance.

The CacheDirective readAll Boolean field is used to control whether the entire result should be read
if not all of the results were consumed by the engine. If readAll is false then any partial usage of the
result will not result in it being added as a cache entry. Partial use is determined after any implicit or
explicit limit has been applied. The other fields on the CacheDirective object map to the cache hint
options . See the table below for the default values for all options.

option default

scope Session

ttl rs cache ttl

Development Guide Volume 4: Server Development

50

readAll true

updatable true

prefersMemory false

option default

9.2. DEPENDENT JOIN PUSHDOWN

Dependent joins are a technique used in federation to reduce the cost of cross source joins. Join values
from one side of a join are made available to the other side which reduces the number of tuples needed
to preform the join. Translators may indicate support for dependent join pushdown via the
supportsDependentJoin capability. The handling of pushdown dependent join queries can be quite
complicated. The ordering (if present) and all of the non-dependent criteria constructs on the
pushdown command must be honored, but if needed the dependent criteria, which will be a
Comparison with a Parameter, may be ignored in part or in total. Pushdown dependent join queries
will be instances of Select with the relevant dependent sets available via
Select.getDependentSets(). The dependent set is associated to Parameters by id via the
Parameter.getDepenentValueId() identifier. The dependent set tuple iterators provide rows that
are referenced by the column positions (available via Parameter.getValueIndex()) on the
dependent join Comparison criteria right expression. Care should be taken with the tuple values as
they may guaranteed to be unique or ordered.

NOTE

There is no reference implementation of this functionality as all built-in translators rely
on the engine to handle breaking up dependent joins into simpler queries.

9.3. DELEGATING TRANSLATOR

In some instances, you may wish to extend multiple translators with the same functionality. Rather
than create separate subclasses for each extension, functionality that is common to multiple
extensions can be added to a subclass of BaseDelegatingExecutionFactory. Within this subclass,
delegation methods can be overridden to perform the common functionality.

@Translator(name="custom-delegator")
public class MyTranslator extends BaseDelegatingExecutionFactory<Object,
Object> {

 @Override
 public Execution createExecution(Command command,
 ExecutionContext executionContext,
RuntimeMetadata metadata,
 Object connection) throws TranslatorException {
 if (command instanceof Select) {
 //modify the command or return a different
execution
 ...

 }

CHAPTER 9. OTHER CONSIDERATIONS FOR TRANSLATOR DEVELOPMENT

51

You will bundle and deploy your custom delegating translator like any other custom translator
development. To use your delegating translator in a VDB, you define a translator override that wires in
the delegate.

From the previous example the translator type is custom-delegator. Now my-translator can be used as
a translator-name on a source and will proxy all calls to whatever delegate instance you assign.

NOTE

The delegate instance can be any translator instance whether configured by its own
translator entry or only the name of a standard translator type. Using a
BaseDelegatingExecutionFactory by default means that standard override
translator property settings on your instance will have no effect, since the underlying
delegate is called instead.

You may also wish to use a different class hierarchy and instead make your custom translator only
implement DelegatingExecutionFactory instead.

9.4. ADDING DEPENDENT MODULES

Add a MANIFEST.MF file in the META-INF directory, and the core API dependencies for resource
adapter with the following line.

If your translator depends upon any other third party jar files, ensure a module exists and add the
module name to the above MANIFEST.MF file.

 //the super call will be to the delegate instance
 return super.createExecution(command, executionContext,
metadata, connection);
 }
 ...
}

<translator type="custom-delegator" name="my-translator">

 <property value="delegateName" name="name of the delegate instance"/>

 <!-- any custom properties you may have on your custom translator -->

</translator>

Dependencies: org.jboss.teiid.common-core,org.jboss.teiid.api,javax.api

Development Guide Volume 4: Server Development

52

CHAPTER 10. TRANSLATOR CAPABILITIES

10.1. TRANSLATOR CAPABILITIES

The ExecutionFactory class defines all the methods that describe the capabilities of a Translator.
These are used by the Connector Manager to determine what kinds of commands the translator is
capable of executing. A base ExecutionFactory class implements all the basic capabilities methods,
which says your translator does not support any capabilities. Your extended ExecutionFactory
class must override the necessary methods to specify which capabilities your translator supports. You
should consult the debug log of query planning (set showplan debug) to see if desired pushdown
requires additional capabilities.

NOTE

If your capabilities will remain unchanged for the lifetime of the translator, since the
engine will cache them for reuse by all instances of that translator. Capabilities based on
connection/user are not supported.

10.2. TRANSLATOR CAPABILITIES

During translator development, you can define three different types of property sets that can help
customize the behavior of the translator.

On the "ExecutionFactory" class a translator developer can define any number of "getter/setter"
methods with the @TranslatorProperty annotation. These properties (also referred to a execution
properties) can be used for extending the capabilities of the translator. It is important to define default
values for all these properties, as these properties are being defined to change the default behavior of
the translator. If needed, the values for these properties are supplied in "vdb.xml" file during the deploy
time when the translator is used to represent vdb's model. Here is an example:

At runtime, you can define these properties in the vdb.xml file like this:

@TranslatorProperty(display="Copy LOBs",description="If true, returned
LOBs will be copied, rather than streamed from the source",advanced=true)
public boolean isCopyLobs() {
 return copyLobs;
}

public void setCopyLobs(boolean copyLobs) {
 this.copyLobs = copyLobs;
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="vdb" version="1">
 <model name="PM1">
 <source name="connector" translator-name="my-translator-override"
/>
 </model>
 <translator name="my-translator-override" type="my-translator">
 <property name="CopyLobs" value="true" />
 </translator>
</vdb>

CHAPTER 10. TRANSLATOR CAPABILITIES

53

If a translator is defining schema information based on the physical source (i.e. implementing
getMetadata method on ExecutionFactory) it is connected to, then import properties provide a way to
customize the behavior of the import process. For example, in the JDBC translator users can exclude
certain tables that match a regular expression etc. To define a import property, the
@TranslatorPropery annotation is used on any getter/setter method on the "ExecutionFactory" class
or any class that implements the "MetadataProcessor" interface, with category property defined as
"PropertyType.IMPORT":

This is how you use import properties with a vdb.xml file

NOTE

When properties are defined using the annotation mechanism and also when you use the
"Teiid Connection" importer in the Designer, these properties will automatically show up
in the wizard's relevant input field.

During the execution of the command in translator, a translator is responsible to convert Teiid supplied
SQL command into data source specific query. Most of times this conversion is not a trivial task can be

@Translator(name = "my-translator", description = "My Translator")
public class MyExecutionFactory extends
ExecutionFactory<ConnectionFactory, MyConnection> {
...
 public MetadataProcessor<C> getMetadataProcessor() {
 return MyMetadataProcessor();
 }
}

public MyMetadataProcessor implements MetadataProcessor<MyConnection> {

 public void process(MetadataFactory metadataFactory, MyConnection
connection) throws TranslatorException{
 // schema generation code here
 }

 @TranslatorProperty(display="Header Row Number",
category=PropertyType.IMPORT, description="Row number that contains the
header information")
 public int getHeaderRowNumber() {
 return headerRowNumber;
 }

 public void setHeaderRowNumber(int headerRowNumber) {
 this.headerRowNumber = headerRowNumber;
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="vdb" version="1">
 <model name="PM1">
 <property name="importer.HeaderRowNumber" value="12"/>
 <source name="connector" translator-name="my-translator" />
 </model>
</vdb>

Development Guide Volume 4: Server Development

54

converted from one form to another. There are many cases built-in metadata is not sufficient and
additional metadata about source is useful to form a request to the underlying physical source system.
Extension Metadata Properties one such mechanism to fill the gap in the metadata. These can be
defined specific for a given translator.

A translator is a plugin, that is communicating with Teiid engine about it's source with it's metadata.
Metadata in this context is definitions of Tables, Columns, Procedures, Keys etc. This metadata can be
decorated with additional custom metadata and fed to Teiid query engine. Teiid query engine keeps
this extended metadata intact along with its schema objects, and when a user query is submitted to the
the translator for execution, this extended metadata can be retrieved for making decisions in the
translator code.

Extended properties are defined using annotation class called @ExtensionMetadataProperty on the
fields in your "MetadataProcessor" or "ExcutionFactory" classes.

For example, say translator requires a "encoding" property on Table, to do the correct un-marshaling of
data, this property can be defined like this:

Now during the execution, on the COMMAND object supplied to the "Execution" class, user can do this:

NOTE

When extended properties are defined using the annotation mechanism, when using
"Teiid Connection" importer in the Designer, you do not need to define the "Metadata
Extension Defn" in designer and register to use with your model, the required
definitions are automatically downloaded and configured to use. (This feature is not
available in current Designer version).

public class MyMetadataProcessor implements
MetadataProcessor<MyConnection> {
 public static final String URI = "
{http://www.teiid.org/translator/mytranslator/2014}";

 @ExtensionMetadataProperty(applicable=Table.class,
datatype=String.class, display="Encoding", description="Encoding",
required=true)
 public static final String ENCODING = URI+"encode";

 public void process(MetadataFactory mf, FileConnection conn) throws
TranslatorException {
 ..
 Table t = mf.addTable(tableName);
 t.setProperty(ENCODING, "UTF-16");

 // add columns etc.
 ..
 }
}

Select select = (Select)command;
NamedTable tableReferece = select.getFrom().get(0);
Table t = tableReference.getMetadataObject();
String encoding = t.getProperty(MyMetadataProcessor.ENCODING, false);

// use the encoding value as needed to marshal or unmarshal data

CHAPTER 10. TRANSLATOR CAPABILITIES

55

10.3. AVAILABLE CAPABILITIES

The following table lists the capabilities that can be specified in the ExecutionFactory class.

Table 10.1. Available Capabilities

Capability Requires Description

SelectDistinct Translator can support SELECT DISTINCT in queries.

SelectExpression Translator can support SELECT of more than column
references.

AliasedTable Translator can support Tables in the FROM clause
that have an alias.

InnerJoins Translator can support inner and cross joins

SelfJoins AliasedGroups
and at least on
of the join type
supports.

Translator can support a self join between two
aliased versions of the same Table.

OuterJoins Translator can support LEFT and RIGHT OUTER
JOIN.

FullOuterJoins Translator can support FULL OUTER JOIN.

DependentJoins Base join and
criteria
support

Translator supports key set dependent join
pushdown (see Section 9.2, “Dependent Join
Pushdown”). When set, the
MaxDependentInPredicates and MaxInCriteriaSize
values are not used by the engine, rather all
independent values are made available to the
pushdown command.

SubqueryInOn Join and base
subquery
support, such
as
ExistsCriteria

Translator can support subqueries in the ON clause.
Defaults to true.

InlineViews AliasedTable Translator can support a named subquery in the
FROM clause.

BetweenCriteria Not currently used - between criteria is rewritten as
compound comparisons.

CompareCriteriaEquals Translator can support comparison criteria with the
operator "=".

CompareCriteriaOrdered Translator can support comparison criteria with the
operator ">" or "<".

Development Guide Volume 4: Server Development

56

LikeCriteria Translator can support LIKE criteria.

LikeCriteriaEscapeCharacter LikeCriteria Translator can support LIKE criteria with an ESCAPE
character clause.

SimilarTo Translator can support SIMILAR TO criteria.

LikeRegexCriteria Translator can support LIKE_REGEX criteria.

InCriteria MaxInCriteria Translator can support IN predicate criteria.

InCriteriaSubquery Translator can support IN predicate criteria where
values are supplied by a subquery.

IsNullCriteria Translator can support IS NULL predicate criteria.

OrCriteria Translator can support the OR logical criteria.

NotCriteria Translator can support the NOT logical criteria.
IMPORTANT: This capability also applies to negation
of predicates, such as specifying IS NOT NULL, "<="
(not ">"), ">=" (not "<"), etc.

ExistsCriteria Translator can support EXISTS predicate criteria.

QuantifiedCompareCriteriaAll Translator can support a quantified comparison
criteria using the ALL quantifier.

QuantifiedCompareCriteriaSome Translator can support a quantified comparison
criteria using the SOME or ANY quantifier.

OnlyLiteralComparison Translator if only Literal comparisons (equality,
ordered, like, etc.) are supported for non-join
conditions.

Convert(int fromType, int
toType)

Used for fine grained control of convert/cast
pushdown. The
ExecutionFactory.getSupportedFunctio
ns() should contain
SourceSystemFunctions.CONVERT. This
method can then return false to indicate a lack of
specific support. See
TypeFacility.RUNTIME_CODES for the
possible type codes. The engine will does not care
about an unnecessary conversion where fromType
== toType. By default lob conversion is disabled.

OrderBy Translator can support the ORDER BY clause in
queries.

Capability Requires Description

CHAPTER 10. TRANSLATOR CAPABILITIES

57

OrderByUnrelated OrderBy Translator can support ORDER BY items that are not
directly specified in the select clause.

OrderByNullOrdering OrderBy Translator can support ORDER BY items with NULLS
FIRST/LAST.

GroupBy Translator can support an explicit GROUP BY clause.

Having GroupBy Translator can support the HAVING clause.

AggregatesAvg Translator can support the AVG aggregate function.

AggregatesCount Translator can support the COUNT aggregate
function.

AggregatesCountStar Translator can support the COUNT(*) aggregate
function.

AggregatesDistinct At least one of
the aggregate
functions.

Translator can support the keyword DISTINCT inside
an aggregate function. This keyword indicates that
duplicate values within a group of rows will be
ignored.

AggregatesMax Translator can support the MAX aggregate function.

AggregatesMin Translator can support the MIN aggregate function.

AggregatesSum Translator can support the SUM aggregate function.

AggregatesEnhancedNumeric Translator can support the VAR_SAMP, VAR_POP,
STDDEV_SAMP, STDDEV_POP aggregate functions.

ScalarSubqueries Translator can support the use of a subquery in a
scalar context (wherever an expression is valid).

CorrelatedSubqueries At least one of
the subquery
pushdown
capabilities.

Translator can support a correlated subquery that
refers to an element in the outer query.

CaseExpressions Not currently used - simple case is rewritten as
searched case.

SearchedCaseExpressions Translator can support "searched" CASE
expressions anywhere that expressions are
accepted.

Unions Translator support UNION and UNION ALL

Intersect Translator supports INTERSECT

Capability Requires Description

Development Guide Volume 4: Server Development

58

Except Translator supports Except

SetQueryOrderBy Unions,
Intersect, or
Except

Translator supports set queries with an ORDER BY

RowLimit Translator can support the limit portion of the limit
clause

RowOffset Translator can support the offset portion of the limit
clause

FunctionsInGroupBy GroupBy Translator can support non-column reference
grouping expressions.

InsertWithQueryExpression Translator supports INSERT statements with values
specified by a QueryExpression.

BatchedUpdates Translator supports a batch of INSERT, UPDATE and
DELETE commands to be executed together.

BulkUpdate Translator supports updates with multiple value sets

CommonTableExpressions Translator supports the WITH clause.

ElementaryOlapOperations Translator supports window functions and analytic
functions RANK, DENSE_RANK, and ROW_NUMBER.

WindowOrderByWithAggregates ElementaryOla
pOperations

Translator supports windowed aggregates with a
window order by clause.

WindowDistinctAggregates ElementaryOla
pOperations,
AggregatesDis
tinct

Translator supports windowed distinct aggregates.

AdvancedOlapOperations ElementaryOla
pOperations

Translator supports aggregate conditions.

OnlyFormatLiterals function
support for a
parse/format
function and an
implementatio
n of the
supportsForma
tLiteral
method.

Translator supports only literal format patterns that
must be validated by the supportsFormatLiteral
method

FormatLiteral(String literal,
Format type)

OnlyFormatLit
erals

Translator supports the given literal format string.

Capability Requires Description

CHAPTER 10. TRANSLATOR CAPABILITIES

59

ArrayType Translator supports the push down of array values.

OnlyCorrelatedSubqueries CorrelatedSub
queries

Translator ONLY supports correlated subqueries.
Uncorrelated scalar and exists subqueries will be
pre-evaluated prior to push-down.

SelectWithoutFrom SelectExpressi
ons

Translator supports selecting values without a
FROM clause, such as SELECT 1.

Capability Requires Description

NOTE

Note that any pushdown subquery must itself be compliant with the Translator
capabilities.

10.4. COMMAND FORM

The method ExecutionFactory.useAnsiJoin() should return true if the Translator prefers the
use of ANSI style join structure for join trees that contain only INNER and CROSS joins.

The method ExecutionFactory.requiresCriteria() should return true if the Translator
requires criteria for any Query, Update, or Delete. This is a replacement for the model support property
"Where All".

10.5. SCALAR FUNCTIONS

The method ExecutionFactory.getSupportedFunctions() can be used to specify which scalar
and aggregate functions the Translator supports. The set of possible functions is based on the set of
functions supported by JBoss Data Virtualization. This set can be found in the JBoss Data
Virtualization Reference Guide. If the Translator states that it supports a function, it must support all
type combinations and overloaded forms of that function.

There are also some standard operators that can be specified in the supported function list: +, -, *, and
/.

The constants interface SourceSystemFunctions contains the string names of all possible built-in
pushdown functions. Note that not all system functions appear in this list. This is because some system
functions will always be evaluated in JBoss Data Virtualization, are simple aliases to other functions, or
are rewritten to a more standard expression.

A translator may also indicate support for scalar functions that are intended for pushdown evaluation
by that translator, but are not registered as user defined functions via a model/schema. These
pushdown functions are reported to the engine via the
ExecutionFactory.getPushDownFunctions() list as FunctionMethod metadata objects. The
FuncitonMethod representation allow the translator to control all of the metadata related to the
function, including type signature, determinism, varargs, etc. The simplest way to add a pushdown
function is with a call to ExecutionFactory.addPushDownFunction :

Development Guide Volume 4: Server Development

60

This resulting function will be known as sys.qualifier.name, but can be called with name only as long as
the function name is unique. The returned FunctionMethod object may be further manipulated
depending upon the needs of the source. An example of adding a custom concat vararg function in an
ExecutionFactory subclass:

10.6. PHYSICAL LIMITS

The method ExecutionFactory.getMaxInCriteriaSize() can be used to specify the maximum
number of values that can be passed in an IN criteria. This is an important constraint as an IN criteria is
frequently used to pass criteria between one source and another using a dependent join.

The method ExecutionFactory.getMaxDependentInPredicates() is used to specify the
maximum number of IN predicates (of at most MaxInCriteriaSize) that can be passed as part of a
dependent join. For example if there are 10000 values to pass as part of the dependent join and a
MaxInCriteriaSize of 1000 and a MaxDependentInPredicates setting of 5, then the dependent join logic
will form two source queries each with 5 IN predicates of 1000 values each combined by OR.

The method ExecutionFactory.getMaxFromGroups() can be used to specify the maximum
number of FROM Clause groups that can used in a join. -1 indicates there is no limit.

10.7. UPDATE EXECUTION MODES

The method ExecutionFactory.supportsBatchedUpdates() can be used to indicate that the
Translator supports executing the BatchedUpdates command.

The method ExecutionFactory.supportsBulkUpdate() can be used to indicate that the
Translator accepts update commands containg multi valued Literals.

NOTE

Note that if the translator does not support either of these update modes, the query
engine will compensate by issuing the updates individually.

10.8. NULL ORDERING

The method ExecutionFactory.getDefaultNullOrder() specifies the default null order. It can
be one of UNKNOWN, LOW, HIGH, FIRST, LAST. This is only used if ORDER BY is supported, but null
ordering is not.

FunctionMethod addPushDownFunction(String qualifier, String name, String
returnType, String...paramTypes)

public void start() throws TranslatorException {
 super.start();
 FunctionMethod func = addPushDownFunciton("oracle", "concat", "string",
"string", "string");
 func.setVarArgs(true);
 ...
}

CHAPTER 10. TRANSLATOR CAPABILITIES

61

The method ExecutionFactory.getCollation() specifies the default collation. If you set it to a
value that does not match the collation locale defined by org.teiid.collationLocale, then some ordering
may not be pushed down.

Development Guide Volume 4: Server Development

62

CHAPTER 11. PACKAGING AND DEPLOYING THE
TRANSLATOR

11.1. PACKAGING

Once the "ExecutionFactory" class is implemented, package it in a JAR file. Then add the following
named file in "META-INF/services/org.teiid.translator.ExecutionFactory" with contents specifying the
name of your main Translator file. Note that, the name must exactly match to above. This is Java's
standard service loader pattern. This will register the Translator for deployment when the JAR is
deployed.

11.2. TRANSLATOR DEPLOYMENT OVERVIEW

A translator JAR file can be deployed either as a JBoss module or by direct JAR deployment.

11.3. MODULE DEPLOYMENT

Create a module under the "modules" directory and define the translator name and module name in
the teiid subsystem in standalone.xml file or domain.xml file and restart the server. The
dependent JBoss Data Virtualization or any other Java class libraries must be defined in module.xml
file of the module. For production profiles this is recommended.

Example 11.1. Example module.xml file

The following example is the module.xml file provided for the Salesforce translator. This file is
located in the
EAP_HOME/docs/teiid/datasources/salesforce/modules/org/springframework/spr
ing/main directory.

11.4. JAR DEPLOYMENT

For development time or quick deployment you can deploy the translator JAR using the Management
CLI or AdminShell or Management Console. When you deploy dependencies in JAR form to JBoss Data
Virtualization, Java libraries and any other third-party libraries must be defined under META-
INF/MANIFEST.MF file.

Example 11.2. Example MANIFEST.mf file

org.teiid.translator.custom.CustomExecutionFactory

<module xmlns="urn:jboss:module:1.0" name="org.springframework.spring">
 <resources>
 <resource-root path="spring-beans.jar"/>
 <resource-root path="spring-context.jar"/>
 <resource-root path="spring-core.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 </dependencies>
</module>

CHAPTER 11. PACKAGING AND DEPLOYING THE TRANSLATOR

63

The following example is the /META-INF/MANIFEST.mf file provided in the Salesforce translator
JAR file,
EAP_HOME/modules/system/layers/dv/org/jboss/teiid/translator/salesforce/ma
in/translator-salesforce[VERSION].jar.

Manifest-Version: 1.0
Build-Timestamp: Wed, 30 Oct 2013 07:24:14 -0400
Implementation-Title: Salesforce Translator
Implementation-Version: 8.4.1-redhat-4
Os-Version: 2.6.32-358.18.1.el6.x86_64
Built-By: mockbuild
Specification-Vendor: JBoss by Red Hat
Created-By: Apache Maven
Os-Name: Linux
Implementation-URL: http://www.jboss.org/ip-parent/teiid-parent/connec
 tors/translator-salesforce
Java-Vendor: Sun Microsystems Inc.
Implementation-Vendor: JBoss by Red Hat
Scm-Revision: d19b010480ee51efe9f82956d8775e1a604657fd
Implementation-Vendor-Id: org.jboss.teiid.connectors
Scm-Url: http://github.com/jboss/jboss-parent-pom/ip-parent/teiid-pare
 nt/connectors/translator-salesforce
Build-Jdk: 1.6.0_24
Java-Version: 1.6.0_24
Scm-Connection: scm:git:git@github.com:jboss/jboss-parent-pom.git/ip-p
 arent/teiid-parent/connectors/translator-salesforce
Os-Arch: i386
Specification-Title: Salesforce Translator
Specification-Version: 8.4.1-redhat-4
Archiver-Version: Plexus Archiver

Development Guide Volume 4: Server Development

64

CHAPTER 12. USER DEFINED FUNCTIONS

12.1. USER DEFINED FUNCTIONS

You can extend the JBoss Data Virtualization scalar function library by creating User Defined
Functions (UDFs), as well as User Defined Aggregate Functions (UDAFs).

The following are used to define a UDF:

Function Name - When you create the function name, keep these requirements in mind:

You cannot overload existing JBoss Data Virtualization functions.

The function name must be unique among user-defined functions in its model for the
number of arguments. You can use the same function name for different numbers of types
of arguments. Hence, you can overload your user-defined functions.

The function name cannot contain the '.' character.

The function name cannot exceed 255 characters.

Input Parameters - defines a type specific signature list. All arguments are considered required.

Return Type - the expected type of the returned scalar value.

Pushdown - can be one of REQUIRED, NEVER, ALLOWED. Indicates the expected pushdown
behavior. If NEVER or ALLOWED are specified then a Java implementation of the function
should be supplied. If REQUIRED is used, then user must extend the Translator for the source
and add this function to its pushdown function library.

invocationClass/invocationMethod - optional properties indicating the static method to invoke
when the UDF is not pushed down.

Deterministic - if the method will always return the same result for the same input parameters.
Defaults to false. It is important to mark the function as deterministic if it returns the same
value for the same inputs as this will lead to better performance. See also the Relational
extension boolean metadata property "deterministic" and the DDL OPTION property
"determinism".

NOTE

If using the pushdown UDF in Teiid Designer, the user must create a source function on
the source model, so that the parsing will work correctly. Pushdown scalar functions
differ from normal user-defined functions in that no code is provided for evaluation in
the engine. An exception will be raised if a pushdown required function cannot be
evaluated by the appropriate source.

12.2. SUPPORT FOR NON-PUSHDOWN USER DEFINED FUNCTIONS

To define a non-pushdown function, a Java function must be provided that matches the metadata
supplied either in the Teiid Designer or Dynamic VDB defined metadata. User Defined Function (or
UDF) and User Defined Aggregate Function (or UDAF) may be called at runtime like any other function
or aggregate function respectively.

CHAPTER 12. USER DEFINED FUNCTIONS

65

12.2.1. Non-Pushdown UDF Metadata in Teiid Designer

You can create a user-defined function on any VDB in a view model. To do so, create a function as a
base table. Make sure you provide the JAVA code implementation details in the properties dialog for
the UDF.

12.2.2. Non-Pushdown UDF Metadata for Dynamic VDBs

When defining the metadata using DDL in the Dynamic VDBs, user can define a UDF or UDAF (User
Defined Aggregate Function) as shown below.

You must create a Java method that contains the function's logic. This Java method should accept the
necessary arguments, which JBoss Data Virtualization will pass to it at runtime, and function should
return the calculated or altered value.

Refer to Red Hat JBoss Data Virtualization Development Guide: Reference Material for more information
about DDL Metadata and options related to functions defined via DDL.

12.2.3. Coding Non-Pushdown Functions

12.2.3.1. UDF Coding

The following are requirements for coding User Defined Functions (UDFs):

The Java class containing the function method must be defined public.

NOTE

You can declare multiple user defined functions for a given class.

The function method must be public and static.

Example 12.1. Sample UDF Code

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="VIRTUAL">
 <metadata type="DDL"><![CDATA[
 CREATE VIRTUAL FUNCTION celsiusToFahrenheit(celsius decimal)
RETURNS decimal OPTIONS (JAVA_CLASS 'org.something.TempConv', JAVA_METHOD
'celsiusToFahrenheit');
 CREATE VIRTUAL FUNCTION sumAll(arg integer) RETURNS integer
OPTIONS (JAVA_CLASS 'org.something.SumAll', JAVA_METHOD 'addInput',
AGGREGATE 'true', VARARGS 'true', "NULL-ON-NULL" 'true');]]> </metadata>
 </model>
</vdb>

package org.something;

public class TempConv
{
 /**
 * Converts the given Celsius temperature to Fahrenheit, and returns
the

Development Guide Volume 4: Server Development

66

12.2.3.2. UDAF Coding

The following are requirements for coding User Defined Aggregate Functions (UDAFs):

The Java class containing the function method must be defined public and extend
org.teiid.UserDefinedAggregate.

The function method must be public.

Example 12.2. Sample UDAF Code

 * value.
 * @param doubleCelsiusTemp
 * @return Fahrenheit
 */
 public static Double celsiusToFahrenheit(Double doubleCelsiusTemp)
 {
 if (doubleCelsiusTemp == null)
 {
 return null;
 }
 return (doubleCelsiusTemp)*9/5 + 32;
 }
}

package org.something;

public static class SumAll implements UserDefinedAggregate<Integer> {

 private boolean isNull = true;
 private int result;

 public void addInput(Integer... vals) {
 isNull = false;
 for (int i : vals) {
 result += i;
 }
 }

 @Override
 public Integer getResult(org.teiid.CommandContext
commandContext) {
 if (isNull) {
 return null;
 }
 return result;
 }

 @Override
 public void reset() {
 isNull = true;
 result = 0;

CHAPTER 12. USER DEFINED FUNCTIONS

67

12.2.3.3. Coding: Other Considerations

The following are additional considerations when coding UDFs or UDAFs:

Number of input arguments and types must match the function metadata defined in
Section 12.1, “User Defined Functions” .

Any exception can be thrown, but JBoss Data Virtualization will throw the exception as a
FunctionExecutionException.

You may optionally add an additional org.teiid.CommandContext argument as the first
parameter. The CommandContext interface provides access to information about the current
command, such as the executing user, subject, the VDB, the session id, etc. This
CommandContext parameter should not be declared in the function metadata.

Example 12.3. Sample CommandContext Usage

The corresponding user-defined function would be declared as Timestamp sessionCreated().

12.2.3.4. Post Coding Activities

1. After coding the functions, compile the Java code into a Java Archive (JAR) file.

2. Create a JBoss EAP module (module.xml) accompanying the JAR file in the
EAP_HOME/modules/ directory.

3. Add the module dependency to the DATABASE-vdb.xml file as shown in the example below.

The lib property value may contain a space delimited list of module names if more than one

 }

}

package org.something;

public class SessionInfo
{
 /**
 * @param context
 * @return the created Timestamp
 */
 public static Timestamp sessionCreated(CommandContext context)
 {
 return new Timestamp(context.getSession().getCreatedTime());
 }
}

<vdb name="{vdb-name}" version="1">
 <property name ="lib" value ="{module-name}"></property>
 ...
</vdb>

Development Guide Volume 4: Server Development

68

dependency is needed.

NOTE

Alternatively, when using a VDB created with Teiid Designer (DATABASE.vdb),
the JAR file may be placed in your VDB under the /lib directory. It will be
added automatically to the VDB classloader.

12.3. SOURCE SUPPORTED FUNCTIONS

While JBoss Data Virtualization provides an extensive scalar function library, it contains only those
functions that can be evaluated within the query engine. In many circumstances, especially for
performance, a user defined function allows for calling a source specific function.

For example, suppose you want to use the Oracle-specific functions score and contains:

The score and contains functions are not part of built-in scalar function library. While you could
write your own custom scalar function to mimic their behavior, it is more likely that you would want to
use the actual Oracle functions that are provided by Oracle when using the Oracle Free Text
functionality.

In order to configure JBoss Data Virtualization to push the above function evaluation to Oracle, you
can either: extend the translator in Java, define the function as a pushdown function via Teiid
Designer, or, for dynamic VDBs, define it in the VDB.

12.3.1. Defining a Source Supported Function by Extending the Translator

The ExecutionFactory.getPushdownFunctions method can be used to describe functions that are valid
against all instances of a given translator type. The function names are expected to be prefixed by the
translator type, or some other logical grouping, e.g. salesforce.includes. The full name of the function
once imported into the system will qualified by the SYS schema, e.g. SYS.salesforce.includes.

Any functions added via these mechanisms do not need to be declared in
ExecutionFactory.getSupportedFunctions. Any of the additional handling, such as adding a
FunctionModifier, covered above is also applicable here. All pushdown functions will have function
name set to only the simple name. Schema or other qualification will be removed. Handling, such as
function modifiers, can check the function metadata if there is the potential for an ambiguity.

To extend the Oracle Connector:

Required - extend the OracleExecutionFactory and add SCORE and CONTAINS as supported
pushdown functions by either overriding or adding additional functions in
"getPushDownFunctions" method. For this example, we'll call the class
MyOracleExecutionFactory. Add the org.teiid.translator.Translator annotation to
the class, e.g. @Translator(name="myoracle")

Optionally register new FunctionModifiers on the start of the ExecutionFactory to handle
translation of these functions. Given that the syntax of these functions is same as other typical
functions, this probably is not needed - the default translation should work.

Create a new translator JAR containing your custom ExecutionFactory. Refer to Section 11.1,

SELECT score(1), ID, FREEDATA FROM Docs WHERE contains(freedata, 'nick',
1) > 0

CHAPTER 12. USER DEFINED FUNCTIONS

69

“Packaging” and Section 11.2, “Translator Deployment Overview” for instructions on using the
JAR file. Once this extended translator is deployed in JBoss Data Virtualization, use
"myoracle" as translator name instead of the "oracle" in your VDB's Oracle source
configuration.

12.3.2. Defining a Source Supported Function via Teiid Designer

If you are designing your VDB using Teiid Designer, you can define a function on any "source" model,
and that function is automatically added as pushdown function when the VDB is deployed. There is no
additional need for adding Java code.

NOTE

The function will be visible only for that VDB; whereas, if you extend the translator, the
functions can be used by any VDB.

12.3.3. Defining a Source Supported Function Using Dynamic VDBs

If you are using the Dynamic VDB, and defining the metadata using DDL, you can define your source
function in the VDB as

By default, in the Dynamic VDBs, metadata for the Source models is automatically retrieved from the
source if they were JDBC, File, WebService. The File and WebService sources are static, so one can not
add additional metadata on them. However on the JDBC sources you can retrieve the metadata from
source and then user can append additional metadata on top of them. For example

The above example uses NATIVE metadata type (NATIVE is the default for source/physical models)
first to retrieve schema information from source, then uses DDL metadata type to add additional
metadata. Only metadata not available via the NATIVE translator logic would need to be specified via
DDL.

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="DDL"><![CDATA[
 CREATE FOREIGN FUNCTION SCORE (val integer) RETURNS integer;
 (other tables, procedures etc)
]]>
 </metadata>
 </model>
</vdb>

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="NATIVE,DDL"><![CDATA[
 CREATE FOREIGN FUNCTION SCORE (val integer) RETURNS integer;
]]>
 </metadata>
 </model>
</vdb>

Development Guide Volume 4: Server Development

70

Alternatively, if you are using custom MetadataRepository with your VDB, then provide the "function"
metadata directly from your implementation. ex.

In the above example, user can implement MetadataRepository interface and package the
implementation class along with its dependencies in a JBoss EAP module and supply the module name
in the above XML. For more information on how to write a Metadata Repository refer to the section on
Custom Metadata Repository.

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="{metadata-repo-module}"></metadata>
 </model>
</vdb>

CHAPTER 12. USER DEFINED FUNCTIONS

71

CHAPTER 13. ADMIN API

13.1. ADMIN API

In most circumstances administration will be performed using the Management Console or AdminShell,
but it is also possible to invoke administration functionality directly in Java through the Admin API.

All classes for the Admin API are in the client JAR under the org.teiid.adminapi package.

13.2. CONNECTING

An Admin API connection, which is represented by the org.teiid.adminapi.Admin interface, is
obtained through the org.teiid.adminapi.AdminFactory.createAdmin methods.
AdminFactory is a singleton, see AdminFactory.getInstance(). The Admin instance
automatically tests its connection and reconnects to a server in the event of a failure. The close
method should be called to terminate the connection.

See your JBoss Data Virtualization installation for the appropriate admin port - the default is 9999.

13.3. ADMINISTRATION METHODS

Administration methods exist for monitoring, server administration, and configuration purposes. Note
that the objects returned by the monitoring methods, such as getRequests, are read-only and cannot
be used to change server state. See the API Documentation for more information.

See Also:

Section C.2, “Download API Documentation”

Development Guide Volume 4: Server Development

72

CHAPTER 14. CUSTOM LOGGING

14.1. CUSTOMIZED LOGGING

Red Hat JBoss Data Virtualization provides a great deal of information via its logging system. To
control logging level, contexts, and log locations, you should be familiar with the server's
standalone.xml or domain.xml configuration file and the "logging" subsystem. Refer to the Red Hat
JBoss Data Virtualization Administration and Configuration Guide for more details about the different
contexts available.

If you want a custom log handler, you must write a custom java.util.logging.Handler. To do so, ensure
you place the implementation class in the "org.jboss.teiid" module as a jar. Next, define its name, along
with any dependencies it may need, in the module.xml file.

14.2. COMMAND LOGGING API

If you want to build a custom appender for command logging that will have access to
java.util.logging.LogRecords to the "COMMAND_LOG" context, the handler will receive a
message that is an instance of LogRecord. This object will contain a parameter of type
org.teiid.logging.CommandLogMessage. The relevant JBoss Data Virtualization classes are
defined in the teiid-api-[versionNumber].jar. The CommandLogMessage includes information
about VDB, session, command SQL, etc. CommandLogMessages are logged at the DEBUG level. An
example follows.

14.3. AUDIT LOGGING API

If you want to build a custom appender for command logging that will have access to
java.util.logging.LogRecords to the "AUDIT_LOG" context, the handler will receive a message
that is an instance of LogRecord. This object will contain a parameter of type
org.teiid.logging.AuditMessage. The relevant JBoss Data Virtualization classes are defined in
the teiid-api-[versionNumber].jar. AuditMessages are logged at the DEBUG level. An example
follows.

package org.something;
import java.util.logging.Handler;
import java.util.logging.LogRecord;

public class CommandHandler extends Handler {
 @Override
 public void publish(LogRecord record) {
 CommandLogMessage msg = (CommandLogMessage)record.getParameters()
[0];
 //log to a database, trigger an email, etc.
 }

 @Override
 public void flush() {
 }

 @Override
 public void close() throws SecurityException {
 }
}

CHAPTER 14. CUSTOM LOGGING

73

http://docs.oracle.com/javase/6/docs/api/java/util/logging/Handler.html

14.4. CONFIGURATION

Now that you have developed a custom handler class, package the implementation in a JAR file, then
copy this JAR file into the modules directory and edit the module.xml file in the same directory and
add

then edit standalone.xml or domain.xml file, locate the "logging" subsystem and add the following
entries.

Change the above configuration accordingly for AuditHandler, if you are working with Audit Messages.

package org.something;
import java.util.logging.Handler;
import java.util.logging.LogRecord;

public class AuditHandler extends Handler {
 @Override
 public void publish(LogRecord record) {
 AuditMessage msg = (AuditMessage)record.getParameters()[0];
 //log to a database, trigger an email, etc.
 }

 @Override
 public void flush() {
 }

 @Override
 public void close() throws SecurityException {
 }
}

 <resource-root path="{your-jar-name}.jar" />

 <custom-handler name="COMMAND" class="org.teiid.logging.CommandHandler"
 module="org.jboss.teiid">
 </custom-handler>

 ..other entries

 <logger category="org.teiid.COMMAND_LOG">
 <level name="DEBUG"/>
 <handlers>
 <handler name="COMMAND"/>
 </handlers>
 </logger>

Development Guide Volume 4: Server Development

74

CHAPTER 15. RUNTIME UPDATES

15.1. DATA UPDATES

Data change events are used by JBoss Data Virtualization to invalidate resultset cache entries.
Resultset cache entires are tracked by the tables that contributed to their results. By default JBoss
Data Virtualization will capture internal data events against physical sources and distribute them
across the cluster. This approach has a couple of limitations. First, updates are scoped only to their
originating VDB/version. Second, updates made outside of JBoss Data Virtualization are not captured.
To increase data consistency, external change data capture tools can be used to send events to JBoss
Data Virtualization. From within a cluster the org.teiid.events.EventDistributorFactory and
org.teiid.events.EventDistributor can be used to distribute change events. The
EventDistributorFactory can be looked up by its name "teiid/event-distributor-factory". See the
example below.

This will distribute a change event for schema.tableName in VDB vdbName.vdbVersion.

When externally capturing all update events, the "detect-change-events" property in the "teiid"
subsystem can be set to false, so change events will not be duplicated. By default, this property is set
to true.

Use of other EventDistributor methods to manually distribute other events is not always
necessary. See System Procedures in Red Hat JBoss Development Guide: Reference Material for SQL
based updates.

NOTE

Using the org.teiid.events.EventDistributor interface you can also update
runtime metadata. Refer to the API.

15.2. RUNTIME METADATA UPDATES

Runtime updates via system procedures and DDL statements are by default ephemeral. They are
effective across the cluster only for the currently running VDBs. With the next VDB start the values will
revert to whatever is stored in the VDB. Updates may be made persistent by configuring an
org.teiid.metadata.MetadataRepository.

An instance of a MetadataRepository can be installed via the VDB file.

In Designer based VDB, you can edit the vdb.xml file in the META-INF directory or use Dynamic VDB
file as below.

InitialContext ctx = new InitialContext();
EventDistributorFactory edf =
(EventDistributorFactory)ctx.lookup("teiid/event-distributor-factory");
EventDistributor ed = edf.getEventDistributor();
ed.dataModification(vdbName, vdbVersion, schema, tableName);

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="VIRTUAL">
 <metadata type="{jboss-as-module-name}"></metadata>
 </model>
</vdb>

CHAPTER 15. RUNTIME UPDATES

75

In the above code fragment, replace the {jboss-as-module-name} with a JBoss EAP module name that
has library that implements the org.teiid.metadata.MetadataRepository interface and defines
file "META-INF/services/org.teiid.metadata.MetadataRepository" with name of the implementation
file.

The MetadataRepository repository instance may fully implement as many of the methods as
needed and return null from any unneeded getter.

NOTE

It is not recommended to directly manipulate
org.teiid.metadata.AbstractMetadataRecord instances. System procedures
and DDL statements should be used instead since the effects will be distributed through
the cluster and will not introduce inconsistencies.

org.teiid.metadata.AbstractMetadataRecord objects passed to the MetadataRepository
have not yet been modified. If the MetadataRepository cannot persist the update, then a
RuntimeException should be thrown to prevent the update from being applied by the runtime
engine.

NOTE

The MetadataRepository can be accessed by multiple threads both during load (if using
dynamic VDBs) or at runtime with DDL statements. Your implementation should handle
any needed synchronization.

15.3. COSTING UPDATES

See Red Hat JBoss Data Virtualization Development Guide: Reference Material for the system procedures
SYSADMIN.setColumnStats and SYSADMIN.setTableStats. To make costing updates persistent
MetadataRepository implementations should be provided for the following methods:

15.4. SCHEMA UPDATES

See Red Hat JBoss Data Virtualization Development Guide: Reference Material for supported DDL
statements. To make schema updates persistent implementations should be provided for the following
methods:

TableStats getTableStats(String vdbName, int vdbVersion, Table table);
void setTableStats(String vdbName, int vdbVersion, Table table, TableStats
tableStats);
ColumnStats getColumnStats(String vdbName, int vdbVersion, Column column);
void setColumnStats(String vdbName, int vdbVersion, Column column,
ColumnStats columnStats);

String getViewDefinition(String vdbName, int vdbVersion, Table table);
void setViewDefinition(String vdbName, int vdbVersion, Table table, String
viewDefinition);
String getInsteadOfTriggerDefinition(String vdbName, int vdbVersion, Table
table, Table.TriggerEvent triggerOperation);
void setInsteadOfTriggerDefinition(String vdbName, int vdbVersion, Table
table, Table.TriggerEvent triggerOperation, String triggerDefinition);

Development Guide Volume 4: Server Development

76

boolean isInsteadOfTriggerEnabled(String vdbName, int vdbVersion, Table
table, Table.TriggerEvent triggerOperation);
void setInsteadOfTriggerEnabled(String vdbName, int vdbVersion, Table
table, Table.TriggerEvent triggerOperation, boolean enabled);
String getProcedureDefinition(String vdbName, int vdbVersion, Procedure
procedure);
void setProcedureDefinition(String vdbName, int vdbVersion, Procedure
procedure, String procedureDefinition);
LinkedHashMap<String, String> getProperties(String vdbName, int
vdbVersion, AbstractMetadataRecord record);
void setProperty(String vdbName, int vdbVersion, AbstractMetadataRecord
record, String name, String value);

CHAPTER 15. RUNTIME UPDATES

77

CHAPTER 16. CUSTOM METADATA REPOSITORY

16.1. CUSTOM METADATA REPOSITORY

Traditionally the metadata for a Virtual Database is built by Teiid Designer and supplied to the JBoss
Data Virtualization engine through a VDB archive file. This VDB file contains the metadata files called
INDEX files, that are then read by a specific instance of MetadataRepository by name INDEX.

In the Dynamic VDB scenario, currently there are three import types available: NATIVE, DDL and FILE.

16.2. NATIVE

This is only applicable on source models (also default). When used, the metadata for the model is
retrieved from the source database itself.

Example 16.1. Sample vdb.xml file

NOTE

If a user implements the getMetadata method on the ExecutionFactory class,
NATIVE uses this method to retrieve the metadata from source.

16.3. DDL

Example 16.2. Sample vdb.xml file

This is applicable to both source and view models. When DDL is specified as the metadata import type,
the model's metadata can be defined as DDL. See the section about DDL Metadata in Red Hat JBoss
Data Virtualization Development Guide: Reference Material.

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="NATIVE"></metadata>
 </model>
</vdb>

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="DDL">
 DDL Here
 </metadata>
 </model>
</vdb>

Development Guide Volume 4: Server Development

78

16.4. FILE

Example 16.3. Sample vdb.xml file

This is applicable to both source and view models in zip VDB deployments. See the section about DDL
Metadata in Red Hat JBoss Data Virtualization Development Guide: Reference Material.

16.5. CUSTOM

If above provided metadata facilities are not sufficient for user's needs then user can extend the
MetadataRepository class provided in the org.teiid.api JAR to plug-in their own metadata facilities into
the JBoss Data Virtualization engine.

1. Users can write metadata facility that is based on reading data from database or a JCR
repository or so forth. Here is an example:

2. Build a JAR archive with above implementation class and create file named
org.teiid.metadata.MetadataRepository in the META-INF/services directory with these
contents:

3. Deploy the JAR to Red Hat JBoss EAP as a module under the modules directory. Follow the
below steps to create a module.

Create a directory called modules/com/something/main.

Under this directory create a "module.xml" file that looks like:

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="DDL-FILE">/accounts.ddl</metadata>
 </model>
</vdb>

package com.something;

import org.teiid.metadata.MetadataRepository;
...

public class CustomMetadataRepository extends MetadataRepository {
 @Override
 public void loadMetadata(MetadataFactory factory,
ExecutionFactory executionFactory, Object connectionFactory)
 throws TranslatorException {
 /* Provide implementation and fill the details in factory */
 ...
 }
}

com.something.CustomMetadataRepository

CHAPTER 16. CUSTOM METADATA REPOSITORY

79

Copy the jar file under this same directory. Make sure you add any additional dependencies
if required by your implementation class under dependencies.

Restart the server.

This is how you configure the VDB with the custom metadata repository you have created:

Example 16.4. Sample vdb.xml file

When the VDB is deployed, it will call the CustomMetadataRepository instance for metadata of the
model. Using this you can define metadata for single model or for the whole VDB pragmatically.

IMPORTANT

Be careful about holding state and synchronization in your repository instance.

16.6. USING MULTIPLE IMPORTERS

When you define the metadata import type for a model, you can also define a comma-separated list of
importers. By doing so, you will ensure that all of the repository instances defined by import types are
consulted in the order in which they have been defined. Here is an example:

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.something">
 <resources>
 <resource-root path="something.jar" />
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.resource.api"/>
 <module name="org.jboss.teiid.common-core"/>
 <module name="org.jboss.teiid.teiid-api" />
 </dependencies>
</module>

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="{metadata-repo-module}"></metadata>
 </model>
</vdb>

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="NATIVE,DDL">
 DDL Here
 </metadata>
 </model>
</vdb>

Development Guide Volume 4: Server Development

80

In this model, the NATIVE importer is used first, then the DDL importer is used to add additional
metadata to the NATIVE-imported metadata.

16.7. DEVELOPMENT CONSIDERATIONS

MetadataRepository instances are created on a per VDB basis and may be called
concurrently for the load of multiple models.

See the MetadataFactory and the org.teiid.metadata package javadocs for metadata
construction methods and objects. For example if you use your own DDL, then call the
MetadataFactory.parse(Reader) method. If you need access to files in a VDB zip
deployment, then use the MetadataFactory.getVDBResources method.

Use the MetadataFactory.addPermission and add
MetadataFactory.addColumnPermission method to grant permissions on the given
metadata objects to the named roles. The roles should be declared in your vdb.xml, which is
also where they are typically tied to container roles.

16.8. PREPARSER

If it is desirable to manipulate incoming queries prior to being handled by Teiid logic, then a custom
pre-parser can be installed. Use the PreParser interface provided in the org.teiid.api jar to plug-in a
pre-parser for the Teiid engine. See Setting up the build environment to start development.

Next, build a JAR archive with above implementation class and create a file named org.teiid.PreParser
in the META-INF/services directory with these contents:

The JAR has now been built. Deploy it in the JBoss AS as a module under jboss-as/modules directory.
Now create a module:

Create a directory called jboss-as/modules/com/something/main. In it create a "module.xml" file with
these contents:

import org.teiid.PreParser;
...

package com.something;

public class CustomPreParser implements PreParser {

 @Override
 public String preParse(String command, CommandContext context) {
 //manipulate the command
 }
}

com.something.CustomPreParser

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.something">
 <resources>
 <resource-root path="something.jar" />
 </resources>
 <dependencies>

CHAPTER 16. CUSTOM METADATA REPOSITORY

81

Copy the jar file under this same directory. Make sure you add any additional dependencies if required
by your implementation class under dependencies.

Use the command line interface or modify the configuration to set the preparser-module in the Teiid
subsystem configuration to the appropriate module name.

Restart the server

IMPORTANT

Development Considerations Changing the incoming query to a different type of
statement is not recommended as are any modifications to the number or types of
projected symbols.

 <module name="javax.api"/>
 <module name="javax.resource.api"/>
 <module name="org.jboss.teiid.common-core"/>
 <module name="org.jboss.teiid.teiid-api" />
 </dependencies>
</module>

Development Guide Volume 4: Server Development

82

APPENDIX A. EXECUTING COMMANDS

A.1. EXECUTION MODES

The JBoss Data Virtualization query engine uses the ExecutionFactory class to obtain the
Execution interface for the command it is executing. The query is sent to the translator as a set of
objects. Refer to Section B.1, “Language” for more information.

Translators are allowed to support any subset of the available execution modes.

Table A.1. Types of Execution Modes

Execution Interface Command interface(s) Description

ResultSetExecuti
on

QueryExpression A query corresponding to a SQL SELECT or set
query statement.

UpdateExecution Insert, Update,
Delete,
BatchedUpdates

An insert, update, or delete, corresponding to a SQL
INSERT, UPDATE, or DELETE command

ProcedureExecuti
on

Call A procedure execution that may return a result set
and/or output values.

All of the execution interfaces extend the base Execution interface that defines how executions are
canceled and closed. ProcedureExecution also extends ResultSetExecution, since procedures may
also return resultsets.

A.2. EXECUTIONCONTEXT

The org.teiid.translator.ExecutionContext class provides information related to the current
execution. An instance of ExecutionContext is available for each Execution. Various 'get'
methods are provided; for example, ExecutionContext.getRequestIdentifier() and
ExecutionContext.getSession() are provided for logging purposes. Specific usage is highlighted
in this guide where applicable.

A.3. GENERATED KEYS

To see if the user query expects generated keys to be returned, consult the
CommandContext.isReturnAutoGeneratedKeys() method. If you wish to return generated keys,
you must first create a GeneratedKeys instance to hold the keys with the returnGeneratedKeys
method passing the column names and types of the key columns. Only one GeneratedKeys may be
associated with the CommandContext at any given time.

A.4. SOURCE HINTS

The JBoss Data Virtualization source meta-hint is used to provide hints directly to source executions
via user or transformation queries. See the reference for more on source hints. If specified and
applicable, the general and source specific hint will be supplied via the ExecutionContext methods

APPENDIX A. EXECUTING COMMANDS

83

getGeneralHint and getSourceHint. See the source for the OracleExecutionFactory for an
example of how this source hint information can be utilized.

A.5. RESULTSETEXECUTION

Typically most commands executed against translators are QueryExpression. While the command is
being executed, the translator provides results via the ResultSetExecution.next() method. This
method returns null to indicate the end of results. Note: the expected batch size can be obtained using
the ExecutionContext.getBatchSize() method and used as a hint in fetching results from the
EIS.

A.6. UPDATE EXECUTION

Each execution returns the update count(s) expected by the update command. If possible
BatchedUpdates should be executed atomically. The ExecutionContext.isTransactional()
method can be used to determine if the execution is already under a transaction.

A.7. PROCEDURE EXECUTION

Procedure commands correspond to the execution of a stored procedure or some other functional
construct. A procedure takes zero or more input values and can return a result set and zero or more
output values. Examples of procedure execution would be a stored procedure in a relational database
or a call to a web service.

If a result set is expected when a procedure is executed, all rows from it will be retrieved via the
ResultSetExecution interface first. Then, if any output values are expected, they will be retrieved using
the getOutputParameterValues() method.

A.8. ASYNCHRONOUS EXECUTIONS

In some scenarios, a translator will execute asynchronously and allow the executing thread to perform
other work. To allow this, it is recommended that a DataNotAvailableException is thrown during a
retrieval method, rather than explicitly waiting or sleeping for the results.

NOTE

The DataNotAvailableException should not be thrown by the execute method, as
that can result in the execute method being called multiple times. The
DataNotAvailableException may take a delay parameter or a Date in its
constructor to indicate when to poll next for results. Any non-negative delay value
indicates the time in milliseconds until the next polling should be performed.

The DataNotAvailableException.NO_POLLING exception (or any
DataNotAvailableException with a negative delay) can be thrown so that processing will
resume (via ExecutionContext.dataAvailable()).

Since the execution (and the associated connection) is not closed until the work has completed, care
must be taken if using asynchronous executions that hold a lot of state.

A positive retry delay is not a guarantee of when the translator will be polled next. If the
DataNotAvailableException is consumed while the engine thinks more work can be performed or
there are other shorter delays issued from other translators, then the plan may be queued again

Development Guide Volume 4: Server Development

84

earlier than expected. You should throw a DataNotAvailableException again if your execution is
not yet ready. Alternatively the DataNotAvailableException may be marked as strict, which does
provide a guarantee that the Execution will not be called until the delay has expired or the given
Date has been reached. Using the Date constructor makes the DataNotAvailableException
automatically strict. Due to engine thread pool contention, platform time resolution, etc. a strict
DataNotAvailableException is not a real-time guarantee of when the next poll for results will
occur, only that it will not occur before then.

NOTE

If your ExecutionFactory returns only asynch executions that perform minimal work,
then consider having ExecutionFactory.isForkable return false so that the engine
knows not to spawn a separate thread for accessing your Execution .

A.9. REUSABLE EXECUTIONS

A translator may return instances of ReusableExecutions for the expected Execution objects.
There can be one ReusableExecution per query executing node in the processing plan. The lifecycle
of a ReusableExecution is different that a normal Execution . After a normal
creation/execute/close cycle the ReusableExecution.reset is called for the next execution cycle.
This may occur indefinitely depending on how many times a processing node executes its query. The
behavior of the close method is no different from a regular Execution , it may not be called until the
end of the statement if lobs are detected and any connection associated with the Execution will also
be closed. When the user command is finished, the ReusableExecution.dispose() method will be
called.

In general ReusableExecutions are most useful for continuous query execution and will also make
use of the ExecutionCotext.dataAvailable() method for Asynchronous Executions. See Red Hat
JBoss Development Guide: Client Development for more information about executing continuous
statements. In continuous mode the user query will be continuously re-executed. A
ReusableExecution allows the same Execution object to be associated with the processing plan
for a given processing node for the lifetime of the user query. This can simplify asynch resource
management, such as establishing queue listeners. Returning a null result from the next() method
ReusableExecution as with normal Executions indicates that the current pushdown command
results have ended. Once the reset() method has been called, the next set of results should be
returned again terminated with a null result.

See the kit examples for a reusable execution example.

A.10. BULK EXECUTION

Non batched Insert, Update, Delete commands may have multi-valued Parameter objects if
the capabilities shows support for BulkUpdate. Commands with multi-valued Parameters represent
multiple executions of the same command with different values. As with BatchedUpdates, bulk
operations should be executed atomically if possible.

A.11. COMMAND COMPLETION

All normal command executions end with the calling of close() on the Execution object. Your
implementation of this method should do the appropriate clean-up work for all state created in the
Execution object.

APPENDIX A. EXECUTING COMMANDS

85

A.12. COMMAND CANCELLATION

Commands submitted to JBoss Data Virtualization may be aborted in several scenarios:

Client cancellation via the JDBC API (or other client APIs)

Administrative cancellation

Clean-up during session termination

Clean-up if a query fails during processing

Unlike the other execution methods, which are handled in a single-threaded manner, calls to cancel
happen asynchronously with respect to the execution thread.

Your connector implementation may choose to do nothing in response to this cancellation message. In
this instance, JBoss Data Virtualization will call close() on the execution object after current
processing has completed. Implementing the cancel() method allows for faster termination of queries
being processed and may allow the underlying data source to terminate its operations faster as well.

Development Guide Volume 4: Server Development

86

APPENDIX B. COMMAND LANGUAGE

B.1. LANGUAGE

JBoss Data Virtualization sends commands to your Translator in object form. These classes are all
defined in the org.teiid.language package. These objects can be combined to represent any command
sent to the Translator. However, it is possible to specify that your Translator can only accept certain
kinds of constructs via the capabilities defined on the ExecutionFactory class. Refer to the section
on translator capabilities for more information.

The language objects all extend from the LanguageObject interface. Language objects should be
thought of as a tree where each node is a language object that has zero or more child language objects
of types that are dependent on the current node.

All commands sent to your Translator are in the form of these language trees, where the root of the
tree is a subclass of Command. Command has several sub-interfaces, namely:

QueryExpression

Insert

Update

Delete

BatchedUpdates

Call

Important components of these commands are expressions, criteria, and joins, which are examined in
closer detail below. For more on the classes and interfaces described here, refer to the JBoss Data
Virtualization Javadoc.

B.2. EXPRESSIONS

An expression represents a single value in context, although in some cases that value may change as
the query is evaluated. For example, a literal value, such as 5 represents an integer value. A column
reference such as "table.EmployeeName" represents a column in a data source and may take on many
values while the command is being evaluated.

Expression - base expression interface

ColumnReference - represents an column in the data source

Literal - represents a literal scalar value, but may also be multi-valued in the case of bulk
updates.

Function - represents a scalar function with parameters that are also Expressions

AggregateFunction - represents an aggregate function which holds a single expression

WindowFunction - represents a window function which holds an AggregateFunction (which is
also used to represent analytical functions) and a WindowSpecification

ScalarSubquery - represents a subquery that returns a single value

APPENDIX B. COMMAND LANGUAGE

87

SearchedCase, SearchedWhenClause - represents a searched CASE expression. The
searched CASE expression evaluates the criteria in WHEN clauses until one of them evaluates
to TRUE, then evaluates the associated THEN clause.

Array - represents an array of expressions, currently only used by the engine in multi-
attribute dependent joins - see the supportsArrayType capability.

B.3. CONDITION

A criteria is a combination of expressions and operators that evaluates to true, false, or unknown.
Criteria are most commonly used in the WHERE or HAVING clauses.

Condition - the base criteria interface

Not - used to NOT another criteria

AndOr - used to combine other criteria via AND or OR

SubqueryComparison - represents a comparison criteria with a subquery including a
quantifier such as SOME or ALL

Comparison - represents a comparison criteria with =, >, <, etc.

BaseInCondition - base class for an IN criteria

In - represents an IN criteria that has a set of expressions for values

SubqueryIn - represents an IN criteria that uses a subquery to produce the value set

IsNull - represents an IS NULL criteria

Exists represents an EXISTS criteria that determines whether a subquery will return any
values

Like - represents a LIKE/SIMILAR TO/LIKE_REGEX criteria that compares string values

B.4. THE FROM CLAUSE

The FROM clause contains a list of TableReference's.

NamedTable - represents a single Table

Join - has a left and right TableReference and information on the join between the items

DerivedTable - represents a table defined by an inline QueryExpression

A list of TableReference are used by default, in the pushdown query when no outer joins are used. If
an outer join is used anywhere in the join tree, there will be a tree of Joins with a single root. This
latter form is the ANSI perfered style. If you wish all pushdown queries containing joins to be in ANSI
style have the capability "useAnsiJoin" return true. Refer to the section on command form for more
information.

B.5. QUERYEXPRESSION STRUCTURE

Development Guide Volume 4: Server Development

88

QueryExpression is the base for both SELECT queries and set queries. It may optionally take an
OrderBy (representing a SQL ORDER BY clause) and a Limit (represent a SQL LIMIT clause) or a
With (represents a SQL WITH clause).

B.6. SELECT STRUCTURE

Each QueryExpression can be a Select describing the expressions (typically elements) being
selected and a TableReference specifying the table or tables being selected from, along with any
join information. The Select may optionally also supply a Condition (representing a SQL WHERE
clause), a GroupBy (representing a SQL GROUP BY clause), a Condition (representing a SQL
HAVING clause).

B.7. SETQUERY STRUCTURE

A QueryExpression can also be a SetQuery that represents the SQL set operations (UNION,
INTERSECT, EXCEPT) on two QueryExpressions. The all flag may be set to indicate UNION ALL
(currently INTERSECT and EXCEPT ALL are not supported).

B.8. WITH STRUCTURE

A With clause contains named QueryExpressions held by WithItems that can be referenced as
tables in the main QueryExpression.

B.9. INSERT STRUCTURE

Each Insert will have a single NamedTable specifying the table being inserted into. It will also has a
list of ColumnReference specifying the columns of the NamedTable that are being inserted into. It
also has InsertValueSource, which will be a list of Expressions (ExpressionValueSource), or a
QueryExpression.

B.10. UPDATE STRUCTURE

Each Update will have a single NamedTable specifying the table being updated and list of SetClause
entries that specify ColumnReference and Expression pairs for the update. The Update may
optionally provide a criteria Condition specifying which rows should be updated.

B.11. DELETE STRUCTURE

Each Delete will have a single NamedTable specifying the table being deleted from. It may also
optionally have a criteria specifying which rows should be deleted.

B.12. CALL STRUCTURE

Each Call has zero or more Argument objects. The Argument objects describe the input parameters,
the output result set, and the output parameters.

B.13. BATCHEDUPDATES STRUCTURE

Each BatchedUpdates has a list of Command objects (which must be either Insert, Update or
Delete) that compose the batch.

APPENDIX B. COMMAND LANGUAGE

89

B.14. THE TYPE FACILITY

The Translator API contains an interface TypeFacility that defines data types and provides value
translation facilities. This interface can be obtained from calling the
ExecutionFactory.getTypeFacility() method.

The TypeFacility interface has methods that support data type transformation and detection of
appropriate runtime or JDBC types. The TypeFacility.RUNTIME_TYPES and
TypeFacility.RUNTIME_NAMES interfaces defines constants for all JBoss Data Virtualization runtime
data types. All Expression instances define a data type based on this set of types. These constants
are often needed in understanding or creating language interfaces.

B.15. LANGUAGE MANIPULATION

In Translators that support a richer set of capabilities, there is often a need to manipulate or create
language interfaces with a similar syntax to those being translated to. This is often the case when
translating to a language comparable to SQL. Some utilities are provided for this purpose.

Similar to the TypeFacility, you can call getLanguageFactory() method on the
ExecutionFactory to get a reference to the LanguageFactory instance for your translator. This
interface is a factory that can be used to create new instances of all the concrete language interface
objects.

Some helpful utilities for working with Condition objects are provided in the LanguageUtil class.
This class has methods to combine Condition with AND or to break a Condition apart based on AND
operators. These utilities are helpful for breaking apart a criteria into individual filters that your
translator can implement.

B.16. RUNTIME METADATA

JBoss Data Virtualization uses a library of metadata, known as runtime metadata for each virtual
database (VDB) that is deployed. The runtime metadata is a subset of the metadata defined by the
models contributing to your VDB. While building your VDB in the Designer, you can define what called
an Extension Model, that defines any number of arbitrary properties on a model and its objects. At
runtime, using the runtime metadata interface, you can use properties that were defined at design
time to define execution behavior.

Translator gets access to the RuntimeMetadata interface at the time of Excecution creation.
Translators can access runtime metadata by using the interfaces defined in org.teiid.metadata
package. This package defines API representing a Schema, Table, Columns and Procedures, and ways
to navigate these objects.

B.17. METADATA OBJECTS

All the language objects extend AbstractMetadataRecord class

Column - returns Column metadata record

Table - returns a Table metadata record

Procedure - returns a Procedure metadata record

ProcedureParameter - returns a Procedure Parameter metadata record

Development Guide Volume 4: Server Development

90

Once a metadata record has been obtained, it is possible to use its metadata about that object or to
find other related metadata.

B.18. ACCESS TO RUNTIME METADATA

The RuntimeMetadata interface is passed in for the creation of an "Execution". See "createExecution"
method on the "ExecutionFactory" class. It provides the ability to look up metadata records based on
their fully qualified names in the VDB.

Example B.1. Obtaining Metadata Properties

The process of getting a Table's properties is sometimes needed for translator development. For
example to get the "NameInSource" property or all extension properties:

B.19. VISITOR FRAMEWORK

The API provides a language visitor framework in the org.teiid.language.visitor package. The
framework provides utilities useful in navigating and extracting information from trees of language
objects.

The visitor framework is a variant of the Visitor design pattern, which is documented in several popular
design pattern references. The visitor pattern encompasses two primary operations: traversing the
nodes of a graph (also known as iteration) and performing some action at each node of the graph. In
this case, the nodes are language interface objects and the graph is really a tree rooted at some node.
The provided framework allows for customization of both aspects of visiting.

The base AbstractLanguageVisitor class defines the visit methods for all leaf language interfaces
that can exist in the tree. The LanguageObject interface defines an acceptVisitor() method. This
method will call back on the visit method of the visitor to complete the contract. A base class with
empty visit methods is provided as AbstractLanguageVisitor. The AbstractLanguageVisitor is a visitor
shell - it performs no actions when visiting nodes and does not provide any iteration.

The HierarchyVisitor provides the basic code for walking a language object tree. The
HierarchyVisitor performs no action as it walks the tree - it encapsulates the knowledge of how to
walk it. If your translator wants to provide a custom iteration that walks the objects in a special order
(to exclude nodes, include nodes multiple times, conditionally include nodes, and so forth) then you
must either extend HierarchyVisitor or build your own iteration visitor. In general, that is not
necessary.

The DelegatingHierarchyVisitor is a special subclass of the HierarchyVisitor that provides the
ability to perform a different visitor's processing before and after iteration. This allows users of this
class to implement either pre- or post-order processing based on the HierarchyVisitor. Two helper
methods are provided on DelegatingHierarchyVisitor to aid in executing pre- and post-order
visitors.

//getting the Table metadata from an Table is straight-forward
Table table = runtimeMetadata.getTable("table-name");
String contextName = table.getNameInSource();

//The props will contain extension properties
Map<String, String> props = table.getProperties();

APPENDIX B. COMMAND LANGUAGE

91

B.20. PROVIDED VISITORS

The SQLStringVisitor is a special visitor that can traverse a tree of language interfaces and output
the equivalent JBoss Data Virtualization SQL. This visitor can be used to print language objects for
debugging and logging. The SQLStringVisitor does not use the HierarchyVisitor described in
the last section; it provides both iteration and processing type functionality in a single custom visitor.

The CollectorVisitor is a handy utility to collect all language objects of a certain type in a tree.
Some additional helper methods exist to do common tasks such as retrieving all elements in a tree,
retrieving all groups in a tree, and so on.

B.21. WRITING A VISITOR

Writing your own visitor can be quite easy if you use the provided facilities. If the normal method of
iterating the language tree is sufficient, then follow these steps:

Create a subclass of AbstractLanguageVisitor. Override any visit methods needed for your processing.
For instance, if you wanted to count the number of elements in the tree, you need only override the
visit(ColumnReference) method. Collect any state in local variables and provide accessor
methods for that state.

Decide whether to use pre-order or post-order iteration. Note that visitation order is based upon
syntax ordering of SQL clauses - not processing order.

Write code to execute your visitor using the utility methods on DelegatingHierarchyVisitor:

// Get object tree
LanguageObject objectTree = ...

// Create your visitor initialize as necessary
MyVisitor visitor = new MyVisitor();

// Call the visitor using pre-order visitation
DelegatingHierarchyVisitor.preOrderVisit(visitor, objectTree);

// Retrieve state collected while visiting
int count = visitor.getCount();

Development Guide Volume 4: Server Development

92

APPENDIX C. APPENDIX

C.1. TEMPLATE FOR RA.XML

The following is an example of an ra.xml file that can be used when creating a new connector.

<?xml version="1.0" encoding="UTF-8"?>
<connector xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd" version="1.5">

 <vendor-name>${comapany-name}</vendor-name>
 <eis-type>${type-of-connector}</eis-type>
 <resourceadapter-version>1.0</resourceadapter-version>
 <license>
 <description>${license text}</description>
 <license-required>true</license-required>
 </license>

 <resourceadapter>
 <resourceadapter-
class>org.teiid.resource.spi.BasicResourceAdapter</resourceadapter-class>
 <outbound-resourceadapter>
 <connection-definition>
 <managedconnectionfactory-class>${connection-
factory}</managedconnectionfactory-class>

 <!-- repeat for every configuration property -->
 <config-property>
 <description>
 {$display:"${short-
name}",$description:"${description}",$allowed:[${value-list}],
 $required:"${required-boolean}",
$defaultValue:"${default-value}"}
 </description>
 <config-property-name>${property-name}</config-property-
name>
 <config-property-type>${property-type}</config-property-
type>
 <config-property-value>${optional-property-value}</config-
property-value>
 </config-property>

 <!-- use the below as is if you used the Connection Factory
interface -->
 <connectionfactory-interface>
 javax.resource.cci.ConnectionFactory
 </connectionfactory-interface>

 <connectionfactory-impl-class>
 org.teiid.resource.spi.WrappedConnectionFactory
 </connectionfactory-impl-class>

 <connection-interface>

APPENDIX C. APPENDIX

93

${...} indicates a value to be supplied by the developer.

C.2. DOWNLOAD API DOCUMENTATION

Javadocs for JBoss Data Virtualization can be found on the Red Hat Customer Portal .

Procedure C.1. Download API Documentation

1. Open a web browser and navigate to https://access.redhat.com/jbossnetwork.

2. From the Software Downloads page, when prompted for a Product, select Data
Virtualization. This will present a table of files to download for the latest version of the
product.

3. Change the Version to the current release if required.

4. Look for JBoss Data Virtualization VERSION Javadocs in the table and select
Download.

C.3. JBOSS DATA VIRTUALIZATION FUNCTIONS AND ORDER OF
PRECEDENCE

There are three classes of functions in JBoss Data Virtualization:

System functions (effectively scoped to SYS) and are known at design time.

Pushdown functions (also effectively scoped to SYS) and are supplied by translators.

UDFs which are schema scoped (except for legacy function models) and are defined via

 javax.resource.cci.Connection
 </connection-interface>

 <connection-impl-class>
 org.teiid.resource.spi.WrappedConnection
 </connection-impl-class>

 </connection-definition>

 <transaction-support>NoTransaction</transaction-support>

 <authentication-mechanism>
 <authentication-mechanism-type>BasicPassword</authentication-
mechanism-type>
 <credential-interface>
 javax.resource.spi.security.PasswordCredential
 </credential-interface>
 </authentication-mechanism>
 <reauthentication-support>false</reauthentication-support>

 </outbound-resourceadapter>

 </resourceadapter>

</connector>

Development Guide Volume 4: Server Development

94

https://access.redhat.com/
https://access.redhat.com/jbossnetwork

metadata.

When resolved, system functions take preference - no schema qualification is necessary. But you can
introduce for example a concat UDF and call it as schema.concat(...).

Pushdown functions then take preference.

NOTE

It possible that two translators will declare the same function with the same root name,
but JBoss Data Virtualization currently does not treat this as an ambiguity. The primary
reason is that in Teiid Designer, pushdown functions must be redeclared in metadata to
be used (either with the legacy function model or with source functions). So it is
assumed that the first matching definition is correct.

Schema scoped functions are last in preference and require qualification if there are conflicting
names.

APPENDIX C. APPENDIX

95

APPENDIX D. REVISION HISTORY

Revision 6.2.0-54444 Thu Dec 10 2015 David Le Sage
Updates for 6.2.

Development Guide Volume 4: Server Development

96

	Table of Contents
	CHAPTER 1. READ ME
	1.1. BACK UP YOUR DATA
	1.2. VARIABLE NAME: EAP_HOME
	1.3. VARIABLE NAME: MODE
	1.4. RED HAT DOCUMENTATION SITE

	CHAPTER 2. EMBEDDED JBOSS DATA VIRTUALIZATION (TECHNOLOGY PREVIEW)
	2.1. TECHNOLOGY PREVIEW
	2.2. EMBEDDED JBOSS DATA VIRTUALIZATION
	2.3. CONFIGURATION
	2.4. VDB DEPLOYMENT
	2.5. TRANSLATORS
	2.6. SOURCES
	2.7. EXAMPLE DEPLOYMENT
	2.8. TRANSACTIONS
	2.9. OTHER DIFFERENCES BETWEEN THE EMBEDDED AND EAP DEPLOYMENTS

	CHAPTER 3. DEVELOPING FOR JBOSS DATA VIRTUALIZATION
	3.1. DEVELOPING FOR JBOSS DATA VIRTUALIZATION
	3.2. JBOSS DATA VIRTUALIZATION CONNECTOR ARCHITECTURE
	3.3. TRANSLATORS IN JBOSS DATA VIRTUALIZATION
	3.4. RESOURCE ADAPTERS IN JBOSS DATA VIRTUALIZATION
	3.5. OTHER JBOSS DATA VIRTUALIZATION DEVELOPMENT
	3.6. SETTING THE DEVELOPMENT ENVIRONMENT
	3.7. MAVEN REPOSITORY LOCATION

	CHAPTER 4. RESOURCE ADAPTER DEVELOPMENT
	4.1. DEVELOPING CUSTOM ADAPTERS
	4.2. DEFINE A MANAGED CONNECTION FACTORY
	4.3. DEFINE A CONNECTION FACTORY
	4.4. DEFINE A CONNECTION
	4.5. XA TRANSACTIONS
	4.6. SPECIFY CONFIGURATION PROPERTIES IN AN RA.XML FILE
	4.7. PACKAGING THE ADAPTER
	4.8. ADDING DEPENDENT LIBRARIES
	4.9. DEPLOYING THE ADAPTER

	CHAPTER 5. TRANSLATOR DEVELOPMENT
	5.1. DEVELOPING CUSTOM TRANSLATORS
	5.2. IMPLEMENTING THE FRAMEWORK

	CHAPTER 6. EXTENDING THE EXECUTION FACTORY CLASS
	6.1. EXTENDING THE EXECUTIONFACTORY CLASS
	6.2. CONFIGURATION PROPERTIES
	6.3. INITIALIZING THE TRANSLATOR
	6.4. EXTENDED TRANSLATOR CAPABILITIES
	6.5. EXECUTION (AND SUB-INTERFACES)
	6.6. METADATA
	6.7. LOGGING
	6.8. EXCEPTIONS
	6.9. DEFAULT NAME
	6.10. OBTAINING CONNECTIONS
	6.11. RELEASING CONNECTIONS

	CHAPTER 7. EXTENDING THE JDBC TRANSLATOR
	7.1. EXTENSIONS
	7.2. CAPABILITIES EXTENSION
	7.3. SQL TRANSLATION EXTENSION
	7.4. RESULTS TRANSLATION EXTENSION
	7.5. ADDING FUNCTION SUPPORT
	7.6. USING FUNCTION MODIFIERS
	7.7. INSTALLING EXTENSIONS

	CHAPTER 8. TRANSLATOR DEVELOPMENT AND LARGE OBJECTS
	8.1. DATA TYPES
	8.2. WHY USE LARGE OBJECT SUPPORT?
	8.3. HANDLING LARGE OBJECTS
	8.4. INSERTING OR UPDATING LARGE OBJECTS

	CHAPTER 9. OTHER CONSIDERATIONS FOR TRANSLATOR DEVELOPMENT
	9.1. CACHING API
	9.2. DEPENDENT JOIN PUSHDOWN
	9.3. DELEGATING TRANSLATOR
	9.4. ADDING DEPENDENT MODULES

	CHAPTER 10. TRANSLATOR CAPABILITIES
	10.1. TRANSLATOR CAPABILITIES
	10.2. TRANSLATOR CAPABILITIES
	10.3. AVAILABLE CAPABILITIES
	10.4. COMMAND FORM
	10.5. SCALAR FUNCTIONS
	10.6. PHYSICAL LIMITS
	10.7. UPDATE EXECUTION MODES
	10.8. NULL ORDERING

	CHAPTER 11. PACKAGING AND DEPLOYING THE TRANSLATOR
	11.1. PACKAGING
	11.2. TRANSLATOR DEPLOYMENT OVERVIEW
	11.3. MODULE DEPLOYMENT
	11.4. JAR DEPLOYMENT

	CHAPTER 12. USER DEFINED FUNCTIONS
	12.1. USER DEFINED FUNCTIONS
	12.2. SUPPORT FOR NON-PUSHDOWN USER DEFINED FUNCTIONS
	12.2.1. Non-Pushdown UDF Metadata in Teiid Designer
	12.2.2. Non-Pushdown UDF Metadata for Dynamic VDBs
	12.2.3. Coding Non-Pushdown Functions
	12.2.3.1. UDF Coding
	12.2.3.2. UDAF Coding
	12.2.3.3. Coding: Other Considerations
	12.2.3.4. Post Coding Activities

	12.3. SOURCE SUPPORTED FUNCTIONS
	12.3.1. Defining a Source Supported Function by Extending the Translator
	12.3.2. Defining a Source Supported Function via Teiid Designer
	12.3.3. Defining a Source Supported Function Using Dynamic VDBs

	CHAPTER 13. ADMIN API
	13.1. ADMIN API
	13.2. CONNECTING
	13.3. ADMINISTRATION METHODS

	CHAPTER 14. CUSTOM LOGGING
	14.1. CUSTOMIZED LOGGING
	14.2. COMMAND LOGGING API
	14.3. AUDIT LOGGING API
	14.4. CONFIGURATION

	CHAPTER 15. RUNTIME UPDATES
	15.1. DATA UPDATES
	15.2. RUNTIME METADATA UPDATES
	15.3. COSTING UPDATES
	15.4. SCHEMA UPDATES

	CHAPTER 16. CUSTOM METADATA REPOSITORY
	16.1. CUSTOM METADATA REPOSITORY
	16.2. NATIVE
	16.3. DDL
	16.4. FILE
	16.5. CUSTOM
	16.6. USING MULTIPLE IMPORTERS
	16.7. DEVELOPMENT CONSIDERATIONS
	16.8. PREPARSER

	APPENDIX A. EXECUTING COMMANDS
	A.1. EXECUTION MODES
	A.2. EXECUTIONCONTEXT
	A.3. GENERATED KEYS
	A.4. SOURCE HINTS
	A.5. RESULTSETEXECUTION
	A.6. UPDATE EXECUTION
	A.7. PROCEDURE EXECUTION
	A.8. ASYNCHRONOUS EXECUTIONS
	A.9. REUSABLE EXECUTIONS
	A.10. BULK EXECUTION
	A.11. COMMAND COMPLETION
	A.12. COMMAND CANCELLATION

	APPENDIX B. COMMAND LANGUAGE
	B.1. LANGUAGE
	B.2. EXPRESSIONS
	B.3. CONDITION
	B.4. THE FROM CLAUSE
	B.5. QUERYEXPRESSION STRUCTURE
	B.6. SELECT STRUCTURE
	B.7. SETQUERY STRUCTURE
	B.8. WITH STRUCTURE
	B.9. INSERT STRUCTURE
	B.10. UPDATE STRUCTURE
	B.11. DELETE STRUCTURE
	B.12. CALL STRUCTURE
	B.13. BATCHEDUPDATES STRUCTURE
	B.14. THE TYPE FACILITY
	B.15. LANGUAGE MANIPULATION
	B.16. RUNTIME METADATA
	B.17. METADATA OBJECTS
	B.18. ACCESS TO RUNTIME METADATA
	B.19. VISITOR FRAMEWORK
	B.20. PROVIDED VISITORS
	B.21. WRITING A VISITOR

	APPENDIX C. APPENDIX
	C.1. TEMPLATE FOR RA.XML
	C.2. DOWNLOAD API DOCUMENTATION
	C.3. JBOSS DATA VIRTUALIZATION FUNCTIONS AND ORDER OF PRECEDENCE

	APPENDIX D. REVISION HISTORY

