
Red Hat JBoss BPM Suite 6.2

Administration And Configuration Guide

The Administration and Configuration Guide for Red Hat JBoss BPM Suite

Last Updated: 2017-11-13

Red Hat JBoss BPM Suite 6.2 Administration And Configuration Guide

The Administration and Configuration Guide for Red Hat JBoss BPM Suite

Kanchan Desai
kadesai@redhat.com

Doug Hoffman

Eva Kopalova

Red Hat Content Services

Gemma Sheldon
Red Hat Engineering Content Services
gsheldon@redhat.com

Joshua Wulf
jwulf@redhat.com

Legal Notice

Copyright © 2015 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A guide for administrators and advanced users dealing with Red Hat JBoss BPM Suite setup,
configuration, and advanced usage.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. INTRODUCTION

CHAPTER 1. BUSINESS PROCESS MODEL AND NOTATION
1.1. COMPONENTS
1.2. PROJECT
1.3. CREATING A PROJECT
1.4. ADDING DEPENDENCIES

PART II. CONFIGURATION

CHAPTER 2. BUSINESS CENTRAL CONFIGURATION
2.1. ACCESS CONTROL
2.2. BUSINESS CENTRAL PROFILE CONFIGURATION
2.3. BRANDING THE BUSINESS CENTRAL APPLICATION
2.4. DEPLOYMENT DESCRIPTORS
2.5. MANAGING DEPLOYMENT OVERRIDE POLICY
2.6. EXTENDING BUSINESS CENTRAL
2.7. CONFIGURING TABLE COLUMNS

CHAPTER 3. REPOSITORY HOOKS
3.1. CONFIGURING GIT HOOKS

CHAPTER 4. COMMAND LINE CONFIGURATION
4.1. STARTING THE KIE-CONFIG-CLI TOOL IN ONLINE MODE
4.2. STARTING THE KIE-CONFIG-CLI TOOL IN OFFLINE MODE
4.3. COMMANDS AVAILABLE FOR THE KIE-CONFIG-CLI TOOL

CHAPTER 5. MIGRATION
5.1. DATA MIGRATION
5.2. RUNTIME MIGRATION
5.3. API AND BACKWARDS COMPATIBILITY
5.4. MIGRATING TASK SERVICE

CHAPTER 6. DATA MANAGEMENT
6.1. DATA BACKUPS
6.2. SETUP INDEXES
6.3. SETTING UP THE DATABASE
6.4. EDITING THE DATABASE
6.5. DDL SCRIPTS

CHAPTER 7. ASSET REPOSITORY
7.1. CREATING AN ORGANIZATIONAL UNIT
7.2. CREATING A REPOSITORY
7.3. CLONING A REPOSITORY
7.4. REMOVING A REPOSITORY
7.5. MANAGING ASSETS
7.6. MAVEN REPOSITORY
7.7. CONFIGURING DEPLOYMENT TO A REMOTE NEXUS REPOSITORY
7.8. SYSTEM CONFIGURATION

CHAPTER 8. PROCESS EXPORT AND IMPORT
8.1. CREATING A PROCESS DEFINITION
8.2. IMPORTING A PROCESS DEFINITION
8.3. IMPORTING JPDL 3.2 TO BPMN2

5

6
6
6
7
8

10

11
11
12
13
15

20
20
26

29
29

32
32
32
33

35
35
36
37
37

38
38
38
38
39
40

41
41
43
45
48
48
54
55
56

58
58
58
59

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

8.4. EXPORTING A PROCESS

PART III. INTEGRATION

CHAPTER 9. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO SOA REPOSITORY ARTIFACT MODEL
AND PROTOCOL (S-RAMP) REPOSITORY

9.1. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO SOA REPOSITORY ARTIFACT MODEL AND
PROTOCOL (S-RAMP) USING MAVEN
9.2. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO SOA REPOSITORY ARTIFACT MODEL AND
PROTOCOL (S-RAMP) USING GRAPHICAL USER INTERFACE (GUI)

CHAPTER 10. INTEGRATING RED HAT JBOSS BPM SUITE WITH RED HAT JBOSS FUSE
10.1. CORE JBOSS BPM SUITE AND JBOSS BRMS FEATURES
10.2. ADDITIONAL FEATURES FOR SWITCHYARD AND CAMEL INTEGRATION
10.3. INSTALL/UPDATE CORE INTEGRATION FEATURES
10.4. INSTALL ADDITIONAL INTEGRATION FEATURES
10.5. CONFIGURING DEPENDENCIES
10.6. INSTALL JBOSS FUSE INTEGRATION QUICKSTART APPLICATIONS

CHAPTER 11. INTEGRATING WITH SPRING
11.1. CONFIGURING RED HAT JBOSS BPM SUITE WITH SPRING

CHAPTER 12. CDI INTEGRATION
12.1. CDI INTEGRATION

CHAPTER 13. PERSISTENCE
13.1. SESSION
13.2. PROCESS INSTANCE
13.3. WORK ITEM
13.4. PERSISTENCE CONFIGURATION

CHAPTER 14. TRANSACTIONS
14.1. TRANSACTIONS
14.2. DEFINING TRANSACTIONS
14.3. CONTAINER MANAGED TRANSACTIONS

CHAPTER 15. LOGGING
15.1. LOGGING EVENTS TO DATABASE
15.2. LOGBACK FUNCTIONALITY
15.3. CONFIGURING LOGGING
15.4. MANAGING LOG FILES

CHAPTER 16. LOCALIZATION AND CUSTOMIZATION
16.1. AVAILABLE LANGUAGES
16.2. CHANGING LANGUAGE SETTINGS
16.3. RUNNING THE JVM WITH UTF-8 ENCODING

PART IV. EXECUTION

CHAPTER 17. PROCESS EXECUTION SERVER CONFIGURATION
17.1. ASSIGNMENT RULES
17.2. MAIL SESSION

CHAPTER 18. PLUG-IN FOR RED HAT JBOSS DEVELOPER STUDIO
18.1. PLUG-IN

PART V. MONITORING

60

61

62

62

64

65
65
66
67
68
69
69

72
72

74
74

76
76
77
78
79

83
83
83
84

86
87
89
90
90

95
95
95
96

97

98
98
99

101
101

102

Administration And Configuration Guide

2

. .

. .

. .

CHAPTER 19. PROCESS MONITORING
19.1. JBOSS OPERATIONS NETWORK
19.2. INSTALLING THE JBOSS BRMS PLUG-IN INTO JBOSS ON
19.3. MONITORING KIE BASES AND KIE SESSIONS

CHAPTER 20. MANAGING SECURITY FOR RED HAT JBOSS BPM SUITE DASHBUILDER
20.1. ACCESSING RED HAT JBOSS BPM SUITE DASHBUILDER
20.2. MANAGING SECURITY
20.3. WORKSPACE PERMISSIONS
20.4. PAGE PERMISSIONS
20.5. PANEL PERMISSIONS

APPENDIX A. REVISION HISTORY

103
103
103
104

105
105
105
105
107
108

110

Table of Contents

3

Administration And Configuration Guide

4

PART I. INTRODUCTION

PART I. INTRODUCTION

5

CHAPTER 1. BUSINESS PROCESS MODEL AND NOTATION
Business Process Model and Notation (BPMN) is a standard notation for business process modeling. It
aspires to link the gap between business analysts and programmers by providing a workflow language
that can be clearly understood by both.

1.1. COMPONENTS

Red Hat JBoss BPM Suite integrates multiple components to support business processes throughout
their entire life cycle and to provide process management features and tools for business analysts,
developers, and business users. The product can be deployed on various JEE-compliant servers; the
recommended option is Red Hat JBoss Enterprise Application Platform 6 .

Red Hat JBoss BPM Suite consists of the following main components:

Execution Engine - provides the runtime environment for Processes and Business Rules. It
encompasses a workflow library that can be embedded into a user web application. Runtime
manager is the root object and contains the following components:

Runtime Engine - implements the core behavior of the computer language and it is
provided by the runtime manager.

Process Engine - is the environment for business process model execution.

Task Service - handles human task lifecycles.

Rule Engine - can be used with the process engine or on its own.

Rules Evaluation - executes business rules on the provided set of facts.

Complex Event Processing - applies business rules on incoming stream of events.

Business Central - a web-based application that accommodates tooling for asset creation,
management, and monitoring by providing an integrated web environment.

Asset Repository - is the central sharing location (Knowledge Store) for business
assets, processes, rules, forms, etc. Users access this repository through the Project
Explorer view of Business Central via Authoring → Project Authoring. By default, the
product initializes a local GIT repository as its Asset Repository. However, other
repositories may be added or removed as necessary.

Artifact Repository - is a Maven based repository for storage of project jar artifacts.

Execution Server - provides an execution environment for business process instances
and tasks.

Business Activity Monitor - provides customizable view on business performance.

NOTE

Red Hat JBoss BRMS comes with its own Business Central application that is a subset of
the Business Central application in Red Hat JBoss BPM Suite.

1.2. PROJECT

Administration And Configuration Guide

6

A project is a container for asset packages (business processes, rules, work definitions, decision tables,
fact models, data models, and DSLs) that lives in the Knowledge Repository. It is this container that
defines the properties of the KIE Base and KIE Session that are applied to its content. In the GUI, you
can edit these entities in the Project Editor.

As a project is a Maven project, it contains the Project Object Model file (pom.xml) with information on
how to build the output artifact. It also contains the Module Descriptor file, kmodule.xml, that
contains the KIE Base and KIE Session configuration for the assets in the project.

1.3. CREATING A PROJECT

To create a project, do the following:

1. Open the Project Authoring perspective: on the main menu, click Authoring → Project
Authoring.

2. In the Project Explorer, select the organizational unit and the repository where you want
to create the project.

3. In the perspective menu, go to New Item → Project.

4. In the Create new Project dialog window, define the project details:

a. In the Project text box, enter the project name.

5. The explorer refreshes to show a New Project Wizard pop-up window.

CHAPTER 1. BUSINESS PROCESS MODEL AND NOTATION

7

6. Define the Project General Settings and Group artifact version details for this
new project. These parameters are stored inside the pom.xml Maven configuration file.

Project Name: The name for the project; for example MortgageProject

Project Description: The description of the project which may be useful for the
project documentation purpose.

Group ID: group ID of the project; for example org.mycompany.commons

Artifact ID: artifact ID unique in the group; for example myframework. Avoid using a
space or any special character that might lead to an invalid name.

Version ID: version of the project; for example 2.1.1

The Project Screen view is updated with the new project details as defined in the pom.xml
file. Note, that you can switch between project descriptor files in the drop down-box with
Project Settings and Knowledge Base Setting, and edit their contents.

1.4. ADDING DEPENDENCIES

To add dependencies to your project, do the following:

1. Open the Project Editor for the given project:

a. In the Project Explorer view of the Project Authoring perspective, open the
project directory.

b. Click on the button to open the project view.

Administration And Configuration Guide

8

2. In the Project Screen view, select in the Project Settings drop-down box the
Dependencies item.

3. On the updated Project Screen, click the Add button to add a maven dependency or click
the Add from repository button to add a dependency from the Knowledge Store (Artifact
repository):

When adding a maven dependency, a user has to define the Group ID, Artifact ID and
the Version ID in the new row which is created in the dependency table.

When adding a dependency from the Knowledge Store, select the dependency in the
displayed dialog box: the dependency will be added to the dependency table.

4. To apply the various changes, the dependencies must be saved.

WARNING

If working with modified artifacts, do not re-upload modified non-snapshot
artifacts as Maven will not know these artifacts have been updated, and it will not
work if it is deployed in this manner.

CHAPTER 1. BUSINESS PROCESS MODEL AND NOTATION

9

PART II. CONFIGURATION

Administration And Configuration Guide

10

CHAPTER 2. BUSINESS CENTRAL CONFIGURATION

As Business Central is a web application, any configuration settings are loaded from
DEPLOY_DIRECTORY/business-central.war/WEB-INF/web.xml and the referenced files, and if
deployed on Red Hat JBoss EAP 6, also in jboss-web.xml and jboss-deployment-
structure.xml.

Note that the entire application can be run in different profiles (refer to the Red Hat JBoss BPM Suite
Installation Guide).

2.1. ACCESS CONTROL

The access control mechanism includes authorization and authentication. In the unified environment of
Red Hat JBoss BPM Suite , users are able to update the default user roles located within
$JBOSS_HOME/standalone/deployments/business-central.war/WEB-
INF/classes/userinfo.properties.

To grant a user access to JBoss BPM Suite, the user needs to have the respective role assigned:

admin: administrates JBoss BPM Suite system and has full access rights to make any changes
necessary including the ability to add and remove users from the system.

developer: implements code required for processes to work and has access to everything
except administration tasks.

analyst: creates and designs processes and forms, instantiates the processes and deploys
artifacts. This role is the similar to a developer, without access to asset repository and
deployments.

user: claims, performs, and invokes other actions (such as, escalation, rejection, etc.) on the
assigned Tasks and has no access to authoring functions.

manager: monitors the system and its statistics and only has access to the dashboard.

business user: takes action on business tasks that are required for processes to continue
forward. Works primarily with the task list.

If using Red Hat JBoss EAP, to create a user with particular roles, run the $JBOSS_HOME/add-
user.sh script and create an Application User in the ApplicationRealm with the respectives roles.

Workbench Configuration
Within Red Hat JBoss BPM Suite, users may set up roles using LDAP to modify existing roles. Users
may modify the roles in the workbench configuration to ensure the unique LDAP based roles conform
to enterprise standards by editing the deployments directory located at
$JBOSS_HOME/standalone/deployments/business-central.war/WEB-
INF/classes/workbench-policy.propeties.

If authenticating user via LDAP over GIT, administrators must set system property org.uberfire.domain
to the name of login module it should use to authenticate users via the GIT service. This must be set in
the standalone.xml file in EAP.

Authentication in Human Tasks
Every Task that needs to be executed is assigned to one or multiple roles or groups, so that any user
with the given role or the given group assigned can claim the Task instance and execute it. Tasks can
also be assigned to one or multiple users directly. JBoss BPM Suite uses the UserGroupCallback

CHAPTER 2. BUSINESS CENTRAL CONFIGURATION

11

interface to assign tasks to user.

WARNING

A group for a Human Task must not be named after an existing user of the system.
Doing so causes intermittent issues.

2.2. BUSINESS CENTRAL PROFILE CONFIGURATION

Red Hat JBoss BPM Suite 6 (or better) server is capable of starting the Business Central application in
three different modes:

Full profile - default profile that is active without additional configuration required (UI and
remote services e.g. REST).

Execution server profile - disables completely UI components of the application and allows
only remote access e.g. via REST interface.

UI server profile - disables remote services e.g REST and allows only UI access to the
application.

To change the profile use the following configuration steps.

Procedure 2.1. Configuring Business Central Profiles

1. Select the desired web.xml inside $BPMS_HOME/standalone/deployments/business-
central.war/WEB-INF/. The following files are provided.

web.xml (default) for full profile

web-exec-server.xml for execution server profile

web-ui-server.xml for UI server profile

2. To activate a profile other than the default full profile, the web-<PROFILE>.xml file must be
renamed to web.xml. The following steps demonstrate one way to enable the execution server
profile:

a. Backup the web.xml file from the full profile

b. Rename the web-exec-server.xml file:

3. Start application server with additional system property to instruct the profile manager to
activate given profile.

$ mv web.xml web-full.xml

$ mv web-exec-server.xml web.xml

Administration And Configuration Guide

12

Dorg.kie.active.profile=full - to activate full profile or skip the property
completely

Dorg.kie.active.profile=exec-server - to activate execution server profile

Dorg.kie.active.profile=ui-server - to activate UI server profile

2.3. BRANDING THE BUSINESS CENTRAL APPLICATION

The Business Central web application enables you to customize its look and feel by allowing you to
override some of its default styles. The ability to customize the Business Central branding allows you
to get a consistent appearance across all your applications thereby improving the user experience. It
also helps in cases when multiple teams are using the application. Each team can develop their own
customized user interface. The customizable elements are built using cascading style sheets (CSS),
images, and HTML files, providing an easy and flexible approach to customize without having to
recompile the code.

You can modify the following elements in the Business Central application to make it inline with your
company’s brand:

Login screen

You can customize the following attributes of the Business Central login screen:

The background image

The company logo

The application logo

Application header

You can customize the following attributes of the Business Central application header:

The Business Central header containing the title and banner logo

Help pop-up windows

You can customize the following attributes of the splash help pop-up windows:

The splash help images

The label text

2.3.1. Customizing Business Central Login Page

Procedure 2.2. Changing the Business Central Login Page Background Image

1. Start the EAP server and open http://localhost:8080/business-central in a web browser.

2. Copy the new background image to the
$EAP_HOME/standalone/deployments/business-central.war/images directory in
your JBoss BPM Suite installation.

3. Navigate to $EAP_HOME/standalone/deployments/business-central.war/styles
directory and open the login-screen.css file in a text editor.

CHAPTER 2. BUSINESS CENTRAL CONFIGURATION

13

http://localhost:8080/business-central

4. In the login-screen.css file, provide the location of your new background image in the
following background-image attribute.

The background-image attribute points to the default login-screen-background.jpg
image.

In addition to the background image, you can modify other attributes such as image size,
position, and background color in the login-screen.css file.

Refresh the Business Central login page to view your changes.

Procedure 2.3. Changing the Business Central Login Page Company Logo and Project Logo

1. Start the EAP server and open http://localhost:8080/business-central in a web browser.

2. Navigate to the $EAP_HOME/standalone/deployments/business-
central.war/images directory in your JBoss BPM Suite installation.

3. Replace the default image login-screen-logo.png with a new one. This is the company
logo that appears on the top right hand corner of the login page.

4. Replace the default image RH_JBoss_BPMS_Logo.pngRH_JBoss_BRMS_Logo.png with a
new one. This is the project logo that appears on the center left hand side of the login page.

Refresh the Business Central login page to view your changes.

2.3.2. Customizing Business Central Application Header

Procedure 2.4. Changing the Business Central Application Header (Banner)

1. Start the EAP server and open http://localhost:8080/business-central in a web browser.

2. Log in to the Business Central application with your user credentials.

3. Copy your new application header image to the
$EAP_HOME/standalone/deployments/business-central.war/banner directory in
your JBoss BPM Suite installation.

4. Open $EAP_HOME/standalone/deployments/business-
central.war/banner/banner.html file in a text editor.

5. In the banner.html file, edit the following tag to provide the name of your new header
image:

The default image is logo.png.

Refresh the Business Central Home page to view your changes.

2.3.3. Customizing Business Central Splash Help Windows

background-image: url("../images/login-screen-background.jpg");

Administration And Configuration Guide

14

http://localhost:8080/business-central
http://localhost:8080/business-central

The $EAP_HOME/standalone/deployments/business-central.war/plugins directory
contains the splash pages and the corresponding html files. Each splash page holds the name of the
html file, which contains information about the image(s) and the text to be displayed. For example, the
authoring_perspective.splash.js splash page points to the
authoring_perspective.splash.html file. The authoring_perspective.splash.html
contains the names and location of all the image files that appear on the Authoring Perspective splash
help and also their captions. You can customize the images and the corresponding captions of the
existing splash help pop-up windows.

Procedure 2.5. Changing the Business Central Splash Help Pop-Up Images and Captions

1. Start the EAP server and open http://localhost:8080/business-central in a web browser.

2. Log in to the Business Central application with your user credentials.

3. Copy your new splash help image(s) to the
$EAP_HOME/standalone/deployments/business-central.war/images directory in
your JBoss BPM Suite installation.

4. Open the corresponding html file from
$EAP_HOME/standalone/deployments/business-central.war/plugins directory in
a text editor.

5. Edit the html file to point to your new splash help image. For example, to change the first
image that appears in the Authoring Perspective splash help, edit the following tag in
the authoring_perspective.splash.html file to add your new image:

The default image is authoring_perspective1.png, which appears on the first page of the
Authoring Perspective splash help.

6. To change the image caption that appears on the splash help, edit the <h4> and <p> tag
contents below the tag:

Refresh the Business Central Home page and access the splash help pop-up windows to view your
changes.

2.4. DEPLOYMENT DESCRIPTORS

Processes and rules within Red Hat JBoss BPM Suite 6 onwards are stored in Apache Maven based
packaging, and are known as knowledge archives or kjar. The rules, processes, assets, etc. are part of a
jar file built and managed by Maven. A file kept inside the META-INF directory of the kjar called
kmodule.xml can be used to define the knowledge bases and sessions. This kmodule.xml file, by
default, is empty.

Whenever a runtime component such as Business Central is about to process the kjar, it looks up
kmodule.xml to build the runtime representation.

Deployment Descriptors, a new feature introduced in the 6.1 branch of Red Hat JBoss BPM Suite, allows
you fine grained control over your deployment and supplements the kmodule.xml file. The presence

<h4>Authoring</h4>
<p>Modularized and customizable workbench</p>

CHAPTER 2. BUSINESS CENTRAL CONFIGURATION

15

http://localhost:8080/business-central

of these descriptors is optional and your deployment will proceed successfully without them. The
properties that you can set using these descriptors are purely technical in nature and include meta
values like persistence, auditing and runtime strategy.

These descriptors allow you to configure the execution server on multiple levels (server level default,
different deployment descriptor per kjar and so on). This allows you to make simple customizations to
the execution server's out-of-the-box configuration (possibly per kjar).

You define these descriptors in a file called kie-deployment-descriptor.xml and place this file
next to your kmodule.xml file in the META-INF folder. You can change this default location (and the
filename) by specifying it as a system parameter:

2.4.1. Deployment Descriptor Configuration

Deployment descriptors allow the user to configure the execution server on multiple levels:

server level: the main level and the one that applies to all kjars deployed on the server.

kjar level: this allows you to configure descriptors on a per kjar basis.

deploy time level: descriptors that apply while a kjar is being deployed.

The granular configuration items specified by the deployment descriptors take precedence over the
server level ones, except in case of configuration items that are collection based, which are merged.
The hierarchy works like this: deploy time configuration > kjar configuration > server configuration.

NOTE

The deploy time configuration applies to deployments done via the REST API.

For example, if the persistence mode (one of the items you can configure) defined at the server level is
NONE but the same mode is specified as JPA at the kjar level, the actual mode will be JPA for that kjar.
If nothing is specified for the persistence mode in the deployment descriptor for that kjar (or if there is
no deployment descriptor), it will fall back to the server level configuration, which in this case is NONE
(or to JPA if there is no server level deployment descriptor).

Can you override this hierarchal merge mode behavior?
Yes. In the default way, if there are deployment descriptors present at multiple levels, the
configuration properties are merged with the granular ones overriding the coarse values, and with
missing configuration items at the granular level being supplied with those values from the higher
levels. The end result is a merged Deployment Descriptor configuration. This default merge mode is
called the MERGE_COLLECTIONS mode. But you can change it (Section 2.4.2, “Managing Deployment
Descriptors”) if it doesn't suit your environment to one of the following modes:

KEEP_ALL: in this mode, all higher level values override all lower level values (server level
values replace kjar level values)

OVERRIDE_ALL: in this mode, all lower level values override all higher level values (kjar values
replace server level values)

OVERRIDE_EMPTY: in this mode, all non empty configuration items from lower levels replace
those at higher levels, including items that are represented as collections.

-Dorg.kie.deployment.desc.location=file:/path/to/file/company-deployment-
descriptor.xml

Administration And Configuration Guide

16

MERGE_COLLECTIONS (DEFAULT): in this mode, all non empty configuration items from lower
level replace those from higher levels (like in OVERRIDE_EMPTY), but collection properties are
merged (combined).

Deployment Descriptors from dependent kjars are placed lower than the actual kjar being deployed,
but they still have higher hierarchy than the server level.

Do I need to provide a full Deployment Descriptor for all kjars?
No. And this is where the beauty of the merge between different files can help you. Providing partial
Deployment Descriptors is possible and recommended. For example, if you want to only override the
audit mode in a kjar, then you just need to provide that and the rest of the values will be merged from
server level or higher level kjars.

It is worth noting that when using OVERRIDE_ALL merge mode, all configuration items should be
specified since the relevant kjar will always use them and will not merge with any other deployment
descriptor in the hierarchy.

What can you configure?
High level technical configuration details can be configured via deployment descriptors. The following
table lists these along with the permissible and default values for each.

Table 2.1. Deployment Descriptors

Configuration XML Entry Permissible Values Default Value

Persistence unit name
for runtime data

persistence-unit Any valid persistence
package name

org.jbpm.domain

Persistence unit name
for audit data

audit-persistence-unit Any valid persistence
package name

org.jbpm.domain

Persistence mode persistence-mode JPA, NONE JPA

Audit mode audit-mode JPA, JMS or NONE JPA

Runtime Strategy runtime-strategy SINGLETON,
PER_REQUEST or
PER_PROCESS_INSTAN
CE

SINGLETON

List of Event Listeners
to be registered

event-listeners Valid listener class
names as
ObjectModel

No default value

List of Task Event
Listeners to be
registered

task-event-listeners Valid listener class
names as
ObjectModel

No default value

List of Work Item
Handlers to be
registered

work-item-handlers Valid Work Item Handler
classes given as
NamedObjectHandl
er

No default value

CHAPTER 2. BUSINESS CENTRAL CONFIGURATION

17

List of Globals to be
registered

globals Valid Global variables
given as
NamedObjectModel

No default value

Marshalling strategies
to be registered (for
pluggable variable
persistence)

marshalling-strategies Valid ObjectModel
classes

No default value

Required Roles to be
granted access to the
resources of the kjar

required-roles String role names No default value

Additional Environment
Entries for Knowledge
Session

environment-entries Valid
NamedObjectModel

No default value

Additional configuration
options of Knowledge
Session

configurations Valid
NamedObjectModel

No default value

Configuration XML Entry Permissible Values Default Value

How do you provide values for collections based configuration items?
In the table of valid configuration items earlier, you would have noticed that the valid values for the
collection based items are either ObjectModel or NamedObjectModel. Both are similar and provide
a definition of the object to be built or created at runtime, with the exception that the
NamedObjectModel object details name the object to be looked. Both these types are defined using
an identifier, optional parameters and resolver (to resolve the object).

identifier - defines all the information about the object, such as fully qualified class name,
Spring bean id or an MVEL expression.

parameters - optional parameters that should be used while creating instances of objects from
this model.

resolver - identifier of the resolver that will be used to create object instances from the model
- (reflection, mvel or Spring).

As an example, if you have built a custom marshaling strategy and want your deployments to use that
strategy instead of the default, you will need to provide that strategy as an ObjectModel, with the
identifier being com.mycompany.MyStrategy, resolver being reflection (the easiest and the default)
and any parameters that are required for your strategy to work. Reflection will then be used to create
an instance of this strategy using the fully qualified class name that you have provided as the identifier.

<marshalling-strategy>
 <resolver>reflection</resolver>
 <identifier>com.myCompany.MyStrategy</identifier>
 <parameters>
 <parameter xsi:type="xs:string"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 param

Administration And Configuration Guide

18

In case reflection based on resolver is not enough (as demonstrated in the previous example), you can
use a resolver based on MVEL expression as the identifier of the object model. While evaluating
expressions, you can substitute out-of-the-box parameters. As an example:

The Spring based resolver allows you to look up a bean by its identifier from a Spring application
context. Whenever JBoss BPM Suite is used with Spring, this resolver helps in deploying kjars into the
runtime. As an example (note that the identifier in this case is a named bean in the Spring context):

2.4.2. Managing Deployment Descriptors

Deployment Descriptors can be edited via the Business Central in one of two ways. Either graphically
(by clicking on Authoring → Project Authoring and then selecting Tools → Deployment Descriptor)
or by clicking on Authoring → Administration menu and then clicking through to the META-INF folder
in the File Explorer. Click on the kie-deployment-descriptor.xml file to edit it manually.

Every time a project is created, a stock kie-deployment-descriptor.xml file is generated with
default values as described earlier.

Overriding Hierarchical Merge Mode Behavior
To change the default mode of MERGE_COLLECTIONS to one of KEEP_ALL, OVERRIDE_ALL or
OVERRIDE_EMPTY you can use the following methods, depending on the requirement.

Set the system property org.kie.dd.mergemode to one of these values. This merge mode will
become default for all kjars deployed in the system, unless you override it at a kjar level via the
next method.

When deploying a new deployment unit via Business Central (Deploy → Deployments) you can
select what merge mode should be used for that particular kjar.

When deploying via the REST API, you can add mergemode query parameter to the command
URL to one of these modes to set the merge mode for that deployment.

Restricting access to the Runtime Engine
One of the configuration items discussed earlier, required-roles, can be edited via the Deployment
Descriptors. This property restricts access to the runtime engine on a per kjar or per server level by
ensuring that access to certain processes is only granted to users that belong to groups defined by
this property.

The security role can be used to restrict access to process definitions or restrict access at runtime.

 </parameter>
 </parameters>
</marshalling-strategy>

<marshalling-strategy>
 <resolver>mvel</resolver>
 <identifier>new com.myCompany.CustomStrategy(runtimeManager)
</identifier>
</marshalling-strategy>

<marshalling-strategy>
 <resolver>spring</resolver>
 <identifier>customStrategy</identifier>
</marshalling-strategy>

CHAPTER 2. BUSINESS CENTRAL CONFIGURATION

19

The default behavior is to add required roles to this property based on repository restrictions. You can
of course, edit these properties manually if required, as described above by providing roles that match
actual roles defined in the security realm.

2.5. MANAGING DEPLOYMENT OVERRIDE POLICY

If a user tries to deploy an artifact with a GAV (Group-Id, Artifact-Id and Version) that already exists in
the system, the deployment will fail and an error message will be displayed in the Messages panel.

This feature prevents the user from overwriting an existing deployment by mistake.

By default this feature is enabled, that is, by default the system will prevent the user from overwriting
an existing installation with the same GAV.

However, there may be cases when the user may want to overwrite existing deployments with the
same GAV. Although you can't enable overwriting on a per-deployment basis, you can set this up for
the system as a whole by using the system setting org.kie.override.deploy.enabled. This setting, is
false by default. Change it to true to enable overwriting of deployments with the same GAV by
providing it at startup time of your server (-Dorg.kie.override.deploy.enabled=true).

2.6. EXTENDING BUSINESS CENTRAL

Starting with version 6.1 of JBoss BPM Suite, Business Central can be configured to add new screens,
menus, editors, splashscreens and perspectives by the Administrator. These elements can extend
functionality of Business Central and can be accessed through the Extensions menu and are classified
under Plugin Management.

You can now define your own Javascript and HTML based plugins to extend Business Central and add
them without having to worry about copying files in the underlying filesystem. Let's add a new screen
in the system to show you the basics of this functionality.

2.6.1. Plugin Management

You access the Plugin Management screen by clicking on Extensions → Plugin Management. This
brings up the Plugin Explorer screen that lists all the existing plugins under their respective
categories: Perspective Plugin, Screen Plugin, Editor Plugin, Splashscreen Plugin
and Dynamic Menu. Open up any of these and you will see the existing plugins in each category,
including the uneditable system generated ones.

Let's create a new plugin that echoes "Hello World" when users visit the screen for that plugin. In
general, the steps to creating a new plugin are:

Create a new screen

Create a new perspective (and add the new screen to it)

Create a new menu (and add the new perspective to it)

Apps (optional)

Adding a new Screen

Click on button and select New Screen . You will be prompted to enter the name of this new
screen. Enter "HelloWorldJS" and press the OK button. The Screen plugin editor will open up, divided
into 4 sections: Template, CSS, JavaScript and Media.

Administration And Configuration Guide

20

NOTE

All manually created elements go into their respective categories in case you want to
edit them later. In this case, to open up the Screen plugin editor again if you close it,
open up the Screen Plugin category and scroll past the system generated screens to
your manually created plugin and click on it to open up the Screen plugin editor again.

Template is where your HTML goes, CSS is for styling, JavaScript is for your functions and Media is for
uploading and managing images.

Since we are making a simple Hello World plugin, enter the following code in the Template section:
<div>My Hello World Screen</div>. This can be any HTML code, and you can use the supplied
Angular and Knockout frameworks. For the purposes of this example, we are not using any of those
frameworks, but you can choose to by selecting them from the drop down in the Template section.

Enter your JavaScript code in the JavaScript section. Some common methods and properties are
defined for you, including main, on_close and on_open. For this demo, select the on_open and enter
the following: function () { alert('Hello World'); }

Click the Save button to finish creating the screen. After you save the screen, refresh business central
so that the Screen Plugin is listed in the Screen Component of Perspective plugin.

Adding a new Perspective
Once a screen has been created, you need to create a perspective on which this screen will reside.
Perspectives can also be created similar to the way a screen is created by clicking on the New button
and then selecting, New Perspective . You can now provide a name for this perspective, say
HelloWorldPerspective. This will open up the Perspective plugin editor, similar to the Screen
plugin editor. .

The Perspective Editor is like a drag and drop grid builder for screens and HTML components. Remove
any existing grids and then drag a 6 6 grid on the right hand side to the left hand side.

Next, open up the Components category and drag a Screen Component on the right hand side to the
left hand side (in any grid). This will open up the Edit Component dialog box that allows you to select
the screen created in the previous step (HelloWorldJS). Click the OK button and then click the Save
button to save this perspective. To tag your perspective, enter Home in the tag name field and click the
Tags button. Click the OK button and save the changes.

You can open this perspective again from the Perspective plugins listed on the left hand side.

Adding a new menu
The final step in creating our plugin is to add a dynamic menu from where the new screen/perspective
can be called up. To do so, go to Extensions → Plugin Management and then click on the New button
to select New Dynamic Menu . Give this dynamic menu a name (HelloWorldMenu) and then click the OK
button. The dynamic menu editor opens up.

Enter the perspective name (HelloWorldPerspective) as the Activity Id and the name for the drop
down menu (HelloWorldMenuDropDown). Click OK and then click the Save button.

This new menu will be added to your workbench the next time you refresh Business Central. Refresh it
now to see HelloWorldMenu added to your top level menu. Click on it to reveal
HelloWorldMenuDropDown which when clicked will open up your perspective/screen with the
message Hello World.

You have created your first Plugin!

CHAPTER 2. BUSINESS CENTRAL CONFIGURATION

21

Working with Apps (Optional)
If you create multiple plugins, you can use the Apps directory feature to organize your own
components and plugins, instead of having to rely on just the top menu entries.

When you save a new perspective, you can add labels (tags) for them and these labels (tags) are used
to associate a perspective with an App directory. You can open up the App directories by clicking on
Extensions → Apps.

The Apps directory provides an alternate way to open up your perspective. When you created your
HelloWorldPerspective, you entered the tag Home. The Apps directory by default contains a single
directory called Home with which you associated your perspective. This is where you will find it when
you open the Apps directory. You can click on it to run the perspective now.

You can create multiple directories and associate perspectives with those directories depending on
functional and vertical business requirements. For example, you could create an HR directory and then
associate all HR related perspectives with that directory to better manage Apps.

You can create a new directory by clicking on the New button

2.6.2. The JavaScript (JS) API for Extensions

The extensibility of Business Central is achieved by an underlying JavaScript (JS) API which is
automatically loaded if it is placed in the plugins folder of the Business Central webapp (typically:
{INSTALL_DIR}/business-central.war/plugins/) or it can be loaded via regular JavaScript calls.

This API is divided into multiple sets depending on the functionality it performs.

Register Perspective API: allows for the dynamic creation of perspectives. The example below
creates a panel using the registerPerspective method:

$registerPerspective({
 id: "Home",
 is_default: true,
 panel_type:
"org.uberfire.client.workbench.panels.impl.MultiListWorkbenchPanelPr
esenter",
 view: {
 parts: [
 {
 place: "welcome",
 min_height: 100,
 parameters: {}
 }
],
 panels: [
 {
 width: 250,
 min_width: 200,
 position: "west",
 panel_type:
"org.uberfire.client.workbench.panels.impl.MultiListWorkbenchPanelPr
esenter",
 parts: [

Administration And Configuration Guide

22

Editor API: allows you to dynamically create editors and associate them with a file type. The
example below creates a sample editor and associates it with filename file type.

 {
 place: "YouTubeVideos",
 parameters: {}
 }
]
 },
 {
 position: "east",
 panel_type:
"org.uberfire.client.workbench.panels.impl.MultiListWorkbenchPanelPr
esenter",
 parts: [
 {
 place: "TodoListScreen",
 parameters: {}
 }
]
 },
 {
 height: 400,
 position: "south",
 panel_type:
"org.uberfire.client.workbench.panels.impl.MultiTabWorkbenchPanelPre
senter",
 parts: [
 {
 place: "YouTubeScreen",
 parameters: {}
 }
]
 }
]
 }
});

$registerEditor({
 "id": "sample editor",
 "type": "editor",
 "templateUrl": "editor.html",
 "resourceType":
"org.uberfire.client.workbench.type.AnyResourceType",
 "on_concurrent_update":function(){
 alert('on_concurrent_update callback')

$vfs_readAllString(document.getElementById('filename').innerHTML,
function(a) {
 document.getElementById('editor').value= a;
 });
 },
 "on_startup": function (uri) {
 $vfs_readAllString(uri, function(a) {
 alert('sample on_startup callback')

CHAPTER 2. BUSINESS CENTRAL CONFIGURATION

23

In addition to on_startup and on_open methods seen in the previous example, the API
exposes the following callback events for managing the editor's lifecycle:

on_concurrent_update;

on_concurrent_delete;

on_concurrent_rename;

on_concurrent_copy;

on_rename;

on_delete;

on_copy;

on_update;

on_open;

on_close;

on_focus;

on_lost_focus;

on_may_close;

on_startup;

on_shutdown;

You can display this editor via an html template:

 });
 },
 "on_open":function(uri){
 $vfs_readAllString(uri, function(a) {
 document.getElementById('editor').value=a;
 });
 document.getElementById('filename').innerHTML = uri;
 }
});

<div id="sampleEditor">
 <p>Sample JS editor (generated by editor-sample.js)</p>
 <textarea id="editor"></textarea>

 <p>Current file:</p>
 <button id="save" type="button"
onclick="$vfs_write(document.getElementById('filename').innerHTML,
document.getElementById('editor').value, function(a)
{});">Save</button>

 <p>This button change the file content, and uberfire send a

Administration And Configuration Guide

24

PlaceManager API: the methods of this API allow you to request that the Business Central
display a particular component associated with a target:
$goToPlace("componentIdentifier");

Register plugin API: the methods of this API allow you to create dynamic plugins (that will be
transformed in Business Central screens) via the JS API.

The plugin references the angular.sample.html template:

A plugin can be hooked to Business Central events via a series of JavaScript callbacks:

on_concurrent_update;

on_concurrent_delete;

on_concurrent_rename;

callback to the editor:</p>
 <button id="reset" type="button"
onclick="$vfs_write(document.getElementById('filename').innerHTML,
'Something else', function(a) {});">Reset File</button>
</div>

$registerPlugin({
 id: "my_angular_js",
 type: "angularjs",
 templateUrl: "angular.sample.html",
 title: function () {
 return "angular " + Math.floor(Math.random() * 10);
 },
 on_close: function () {
 alert("this is a pure JS alert!");
 }
});

<div ng-controller="TodoCtrl">
 {{remaining()}} of {{todos.length}} remaining
 [archive]
 <ul class="unstyled">
 <li ng-repeat="todo in todos">
 <input type="checkbox" ng-model="todo.done">
 {{todo.text}}

 <form ng-submit="addTodo()">
 <input type="text" ng-model="todoText" size="30"
placeholder="add new todo here">
 <input class="btn-primary" type="submit" value="add">
 </form>
 <form ng-submit="goto()">
 <input type="text" ng-model="placeText" size="30"
placeholder="place to go">
 <input class="btn-primary" type="submit" value="goTo">
 </form>
</div>

CHAPTER 2. BUSINESS CENTRAL CONFIGURATION

25

on_concurrent_copy;

on_rename;

on_delete;

on_copy;

on_update;

on_open;

on_close;

on_focus;

on_lost_focus;

on_may_close;

on_startup;

on_shutdown;

Register splash screens API: use the methods in this API to create splash screens.

Virtual File System (VFS) API: with this API, you can read and write a file saved in the file
system using an asynchronous call.

2.7. CONFIGURING TABLE COLUMNS

Business Central allows you to configure views that contain lists of items in the form of tables. You can
resize columns, move columns, add or remove the default list of columns and sort the columns. This
functionality is provided for all views that contain tables.

$registerSplashScreen({
 id: "home.splash",
 templateUrl: "home.splash.html",
 body_height: 325,
 title: function () {
 return "Cool Home Splash " + Math.floor(Math.random() * 10);
 },
 display_next_time: true,
 interception_points: ["Home"]
});

$vfs_readAllString(uri, function(a) {
 //callback logic
});

$vfs_write(uri,content, function(a) {
 //callback logic
})

Administration And Configuration Guide

26

Once you make changes to the columns of a table view, these changes are persisted for the current
logged in user.

Adding and Removing Columns

Tables that allow columns to be configured have button in the top right corner. Clicking on
this button opens up the list of columns that can added or removed to the current table with a

checkbox next to each column:

Resizing Columns
To resize columns, place your cursor between the edges of the column header and move in the

direction that you want:

Moving Columns
To re-order and drag and drop a column in a different position, hover your mouse over the rightmost
area of the column header:

 .

CHAPTER 2. BUSINESS CENTRAL CONFIGURATION

27

You can now grab the column and move it:

.

Drop it over the column header that you want to move it to.

Sorting Columns
To sort columns, click on the desired column's header. To reverse-sort, click on the header again.

Administration And Configuration Guide

28

CHAPTER 3. REPOSITORY HOOKS
In Business Central, it is possible to trigger a chosen action every time a particular event happens. For
this purpose, you can configure the repository to use scripts called hooks.

3.1. CONFIGURING GIT HOOKS

Business Central can automatically push changes to a remote repository using the Git hooks. Git hooks
support has been introduced with the release of Red Hat JBoss BPM Suite 6.2.0.

NOTE

Please note that currently only the post-commit hook is supported. Post-commit
hooks are triggered after finishing the entire commit process.

The following procedure shows how to configure the post-commit hook to automatically push your
changes to the remote repository.

1. In Business Central, go to Authoring → Administration.

2. Below the main menu, click Repositories → Clone repository.

3. In the displayed Clone repository dialog box, fill in the repository information:

Repository Name

Organizational Unit

Git URL: for example https://github.com/USERNAME/REPOSITORY-NAME.git

IMPORTANT

It is important to use the HTTPS or Git protocol instead of a SCP-style SSH
URL. Business Central does not support the basic SSH URL and fails with
Invalid URL format.

CHAPTER 3. REPOSITORY HOOKS

29

Figure 3.1. An invalid SCP-style SSH URL.

User Name: your Git user name

Password: your Git password

4. Go to the created repository:

~]$ cd $JBOSS_HOME/bin/.niogit/REPOSITORY-NAME.git

5. Change the remote URL:

~]$ git remote set-url origin git@github.com:USERNAME/REPOSITORY-
NAME.git

Make sure that you can access the remote repository through command line using SSH. For
example, the private SSH key for the repository should exist under the ~/.ssh/ directory.

Administration And Configuration Guide

30

6. Verify that the remote repository was successfully added:

~]$ git remote -v

The command should list the following:

origin git@github.com:USERNAME/REPOSITORY-NAME.git (fetch)
origin git@github.com:USERNAME/REPOSITORY-NAME.git (push)

7. Create a file named post-commit with the permissions set to rwxr--r-- under
$JBOSS_HOME/bin/.niogit/REPOSITORY-NAME.git/hooks with the following content:

#!/bin/sh
git push origin master

8. Make sure that the configuration was successful by creating a new guided rule in Business
Central: go to Authoring → Project Authoring and then New Item → Guided Rule below. Fill in
the required information in the displayed Create new Guided Rule window and click Ok.

All of the changes should be pushed automatically.

For further information about remote Git repositories, refer to this article: How to configure the BxMS
6 server to use a remote Git repository for storing assets?

Furthermore, it is also possible to specify the system property org.uberfire.nio.git.hooks. Its
value determines a directory with default hook files that will be copied to the newly created Git
repositories. See the example of a standalone.xml file with this setting below:

<system-properties>
 <property name="org.uberfire.nio.git.hooks" value="/opt/jboss-as/git-
hooks">
 </property>
 ...
</system-properties>

CHAPTER 3. REPOSITORY HOOKS

31

https://access.redhat.com/solutions/1281493

CHAPTER 4. COMMAND LINE CONFIGURATION
The kie-config-cli tool is a command line configuration tool that provides capabilities to manage
the system repository from the command line and can be used in an online or offline mode.

1. Online mode (default and recommended) - on startup, the tool connects to a Git repository
using a Git server provided by kie-wb. All changes are made locally and published to upstream
only after explicitly executing the push-changes command. Use the exit command to publish
local changes. To discard local changes on exit, use the discard command.

2. Offline mode (a kind of installer style) - creates and manipulates the system repository
directly on the server (there is no discard option).

The tool is available on the Red Hat Customer Portal . To download the kie-config-cli tool, do the
following:

1. Go to the Red Hat Customer Portal and log in.

2. Click Downloads → Products Downloads.

3. In the Product Downloads page that opens, click Red Hat JBoss BPM Suite.

4. From the Version drop-down menu, select 6.2.

5. In the displayed table, navigate to the Supplementary Tools row and then click Download.

Extract the zip package for supplementary tools you downloaded from the Red Hat Customer Portal . It
contains the directory kie-config-cli-6.MINOR_VERSION-redhat-x-dist with file kie-
config-cli.sh.

4.1. STARTING THE KIE-CONFIG-CLI TOOL IN ONLINE MODE

1. To start the kie-config-cli tool in online mode, navigate to the kie-config-cli-
6.MINOR_VERSION-redhat-x-dist directory where you installed the tool and then execute
the following command.

2. In a Unix environment run:

./kie-config-cli.sh

In a Windows environment run:

./kie-config-cli.bat

By default, the tool starts in online mode and asks for user credentials and a Git URL to connect to (the
default value is git://localhost/system). To connect to a remote server, replace the host and port with
appropriate values. Example: git://kie-wb-host:9148/system

4.2. STARTING THE KIE-CONFIG-CLI TOOL IN OFFLINE MODE

To operate in offline mode, append the offline parameter to the command as below.

1. Navigate to the kie-config-cli-6.MINOR_VERSION-redhat-x-dist directory where
you installed the tool.

Administration And Configuration Guide

32

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com

2. In a Unix environment, run:

./kie-config-cli.sh offline

In a Windows environment, run:

./kie-config-cli.bat offline

Executing this command changes the tool's behaviour and displays a request to specify the folder
where the system repository (.niogit) is located. If .niogit does not yet exist, the folder value can be
left empty and a brand new setup is created.

4.3. COMMANDS AVAILABLE FOR THE KIE-CONFIG-CLI TOOL

The following commands are available for managing the GIT repository using the kie-config-cli tool:

add-deployment - adds a new deployment unit

add-repo-org-unit - adds a repository to the organizational unit

add-role-org-unit - adds role(s) to an organizational unit

add-role-project - adds role(s) to a project

add-role-repo - adds role(s) to a repository

create-org-unit - creates new organizational unit

create-repo - creates a new git repository

discard - does not publish local changes, cleans up temporary directories and closes the tool

exit - publishes work, cleans up temporary directories and closes the tool

fetch-changes - fetches changes from upstream repository

help - prints available commands with descriptions

list-deployment - lists available deployments

list-org-units - lists available organizational units

list-repo - lists available repositories

push-changes - pushes changes to upstream repository (in online mode only)

remove-deployment - removes existing deployment

remove-org-unit - removes existing organizational unit

remove-repo - removes an existing repository from config only

remove-repo-org-unit - removes a repository from the organizational unit

remove-role-org-unit - removes role(s) from an organizational unit

CHAPTER 4. COMMAND LINE CONFIGURATION

33

remove-role-project - removes role(s) from a project

remove-role-repo - removes role(s) from a repository

Administration And Configuration Guide

34

CHAPTER 5. MIGRATION
Migrating your projects from Red Hat JBoss BPM Suite 5 to Red Hat JBoss BPM Suite 6 requires
careful planning and step by step evaluation of the various issues. You can plan for migration either
manually, or by using automatic processes. Most real world migration will require a combination of
these two processes.

Because JBoss BPM Suite 6 uses GIT for storing assets, artifacts and code repositories including
processes and rules, you should start by creating an empty project in JBoss BPM Suite 6 as the basis
for your migration with dummy files as placeholders for the various assets and artifacts. Running a GIT
clone of this empty project into your favorite IDE will initiate the migration process.

Based on the placeholder files in your cloned project, you can start adding assets at the correct
locations. The JBoss BPM Suite 6 system is smart enough to pick these changes and apply them
correctly. Ensure that when you are importing old rule files that they are imported with the right
package name structure.

Since Maven is used for building projects, the projects assets like the rules, processes and models are
accessible as a simple jar file.

This section lists the generally accepted step by step ways to migrate your project. These are just
guidelines though, and actual migration may vary a lot from this.

In general, you should...

1. Migrate the data first: These are your business assets.

2. Next, migrate your runtime processes.

3. Finally, convert old API calls to new ones one by one.

Let's look at these steps in more detail in the next few sections.

5.1. DATA MIGRATION

To migrate data from Red Hat JBoss BPM Suite 5, do the following:

1. Download the migration tool by logging in at the Red Hat Customer Portal and then navigating
to Red Hat JBoss BPM Suite Software Downloads section. Click on Red Hat JBoss BPM
Suite Migration Tool to download the zip archive.

2. Unzip the downloaded zip archive in a directory of your choice and navigate to this directory in
a command prompt. This directory contains four folders:

bin - contains the launch scripts.

jcr-exporter-libs - contains the libs specific to the export-from-JCR part of the
migration.

vfs-importer-libs - contains the libs specific to the import-into-Git part of the
migration.

conf - contains global migration tool configuration.

3. For production databases, copy the JDBC driver for the database that is used by the JCR
repository into the jcr-exporter-libs directory of the migration tool.

CHAPTER 5. MIGRATION

35

https://access.redhat.com/downloads/

4. Execute the following command:

Where:

<source-path> is a path to a source JCR repository.

<desintation-path> is a path to a destination GIT VFS. This folder must not exist already.

<repository-name> an arbitrary name for the new repository.

The repository is migrated at the specified destination.

Besides the -i command, you can also use -h to print out a help message and -f which forces an
overwrite of the output directory, thus eliminating the need for manual deletion of this directory.

Importing the repository in Business Central
The repository can be imported in business central by cloning it. In the Administration perspective,
click on the Repositories menu and then click on Clone Repository menu to start the process.

NOTE

Assets can also be migrated manually. After all, they are all just text files. The BPMN2
specification and the DRL syntax did not change between the different versions.

Importing the repository in JBDS
To import the repository in JBoss Developer Studio, do the following

1. Start JBoss Developer Studio.

2. Start the Red Hat JBoss BPM Suite server (if not already running) by selecting the server from
the server tab and click the start icon.

3. Select File → Import... and navigate to the Git folder. Open the Git folder to select Projects
from Git and click next.

4. Select the repository source as Existing local repository and click next.

5. Select the repository that is to be configured from the list of available repositories.

6. Import the project as a general project in the next window and click next. Name this project
and click Finish.

5.2. RUNTIME MIGRATION

To run Red Hat JBoss BPM Suite 5 processes in Red Hat JBoss BPM Suite 6, do the following:

1. Set the system property jbpm.v5.id.strategy to true in the JBoss BPM Suite
standalone.xml file:

./bin/runMigration.sh -i <source-path> -o <destination-path> -r
<repository-name>

<property name="jbpm.v5.id.strategy" value="true"/>

Administration And Configuration Guide

36

2. Load the KieSession as shown here:

3. Continue the normal execution of the process using KieSession methods:

5.3. API AND BACKWARDS COMPATIBILITY

Migrating to Version 6.1
In version 6.1, 5.x APIs are no longer officially supported.

Red Hat JBoss BPM Suite no longer provides backward compatibility with the rule, event, and process
application programming interface (API) from JBoss BRMS 5. The content of the knowledge-
api JAR file is no longer supported in version 6.1 and is replaced by APIs contained in the kie-
api JAR file that were introduced in JBoss BPM Suite 6.0.

If you used the legacy 5.x API (located in knowledge-api.jar), please migrate (rewrite) the API calls
to the new KIE API. Please be aware that several other APIs have changed between JBoss BRMS 5.x
and JBoss BPM Suite 6.x, namely the task service API and the REST API.

Migrating to Version 6.0
The JBoss BPM Suite 6 system provides backward compatibility with the rule, event and process
interactions from JBoss BRMS 5. You should eventually migrate (rewrite) these interactions to the all
new revamped core API because this backward compatibility is likely to be deprecated.

If you cannot migrate your code to use the new API, then you can use the API provided by the purpose
built knowledge-api jar for backwards compatible code. This API is the public interface for working
with JBoss BPM Suite and JBoss BRMS and is backwards compatible.

If you are instead using the REST API in JBoss BPM Suite 5, note that this has changed as well and
there is no mechanism in it for backwards compatibility.

5.4. MIGRATING TASK SERVICE

JBoss BPM Suite 6 provides support for a locally running task server only. This means that you do not
need to setup any messaging service in your project. This differs from JBoss BPM Suite 5 because it
provided a task server that was bridged from the core engine by using, most commonly, the messaging
system provided by HornetQ.

To help you bridge the gap until you can migrate this in your current architecture, there is a helper or
utility method, LocalHTWorkItemHandler.

Since the TaskService API is part of the public API you will now need to refactor your imports because
of package changes and refactor your methods due to API changes themselves.

KieSession ksession =
JPAKnowledgeService.loadStatefulKnowledgeSession(sessionID, kbase,
sessionConf, env);

ksession.signalEvent("SomeEvent", null);

CHAPTER 5. MIGRATION

37

CHAPTER 6. DATA MANAGEMENT

6.1. DATA BACKUPS

When applying a backup mechanism to Red Hat JBoss BPM Suite make sure you back up the following
resources:

any customized deployment descriptors (such as, web.xml, jboss-web.xml, jboss.xml)

any customized properties files

NOTE

Consider backing up the entire business-central.war and
dashbuilder.war files.

6.2. SETUP INDEXES

Setup foreign key indexes
Some databases, for instance Oracle and Postgres, do not automatically create an index for each
foreign key. This can result in deadlocks occurring. To avoid this situation it is necessary to create an
index on all foreign keys, especially in the Oracle database.

Setup indexes for Process and Task Dashboard
Process and Task Dashboard in 6.1 has been refactored in order to cope with high volume of task and
process instances. In order to get good response times while querying the database the following
JBoss BPM Suite tables need to be indexed: processinstancelog and bamtasksummary.

Note that ALL the columns in these two tables need to be indexed and not just the primary and foreign
keys.

6.3. SETTING UP THE DATABASE

Dashbuilder application requires an existing database, previously created before running the
application. To create a database you can use any database client tool and run the following
commands:

Postgres

The following sql sentence is used to create a Postgres database:

NOTE

The database encoding must be UTF8

DB2

CREATE DATABASE dashbuilder
 WITH ENCODING='UTF8'
 OWNER=dashbuilder
 CONNECTION LIMIT=-1

Administration And Configuration Guide

38

DB2 database can be created using the following sql sentence:

NOTE

The default pagesize for DB2 systems is 4k which is not enough for the dashbuilder
table columns size. The pagesize should be forced to 16384 as shown in the above
sentence.

Once the database is created, the application server datasource must be configured. You must edit the
JBoss EAP configuration file and configure the datasource subsystem as the following examples:

6.4. EDITING THE DATABASE

Dashbuilder requires the JBoss BPM Suite to have history log's database tables. It is mandatory to
deploy the Human Task console (or a superset, i.e: kie-wb) first. Otherwise, the Dashboard will not be
initialized correctly and it will not be possible to display its key performance indicators.

By default, the application is configured to use a datasource with the following JNDI name:

This is specified in JBoss EAP's configuration file; for example, standalone.xml.

NOTE

This datasource is intended for development/demo purposes; it is present by default in
any JBoss installation.

If you want to deploy on a database different from H2 like Oracle, MySQL, Postgres or MS SQL Server,
please perform the following steps:

Procedure 6.1. Changing Database

CREATE DATABASE dashb PAGESIZE 16384

<datasource jndi-name="java:jboss/datasources/jbpmDS" enabled="true" use-
java-context="true" pool-name="postgresqlDS">
 <connection-url>jdbc:postgresql://localhost/test</connection-url>
 <driver>postgresql</driver>
 <pool></pool>
 <security>
 <user-name>sa</user-name>
 <password>sa</password>
 </security>
</datasource>
<drivers>
 <driver name="postgresql" module="org.postgresql">
 <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-
datasource-class>
 </driver>
</drivers>

java:jboss/datasources/ExampleDS

CHAPTER 6. DATA MANAGEMENT

39

1. Install the database driver on JBoss (refer to JBoss driver documentation).

2. Create an empty database and a JBoss data source which connects to the database driver.

3. Modify the file dashbuilder.war/WEB-INF/jboss-web.xml:

4. Replace the jndi-name parameter value by the JNDI path of the JBoss data source you've just
created.

5. Modify the file dashbuilder.war/WEB-INF/jboss-deployment-structure.xml

6. Add the following snippet of configuration inside the deployment tag, where
jdbcDriverModuleName is the name of the JBoss JDBC driver module:

6.5. DDL SCRIPTS

DDL scripts for database tables for both JBoss BRMS and BPM Suite are available for download via the
Customer Portal. These scripts allow you to study the tables and use them to create the tables and
indexes manually or in databases that are not directly supported.

To download these scripts, login to the Customer Portal and click on Red Hat JBoss BPM Suite. Select
the version of the product for your requirements and then click on Download in the row Red Hat
JBoss BPM Suite 6.x.x Supplementary Tools to download the supplementary tools.

Unzip the file on your machine. The DDL scripts are located in the ddl-scripts folder. Database
scripts are provided for DB2, H2, MySQL5, Oracle, PostgreSQL and SQLServer.

The complete Entity Relationship diagram can be viewed in this Red Hat Solution .

<jboss-web>
 <context-root>/dashbuilder</context-root>
 <resource-ref>
 <res-ref-name>jdbc/dashbuilder</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <jndi-name>java:jboss/datasources/myDataSource</jndi-name>
 </resource-ref>
 ...

 <dependencies>
 <module name="jdbcDriverModuleName" />
 </dependencies>

Administration And Configuration Guide

40

https://access.redhat.com/downloads/
https://access.redhat.com/solutions/37751

CHAPTER 7. ASSET REPOSITORY
Business Rules, Process definition files and other assets and resources created in Business Central are
stored in Asset repository, which is otherwise known as the Knowledge Store.

Knowledge Store is a centralized repository for your business knowledge. It connects with the Git
repository that allows you to store different kinds of knowledge assets and artifacts at a single
location. Business Central provides a web front-end that allows users to view and update the stored
content. You can access it using the Project Explorer from the unified environment of Red Hat
JBoss BPM Suite.

All business assets are stored in repositories. These repositories are then saved in directories called
organizational units. By default, the Artifact repository does not contain any organizational unit.
Therefore, to be able to create your own business assets, you need to create an organizational unit
and a repository first.

7.1. CREATING AN ORGANIZATIONAL UNIT

Is is possible to create an organizational unit either in the Administration perspective of Business
Central, using the kie-config-cli tool or the REST API calls.

Creating an Organizational Unit in Business Central

IMPORTANT

Note that only users with the admin role can create organizational units.

Procedure 7.1. Using Business Central to Create an Organizational Unit

1. In Business Central, go to Authoring → Administration.

2. On the perspective menu, click Organizational Units → Manage Organizational Units .

3. In the Organization Unit Manager view, click Add. The Add New Organizational
Unit dialog window opens.

CHAPTER 7. ASSET REPOSITORY

41

Figure 7.1. Add New Organizational Unit Dialog Window

4. Enter the two mandatory parameters (name and default group ID) and click Ok.

Creating an Organizational Unit Using the kie-config-cli Tool
Organizational units can be created using the kie-config-cli tool as well. To do so, run the
create-org-unit command. The tool then guides you through the entire process of creating an
organizational unit by asking for other required parameters. Type help for a list of all commands.

For more information about the kie-config-cli tool, see Chapter 4, Command line configuration.

Creating an Organizational Unit Using the REST API
To create an organizational unit in Knowledge Store, issue the POST REST API call. Details of the
organizational unit are defined by the JSON entity.

Input parameter of the call is a OrganizationalUnit instance. Call returns a
CreateOrganizationalUnitRequest instance.

Example 7.1. Creating an Organizational Unit Using the Curl Utility

Example JSON entity containing details of an organizational unit to be created:

Administration And Configuration Guide

42

Execute the following command:

For further information, refer to the Red Hat JBoss BPM Suite Development Guide, chapter Knowledge
Store REST API, section Organizational Unit Calls.

7.2. CREATING A REPOSITORY

There are three ways to create a repository: using the Administration perspective of Business
Central, the kie-config-cli tool or the REST API calls.

Creating a Repository in Business Central

IMPORTANT

Note that only users with the admin role can create repositories.

Procedure 7.2. Using Business Central to Create a Repository

1. In Business Central, go to Authoring → Administration.

2. On the perspective menu, click Repositories → New repository .

3. The New Repository pop-up window is displayed.

{
 "name" : "helloWorldUnit",
 "description" : "Organizational unit for the helloworldrepo
repository.",
 "owner" : "tester",
 "repositories" : ["helloworldrepo"]
}

curl -X POST 'localhost:8080/business-central/rest/organizationalunits/'
-u USERNAME:PASSWORD -H 'Accept: application/json' -H 'Content-Type:
application/json' -d
'{"name":"helloWorldUnit","description":"Organizational unit for the
helloworldrepo repository.","owner":"tester","repositories":
["helloworldrepo"]}'

CHAPTER 7. ASSET REPOSITORY

43

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.2/html/Development_Guide/chap-Remote_API.html#sect-Knowledge_Store_REST_API

Figure 7.2. New Repository Dialog Window

4. Specify the two mandatory parameters:

repository name

NOTE

Make sure that the repository name is a valid file name. Avoid using a space
or any special character that might lead to an invalid name.

organizational unit: specifies the location of the newly created repository.

5. Click Finish.

The new repository can be viewed either in the File Explorer or Project Explorer views.

Creating a Repository Using the kie-config-cli Tool
To create a new Git repository using the kie-config-cli tool, run the create-repo command. The
tool then guides you through the entire process of creating a repository by asking for other required
parameters. Type help for a list of all commands.

For more information about the kie-config-cli tool, see Chapter 4, Command line configuration.

Creating a Repository Using the REST API
To create a repository in the Knowledge Store, issue the POST REST API call. Details of the repository
are defined by the JSON entity. Make sure you established an authenticated HTTP session before
executing this call.

Input parameter is a RepositoryRequest instance. Returns a
CreateOrCloneRepositoryRequest instance.

Example 7.2. Creating a Repository Using the Curl Utility

Example JSON entity containing details of a repository to be created:

{
 "name" : "newRepository",
 "description" : "Repository for the Hello World project.",

Administration And Configuration Guide

44

Execute the following command:

For further information, refer to the Red Hat JBoss BPM Suite Development Guide, section Repository
Calls.

7.3. CLONING A REPOSITORY

It is possible to clone a repository either in Business Central or using the REST API calls. The kie-
config-cli tool cannot be used to clone arbitrary repositories - run git clone or one of the
following options instead.

Cloning a Repository in Business Central

IMPORTANT

Note that only users with the admin role can clone repositories.

Procedure 7.3. Using Business Central to Clone a Repository

1. In Business Central, go to Authoring → Administration.

2. On the perspective menu, choose Repositories → Clone repository.

3. The Clone Repository pop-up window is displayed.

 "userName" : null,
 "password" : null,
 "gitURL" : null,
 "requestType" : "new",
 "organizationalUnitName" : "helloWorldUnit"
}

curl -X POST 'localhost:8080/business-central/rest/repositories/' -u
USERNAME:PASSWORD -H 'Accept: application/json' -H 'Content-Type:
application/json' -d '{"name":"newRepository","description":"Repository
for the Hello World
project.","username":null,"password":null,"requestType":"new","gitURL":n
ull,"organizationalUnitName":"helloWorldUnit"}'

CHAPTER 7. ASSET REPOSITORY

45

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.2/html/Development_Guide/chap-Remote_API.html#sect-Knowledge_Store_REST_API

Figure 7.3. Clone Repository Dialog Window

4. In the Clone Repository dialog window, enter the repository details:

a. Enter the Repository Name to be used as the repository identifier in the Asset
repository and select the Organizational Unit it should be added to.

b. Enter the URL of the Git repository:

for a local repository, use file:///PATH_TO_REPOSITORY/REPOSITORY_NAME;

for a remote or preexisting repository, use
https://github.com/USERNAME/REPOSITORY_NAME.git or
git://HOST_NAME/REPOSITORY_NAME.

Administration And Configuration Guide

46

IMPORTANT

It is important to use the HTTPS or Git protocol instead of a SCP-style
SSH URL. Business Central does not support the basic SSH URL and
fails with Invalid URL format.

NOTE

The file protocol is only supported for READ operations. WRITE operations
are not supported.

c. If applicable, enter the User Name and Password of your Git account to be used for
authentication.

5. Click Clone.

6. A confirmation prompt with the notification that the repository was created successfully is
displayed. After clicking Ok, the repository is being indexed. Some workbench features may be
unavailable until indexing has completed.

The cloned repository can be viewed either in the File Explorer or Project Explorer.

Cloning a Repository Using the REST API
To clone a repository, issue the POST REST API call. This call creates or clones (according to the value
of the requestType parameter) the repository defined by the JSON entity.

Input parameter is a RepositoryRequest instance. Returns a
CreateOrCloneRepositoryRequest instance.

Example 7.3. Cloning a Repository Using the Curl Utility

Example JSON entity containing details of a repository to be cloned:

Execute the following command:

{
 "name" : "clonedRepository",
 "description" : null,
 "userName" : null,
 "password" : null,
 "requestType" : "clone",
 "gitURL" : "git://localhost:9418/example-repository",
 "organizationalUnitName" : "helloWorldUnit"
}

curl -X POST 'localhost:8080/business-central/rest/repositories/' -u
USERNAME:PASSWORD -H 'Accept: application/json' -H 'Content-Type:
application/json' -d
'{"name":"clonedRepository","description":null,"username":null,"password
":null,"requestType":"clone","gitURL":"git://localhost:9418/example-
repository","organizationalUnitName":"helloWorldUnit"}'

CHAPTER 7. ASSET REPOSITORY

47

For further information, refer to the Red Hat JBoss BPM Suite Development Guide, section Repository
Calls.

7.4. REMOVING A REPOSITORY

Repositories can be removed using any of the following procedures.

Removing a Repository in Business Central
The simplest way to remove a repository is using the RepositoryEditor in Business Central.

Procedure 7.4. Using Business Central to Remove a Repository

1. In Business Central, go to Authoring → Administration.

2. Select Repositories from the tree menu on the left.

3. In the RepositoryEditor on the right side of the page, locate the repository you want to delete
from the list of available repositories.

4. From the drop-down menu, select master and click Delete.

5. The following message will appear:

Are you sure you want to remove Repository "REPOSITORY_NAME"? Some
editors may become inoperable if their content is inaccessible.

Press OK to delete the repository.

Removing a Repository Using the kie-config-cli Tool
Repositories can be removed using the kie-config-cli tool as well. To do so, run the remove-repo
command.

For further information about the kie-config-cli tool, see Chapter 4, Command line configuration.

Removing a Repository Using the REST API
To remove a repository from the Knowledge Store, issue the DELETE REST API call. Make sure you
established an authenticated HTTP session before executing this command.

Returns a RemoveRepositoryRequest instance.

Example 7.4. Removing a Repository Using the Curl Utility

Execute the following command:

More information about repository calls to the Knowledge Store can be found in Red Hat JBoss BPM
Suite Development Guide, section Repository Calls.

7.5. MANAGING ASSETS

curl -X DELETE 'localhost:8080/business-
central/rest/repositories/REPOSITORY_NAME' -u USERNAME:PASSWORD -H
'Accept: application/json' -H 'Content-Type: application/json'

Administration And Configuration Guide

48

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.2/html/Development_Guide/chap-Remote_API.html#sect-Knowledge_Store_REST_API
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.2/html/Development_Guide/chap-Remote_API.html#sect-Knowledge_Store_REST_API

NOTE

The content in this section is classified as Technical Preview for the 6.1 release of Red
Hat JBoss BPM Suite. It is provided as is and no support is provided.

To activate and use the featured described here, you will need to login to Business
Central with a user that has been given the special role of kiemgmt.

To make management of projects easier, Red Hat JBoss BPM Suite now provides a way to manage
multiple projects based on standards. This allows you to create repository structures using industry
standard best practices for maintenance, versioning and distribution of your projects.

To start with, repositories can now be managed or unmanaged.

Managed and Unmanaged Repositories
Unmanaged Repositories are the repository structures that you are used to. They can contain multiple
unrelated projects.

Managed Repositories, on the other hand, provide version control at the project level and project
branches for managing the release cycle. Further, Managed Repositories can be restricted to just a
single project or encompass multiple projects. When a Managed Repository is created the asset
management configuration process is automatically launched in order to create the repository
branches, and the corresponding project structure is also created.

To create a Managed or Unmanaged Repository, open up the screen for creating a new repository. This
is achieved by going to Authoring → Administration and then clicking on Repositories → New
Repository. This will bring up the New Repository screen.

CHAPTER 7. ASSET REPOSITORY

49

The Unmanaged Repository creation is the same as before; Enter the name of the repository and
select the organizational unit that it belongs to and click the Finish button.

To create a Managed Repository, select the Managed Repository checkbox, after giving the
repository a name and the organizational unit it belongs to. Click the Next button to enter details of
this Managed Repository.

Select the Single Project label if the project you are creating is a simple project and is self-
contained. Enter the details of the managed project, along with the GAV details. You will not be able to
add more projects to this repository later.

For more complex projects, where there is likely to be a parent project that encompasses other
smaller projects, select the Multi-Project repository. All Projects created in a multi-project
repository will be managed together, with their version numbers being incremented together as well.
Also enter the details of the parent project and the GAV, which will be inherited by all future projects
that you create in this Managed Repository.

Managed Branches
With Managed Repositories comes the added advantage of Managed Branches. As in GIT, you can
choose to work on different branches of your project (for example: master, dev and release). This
process of branching can also be automated for you, by selecting the checkbox while creating a new
Managed Repository (for both single and multi-projects).

Administration And Configuration Guide

50

You can switch between branches by selecting the desired branch while working in the Project
Explorer.

Repository Structure
If you don't select automatic branch management while creating a repository, you can create branches
manually afterwards. For Managed Repositories, you can do so by using the Configure button. This
button, along with Promote and Release buttons, is provided in the Repository Structure view.
You can access this view, by clicking on Repository → Repository Structure in the Project Explorer
perspective menu.

Clicking on the Configure button allows you to create branches or edit automatically created ones.

CHAPTER 7. ASSET REPOSITORY

51

You can promote assets from the master branch to other branches using the Promote button.
Similarly, you can Release branches and deploy them on the server using the Release button.

Both these functions are controlled internally by the use of pre-defined processes that are deployed on
your instance. For example, when you click on Promote button after having done work on your
development branch, a Promote Changes process is started in the background. A user, with the role of
kiemgmt will have a user task appear in this task list to review the assets being promoted. This user
can claim this task, and decide to promote all, some or none of the assets. The underlying process will
cherry-pick the commits selected by the user to a release branch. This user can also request another
review of these assets and this process can be repeated multiple times till all the assets are ready for
release. The flow for this process is shown below:

Administration And Configuration Guide

52

Similarly, when you click on the Release button, a release process flow is initiated. This process flow
builds the project and updates all the Maven artifacts to the next version, and deploys the project to
the runtime, if runtime deployment details are supplied.

WARNING

Project branches to be released, must start with the keyword release

.

CHAPTER 7. ASSET REPOSITORY

53

7.6. MAVEN REPOSITORY

Maven is a software project management tool which uses a project object model (POM) file to manage:

Builds

Documentation

Reporting

Administration And Configuration Guide

54

Dependencies

Releases

SCMs

Distribution

A Maven repository is used to hold or store the build artifacts and project dependencies and is
generally of two types:

Local: refers to a local repository where all the project dependencies are stored and is located
with the current installation in the default folder as "m2". It is a cache of the remote
downloads, and also contains the temporary build artifacts which have not yet been released.

Remote: refers to any other type of repository that can be accessed by a variety of protocols
such as file:// or http://. These repositories can be at a remote location set up by a third-party
for downloading of artifacts or an internal repository set up on a file or HTTP server, used to
share private artifacts between the development teams for managing internal releases.

7.7. CONFIGURING DEPLOYMENT TO A REMOTE NEXUS REPOSITORY

Nexus is a repository manager frequently used in organizations to centralize storage and management
of software development artifacts. It is possible to configure your project so that artifacts produced by
every build are automatically deployed to a repository on a remote Nexus server.

To configure your project to deploy artifacts to a remote Nexus repository, add a
distributionManagement element to your project's pom.xml file as demonstrated in the code
example below.

Replace the URLs in the example with real URLs of your Nexus repositories. The repository specified in
the snapshotRepository element is used when the -SNAPSHOT qualifier is appended to the
project's current version number. In other cases the repository specified in the repository element
is used.

If your Nexus server requires authentication, you will also need to modify your projects Maven settings
to add your credentials in the settings-security.xml file, using a master password. By default,
this file is in ~/.m2 folder, unless you have changed its location by modifying the
kie.maven.settings.custom system property.

<distributionManagement>
 <repository>
 <id>deployment</id>
 <name>Internal Releases</name>

<url>http://your_nexus_host:8081/nexus/content/repositories/releases</url>
 </repository>
 <snapshotRepository>
 <id>deployment</id>
 <name>Internal Releases</name>

<url>http://your_nexus_host:8081/nexus/content/repositories/snapshots/</ur
l>
 </snapshotRepository>
</distributionManagement>

CHAPTER 7. ASSET REPOSITORY

55

IMPORTANT

Note that keeping your server authentication credentials (for example the passwords)
as a plain text in the settings.xml file is not recommended. All the information should
be hashed with a master password in the settings-security.xml file.

With this configuration in place, clicking the Build & Deploy button in Business Central executes a
Maven build and deploys the built artifacts both to the local repository and to one of the Nexus
repositories specified in the pom.xml file.

7.8. SYSTEM CONFIGURATION

In JBoss EAP, to change a Business Central property, such as the configuration for SSH, do the
following:

Procedure 7.5. Changing System Properties

1. Edit the file $JBOSS_HOME/domain/configuration/host.xml

2. Locate the XML elements server that belong to the main-server-group and add the system
property. For example:

Here is a list of all the available system properties:

org.uberfire.nio.git.dir: Location of the directory .niogit. Default: working directory

org.uberfire.nio.git.daemon.enabled: Enables/disables GIT daemon. Default: true

org.uberfire.nio.git.daemon.host: If GIT daemon enabled, uses this property as the
localhost identifier. Default: localhost

org.uberfire.nio.git.daemon.port: If GIT daemon is enabled, uses this property as the
port number. Default: 9418

org.uberfire.nio.git.ssh.enabled: Enables/Disables SSH daemon. Default: true

org.uberfire.nio.git.ssh.host: If SSH daemon is enabled, uses this property as the
localhost identifier. Default: localhost

<servers>
 <server>
 <id>deployment</id>
 <username>admin</username>
 <password>admin.123</password>
 </server>
</servers>

<system-properties>
 <property name="org.uberfire.nio.git.dir" value="..." boot-
time="false"/>
 ...
</system-properties>

Administration And Configuration Guide

56

org.uberfire.nio.git.ssh.port: If SSH daemon is enabled, uses this property as the
port number. Default: 8001

org.uberfire.nio.git.ssh.cert.dir: Location of the .security directory where local
certificates will be stored. Default: working directory

org.uberfire.metadata.index.dir: Location of the .index folder for Lucene. Default:
working directory

org.uberfire.cluster.id: Name of the Helix cluster, for example: kie-cluster

org.uberfire.cluster.zk: Connection string to Zookeeper. This is of the form
host1:port1,host2:port2,host3:port3. For example: localhost:2188.

org.uberfire.cluster.local.id: Unique id of the Helix cluster node. Note that ':' is
replaced with '_'. For example: node1_12345.

org.uberfire.cluster.vfs.lock: Name of the resource defined on the Helix cluster, for
example: kie-vfs

org.uberfire.cluster.autostart: Delays VFS clustering until the application is fully
initialized to avoid conflicts when all cluster members create local clones. Default: false

org.uberfire.sys.repo.monitor.disabled: Disable configuration monitor (do not
disable unless you know what you're doing). Default: false

org.uberfire.secure.key: Secret password used by password encryption. Default:
org.uberfire.admin

org.uberfire.secure.alg: Crypto algorithm used by password encryption. Default:
PBEWithMD5AndDES

org.guvnor.m2repo.dir: Place where Maven repository folder will be stored. Default:
working-directory/repositories/kie

org.kie.example.repositories: Folder from where demo repositories will be cloned. The
demo repositories need to have been obtained and placed in this folder. This system property
takes precedence over org.kie.demo and org.kie.example properties. Default: Not used.

org.kie.demo: Enables external clone of a demo application from GitHub. This system
property takes precedence over org.kie.example. Default: true.

org.kie.example: Enables example structure composed by Repository, Organization Unit
and Project. Default: false

CHAPTER 7. ASSET REPOSITORY

57

CHAPTER 8. PROCESS EXPORT AND IMPORT

8.1. CREATING A PROCESS DEFINITION

Make sure you have logged in to JBoss BPM Suite or you are in JBoss Developer Studio with the
repository connected.

To create a Process, do the following:

1. Open the Project Authoring perspective (Authoring → Project Authoring).

2. In Project Explorer (Project Authoring → Project Explorer), navigate to the project
where you want to create the Process definition (in the Project view, select the respective
repository and project in the drop-down lists; in the Repository view, navigate to
REPOSITORY/PROJECT/src/main/resources/ directory).

NOTE

It is recommended to create your resources, including your Process definitions,
in a package of a Project to allow importing of resources and their referencing.
To create a package, do the following:

In the Repository view of the Project Explorer, navigate to the
REPOSITORY/PROJECT/src/main/resources/ directory.

Go to New Item → Package.

In the New resource dialog, define the package name and check the
location of the package in the repository.

3. From the perspective menu, go to New Item → Business Process.

4. In the New Processes dialog box, enter the Process name and click OK. Wait until the Process
Editor with the Process diagram appears.

8.2. IMPORTING A PROCESS DEFINITION

To import an existing BPMN2 or JSON definition, do the following:

1. In the Project Explorer, select a Project and the respective package to which you want to
import the Process definition.

2. Create a new Business Process to work in by going to New Item → Business Process.

3. In the Process Designer toolbar, click the Import icon in the editor toolbar and pick
the format of the imported process definition. Note that you have to choose to overwrite the
existing process definition in order to import.

4. From the Import window, locate the Process file and click Import.

Administration And Configuration Guide

58

Figure 8.1. Import Window

Whenever a process definition is imported, the existing imported definition is overwritten. Make sure
you are not overwriting a process definition you have edited so as not to lose any changes.

A process can also be imported to the git repository in the filesystem by cloning the repository, adding
the process files, and pushing the changes back to git. In addition to alternative import methods, you
can copy and paste a process or just open a file in the import dialog.

When importing processes, the Process Designer provides visual support for Process elements and
therefore requires information on element positions on the canvas. If the information is not provided in
the imported Process, you need to add it manually.

8.3. IMPORTING JPDL 3.2 TO BPMN2

To migrate and import a jPDL definition to BPMN2, in the Process Designer, click on the import button
then scroll down and select Migrate jPDL 3.2 to BPMN2.

Figure 8.2. Migrate jPDL 3.2 to BPMN2

In the Migrate to BPMN2 dialog box, select the process definition file and the name of the gpd file.
Confirm by clicking the Migrate button.

CHAPTER 8. PROCESS EXPORT AND IMPORT

59

Figure 8.3. Migrate to BPMN2 dialog box

IMPORTANT

The migration tool for jPDL 3.2 to BPMN2 is a technical preview feature, and therefore
not currently supported in Red Hat JBoss BPM Suite.

8.4. EXPORTING A PROCESS

Procedure 8.1. Exporting a business process

To export a business process, do the following:

1. Open the Project Authoring perspective: on the main menu, click Authoring → Project
Authoring.

2. Select the business process which is to be exported, to view it in the Process Designer.

3. Click on the () button of the process designer toolbar and select View Process
Sources from the drop-down options.

4. The Process Sources window is displayed

5. Click on the Download BPMN2 button and save the business process at the desired location.

Administration And Configuration Guide

60

PART III. INTEGRATION

PART III. INTEGRATION

61

CHAPTER 9. DEPLOYING RED HAT JBOSS BPM SUITE
ARTIFACTS TO SOA REPOSITORY ARTIFACT MODEL AND
PROTOCOL (S-RAMP) REPOSITORY
While Red Hat JBoss BPM Suite and S-RAMP are two independent products, it is possible to move
artifacts between them. You can move artifacts from JBoss BPM Suite to S-RAMP using Maven or via a
user interface.

This section provides information about these two processes.

9.1. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO SOA
REPOSITORY ARTIFACT MODEL AND PROTOCOL (S-RAMP) USING
MAVEN

Before you can deploy Red Hat JBoss BPM Suite artifacts to S-RAMP using Maven, you will need to
enable the S-RAMP Maven Wagon. The Maven Wagon is a key feature that supports the S-RAMP Atom
based REST API protocol. By enabling the S-RAMP Maven Wagon, users will be able to access artifacts
from the S-RAMP repository as dependencies in a Maven project.

Enable the S-RAMP Maven Wagon by making an edit in the pom.xml file as shown below:

Once the S-RAMP Maven Wagon is enabled, you can deploy the JBoss BPM Suite artifacts to that S-
RAMP repository. To do this, follow the steps below:

1. Clone the git repository where you have saved the BPM Suite project by running this
command:

2. On the command line, move into the folder that contains the project.

3. Follow the instructions in Red Hat JBoss Fuse Service Works 6 Development Guide, Volume 3:
Governance, section Deploying to S-RAMP. Use the URL from the example below:

<build>
 <extensions>
 <extension>
 <groupId>org.overlord.sramp</groupId>
 <artifactId>s-ramp-wagon</artifactId>
 <version>${s-ramp-wagon.version}</version>
 </extension>
 </extensions>
</build>

git clone http://localhost:8001/REPOSITORY_NAME

<distributionManagement>
 <repository>
 <id>local-sramp-repo</id>
 <name>S-RAMP Releases Repository</name>
 <url>sramp://S-RAMP_SERVER_URL/s-ramp-server/</url>
 </repository>
 <snapshotRepository>
 <id>local-sramp-repo-snapshots</id>
 <name>S-RAMP Snapshots Repository</name>

Administration And Configuration Guide

62

With these settings, Maven deployments are sent directly to the S-RAMP repository using the
S-RAMP API. Note that artifacts are added to the S-RAMP repository with an artifact type
based on the Maven type of the project. You can override this behavior by adding a query
parameter to the repository URL in the pom.xml file. For example:

The above example causes the Maven artifact to be uploaded with an S-RAMP artifact type of
KieJarArchive.

4. Amend the maven plug-in in file pom.xml and add a dependency to it as follows in case the
project does not contain decision tables:

If the project contains decision tables, use this dependency for the kie-maven-plugin instead:

 <url>sramp://S-RAMP_SERVER_URL/s-ramp-server/</url>
 </snapshotRepository>
</distributionManagement>

<distributionManagement>
 <repository>
 <id>local-sramp-repo</id>
 <name>S-RAMP Releases Repository</name>
 <url>sramp://S-RAMP_SERVER_URL/s-ramp-server/?
artifactType=KieJarArchive</url>
 </repository>
</distributionManagement>

<plugins>
 <plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <version>6.0.2-redhat-6</version>
 <extensions>true</extensions>
 <dependencies>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-bpmn2</artifactId>
 <version>6.0.2-redhat-6</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>

<plugins>
 <plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <version>6.0.2-redhat-6</version>
 <extensions>true</extensions>
 <dependencies>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-decisiontables</artifactId>
 <version>6.0.2-redhat-6</version>
 </dependency>

CHAPTER 9. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO SOA REPOSITORY ARTIFACT MODEL AND PROTOCOL (S-RAMP) REPOSITORY

63

5. Run a clean Maven deployment using the following command:

.

NOTE

For the Maven deployment to the S-RAMP repository, it is necessary to have credentials
set in the settings.xml file. For further details on the credentials, refer to Red Hat
JBoss Fuse Service Works (FSW) documentation on Authentication.

9.2. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO SOA
REPOSITORY ARTIFACT MODEL AND PROTOCOL (S-RAMP) USING
GRAPHICAL USER INTERFACE (GUI)

To deploy Red Hat JBoss BPM Suite artifacts to a S-RAMP repository using the user interface, do the
following:

1. In a web browser, navigate to http://localhost:8080/s-ramp-ui/. If the user interface has been
configured to run from a domain name, substitute localhost for the domain name. For
example http://www.example.com:8080/s-ramp-ui/.

2. Click on Artifacts.

3. In the Manage Artifacts section, select Import.

4. Locate the kie archive you want to deploy. In the dialog that opens, fill out KieJarArchive as
the type, and select Import.

5. The deployment then creates these entries in the S-RAMP repository:

KieJarArchive, from which it derives:

KieXmlDocument (if the archive contains kmodule.xml)

BpmnDocument (if the archive contains bpmn definitions)

DroolsDocument (if the archive contains drl definitions)

 </dependencies>
 </plugin>
 </plugins>

mvn -s sramp-settings.xml deploy

Administration And Configuration Guide

64

http://localhost:8080/s-ramp-ui/
http://www.example.com:8080/s-ramp-ui/

CHAPTER 10. INTEGRATING RED HAT JBOSS BPM SUITE WITH
RED HAT JBOSS FUSE
Red Hat JBoss Fuse integration allows users of JBoss Fuse to complement their integration solution
with additional features provided by JBoss BPM Suite and JBoss BRMS.

Red Hat JBoss BPMS integration is provided by two features.xml files:

drools-karaf-features-<version>-features.xml

This file provides core JBoss BPM Suite and JBoss BRMS features, which defines the OSGi
features that can be deployed into JBoss Fuse. This file is a part of the JBoss BPM Suite and
JBoss BRMS product. OSGi users can install features from this file in order to install JBoss
BRMS engine or JBoss BPM Suite engine into Fuse and use it in their applications.

karaf-features-<version>-features.xml

This file provides additional features used for integrating JBoss BPM Suite and JBoss BRMS
with Camel, primarily in Fuse. This file is part of the Integration Pack and it defines OSGi
features that enable integration with Camel and SwitchYard. In addition to the karaf-features
xml, the Integration Pack also contains a features.xml file for quickstarts.

10.1. CORE JBOSS BPM SUITE AND JBOSS BRMS FEATURES

Core JBoss BPM Suite and JBoss BRMS features are provided by the drools-karaf-features-
<version>-features.xml file present in your product Maven repository or the jboss-brms-
bpmsuite<version>-redhat<version>fuse-features.zip file. It provides the following
features:

drools-common

drools-module

drools-templates

drools-decisiontable

drools-jpa

kie

kie-ci

kie-spring

kie-aries-blueprint

jbpm-commons

jbpm-human-task

jbpm

droolsjbpm-hibernate

h2

CHAPTER 10. INTEGRATING RED HAT JBOSS BPM SUITE WITH RED HAT JBOSS FUSE

65

The following table provides example of use cases for some of the features listed above.

Table 10.1. Features and Use Case Examples

Feature Use Case

drools-module Use the JBoss BRMS engine for rules evaluation,
without requiring persistence, processes, or decision
tables.

drools-jpa Use the JBoss BRMS engine for rules evaluation
with persistence and transactions, but without
requiring processes or decision tables. The
drools-jpa feature already includes drools-
module, however you may also need to install the
droolsjbpm-hibernate feature, or ensure
there is a compatible hibernate bundle installed.

drools-decisiontable Use the JBoss BRMS engine with decision tables.

jbpm Use the JBoss BPM Suite (or JBoss BRMS engine
with processes). The jbpm feature already includes
drools-module and drools-jpa. You may also
need to install the droolsjbpm-hibernate
feature, or ensure that there is a compatible
hibernate bundle installed.

jbpm and jbpm-human-task Use the JBoss BPM Suite (or JBoss BRMS engine
with processes) with Human Task.

Core engine jars and kie-ci. Use JBoss BRMS or JBoss BPM Suite with
KieScanner (KIE-CI) to download kJARs from a
Maven repository.

kie-spring Use KIE-Spring integration.

kie-spring and kie-aries-blueprint. Use KIE-Aries-Blueprint integration.

10.2. ADDITIONAL FEATURES FOR SWITCHYARD AND CAMEL
INTEGRATION

The following additional features for integration with SwitchYard and Camel on JBoss Fuse are
provided by the integration pack:

fuse-bxms-switchyard-common-knowledge

fuse-bxms-switchyard-rules

fuse-bxms-switchyard-bpm

kie-camel

Administration And Configuration Guide

66

jbpm-workitems-camel

The integration pack features are defined in the karaf-features-<version>-features.xml file.
This file (and supporting repositories) is located in
http://repository.jboss.org/nexus/content/repositories/public, which is already configured for use on
JBoss Fuse 6.2 out of the box in installDir/etc/org.ops4j.pax.url.mvn.cfg.

The file can also be downloaded from either the JBoss Fuse 6.2 or JBoss BPM Suite product page in
the Red Hat Customer Portal.

10.3. INSTALL/UPDATE CORE INTEGRATION FEATURES

NOTE

This section refers to features in the drools-karaf-features-<version>-
features.xml file. For additional integration features, refer to Section 10.4, “Install
Additional Integration Features”.

If you have already installed an older version of the core JBoss BPM Suite and JBoss BRMS features
(for example, drools-karaf-features-6.2.0.Final-redhat-6-features.xml), you need to
remove them and all associated files before installing the most recent features.xml file.

Procedure 10.1. Removing an Existing drools-karaf-features Installation

1. Start the Fuse console using:

2. Unistall old features/apps that used the previous features.xml file. For example:

3. Search for references of bundles using drools/kie/jbpm and remove them:

To remove the bundles:

4. Remove the old drools-karaf-features url:

5. Restart Fuse.

$./installDir/bin/fuse

JBossFuse:karaf@root> features:uninstall drools-module
JBossFuse:karaf@root> features:uninstall jbpm
JBossFuse:karaf@root> features:uninstall kie-ci

karaf@root> list -t 0 -s | grep drools
karaf@root> list -t 0 -s | grep kie
karaf@root> list -t 0 -s | grep jbpm

karaf@root> osgi:uninstall <BUNDLE_ID>

karaf@root> features:removeurl mvn:org.drools/drools-karaf-
features/6.2.0.Final-redhat-<version>/xml/features

CHAPTER 10. INTEGRATING RED HAT JBOSS BPM SUITE WITH RED HAT JBOSS FUSE

67

http://repository.jboss.org/nexus/content/repositories/public

To install the drools-karaf-features:

Procedure 10.2. Install core JBoss BPM Suite and JBoss BRMS features

1. Configure required repositories

a. Edit the installDir/etc/org.ops4j.pax.url.mvn.cfg file in your JBoss Fuse
installation and add the following entry to the
org.ops4j.pax.url.mvn.repositories variable, noting that entries are separated by
‘, \’:

http://maven.repository.redhat.com/product-ga/@id=bxms-product-repo

2. Start JBoss Fuse:

3. Add a reference to the core features file by running the following console command:

For example:

4. You can now install the features provided by this file by running, for example, the following
console command:

10.4. INSTALL ADDITIONAL INTEGRATION FEATURES

Use the following procedure for additional integration with SwitchYard and Camel.

Procedure 10.3. SwitchYard and Camel Integration

1. Download the fuse-integration package that is aligned with your version of JBoss Fuse.

NOTE

For instance, if you want to use the 6.2.0.redhat-117 version of JBoss Fuse, you
need to install the fuse-6.2.0.redhat-117 JBoss Fuse integration features

2. Add the Remote Maven Repository that contains the fuse dependencies to your karaf
instance:

Edit the Fuse_home/etc/org.ops4j.pax.url.mvn.cfg

3. Update the Drools features URL:

$./installDir/bin/fuse

JBossFuse:karaf@root> features:addurl mvn:org.drools/drools-karaf-
features/<version>/xml/features

features:addurl mvn:org.drools/drools-karaf-features/6.3.0.Final-
redhat-7/xml/features

JBossFuse:karaf@root> features:install jbpm

Administration And Configuration Guide

68

4. You can now install the features provided for SwitchYard and Camel integration by running,
for example, the following console command:

10.5. CONFIGURING DEPENDENCIES

When you configure KIE, JBoss BRMS, or Jboss BPM Suite in your application, you can follow one of
the following approaches to build your OSGi application bundles:

Bundle required dependencies into your application bundle. In this approach, you declare all
required artifacts as runtime dependencies in your pom.xml. Hence, you need not import the
packages that provide these artifacts that you have already added as dependencies.

Import the required dependencies into the application bundle. This is a preferred approach for
building OSGi bundles as it adheres to the principles of OSGi framework. In this approach, you
declare only the API jars (such as org.kie:kie-api) as dependencies in your application bundle.
You will need to install the required BRMS and BPM Suite bundles and then import them in
your application.

10.6. INSTALL JBOSS FUSE INTEGRATION QUICKSTART
APPLICATIONS

The following features for JBoss Fuse integration quickstart applications are provided by
org/jboss/integration/fuse/quickstarts/karaf-features/1.0.0.redhat-
<version>/karaf-features-1.0.0.redhat-<version>-features.xml:

fuse-bxms-switchyard-quickstart-bpm-service

fuse-bxms-switchyard-quickstart-rules-camel-cbr

fuse-bxms-switchyard-quickstart-rules-interview

fuse-bxms-switchyard-quickstart-rules-interview-container

fuse-bxms-switchyard-quickstart-rules-interview-dtable

fuse-bxms-switchyard-demo-library

fuse-bxms-switchyard-demo-helpdesk

fuse-bxms-camel-blueprint-drools-decision-table

JBossFuse:karaf@root> features:addurl
mvn:org.switchyard.karaf/mvn:org.switchyard.karaf/switchyard/<SWITCH
YARD_VERSION>/xml/core-features
JBossFuse:karaf@root> features:addurl mvn:org.drools/drools-karaf-
features/<DROOLS_VERSION>/xml/features
JBossFuse:karaf@root> features:addurl
mvn:org.jboss.integration.fuse/karaf-features/1.0.0.redhat-
<version>/xml/features

JBossFuse:karaf@root> features:install fuse-bxms-switchyard-rules
JBossFuse:karaf@root> features:install kie-camel
JBossFuse:karaf@root> features:install jbpm-workitems-camel

CHAPTER 10. INTEGRATING RED HAT JBOSS BPM SUITE WITH RED HAT JBOSS FUSE

69

fuse-bxms-camel-spring-drools-decision-table

fuse-bxms-jbpm-workitems-camel-quickstart

fuse-bxms-spring-jbpm-osgi-example

This file (and supporting repositories) is located in
http://repository.jboss.org/nexus/content/repositories/public, which is already configured for use on
JBoss Fuse 6.2 out of the box in installDir/etc/org.ops4j.pax.url.mvn.cfg.

Procedure 10.4. Installing the Quickstart Application

1. Add a reference to the features file by running the following console command:

2. You can now install the quickstart applications provided by this features file by running, for
example, the following console command:

Procedure 10.5. Downloading and Installing the Quickstart ZIP Files

1. Download the quickstart application ZIP file.

2. Unpack the contents of the quickstarts directory into your existing
installDir/quickstarts directory.

3. Unpack the contents of the system directory into your existing installDir/system
directory.

10.6.1. Testing Your First Quickstart Application

Procedure 10.6. Testing the Quickstart Application

1. Start JBoss Fuse:

2. Install and start the switchyard-bpm-service by running the following console command:

NOTE

Any dependent features specified by the application’s features file will be
installed automatically.

JBossFuse:karaf@root> features:addurl
mvn:org.jboss.integration.fuse.quickstarts/karaf-
features/1.0.0.redhat-<version>/xml/features

JBossFuse:karaf@root> features:install fuse-bxms-switchyard-
quickstart-bpm-service

$./installDir/bin/fuse

JBossFuse:karaf@root> features:install fuse-bxms-switchyard-
quickstart-bpm-service

Administration And Configuration Guide

70

http://repository.jboss.org/nexus/content/repositories/public

3. Submit a webservice request to invoke the SOAP gateway.

a. Open a terminal window and navigate to the associated quickstart directory that was
unpacked from the quickstart application ZIP file (in this case, switchyard-bpm-service).

b. Run the following command:

NOTE

You will need the following repositories configured in your settings.xml
file:

http://maven.repository.redhat.com/ga/

http://repository.jboss.org/nexus/content/repositories/public/

c. Run the following command:

4. You will receive the following response:

$ mvn clean install

$ mvn exec:java -Pkaraf

SOAP Reply:
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"><SOAP-
ENV:Header xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"/><soap:Body><ns2:sub
mitOrderResponse xmlns:ns2="urn:switchyard-quickstart:bpm-
service:1.0">
 <orderId>test1</orderId>
 <accepted>true</accepted>
 <status>Thanks for your order, it has been shipped!</status>
</ns2:submitOrderResponse></soap:Body></soap:Envelope>

CHAPTER 10. INTEGRATING RED HAT JBOSS BPM SUITE WITH RED HAT JBOSS FUSE

71

CHAPTER 11. INTEGRATING WITH SPRING

11.1. CONFIGURING RED HAT JBOSS BPM SUITE WITH SPRING

Refer to the Red Hat JBoss BPM Suite Installation Guide to download the Spring module. You will need
to download the generic deployable version of JBoss BPM Suite.

The Spring module is present in the jboss-bpms-engine.zip file and is called kie-spring-
VERSION-redhat-MINORVERSION.jar.

How you intend to use the Spring modules in your application affects how you configure them.

As a Self Managed Process Engine
This is the standard way to start using JBoss BPM Suite in your Spring application. You only configure
it once and run as part of the application. Using RuntimeManager API, perfect synchronization
between process engine and task service is managed internally and the end user does not have to deal
with the internal code to make these two work together.

As a Shared Task Service
When you use a single instance of a TaskService, you have more flexibility in configuring the task
service instance as it is independent of the RuntimeManager. Once configured it is then used by the
RuntimeManager when requested.

To create a RuntimeEnvironment from your Spring application, you can use the
org.kie.spring.factorybeans.RuntimeEnvironmentFactoryBean class. This factory class is
responsible for producing instances of RuntimeEnvironment that are consumed by
RuntimeManager upon creation. Illustrated below is a configured RuntimeEnvironment with the entity
manager, transaction manager, and resources for the class
org.kie.spring.factorybeans.RuntimeEnvironmentFactoryBean:

The following RuntimeEnvironment can be created or configured:

DEFAULT - default (most common) configuration for RuntimeManager

EMPTY - completely empty environment to be manually populated

DEFAULT_IN_MEMORY - same as DEFAULT but without persistence of the runtime engine

DEFAULT_KJAR - same as DEFAULT but knowledge asset are taken from KJAR identified by
releaseid or GAV

DEFAULT_KJAR_CL - build directly from classpath that consists kmodule.xml descriptor

<bean id="runtimeEnvironment"
class="org.kie.spring.factorybeans.RuntimeEnvironmentFactoryBean">
 <property name="type" value="DEFAULT"/>
 <property name="entityManagerFactory" ref="jbpmEMF"/>
 <property name="transactionManager" ref="jbpmTxManager"/>
 <property name="assets">
 <map>
 <entry key-ref="process"><util:constant static-
field="org.kie.api.io.ResourceType.BPMN2"/></entry>
 </map>
 </property>
</bean>

Administration And Configuration Guide

72

Depending upon the selected type, there are different mandatory properties that are required.
However, at least one of the following knowledge properties must be provided:

knowledgeBase

assets

releaseId

groupId, artifactId, version

Finally, for DEFAULT, DEFAULT_KJAR, DEFAULT_KJAR_CL types, persistence needs to be configured
in the form of values for entity manager factory and transaction manager. Illustrated below
is an example RuntimeManager for
org.kie.spring.factorybeans.RuntimeManagerFactoryBean:

<bean id="runtimeManager"
class="org.kie.spring.factorybeans.RuntimeManagerFactoryBean" destroy-
method="close">
 <property name="identifier" value="spring-rm"/>
 <property name="runtimeEnvironment" ref="runtimeEnvironment"/>
</bean>

CHAPTER 11. INTEGRATING WITH SPRING

73

CHAPTER 12. CDI INTEGRATION

12.1. CDI INTEGRATION

To make use of jbpm-kie-services in your system, you will need to provide some mbeans to satisfy all
dependencies of the services. There are several mbeans that depend on actual scenarios.

entity manager and entity manager factory

user group callback for human tasks

identity provider to pass authenticated user information to the services

When running in JEE environment, like JBoss Application Server, the mbean should satisfy all
requirements of the jbpm-kie-services

public class EnvironmentProducer {

 @PersistenceUnit(unitName = "org.jbpm.domain")
 private EntityManagerFactory emf;

 @Inject
 @Selectable
 private UserGroupCallback userGroupCallback;

 @Produces
 public EntityManagerFactory getEntityManagerFactory() {
 return this.emf;
 }

 @Produces
 @RequestScoped
 public EntityManager getEntityManager() {
 EntityManager em = emf.createEntityManager();
 return em;
 }

 public void close(@Disposes EntityManager em) {
 em.close();
 }

 @Produces
 public UserGroupCallback produceSelectedUserGroupCalback() {
 return userGroupCallback;
 }
 @Produces

 public IdentityProvider produceIdentityProvider {
 return new IdentityProvider() {
 // implement IdentityProvider
 };
 }
}

Administration And Configuration Guide

74

Then deployments/business-central.war/WEB-INF/beans.xml file may be configured to
change the current settings of the new usergroupcallback implementation.

NOTE

org.jbpm.services.task.identity.JAASUserGroupCallbackImpl is just an
example here to demonstrate the settings of the application server regardless of what it
actually is (LDAP, DB, etc).

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1_0.xsd">

<alternatives>
 <class>org.jbpm.services.task.identity.JAASUserGroupCallbackImpl</class>
</alternatives>

</beans>

CHAPTER 12. CDI INTEGRATION

75

CHAPTER 13. PERSISTENCE
The runtime data of the Process Engine can be persisted in data stores. The persistence mechanism
saves the data using marshalling: the runtime data is converted into a binary dataset and the dataset is
saved in the data storage.

Note that persistence is not configured by default and the engine runs without persistence.

NOTE

The runtime data is saved using marshalling (binary persistence). The marshalling
mechanism is a custom serialization mechanism.

Red Hat JBoss BPM Suite will persist the following when persistence is configured:

Session state: this includes the session ID, date of last modification, the session data that
business rules would need for evaluation, state of timer jobs.

Process instance state: this includes the process instance ID, process ID, date of last
modification, date of last read access, process instance start date, runtime data (the execution
status including the node being executed, variable values, etc.)and the eventtypes.

Work item runtime state: this includes the work item ID, creation date, name, process instance
ID, and the work item state itself.

Based on the persisted data, it is possible to restore the state of execution of all running process
instances in case of failure or to temporarily remove running instances from memory and restore them
later. By default, no persistence is configured.

To allow persistence, you need to add the jbpm-persistence jar files to the classpath of your application
and configure the engine to use persistence. The engine automatically stores the runtime state in the
storage when the engine reaches a safe point. Safe points are points where the process instance has
paused. When a process instance invocation reaches a safe point in the engine, the engine stores any
changes to the process instance as a snapshot of the process runtime data. However, when a process
instance is completed, the persisted snapshot of process instance runtime data is automatically
deleted.

If a failure occurs and you need to restore the engine runtime from the storage, the process instances
are automatically restored and their execution resumes so there is no need to reload and trigger the
process instances manually.

The runtime persistence data is to be considered internal to the engine. You should not access
persisted runtime data or modify them directly as this might have unexpected side effects.

To obtain information about the current execution state, refer to the history log. Query the database
for runtime data only if absolutely necessary.

13.1. SESSION

Sessions are persisted as SessionInfo entities. These persist the state of the runtime KIE session,
and store the following data:

Table 13.1.

Administration And Configuration Guide

76

Field Description Nullable

id primary key false

lastmodificationdate last saved to data store N/A

rulesbytearray binary dataset with session state
(binary blob

false

startdate session start

optlock version number used to lock
value for optimistic locking

13.2. PROCESS INSTANCE

Process instances are persisted as ProcessInstanceInfo entities, which persist the state of a
process instance on runtime and store the following data:

Table 13.2.

Field Description Nullable

instanceid primary key false

lastmodificationdate last saved to data store N/A

lastreaddate last read from data store N/A

processid ID of the process the instance is
based on

false

processinstancebytearray binary dataset with process
instance state (binary blob)

false

startdate Process instance start date

optlock version number used lock value
for optimistic locking

state Process instance state false

ProcessInstanceInfo has a 1:N relationship to the EventTypes entity.

The EventTypes entity contains the following data:

Table 13.3.

CHAPTER 13. PERSISTENCE

77

Field Description Nullable

instanceid reference to the Process
instance (foreign key to the
processinstanceinfo)

false

element text field related to an event the
Process instance has undergone

Pessimistic Locking Support
The default locking mechanism for persistence of processes is optimistic. With multi-thread high
concurrency to the same process instance, this locking strategy can result in bad performance.

With the release of the 6.1 version of Red Hat JBoss BPM Suite, this can be changed at runtime to allow
the user to set locking on a per process basis and to allow it to be pessimistic (the change can be made
at a per KIE Session level or Runtime Manager level as well and not just at the process level).

To set a process to use pessmistic locking, do this in the runtime environment:

13.3. WORK ITEM

Work Items are persisted as workiteminfo entities, which persist the state of the particular work
item instance on runtime and store the following data:

Table 13.4.

Field Description Nullable

workitemid primary key false

name work item name

processinstanceid parent Process instance id false

state integer representing work item
state

false

import org.kie.api.runtime.Environment;
import org.kie.api.runtime.EnvironmentName;
import org.kie.api.runtime.manager.RuntimeManager;
import org.kie.api.runtime.manager.RuntimeManagerFactory;

...

// here env is an instance of org.kie.api.runtime.Environment
env.set(EnvironmentName.USE_PESSIMISTIC_LOCKING, true);

// now create your Runtime Manager using this enviornment
RuntimeManager manager =
RuntimeManagerFactory.Factory.get().newPerRequestRuntimeManager(environmen
t);

Administration And Configuration Guide

78

optlock version number used lock value
for optimistic locking

workitembytearray binary dataset with work item
state (binary blob)

false

creationDate timestampe on which the work
item was created

false

Field Description Nullable

13.4. PERSISTENCE CONFIGURATION

13.4.1. Persistence configuration

Although persistence is not used by default, the dependencies needed are available in the runtime
directory as jar files .

Persistence is defined per session and you can define it either using the JBPMHelper class after you
create a session or using the JPAKnowledgeService to create your session. The latter option
provides more flexibility, while JBPMHelper has a method to create a session, and uses a
configuration file to configure this session.

13.4.2. Configuring persistence using JBPMHelper

To configure persistence of your session using JBPMHelper, do the following:

1. Define your application to use an appropriate JBPMHelper session construtor:

KieSession ksession = JBPMHelper.newKieSession(kbase);

KieSession ksession = JBPMHelper.loadKieSession(kbase, sessionId);

2. Configure the persistence in the jBPM.properties file.

Example 13.1. A sample jBPM.properties file with persistence for the in-memory H2
database

for creating a datasource
persistence.datasource.name=jdbc/jbpm-ds
persistence.datasource.user=sa
persistence.datasource.password=
persistence.datasource.url=jdbc:h2:tcp://localhost/~/jbpm-db
persistence.datasource.driverClassName=org.h2.Driver

for configuring persistence of the session
persistence.enabled=true
persistence.persistenceunit.name=org.jbpm.persistence.jpa
persistence.persistenceunit.dialect=org.hibernate.dialect.H2Dialec
t

for configuring the human task service
taskservice.enabled=true

CHAPTER 13. PERSISTENCE

79

Any invocations on the session will now trigger the persistance process.

Make sure the datasource is up and running on engine start. If you are running the in-memory H2
database, you can start the database from your application using the
JBPMHelper.startH2Server(); method call and register it with the engine using
JBPMHelper.setupDataSource(); method call.

13.4.3. Configuring persistence using JPAKnowledgeService

To create your knowledge session and configure its persistence using JPAKnowledgeService, do the
following:

1. Define your application to use the knowledge session created by JPAKnowledgeService:

Define the session based on a knowledge base, a knowledge session configuration, and an
environment. The environment must contain a reference to your Entity Manager Factory:

Define the session based on a specific session id.

2. Configure the persistence in the META-INF/persistence.xml file: configure JPA to use
Hibernate and the respective database.

Information on how to configure data source on your application server should be available in
the documentation delivered with the application server. For this information for JBoss
Enterprise Application Platform, see the Administration and Configuration Guide for this
product.

taskservice.datasource.name=org.jbpm.task
taskservice.transport=mina
taskservice.usergroupcallback=org.jbpm.task.service.DefaultUserGro
upCallbackImpl

// create the entity manager factory and register it in the
environment
EntityManagerFactory emf =
Persistence.createEntityManagerFactory(
"org.jbpm.persistence.jpa");
Environment env = KnowledgeBaseFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

// create a new knowledge session that uses JPA to store the
runtime state
KieSession ksession = JPAKnowledgeService.newKieSession(kbase,
null, env);
int sessionId = ksession.getId();

// invoke methods on your method here
ksession.startProcess("MyProcess");
ksession.dispose();

// recreate the session from database using the sessionId
ksession = JPAKnowledgeService.loadKieSession(sessionId, kbase,
null, env);

Administration And Configuration Guide

80

Example 13.2. A sample persistence.xml file with persistence for an H2 data source
jdbc/jbpm-ds

Any invocations on the session will now trigger the persistance process.

Make sure the datasource is up and running on engine start. If you are running the in-memory H2
database, you can start the database from your application using the
JBPMHelper.startH2Server(); method call and register it with the engine using
JBPMHelper.setupDataSource(); method call.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persistence
 version="1.0"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="org.jbpm.persistence.jpa" transaction-
type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>jdbc/jbpm-ds</jta-data-source>
 <mapping-file>META-INF/JBPMorm.xml</mapping-file>
 <class>org.drools.persistence.info.SessionInfo</class>

<class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</c
lass>
 <class>org.drools.persistence.info.WorkItemInfo</class>
 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="update"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.transaction.manager_lookup_class"

value="org.hibernate.transaction.BTMTransactionManagerLookup"/>
 </properties>
 </persistence-unit>
</persistence>

CHAPTER 13. PERSISTENCE

81

NOTE

If you are running JBoss BPM Suite in a simple Java environment, your data source
configuration will be similar to the following:

PoolingDataSource ds = new PoolingDataSource();
ds.setUniqueName("jdbc/jbpm-ds");
ds.setClassName("bitronix.tm.resource.jdbc.lrc.LrcXADataSource"
);
ds.setMaxPoolSize(3);
ds.setAllowLocalTransactions(true);
ds.getDriverProperties().put("user", "sa");
ds.getDriverProperties().put("password", "sasa");
ds.getDriverProperties().put("URL",
"jdbc:h2:tcp://localhost/~/jbpm-db");
ds.getDriverProperties().put("driverClassName",
"org.h2.Driver");
ds.init();

Administration And Configuration Guide

82

CHAPTER 14. TRANSACTIONS

14.1. TRANSACTIONS

The Process Engine supports JTA transactions: local transactions are only supported when using
Spring. Pure local transactions are not supported.

By default, each method invocation is considered a transaction. To change this behavior, for example,
to combine multiple commands into one transaction, you will need to specify transaction boundaries.

14.2. DEFINING TRANSACTIONS

To define a transaction, do the following:

1. Register the transaction manager in your environment.

Example 14.1. Code with transaction manager registration

2. Initialize the KieSession:

// create the entity manager factory
EntityManagerFactory emf =
EntityManagerFactoryManager.get().getOrCreate("org.jbpm.persistenc
e.jpa");
TransactionManager tm =
TransactionManagerServices.getTransactionManager();
Environment env = EnvironmentFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
env.set(EnvironmentName.TRANSACTION_MANAGER, tm);

// setup the runtime environment
RuntimeEnvironment environment =
RuntimeEnvironmentBuilder.Factory.get()
.newDefaultBuilder()
.addAsset(ResourceFactory.newClassPathResource("MyProcessDefinitio
n.bpmn2"), ResourceType.BPMN2)
 .addEnvironmentEntry(EnvironmentName.TRANSACTION_MANAGER, tm)

.addEnvironmentEntry(EnvironmentName.PERSISTENCE_CONTEXT_MANAGER,
new JpaProcessPersistenceContextManager(env))

.addEnvironmentEntry(EnvironmentName.TASK_PERSISTENCE_CONTEXT_MANA
GER, new JPATaskPersistenceContextManager(env))
 .get();

// get the KieSession
RuntimeManager manager =
RuntimeManagerFactory.Factory.get().newPerProcessInstanceRuntimeMana
ger(environment);
RuntimeEngine runtime =
manager.getRuntimeEngine(ProcessInstanceIdContext.get());
KieSession ksession = runtime.getKieSession();

CHAPTER 14. TRANSACTIONS

83

3. Define the transaction manager in jndi.properties.

Example 14.2. Definition of Bitronix transaction manager in jndi.properties

NOTE

To use a different JTA transaction manager, edit the
hibernate.transaction.manager_lookup_class, the transaction manager
property, in the persistence.xml file to load your transaction manager.

Example 14.3. JBoss Transaction Manager set as transaction manager

4. Define the start and the end of the transaction.

14.3. CONTAINER MANAGED TRANSACTIONS

In cases where JBoss BPM Suite is embedded inside an application that is in a container that can
manage transactions by itself (Container Managed Transactions - CMT), a special dedicated
transaction manager is provided using the
org.jbpm.persistence.jta.ContainerManagerTransactionManager class. This is because
the default implementation of the transaction manager in JBoss BPM Suite is based on the
UserTransaction class getting the transaction status. However, some application servers in a CMT
mode do not allow accessing the UserTransaction instance from JNDI.

Operations executed on this manager are all no-op because they can't affect the underlying CMT. The
ContainerManagedTransactionManager class expects that the transaction is always active
(returning ACTIVE to the getStatus() method).

java.naming.factory.initial=bitronix.tm.jndi.BitronixInitialContex
tFactory

<property
name="hibernate.transaction.manager_lookup_class"
value="org.hibernate.transaction.JBossTransactionManage
rLookup"/>

 // start the transaction
UserTransaction ut =
InitialContext.doLookup("java:comp/UserTransaction");
ut.begin();

// perform multiple commands inside one transaction
ksession.insert(new Person("John Doe"));
ksession.startProcess("MyProcess");

// commit the transaction
ut.commit();

Administration And Configuration Guide

84

NOTE

Even though the container manages transactions, the container should be made aware
of any exceptions that happen during process instance execution. Exceptions thrown by
the engine should be propagated up to the container to properly rollback transactions.

Configuring the Transaction Manager
To configure and use the ContainerManagedTransactionManager, it needs to be inserted into the
environment before you create or load a session:

Next setup the JPA Provider in your persistence.xml file. For example if using IBM WebSphere:

Disposing the KSession in a CMT
In a CMT, you should not dispose the ksession directly (by using the dispose() method). Doing so will
cause exceptions on transaction completion as the Process Engine needs to clean up the state after
the invocation has finished.

Instead, use the specialized class
org.jbpm.persistence.jta.ContainerManagedTransactionDisposeCommand's execute()
method. Using this command ensures that the ksession will be disposed when the transaction is
actually complete.

This method checks to see if the transaction is active. If it is, it delegates the actual disposal to the
afterDisposal phase of the transaction instead of executing it directly. If there is no active
transaction or if there is no active transaction, the ksession is disposed immediately.

 Environment env = EnvironmentFactory.newEnvironment();
 env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
 env.set(EnvironmentName.TRANSACTION_MANAGER, new
ContainerManagedTransactionManager());
 env.set(EnvironmentName.PERSISTENCE_CONTEXT_MANAGER, new
JpaProcessPersistenceContextManager(env));

<property name="hibernate.transaction.factory_class"
value="org.hibernate.transaction.CMTTransactionFactory"/>
<property name="hibernate.transaction.manager_lookup_class"
value="org.hibernate.transaction.WebSphereExtendedJTATransactionLookup"/>

CHAPTER 14. TRANSACTIONS

85

CHAPTER 15. LOGGING
The logging mechanism allows you to store information about the execution of a process instance. It is
provided by a special event listener that listens to the Process Engine for any relevant events to be
logged, so that the information can be stored separately from other non-log information stored either
in the server built-in database (h2) or a connected data source using JPA or Hibernate.

The jbpm-audit module provides the event listener and also allows you to store process-related
information directly in a database using JPA or Hibernate. The data of the following entities is stored
as follows:

Process instance as processinstancelog

Element instance as nodeinstancelog

Variable instance as variableinstancelog

Table 15.1. Fields of the ProcessInstanceLog table

Field Description Nullable

id The primary key of the log entity No

end_date The end date of the process
instance

Yes

processid The name (id) of the underlying
process

Yes

processinstanceid The id of the process instance No

start_date The start date of the process
instance

Yes

status The status of the process
instance

Yes

parentProcessInstanceId The process instance id of the
parent process instance if
applicable

Yes

outcome The outcome of the process
instance (details on the process
finish, such as error code)

Yes

Table 15.2. Fields of the NodeInstanceLog table

Field Description Nullable

id The primary key of the log entity No

log_date The date of the event Yes

Administration And Configuration Guide

86

nodeid The node id of the underlying
Process Element

Yes

nodeinstanceid The id of the node instance Yes

nodename The name of the underlying node Yes

processid The id of the underlying process Yes

processinstanceid The id of the parent process
instance

No

type The type of the event (0 = enter
event, 1 = exit event)

No

Field Description Nullable

Table 15.3. Fields of the VariableInstanceLog table

Field Description Nullable

id The primary key of the log entity No

log_date The date of the event Yes

processid The name (id) of the underlying
process

Yes

processinstanceid The id of the process instance No

value The value of the variable at log
time

Yes

variableid The variable id as defined in the
process definition

Yes

variableinstanceid The id of the variable instance Yes

outcome The outcome of the process
instance (details on the process
finish, such as error code)

Yes

If neccessary, define your own data model of custom information and use the process event listeners to
extract the information.

15.1. LOGGING EVENTS TO DATABASE

To log an event that occurs on runtime in a Process instance, an Element instance, or a variable
instance, you need to do the following:

CHAPTER 15. LOGGING

87

1. Map the Log classes to the data source, so that the given data source accepts the log entries.
On Red Hat JBoss EAP, edit the data source properties in the persistence.xml file.

Example 15.1. The ProcessInstanceLog, NodeInstanceLog and VariableInstanceLog
classes enabled for processInstanceDS

2. Register a logger on your Kie Session.

Example 15.2. Import the Loggers

Example 15.3. Registering a Logger to a Kie Session

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persistence version="1.0" xsi:schemaLocation=
 "http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/persistence">

 <persistence-unit name="org.jbpm.persistence.jpa">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>jdbc/processInstanceDS</jta-data-source>
 <class>org.drools.persistence.info.SessionInfo</class>

<class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</c
lass>
 <class>org.drools.persistence.info.WorkItemInfo</class>
 <class>org.jbpm.process.audit.ProcessInstanceLog</class>
 <class>org.jbpm.process.audit.NodeInstanceLog</class>
 <class>org.jbpm.process.audit.VariableInstanceLog</class>

 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="update"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.transaction.manager_lookup_class"

value="org.hibernate.transaction.BTMTransactionManagerLookup"/>
 </properties>
 </persistence-unit>
</persistence>

import org.jbpm.process.audit.AuditLogService;
import org.jbpm.process.audit.AuditLoggerFactory;
import org.jbpm.process.audit.AuditLoggerFactory.Type;
import org.jbpm.process.audit.JPAAuditLogService;
...

Administration And Configuration Guide

88

3. Optionally, call the method addFilter on the logger to filter out irrelevant information. Only
information accepted by all filters appears in the database.

4. Logger classes can be viewed in the Audit View:

15.2. LOGBACK FUNCTIONALITY

Red Hat JBoss BPM Suite provides logback functionality for logging configuration.

Accordingly, everything configured is logged to the Simple Logging Facade for Java SLF4J, which
delegates any log to Logback, Apache Commons Logging, Log4j or java.util.logging. Add a dependency
to the logging adaptor for your logging framework of choice. If you're not using any logging framework
yet, you can use Logback by adding this Maven dependency:

NOTE

slf4j-nop and slf4j-simple are ideal for a light environment.

@PersistenceUnit(unitName = PERSISTENCE_UNIT_NAME)
 private EntityManagerFactory emf;

 private AuditLogService auditLogService;
@PostConstruct
 public void configure() {

 auditLogService = new JPAAuditLogService(emf);
 ((JPAAuditLogService)
auditLogService).setPersistenceUnitName(PERSISTENCE_UNIT_NAME);

 if(emf == null) {
 ((JPAAuditLogService)
auditLogService).setPersistenceUnitName(PERSISTENCE_UNIT_NAME);
 }

 RuntimeEngine runtime =
singletonManager.getRuntimeEngine(EmptyContext.get());
 KieSession ksession = runtime.getKieSession();
 AuditLoggerFactory.newInstance(Type.JPA, ksession, null);

 }

<dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-audit</artifactId>
 <version>6.0.1.Final</version>
</dependency>

 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>1.x</version>
 </dependency>

CHAPTER 15. LOGGING

89

http://www.slf4j.org/

15.3. CONFIGURING LOGGING

To configure the logging level of the packages, create a logback.xml file in business-
central.war/WEB-INF/classes/logback.xml. To set the logging level of the org.drools
package to "debug" for verbose logging, you would need to add the following line to the file:

Similarly, you can configure logging for packages such as the following:

org.guvnor

org.jbpm

org.kie

org.slf4j

org.dashbuilder

org.uberfire

org.errai

etc...

If configuring with log4j, the log4j.xml can be located at business-central.war/WEB-
INF/classes/log4j.xml and can be configured in the following way:

NOTE

Additional logging can be configured in the individual container. To configure logging for
JBoss Enterprise Application Platform, please refer to the Red Hat JBoss Enterprise
Application Platform Administration and Configuration Guide.

15.4. MANAGING LOG FILES

<configuration>

 <logger name="org.drools" level="debug"/>

 ...

<configuration>

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <category name="org.drools">
 <priority value="debug" />
 </category>

 ...

</log4j:configuration>

Administration And Configuration Guide

90

Red Hat JBoss BPM Suite manages most of the required maintenance. Automatically cleaned runtime
data includes:

Process instances data, which is removed upon process instance completion.

Work items data, which is removed upon work item completion.

Task instances data, which is removed upon completion of a process to which given task
belongs.

Runtime data, which may not be automatically cleaned, includes session information data. This depends
on the selected runtime strategy:

Singleton strategy ensures that session information runtime data will not be automatically
removed.

Per request strategy allows automatic removal when a given request terminates.

Per process instances will be automatically removed when process instance mapped to a given
session completes or is aborted.

Red Hat JBoss BPM Suite does not remove executor request and error information.

In order not to lose track of process instances, Red Hat JBoss BPM Suite offers audit data tables.
These are used by default and keep track of the BPM Suite environment. JBoss BPM Suite offers two
ways of how to manage and maintain the audit data tables:

Automatic clean-up

Manual clean-up

15.4.1. Automatic Clean-Up

Automatic clean-up uses the LogCleanupCommand executor command, which consists of logic to
clean up all or selected data automatically. An advantage of the automatic clean-up method is the
ability to schedule repeated clean-ups by using reoccurring job feature of the JBoss BPM Suite
executor. This means that when one job completes, it provides information to the JBoss BPM Suite
executor if and when the next instance of this job should be executed. By default,
LogCleanupCommand is executed once a day but can be reconfigured to run on different intervals.

There are several important configuration options that can be used with the LogCleanupCommand
command:

Table 15.4. LogCleanupCommand parameters table

Name Description Is Exclusive

SkipProcessLo
g

Indicates if the clean-up of process instances, node
instances and variables log cleanup should be
omitted (default: false)

No, can be used with other
parameters

SkipTaskLog Indicates if the task audit and the task event log
clean-up should be omitted (default: false)

No, can be used with other
parameters

CHAPTER 15. LOGGING

91

SkipExecutorL
og

Indicates if the JBoss BPM Suite executor entries
clean-up should be omitted (default: false)

No, can be used with other
parameters

SingleRun Indicates if the job routine should run only once
(default: false)

No, can be used with other
parameters

NextRun Sets a date for the next run. For example, 12h is set
for jobs to be executed every 12 hours. If the option
is not given, the next job will run 24 hours after the
completion of the current job

Yes, cannot be used when the
OlderThanPeriod parameter is
used

OlderThan Causes logs older than the given date to be removed.
The date format is YYYY-MM-DD. Usually, this
parameter is used for single run jobs

Yes, cannot be used when the
NextRun parameter is used

OlderThanPeri
od

Causes logs older than the given timer expression
should be removed. For example, set 30d to remove
logs older than 30 day from current time

No, can be used with other
parameters

ForProcess Specifies process definition ID for which logs should
be removed

No, can be used with other
parameters

ForDeployment Specifies deployment ID for which logs should be
removed

No, can be used with other
parameters

EmfName Persistence unit name that shall be used to perform
operation deletion

N/A

Name Description Is Exclusive

NOTE

LogCleanupCommand does not remove any active instances, such as running process
instances, task instances, or executor jobs.

WARNING

While all audit tables have a time stamp, some may be missing other parameters,
such as process id, or deployment id. For that reason, it is recommended to use the
date parameter when managing the clean-up job routine.

15.4.2. Setting up Automatic Clean-up Job

To set up automatic clean-up job, do the following:

1. Open Business Central in your web browser (if running locally
http://localhost:8080/business-central) and log in as a user with the admin role.

Administration And Configuration Guide

92

2. Go to Deploy → Jobs.

3. Click on next to Action and select New Job .

4. Enter a name, due date and time. Enter the following into the Type text field:

5. Click on Add Parameter if you wish to use parameters listed above. In the key section, enter a
parameter name. In the value section, enter true or false, depending on the desired outcome.

6. Click Create to finalize the job creation wizard. You have successfully created an automatic
clean-up job.

15.4.3. Manual Clean-Up

You may make use of audit API to do the clean-up manually with more control over parameters and
thus more control over what will be removed. Audit API is divided into following areas:

Process audit, which is used to clean up process, node and variables logs, accessible in the
jbpm-audit module

Task audit, which is used to clean up tasks and task events, accessible in the jbpm-human-
task-audit module

Executor jobs, which is used to clean up executor jobs and errors, accessible in the jbpm-
executor module

Modules are sorted hierarchically and can be accessed as follows:

Several examples of manual clean-up follow:

Example 15.4. Removal of completed process instance logs

org.jbpm.executor.commands.LogCleanupCommand

org.jbpm.process.audit.JPAAuditLogService

org.jbpm.services.task.audit.service.TaskJPAAuditService

org.jbpm.executor.impl.jpa.ExecutorJPAAuditService

import org.jbpm.process.audit.JPAAuditLogService;
import
org.kie.internal.runtime.manager.audit.query.ProcessInstanceLogDeleteBui
lder;
import org.kie.api.runtime.process.ProcessInstance;

JPAAuditLogService auditService = new JPAAuditLogService(emf);
ProcessInstanceLogDeleteBuilder updateBuilder =
auditService.processInstanceLogDelete().status(ProcessInstance.STATE_COM
PLETED);
int result = updateBuilder.build().execute();

CHAPTER 15. LOGGING

93

Example 15.5. Task audit logs removal for the org.jbpm:HR:1.0 deployment

Example 15.6. Executor error and requests removal

NOTE

When removing executor entries, ensure that the error information is removed before
the request information because of constraints setup on database.

WARNING

Parts of the code utilize internal API. While this does not have any direct impact on
the functionality of our product, internal API is subject to change and Red Hat
cannot guarantee backward compatibility.

import org.jbpm.services.task.audit.service.TaskJPAAuditService;
import org.kie.internal.task.query.AuditTaskDeleteBuilder;

TaskJPAAuditService auditService = new TaskJPAAuditService(emf);
AuditTaskDeleteBuilder updateBuilder =
auditService.auditTaskDelete().deploymentId("org.jbpm:HR:1.0");
int result = updateBuilder.build().execute();

import org.jbpm.executor.impl.jpa.ExecutorJPAAuditService;
import
org.kie.internal.runtime.manager.audit.query.ErrorInfoDeleteBuilder;
import
org.kie.internal.runtime.manager.audit.query.RequestInfoLogDeleteBuilder
;

ExecutorJPAAuditService auditService = new ExecutorJPAAuditService(emf);
ErrorInfoDeleteBuilder updateBuilder =
auditService.errorInfoLogDeleteBuilder().dateRangeEnd(new Date());
int result = updateBuilder.build().execute();

RequestInfoLogDeleteBuilder updateBuilder2 =
auditService.requestInfoLogDeleteBuilder().dateRangeEnd(new Date());
result = updateBuilder.build().execute();

Administration And Configuration Guide

94

CHAPTER 16. LOCALIZATION AND CUSTOMIZATION

16.1. AVAILABLE LANGUAGES

The Red Hat JBoss BPM Suite web user interface can be viewed in multiple languages:

United States English (en_US)

Spanish (es_ES)

Japanese (ja_JP)

Chinese (zh_CN)

Portuguese (pt_BR)

French (fr_CA)

German (de_DE)

NOTE

If a language is not specified, US English is used by default.

16.2. CHANGING LANGUAGE SETTINGS

Changing the User Interface Language in Business Central
By default, Business Central uses the system locale. If you need to change it, then append the required
locale code at the end of the Business Central URL. For example, the following URL will set the locale
to Portuguese (pt_BR).

http://localhost:8080/business-central/?locale=pt_BR

Changing the User Interface Language in Dashbuilder
To change the user interface language in dashbuilder, do the following:

1. Log into the dashbuilder after the server has been successfully started by navigating to
http://localhost:8080/dashbuilder in a web browser.

2. Select the language of your choice by clicking on the available locales on the top center of the
dashbuilder user interface to change the language.

Setting a Default User Interface Language in Dashbuilder
Following is an example to set the default user interface language in dashbuilder:

Procedure 16.1. Setting the default language as French

1. Navigate to jboss-eap-6.4/standalone/configuration and define the following in the
standalone.xml file.

<system-properties>
 <property
name="org.jboss.dashboard.LocaleManager.installedLocaleIds"

CHAPTER 16. LOCALIZATION AND CUSTOMIZATION

95

http://localhost:8080/dashbuilder

value="en,es,de,fr,ja,pt,zh"/>
 <property
name="org.jboss.dashboard.LocaleManager.defaultLocaleId"
value="fr"/>
</system-properties>

2. The default user interface language of the dashbuilder is now set to French.

Defining the Installed Locales in Dashbuilder
Following is an example to define the installed locales in dashbuilder:

Procedure 16.2. Defining the installed locale

Navigate to jboss-eap-6.4/standalone/configuration and define the following in the
standalone.xml file.

<system-properties>
 <property
name="org.jboss.dashboard.LocaleManager.installedLocaleIds"
value="en,es,de,fr,ja,pt"/>
 <property
name="org.jboss.dashboard.LocaleManager.defaultLocaleId"
value="fr"/>
</system-properties>

In this example, the Chinese language (zh) has been removed from the list of installed locales so users
will not be able to switch the dashbuilder to Chinese. Dashbuilder will show content in French, which is
the default locale. Users will be able to select other languages that are defined (en, es, de, ja, pt) in this
file.

NOTE

Within Business Central, the application server does not need to be restarted after
changing locale if you append the "locale" parameter to the URL of Business Central.
However, with Dashbuilder, the application server should be restarted after the
configuration files have been changed.

16.3. RUNNING THE JVM WITH UTF-8 ENCODING

Red Hat JBoss BPM Suite is designed to work with UTF-8 encoding. If a different encoding system is
being used by the JVM, unexpected errors might occur.

To ensure UTF-8 is used by the JVM, use the JVM option "-Dfile.encoding=UTF-8".

Administration And Configuration Guide

96

PART IV. EXECUTION

PART IV. EXECUTION

97

CHAPTER 17. PROCESS EXECUTION SERVER
CONFIGURATION

17.1. ASSIGNMENT RULES

Assignment rules are rules executed automatically when a Human Task is created or completed. This
mechanism can be used, for example, to assign a Human Task automatically to a particular user of a
group or prevent a user from completing a Task if data is missing.

17.1.1. Defining assignment rules

To define assignment rules, do the following:

1. Create a file that will contain the rule definition on the Business Central classpath (the
recommended location is $DEPLOY_DIR/standalone/deployments/business-
central.war/WEB-INF/classes/):

default-add-task.drl with the rules to be checked when the Human Task is created

default-complete-task.drl with the rules to be checked when the Human Task is
completed

2. Define the rules in the file.

Example 17.1. The default-add-task.drl content

package defaultPackage

import org.kie.api.task.model.Task;
import org.kie.api.task.model.User;
import org.kie.api.task.model.Status;
import org.kie.api.task.model.PeopleAssignments;
import org.jbpm.services.task.rule.TaskServiceRequest;
import org.jbpm.services.task.exception.PermissionDeniedException;
import org.jbpm.services.task.impl.model.*;
import java.util.HashMap;
import java.util.List;

global TaskServiceRequest request;

rule "Don't allow Mary to complete task when rejected"
 when
 $task : Task()
 $actualOwner : User(id == 'mary') from
$task.getTaskData().getActualOwner()
 $params : HashMap(this["approved"] == false)
 then
 request.setAllowed(false);
 request.setExceptionClass(PermissionDeniedException.class);
 request.addReason("Mary is not allowed to complete task with
approved false");
end

Administration And Configuration Guide

98

If the potential owners of a Human Task will contain the user Mary, the task will be automatically
assigned to the user mary.

Example 17.2. The default-complete-task.drl content

If the potential owners of a Human Task will contain the user Mary, the task will be automatically
assigned to the user mary.

17.2. MAIL SESSION

Mail session defines the mail server properties that are used for sending emails if required by the
application, such as, escalation or notification mechanisms (refer to the Red Hat JBoss BPM Suite User
Guide).

17.2.1. Setting up mail session

To set up the mail session for your execution engine, do the following:

1. Open the respective profile configuration file (standalone.xml or host.xml) for editing.

2. Add the mail session to the urn:jboss:domain:mail:1.1 subsystem.

Example 17.3. New mail session on localhost

package defaultPackage

import org.kie.api.task.model.Task;
import org.kie.api.task.model.User;
import org.kie.api.task.model.Status;
import org.kie.api.task.model.PeopleAssignments;
import org.jbpm.services.task.rule.TaskServiceRequest;
import org.jbpm.services.task.exception.PermissionDeniedException;
import org.jbpm.services.task.impl.model.*;
import java.util.HashMap;
import java.util.List;

global TaskServiceRequest request;

rule "Don't allow Mary to complete task when rejected"
 when
 $task : Task()
 $actualOwner : User(id == 'mary') from
$task.getTaskData().getActualOwner()
 $params : HashMap(this["approved"] == false)
 then
 request.setAllowed(false);
 request.setExceptionClass(PermissionDeniedException.class);
 request.addReason("Mary is not allowed to complete task without
approval.");
end

CHAPTER 17. PROCESS EXECUTION SERVER CONFIGURATION

99

3. Define the session outbound socket in the profile configuration file.

Example 17.4. Outbound socket definition

<subsystem xmlns="urn:jboss:domain:mail:1.1">
 <!-- omitted code -->

 <mail-session jndi-name="java:/mail/bpmsMailSession"
debug="true" from="bpms@company.com">
 <smtp-server outbound-socket-binding-ref="bpmsMail"/>
 </mail-session>
</subsystem>

<outbound-socket-binding name="bpmsMail">
 <remote-destination host="localhost" port="12345"/>
</outbound-socket-binding>

Administration And Configuration Guide

100

CHAPTER 18. PLUG-IN FOR RED HAT JBOSS DEVELOPER
STUDIO

18.1. PLUG-IN

CHAPTER 18. PLUG-IN FOR RED HAT JBOSS DEVELOPER STUDIO

101

PART V. MONITORING

Administration And Configuration Guide

102

CHAPTER 19. PROCESS MONITORING

19.1. JBOSS OPERATIONS NETWORK

A JBoss Operations Network plug-in can be used to monitor rules sessions for Red Hat JBoss . The
plug-in uses Java Management Extensions (JMX) to monitor rules sessions.

Due to a limitation of passing the JVM monitoring arguments via the Maven command line, all
com.sun.management.jmxremote.* parameters must be passed to the JBoss application via the
pom.xml configuration file.

Please refer to the JBoss Operations Network Installation Guide for installation instructions for the
JBoss ON server.

19.2. INSTALLING THE JBOSS BRMS PLUG-IN INTO JBOSS ON

Red Hat JBoss BRMS plug-in for JBoss Operations Network can be installed by either copying the
plug-in JAR files to the JBoss Operations Network plug-in directory or through the JBoss Operations
Network GUI.

The following procedure guides a user to copy the plug-in JAR files to the JBoss Operations Network
plug-in directory

Procedure 19.1. Copying the JBoss BRMS plug-in JAR files

1. Extract the JBoss BRMS plug-in pack archive to a temporary location. This creates a
subdirectory with the name jon-plugin-pack-brms-bpms-3.3.0.GA. For example:

2. Copy the extracted JBoss BRMS plug-in JAR files from the jon-plugin-pack-brms-bpms-
3.2.0.GA/ directory to the JBoss ON server plug-in directory. For example:

3. Start the JBoss Operations Network server to update the JBoss BRMS plug-in.

To upload the JBoss BRMS plug-in through the JBoss Operations Network GUI, following is the
procedure

Procedure 19.2. Uploading the JBoss BRMS plug-in through GUI

1. Start the JBoss Operations Network Server and Log in to access the GUI.

2. In the top navigation of the GUI, open the Administration menu.

3. In the Configuration area on the left, select the Server Plugins link.

4. At the bottom of the list of loaded server plug-ins, click the Upload a plugin button and
choose the BRMS plugin.

[root@server rhq-agent]# unzip jon-plugin-pack-brms-bpms-
3.3.0.GA.zip -d /tmp

[root@server rhq-agent]# cp /tmp/jon-plugin-pack-brms-bpms-
3.3.0.GA/*.jar /opt/jon/jon-server-3.3.0.GA1/plugins

CHAPTER 19. PROCESS MONITORING

103

5. The JBoss BRMS plug-in for JBoss Operations Network is now uploaded.

19.3. MONITORING KIE BASES AND KIE SESSIONS

In order for JBoss Operations Network to monitor KieBases and KieSessions, MBeans must be enabled.

MBeans can be enabled either by passing the parameter:

-kie.mbeans = enabled

Or via the API:

KieBaseConfiguration kbconf =
KieServices.Factory.get().newKieBaseConfiguration();
 kbconf.setOption(MBeansOption.ENABLED);

NOTE

Kie Services have been implemented for JBoss BRMS 6; for JBoss BRMS 5, Drools
Services was the naming convention used and it had different measurements on
sessions. For example, activation → match renaming occured in the updated version.

Please refer to the JBoss Operations Network Resource Monitoring and Operations Reference guide for
information on importing Kie Sessions into the Inventory View for monitoring purposes.

Administration And Configuration Guide

104

CHAPTER 20. MANAGING SECURITY FOR RED HAT JBOSS
BPM SUITE DASHBUILDER

20.1. ACCESSING RED HAT JBOSS BPM SUITE DASHBUILDER

Dashbuilder is the Red Hat JBoss BPM Suite web-based user interface for Business Activity
Monitoring. To access the Dashbuilder from Business Central, go to Dashboards → Process & Task
Dashboards.

The displayed dashboard provides statistics on runtime data selected on the left. You can create your
own dashboard in the Dashbuilder. To do so, display the Dashbuilder by clicking Dashboards →
Business Dashboards.

20.2. MANAGING SECURITY

To manage security, you can define custom authorization policies to grant or deny access to
workspace, page, or panel instances per role.

Defined below is a list of the available roles for Dashbuilder:

admin - Administrates the Red Hat JBoss BPM Suite system. Has full access rights to make any
changes necessary. Also has the ability to add and remove users from the system.

developer - Implements code required for process to work. Mostly uses the JBDS connection
to view processes, but may use the web tool occasionally.:

analyst - Responsible for creating and designing processes into the system. Creates process
flows and handles process change requests. Needs to test processes that they create. Also
creates forms and dashboards.

user - Daily user of the system to take actions on business tasks that are required for the
processes to continue forward. Works primarily with the task lists.

manager - Viewer of the system that is interested in statistics around the business processes
and their performance, business indicators, and other reporting of the system and people who
interact with the system.

Thanks to the permissions system, you can build a workspace structure with several pages, menus, and
panels and define what pages and panels within a page will be visible for each role. You can also define
special types of users and give them restricted access to certain tooling features, or even restricted
access to a page subset.

20.3. WORKSPACE PERMISSIONS

Procedure 20.1. Accessing Workspace Permissions

1. Log into Business Dashboards from Business Central (as described in the Accessing Red Hat
JBoss BPM Suite Dashbuilder topic).

2. Select the appropriate Dashboard from the Wokspace drop-down.

CHAPTER 20. MANAGING SECURITY FOR RED HAT JBOSS BPM SUITE DASHBUILDER

105

Figure 20.1. Dashbuilder Workspace

3. Click the Edit selected workspace properties button to access the Workspace
Dashboard.

4. Click the Permissions label to view the permission management screen.

Figure 20.2. Permissions Screen

Under the Permissions assignation section is a list of allowed actions that are applied to the
selected role:

Access: permission to login into the application.

Administrate: permission to access the toolbar and system configuration features.

Create pages: ability to create new project pages.

Edit: permission to change the workspace properties.

Clear: ability to delete the workspace.

Administration And Configuration Guide

106

Edit permissions: ability to grant/deny permissions.

Change allowed panels : permission to restrict the type of panels that can be used in this
workspace.

To assign a permission you must select the target role and the list of actions allowed over the selected
resource.

Figure 20.3. Permissions Assignation

Target roles (who): What user will be granted/denied with the permissions defined.

Allowed actions: depending on the type of the resource we can enable/disable what the user can
do on this resource.

Reverse (optional): when we have a set of roles and we want to grant/deny a permission to all
the roles but one.

NOTE

By default, the full set of permissions go to the role admin. This makes it easy to create a
user that can do everything as long as the role admin is assigned.

20.4. PAGE PERMISSIONS

1. To access Page permissions, locate the Pages drop-down under the jBPM Dashboard (or
whatever Dashboard you selected).

2. After expanding Pages, expand the Process dashboard option.

3. Select the Page permissions option.

CHAPTER 20. MANAGING SECURITY FOR RED HAT JBOSS BPM SUITE DASHBUILDER

107

Figure 20.4. Page Permissions

Under the Permissions assignation section is a list of allowed actions that are applied to the
selected role:

Visualize: permission to make the page visible.

Edit: ability to change the page properties.

Clear: ability to delete the page.

Edit permissions: ability to grant/deny permissions for the page.

20.5. PANEL PERMISSIONS

1. To access the Panel permissions page, expand the Panel instances option under the
jBPM Dashboard (or whatever Dashboard you are using).

2. Expand the Dashboard option and then expand the Process dashboard.

3. Expand the Panels choice and select the appropriate process.

4. Open the Panel permissions page.

Below is a screenshot of the permission management screen for a given panel (in this example, the
Process dashboard):

Administration And Configuration Guide

108

Figure 20.5. Panel permissions configuration screen

Allowed actions are the following:

Visualize: make the panel visible.

Edit: change the panel properties.

Edit permissions: ability to grant/deny permissions for the panel.

CHAPTER 20. MANAGING SECURITY FOR RED HAT JBOSS BPM SUITE DASHBUILDER

109

APPENDIX A. REVISION HISTORY
Note that revision numbers relate to the edition of this manual, not to version numbers of Red Hat
JBoss BPM Suite.

Revision 6.2.0-5 Thu Apr 28 2016 Tomas Radej
Resolved build failure.

Revision 6.2.0-4 Thu Apr 28 2016 Tomas Radej
Updated with latest fixes.

Revision 6.2.0-3 Tue Mar 29 2016 Tomas Radej
Build for release update 2 of JBoss BPM Suite.

Revision 6.2.0-2 Mon Nov 30 2015 Tomas Radej
Added note about versions in Revision History, fixed changelog dates.

Revision 6.2.0-1 Mon Nov 30 2015 Tomas Radej
Initial build for release 6.2.0 of JBoss BPM Suite.

Administration And Configuration Guide

110

	Table of Contents
	PART I. INTRODUCTION
	CHAPTER 1. BUSINESS PROCESS MODEL AND NOTATION
	1.1. COMPONENTS
	1.2. PROJECT
	1.3. CREATING A PROJECT
	1.4. ADDING DEPENDENCIES

	PART II. CONFIGURATION
	CHAPTER 2. BUSINESS CENTRAL CONFIGURATION
	2.1. ACCESS CONTROL
	Workbench Configuration
	Authentication in Human Tasks

	2.2. BUSINESS CENTRAL PROFILE CONFIGURATION
	2.3. BRANDING THE BUSINESS CENTRAL APPLICATION
	2.3.1. Customizing Business Central Login Page
	2.3.2. Customizing Business Central Application Header
	2.3.3. Customizing Business Central Splash Help Windows

	2.4. DEPLOYMENT DESCRIPTORS
	2.4.1. Deployment Descriptor Configuration
	Can you override this hierarchal merge mode behavior?
	Do I need to provide a full Deployment Descriptor for all kjars?
	What can you configure?
	How do you provide values for collections based configuration items?

	2.4.2. Managing Deployment Descriptors
	Overriding Hierarchical Merge Mode Behavior
	Restricting access to the Runtime Engine

	2.5. MANAGING DEPLOYMENT OVERRIDE POLICY
	2.6. EXTENDING BUSINESS CENTRAL
	2.6.1. Plugin Management
	Adding a new Screen
	Adding a new Perspective
	Adding a new menu
	Working with Apps (Optional)

	2.6.2. The JavaScript (JS) API for Extensions

	2.7. CONFIGURING TABLE COLUMNS
	Adding and Removing Columns
	Resizing Columns
	Moving Columns
	Sorting Columns

	CHAPTER 3. REPOSITORY HOOKS
	3.1. CONFIGURING GIT HOOKS

	CHAPTER 4. COMMAND LINE CONFIGURATION
	4.1. STARTING THE KIE-CONFIG-CLI TOOL IN ONLINE MODE
	4.2. STARTING THE KIE-CONFIG-CLI TOOL IN OFFLINE MODE
	4.3. COMMANDS AVAILABLE FOR THE KIE-CONFIG-CLI TOOL

	CHAPTER 5. MIGRATION
	5.1. DATA MIGRATION
	Importing the repository in Business Central
	Importing the repository in JBDS

	5.2. RUNTIME MIGRATION
	5.3. API AND BACKWARDS COMPATIBILITY
	Migrating to Version 6.1
	Migrating to Version 6.0

	5.4. MIGRATING TASK SERVICE

	CHAPTER 6. DATA MANAGEMENT
	6.1. DATA BACKUPS
	6.2. SETUP INDEXES
	Setup foreign key indexes
	Setup indexes for Process and Task Dashboard

	6.3. SETTING UP THE DATABASE
	6.4. EDITING THE DATABASE
	6.5. DDL SCRIPTS

	CHAPTER 7. ASSET REPOSITORY
	7.1. CREATING AN ORGANIZATIONAL UNIT
	Creating an Organizational Unit in Business Central
	Creating an Organizational Unit Using the kie-config-cli Tool
	Creating an Organizational Unit Using the REST API

	7.2. CREATING A REPOSITORY
	Creating a Repository in Business Central
	Creating a Repository Using the kie-config-cli Tool
	Creating a Repository Using the REST API

	7.3. CLONING A REPOSITORY
	Cloning a Repository in Business Central
	Cloning a Repository Using the REST API

	7.4. REMOVING A REPOSITORY
	Removing a Repository in Business Central
	Removing a Repository Using the kie-config-cli Tool
	Removing a Repository Using the REST API

	7.5. MANAGING ASSETS
	Managed and Unmanaged Repositories
	Managed Branches
	Repository Structure

	7.6. MAVEN REPOSITORY
	7.7. CONFIGURING DEPLOYMENT TO A REMOTE NEXUS REPOSITORY
	7.8. SYSTEM CONFIGURATION

	CHAPTER 8. PROCESS EXPORT AND IMPORT
	8.1. CREATING A PROCESS DEFINITION
	8.2. IMPORTING A PROCESS DEFINITION
	8.3. IMPORTING JPDL 3.2 TO BPMN2
	8.4. EXPORTING A PROCESS

	PART III. INTEGRATION
	CHAPTER 9. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO SOA REPOSITORY ARTIFACT MODEL AND PROTOCOL (S-RAMP) REPOSITORY
	9.1. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO SOA REPOSITORY ARTIFACT MODEL AND PROTOCOL (S-RAMP) USING MAVEN
	9.2. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO SOA REPOSITORY ARTIFACT MODEL AND PROTOCOL (S-RAMP) USING GRAPHICAL USER INTERFACE (GUI)

	CHAPTER 10. INTEGRATING RED HAT JBOSS BPM SUITE WITH RED HAT JBOSS FUSE
	10.1. CORE JBOSS BPM SUITE AND JBOSS BRMS FEATURES
	10.2. ADDITIONAL FEATURES FOR SWITCHYARD AND CAMEL INTEGRATION
	10.3. INSTALL/UPDATE CORE INTEGRATION FEATURES
	10.4. INSTALL ADDITIONAL INTEGRATION FEATURES
	10.5. CONFIGURING DEPENDENCIES
	10.6. INSTALL JBOSS FUSE INTEGRATION QUICKSTART APPLICATIONS
	10.6.1. Testing Your First Quickstart Application

	CHAPTER 11. INTEGRATING WITH SPRING
	11.1. CONFIGURING RED HAT JBOSS BPM SUITE WITH SPRING
	As a Self Managed Process Engine
	As a Shared Task Service

	CHAPTER 12. CDI INTEGRATION
	12.1. CDI INTEGRATION

	CHAPTER 13. PERSISTENCE
	13.1. SESSION
	13.2. PROCESS INSTANCE
	Pessimistic Locking Support

	13.3. WORK ITEM
	13.4. PERSISTENCE CONFIGURATION
	13.4.1. Persistence configuration
	13.4.2. Configuring persistence using JBPMHelper
	13.4.3. Configuring persistence using JPAKnowledgeService

	CHAPTER 14. TRANSACTIONS
	14.1. TRANSACTIONS
	14.2. DEFINING TRANSACTIONS
	14.3. CONTAINER MANAGED TRANSACTIONS
	Configuring the Transaction Manager
	Disposing the KSession in a CMT

	CHAPTER 15. LOGGING
	15.1. LOGGING EVENTS TO DATABASE
	15.2. LOGBACK FUNCTIONALITY
	15.3. CONFIGURING LOGGING
	15.4. MANAGING LOG FILES
	15.4.1. Automatic Clean-Up
	15.4.2. Setting up Automatic Clean-up Job
	15.4.3. Manual Clean-Up

	CHAPTER 16. LOCALIZATION AND CUSTOMIZATION
	16.1. AVAILABLE LANGUAGES
	16.2. CHANGING LANGUAGE SETTINGS
	Changing the User Interface Language in Business Central
	Changing the User Interface Language in Dashbuilder
	Setting a Default User Interface Language in Dashbuilder
	Defining the Installed Locales in Dashbuilder

	16.3. RUNNING THE JVM WITH UTF-8 ENCODING

	PART IV. EXECUTION
	CHAPTER 17. PROCESS EXECUTION SERVER CONFIGURATION
	17.1. ASSIGNMENT RULES
	17.1.1. Defining assignment rules

	17.2. MAIL SESSION
	17.2.1. Setting up mail session

	CHAPTER 18. PLUG-IN FOR RED HAT JBOSS DEVELOPER STUDIO
	18.1. PLUG-IN

	PART V. MONITORING
	CHAPTER 19. PROCESS MONITORING
	19.1. JBOSS OPERATIONS NETWORK
	19.2. INSTALLING THE JBOSS BRMS PLUG-IN INTO JBOSS ON
	19.3. MONITORING KIE BASES AND KIE SESSIONS

	CHAPTER 20. MANAGING SECURITY FOR RED HAT JBOSS BPM SUITE DASHBUILDER
	20.1. ACCESSING RED HAT JBOSS BPM SUITE DASHBUILDER
	20.2. MANAGING SECURITY
	20.3. WORKSPACE PERMISSIONS
	20.4. PAGE PERMISSIONS
	20.5. PANEL PERMISSIONS

	APPENDIX A. REVISION HISTORY

