
Red Hat JBoss Data Virtualization 6.2

Development Guide Volume 1: Client
Development

This guide is for developers wanting to interface to Red Hat JBoss Data Virtualization
from within client applications.

Last Updated: 2017-10-20

Red Hat JBoss Data Virtualization 6.2 Development Guide Volume 1:
Client Development

This guide is for developers wanting to interface to Red Hat JBoss Data Virtualization from within
client applications.

Red Hat Customer Content Services

Legal Notice

Copyright © 2017 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on concepts and tasks relating to interfacing to Red Hat JBoss
Data Virtualization from within client applications.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. READ ME
1.1. BACK UP YOUR DATA
1.2. VARIABLE NAME: EAP_HOME
1.3. VARIABLE NAME: MODE
1.4. RED HAT DOCUMENTATION SITE

CHAPTER 2. CONNECTING TO A VIRTUAL DATABASE
2.1. JAVA DATABASE CONNECTIVITY (JDBC)
2.2. JBOSS DATA VIRTUALIZATION AND JDBC
2.3. GENERATED KEYS
2.4. CONNECTION METHODS
2.5. CONNECTING TO A VDB USING THE DRIVER CLASS
2.6. CREATE A CONNECTION TO A VDB USING THE DRIVER CLASS
2.7. DRIVER CONNECTION URL FORMAT
2.8. CONNECTION PROPERTIES FOR THE DRIVER AND DATA SOURCE CLASSES
2.9. CONNECTING TO A VDB USING THE DATA SOURCE CLASS
2.10. CREATE A CONNECTION TO A VDB USING THE DATA SOURCE CLASS
2.11. ADDITIONAL DATA SOURCE CONNECTION PROPERTIES
2.12. CONNECTING TO A VDB AS A DATA SOURCE

CHAPTER 3. MULTIPLE HOSTS
3.1. USING MULTIPLE HOSTS
3.2. FAILOVER
3.3. LOAD BALANCING
3.4. INCREASE THE MAXIMUM NUMBER OF CACHED INSTANCES
3.5. ADVANCED CONFIGURATION
3.6. REAUTHENTICATION

CHAPTER 4. EXTENSIONS TO JDBC
4.1. PREPARED STATEMENTS
4.2. JDBC STATEMENT EXTENSIONS
4.3. NON-BLOCKING STATEMENT EXECUTION
4.4. CONTINUOUS EXECUTION
4.5. EXECUTION PROPERTIES
4.6. XML EXTENSIONS
4.7. XML DOCUMENT FORMATTING
4.8. XML SCHEMA VALIDATION
4.9. THE SET STATEMENT
4.10. THE SHOW STATEMENT
4.11. TRANSACTION STATEMENTS
4.12. PARTIAL RESULTS MODE
4.13. SETTING PARTIAL RESULTS MODE
4.14. PARTIAL RESULTS WARNINGS

CHAPTER 5. JDBC TRANSACTIONS
5.1. JDBC TRANSACTION TYPES
5.2. LOCAL TRANSACTIONS
5.3. ENDING LOCAL TRANSACTIONS
5.4. TURNING OFF LOCAL TRANSACTIONS
5.5. REQUEST LEVEL TRANSACTIONS
5.6. TRANSACTION WRAPPING MODES
5.7. SET THE TRANSACTION WRAPPING MODE

4
4
4
4
4

5
5
5
5
5
6
6
6
7

10
10
11
12

13
13
13
13
14
14
15

16
16
16
17
18
18
19
20
20
20
21
22
22
23
23

25
25
25
26
26
26
27
27

Table of Contents

1

. .

. .

. .

. .

. .

. .

5.8. MULTIPLE INSERT BATCHES
5.9. GLOBAL TRANSACTIONS
5.10. ENTERPRISE INFORMATION SYSTEM SUPPORT

CHAPTER 6. CLIENT SSL CONNECTIONS
6.1. SSL CLIENT CONNECTIONS

CHAPTER 7. USING HIBERNATE WITH JBOSS DATA VIRTUALIZATION
7.1. CONFIGURE HIBERNATE FOR USE WITH JBOSS DATA VIRTUALIZATION
7.2. LIMITATIONS OF USING HIBERNATE WITH JBOSS DATA VIRTUALIZATION

CHAPTER 8. ODATA SUPPORT
8.1. WHAT IS ODATA?
8.2. SUPPORT FOR ODATA
8.3. HOW TO ACCESS THE DATA?
8.4. SECURITY
8.5. CONFIGURATION
8.6. LIMITATIONS
8.7. CLIENT TOOLS FOR ACCESS
8.8. HOW JBOSS DATA VIRTUALIZATION EXPOSES SCHEMA FOR ODATA?

APPENDIX A. UNSUPPORTED JDBC METHODS
A.1. UNSUPPORTED JDBC METHODS
A.2. RESULTSET LIMITATIONS
A.3. UNSUPPORTED CLASSES AND METHODS IN JAVA.SQL
A.4. UNSUPPORTED CLASSES AND METHODS IN JAVAX.SQL

APPENDIX B. KEYTOOL
B.1. KEYTOOL
B.2. USING KEYTOOL WITH JBOSS DATA VIRTUALIZATION
B.3. CREATE A PRIVATE/PUBLIC KEY PAIR WITH KEYTOOL
B.4. EXTRACT A SELF-SIGNED CERTIFICATE FROM THE KEYSTORE
B.5. ADD A CERTIFICATE TO A TRUSTSTORE USING KEYTOOL

APPENDIX C. REVISION HISTORY

27
28
29

30
30

33
33
34

35
35
35
35
36
37
37
37
38

40
40
40
40
43

44
44
44
44
45
45

47

Development Guide Volume 1: Client Development

2

Table of Contents

3

CHAPTER 1. READ ME

1.1. BACK UP YOUR DATA

WARNING

Red Hat recommends that you back up your system settings and data before
undertaking any of the configuration tasks mentioned in this book.

1.2. VARIABLE NAME: EAP_HOME

EAP_HOME refers to the root directory of the Red Hat JBoss Enterprise Application Platform installation
on which JBoss Data Virtualization has been deployed.

1.3. VARIABLE NAME: MODE

MODE will either be standalone or domain depending on whether JBoss Data Virtualization is running
in standalone or domain mode. Substitute one of these whenever you see MODE in a file path in this
documentation. (You need to set this variable yourself, based on where the product has been installed in
your directory structure.)

1.4. RED HAT DOCUMENTATION SITE

Red Hat's official documentation site is available at https://access.redhat.com/site/documentation/. There
you will find the latest version of every book, including this one.

Development Guide Volume 1: Client Development

4

https://access.redhat.com/site/documentation/

CHAPTER 2. CONNECTING TO A VIRTUAL DATABASE

2.1. JAVA DATABASE CONNECTIVITY (JDBC)

Java Database Connectivity (JDBC) is an application to database connectivity tool. This Application
Program Interface (API) enables communication between applications written in Java and data stored in
databases providing methods for data querying and updating.

JDBC is very similar to Open Database Connectivity (ODBC).

2.2. JBOSS DATA VIRTUALIZATION AND JDBC

JBoss Data Virtualization provides an API that builds on Java Database Connectivity (JDBC), allowing
client applications to issue SQL queries against deployed virtual databases (VDBs).

NOTE

The Java 1.6 or 1.7 JDK is required by client applications connecting to an JBoss Data
Virtualization VDB.

NOTE

The JBoss Data Virtualization JDBC API is compatible with the JDBC 4.0 specification but
does not fully support all methods. Advanced features, such as updatable result sets and
SQL3 data types are also not supported.

See Section A.3, “Unsupported Classes and Methods in java.sql” and Section A.4,
“Unsupported Classes and Methods in javax.sql” for more information about unsupported
classes and methods.

2.3. GENERATED KEYS

JBoss Data Virtualization supports returning generated keys for JDBC sources and from JBoss Data
Virtualization temp tables with SERIAL primary key columns. However the current implementation
returns only the last set of keys generated and returns the key results directly from the source - no view
projection of other intermediate handling is performed. For most scenarios (single source inserts) this
handling is sufficient. A custom solution may need to be developed if you are using a FOR EACH ROW
instead of trigger to process your inserts and target multiple tables that each return generated keys. It is
possible to develop a UDF that also manipulates the returned generated keys - see the
org.teiid.CommandContext methods dealing with generated keys for more.

2.4. CONNECTION METHODS

The following are methods of creating a JDBC connection to an JBoss Data Virtualization virtual
database (VDB):

Using the org.teiid.jdbc.TeiidDriver driver class

Using the org.teiid.jdbc.TeiidDataSource data source class

Configuring a VDB as a JBoss data source

CHAPTER 2. CONNECTING TO A VIRTUAL DATABASE

5

2.5. CONNECTING TO A VDB USING THE DRIVER CLASS

The org.teiid.jdbc.TeiidDriver class, found in
EAP_HOME/dataVirtualization/jdbc/teiid-VERSION-redhat-N-jdbc.jar, should be used
to create a connection using the Java java.sql.DriverManager class.

2.6. CREATE A CONNECTION TO A VDB USING THE DRIVER CLASS

Prerequisites

The client application must have the JBoss Data Virtualization
EAP_HOME/dataVirtualization/jdbc/teiid-VERSION-redhat-N-jdbc.jar JAR file
in its classpath. (If the application is running on the same application server as the JBoss Data
Virtualization instance to which the connection is desired, then this will already be the case.)

JBoss Data Virtualization must be installed and running, with the relevant virtual databases
(VDBs) deployed.

Procedure 2.1. Create a Connection to a VDB Using the Driver Class

Create a Connection to the VDB
Within your client application code, create a Connection to the VDB using the
DriverManager.getConnection() method:

See Also:

Section 2.7, “Driver Connection URL Format”

2.7. DRIVER CONNECTION URL FORMAT

URLs used when establishing a connection using the driver class have the following format:

Given this format, the following table describes the variable parts of the URL:

Table 2.1. URL Entities

Variable Name Description

public class TeiidClient
{
 public Connection getConnection(String user, String password)
throws Exception
 {
 String url =
"jdbc:teiid:myVDB@mm://localhost:31000;ApplicationName=myApp";
 return DriverManager.getConnection(url, user, password);
 }
}

jdbc:teiid:VDB-NAME@mm[s]://HOSTNAME:PORT;[prop-name=prop-value;]*

Development Guide Volume 1: Client Development

6

VDB-NAME The name of the virtual database (VDB) to which the application is connected.

IMPORTANT

VDB names can contain version information; for example, myvdb.2. If
such a name is used in the URL, this has the same effect as supplying
a version=2 connection property. Note that if the VDB name
contains version information, you cannot also use the version
property in the same request.

mm[s] The JBoss Data Virtualization JDBC protocol. mm is the default for normal connections.
mms uses SSL for encryption and is the default for the AdminAPI tools.

HOSTNAME The server where JBoss Data Virtualization is installed.

PORT The port on which JBoss Data Virtualization is listening for incoming JDBC connections.

[prop-name=prop-
value]

Any number of additional name-value pairs can be supplied in the URL, separated by
semi-colons. Property values must be URL encoded if they contain reserved characters,
for example, ?, =, and ;.

Variable Name Description

2.8. CONNECTION PROPERTIES FOR THE DRIVER AND DATA
SOURCE CLASSES

The following table shows all the connection properties that can be used with the JBoss Data
Virtualization JDBC driver URL connection string and the JBoss Data Virtualization JDBC data source
class.

These properties are defined in org.teiid.net.TeiidURL and
org.teiid.jdbc.ExecutionProperties (waitForLoad is defined in
org.teiid.jdbc.EmbeddedProfile), and the corresponding set methods are defined for the data
source class in org.teiid.jdbc.TeiidDataSource and its superclass,
org.teiid.jdbc.BaseDataSource.

Property names that can be used in the driver URL connection string are listed in the Property Name
column, and the corresponding set methods for use with the data source class are listed in the Method
Name column.

Table 2.2. Connection Properties

Property Name Method Name Type Description

ansiQuotedIdenti
fiers

setAnsiQuoted
Identifiers

boolean Sets the parsing behavior for double
quoted entries in SQL. If true, then
parses doubled quoted entries as
identifiers. If false, then double quoted
values that are valid string literals are
parsed as string literals. Default is true.

CHAPTER 2. CONNECTING TO A VIRTUAL DATABASE

7

ApplicationName setApplicationNa
me

String Name of the client application; allows
the administrator to distinguish
between connections.

autoCommitTxn setAutoCommitTxn String Only applies only when autoCommit is
set to "true". This determines how an
executed command needs to be
wrapped as a transaction inside the
JBoss Data Virtualization engine to
maintain the data integrity.

ON - Always wrap command
in distributed transaction

OFF - Never wrap command
in distributed transaction

DETECT (default)- If the
executed command is
spanning more than one
source it automatically uses
distributed transaction.

See Section 5.1, “JDBC Transaction
Types” for more information.

autoFailover setAutoFailover boolean If true, automatically selects a new
server instance after a communication
exception. This is typically not needed
when connections are managed, as the
connection can be purged from the
pool. Default is false.

disableLocalTxn setDisableLocalT
xn

boolean If true, the autoCommit setting, commit
and rollback is ignored for local
transactions. Default is false.

fetchSize setFetchSize int Size of the resultset. Default is 2048.
<=0 indicates that the default should be
used.

NOEXEC setNoExec String (Typically not set as a connection
property.) Can be ON or OFF. ON
prevents query execution, but parsing
and planning still occurs. Default is
OFF.

partialResultsMo
de

setPartialResult
sMode

boolean Enable/disable support partial results
mode. Default false. See Section 4.12,
“Partial Results Mode” for more details.

Property Name Method Name Type Description

Development Guide Volume 1: Client Development

8

Passthrough
Authentication

setPassthrough
Authentication

boolean Only applies to local connections.
When this option is set to true, JBoss
Data Virtualization looks for an
authenticated security context on the
calling thread. If one is found, it uses
that user's credentials to create a
session. JBoss Data Virtualization also
verifies that the same user is using this
connection during the life of the
connection. If it finds a different
security context on the calling thread
and the new user is eligible to login to
JBoss Data Virtualization, it switches
the identity on the connection.

useCallingThread Not applicable. Must be
set using
setAdditionalPro
perties method if
connecting via the data
source class.

boolean Only applies to local connections.
When this option is set to true, the
calling thread is used to process the
query. If false, then an engine thread is
used. Default is true.

QUERYTIMEOUT setQueryTimeout int Default query timeout in seconds. Must
be >= 0. 0 indicates no timeout. Can be
overridden by
Statement.setQueryTimeout.
Default is 0.

useJDBC4ColumnNa
me
AndLabelSemantic
s

setUseJDBC4Colum
nName
AndLabelSemantic
s

boolean A change was made in JDBC4 to
return unaliased column names as the
ResultSetMetadata column name.
Prior to this, if a column alias was used
it was returned as the column name.
Setting this property to false enables
backwards compatibility when JDBC3
and older support is still required.
Defaults to true.

password setPassword String Credential for user

resultSetCacheMo
de

setResultSetCach
eMode

boolean ResultSet caching is turned on/off.
Default is false.

SHOWPLAN setShowPlan String (Typically not set as a connection
property.) Can be ON, OFF or
DEBUG. ON returns the query plan
along with the results and DEBUG
additionally prints the query planner
debug information in the log and
returns it with the results. Both the plan
and the log are available through
JDBC API extensions. Default is OFF.

Property Name Method Name Type Description

CHAPTER 2. CONNECTING TO A VIRTUAL DATABASE

9

user setUser String User name.

version setDatabaseVersi
on

String Version number of the VDB.

jaasName setJaasName String JAAS configuration name. Only applies
when configuring GSS authentication.
See the JBoss Data Virtualization
Administration Guide for more
information about GSS configuration.

kerberosService
PrincipleName

setKerberosServi
ce PrincipleName

String Kerberos authenticated principle
name. Only applies when configuring
GSS authentication. See the JBoss
Data Virtualization Administration
Guide for more information about GSS
configuration.

encryptRequests setEncryptReques
ts

boolean Only applies to non-SSL socket
connections. When set to true, the
request message and any associated
payload is encrypted using the
connection cryptor. Default is false.

waitForLoad Not applicable. Needs to
be specified using
setAdditionalPro
perties if set using
the data source class.

String Only applies to local connections.
When this option is set to a non-
negative value, the connection will wait
that number of milliseconds for the
VDB to become active. Setting to a
negative number uses the system
default setting.

Property Name Method Name Type Description

2.9. CONNECTING TO A VDB USING THE DATA SOURCE CLASS

The org.teiid.jdbc.TeiidDataSource class is based on the javax.sql.DataSource
connection factory. It can be used to create ManagedConnections and XAConnections to both
DataSources and XADataSources. XA transactions are extended to JBoss Data Virtualization sources
that support XA.

The JBoss Data Virtualization DataSource class is serializable and can be used with JNDI naming
services.

See EAP_HOME/quickstarts/simpleclient/ example for more information.

2.10. CREATE A CONNECTION TO A VDB USING THE DATA SOURCE
CLASS

Prerequisites

Development Guide Volume 1: Client Development

10

The client application must have the JBoss Data Virtualization
EAP_HOME/dataVirtualization/jdbc/teiid-VERSION-redhat-N-jdbc.jar JAR file
in its classpath. (If the application is running on the same application server as the JBoss Data
Virtualization instance to which the connection is desired, then this will already be the case.)

JBoss Data Virtualization must be installed and running, with the relevant virtual databases
(VDBs) deployed.

Procedure 2.2. Create a Connection to a VDB Using the Data Source Class

Create a Connection Object
Create a org.teiid.jdbc.TeiidDataSource object, set the required properties, and use
the TeiidDataSource.getConnection() method to obtain a Connection object. For
example:

See Also:

Section 2.8, “Connection Properties for the Driver and Data Source Classes”

Section 2.11, “Additional Data Source Connection Properties”

2.11. ADDITIONAL DATA SOURCE CONNECTION PROPERTIES

When using the driver class, various properties are derived from the URL. For the data source class,
these properties are set using the following additional methods:

Table 2.3. Data Source Connection Properties

Method Name Type Description

setAlternateServers String Optional delimited list of host:port entries. Refer to
Section 3.1, “Using Multiple Hosts” for more information.

setAdditionalProperti
es

String Optional setting of properties that has the same format as
the property string in a driver connection URL. Refer to
Section 2.7, “Driver Connection URL Format”

public class TeiidClient
{
 public Connection getConnection(String user, String password)
throws Exception
 {
 TeiidDataSource ds = new TeiidDataSource();
 ds.setUser(user);
 ds.setPassword(password);
 ds.setServerName("localhost");
 ds.setPortNumber(31000);
 ds.setDatabaseName("myVDB");
 return ds.getConnection();
 }
}

CHAPTER 2. CONNECTING TO A VIRTUAL DATABASE

11

setDatabaseName String The name of a virtual database (VDB) deployed to JBoss
Data Virtualization.

IMPORTANT

VDB names can contain version
information; for example, myvdb.2. If such
a name is used in the URL, this has the
same effect as supplying a version=2
connection property. Note that if the VDB
name contains version information, you
cannot also use the version property in
the same request.

setDatabaseVersion String The VDB version.

setDataSourceName String The name given to this data source

setPortNumber int The port number on which the server process is listening.

setServerName String The server hostname where the JBoss Data Virtualization
runtime is installed.

setSecure boolean Secure connection. Flag to indicate to use SSL (mms)
based connection between client and server.

Method Name Type Description

NOTE

All the properties from URL Connection Properties can be used on DataSource using the
AdditionalProperties setter method if the corresponding setter method is not already
available. For example, you can add useCallingThread property as

2.12. CONNECTING TO A VDB AS A DATA SOURCE

JBoss Data Virtualization virtual databases (VDBs) can be configured as an JBoss Enterprise Application
Platform (EAP) data source. The data source can then be accessed from JNDI or injected into your Java
EE applications. A JBoss Data Virtualization data source is deployed in the same way as any other
database resource.

NOTE

The recommended approach for configuring data sources is to use JBoss CLI or
Management Console, not directly editing the standalone.xml configuration file. See
the Red Hat JBoss Enterprise Application Platform Administration and Configuration
Guide for more information on how to configure data sources in JBoss EAP.

<xa-datasource-property
name="AdditionalProperties">useCallingThread=false</xa-
datasource-property>

Development Guide Volume 1: Client Development

12

CHAPTER 3. MULTIPLE HOSTS

3.1. USING MULTIPLE HOSTS

JBoss Data Virtualization may be clustered over several servers utilizing failover and load balancing.

The easiest way to enable these features is for the client to specify multiple hostname and port number
combinations in the URL connection string as a comma separated list of host:port combinations:

If you are connecting with the data source class, the setAlternateServers method can be used to
specify the failover servers. The format is also a comma separated list of host:port combinations.

The client randomly selects one of the JBoss Data Virtualization servers from the list and establishes a
session with that server. If a connection cannot be established, then each of the remaining servers will be
tried in random order. This allows for both connection time failover and random server selection load
balancing.

3.2. FAILOVER

Post connection failover will be used if you are using an administration connection (such as what is used
by AdminShell) or if the autoFailover connection property is set to true. Post connection failover
works by sending a ping, at most every second, to test the connection prior to use. If the ping fails, a
new instance will be selected prior to the operation being attempted.

This is not considered to be true transparent application failover because the client does not restart
transactions or queries, nor will it recreate session scoped temporary tables.

WARNING

Extreme caution should be exercised if using this with non-admin connections.

3.3. LOAD BALANCING

Post connection load balancing can be utilized in one of two ways.

If you are using the TeiidDataSource class and the PooledConnection returned by
getPooledConnection is terminated using the close() method, then a new server instance will be
selected automatically. (When using driver based connections or when using the TeiidDataSource
class in a connection pool, the automatic load balancing will not happen.)

Alternatively, you can explicitly trigger load balancing through the use of the set statement: SET
NEWINSTANCE TRUE. Typically you will not issue this statement manually, but you can use it as the
connection test query on your data source configuration:

jdbc:teiid:<vdb-name>@mm://host1:31000,host1:31001,host2:31000;version=2

<datasources>
 <datasource jndi-name="java:/teiidDS" pool-name="teiidDS">

CHAPTER 3. MULTIPLE HOSTS

13

IMPORTANT

Session level temporary tables, currently running transactions, session level cache
entries, and PreparedPlans for a given session will not be available on other cluster
members. Therefore, it is recommended that post connection time load balancing is only
used when the logical connection could have been closed, but the actual connection is
reused. This is the typical connection pool pattern.

3.4. INCREASE THE MAXIMUM NUMBER OF CACHED INSTANCES

JBoss Data Virtualization maintains a pool of extra socket connections that are reused. For load
balancing, this reduces the potential cost of switching a connection to another server instance. The
default setting is to maintain 16 connections. If the client application is connecting to a large number of
JBoss Data Virtualization instances and post connection time load balancing is used, then consider
increasing the number of cached instances.

Procedure 3.1. Increase the Maximum Number of Cached Instances

Increase the org.teiid.sockets.maxCachedInstances property in the teiid-client-
settings.properties file located in
EAP_HOME/dataVirtualization/jdbc/teiid-VERSION-redhat-N-jdbc.jar.

NOTE

An example file (teiid-client-settings.orig.properties) is packaged
in the client JAR file.

3.5. ADVANCED CONFIGURATION

 <connection-url>jdbc:teiid:
{vdb}@mm://{host}:31000</connection-url>
 <driver>teiid</driver>
 <pool>
 <prefill>false</prefill>
 <use-strict-min>false</use-strict-min>
 <flush-strategy>FailingConnectionOnly</flush-strategy>
 <check-valid-connection-sql>SET NEWINSTANCE TRUE</check-
valid-connection-sql>
 </pool>
 <security>
 <user-name>{user}</user-name>
 <password>{password}</password>
 </security>
 </datasource>
 <drivers>
 <driver name="teiid" module="org.jboss.teiid.client">
 <driver-class>org.teiid.jdbc.TeiidDriver</driver-class>
 <xa-datasource-class>org.teiid.jdbc.TeiidDataSource</xa-
datasource-class>
 </driver>
 </drivers>
 </datasources>

Development Guide Volume 1: Client Development

14

Features such as server discovery, load balancing, failover, retry, and retry delay, may be customized if
the default policy is not appropriate. Refer to the org.teiid.net.socket.ServerDiscovery
interface and default implementation org.teiid.net.socket.UrlServerDiscovery for more
information on customization.

The UrlServerDiscovery implementation provides the following features:

discovery of servers from URL hosts (including the data source server and alternative servers)

random selection for load balancing and failover

one connection attempt per host

no biasing

black listing

Typically you'll want to extend the UrlServerDiscovery so that it can be used as the fall-back
strategy and to only implement the necessary changed methods. It is important to consider that one
ServerDiscovery instance will be created for each connection. Any sharing of information between
instances should be done through static state or some other shared lookup.

Your customized server discovery class must be referenced by the discoveryStrategy
connection/DataSource property using its full class name.

3.6. REAUTHENTICATION

JBoss Data Virtualization connections (defined by the org.teiid.jdbc.TeiidConnection
interface) support the changeUser method to reauthenticate a given connection. If reauthentication is
successful, the current connection may be used with the given identity. Existing statements and
resultsets are still available for use under the old identity.

CHAPTER 3. MULTIPLE HOSTS

15

CHAPTER 4. EXTENSIONS TO JDBC

4.1. PREPARED STATEMENTS

JBoss Data Virtualization provides org.teiid.jdbc.TeiidPreparedStatement, a custom interface
for the standard java.sql.PreparedStatement, and implementations
org.teiid.jdbc.CallableStatementImpl and org.teiid.jdbc.PreparedStatementImpl.
Prepared statements can be important in speeding up common statement execution, since they allow
the server to skip parsing, resolving, and planning of the statement.

The following points should be considered when using prepared statements:

It is not necessary to pool client-side JBoss Data Virtualization prepared statements, because
JBoss Data Virtualization performs plan caching on the server side.

The number of cached plans is configurable. The plans are purged in order of least recently used
(LRU).

Cached plans are not distributed through a cluster. A new plan must be created for each cluster
member.

Plans are cached for the entire VDB or for just a particular session. The scope of a plan is
detected automatically based upon the functions evaluated during its planning process.

Runtime updates of costing information do not yet cause re-planning. At this time only session-
scoped temporary table or internally materialized tables update their costing information.

Stored procedures executed through a callable statement have their plans cached in the same
way as a prepared statement.

Bind variable types in function signatures, for example where t.col = abs(?), can be
determined if the function has only one signature or if the function is used in a predicate where
the return type can be determined. In more complex situations it may be necessary to add a type
hint with a cast or convert, for example upper(convert(?, string)).

4.2. JDBC STATEMENT EXTENSIONS

The JBoss Data Virtualization statement interface, org.teiid.jdbc.TeiidStatement, provides
functionality beyond the JDBC standard. To use this interface, cast or unwrap the statement returned by
the connection. The interface provides the following methods for setting and retrieving statement
properties:

Table 4.1. Statement Properties

Method Name Description

getAnnotations This method has been deprecated. Use the SHOW statement.

getDebugLog This method has been deprecated. Use the SHOW statement.

getExecutionProperty This method has been deprecated. Use the SHOW statement.

Development Guide Volume 1: Client Development

16

getPlanDescription Get the query plan description if the statement was last executed with
SHOWPLAN ON|DEBUG. The plan is a tree made up of
org.teiid.client.plan.PlanNode objects. Typically
PlanNode.toString() or PlanNode.toXml() will be used to
convert the plan into a textual form.

getRequestIdentifier Get an identifier for the last command executed on this statement. If no
command has been executed yet, null is returned.

setExecutionProperty

NOTE

This method has been deprecated. Use the SET
statement.

setPayload Set a per-command payload to pass to translators. Currently the only
built-in use is for sending hints for an Oracle data source.

Method Name Description

4.3. NON-BLOCKING STATEMENT EXECUTION

JDBC query execution can indefinitely block the calling thread when a statement is executed or a
resultset is being iterated. In some situations you may wish to have your calling threads held in these
blocked states. When using embedded connections, you may optionally use the
org.teiid.jdbc.TeiidStatement and org.teiid.jdbc.TeiidPreparedStatement
interfaces to execute queries with a callback org.teiid.jdbc.StatementCallback that will be
notified of statement events, such as an available row, an exception, or completion. Your calling thread
will be free to perform other work. The callback will be executed by an engine processing thread as
needed. If your results processing is blocking and you want query processing to run concurrently with
results processing, then your callback should implement onRow handling in a multi-threaded manner to
allow the engine thread to continue.

PreparedStatement stmt = connection.prepareStatement(sql);
TeiidPreparedStatement tStmt = stmt.unwrap(TeiidPreparedStatement.class);
tStmt.submitExecute(new StatementCallback() {
 @Override
 public void onRow(Statement s, ResultSet rs) {
 //any logic that accesses the current row ...
 System.out.println(rs.getString(1));
 }

 @Override
 public void onException(Statement s, Exception e) throws Exception {
 s.close();
 }

 @Override
 public void onComplete(Statement s) throws Exception {

CHAPTER 4. EXTENSIONS TO JDBC

17

NOTE

The non-blocking logic is limited to statement execution only. Other JDBC operations,
such as connection creation or batched executions do not yet have non-blocking options.

If you access forward positions in the onRow method (calling next, isLast, isAfterLast, absolute), they
may not yet be valid and a org.teiid.jdbc.AsynchPositioningException will be thrown. That
exception is recoverable if caught or can be avoided by calling TeiidResultSet.available() to
determine if your desired positioning will be valid.

4.4. CONTINUOUS EXECUTION

The RequestOptions object may be used to specify a special type of continuous async execution via
the continuous or setContinuous methods. In continuous mode the statement will be continuously
re-executed. This is intended for consuming real-time or other data streams processed through a SQL
plan. A continuous query will only terminate on an error or when the statement is explicitly closed. The
SQL for a continuous query is no different than any other statement. Care should be taken to ensure that
retrievals from non-continuous sources is appropriately cached for reuse, such as by using materialized
views or session scoped temp tables. A continuous query must return a result set, must be executed with
a forward-only resultset, and cannot be used in the scope of a transaction. Since resource consumptions
is expected to be different in a continuous plan, it does not count against the server max active plan
limit. Typically custom sources will be used to provide data streams.

When the client wishes to end the continuous query, the Statement.close() or
Statement.cancel() method should be called. Typically your callback will close whenever it no long
needs to process results.

See also the ContinuousStatementCallback for use as the StatementCallback for additional
methods related to continuous processing.

4.5. EXECUTION PROPERTIES

The following table provides a list of execution properties as defined in
org.teiid.jdbc.ExecutionProperties. These can be modified using the SET statement.

Table 4.2. Execution Properties

Constant
Identifier

String Value Description

ANSI_QUOTED_
IDENTIFIERS

ansiQuotedId
entifiers

See Section 2.8, “Connection Properties for the Driver and Data
Source Classes”.

DISABLE_LOCA
L_TRANSACTIO
NS

disableLocal
Txn

See Section 2.8, “Connection Properties for the Driver and Data
Source Classes”.

 s.close();
 }, new RequestOptions()
});

Development Guide Volume 1: Client Development

18

JDBC4COLUMNN
AME
ANDLABELSEMA
NTICS

useJDBC4Colu
mnName
AndLabelSema
ntics

See Section 2.8, “Connection Properties for the Driver and Data
Source Classes”.

NOEXEC See Section 2.8,
“Connection
Properties for the
Driver and Data
Source Classes”.

PROP_FETCH_S
IZE

fetchSize See Section 2.8, “Connection Properties for the Driver and Data
Source Classes”.

PROP_PARTIAL
_RESULTS_MOD
E

partialResul
tsMode

See Section 2.8, “Connection Properties for the Driver and Data
Source Classes” and Section 4.12, “Partial Results Mode”.

PROP_TXN_AUT
O_WRAP

autoCommitTx
n

See Section 2.8, “Connection Properties for the Driver and Data
Source Classes”.

PROP_XML_FOR
MAT

XMLFormat Determines the formatting of XML documents returned by XML
document models. Can be one of XML_COMPACT_FORMAT or
XML_TREE_FORMAT. See Section 4.7, “XML Document
Formatting” for more information.

PROP_XML_VAL
IDATION

XMLValidatio
n

Determines whether XML documents returned by XML document
models will be validated against their schema after processing.
See Section 4.8, “XML Schema Validation” and topics on "XML
SELECT" in the JBoss Data Virtualization Development Guide:
Reference Material for more information.

QUERYTIMEOUT QUERYTIMEOUT See Section 2.8, “Connection Properties for the Driver and Data
Source Classes”.

RESULT_SET_C
ACHE_MODE

resultSetCac
heMode

See Section 2.8, “Connection Properties for the Driver and Data
Source Classes”.

SQL_OPTION_S
HOWPLAN

SHOWPLAN See Section 2.8, “Connection Properties for the Driver and Data
Source Classes”.

Constant
Identifier

String Value Description

See Also:

Section 4.9, “The SET Statement”

4.6. XML EXTENSIONS

JBoss Data Virtualization provides some XML extensions defined in
org.teiid.jdbc.ExecutionProperties:

CHAPTER 4. EXTENSIONS TO JDBC

19

PROP_XML_FORMAT (defined as XMLFormat)

PROP_XML_VALIDATION (defined as XMLValidation)

NOTE

These extensions apply to XML results from queries to XML document models, but not to
XML produced by SQL/XML or read from some other source.

4.7. XML DOCUMENT FORMATTING

The PROP_XML_FORMAT execution property, defined in org.teiid.jdbc.ExecutionProperties,
can be set using the SET statement to modify the way that XML documents are formatted from XML
document models. The following valid values are also defined:

XML_TREE_FORMAT

XML_TREE_FORMAT (defined as Tree) returns a version of the XML formatted for display. The XML
will use line breaks and tabs as appropriate to format the XML as a tree. This format is slower due to
the formatting time and the larger document size.

XML_COMPACT_FORMAT

XML_COMPACT_FORMAT (defined as Compact) returns a version of the XML formatted for optimal
performance. The XML is a single long string without any unnecessary white space.

IMPORTANT

If the XML_COMPACT_FORMAT execution property is not set, the formatting flag of the XML
document in the original model is honored. This may produce either the tree or compact
form of the document depending on the document setting.

4.8. XML SCHEMA VALIDATION

The PROP_XML_VALIDATION execution property, defined in
org.teiid.jdbc.ExecutionProperties, can be set using the SET statement to indicate that the
server should validate XML document model documents against their schema before returning them to
the client. If schema validation is on, then the server sends an SQLWarning if the document does not
conform to the schema it is associated with.

NOTE

Using schema validation will reduce the performance of your XML queries.

4.9. THE SET STATEMENT

Execution properties are set on the connection using the SET statement. The SET statement is not yet a
language feature of JBoss Data Virtualization and is handled only in the JDBC client.

SET Syntax:

SET [PAYLOAD] (parameter|SESSION AUTHORIZATION) value

Development Guide Volume 1: Client Development

20

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL (READ
UNCOMMITTED|READ COMMITTED|REPEATABLE READ|SERIALIZABLE)

Syntax Rules:

The parameter must be an identifier - it cannot contain spaces or other special characters only if
quoted.

The value may be either a non-quoted identifier or a quoted string literal value.

If payload is specified, for example, SET PAYLOAD x y, then a session scoped payload
properties object will have the corresponding name value pair set. The payload object is not fully
session scoped. It will be removed from the session when the XAConnection handle is
closed/returned to the pool (assumes the use of TeiidDataSource). The session scoped payload
is superseded by usage of the TeiidStatement.setPayload.

Using SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL is equivalent to
calling Connection.setTransactionIsolation with the corresponding level.

The SET statement is most commonly used to control planning and execution.

SET SHOWPLAN (ON|DEBUG|OFF)

SET NOEXEC (ON|OFF)

The following is an example of how to use the SET statement to enable a debug plan:

The SET statement may also be used to control authorization. A SET SESSION AUTHORIZATION
statement will perform a reauthentication (see Section 3.6, “Reauthentication”) given the credentials
currently set on the connection.

The connection credentials may be changed by issuing a SET PASSWORD statement.

4.10. THE SHOW STATEMENT

Statement s = connection.createStatement();
s.execute("SET SHOWPLAN DEBUG");

Statement s1 = connection.createStatement();
ResultSet rs = s1.executeQuery("select col from table");

ResultSet planRs = s1.executeQuery("SHOW PLAN");
planRs.next();
String debugLog = planRs.getString("DEBUG_LOG");
Query Plan without executing the query
s.execute("SET NOEXEC ON");
s.execute("SET SHOWPLAN DEBUG");
...
e.execute("SET NOEXEC OFF");

Statement s = connection.createStatement();
s.execute("SET PASSWORD 'someval'");
s.execute("SET SESSION AUTHORIZATION 'newuser'");

CHAPTER 4. EXTENSIONS TO JDBC

21

The SHOW statement can be used to see a variety of information. The SHOW statement is not yet a
language feature of JBoss Data Virtualization and is handled only in the JDBC client.

SHOW PLAN

SHOW PLAN returns a resultset with a CLOB column PLAN_TEXT, an xml column PLAN_XML, and a
CLOB column DEBUG_LOG with a row containing the values from the previously executed query. If
SHOWPLAN is OFF or no plan is available, no rows are returned. If SHOWPLAN is not set to
DEBUG, then DEBUG_LOG will return a null value.

SHOW ANNOTATIONS

SHOW ANNOTATIONS returns a resultset with string columns CATEGORY, PRIORITY,
ANNOTATION, RESOLUTION and a row for each annotation on the previously executed query. If
SHOWPLAN is OFF or no plan is available, no rows are returned.

SHOW <property>

SHOW <property> is the inverse of SET and shows the property value for the property supplied. It
returns a resultset with a single string column with a name matching the property key.

SHOW ALL

SHOW ALL returns a resultset with a NAME string column and a VALUE string column with a row
entry for every property value.

4.11. TRANSACTION STATEMENTS

In situations where direct use of the JDBC connection is not possible, transaction statements can be
used to control a local transaction.

START TRANSACTION

START TRANSACTION is a synonym for connection.setAutoCommit(false)

COMMIT

COMMIT is a synonym for connection.setAutoCommit(true)

ROLLBACK

ROLLBACK is a synonym for connection.rollback() and returning to auto commit mode.

4.12. PARTIAL RESULTS MODE

JBoss Data Virtualization supports a partial results query mode. This mode changes the behavior of the
query processor so the server returns results even when some data sources are unavailable.

For example, suppose that two data sources exist for different suppliers and your data designers have
created a virtual group that creates a union between the information from the two suppliers. If your
application submits a query without using partial results query mode and one of the suppliers' databases
is down, the query against the virtual group returns an exception. However, if your application runs the
same query in partial results query mode, the server returns data from the running data source and no
data from the data source that is down.

Development Guide Volume 1: Client Development

22

When using partial results mode, if a source throws an exception during processing it does not cause the
user's query to fail. Rather, that source is treated as returning no more rows after the failure point. Most
commonly, that source will return 0 rows.

This behavior is most useful when using UNION or OUTER JOIN queries as these operations handle
missing information in a useful way. Most other kinds of queries will simply return 0 rows to the user
when used in partial results mode and the source is unavailable.

NOTE

In some instances, (typically when you are using JDBC sources), if the source is not
available initially, its absence will prevent Teiid from automatically determining the
appropriate set of source capabilities. If you see an exception indicating that the
capabilities for an unavailable source are not valid in partial results mode, then it may be
necessary to manually set the database version or similar property on the translator to
ensure that the capabilities are known even if the source is not available.

4.13. SETTING PARTIAL RESULTS MODE

Partial results mode is off by default but you can turn it on for all queries in a connection by using either
setPartialResultsMode(true) on a DataSource or partialResultsMode=true on a JDBC URL. In either
case, you can toggle partial results mode on or off later with a SET statement.

This is how you configure the partial results mode using the SET statement:

4.14. PARTIAL RESULTS WARNINGS

For each source that is excluded from the query, a warning will be generated describing the source and
the failure. These warnings can be obtained from the Statement.getWarnings() method. This
method returns a SQLWarning object, but in the case of partial results warnings this object will be an
instance of the org.teiid.jdbc.PartialResultsWarning class. This class can be used to obtain
a list of all the failed sources by name and to obtain the specific exception thrown by each resource
adaptor.

NOTE

Since JBoss Data Virtualization supports cursoring before the entire result is formed, it is
possible that a data source failure will not be determined until after the first batch of results
have been returned to the client. This can happen in the case of unions, but not joins. To
ensure that all warnings have been accumulated, the statement should be checked after
the entire result set has been read.

The following is an example of how to obtain partial results warnings:

Statement statement = ...obtain statement from Connection...
statement.execute("set partialResultsMode true");

statement.execute("set partialResultsMode true");
ResultSet results = statement.executeQuery("SELECT Name FROM Accounts");
while (results.next())
{
 //process the result set
}

CHAPTER 4. EXTENSIONS TO JDBC

23

SQLWarning warning = statement.getWarnings();

if(warning instanceof PartialResultsWarning)
{
 PartialResultsWarning partialWarning = (PartialResultsWarning)warning;
 Collection failedConnectors = partialWarning.getFailedConnectors();
 Iterator iter = failedConnectors.iterator();
 while(iter.hasNext())
 {
 String connectorName = (String) iter.next();
 SQLException connectorException =
partialWarning.getConnectorException(connectorName);
 System.out.println(connectorName + ": " +
connectorException.getMessage());
 }
}

Development Guide Volume 1: Client Development

24

CHAPTER 5. JDBC TRANSACTIONS

5.1. JDBC TRANSACTION TYPES

The JBoss Data Virtualization JDBC API supports three types of transactions from a client perspective:

global transactions,

local transactions, and

request level transactions.

All are implemented by JBoss Data Virtualization as XA transactions. Refer to the JTA specification at
http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html for more information on XA
Transactions.

WARNING

The use of global, local, and request level transactions are all mutually exclusive.
Request level transactions only apply when not in a global or local transaction. Any
attempt to mix global and local transactions concurrently will result in an exception.

5.2. LOCAL TRANSACTIONS

A connection uses the autoCommit flag to explicitly control local transactions. By default, autoCommit is
set to true, which indicates request level or implicit transaction control:

// Set auto commit to false and start a transaction
connection.setAutoCommit(false);

try
{
 // Execute multiple updates
 Statement statement = connection.createStatement();
 statement.executeUpdate("INSERT INTO Accounts (ID, Name) VALUES (10,
'Mike')");
 statement.executeUpdate("INSERT INTO Accounts (ID, Name) VALUES (15,
'John')");
 statement.close();

 // Commit the transaction
 connection.commit();
}
catch(SQLException e)
{
 // If an error occurs, rollback the transaction
 connection.rollback();
}

CHAPTER 5. JDBC TRANSACTIONS

25

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

This example demonstrates several things:

1. Setting autoCommit flag to false. This will start a transaction bound to the connection.

2. Executing multiple updates within the context of the transaction.

3. When the statements are complete, the transaction is committed by calling commit().

4. If an error occurs, the transaction is rolled back using the rollback() method.

5.3. ENDING LOCAL TRANSACTIONS

Any of the following operations will end a local transaction:

1. Connection.setAutoCommit(true) if previously set to false

2. Connection.commit()

3. Connection.rollback()

4. A transaction will be rolled back automatically if it times out.

5.4. TURNING OFF LOCAL TRANSACTIONS

In some cases, tools or frameworks above JBoss Data Virtualization will call setAutoCommit(false),
commit() and rollback() even when all access is read-only and no transactions are necessary. In
the scope of a local transaction, JBoss Data Virtualization will start and attempt to commit an XA
transaction, possibly complicating configuration or causing performance degradation.

In these cases, you can override the default JDBC behavior to indicate that these methods should
perform no action regardless of the commands being executed. To turn off the use of local transactions,
add the following property to the JDBC connection URL:

WARNING

Turning off local transactions can be dangerous and can result in inconsistent
results when reading or inconsistent data in data stores when writing. For safety, this
mode should be used only if you are certain that the calling application does not
need local transactions.

5.5. REQUEST LEVEL TRANSACTIONS

Request level transactions are used when the request is not in the scope of a global or local transaction,
which implies autoCommit is true. In a request level transaction, your application does not need to
explicitly call commit or rollback, rather every command is assumed to be its own transaction that will
automatically be committed or rolled back by the server.

disableLocalTxn=true

Development Guide Volume 1: Client Development

26

JBoss Data Virtualization can perform updates through virtual tables. These updates might result in an
update against multiple physical systems, even though the application issues the update command
against a single virtual table. Often, a user might not know whether the queried tables actually update
multiple sources and require a transaction.

For that reason, JBoss Data Virtualization allows your application to automatically wrap commands in
transactions when necessary. Because this wrapping incurs a performance penalty for your queries, you
can choose from a number of available wrapping modes to suit your environment. You need to choose
between the highest degree of integrity and performance your application needs. For example, if your
data sources are not transaction-compliant, you might turn transaction wrapping off to maximize
performance.

5.6. TRANSACTION WRAPPING MODES

You can set your transaction wrapping to one of the following modes:

1. ON

This mode always wraps every command in a transaction without checking whether it is
required. This is the safest mode.

2. OFF

This mode never automatically wraps a command in a transaction or checks whether it needs to
wrap a command. This mode can be dangerous as it will allow multiple source updates outside
of a transaction without an error. This mode has best performance for applications that do not
use updates or transactions.

3. DETECT

This mode assumes that the user does not know how to execute multiple source updates in a
transaction. JBoss Data Virtualization checks every command to see whether it is a multiple
source update and wraps it in a transaction. If it is single source then it uses the source level
command transaction.

5.7. SET THE TRANSACTION WRAPPING MODE

You can set the transaction mode as a property when you establish the connection using:

the autoCommitTxn property in the connection URL (see Section 2.8, “Connection Properties
for the Driver and Data Source Classes”),

the setAutoCommitTxn method (see Section 2.8, “Connection Properties for the Driver and
Data Source Classes”),

or on a per-query basis, using the SET statement with the PROP_TXN_AUTO_WRAP property (see
Section 4.5, “Execution Properties”).

5.8. MULTIPLE INSERT BATCHES

If you work with request-level transactions and issue INSERTs with a query expression (or the
deprecated SELECT INTO), you may find that multiple insert batches handled by separate source
INSERTs are processed by the Red Hat JBoss Data Virtualization server. Take care to ensure that
targeted sources support XA or that compensating actions are taken in the event of a failure.

CHAPTER 5. JDBC TRANSACTIONS

27

5.9. GLOBAL TRANSACTIONS

Global or client XA transactions allow the JBoss Data Virtualization JDBC API to participate in
transactions that are beyond the scope of a single client resource. For this, use the
org.teiid.jdbc.TeiidDataSource class for establishing connections.

When the data source class is used in the context of a user transaction in an application server, such as
JBoss, WebSphere, or Weblogic, the resulting connection will already be associated with the current XA
transaction. No additional client JDBC code is necessary to interact with the XA transaction.

The following code demonstrates usage of UserTransactions.

The following code demonstrates manual usage of XA transactions.

UserTransaction ut = context.getUserTransaction();
try {
 ut.begin();
 Datasource oracle = lookup(...)
 Datasource teiid = lookup(...)
 Connection c1 = oracle.getConnection();
 Connection c2 = teiid.getConnection();
 // do something with Oracle connection
 // do something with Teiid connection
 c1.close();
 c2.close();
 ut.commit();
} catch (Exception ex) {
 ut.rollback();
}

XAConnection xaConn = null;
XAResource xaRes = null;
Connection conn = null;
Statement stmt = null;

try
{
 xaConn = <XADataSource instance>.getXAConnection();
 xaRes = xaConn.getXAResource();
 Xid xid = <new Xid instance>;
 conn = xaConn.getConnection();
 stmt = conn.createStatement();

 xaRes.start(xid, XAResource.TMNOFLAGS);
 stmt.executeUpdate("insert into â ¦");
 // other statements on this connection or other resources enlisted in
this transaction
 // ...
 xaRes.end(xid, XAResource.TMSUCCESS);

 if (xaRes.prepare(xid) == XAResource.XA_OK)
 {
 xaRes.commit(xid, false);
 }
}
catch (XAException e)

Development Guide Volume 1: Client Development

28

With the use of global transactions, multiple XAConnections may participate in the same transaction. It is
important to note that the JDBC XAResource isSameRM() method only returns true if connections are
made to the same server instance in a cluster. If the JBoss Data Virtualization connections are to
different server instances then transactional behavior may not be the same as if they were to the same
cluster member. For example, if the client transaction manager uses the same XID for each connection,
duplicate XID exceptions may arise from the same physical source accessed through different cluster
members. If the client transaction manager uses a different branch identifier for each connection, issues
may arise with sources that lock or isolate changes based upon branch identifiers.

5.10. ENTERPRISE INFORMATION SYSTEM SUPPORT

The underlying resource adaptors that represent the Enterprise Information System (EIS) and the EIS
itself must support XA transactions to be able to participate in distributed XA transaction using JBoss
Data Virtualization. If a source system does not support the XA, then it can not participate in the
distributed transaction. However, the source is still eligible to participate in data integration without XA
support.

Participation in an XA transaction is automatically determined based on the resource adaptor's XA
capability. It is the developer's responsibility to ensure they configure an XA resource when they require
them to participate in distributed transactions.

{
 xaRes.rollback(xid);
}
finally
{
 // clean up code
 // ...
}

CHAPTER 5. JDBC TRANSACTIONS

29

CHAPTER 6. CLIENT SSL CONNECTIONS

6.1. SSL CLIENT CONNECTIONS

You need to define certain properties for each SSL mode.

IMPORTANT

When connecting to the Red Hat JBoss Data Virtualization server with SSL enabled, you
must use the "mms" protocol, instead of "mm" in the JDBC connection URL:

There are two different sets of properties that a client can configure to enable 1-way or 2-way SSL.

The first option is to use Java SSL properties. These are standard Java defined system properties to
configure the SSL under any JVM, Teiid is not unique in its use of SSL. Provide the following system
properties to the client VM process.

1-way SSL:

2-way SSL:

The second option is to use Teiid-specific properties. Use this option when the above "javax" based
properties are already in use by the host process. For example if your client application is a Tomcat
process that is configured for https protocol and the above Java based properties are already in use, and
importing Teiid-specific certificate keys into those https certificate keystores is not allowed.

In this scenario, a different set of Teiid-specific SSL properties can be set as system properties or
defined inside the a "teiid-client-settings.properties" file. A sample "teiid-client-settings.properties" file can
be found inside the "teiid-version-client.jar" file at the root called "teiid-client-settings.orig.properties".
Extract this file, make a copy, change the property values required for the chosen SSL mode, and place
this file in the client application's classpath before the "teiid-version-client.jar" file.

Here are the SSL properties and definitions that can be set in a teiid-client-
settings.properties file:

 jdbc:teiid:<myVdb>@mms://<host>:<port>

-Djavax.net.ssl.trustStore=<dir>/server.truststore (required)
-Djavax.net.ssl.trustStorePassword=<password> (optional)
-Djavax.net.ssl.keyStoreType (optional)

-Djavax.net.ssl.keyStore=<dir>/client.keystore (required)
-Djavax.net.ssl.keyStrorePassword=<password> (optional)
-Djavax.net.ssl.trustStore=<dir>/server.truststore (required)
-Djavax.net.ssl.trustStorePassword=<password> (optioanl)
-Djavax.net.ssl.keyStroreType=<keystore type> (optional)

##
SSL Settings
##

#
The key store type. Defaults to JKS

Development Guide Volume 1: Client Development

30

#

org.teiid.ssl.keyStoreType=JKS

#
The key store algorithm, defaults to
the system property "ssl.TrustManagerFactory.algorithm"
#

#org.teiid.ssl.algorithm=

#
The classpath or filesystem location of the
key store.
#
This property is required only if performing 2-way
authentication that requires a specific private
key.
#

#org.teiid.ssl.keyStore=

#
The key store password (not required)
#

#org.teiid.ssl.keyStorePassword=

#
The key alias(not required, if given named certificate is used)
#

#org.teiid.ssl.keyAlias=

#
The key password(not required, used if the key password is different
than the keystore password)
#

#org.teiid.ssl.keyPassword=

#
The classpath or filesystem location of the
trust store.
#
This property is required if performing 1-way
authentication that requires trust not provided
by the system defaults.
#

#org.teiid.ssl.trustStore=

#
The trust store password (not required)
#

CHAPTER 6. CLIENT SSL CONNECTIONS

31

#org.teiid.ssl.trustStorePassword=

#
The cipher protocol, defaults to TLSv3
#

org.teiid.ssl.protocol=TLSv1

#
Whether to allow anonymous SSL
(the TLS_DH_anon_WITH_AES_128_CBC_SHA cipher suite)
defaults to true
#

org.teiid.ssl.allowAnon=true
1-way SSL
org.teiid.ssl.trustStore=<dir>/server.truststore (required)
2-way SSL
org.teiid.ssl.keyStore=<dir>/client.keystore (required)
org.teiid.ssl.trustStore=<dir>/server.truststore (required)

Development Guide Volume 1: Client Development

32

CHAPTER 7. USING HIBERNATE WITH JBOSS DATA
VIRTUALIZATION

7.1. CONFIGURE HIBERNATE FOR USE WITH JBOSS DATA
VIRTUALIZATION

Prerequisites

You must have the JBoss Data Virtualization JDBC API client JAR file (teiid-client.jar)
and the JBoss Data Virtualization hibernate dialect JAR file (teiid-hibernate-
dialect-VERSION.jar) in Hibernate's classpath. These files are found in
EAP_HOME/modules/system/layers/dv/org/jboss/teiid/client/main/.

These are required for the org.teiid.dialect.TeiidDialect,
org.teiid.jdbc.TeiidDriver and org.teiid.jdbc.TeiidDataSource classes.

Procedure 7.1. Configure Hibernate for Use with JBoss Data Virtualization

1. Open the Hibernate configuration file
Open the hibernate.cfg.xml file.

2. Specify the JBoss Data Virtualization driver class
Specify the JBoss Data Virtualization driver class in the connection.driver_class property:

3. Set the Connection URL
Specify the URL for the VDB in the connection.url property:

NOTE

Be sure to use a local connection if Hibernate is in the same VM as the
application server. .

4. Specify the dialect class
Specify the JBoss Data Virtualization dialect class in the dialect property:

<property name="connection.driver_class">
 org.teiid.jdbc.TeiidDriver
</property>

<property name="connection.url">
 jdbc:teiid:VDB-
NAME@mm://HOST:POST;user=USERNAME;password=PASSWORD
</property>

<property name="dialect">
 org.teiid.dialect.TeiidDialect
</property>

CHAPTER 7. USING HIBERNATE WITH JBOSS DATA VIRTUALIZATION

33

NOTE

Alternatively, the connection properties can be added to the hibernate.properties
file instead of hibernate.cfg.xml:

NOTE

Since your VDBs will likely contain multiple source and view models with identical table
names, you will need to fully qualify table names specified in Hibernate mapping files:

For example:

7.2. LIMITATIONS OF USING HIBERNATE WITH JBOSS DATA
VIRTUALIZATION

Many Hibernate use cases assume a data source has the ability (with proper user permissions) to
process Data Definition Language (DDL) statements like CREATE TABLE and DROP TABLE as well as
Data Manipulation Language (DML) statements like SELECT, UPDATE, INSERT and DELETE. JBoss
Data Virtualization can handle a broad range of DML, but does not directly support DDL against a
particular source.

Sequence and Identity generation are not supported. Identifier generation based upon table values, such
as the hilo generator, require that the identifier table(s) be exposed through JBoss Data Virtualization.
The GUID identifier generation strategy is directly supported.

hibernate.connection.driver_class=org.teiid.jdbc.TeiidDriver
hibernate.connection.url=jdbc:teiid:VDB-NAME@mm://HOST:PORT
hibernate.connection.username=USERNAME
hibernate.connection.password=PASSWORD
hibernate.dialect=org.teiid.dialect.TeiidDialect

<class name="CLASSNAME" table="SOURCE/VIEW_MODEL_NAME.
[SCHEMA_NAME.]TABLENAME">
 ...
</class>

<class name="org.teiid.example.Publisher"
table="BOOKS.BOOKS.PUBLISHERS">
 ...
</class>

Development Guide Volume 1: Client Development

34

CHAPTER 8. ODATA SUPPORT

8.1. WHAT IS ODATA?

The Open Data Protocol (OData) is a Web protocol for querying and updating data that provides a way to
unlock your data and free it from silos that exist in applications today. OData does this by applying and
building upon Web technologies such as HTTP, Atom Publishing Protocol (AtomPub) and JSON to
provide access to information from a variety of applications, services, and stores. OData is used to
expose and access information from a variety of sources including, but not limited to, relational
databases, file systems, content management systems and traditional Web sites.

OData is consistent with the way the Web works - it makes a deep commitment to URIs for resource
identification and commits to an HTTP-based, uniform interface for interacting with those resources (just
like the Web). This allows OData to enable a new level of data integration and interoperability across a
broad range of clients, servers, services, and tools.

8.2. SUPPORT FOR ODATA

When a user successfully deploys a VDB into a JBoss Data Virtualization server, the OData protocol
support is implicitly provided by the JBoss Data Virtualization server without any further configuration.
OData support is currently not available in the JBoss Data Virtualization Embedded profile. JBoss Data
Virtualization makes use of JBoss EAP and its already configured RestEasy and OData4J libraries to
provide Rest based access to the VDB. The access would be similar to accessing to any web resources
deployed on JBoss EAP. OData support is implemented and deployed through a single WAR file across
the JBoss Data Virtualization system. A user can access this WAR file at
EAP_HOME/dataVirtualization/vdb/teiid-odata-VERSION.war.

8.3. HOW TO ACCESS THE DATA?

This section describes how to access the data. For example, assume you have a vdb by name
northwind deployed and that vdb has a table customers in a model called NW. You can access the table
as:

This is similar to making a JDBC/ODBC connection and issuing a SQL call as

NOTE

You need to fully qualify the table name along with the model name. Also, use correct
case (upper or lower) as used in the VDB.

The returned results from OData query can be in Atom/AtomPub XML format or JSON format. By default
AtomPub based XML result is returned.

http://localhost:8080/odata/northwind.1/NW.customers

SELECT * FROM NW.customers

CHAPTER 8. ODATA SUPPORT

35

http://www.jboss.org/resteasy
http://code.google.com/p/odata4j

NOTE

When you issue the above query if you receive a message similar to:

Then, it means that either you supplied the model-name.table-name combination wrong,
in that case, check spelling and case. Or your table did not have any PRIMARY KEY or
UNIQUE KEY(s) on them. Since OData access is more key oriented, it is mandatory that
every table Teiid exposes through OData interface must have a PK or at least one
UNIQUE key.

Teiid does support composite PRIMARY KEY too.

If you are not able to see all the rows, then see the configuration section below for more details. Issue
another call as:

You can also submit criteria with along the query to filter the results:

This is similar to making a JDBC/ODBC connection and issuing a SQL call as:

The power of OData querying comes from navigations from one entity to another, similar to the foreign
key relationships in the relational databases. For example, if customers table had a association with
orders table, where say customers table had primary key of ID then, you can issue a query:

This is similar to making a JDBC/ODBC connection and issuing a SQL call as:

8.4. SECURITY

Currently by default OData access is secured using HTTPBasic authentication. The user will be
authenticated against JBoss Data Virtualization's default security domain teiid-security and makes use of
the security role odata. However, if you wish to change the security domain, manually edit the web.xml
WAR file in EAP_HOME/dataVirtualization/vdb/teiid-odata-VERSION.war directory.

<error
xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices/me
tadata">
<code>NotFoundException</code>
<message lang="en-US">EdmEntitySet NW.customer is not
found</message>
</error>

http://localhost:8080/odata/northwind.1/NW.customers?$skiptoken=256

http://localhost:8080/odata/northwind.1/NW.customers?$filter=name eq 'bob'

SELECT * FROM NW.customers where name = 'bob'

http://localhost:8080/odata/northwind.1/NW.customers(1234)/NW.orders?
$filter=orderdate > '12-31-2012'

SELECT * FROM NW.orders o join NW.customers c join o.customer_id = c.id
where c.id=1234 and o.orderdate > '12-31-2012'

Development Guide Volume 1: Client Development

36

8.5. CONFIGURATION

The OData WAR file can be configured with following properties in the web.xml file.

Property Name Description Default Value

batch-size Number of rows to send back
each time, -1 returns all rows

256

skiptoken-cache-time Time interval between the results
being recycled/expired between
$skiptoken requests

300000

local-transport-name JBoss Data Virtualization's Local
transport name for connection

odata

JBoss Data Virtualization OData server, implements cursoring logic when the result rows exceed the
configured batch size. On every request, only batch-size number of rows are returned. Each such
request is considered an active cursor, with a specified amount of idle time specified by skip-token-
cache-time. After the cursor is timed out, the cursor will be closed and remaining results will be cleaned
up, and will no longer be available for further queries. Since there is no session based tracking of these
cursors, if the request for skiptoken comes after the expired time, the original query will be executed
again and tries to reposition the cursor to relative absolute potion, however the results are not
guaranteed to be same as the underlying sources may have been updated with new information
meanwhile.

8.6. LIMITATIONS

The following feature limitations currently apply.

JBoss Data Virtualization implements the OData V2 specification along with many V3 features,
however OData V3 is not completely supported.

Blob support for media types are not supported.

$value construct to retrieve individual column value is not supported.

create/update/delete $links is not supported.

$expand is not supported.

8.7. CLIENT TOOLS FOR ACCESS

OData access is really where the user comes in, depending upon your programming model and needs
there are various ways you write your access layer into OData. The following are some suggestions:

Your Browser: The OData Explorer is an online tool for browsing an OData data service.

Microsoft .NET Framework 3.51: the WCF Data Services framework is available as a separate
download for .NET 3.x.

Microsoft .NET Framework 4.0: the WCF Data Services framework built into .NET 4.0.

CHAPTER 8. ODATA SUPPORT

37

Silverlight 3: the Data Services client library for Silverlight is available for download.

Java: the Restlet 2.0 library for Java (including Java on your Android phone) supports the OData
protocol.

Java: Use a library like OData4J for Java based access, or any Rest based framework

JavaScript: the XMLHttpRequest object is standard in modern browsers or you can use jQuery,
which comes out of the box with .NET 4.0 or is available for download.

PHP: the Toolkit for PHPprovides OData support for PHP clients.

AJAX: if you're using AJAX for ASP.NET, Microsoft provides the ASP.NET Ajax Library for
getting to OData.

Excel 2010 PowerPivot: PowerPivot comes with OData support built right in.

Windows Desktop: LINQPad is a good tool for building OData queries interactively but it has
some limitations: firstly, it is not able to handle FunctionImports (procedures). If the model
contains only procedures, no tables then also it acts error. Secondly, it does not work with
multiple schema, as it does not show all the schemas, only the default one. Since no default
schema is set in the VDB's $metadata, it finds the first one and uses it. OData V2 does allow
multiple Schemas and multiple EntityContainers in a single $metadata so it appears that
LINQPad is not yet fully compliant with this specification.

Shell Scripts: use CURL tool

8.8. HOW JBOSS DATA VIRTUALIZATION EXPOSES SCHEMA FOR
ODATA?

OData defines its schema using Conceptual Schema Definition Language (CSDL). Every VDB, that is
deployed in an ACTIVE state in JBoss Data Virtualization server exposes its metadata in CSDL format.
For example if you want retrieve metadata for your vdb northwind, you need to issue a query like

Since OData schema model is not a relational schema model, JBoss Data Virtualization uses the
following semantics to map its relational schema model to OData schema model.

Relational Entity Mapped OData Entity

Model Name Schema Namespace, EntityContainer Name

Table/View EntityType, EntitySet

Table Columns EntityType's Properties

Primary Key EntityType's Key Properties

Foreign Key Navigation Property on EntityType, Association,
AssosiationSet

http://localhost:8080/odata/northwind/$metadata

Development Guide Volume 1: Client Development

38

Procedure FunctionImport

Procedure's Table Return ComplexType

Relational Entity Mapped OData Entity

JBoss Data Virtualization by design does not define any embedded ComplexType in the EnitityType.

WARNING

JBoss Data Virtualization does not define any one EntityContainer that resulted from
different vdb models as a default container, so all entities must be accessed using
full path to them.

CHAPTER 8. ODATA SUPPORT

39

APPENDIX A. UNSUPPORTED JDBC METHODS

A.1. UNSUPPORTED JDBC METHODS

This appendix lists those JDBC methods that JBoss Data Virtualization does not support, based on the
JDK 1.7 JDBC. Unless specified below, JBoss Data Virtualization supports all other JDBC Methods.

Those methods listed without comments throw an exception of type SQLException stating that it is not
supported.

Where specified, some listed methods do not throw an exception, but possibly exhibit unexpected
behavior. If no arguments are specified, then all related (overridden) methods are not supported. If an
argument is listed then only those forms of the method specified are not supported.

A.2. RESULTSET LIMITATIONS

TYPE_SCROLL_SENSITIVE is not supported.

UPDATABLE ResultSets are not supported.

Returning multiple ResultSets from Procedure execution is not supported.

A.3. UNSUPPORTED CLASSES AND METHODS IN JAVA.SQL

Table A.1. Connection Properties

Class name Methods

Array Not Supported

Blob

getBinaryStream(long, long) - throws
SQLFeatureNotSupportedException
setBinaryStream(long) - - throws
SQLFeatureNotSupportedException
setBytes - - throws SQLFeatureNotSupportedException
truncate(long) - throws SQLFeatureNotSupportedException

Development Guide Volume 1: Client Development

40

CallableStat
ement

Clob

Connection

Class name Methods

getArray - throws SQLFeatureNotSupportedException
getObject(int parameterIndex, Map&lt;String,
Class&lt;?&gt;&gt; map) - throws
SQLFeatureNotSupportedException
getRef - throws SQLFeatureNotSupportedException
getRowId - throws SQLFeatureNotSupportedException
getURL(String parameterName) - throws
SQLFeatureNotSupportedException
registerOutParameter - ignores
registerOutParameter(String parameterName, *) - throws
SQLFeatureNotSupportedException
setRowId(String parameterName, RowId x) - throws
SQLFeatureNotSupportedException
setURL(String parameterName, URL val) - throws
SQLFeatureNotSupportedException

getCharacterStream(long arg0, long arg1) - throws
SQLFeatureNotSupportedException
setAsciiStream(long arg0) - throws
SQLFeatureNotSupportedException
setCharacterStream(long arg0) - throws
SQLFeatureNotSupportedException
setString - throws SQLFeatureNotSupportedException
truncate - throws SQLFeatureNotSupportedException

createArrayOf - throws SQLFeatureNotSupportedException
createBlob - throws SQLFeatureNotSupportedException
createClob - throws SQLFeatureNotSupportedException
createNClob - throws SQLFeatureNotSupportedException
createSQLXML - throws SQLFeatureNotSupportedException
createStruct(String typeName, Object[] attributes) -
throws SQLFeatureNotSupportedException
getClientInfo - throws SQLFeatureNotSupportedException
releaseSavepoint - throws
SQLFeatureNotSupportedException
rollback(Savepoint savepoint) - throws
SQLFeatureNotSupportedException
setHoldability - throws SQLFeatureNotSupportedException
setSavepoint - throws SQLFeatureNotSupportedException
setTypeMap - throws SQLFeatureNotSupportedException

APPENDIX A. UNSUPPORTED JDBC METHODS

41

DatabaseMeta
Data

NClob Not Supported

PreparedStat
ement

Ref Not Implemented

ResultSet

RowId Not Supported

Savepoint not Supported

SQLData Not Supported

Class name Methods

getAttributes - throws SQLFeatureNotSupportedException
getClientInfoProperties - throws
SQLFeatureNotSupportedException
getFunctionColumns - throws
SQLFeatureNotSupportedException
getFunctions - throws SQLFeatureNotSupportedException
getRowIdLifetime - throws
SQLFeatureNotSupportedException

setArray - throws SQLFeatureNotSupportedException
setRef - throws SQLFeatureNotSupportedException
setRowId - throws SQLFeatureNotSupportedException
setUnicodeStream - throws
SQLFeatureNotSupportedException

deleteRow - throws SQLFeatureNotSupportedException
getArray - throws SQLFeatureNotSupportedException
getHoldability - throws SQLFeatureNotSupportedException
getObject(*, Map&lt;String, Class&lt;?
&gt;&gt; map) - throws
SQLFeatureNotSupportedException
getRef - throws SQLFeatureNotSupportedException
getRowId - throws SQLFeatureNotSupportedException
getUnicodeStream - throws
SQLFeatureNotSupportedException
getURL - throws SQLFeatureNotSupportedException
insertRow - throws SQLFeatureNotSupportedException
moveToInsertRow - throws SQLFeatureNotSupportedException
refreshRow - throws SQLFeatureNotSupportedException
rowDeleted - throws SQLFeatureNotSupportedException
rowInserted - throws SQLFeatureNotSupportedException
rowUpdated - throws SQLFeatureNotSupportedException
setFetchDirection - throws
SQLFeatureNotSupportedException
update* - throws SQLFeatureNotSupportedException

Development Guide Volume 1: Client Development

42

SQLInput not Supported

SQLOutput Not Supported

Statement

Struct Not Supported

Class name Methods

A.4. UNSUPPORTED CLASSES AND METHODS IN JAVAX.SQL

Table A.2. Connection Properties

Class name Methods

RowSet* Not Supported

setCursorName(String)

APPENDIX A. UNSUPPORTED JDBC METHODS

43

APPENDIX B. KEYTOOL

B.1. KEYTOOL

Keytool is an encryption key and certificate management utility. It enables users to create and manage
their own public/private key pairs and associated certificates for use in self-authentication, and also to
cache public keys (in the form of certificates) belonging to other parties, for securing communication to
those parties.

B.2. USING KEYTOOL WITH JBOSS DATA VIRTUALIZATION

When using the keytool to manage public key cryptography for JBoss Data Virtualization, use the
following options:

Set the alias to teiid using the -alias teiid option.

Set the algorithm to RSA using the -keyslg RSA option.

Set the validity period to 365 days using the -validity 365 option.

Set the store type to JKS using the -storetype JKS option.

B.3. CREATE A PRIVATE/PUBLIC KEY PAIR WITH KEYTOOL

Procedure B.1. Create a Private/Public Key Pair with Keytool

1. Run the keytool -genkey -alias ALIAS -keyalg ALGORITHM -validity DAYS -
keystore server.keystore -storetype TYPE command:

2. If the specified keystore already exists, enter the existing password for that keystore, otherwise
enter a new password:

3. Answer the following questions when prompted:

keytool -genkey -alias teiid -keyalg RSA -validity 365 -keystore
server.keystore -storetype JKS

Enter keystore password: <password>

What is your first and last name?
[Unknown]: <userÃ¢Â Â s name>
What is the name of your organizational unit?
[Unknown]: <department name>
What is the name of your organization?
[Unknown]: <company name>
What is the name of your City or Locality?
[Unknown]: <city name>
What is the name of your State or Province?
[Unknown]: <state name>
What is the two-letter country code for this unit?
[Unknown]: <country name>

Development Guide Volume 1: Client Development

44

4. Enter yes to confirm the provided information is correct:

5. Enter your desired keystore password:

Result

The server.keystore file contains the newly generated public and private key pair.

B.4. EXTRACT A SELF-SIGNED CERTIFICATE FROM THE KEYSTORE

Procedure B.2. Extract a Self-signed Certificate from the Keystore

1. Run the keytool -export -alias ALIAS -keystore server.keystore -rfc -
file public.cert command:

2. Enter the keystore password when prompted:

Result

This creates the public.cert file that contains a certificate signed with the private key in the
server.keystore.

B.5. ADD A CERTIFICATE TO A TRUSTSTORE USING KEYTOOL

Procedure B.3. Add a Certificate to a Truststore Using Keytool

1. Run the keytool -import -alias ALIAS -file public.cert -storetype TYPE -
keystore server.truststore command:

2. If the specified truststore already exists, enter the existing password for that truststore, otherwise
enter a new password:

3. Enter yes when prompted to trust the certificate:

Is CN=<userÃ¢Â Â s name>, OU=<department name>, O="<company name>",
L=<city name>, ST=<state name>, C=<country name> correct?
[no]: yes

Enter key password for <server>
(Return if same as keystore password)

keytool -export -alias teiid -keystore server.keystore -rfc -file
public.cert

Enter keystore password: <password>

keytool -import -alias teiid -file public.cert -storetype JKS -
keystore server.truststore

Enter keystore password: <password>

APPENDIX B. KEYTOOL

45

Result

The certificate in public.cert has been added to the new truststore named server.truststore.

Owner: CN=<user's name>, OU=<dept name>, O=<company name>, L=<city>,
ST=<state>, C=<country>
Issuer: CN=<user's name>, OU=<dept name>, O=<company name>, L=
<city>, ST=<state>, C=<country>
Serial number: 416d8636
Valid from: Fri Jul 31 14:47:02 CDT 2009 until: Sat Jul 31 14:47:02
CDT 2010
Certificate fingerprints:
 MD5: 22:4C:A4:9D:2E:C8:CA:E8:81:5D:81:35:A1:84:78:2F
 SHA1:
05:FE:43:CC:EA:39:DC:1C:1E:40:26:45:B7:12:1C:B9:22:1E:64:63
Trust this certificate? [no]: yes

Development Guide Volume 1: Client Development

46

APPENDIX C. REVISION HISTORY

Revision 6.2.0-57 Thu Dec 10 2015 David Le Sage
Updates for 6.2.

APPENDIX C. REVISION HISTORY

47

	Table of Contents
	CHAPTER 1. READ ME
	1.1. BACK UP YOUR DATA
	1.2. VARIABLE NAME: EAP_HOME
	1.3. VARIABLE NAME: MODE
	1.4. RED HAT DOCUMENTATION SITE

	CHAPTER 2. CONNECTING TO A VIRTUAL DATABASE
	2.1. JAVA DATABASE CONNECTIVITY (JDBC)
	2.2. JBOSS DATA VIRTUALIZATION AND JDBC
	2.3. GENERATED KEYS
	2.4. CONNECTION METHODS
	2.5. CONNECTING TO A VDB USING THE DRIVER CLASS
	2.6. CREATE A CONNECTION TO A VDB USING THE DRIVER CLASS
	2.7. DRIVER CONNECTION URL FORMAT
	2.8. CONNECTION PROPERTIES FOR THE DRIVER AND DATA SOURCE CLASSES
	2.9. CONNECTING TO A VDB USING THE DATA SOURCE CLASS
	2.10. CREATE A CONNECTION TO A VDB USING THE DATA SOURCE CLASS
	2.11. ADDITIONAL DATA SOURCE CONNECTION PROPERTIES
	2.12. CONNECTING TO A VDB AS A DATA SOURCE

	CHAPTER 3. MULTIPLE HOSTS
	3.1. USING MULTIPLE HOSTS
	3.2. FAILOVER
	3.3. LOAD BALANCING
	3.4. INCREASE THE MAXIMUM NUMBER OF CACHED INSTANCES
	3.5. ADVANCED CONFIGURATION
	3.6. REAUTHENTICATION

	CHAPTER 4. EXTENSIONS TO JDBC
	4.1. PREPARED STATEMENTS
	4.2. JDBC STATEMENT EXTENSIONS
	4.3. NON-BLOCKING STATEMENT EXECUTION
	4.4. CONTINUOUS EXECUTION
	4.5. EXECUTION PROPERTIES
	4.6. XML EXTENSIONS
	4.7. XML DOCUMENT FORMATTING
	4.8. XML SCHEMA VALIDATION
	4.9. THE SET STATEMENT
	4.10. THE SHOW STATEMENT
	4.11. TRANSACTION STATEMENTS
	4.12. PARTIAL RESULTS MODE
	4.13. SETTING PARTIAL RESULTS MODE
	4.14. PARTIAL RESULTS WARNINGS

	CHAPTER 5. JDBC TRANSACTIONS
	5.1. JDBC TRANSACTION TYPES
	5.2. LOCAL TRANSACTIONS
	5.3. ENDING LOCAL TRANSACTIONS
	5.4. TURNING OFF LOCAL TRANSACTIONS
	5.5. REQUEST LEVEL TRANSACTIONS
	5.6. TRANSACTION WRAPPING MODES
	5.7. SET THE TRANSACTION WRAPPING MODE
	5.8. MULTIPLE INSERT BATCHES
	5.9. GLOBAL TRANSACTIONS
	5.10. ENTERPRISE INFORMATION SYSTEM SUPPORT

	CHAPTER 6. CLIENT SSL CONNECTIONS
	6.1. SSL CLIENT CONNECTIONS

	CHAPTER 7. USING HIBERNATE WITH JBOSS DATA VIRTUALIZATION
	7.1. CONFIGURE HIBERNATE FOR USE WITH JBOSS DATA VIRTUALIZATION
	7.2. LIMITATIONS OF USING HIBERNATE WITH JBOSS DATA VIRTUALIZATION

	CHAPTER 8. ODATA SUPPORT
	8.1. WHAT IS ODATA?
	8.2. SUPPORT FOR ODATA
	8.3. HOW TO ACCESS THE DATA?
	8.4. SECURITY
	8.5. CONFIGURATION
	8.6. LIMITATIONS
	8.7. CLIENT TOOLS FOR ACCESS
	8.8. HOW JBOSS DATA VIRTUALIZATION EXPOSES SCHEMA FOR ODATA?

	APPENDIX A. UNSUPPORTED JDBC METHODS
	A.1. UNSUPPORTED JDBC METHODS
	A.2. RESULTSET LIMITATIONS
	A.3. UNSUPPORTED CLASSES AND METHODS IN JAVA.SQL
	A.4. UNSUPPORTED CLASSES AND METHODS IN JAVAX.SQL

	APPENDIX B. KEYTOOL
	B.1. KEYTOOL
	B.2. USING KEYTOOL WITH JBOSS DATA VIRTUALIZATION
	B.3. CREATE A PRIVATE/PUBLIC KEY PAIR WITH KEYTOOL
	B.4. EXTRACT A SELF-SIGNED CERTIFICATE FROM THE KEYSTORE
	B.5. ADD A CERTIFICATE TO A TRUSTSTORE USING KEYTOOL

	APPENDIX C. REVISION HISTORY

