& RedHat

Red Hat JBoss BRMS 6.4

Red Hat JBoss BRMS Realtime Decision Server
for OpenShift

Using Red Hat JBoss BRMS Realtime Decision Server for OpenShift

Last Updated: 2019-05-13

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server
for OpenShift

Using Red Hat JBoss BRMS Realtime Decision Server for OpenShift

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using Red Hat JBoss BRMS Realtime Decision Server for OpenShift

Table of Contents

Table of Contents

PART LLINTRODUGCTION o i i i e e et it i it a e, 4
CHAPTER 1. WHAT IS THE RED HAT JBOSS BRMS REALTIME DECISIONSERVER?cooiiiiis, 5
PART I. BEFORE YOU BEGIN .. i i i i e et it aee s 6
CHAPTER 2. COMPARISON: RED HAT JBOSS BRMS AND REALTIME DECISION SERVER FOR OPENSHIFT 7
2.1. FUNCTIONALITY DIFFERENCES FOR REALTIME DECISION SERVER FOR OPENSHIFT 7
2.2.VERSION COMPATIBILITY AND SUPPORT 7
2.3. DEPRECATED IMAGE STREAMS AND APPLICATION TEMPLATES FOR REALTIME DECISION SERVER
FOR OPENSHIFT 7
2.4. MANAGING REALTIME DECISION SERVER FOR OPENSHIFT 7
2.5.SECURITY IN REALTIME DECISION SERVER FOR OPENSHIFT 8
2.6.INITIAL SETUP 8
PART I GET STARTED ..ot i i i i i et e ittt e 9

CHAPTER 3. DEPLOYMENT CONSIDERATIONS FOR REALTIME DECISION SERVER FOR OPENSHIFT .. 10

3.1. CONFIGURING KEYSTORES 10
3.2. GENERATING THE SECRET 10
3.3. CREATING THE SERVICE ACCOUNT 10
CHAPTER 4. PREPARING A RED HAT JBOSS BRMS PROJECT REPOSITORY FOR OPENSHIFT 12
4.1. STATELESS SESSIONS 12
4.2. CONFIGURING THE PROJECT REMOTE REPOSITORY 12
CHAPTERS. UPDATING RULES .. i i et 14
5.1. RECREATE UPDATE STRATEGY 14
5.2. MULTIPLE CONCURRENT VERSIONS 14
5.3. CONTAINER ID 16
5.4. ADDING, OVERRIDING, OR UPDATING MULTIPLE VERSIONS OF THE APPLICATION 16
5.5.REQUEST TARGETING FOR MULTIPLE VERSIONS 16
5.6. ALIAS REDIRECTION 17
CHAPTER 6. RUNNING AND CONFIGURING REALTIME DECISION SERVER FOR OPENSHIFT 18
6.1. USING REALTIME DECISION SERVER FOR OPENSHIFT SOURCE-TO-IMAGE (S21) PROCESS 18
6.2. BINARY BUILDS 18
6.3. USING A MODIFIED DECISION SERVER XPAAS IMAGE 23
PART IV. TUTORIALS . i i i i et it et ittt 24

CHAPTER 7. EXAMPLE WORKFLOW: DEPLOYING RED HAT JBOSS BRMS APPLICATION ON REALTIME

DECISION SERVER FOR OPENSHIFT ... e i e 25
7.1. PREPARING DECISION SERVER DEPLOYMENT 26
7.2. DEPLOYMENT 27

CHAPTER 8. EXAMPLE WORKFLOW: DEPLOYING AN UPGRADED VERSION CONCURRENTLY WITH
ORIGINAL APPLIC ATION . i i i i et it i ettt aen, 28

CHAPTER 9. EXAMPLE WORKFLOW: DEPLOYING RED HAT JBOSS BRMS APPLICATION ON OPENSHIFT

WITH WEBHOOKS ENABLED FOR AUTOMATIC APPLICATIONUPDATES ...ttt 29
9.1. FORKING THE REPOSITORY 29
9.2. CLONING THE REPOSITORY 29
9.3. CREATING AHOOK TO AUTOMATE GITHUB UPDATES 30

9.4. MODIFYING THE EXAMPLE DECISION SERVER RULES 31

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

9.5. CREATING A DECISION SERVICE ON OPENSHIFT
9.6. IMPROVING BUILD TIME USING MAVEN

9.7. INTEGRATING THE MAVEN PROXY

9.8. TEST THE SERVICE

9.9. CONFIGURE THE OPENSHIFT WEBHOOK

9.10. TESTING THE CONFIGURED HOOKS

PART V. REFERENCE .. . i i i e e et it it
CHAPTER10. ARTIFACT REPOSITORY MIRRORS ... i
CHAPTER 1. APPLICATION TEMPLATE PARAMETERS ... o e

CHAPTER 12 END P OINT S ittt ittt ettt ettt ettt e e aateeeaanneeeessannneesesennnneeeennn,
12.1. REST
12.1.1. Browser
12.1.2. Java
12.1.3. Command Line
12.2. JMS
12.2.1. Java (HornetQ)
12.2.2. Java (ActiveMQ)

CHAPTER13. TROUBLESHOOTING ... i i i ittt

APPENDIX A. VERSIONING INFORMATION ... i e it

31
32
32
33
33
34

35

36

37

38
38
38
38
38
39
39
39

Table of Contents

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

PART I. INTRODUCTION

CHAPTER 1. WHAT IS THE RED HAT JBOSS BRMS REALTIME DECISION SERVER?

CHAPTER 1. WHAT IS THE RED HAT JBOSS BRMS REALTIME
DECISION SERVER?

Red Hat JBoss BRMS Realtime Decision Server for OpenShift provides a platform for executing
business rules on Red Hat JBoss BRMS Realtime Decision Server. Developers can quickly build, scale,
and test applications deployed across hybrid environments.

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

PART Il. BEFORE YOU BEGIN

CHAPTER 2. COMPARISON: RED HAT JBOSS BRMS AND REALTIME DECISION SERVER FOR OPENSHIFT

CHAPTER 2. COMPARISON: RED HAT JBOSS BRMS AND
REALTIME DECISION SERVER FOR OPENSHIFT

This topic details the differences between Realtime Decision Server for OpenShift and the full, non-
PaaS release of Red Hat JBoss BRMS, and provides instructions specific to running and configuring
Realtime Decision Server for OpenShift. Documentation for other Red Hat JBoss BRMS functionality
not specific to Realtime Decision Server for OpenShift can be found in the Red Hat JBoss BRMS
documentation on the Red Hat Customer Portal.

EAP_HOME in this documentation, as in the Red Hat JBoss BRMS documentation, is used to refer to
the JBoss EAP installation directory where the decision server is deployed. The location of EAP_HOME
inside Realtime Decision Server for OpenShift is /opt/eap/, which the JBOSS_HOME environment
variable is also set to by default.

2.1. FUNCTIONALITY DIFFERENCES FOR REALTIME DECISION
SERVER FOR OPENSHIFT

There are several major functionality differences in Realtime Decision Server for OpenShift:

® Realtime Decision Server for OpenShift extends EAP for OpenShift, and any capabilities or
limitations it has are also found in Realtime Decision Server for OpenShift.

® Only stateless scenarios are supported.

® To connect to the Decision Server web console, click the Connect button in the Decision
Server pod of the OpenShift web console, or the Open Java Console button in OpenShift 3.2.

® There is no support for authoring any content through the BRMS Console or API.

2.2. VERSION COMPATIBILITY AND SUPPORT

For more information on OpenShift image version compatibility, see the xPaa$S part of the OpenShift
and Atomic Platform Tested Integrations page.

2.3. DEPRECATED IMAGE STREAMS AND APPLICATION TEMPLATES
FOR REALTIME DECISION SERVER FOR OPENSHIFT

IMPORTANT

The Realtime Decision Server for OpenShift image version number 6.2 is deprecated and
it will no longer receive updates of image and application templates.

The Realtime Decision Server for OpenShift image version number 6.3 is deprecated and
it will no longer receive updates of image and application templates.

It is recommended to use the version 6.4 of Realtime Decision Server for OpenShift
image and application templates to deploy new applications.

2.4. MANAGING REALTIME DECISION SERVER FOR OPENSHIFT

As Realtime Decision Server for OpenShift is built off EAP for OpenShift, the JBoss EAP Management
CLlis accessible from within the container for troubleshooting purposes.

https://access.redhat.com/documentation/en/red-hat-jboss-brms/
https://access.redhat.com/documentation/en/red-hat-jboss-brms/
https://access.redhat.com/articles/2176281

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

1. First open a remote shell session to the running pod:
I $ oc rsh <pod_name>

2. Then run the following from the remote shell session to launch the JBoss EAP Management
CLLI:

I $ /opt/eap/bin/jboss-cli.sh

' WARNING
A Any configuration changes made using the JBoss EAP Management CLI on a

running container will be lost when the container restarts.

Making configuration changes to the JBoss EAP instance inside EAP for OpenShift is different from the
process you may be used to for a regular release of JBoss EAP.

2.5.SECURITY IN REALTIME DECISION SERVER FOR OPENSHIFT

Access is limited to users with the kie-server authorization role. A user with this role can be specified via
the KIE_SERVER_USER and KIE_SERVER_PASSWORD environment variables.

NOTE

The HTTP/REST endpoint is configured to only allow the execution of KIE containers and
querying of KIE Server resources. Administrative functions like creating or disposing
Containers, updating Releaselds or Scanners, etc. are restricted. The JMS endpoint
currently does not support these restrictions. In the future, more fine-grained security
configuration should be available for both endpoints.

2.6.INITIAL SETUP

The Tutorials in this guide follow on from and assume an OpenShift instance similar to that created in
the OpenShift Primer.

https://access.redhat.com/documentation/en/red-hat-xpaas/0/openshift-primer/openshift-primer

PART Ill. GET STARTED

PART Illl. GET STARTED

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

CHAPTER 3. DEPLOYMENT CONSIDERATIONS FOR
REALTIME DECISION SERVER FOR OPENSHIFT

3.1. CONFIGURING KEYSTORES
Realtime Decision Server for OpenShift requires two keystores:
® An SSL keystore to provide private and public keys for https traffic encryption

® A JGroups keystore to provide private and public keys for network traffic encryption between
nodes in the cluster

These keystores are expected by Realtime Decision Server for OpenShift, even if the application uses

only http on a single-node OpenShift instance. Note that self-signed certificates do not provide secure
communication and are intended for internal testing purposes.

' WARNING
A For production environments Red Hat recommends that you use your own SSL

certificate purchased from a verified Certificate Authority (CA) for SSL-encrypted
connections (HTTPS).

See Generate a SSL Encryption Key and Certificate for more information on how to create a keystore
with self-signed or purchased SSL certificates.

3.2. GENERATING THE SECRET

OpenShift uses objects called Secrets to hold sensitive information, such as passwords or keystores.
See the Secrets chapter in the OpenShift documentation for more information.

Realtime Decision Server for OpenShift requires a secret that holds the two keystores described earlier.
This provides the necessary authorization to applications in the project.

Use the Java and JGroup keystore files to create a secret for the project:
I $ oc create secret generic <rds-secret-name> --from-file=<jgroups.jceks> --from-file=<keystore.jks>

After the secret has been generated, it can be associated with a service account.

3.3. CREATING THE SERVICE ACCOUNT

The service account allows users to associate certain secrets and roles with applications in a project
namespace. This provides the application with the necessary authorization to run with all required
privileges.

1. Create a service account to be used for Realtime Decision Server for OpenShift deployment:

I $ oc create serviceaccount <service-account-name>

10

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.1/html-single/Security_Guide/index.html#Generate_a_SSL_Encryption_Key_and_Certificate
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.2/developer-guide/#dev-guide-secrets

CHAPTER 3. DEPLOYMENT CONSIDERATIONS FOR REALTIME DECISION SERVER FOR OPENSHIFT

2. Add the view role to the service account. This enables the service account to view all the

resources in the application namespace in OpenShift, which is necessary for managing the
cluster.

$ oc policy add-role-to-user view system:serviceaccount:<project-name>:<service-account-
name>

3. Add the secret created for the project to the service account:

I $ oc secret add sa/<service-account-name> secret/<secret-name>

1

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

CHAPTER 4. PREPARING A RED HAT JBOSS BRMS PROJECT
REPOSITORY FOR OPENSHIFT

4.1. STATELESS SESSIONS

NOTE

The Red Hat JBoss BRMS project must be configured to be stateless. OpenShift does
not support stateful sessions on KIE servers.

A Red Hat JBoss BRMS project running in Red Hat JBoss BRMS could be configured to be stateless of
stateful. A project that has already been deployed on a Decision Server xPaaS image will be configured
to be stateless.

Ensuring a Red Hat JBoss BRMS project is stateless:
The Knowledge Session (in the web console, Open Project Editor - Project Settings » Knowledge
bases and sessions) displays whether the session is configured to be Stateless.

4.2. CONFIGURING THE PROJECT REMOTE REPOSITORY

The project must be configured to use a remote repository so that Red Hat JBoss BRMS can push
changes and OpenShift can pull the repository to build the application.

In the application repository files:

1. The pom.xml must be configured to use a remote repository so that OpenShift can access it.

<distributionManagement>
<repository>
<id>deployment</id>
<name>0OpenShift Maven repo</name>
<url>http://maven.example/deployment/filepath/</url>
</repository>

<snapshotRepository>
<id>deployment</id>
<name>0OpenShift Maven repo</name>
<url>http://maven.example/snapshots/filepath/</url>
</snapshotRepository>
</distributionManagement>

For more information, see the Red Hat JBoss BRMS Administration and Configuration Guide .

2. The configuration/settings.xml file must have the remote repository defined so that
OpenShift can download the application artifacts.

<profiles>
<profile>
<id>openshift-mirror-repositories</id>
<repositories>

12

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BRMS/6.3/html-single/Administration_And_Configuration_Guide/#Configuring_deployment_to_a_remote_Nexus_repository

CHAPTER 4. PREPARING A RED HAT JBOSS BRMS PROJECT REPOSITORY FOR OPENSHIF1

<repository>
<id>openshift-mirror</id>
<url>http://maven.example/public/filepath/</url>
</repository>
</repositories>

<pluginRepositories>
<pluginRepository>
<id>openshift-mirror</id>
<url>http://maven.example/public/filepath/</url>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

For more information, see the Red Hat JBoss BRMS Installation Guide .
3. The hidden .s2i/environment file defines the KIE container deployment, including which KIE jars

to use and the location from which to retrieve them. When OpenShift deploys the built image,
the pod name is derived from the deployment alias defined in this file:

I KIE_CONTAINER_DEPLOYMENT=<alias>=<group_id>:<artifact_id>:<version>
For example:

I KIE_CONTAINER_DEPLOYMENT=RulesTest=com.example.openshift:example_workflow:1.0

NOTE

Defining the container name here is necessary because the default behavior of
the KIE server is to search for the default stateful session and fail if it does not
find one.

13

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BRMS/6.3/html/Installation_Guide/Using_the_JBoss_Integration_Maven_Repository_Local_Access.html

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

CHAPTER 5. UPDATING RULES

Each image is built from a snapshot of a specific Maven repository. When a new rule is added, or an
existing rule modified, a new image must be created and deployed for the rule modifications to take
effect.

Updating the Application

The KIE_CONTAINER_DEVELOPMENT_OVERRIDE variable can be used to explicitly override the
KIE_CONTAINER_DEPLOYMENT variable set in the original deployment.

When an application has been modified and is ready to be deployed, include the updated version details
for the KIE_CONTAINER_DEPLOYMENT_OVERRIDE variable in the .s2i/environment file. This can
then be pushed to your repository to be built as an image.

Alternatively, start a binary build from the local repo:

I $ oc start-build <RulesTest> --from-repo=</repository/filepath>

This sends the contents of the Git repository directly to OpenShift. If Incremental Builds has been
configured, the new build pulls the image previously used, extracts the Maven repository for the new
pod, and downloads the missing content.

5.1. RECREATE UPDATE STRATEGY

Use the Recreate Update Strategy for Realtime Decision Server for OpenShift deployment. This update
strategy automatically scales down the old deployment to O and deploys the new version. After the new
version is validated, the new deployment is automatically scaled up to the replica size of the old
deployment.

The Recreate update strategy supports Lifecycle Hooks and is set as the default update strategy in
Realtime Decision Server for OpenShift application templates.

NOTE

Realtime Decision Server for OpenShift will be inactive during the Recreate update
process, until the new deployment has been validated and scaled. During this period,
REST clients may return 503 service unavailable errors and A-MQ clients may
experience timeouts.

IMPORTANT

The Rolling Update Strategy is not supported for Realtime Decision Server for OpenShift.
Although multiple concurrent versions of an application are supported in a deployment, a
cluster can only support valid routing to pods of the same version.

5.2. MULTIPLE CONCURRENT VERSIONS

An application may contain multiple concurrent KIE containers of different versions. Each container has a
classloader environment and a unique identifier. The unique identifier is one of either a container ID or a
deployment ID, which are synonymous.

Multiple versions are deployed using the KIE_CONTAINER_DEPLOYMENT variable, specifying the
<alias>=<group_id>x<artifact_id>:<version>for each version of the application, separated by a pipe (|)in
the .s2i/environment file. For example:

14

https://docs.openshift.com/enterprise/3.2/dev_guide/builds.html#incremental-builds
https://docs.openshift.com/enterprise/3.2/dev_guide/deployments.html#recreate-strategy
https://docs.openshift.com/enterprise/3.2/dev_guide/deployments.html#lifecycle-hooks
https://docs.openshift.com/enterprise/3.2/dev_guide/deployments.html#rolling-strategy

CHAPTER 5. UPDATING RULES

KIE_CONTAINER_DEPLOYMENT=RulesTest=com.example.openshift:example_workflow:1.0|RulesTe
st=com.example.openshift:example_workflow:1.1

creates the following:

KIE_CONTAINER_DEPLOYMENT=RulesTest=com.example.openshift:example_workflow:1.0|RulesTe
st=com.example.openshift:example_workflow:1.1

KIE_CONTAINER_DEPLOYMENT_ORIGINAL:

KIE_CONTAINER_DEPLOYMENT_OVERRIDE:
RulesTest=com.example.openshift:example_workflow:1.0|RulesTest=com.example.openshift:example_
workflow:1.1

KIE_CONTAINER_DEPLOYMENT_COUNT: 2

KIE_CONTAINER_ID_0: df729302a0b7293c0729384710dd82a1
KIE_CONTAINER_KJAR_GROUP_ID_0: com.example.openshift
KIE_CONTAINER_KJAR_ARTIFACT_ID_0: example_workflow
KIE_CONTAINER_KJAR_VERSION_O0: 1.0

KIE_CONTAINER_ID_1: 01932fc2931b02cb042ab29d9fc82a8a
KIE_CONTAINER_KJAR_GROUP_ID_1: com.example.openshift
KIE_CONTAINER_KJAR_ARTIFACT_ID_1: example_workflow
KIE_CONTAINER_KJAR_VERSION_1: 1.0

KIE_CONTAINER_REDIRECT_ENABLED: true

or, as represented in XML format:

<kie-server-state>
<containers>
<container>
<containerld>df729302a0b7293c0729384710dd82a1</containerld>
<releaseld>
<groupld>com.example.openshift</groupld>
<artifactld>example_workflow</artifactld>
<version>1.0</version>
</releaseld>
<status>STARTED</status>
<configltems/>
<messages/>
</container>
<container>
<containerld>01932fc2931b02cb042ab29d9fc82a8a</containerld>
<releaseld>
<groupld>com.example.openshift</groupld>
<artifactld>example_workflow</artifactld>
<version>1.1</version>
</releaseld>
<status>STARTED</status>
<configltems/>
<messages/>
</container>
</containers>
</kie-server-state>

15

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

IMPORTANT

To deploy multiple concurrent versions, the KIE_CONTAINER_REDIRECT_ENABLED
variable must be set to true. This variable defaults to true and only needs to be explicitly
included in the .s2i/environment file if setting to false.

The KIE_CONTAINER_REDIRECT_ENABLED variable enables override of the container
ID. When set to true, a unique md5 sum hash is generated from the <alias>=<group_id>:
<artifact_id>:<version>for each version of the application. It also enables alias redirection
so that client requests using the deployment alias are redirected to the container of the
correct version.

If set to false, the deployment alias is used as the container ID and multiple concurrent
versions are not possible. If multiple versions of an application are specified for
KIE_CONTAINER_DEPLOYMENT, and KIE_CONTAINER_REDIRECT_ENABLED is set
to false, only the latest version of the application will be deployed and alias redirection
will be disabled.

Changing the KIE_CONTAINER_REDIRECT_ENABLED variable in the .s2i/environment
file of a running application generates a new container ID for the running application,
which may make it incompatible with any clients using the old container ID.

5.3. CONTAINERID

The container ID is an md5 sum hash generated from the <alias>=<group_id>:<artifact_id>:<version> of
the application, and is used for client communication. In the case of multiple versions, each version of
the application will have a unique container ID, but share the deployment alias name.

5.4. ADDING, OVERRIDING, OR UPDATING MULTIPLE VERSIONS OF

THE APPLICATION

If an application has already been deployed, use the KIE_CONTAINER_DEPLOYMENT_OVERRIDE
variable in the .s2i/environment file, and specify the <alias>=<group_id><artifact_id>:<version> for each
version of the application to override the KIE_CONTAINER_DEPLOYMENT variable in the json
application template. This is useful for preserving older versions of an application that are still in use.

For example, The RulesTest application example:

I KIE_CONTAINER_DEPLOYMENT=RulesTest=com.example.openshift:example_workflow:1.0

To maintain this version of the application, but to add an updated version, update the .s2i/environment
file:

KIE_CONTAINER_DEPLOYMENT_OVERRIDE=RulesTest=com.example.openshift:example_workflow
:1.0|RulesTest=com.example.openshift:example_workflow:1.1

See Example Workflow: Deploying an Updated Version Concurrently with Original Application for an
example on deploying an updated application alongside the older version.

5.5.REQUEST TARGETING FOR MULTIPLE VERSIONS

In most cases, clients must target a particular container by name to execute server-side functions. This
can be done by specifying the full deployment name, the container ID hash, or the deployment alias.

16

CHAPTER 5. UPDATING RULES

For example:
e Full Deployment Name: RulesTest=com.example.openshift:example_workflow:1.0
® Container ID Hash: df729302a0b7293c0729384710dd82al
® Deployment Alias: RulesTest
Specifying either the full deployment name or the container ID targets the appropriate container.

Specifying the deployment alias, which is used by all the containers in the KIE server, requires a multi-
stage resolution process to target the correct version container.

5.6. ALIAS REDIRECTION

In a multi-version deployment, all applications share the same deployment alias. Requests that use the
deployment alias of the application require a resolution process in order to redirect the request to the
container of the correct version.

Resolution Process Hierarchy

The multi-stage resolution process depends on the method invoked by the client, and the ID associated
with the request:

Process Hierarchy (in descending order):
1. Conversation ID
2. Default Container ID

Clients

Multiple clients can be used to invoke the server, depending on the client interaction type:

Client Interaction

KIE interaction org.kie.server.client.KieServicesClient

Decision Server interaction org.kie.server.client.RuleServicesClient

Conversation ID

A conversation represents interactions between KIE Services java clients and the server. When a client
initiates a conversation, the response from the server includes an encoded multi-part heading. The client
will then use this heading in subsequent requests to the server. This conversation header contains the
conversation ID, which is used by the Servlet Filter in the REST interface, or the EJB Interceptor in the
JMS interface, to determine the correct version of the application to invoke.

Default Container ID

If a specific container ID cannot be resolved, the default container ID is determined as the application
with the latest version (based on <alias>=<group_id>:x<artifact_id>:<version>).

17

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

CHAPTER 6. RUNNING AND CONFIGURING REALTIME
DECISION SERVER FOR OPENSHIFT

You can make changes to Realtime Decision Server for OpenShift configuration in the image using
either the S2I templates, or by using a modified Realtime Decision Server for OpenShift.

6.1. USING REALTIME DECISION SERVER FOR OPENSHIFT SOURCE-
TO-IMAGE (S21) PROCESS

The recommended method to run and configure Realtime Decision Server for OpenShift is to use the
OpenShift S2I process together with the application template parameters and environment variables.

The S2I process for Realtime Decision Server for OpenShift works as follows:

1. If there is a pom.xml file in the source repository, a Maven build is triggered with the contents of
$MAVEN_ARGS environment variable.

e By default, the package goal is used with the openshift profile, including the system
properties for skipping tests (-DskipTests) and enabling the Red Hat GA repository (-
Dcom.redhat.xpaas.repo.redhatga).

2. The results of a successful Maven build are installed into the local Maven repository,
/home/jboss/.m2/repository/, along with all dependencies for offline usage. Realtime Decision
Server for OpenShift will load the created kjars from this local repository.

® |n addition to kjars resulting from the Maven build, any kjars found in the deployments
source directory will also be installed into the local Maven repository. Kjars do not end up in
the EAP_HOME/standalone/deployments/ directory.

3. Any JAR (thatis not a kjar), WAR, and EAR in the deployments source repository directory will
be copied to the EAP_HOME/standalone/deployments directory and subsequently deployed

using the JBoss EAP deployment scanner.

4. Allfiles in the configuration source repository directory are copied to
EAP_HOME/standalone/configuration.

NOTE

If you want to use a custom JBoss EAP configuration file, it should be named
standalone-openshift.xml.

5. Allfiles in the modules source repository directory are copied to EAP_HOME/modules.

Refer to the Artifact Repository Mirrors section for additional guidance on how to instruct the S2I
process to utilize the custom Maven artifacts repository mirror.

6.2. BINARY BUILDS
To deploy existing applications on OpenShift, you can use the binary source capability.
Prerequisite:

A. Get the application archive or build the application locally.
The following example uses both the hellorules and hellorules-client quickstarts.

18

https://docs.openshift.com/container-platform/latest/dev_guide/builds/build_inputs.html#binary-source
https://github.com/jboss-openshift/openshift-quickstarts/tree/master/decisionserver/hellorules
https://github.com/jboss-openshift/openshift-quickstarts/tree/master/decisionserver/hellorules-client

CHAPTER 6. RUNNING AND CONFIGURING REALTIME DECISION SERVER FOR OPENSHIFT

® Clone the source code.
I $ git clone https://github.com/jboss-openshift/openshift-quickstarts.git

® Configure the Red Hat JBoss Middleware Maven repository .

® Build the application — both the hellorules and hellorules-client quickstarts.

NOTE

The output of mvn clean package command below has been shortened to
contain just selected information.

I $ cd openshift-quickstarts/decisionserver/

$ mvn clean package
[INFO] Scanning for projects...

[INFO]
[INFO] Reactor Build Order:

[INFO]

[INFO] OpensShift Quickstarts: Decision Server: Hello Rules

[INFO] OpenShift Quickstarts: Decision Server: Hello Rules - Client
[INFO] OpenShift Quickstarts: Decision Server: Parent

[INFO]
[INFO]
[INFQO] Building OpenShift Quickstarts: Decision Server: Hello Rules 1.4.0.Final
[INFO]

[INFO]
[INFO] Building OpenShift Quickstarts: Decision Server: Hello Rules - Client 1.4.0.Final
[INFO]

[INFO]
[INFO] Reactor Summary:

[INFO]

[INFO] OpenShift Quickstarts: Decision Server: Hello Rules SUCCESS [0.844 s]
[INFO] OpenShift Quickstarts: Decision Server: Hello Rules - Client SUCCESS [7.446 s]
[INFO] OpenShift Quickstarts: Decision Server: Parent SUCCESS [0.002 s]

[INFO]
[INFO] BUILD SUCCESS
[INFO]
[INFO] Total time: 9.286 s

[INFO] Finished at: 2017-06-27T16:49:25+02:00
[INFO] Final Memory: 49M/502M

[INFO]

B. Prepare the directory structure on the local file system.
Application archives in the deployments/ subdirectory of the main binary build directory are
copied directly to the standard deployments folder of the image being built on OpenShift. For
the application to deploy, the directory hierarchy containing the web application data must be
correctly structured.

19

https://github.com/jboss-openshift/openshift-quickstarts.git
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/development_guide/#use_the_maven_repository
https://access.redhat.com/maven-repository

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

Create main directory for the binary build on the local file system and deployments/
subdirectory within it. Copy both the previously built JAR archive for the hellorules quickstart,
and WAR archive for the hellorules-client quickstart to the deployments/ subdirectory:

decisionserver]$ Is
hellorules hellorules-client pom.xml
I $ mkdir -p ocp/deployments

I $ cp hellorules/target/decisionserver-hellorules-1.4.0.Final.jar ocp/deployments/

I $ cp hellorules-client/target/decisionserver-hellorules-client-1.4.0.Final.war ocp/deployments/

NOTE

Location of the standard deployments directory depends on the underlying base
image, that was used to deploy the application. See the following table:

Table 6.1. Standard Location of the Deployments Directory

Name of the Underlying Base Image(s) Standard Location of the Deployments

Directory

EAP for OpenShift 6.4 and 7.0 $JBOSS_HOME/standalone/deployme
nts

Java S2I for OpenShift /deployments

JWS for OpenShift $JWS_HOME/webapps

Perform the following steps to run application consisting of binary input on OpenShift:
1. Login into OpenShift instance.
I $ oc login
2. Create a new project.
I $ oc new-project ds-bin-demo
3. (Optional) Identify the image stream for the particular image.
$ oc get is -n openshift | grep *jboss-decisionserver | cut -f1 -d '’

jboss-decisionserver62-openshift
jboss-decisionserver63-openshift

NOTE

Since the images from jboss-decisionserver62-openshiftimage stream are
obsolete, we will use jboss-decisionserver63-openshift below.

20

CHAPTER 6. RUNNING AND CONFIGURING REALTIME DECISION SERVER FOR OPENSHIFT

4. Create new binary build, specifying image stream and application name.

NOTE

You can change the default user name and password to access the REST
interface of the KIE server by providing custom values for KIE_SERVER_USER
and KIE_SERVER_PASSWORD environment variables.

$ oc new-build --binary=true \

--name=ds-hr-app \

--image-stream=jboss-decisionserver63-openshift \

-e KIE_SERVER _USER=kieserveruser \

-e KIE_SERVER_PASSWORD-=kieserverPwd1!

--> Found image 4a6c0ce (5 weeks old) in image stream "jboss-decisionserver63-openshift"
in project "openshift" under tag "latest" for "jooss-decisionserver63-openshift"

JBoss BRMS Realtime Decision Server 6.3

Platform for executing business rules on JBoss BRMS Realtime Decision Server 6.3.
Tags: builder, decisionserver, decisionserver6

* A source build using binary input will be created
* The resulting image will be pushed to image stream "ds-hr-app:latest”
* Use 'start-build --from-dir=DIR|--from-repo=DIR|--from-file=FILE' to trigger a new build
* WARNING: a binary build was created, you must specify one of --from-dir|--from-file|--
from-repo when starting builds

--> Creating resources with label build=ds-hr-app ...
imagestream "ds-hr-app" created
buildconfig "ds-hr-app" created

--> Success

5. Start the binary build. Instruct oc executable to use main directory of the binary build we
created in previous step as the directory containing binary input for the OpenShift build.

NOTE

The output of the next command has been shortened for brevity.

$ oc start-build ds-hr-app --from-dir=./ocp/ --follow
Uploading directory "ocp" as binary input for the build ...
build "ds-hr-app-1" started

Receiving source from STDIN as archive ...

Copying all war artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all ear artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all rar artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all jar artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all war artifacts from /home/jboss/source/deployments directory into

21

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

/opt/eap/standalone/deployments for later deployment...
''hnome/jboss/source/deployments/decisionserver-hellorules-client-1.4.0.Final.war' ->
'/opt/eap/standalone/deployments/decisionserver-hellorules-client-1.4.0.Final.war'
Copying all ear artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...

Copying all rar artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...

Copying all jar artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...
''nome/jboss/source/deployments/decisionserver-hellorules-1.4.0.Final.jar' ->
'/opt/eap/standalone/deployments/decisionserver-hellorules-1.4.0.Final.jar'
/opt/eap/standalone/deployments/decisionserver-hellorules-1.4.0.Final.jar is a kjar

INFO: org.openshift.quickstarts:decisionserver-hellorules:1.4.0.Final verified.

Pushing image 172.30.202.111:5000/ds-bin-demo/ds-hr-app:latest ...
Pushed 6/9 layers, 67% complete

Pushed 7/9 layers, 78% complete

Pushed 8/9 layers, 89% complete

Pushed 9/9 layers, 100% complete

Push successful

6. Create a new OpenShift application based on the build.

$ oc new-app ds-hr-app
--> Found image c2c182e (48 seconds old) in image stream ds-hr-app under tag "latest" for
"ds-hr-app"

ds-bin-demo/ds-hr-app-2:ea504dd7

Platform for executing business rules on JBoss BRMS Realtime Decision Server 6.3.
Tags: builder, decisionserver, decisionserver6
* This image will be deployed in deployment config "ds-hr-app"
* Ports 8080/tcp, 8443/tcp, 8778/tcp will be load balanced by service "ds-hr-app”
* Other containers can access this service through the hostname "ds-hr-app"
--> Creating resources with label app=ds-hr-app ...
deploymentconfig "ds-hr-app” created
service "ds-hr-app" created

--> Success
Run 'oc status' to view your app.

7. Expose the service as route.

$ oc get svc -0 name
service/ds-hr-app

$ oc expose svc/ds-hr-app
route "ds-hr-app" exposed

8. Access the application.

22

CHAPTER 6. RUNNING AND CONFIGURING REALTIME DECISION SERVER FOR OPENSHIFT

You can get the list of available query string arguments of the hellorules application by
accessing the URL http://ds-hr-app-ds-bin-demo.openshift.example.com/hellorules/.

Run the hellorules-client servlet using the URL http://ds-hr-app-ds-bin-
demo.openshift.example.com/hellorules?command=runLocal.

NOTE

You may verify the current KIE server state by accessing dedicated server/ page
of the REST API: http://ds-hr-app-ds-bin-demo.openshift.example.com/kie-
server/services/rest/server/. Use aforementioned user name and password to
access this page (or any REST APl method of the server in general).

6.3. USING A MODIFIED DECISION SERVER XPAAS IMAGE

An alternative method is to make changes to the image, and then use that modified image in OpenShift.
The templates currently provided, along with the interfaces they support, are listed below:

Table 6.2. Provided Templates

Template Name Supported Interfaces

decisionserver63-basic-s2ijson http-rest, jms-hornetq
decisionserver63-https-s2ijson http-rest, https-rest, jms-hornetq
decisionserver63-amq-s2i.json http-rest, https-rest, jms-activemq

You can run Realtime Decision Server for OpenShift in Docker, make the required configuration
changes using the JBoss EAP Management CLI (EAP_HOME/bin/jboss-cli.sh) included in Realtime
Decision Server for OpenShift, and then commit the changed container as a new image. You can then
use that modified image in OpenShift.

IMPORTANT

It is recommended that you do not replace the OpenShift placeholders in the JBoss EAP
xPaa$S configuration file, as they are used to automatically configure services (such as
messaging, datastores, HTTPS) during a container’s deployment. These configuration
values are intended to be set using environment variables.

NOTE

Ensure that you follow the guidelines for creating images.

23

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.2/creating-images#guidelines

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

PART IV. TUTORIALS

24

KFLOW: DEPLOYING RED HAT JBOSS BRMS APPLICATION ON REALTIME DECISION SERVER FOR OPENSHIFT

CHAPTER 7. EXAMPLE WORKFLOW: DEPLOYING RED HAT
JBOSS BRMS APPLICATION ON REALTIME DECISION
SERVER FOR OPENSHIFT

This tutorial prepares a Red Hat JBoss BRMS application to be deployed as Realtime Decision Server for
OpenShift. The Red Hat JBoss BRMS application may require modification to be deployed as an image.

Preparing the Application

The Red Hat JBoss BRMS project must be configured to have a stateless knowledge session, use a
remote repository, and have defined KIE container deployment.

Refer to the Red Hat JBoss BRMS User Guide for more information on any of these tasks.

1. Login to the Red Hat JBoss BRMS console and edit the project settings in the Project
Explorer.

2. Click Open Project Editorand in the Project Settings:

a. Under Knowledge bases and sessions, ensure that the Knowledge Session is set to
Stateless. OpenShift does not support stateful sessions on KIE servers.

b. Using Repository View, ensure the pom.xml is configured to use a remote repository by
containing xml similar to the following:

<distributionManagement>
<repository>
<id>deployment</id>
<name>0OpenShift Maven repo</name>
<url>http://maven.example/content/repo/deployments/</url>
</repository>

<snapshotRepository>
<id>deployment</id>
<name>0OpenShift Maven repo</name>
<url>http://maven.example.xas/content/repo/snapshots/</url>
</snapshotRepository>
</distributionManagement>

For more information, see the Red Hat JBoss BRMS Administration and Configuration
Guide.

3. Inthe application’s repository, ensure the settings.xml and the .s2i/environment files define
the Maven repository and the KIE container deployment respectively:

a. The Maven repository should be defined in the settings.xml so that OpenShift can
download the application artefacts. It should contain xml similar to the following:

<profiles>
<profile>
<id>openshift-mirror-repositories</id>
<repositories>
<repository>
<id>openshift-mirror</id>

25

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BRMS/6.3/html/User_Guide
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BRMS/6.3/html-single/Administration_And_Configuration_Guide/#Configuring_deployment_to_a_remote_Nexus_repository

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

<url>http://maven.example/content/group/public/</url>
</repository>
</repositories>

<pluginRepositories>
<pluginRepository>
<id>openshift-mirror</id>
<url>http://maven.example/content/group/public/</url>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

For more information, see the Red Hat JBoss BRMS Installation Guide .

b. The .s2i/environment file must define the KIE container deployment, including which KIE
jars to use and the location from which to retrieve them. The pod name is derived from the
deployment alias, which is defined as DemoContainer in this example:

KIE_CONTAINER_DEPLOYMENT_OVERRIDE=DemoContainer=com.example.openshift:
example_workflow:1.0

7.1. PREPARING DECISION SERVER DEPLOYMENT

1. Create a new project:
I $ oc new-project rds-app-demo
2. Create a service account to be used for the deployment of the Decision Server application:

I $ oc create serviceaccount rds-service-account

3. Add the view role to the service account. This enables the service account to view all the
resources in the rds-app-demo namespace, which is necessary for managing the cluster.

I $ oc policy add-role-to-user view system:serviceaccount:rds-app-demo:rds-service-account

4. The Decision Server template requires an SSL keystore and a JGroups keystore.
These keystores are expected even if the application will not use https.
This example uses ‘keytool’, a package included with the Java Development Kit, to generate
self-signed certificates for these keystores. The following commands will prompt for passwords.

a. Generate a secure key for the SSL keystore:

I $ keytool -genkeypair -alias https -storetype JKS -keystore keystore.jks

b. Generate a secure key for the JGroups keystore:

I $ keytool -genseckey -alias jgroups -storetype JCEKS -keystore jgroups.jceks

5. Use the SSL and JGroup keystore files to create the secret for the project:

26

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BRMS/6.3/html/Installation_Guide/Using_the_JBoss_Integration_Maven_Repository_Local_Access.html

KFLOW: DEPLOYING RED HAT JBOSS BRMS APPLICATION ON REALTIME DECISION SERVER FOR OPENSHIFT

I $ oc create secret generic rds-app-secret --from-file=jgroups.jceks --from-file=keystore.jks

6. Add the secret to the service account created earlier:

I $ oc secret add sa/rds-service-account secret/rds-app-secret

7.2. DEPLOYMENT
1. Login to the OpenShift web console and select the rds-app-demo project space.
2. Click Add to Project to list all of the default image streams and templates.

3. Use the Filter by keyword search bar to limit the list to those that match decisionserver. You
may need to click See all to show the desired application template.

4. Select and configure the desired template and click Deploy.

During the build, the Maven repository is downloaded and build into the container so that no additional
packages or dependencies are downloaded at runtime.

The application is available once the pod is running. To connect to the Decision Server web console,
navigate to the pod and click Open Java Console button.

27

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

CHAPTER 8. EXAMPLE WORKFLOW: DEPLOYING AN
UPGRADED VERSION CONCURRENTLY WITH ORIGINAL
APPLICATION

This example workflow follows on from Example Workflow: Deploying Red Hat JBoss BRMS Application
on Decision Server xPaa$, in which the 1.0 version of the example_workflow artifact was deployed with a
deployment alias of DemoContainer. This example deploys a 1.7 version of the of the example_workflow
artifact alongside the 7.0 version so that both versions of the example_workflow artifact are running
simultaneously, both with the DemoContainer deployment alias.

1. Update the repository with the new version of the server.

2. Edit the .s2i/environment file for the application:

a. Change the KIE_CONTAINER_DEPLOYMENT variable to
KIE_CONTAINER_DEPLOYMENT_OVERRIDE

b. Add the new version to the end of the value string, separated from the older version with a

pipe.

KIE_CONTAINER_DEPLOYMENT_OVERRIDE=DemoContainer=com.example.openshift:
example_workflow:1.0|DemoContainer=com.example.openshift:example_workflow:1.1

3. Save the changes.

4. If the project has GitHub Webhooks configured, the new version will be deployed automatically
alongside the older running applicaiton. Otherwise it can be manually built:

I $ oc start-build rds-app-demo

Once the build has completed, the two different versions of the application will be running
simultaneously using the same deployment alias. See Request Targeting for Multiple Versions for more
information on how client requests are redirected to the correct version of the application.

28

https://docs.openshift.com/enterprise/3.1/dev_guide/builds.html#webhook-triggers

S BRMS APPLICATION ON OPENSHIFT WITH WEBHOOKS ENABLED FOR AUTOMATIC APPLICATION UPDATES

CHAPTER 9. EXAMPLE WORKFLOW: DEPLOYING RED HAT
JBOSS BRMS APPLICATION ON OPENSHIFT WITH
WEBHOOKS ENABLED FOR AUTOMATIC APPLICATION
UPDATES

This workflow details how to configure Red Hat JBoss BRMS, GitHub, and OpenShift to have your
configuration changes automatically push to OpenShift. This example covers:

® Setting up a forked GitHub repository

® Cloning the repository

® Creating a hook in JBoss Decision Server to automatically update the GitHub repository
® Modifying the example JBoss Decision Server rules

® Creating a Decision Service on OpenShift

® |mproving OpenShift build times using Maven

® |ntegrating the Maven Proxy

e Configuring the OpenShift webhook to automatically update the decision service OpenShift
whenever a code change occurs in the GitHub repository

® Testing the configured service and hooks

NOTE

Make sure you are running Red Hat JBoss BRMS on your local machine.

9.1. FORKING THE REPOSITORY

1. Visit the Decision Server example page while you are logged in to GitHub.

2. Fork the repository.
You are redirected to your new fork.

3. Copy the HTTPS clone URL for your fork.
This Decision Server example receives a name, and if it matches the user name specified as master in

the rules file, then the user is recognized and greeted as the master user. If the name does not match,
then the user is recognized as an intruder.

9.2. CLONING THE REPOSITORY

From the Red Hat JBoss BRMS workbench:
1. From the File Explorer, click Authoring = Administration.
2. Click Repositories = Clone repository.

3. Type the Repository Name decision-services.

29

https://github.com/rettori/decisionserver
https://help.github.com/articles/fork-a-repo/

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

4. Select an Organizational Unit.

5. Type in the HTTPS clone URL of your forked Git repository:
https://github.com/<Your_Github_Username>/decisionserver.git

6. Click Clone.
Once cloned, the repository displays the commit history.

9.3. CREATING AHOOK TO AUTOMATE GITHUB UPDATES

To make Red Hat JBoss BRMS automatically update your GitHub repository any time a file in this
project changes:

NOTE
You must have SSH key access configured for GitHub before following these steps.
1. From the command line, navigate into the /.niogit directory in the project you forked earlier:
I $ cd EAPHOME/bin/.niogit/decision-services.git
The path above is the default, which may differ depending on where the workbench has been

configured to store its data. This location is set using the org.uberfire.nio.git.dir system
property.

2. Set the remote URL for this project:
I $ git remote set-url origin git@github.com:/decisionserver
3. Navigate into the hooks directory:
I $ cd hooks
4. Create a simple post-commit file:
I $ touch post-commit
5. Edit the file and type the following:
#!/bin/sh
git push origin master
6. Save your changes and exit the file.
7. Change the permissions on the file to allow Red Hat JBoss BRMS the access it requires:
I $ chmod 777 post-commit

The hook is now configured, meaning that any change to the files in this Red Hat JBoss BRMS
project will automatically update your forked decisionserver GitHub repository.

30

S BRMS APPLICATION ON OPENSHIFT WITH WEBHOOKS ENABLED FOR AUTOMATIC APPLICATION UPDATES

9.4. MODIFYING THE EXAMPLE DECISION SERVER RULES

From the Red Hat JBoss BRMS workbench:
1. Click Authoring — Project authoring.

2. Under DRL, click to load the HelloRules.drl file:

package org.openshift.quickstarts.decisionserver.hellorules

query "get greeting"()
greeting : Greeting()
end

rule "greet master”
when
person : Person(name == "john")
then
String salutation = "Hello " + person.getName() + "! What can | help you with today?";
insert(new Greeting(salutation));
end
rule "greet strangers”
when
person : Person(name != "john")
then
String salutation = "Hey there " + person.getName() + ". | don't think | know you yet!";
insert(new Greeting (salutation));
end

3. Modify the lines with john by replacing them with your user name.

4. Click Save, type a check in comment, and click Save again.

The hook you created earlier will automatically update your forked GitHub repository with these
saved changes.

9.5. CREATING A DECISION SERVICE ON OPENSHIFT

From the OpenShift web console:
1. Login using the username and password recommended to you by your administrator.
2. To create a new project, click New Project.
3. Type a unique name, display name, and description for the new project.

4. Click Create.
The web console’s welcome screen loads.

5. Click Add to Project

6. Inthe Filter by keyword field, start typing decision to see the available xPaaS templates
related to Decision Server.

7. Click the decisionserver63-basic-s2i template.

31

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

8.

10.

1.

12.

In the Parameters section, change the KIE_SERVER_PASSWORD to the password to access
the KIE Server REST or JMS interface.

Change the SOURCE_REPOSITORY_URL to the Git source URI for your forked repository. For
example:

I https://github.com/<your_github_usernamex>/decisionserver.git
Change the SOURCE_REPOSITORY_REF to master.

Change the CONTEXT_DIR to greeting.

Scroll to the bottom of the page and click Create.

While your application builds, you can click View Log from the Overview page to see the build progress.

9.6. IMPROVING BUILD TIME USING MAVEN

Follow the details in this OpenShift blog post to configure the Maven proxy, which improves the build
times of java builds on OpenShift.

9.7.INTEGRATING THE MAVEN PROXY

To change the build configuration so that it uses the Maven proxy, complete the following from the
OpenShift web console:

1.

2.

Click Browse — Builds — <your_application>
Click the three vertical dots next to Start Build and then click Edit (Raw).

Add the MAVEN_MIRROR_URL environment variable below the
KIE_CONTAINER_DEPLOYMENT variable:

strategy
sourceStrategy:
env:

name: KIE_CONTAINER_DEPLOYMENT
value: 'HelloRulesContainer=org.openshift.quickstarts:decisionserver-hellorules:1.2.0.Final'

name: MAVEN_MIRROR_URL
value: 'http://nexus-ci.cloudapps.bos.openshift8roadshow.com/content/groups/public/'

The value for MAVEN_MIRROR_URL can be found in Maven by viewing the repositories, then
copying the path for the Public Repositories group.

Click Save.

Click the Configuration tab of your build to verify that MAVEN_MIRROR_URL is actively listed
under Environment Variables.

Now that you have Maven configured for this OpenShift project, the build process will be shorter for all
future builds. This is because subsequent builds only need to download updated files, which are then
combined with the previously loaded files.

32

https://blog.openshift.com/improving-build-time-java-builds-openshift/

S BRMS APPLICATION ON OPENSHIFT WITH WEBHOOKS ENABLED FOR AUTOMATIC APPLICATION UPDATES

9.8. TEST THE SERVICE

After integrating the Maven proxy, you can test that service is working and see how quickly the build
process completes compared to previous builds. From the OpenShift web console:

1.

2.

Click Browse — Builds — <your_application>

Click Start Build

In the list at the bottom of the screen, click the new build you just started.
Click the Logs tab, then click Follow.

Verify that the new build is using the new Maven proxy to download locally by finding the line in
the log that references Downloading. For example:

10130 12:32:25.664594 1 sti.go:492] Downloading: http://nexus-
ci.cloudapps.openshift.com/content/groups/public/org/kie/kie-maven-plugin/6.3.0.Final-
redhat-5/kie-maven-plugin-6.3.0.Final-redhat-5.pom

. When the build is complete, you can check the new build time against the previous build by

clicking Browse — Builds = <your_application> and viewing the summary. The newest build will
be considerably shorter with the Maven proxy in use.

Click Overview to see the status of the pod. It displays a Not Ready status while it is checked
with readiness probes.

Click Browse = Pods to follow its progress. The status of the Containers Ready column will
change to 1/1 when the pod has passed the readiness probes.

9.9. CONFIGURE THE OPENSHIFT WEBHOOK

From the OpenShift web console:

1.

2.

8.

S.

Click the Browse tab, then click Builds.

Click your build name, then click the Configuration tab.

Click the copy icon next to GitHub webhook URL to copy your webhook payload URL.
Navigate to your forked repository on GitHub, then click Settings.

Click Webhooks & Services.

Click Add webhook.

Paste your webhook URL into the Payload URL field.

Click Disable SSL verification, then confirm it in the pop-up window.

Click Add webhook to save.

Github pings the OpenShift server to ensure communication is successful. A green check mark next to
the webhook URL signifies that it is configured correctly. Hover your cursor over the check mark to view
the status of the last ping.

33

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

The next time you push a code change to your forked repository, your application will automatically
rebuild.

9.10. TESTING THE CONFIGURED HOOKS
From the Red Hat JBoss BRMS workbench:

1. Load the HelloRules.drl file:

package org.openshift.quickstarts.decisionserver.hellorules

query "get greeting"()
greeting : Greeting()
end

rule "greet master”
when
person : Person(name == "john")
then
String salutation = "Hello " + person.getName() + "! What can | help you with today?";
insert(new Greeting(salutation));

end
rule "greet strangers”
when
person : Person(name != "john")
then
String salutation = "Hey there " + person.getName() + ". | don't think | know you yet!";
insert(new Greeting (salutation));
end

2. Modify the String salutation line by changing At your service my master to something else.
3. Click Save, type a check-in comment, and click Save again.

The hook that you created earlier updates your forked GitHub repository, and then the GitHub webhook
triggers a new build in OpenShift.

With this configuration, you need only save your configuration changes on the Red Hat JBoss BRMS
workbench, and the rest of the process is completely automated.

34

PART V. REFERENCE

PART V. REFERENCE

35

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

CHAPTER 10. ARTIFACT REPOSITORY MIRRORS

A repository in Maven holds build artifacts and dependencies of various types (all the project jars, library
jar, plugins or any other project specific artifacts). It also specifies locations from where to download
artifacts from, while performing the S2I build. Besides using central repositories, it is a common practice
for organizations to deploy a local custom repository (mirror).
Benefits of using a mirror are:

® Availability of a synchronized mirror, which is geographically closer and faster.

® Ability to have greater control over the repository content.

® Possibility to share artifacts across different teams (developers, Cl), without the need to rely on
public servers and repositories.

® |mproved build times.
Often, a repository manager can serve as local cache to a mirror. Assuming that the repository manager
is already deployed and reachable externally at http;//10.0.0.1:8080/repository/internal/, the S2I build
can then use this manager by supplying the MAVEN_MIRROR_URL environment variable to the build

configuration of the application as follows:

1. ldentify the name of the build configuration to apply MAVEN_MIRROR_URL variable against:

oc get bc -0 name
buildconfig/ds

2. Update build configuration of ds with a MAVEN_MIRROR_URL environment variable

oc env bc/ds MAVEN_MIRROR_URL="http://10.0.0.1:8080/repository/internal/"
buildconfig "ds" updated

3. Verify the setting

oc env bc/ds --list
buildconfigs ds
MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/

4. Schedule new build of the application

NOTE

During application build, you will notice that Maven dependencies are pulled from the
repository manager, instead of the default public repositories. Also, after the build is
finished, you will see that the mirror is filled with all the dependencies that were retrieved
and used during the build.

36

CHAPTER 11. APPLICATION TEMPLATE PARAMETERS

CHAPTER 11. APPLICATION TEMPLATE PARAMETERS

Variable Description

APPLICATION_NAME

KIE_CONTAINER_DEPLOYMENT

MYSQL_LOWER_CASE_TABLE_NAMES

AMQ_SECRET

SOURCE_REPOSITORY_URL

SOURCE_REPOSITORY_REF

CONTEXT_DIR

KIE_SERVER_USER

KIE_SERVER_PASSWORD

The name for the application (required).

The KIE Containers to deploy (required). Example:
containerld=groupld:artifactld:version

Sets how the table names are stored and compared.

The name of a secret containing SSL related files. If
no value is specified, a random password is
generated.

Git source URI for application.

Git branch/tag reference.

Path within Git project to build; empty for root
project directory.

The user name to access the KIE Server REST or JMS
interface.

The password to access the KIE Server REST or JMS
interface. Must be different than username; must not
be root, admin, or administrator; must contain at least
8 characters, 1alphabetic character(s), 1digit(s), and
1 non-alphanumeric symbol(s).

37

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

CHAPTER 12. ENDPOINTS

Clients can access Realtime Decision Server for OpenShift via multiple endpoints; by default the
provided templates include support for REST, HornetQ, and ActiveMQ.

12.1. REST

Clients can use the REST API in various ways:

12.1.1. Browser
1. Current server state: http://host/kie-server/services/rest/server
2. List of containers: http://host/kie-server/services/rest/server/containers
3. Specific container state: http://host/kie-

server/services/rest/server/containers/HelloRulesContainer

12.1.2. Java

// HelloRulesClient.java

KieServicesConfiguration config = KieServicesFactory.newRestConfiguration(
"http://host/kie-server/services/rest/server"”, "kieserverUser", "kieserverPassword");

config.setMarshallingFormat(MarshallingFormat. XSTREAM);

RuleServicesClient client =

KieServicesFactory.newKieServicesClient(config).getServicesClient(RuleServicesClient.class);

ServiceResponse<String> response = client.executeCommands("HelloRulesContainer",
myCommands);

12.1.3. Command Line

request.sh
#!/bin/sh
curl -X POST \
-d @request.xml\
-H "Accept:application/xml" \
-H "X-KIE-ContentType:XSTREAM" \
-H "Content-Type:application/xml" \
-H "Authorization:Basic a2llc2VydmVyOmtpZXNlcnZIcjEh" \
-H "X-KIE-ClassType:org.drools.core.command.runtime.BatchExecutionCommandimpl" \
http://host/kie-server/services/rest/server/containers/instances/HelloRulesContainer

<!I-- request.xml -->
<batch-execution lookup="HelloRulesSession">
<insert>
<org.openshift.quickstarts.decisionserver.hellorules.Person>
<name>errantepiphany</name>
</org.openshift.quickstarts.decisionserver.hellorules.Person>
<finsert>
<fire-all-rules/>
<query out-identifier="greetings" name="get greeting"/>
</batch-execution>

38

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BRMS/6.3/html-single/User_Guide/index.html#The_REST_API_for_Managing_the_Realtime_Decision_Server

CHAPTER 12. ENDPOINTS

12.2. JIMS

Client can also use the Java Messaging Service, as demonstrated below:

12.2.1. Java (HornetQ)

// HelloRulesClient.java
Properties props = new Properties();
props.setProperty(Context.INITIAL_CONTEXT_FACTORY,
"org.jboss.naming.remote.client.InitialContextFactory");
props.setProperty(Context. PROVIDER_URL, "remote://host:4447");
props.setProperty(Context. SECURITY_PRINCIPAL, "kieserverUser");
props.setProperty(Context. SECURITY_CREDENTIALS, "kieserverPassword");
InitialContext context = new InitialContext(props);
KieServicesConfiguration config =
KieServicesFactory.newJMSConfiguration(context, "hornetqUser", "hornetqPassword");
config.setMarshallingFormat(MarshallingFormat. XSTREAM);
RuleServicesClient client =
KieServicesFactory.newKieServicesClient(config).getServicesClient(RuleServicesClient.class);
ServiceResponse<String> response = client.executeCommands("HelloRulesContainer",
myCommands);

12.2.2. Java (ActiveMQ)

// HelloRulesClient.java
props.setProperty(Context.INITIAL_CONTEXT_FACTORY,
"org.apache.activemq.jndi.ActiveMQlInitialContextFactory");
props.setProperty(Context. PROVIDER_URL, "tcp://host:61616");
props.setProperty(Context. SECURITY_PRINCIPAL, "kieserverUser");
props.setProperty(Context. SECURITY_CREDENTIALS, "kieserverPassword");
InitialContext context = new InitialContext(props);
ConnectionFactory connectionFactory = (ConnectionFactory)context.lookup("ConnectionFactory");
Queue requestQueue = (Queue)context.lookup("dynamicQueues/queue/KIE.SERVER.REQUEST");
Queue responseQueue =
(Queue)context.lookup("dynamicQueues/queue/KIE.SERVER.RESPONSE");
KieServicesConfiguration config = KieServicesFactory.newJMSConfiguration(
connectionFactory, requestQueue, responseQueue, "activemqgUser", "activemgPassword");
config.setMarshallingFormat(MarshallingFormat. XSTREAM);
RuleServicesClient client =
KieServicesFactory.newKieServicesClient(config).getServicesClient(RuleServicesClient.class);
ServiceResponse<String> response = client.executeCommands("HelloRulesContainer",
myCommands);

Red Hat JBoss BRMS 6.4 Red Hat JBoss BRMS Realtime Decision Server for OpenShift

CHAPTER 13. TROUBLESHOOTING

In addition to viewing the OpenShift logs, you can troubleshoot a running Decision Server xPaaS Image
container by viewing its logs. These are outputted to the container’s standard out, and are accessible

with the following command:
I $ oc logs -f <pod_name>
NOTE

By default, the OpenShift Decision Server xPaaS image does not have a file log handler
configured. Logs are only sent to the container’s standard out.

40

APPENDIX A. VERSIONING INFORMATION

APPENDIX A. VERSIONING INFORMATION

Documentation last updated on: Monday, May 13, 2019.

41

	Table of Contents
	PART I. INTRODUCTION
	CHAPTER 1. WHAT IS THE RED HAT JBOSS BRMS REALTIME DECISION SERVER?
	PART II. BEFORE YOU BEGIN
	CHAPTER 2. COMPARISON: RED HAT JBOSS BRMS AND REALTIME DECISION SERVER FOR OPENSHIFT
	2.1. FUNCTIONALITY DIFFERENCES FOR REALTIME DECISION SERVER FOR OPENSHIFT
	2.2. VERSION COMPATIBILITY AND SUPPORT
	2.3. DEPRECATED IMAGE STREAMS AND APPLICATION TEMPLATES FOR REALTIME DECISION SERVER FOR OPENSHIFT
	2.4. MANAGING REALTIME DECISION SERVER FOR OPENSHIFT
	2.5. SECURITY IN REALTIME DECISION SERVER FOR OPENSHIFT
	2.6. INITIAL SETUP

	PART III. GET STARTED
	CHAPTER 3. DEPLOYMENT CONSIDERATIONS FOR REALTIME DECISION SERVER FOR OPENSHIFT
	3.1. CONFIGURING KEYSTORES
	3.2. GENERATING THE SECRET
	3.3. CREATING THE SERVICE ACCOUNT

	CHAPTER 4. PREPARING A RED HAT JBOSS BRMS PROJECT REPOSITORY FOR OPENSHIFT
	4.1. STATELESS SESSIONS
	4.2. CONFIGURING THE PROJECT REMOTE REPOSITORY

	CHAPTER 5. UPDATING RULES
	5.1. RECREATE UPDATE STRATEGY
	5.2. MULTIPLE CONCURRENT VERSIONS
	5.3. CONTAINER ID
	5.4. ADDING, OVERRIDING, OR UPDATING MULTIPLE VERSIONS OF THE APPLICATION
	5.5. REQUEST TARGETING FOR MULTIPLE VERSIONS
	5.6. ALIAS REDIRECTION

	CHAPTER 6. RUNNING AND CONFIGURING REALTIME DECISION SERVER FOR OPENSHIFT
	6.1. USING REALTIME DECISION SERVER FOR OPENSHIFT SOURCE-TO-IMAGE (S2I) PROCESS
	6.2. BINARY BUILDS
	6.3. USING A MODIFIED DECISION SERVER XPAAS IMAGE

	PART IV. TUTORIALS
	CHAPTER 7. EXAMPLE WORKFLOW: DEPLOYING RED HAT JBOSS BRMS APPLICATION ON REALTIME DECISION SERVER FOR OPENSHIFT
	7.1. PREPARING DECISION SERVER DEPLOYMENT
	7.2. DEPLOYMENT

	CHAPTER 8. EXAMPLE WORKFLOW: DEPLOYING AN UPGRADED VERSION CONCURRENTLY WITH ORIGINAL APPLICATION
	CHAPTER 9. EXAMPLE WORKFLOW: DEPLOYING RED HAT JBOSS BRMS APPLICATION ON OPENSHIFT WITH WEBHOOKS ENABLED FOR AUTOMATIC APPLICATION UPDATES
	9.1. FORKING THE REPOSITORY
	9.2. CLONING THE REPOSITORY
	9.3. CREATING A HOOK TO AUTOMATE GITHUB UPDATES
	9.4. MODIFYING THE EXAMPLE DECISION SERVER RULES
	9.5. CREATING A DECISION SERVICE ON OPENSHIFT
	9.6. IMPROVING BUILD TIME USING MAVEN
	9.7. INTEGRATING THE MAVEN PROXY
	9.8. TEST THE SERVICE
	9.9. CONFIGURE THE OPENSHIFT WEBHOOK
	9.10. TESTING THE CONFIGURED HOOKS

	PART V. REFERENCE
	CHAPTER 10. ARTIFACT REPOSITORY MIRRORS
	CHAPTER 11. APPLICATION TEMPLATE PARAMETERS
	CHAPTER 12. ENDPOINTS
	12.1. REST
	12.1.1. Browser
	12.1.2. Java
	12.1.3. Command Line

	12.2. JMS
	12.2.1. Java (HornetQ)
	12.2.2. Java (ActiveMQ)

	CHAPTER 13. TROUBLESHOOTING
	APPENDIX A. VERSIONING INFORMATION

