
Red Hat JBoss A-MQ 6.3

Configuring Broker Persistence

Red Hat JBoss A-MQ's persistence layer can be tailored for speed and robustness

Last Updated: 2019-06-17

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

Red Hat JBoss A-MQ's persistence layer can be tailored for speed and robustness

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide discusses how to configure Red Hat JBoss A-MQ's persistence layer to best suite your
application and your environment.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION TO RED HAT JBOSS A-MQ PERSISTENCE
OVERVIEW
PERSISTENT MESSAGE STORES
MESSAGE CURSORS
ACTIVATING AND DEACTIVATING PERSISTENCE
CONFIGURING PERSISTENCE ADAPTER BEHAVIOR
CUSTOMIZING THE STORE'S LOCKER

CHAPTER 2. USING THE KAHADB MESSAGE STORE
2.1. UNDERSTANDING THE KAHADB MESSAGE STORE
2.2. CONFIGURING THE KAHADB MESSAGE STORE
2.3. CONCURRENT STORE AND DISPATCH
2.4. OPTIMIZING THE METADATA CACHE
2.5. CREATING AN OFFLINE BACKUP (OPENSHIFT)
2.6. RECOVERY

CHAPTER 3. USING A MULTI KAHADB PERSISTENCE ADAPTER
OVERVIEW
CONFIGURATION
WILDCARD SYNTAX
EXAMPLE
AUTOMATIC PER-DESTINATION PERSISTENCE ADAPTER
TRANSACTIONS

CHAPTER 4. USING THE LEVELDB PERSISTENCE ADAPTER
OVERVIEW
PLATFORM SUPPORT
BASIC CONFIGURATION
CONFIGURATION ATTRIBUTES

CHAPTER 5. USING THE REPLICATED LEVELDB PERSISTENCE ADAPTER
OVERVIEW
DEPLOYMENT TIPS
BASIC CONFIGURATION
CONFIGURATION ATTRIBUTES

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE
6.1. BASICS OF USING THE JDBC PERSISTENCE ADAPTER
6.2. USING THE PLAIN JDBC ADAPTER
6.3. USING JDBC WITH THE HIGH PERFORMANCE JOURNAL
6.4. CUSTOMIZING THE JDBC PERSISTENCE ADAPTER
6.5. TUTORIAL: JDBC PERSISTENCE
6.6. TUTORIAL: CONFIGURING ACTIVEMQ JDBC PERSISTENCE ON FABRIC CONTAINER WITH
POSTGRESQL

CHAPTER 7. MESSAGE CURSORS
7.1. TYPES OF CURSORS
7.2. CONFIGURING THE TYPE OF CURSOR USED BY A DESTINATION

CHAPTER 8. MESSAGE STORE LOCKERS
8.1. LOCKER BASICS
8.2. USING THE PROVIDED LOCKERS
8.3. USING CUSTOM LOCKERS

4
4
4
4
4
5
5

6
6
8

13
17
18
19

22
22
22
23
23
24
24

25
25
25
25
26

29
29
29
30
31

34
34
37
38
41

45

48

55
55
58

62
62
63
66

Table of Contents

1

. .INDEX 68

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

2

Table of Contents

3

CHAPTER 1. INTRODUCTION TO RED HAT JBOSS A-MQ
PERSISTENCE

Abstract

Message persistence allows for the recovery of undelivered messages in the event of a system failure.
By default, Red Hat JBoss A-MQ's persistence features are activated. The default set-up is fast and
scalable. It is easy to customize the broker configuration to use a JDBC compliant database.

OVERVIEW

Loss of messages is not acceptable in mission critical applications. Red Hat JBoss A-MQ reduces the
risk of message loss by using a persistent message store by default. Persistent messages are written to
the persistent store when they are sent. The messages persist in the store until their delivery is
confirmed. This means that, in the case of a system failure, JBoss A-MQ can recover all of the
undelivered messages at the time of the failure.

PERSISTENT MESSAGE STORES

The default message store is embeddable and transactional. It is both very fast and extremely reliable.
JBoss A-MQ implements several different kinds of message store, including:

KahaDB message store

distributed KahaDB message store

LevelDB message store

JDBC adapter

Journaled JDBC adapter (deprecated)

MESSAGE CURSORS

JBoss A-MQ caches message using message cursors . A message cursor represents a batch of messages
cached in memory. When necessary, a message cursor can be used to retrieve the batch of persisted
messages through the persistence adapter. See Chapter 7, Message Cursors for details.

ACTIVATING AND DEACTIVATING PERSISTENCE

By default, brokers are configured to use a persistence layer to ensure that persistent messages will
survive a broker failure and meet the once-and-only-once requirement of the JMS specification. Having
a broker's persistence layer configured comes with a cost in terms of resources used and speed, so for
testing purposes or cases where persistence will never be required, it may make sense to disable a
broker's persistence layer.

Deactivating a broker's persistence layer means that a broker will treat all messages as non-persistent. If
a producer sets a message's JMSDeliveryMode property to PERSISTENT the broker will not respect
the setting. The message will be delivered at-most-once instead of once-and-only-once. This means
that persistent messages will not survive broker shutdown.

Persistence in JBoss A-MQ is controlled by a broker's XML configuration file. To change a broker's

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

4

Persistence in JBoss A-MQ is controlled by a broker's XML configuration file. To change a broker's
persistence behavior you modify the configuration's broker element's persistent attribute.

Table 1.1. Setting a Broker's Persistence

Value Description

true The broker will use a persistent message store and
respect the value of a message's JMSDeliveryMode
setting.

false The broker will not use a persistent message store
and will treat all messages as non-persistent
regardless of the value of a message's
JMSDeliveryMode setting.

Example 1.1, “Turning Off a Broker's Persistence” shows a configuration snippet for turning off a broker's
message persistence.

Example 1.1. Turning Off a Broker's Persistence

CONFIGURING PERSISTENCE ADAPTER BEHAVIOR

JBoss A-MQ offers a number of different persistence mechanisms besides the default message store.
To use one of the alternative message stores, or to modify the behavior of the default message store,
you need to configure the persistence adapter. This is done by adding a persistenceAdapter element
or a persistenceFactory element (depending on the kind of adapter you want to use) to the broker's
configuration file.

CUSTOMIZING THE STORE'S LOCKER

For added flexibility in master/slave deployments JBoss A-MQ's message stores have configurable
lockers. All of the message stores have a default locker implementation. The default implementation can
be replaced by a custom implementation.

Regardless of the implementation, the locker has two configurable properties:

if the broker should fail if the store is locked

how long a broker waits before trying to reacquire a lock

<broker persistent="false" ... >
 ...
</broker>

CHAPTER 1. INTRODUCTION TO RED HAT JBOSS A-MQ PERSISTENCE

5

CHAPTER 2. USING THE KAHADB MESSAGE STORE

Abstract

The KahaDB Message Store is the default message store used by Red Hat JBoss A-MQ. It is a light-
weight transactional store that is fast and reliable. It uses a hybrid system that couples a transactional
journal for message storage and a reference store for quick retrieval.

IMPORTANT

If you use antivirus software it can interfere with Red Hat JBoss A-MQ's ability to access
the files in the KahaDB message store. You should configure your antivirus software to
skip the KahaDB data folders when doing automatic scans.

2.1. UNDERSTANDING THE KAHADB MESSAGE STORE

Overview

The KahaDB message store is the default persistence store used by Red Hat JBoss A-MQ. It is a file-
based persistence adapter that is optimized for maximum performance. The main features of KahaDB
are:

journal-based storage so that messages can be rapidly written to disk

allows for the broker to restart quickly

storing message references in a B-tree index which can be rapidly updated at run time

full support for JMS transactions

various strategies to enable recovery after a disorderly shutdown of the broker

Architecture

The KahaDB message store is an embeddable, transactional message store that is fast and reliable. It is
an evolution of the AMQ message store used by Apache ActiveMQ 5.0 to 5.3. It uses a transactional
journal to store message data and a B-tree index to store message locations for quick retrieval.

Figure 2.1, “Overview of the KahaDB Message Store” shows a high-level view of the KahaDB message
store.

Figure 2.1. Overview of the KahaDB Message Store

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

6

Figure 2.1. Overview of the KahaDB Message Store

Messages are stored in file-based data logs. When all of the messages in a data log have been
successfully consumed, the data log is marked as deletable. At a predetermined clean-up interval, logs
marked as deletable are either removed from the system or moved to an archive.

An index of message locations is cached in memory to facilitate quick retrieval of message data. At
configurable checkpoint intervals, the references are inserted into the metadata store.

Data logs

The data logs are used to store data in the form of journals, where events of all kinds—messages,
acknowledgments, subscriptions, subscription cancellations, transaction boundaries, etc.— are stored in a
rolling log. Because new events are always appended to the end of the log, a data log file can be
updated extremely rapidly.

Implicitly, the data logs contain all of the message data and all of the information about destinations,
subscriptions, transactions, etc.. This data, however, is stored in an arbitrary manner. In order to facilitate
rapid access to the content of the logs, the message store constructs metadata to reference the data
embedded in the logs.

Metadata cache

The metadata cache is an in-memory cache consisting mainly of destinations and message references.
That is, for each JMS destination, the metadata cache holds a tree of message references, giving the
location of every message in the data log files. Each message reference maps a message ID to a
particular offset in one of the data log files. The tree of message references is maintained using a B-tree
algorithm, which enables rapid searching, insertion, and deletion operations on an ordered list of
messages.

The metadata cache is periodically written to the metadata store on the file system. This procedure is
known as check pointing and the length of time between checkpoints is configurable using the
checkpointInterval configuration attribute. For details on how to configure the metadata cache, see

CHAPTER 2. USING THE KAHADB MESSAGE STORE

7

Section 2.4, “Optimizing the Metadata Cache” .

Metadata store

The metadata store contains the complete broker metadata, consisting mainly of a B-tree index giving
the message locations in the data logs. The metadata store is written to a file called db.data, which is
periodically updated from the metadata cache.

The metadata store duplicates data that is already stored in the data logs (in a raw, unordered form).
The presence of the metadata store, however, enables the broker instance to restart rapidly. If the
metadata store got damaged or was accidentally deleted, the broker could recover by reading the data
logs, but the restart would then take a considerable length of time.

2.2. CONFIGURING THE KAHADB MESSAGE STORE

Overview

Red Hat JBoss A-MQ's default configuration includes a persistence adapter that uses a KahaDB
message store. The default configuration is suitable for many use cases, but you will likely want to
update it for individual broker instances. You do this using the attributes of the kahaDB element.

The basic configuration tells the broker where to write the data files used by the store.

The KahaDB message store also has a number of advanced configuration attributes that customize its
behavior.

Basic configuration

The KahaDB message store is configured by placing a kahaDB element in the persistenceAdapter
element of your broker's configuration. The kahaDB element's attributes are used to configure the
message store.

The attributes, listed in Table 2.1, “Configuration Properties of the KahaDB Message Store” , all have
reasonable default values, so you are not required to specify values for them. However, you will want to
explicitly specify the location of the message store's data files by providing a value for the directory
attribute. This will ensure that the broker will not conflict with other brokers.

Example 2.1, “Configuring the KahaDB Message Store” shows a basic configuration of the KahaDB
message store. The KahaDB files are stored under the activemq-data directory.

Example 2.1. Configuring the KahaDB Message Store

Configuration attributes

Table 2.1, “Configuration Properties of the KahaDB Message Store” describes the attributes that can be

<broker brokerName="broker" persistent="true" ... >
 ...
 <persistenceAdapter>
 <kahaDB directory="activemq-data" />
 </persistenceAdapter>
 ...
</broker>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

8

Table 2.1, “Configuration Properties of the KahaDB Message Store” describes the attributes that can be
used to configure the KahaDB message store.

Table 2.1. Configuration Properties of the KahaDB Message Store

Attribute Default Value Description

archiveCorruptedIndex false Specifies if corrupted indexes are
archived when the broker starts
up.

archiveDataLogs false Specifies if the message store
moves spent data logs to the
archive directory.

checkForCorruptJournalFile
s

false Specifies whether the message
store checks for corrupted journal
files on startup and tries to
recover them.

checkpointInterval 5000 Specifies the time interval, in
milliseconds, between writing the
metadata cache to disk.

checksumJournalFiles true Specifies whether the message
store generates a checksum for
the journal files. If you want to be
able to check for corrupted
journals, you must set this
property to true.

cleanupInterval 30000 Specifies the time interval, in
milliseconds, between cleaning up
data logs that are no longer used.

compactAcksAfterNoGC 10 When the acknowledgement
compaction feature is enabled,
specifies how many store GC
cycles must be completed without
cleaning up other files before the
compaction logic is triggered to
possibly compact older
acknowledgements spread across
journal files into a new log file. The
lower the value set the faster the
compaction may occur which can
impact performance if it runs
often.

CHAPTER 2. USING THE KAHADB MESSAGE STORE

9

compactAcksIgnoresStoreGr
owth

false When the acknowledgement
compaction feature is enabled,
specifies whether compaction is
run when the store is still growing
or if it should only occur when the
store has stopped growing (either
due to idle or store limits
reached). If enabled the
compaction runs regardless of the
store still having room or being
active which can decrease overall
performance but reclaim space
faster.

concurrentStoreAndDispatc
hQueues

true Specifies if the message store
dispatches queue messages to
clients concurrently with message
storage. See Section 2.3,
“Concurrent Store and Dispatch”.

concurrentStoreAndDispatc
hTopics

false Specifies if the message store
dispatches topic messages to
interested clients concurrently
with message storage. See
Section 2.3, “Concurrent Store
and Dispatch”. Enabling this
property is not recommended. It is
disabled by default because it can
lead to stuck or duplicate
messages and its real value is
small when there are multiple
durable consumers, it is unlikely
that all of them will have acked
before the store.

databaseLockedWaitDelay 10000 Specifies the time delay, in
milliseconds, before trying to
acquire the database lock in the
context of a shared master/slave
failover deployment. See section
"Shared File System
Master/Slave" in "Fault Tolerant
Messaging".

directory activemq-data Specifies the path to the top-level
folder that holds the message
store's data files.

directoryArchive null Specifies the location of the
directory to archive data logs.

Attribute Default Value Description

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

10

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Fault_Tolerant_Messaging/FMQFaultTolMasterSlave.html#FMQMasterSlaveShared

enableAckCompaction false Specifies whether the store will
perform periodic compaction of
older journal log files that contain
only Message acknowledgements.
After compacting the older
acknowledgements into new
journal log files, the older files can
be removed. This action frees the
space and allows the message
store to continue to operate
without hitting store size limits.

enableIndexDiskSyncs true Ensures index updates are
persisted to the disk on each
write.

enableIndexPageCaching true Enables faster reads by caching
the written pages in the memory.

enableIndexRecoveryFile true Enabled double write of index
updates, allowing the index to
recover from partial write failures.

enableIndexWriteAsync false Specifies if kahaDB will
asynchronously write indexes.

enableJournalDiskSyncs true Specifies whether every non-
transactional journal write is
followed by a disk sync. If you
want to satisfy the JMS durability
requirement, you must also
disable concurrent store and
dispatch.

failoverProducersAuditDept
h

 Set the audit window depth for
duplicate suppression (should
exceed the max transaction
batch).

forceRecoverIndex false This option is only used in specific
upgrade scenarios. In normal
scenarios, this can be ignored.

ignoreMissingJournalfiles false Specifies whether the message
store ignores any missing journal
files while it starts up. If false, the
message store raises an exception
when it discovers a missing journal
file.

Attribute Default Value Description

CHAPTER 2. USING THE KAHADB MESSAGE STORE

11

indexCacheSize 10000 Specifies the number of B-tree
index pages cached in memory.

indexDirectory Set this attribute, if you need to
store the index file (metadata
store), db.data, in a different
location from the other message
store data files. By default, the
index is stored in the same
location as the other message
store files.

indexWriteBatchSize 1000 Specifies the number of B-tree
indexes written in a batch.
Whenever the number of changed
indexes exceeds this value, the
metadata cache is written to disk.

journalMaxFileLength 32mb Specifies the maximum size of the
data log files.

journalMaxWriteBatchSize 4k Specifies the amount of data to
buffer between journal disk writes.
Optimize to match the fastest
write size for your disk.

lockKeepAlivePeriod In the context of a master/slave
broker cluster, instructs the
master to check, at intervals of
the specified milliseconds,
whether it still holds the lock (lock
is valid) and that the lock file still
exists.

locker

maxAsyncJobs 10000 Specifies the size of the task
queue used to buffer the broker
commands waiting to be written
to the journal. The value should
be greater than or equal to the
number of concurrent message
producers. See Section 2.3,
“Concurrent Store and Dispatch”.

maxFailoverProducersToTra
ck

 Set the maximum number of
producers (LRU cache) to track
for duplicate sends.

Attribute Default Value Description

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

12

preallocationStrategy sparse_file Specifies how the broker will try to
preallocate the journal files when
a new journal file is needed. The
default allocation strategy sets
the file length, but does not
populate it with any data. The
os_kernel_copy strategy
delegates the preallocation to the
Operating System. The zeros
strategy configures ActiveMQ to
do the preallocation by writing
0x00 to all of the positions in the
journal file.

preallocationScope entire_journal Specifies how the broker will
preallocate the journal data files.
The default preallocates on first
use in the appender thread.
entire_journal_async will use
preallocate ahead of time in a
separate thread. none disables
preallocation. On SSD, using
entire_journal_async avoids
delaying writes pending
preallocation on first use. On HDD
the additional thread contention
for disk has a negative impact,
hence it is advisable to use the
default.

storeOpenWireVersion 11 Determines the version of
OpenWire commands that are
marshalled to the KahaDB journal.

useIndexLFRUEviction

useLock true Specifies whether the adapter
uses file locking.

Attribute Default Value Description

2.3. CONCURRENT STORE AND DISPATCH

Abstract

Concurrent store and dispatch is a strategy that facilitates high rates of message throughput, provided
the consumers are able to keep up with the flow of messages from the broker.

Overview

Concurrent store and dispatch is a strategy that facilitates high rates of message throughput, provided

CHAPTER 2. USING THE KAHADB MESSAGE STORE

13

the consumers are able to keep up with the flow of messages from the broker. By allowing the storing of
messages to proceed concurrently with the dispatch of those messages to consumers, it can happen
that the consumers return acknowledgments before the messages are ever written to disk. In this case,
the message writes can be optimized away, because the dispatch has already completed.

Enabling concurrent store and dispatch

Concurrent store and dispatch is enabled by default for queues.

If you want to enable concurrent store and dispatch for topics, you must set the kahaDB element's
concurrentStoreAndDispatchTopics attribute to true.

Concurrent with slow consumers

Figure 2.2, “Concurrent Store and Dispatch—Slow Consumers” shows an outline what happens in the
broker when concurrent store and dispatch is enabled and the attached consumers are relatively slow to
acknowledge messages.

Figure 2.2. Concurrent Store and Dispatch—Slow Consumers

In the slow consumer case, concurrent store and dispatch behaves as follows:

1. The producer sends a message, M, to a destination on the broker.

2. The broker sends the message, M, to the persistence layer. Because concurrency is enabled, the
message is initially held in a task queue, which is serviced by a pool of threads that are
responsible for writing to the journal.

3. Storing and dispatching are now performed concurrently. The message is dispatched either to
one consumer (queue destination) or possibly to multiple destinations (topic consumer). In the
meantime, because the attached consumers are slow, we can be sure that the thread pool has
already pulled the message off the task queue and written it to the journal.

4. The consumer(s) acknowledge receipt of the message.

5. The broker asks the persistence layer to remove the message from persistent storage, because
delivery is now complete.

NOTE

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

14

NOTE

In practice, because the KahaDB persistence layer is not able to remove the
message from the rolling log files, KahaDB simply logs the fact that delivery of
this message is complete. (At some point in the future, when all of the messages
in the log file are marked as complete, the entire log file will be deleted.)

Concurrent with fast consumers

Figure 2.3, “Concurrent Store and Dispatch—Fast Consumers” shows an outline what happens in the
broker when concurrent store and dispatch is enabled and the attached consumers are relatively fast at
acknowledging messages.

Figure 2.3. Concurrent Store and Dispatch—Fast Consumers

In the fast consumer case, concurrent store and dispatch behaves as follows:

1. The producer sends a message, M, to a destination on the broker.

2. The broker sends the message, M, to the persistence layer. Because concurrency is enabled, the
message is initially held in a queue, which is serviced by a pool of threads.

3. Storing and dispatching are now performed concurrently. The message is dispatched to one or
more consumers.

In the meantime, assuming that the broker is fairly heavily loaded, it is probable that the
message has not yet been written to the journal.

4. Because the consumers are fast, they rapidly acknowledge receipt of the message.

5. When all of the consumer acknowledgments are received, the broker asks the persistence layer
to remove the message from persistent storage. But in the current example, the message is still
pending and has not been written to the journal . The persistence layer can therefore remove the
message just by deleting it from the in-memory task queue.

Disabling concurrent store and dispatch

If you want to configure the KahaDB message store to use serialized store and dispatch, you must
explicitly disable concurrent store and dispatch for queues. Example 2.2, “KahaDB Configured with
Serialized Store and Dispatch” explicitly disables the store and dispatch feature for queues and topics.

Example 2.2. KahaDB Configured with Serialized Store and Dispatch

CHAPTER 2. USING THE KAHADB MESSAGE STORE

15

Serialized store and dispatch

Figure 2.4, “Serialized Store and Dispatch” shows an outline what happens in the broker when concurrent
store and dispatch is disabled, so that the store and dispatch steps are performed in sequence.

Figure 2.4. Serialized Store and Dispatch

In the serialized case, the store and dispatch steps occur as follows:

1. The producer sends a message, M, to a destination on the broker.

2. The broker sends the message, M, to the persistence layer. Because concurrency is disabled,
the message is immediately written to the journal (assuming enableJournalDiskSyncs is true).

3. The message is dispatched to one or more consumers.

4. The consumers acknowledge receipt of the message.

5. When all of the consumer acknowledgments are received, the broker asks the persistence layer
to remove the message from persistent storage (in the case of the KahaDB, this means that the
persistence layer records in the journal that delivery of this message is now complete).

JMS durability requirements

In order to avoid losing messages, the JMS specification requires the broker to persist each message
received from a producer, before sending an acknowledgment back to the producer. In the case of JMS
transactions, the requirement is to persist the transaction data (including the messages in the
transaction scope), before acknowledging a commit directive. Both of these conditions ensure that data
is not lost.

Make sure that the message saves are synced to disk right away by setting the kahaDB element's
enableJournalDiskSyncs attribute to true.

<broker brokerName="broker" persistent="true" useShutdownHook="false">
 ...
 <persistenceAdapter>
 <kahaDB directory="activemq-data"
 journalMaxFileLength="32mb"
 concurrentStoreAndDispatchQueues="false"
 concurrentStoreAndDispatchTopics="false"
 />
 </persistenceAdapter>
</broker>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

16

NOTE

true is the default value for the enableJournalDiskSyncs attribute.

2.4. OPTIMIZING THE METADATA CACHE

Overview

Proper configuration of the metadata cache is one of the key factors affecting the performance of the
KahaDB message store. In a production deployment, therefore, you should always take the time to tune
the properties of the metadata cache for maximum performance. Figure 2.5, “Overview of the Metadata
Cache and Store” shows an overview of the metadata cache and how it interacts with the metadata
store. The most important part of the metadata is the B-tree index, which is shown as a tree of nodes in
the figure. The data in the cache is periodically synchronized with the metadata store, when a checkpoint
is performed.

Figure 2.5. Overview of the Metadata Cache and Store

Synchronizing with the metadata store

The metadata in the cache is constantly changing, in response to the events occurring in the broker. It is
therefore necessary to write the metadata cache to disk, from time to time, in order to restore
consistency between the metadata cache and the metadata store. There are two distinct mechanisms
that can trigger a synchonization between the cache and the store, as follows:

Batch threshold—as more and more of the B-tree indexes are changed, and thus inconsistent
with the metadata store, you can define a threshold for the number of these dirty indexes . When
the number of dirty indexes exceeds the threshold, KahaDB writes the cache to the store. The
threshold value is set using the indexWriteBatchSize property.

Checkpoint interval—irrespective of the current number of dirty indexes, the cache is

CHAPTER 2. USING THE KAHADB MESSAGE STORE

17

Checkpoint interval—irrespective of the current number of dirty indexes, the cache is
synchronized with the store at regular time intervals, where the time interval is specified in
milliseconds using the checkpointInterval property.

In addition, during a normal shutdown, the final state of the cache is synchronized with the store.

Setting the cache size

In the ideal case, the cache should be big enough to hold all of the KahaDB metadata in memory.
Otherwise, the cache is forced to swap pages in and out of the persistent metadata store, which causes
a considerable drag on performace.

You can specify the cache size using the indexCacheSize property, which specifies the size of the
cache in units of pages (where one page is 4 KB by default). Generally, the cache should be as large as
possible. You can check the size of your metadata store file, db.data, to get some idea of how big the
cache needs to be.

Setting the write batch size

The indexWriteBatchSize defines the threshold for the number of dirty indexes that are allowed to
accumulate, before KahaDB writes the cache to the store. Normally, these batch writes occur between
checkpoints.

If you want to maximize performance, however, you could suppress the batch writes by setting
indexWriteBatchSize to a very large number. In this case, the store would be updated only during
checkpoints. The tradeoff here is that there is a risk of losing a relatively large amount of metadata, in
the event of a system failure (but the broker should be able to restore the lost metadata when it
restarts, by reading the tail of the journal).

2.5. CREATING AN OFFLINE BACKUP (OPENSHIFT)

Overview

When using Red Hat JBoss A-MQ on Red Hat OpenShift Container Platform 3.x, you can create an
offline backup of your A-MQ container for the KahaDB message store. An offline backup is the safest
way to backup your data because it avoids the risk of copying data that might be in the process of being
updated.

Prerequisites

Before you begin, you should be familiar with the OpenShift Container Platform command line interface
(CLI). See the OpenShift Container platform documentation (https://docs.openshift.com/index.html),
specifically the Developer’s Guide and the CLI Reference.

Procedure

To create an offline backup for the KahaDB message store, follow these steps:

Procedure 2.1. Creating an offline backup

1. Use the oc scale command to stop the A-MQ broker pod to make sure that no writes occur
during the backup process:

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

18

https://docs.openshift.com/index.html

In the following example, deployment configuration (dc) is the object-type and broker-amq is
the object-name, and the number of replicas is set to zero:

2. Create and run a no-op container to use for the backup process. In the following example, temp
is the name of the no-op container and registry.access.redhat.com/rhel7 is the image for the
container to run. The --tail -f option specifies to send logs about the run command to a local
/dev/null folder and keeps the container running by preventing the replication process from
closing it prematurely.

3. Mount the A-MQ broker’s persistent volume claims (PVC) to the no-op container by using the
oc volume add command as shown in the following example:

4. Copy the the A-MQ broker’s data from the no-op container to a local directory (for example
/opt/amq/old-data):

5. Remove the no-op container:

6. Use the oc scale command to start the A-MQ broker pod:

2.6. RECOVERY

Overview

KahaDB supports a variety of mechanisms that enable it to recover and restart after a disorderly
shutdown (system failure). This includes features to detect missing data files and to restore corrupted
metadata. These features on their own, however, are not sufficient to guard completely against loss of
data in the event of a system failure. If your broker is expected to mediate critical data, it is
recommended that you deploy a disaster recovery system, such as a RAID disk array, to protect your
data.

Clean shutdown

When the broker shuts down normally, the KahaDB message store flushes its cached data (representing
the final state of the broker) to the file system. Specifically, the following information is written to the
file system:

oc scale <object_type> <object_name> --replicas=<#_of_replicas>

oc scale dc broker-amq --replicas=0

oc run temp --image=registry.access.redhat.com/rhel7 --tail -f /dev/null

oc volume dc/temp --add -t pvc --name=broker-amq-claim --claim-name=broker-amq-claim --
mount-path=/opt/amq/old-data

oc rsync temp-2-b5p6d:/opt/amq/old-data

oc delete dc temp

oc scale dc broker-amq --replicas=1

CHAPTER 2. USING THE KAHADB MESSAGE STORE

19

http://en.wikipedia.org/wiki/RAID

All of the outstanding journal entries.

All of the cached metadata.

Because this data represents the final state of the broker, the metadata store and the journal's data logs
are consistent with each other after shutdown is complete. That is, the stored metadata takes into
account all the commands recorded in the journal.

Recovery from disorderly shutdown

Normally, the journal tends to run ahead of the metadata store, because the journal is constantly being
updated, whereas the metadata store is written only periodically (for example, whenever there is a
checkpoint). Consequently, whenever there is a disorderly shutdown (which prevents the final state of
the broker from being saved), it is likely that the stored metadata will be inconsistent with the journal,
with the journal containing additional events not reflected in the metadata store.

When the broker restarts after a disorderly shutdown, the KahaDB message store recovers by reading
the stored metadata into the cache and then reading the additional journal events not yet taken into
account in the stored metadata (KahaDB can easily locate the additional journal events, because the
metadata store always holds a reference to the last consistent location in the journal). KahaDB replays
the additional journal events in order to recreate the original metadata.

NOTE

The KahaDB message store also uses a redo log, db.redo, to reduce the risk of a system
failure occurring while updating the metadata store. Before updating the metadata store,
KahaDB always saves the redo log, which summarizes the changes that are about to be
made to the store. Because the redo log is a small file, it can be written relatively rapidly
and is thus less likely to be affected by a system failure. During recovery, KahaDB checks
whether the changes recorded in the redo log need to be applied to the metadata.

Forcing recovery by deleting the metadata store

If the metadata store somehow becomes irretrievably corrupted, you can force recovery as follows
(assuming the journal's data logs are clean):

1. While the broker is shut down, delete the metadata store, db.data.

2. Start the broker.

3. The broker now recovers by re-reading the entire journal and replaying all of the events in the
journal in order to recreate the missing metadata.

While this is an effective means of recovering, you should bear in mind that it could take a considerable
length of time if the journal is large.

Missing journal files

KahaDB has the ability to detect when journal files are missing. If one or more journal files are detected
to be missing, the default behavior is for the broker to raise an exception and shut down. This gives an
administrator the opportunity to investigate what happened to the missing journal files and to restore
them manually, if necessary.

If you want the broker to ignore any missing journal files and continue processing regardless, you can set
the ignoreMissingJournalfiles property to true.

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

20

Checking for corrupted journal files

KahaDB has a feature that checks for corrupted journal files, but this feature must be explicitly enabled.
Example 2.3, “Configuration for Journal Validation” shows how to configure a KahaDB message store to
detect corrupted journal files.

Example 2.3. Configuration for Journal Validation

<persistenceAdapter>
 <kahaDB directory="activemq-data"
 journalMaxFileLength="32mb"
 checksumJournalFiles="true"
 checkForCorruptJournalFiles="true" />
</persistenceAdapter>

CHAPTER 2. USING THE KAHADB MESSAGE STORE

21

CHAPTER 3. USING A MULTI KAHADB PERSISTENCE
ADAPTER

Abstract

When you have destinations with different performance profiles or different persistence requirements
you can distribute them across multiple KahaDB message stores.

OVERVIEW

The stock KahaDB persistence adapter works well when all of the destinations being managed by the
broker have similar performance and reliability profiles. When one destination has a radically different
performance profile, for example its consumer is exceptionally slow compared to the consumers on
other destinations, the message store's disk usage can grow rapidly. When one or more destinations
don't require disc synchronization and the others do require it, all of the destinations must take the
performance hit.

The multi KahaDB persistence adapter allows you to distribute a broker's destinations across multiple
KahaDB message stores. Using multiple message stores allows you to tailor the message store more
precisely to the needs of the destinations using it. Destinations and stores are matched using filters that
take standard wild card syntax.

CONFIGURATION

The multi KahaDB persistence adapter configuration wraps more than one KahaDB message store
configuration.

The multi KahaDB persistence adapter configuration is specified using the mKahaDB element. The
mKahaDB element has a single attribute, directory, that specifies the location where the adapter writes
its data stores. This setting is the default value for the directory attribute of the embedded KahaDB
message store instances. The individual message stores can override this default setting.

The mKahaDB element has a single child filteredPersistenceAdapters. The
filteredPersistenceAdapters element contains multiple filteredKahaDB elements that configure the
KahaDB message stores that are used by the persistence adapter.

Each filteredKahaDB element configures one KahaDB message store (except in the case where the
perDestination attribute is set to true). The destinations matched to the message store are specified
using attributes on the filteredKahaDB element:

queue—specifies the name of queues

topic—specifies the name of topics

The destinations can be specified either using explicit destination names or using wildcards. For
information on using wildcards see the section called “Wildcard syntax” . If no destinations are specified
the message store will match any destinations that are not matched by other filters.

The KahaDB message store configured inside a filteredKahaDB element is configured using the
standard KahaDB persistence adapter configuration. It consists of a kahaDB element wrapped in a
persistenceAdapter element. For details on configuring a KahaDB message store see Section 2.2,
“Configuring the KahaDB Message Store”.

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

22

WILDCARD SYNTAX

You can use wildcards to specify a group of destination names. This is useful for situations where your
destinations are set up in federated hierarchies.

For example, imagine you are sending price messages from a stock exchange feed. You might name your
destinations as follows:

PRICE.STOCK.NASDAQ.ORCL to publish Oracle Corporation's price on NASDAQ

PRICE.STOCK.NYSE.IBM to publish IBM's price on the New York Stock Exchange

You could use exact destination names to specify which message store will be used to persist message
data, or you could use wildcards to define hierarchical pattern matches to the pair the destinations with
a message store.

Red Hat JBoss A-MQ uses the following wild cards:

. separates names in a path

* matches any name in a path

> recursively matches any destination starting from this name

For example using the names above, these filters are possible:

PRICE.>—any price for any product on any exchange

PRICE.STOCK.>—any price for a stock on any exchange

PRICE.STOCK.NASDAQ.*—any stock price on NASDAQ

PRICE.STOCK.*.IBM—any IBM stock price on any exchange

EXAMPLE

Example 3.1, “Multi KahaDB Persistence Adapter Configuration” shows a multi KahaDB persistence
adapter that distributes destinations across two KahaDB message stores. The first message store is
used for all queues managed by the broker. The second message store is used for all other destinations
(in this case, for all topics).

Example 3.1. Multi KahaDB Persistence Adapter Configuration

<persistenceAdapter>
 <mKahaDB directory="${activemq.base}/data/kahadb">
 <filteredPersistenceAdapters>
 <!-- match all queues -->
 <filteredKahaDB queue=">">
 <persistenceAdapter>
 <kahaDB journalMaxFileLength="32mb"/>
 </persistenceAdapter>
 </filteredKahaDB>

 <!-- match all destinations -->
 <filteredKahaDB>
 <persistenceAdapter>

CHAPTER 3. USING A MULTI KAHADB PERSISTENCE ADAPTER

23

AUTOMATIC PER-DESTINATION PERSISTENCE ADAPTER

When the perDestination attribute is set to true on the catch-all filteredKahaDB element (that is, the
instance of filteredKahaDB that specifies neither a queue nor a topic attribute), every matching
destination gets its own kahaDB instance. For example, the following sample configuration shows how
to configure a per-destination persistence adapter:

NOTE

Combining the perDestination attribute with either the queue or topic attributes has not
been verified to work and could cause runtime errors.

TRANSACTIONS

Transactions can span multiple journals if the destinations are distributed. This means that two phase
completion is required. This does incur the performance penalty of the additional disk sync to record the
commit outcome.

If only one journal is involved in the transaction, the additional disk sync is not used. The performance
penalty is not incurred in this case.

 <kahaDB enableJournalDiskSyncs="false"/>
 </persistenceAdapter>
 </filteredKahaDB>
 </filteredPersistenceAdapters>
 </mKahaDB>
</persistenceAdapter>

<broker brokerName="broker" ... >
 <persistenceAdapter>
 <mKahaDB directory="${activemq.base}/data/kahadb">
 <filteredPersistenceAdapters>
 <!-- kahaDB per destinations -->
 <filteredKahaDB perDestination="true" >
 <persistenceAdapter>
 <kahaDB journalMaxFileLength="32mb" />
 </persistenceAdapter>
 </filteredKahaDB>
 </filteredPersistenceAdapters>
 </mKahaDB>
 </persistenceAdapter>
 ...
</broker>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

24

CHAPTER 4. USING THE LEVELDB PERSISTENCE ADAPTER

Abstract

The LevelDB persistence adapter uses LevelDB as a high-performance message store. It allows for
higher throughput speeds than the default message store.

IMPORTANT

The LevelDB store is supported only on the Red Hat Enterprise Linux (RHEL) platform
(for the RHEL versions and configurations specified in Supported Configurations). If you
want to store the LevelDB files on a distributed file system, the following configuration is
also supported: the broker itself and the LevelDB adapter plugin run on a supported
RHEL platform, while the LevelDB files are stored on an NFSv4 file system (the O/S of
the server that hosts the NFSv4 file system is irrelevant). Note that the distributed file
system must be NFSv4.

For all other JBoss A-MQ-supported platforms, the LevelDB store is provided for
technical preview only. For details on what "technical preview" means, see
https://access.redhat.com/support/offerings/techpreview/.

OVERVIEW

The LevelDB message store is a file based message store implemented using Google's LevelDB library
to maintain indexes into log files holding the messages. The main advantages of the LevelDB store
include:

higher persistent throughput

faster recovery times when a broker restarts

supports concurrent read access

no pausing during garbage collection cycles

uses fewer read IO operations to load stored messages

supports XA transactions

checks for duplicate messages

exposes status via JMX for monitoring

supports replication

PLATFORM SUPPORT

LevelDB is implemented in C++, and Red Hat JBoss A-MQ accesses the libraries using a JNI driver.

JBoss A-MQ also provides an experimental pure Java driver for all other platforms.

BASIC CONFIGURATION

The LevelDB message store is configured by placing a levelDB element in the persistenceAdapter

CHAPTER 4. USING THE LEVELDB PERSISTENCE ADAPTER

25

https://access.redhat.com/support/offerings/techpreview/

The LevelDB message store is configured by placing a levelDB element in the persistenceAdapter
element of your broker's configuration. The levelDB element's attributes are used to configure the
message store.

All attributes, listed in Table 4.1, “Configuration Properties of the LevelDB Message Store—standard
LevelDB attributes”, have reasonable default values, so you are not required to specify values for them.
However, you will need to explicitly specify the location of the message store's data files by providing a
value for the directory attribute. This will ensure that the broker will not conflict with other brokers.

Example 4.1, “Configuring the LevelDB Message Store” shows a basic configuration of the LevelDB
message store. The LevelDB files are stored under the activemq-data directory.

Example 4.1. Configuring the LevelDB Message Store

CONFIGURATION ATTRIBUTES

Table 4.1, “Configuration Properties of the LevelDB Message Store—standard LevelDB attributes”
describes the attributes that can be used to configure the LevelDB message store.

Table 4.1. Configuration Properties of the LevelDB Message Store—standard LevelDB attributes

Attribute Default Value Description

directory activemq-data Specifies the path to the top-level
folder that holds the message
store's data files.

readThreads 10 Specifies the number of
concurrent IO reads to allow.

sync true Specifies whether syncs log
operations to disk.

logSize 104857600 Specifies the maximum size, in
bytes, of each data log file before
log file rotation occurs.

verifyChecksums false Specifies whether checksum
verification is performed on all
data that is read from the file
system.

<broker brokerName="broker" persistent="true" ... >
 ...
 <persistenceAdapter>
 <levelDB directory="activemq-data" />
 </persistenceAdapter>
 ...
</broker>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

26

paranoidChecks false Specifies whether the store errors
out as soon as possible when it
detects internal corruption.

indexFactory org.fusesource.leveldbjni.Jni
DBFactory,
org.iq80.leveldb.impl.Iq80DB
Factory

Specifies a comma separated list
of leveldb API implementation
factory classes that the broker will
attempt to load. The broker will
use the first one that loads
successfully.

org.fusesource.level
dbjni.JniDBFactory
enables the JNI base
implementation

org.iq80.leveldb.impl.
Iq80DBFactory
enables the pure Java
implementation

indexMaxOpenFiles 1000 Specifies the number of open files
that can be used by the index.

indexBlockRestartInterval 16 Specifies the number of keys
between restart points for delta
encoding of keys.

indexWriteBufferSize 4194304 Specifies the amount, in bytes, of
index data to build up in memory
before converting to a sorted on-
disk file.

indexBlockSize 4096 Specifies the size, in bytes, of
index data packed per block.

indexCacheSize 268435456 Specifies the maximum amount, in
bytes, of memory to use to cache
index blocks.

indexCompression snappy Specifies the type of compression
to apply to the index blocks. Can
be snappy or none.

logCompression snappy Specifies the type of compression
to apply to the log records. Can be
snappy or none.

Attribute Default Value Description

Table 4.2. Configuration Properties of the LevelDB Message Store—pluggable storage locker
attributes

CHAPTER 4. USING THE LEVELDB PERSISTENCE ADAPTER

27

Attribute Default Value Description

failIfLocked false Specifies whether the broker will
fail on start up if the message
store's data files are locked. If the
broker does not fail, it blocks until
the data files are unlocked.

useLock true Specifies whether the adapter
uses file locking.

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

28

CHAPTER 5. USING THE REPLICATED LEVELDB
PERSISTENCE ADAPTER

Abstract

The Replicated LevelDB persistence adapter uses Apache ZooKeeper to select a master from a cluster
of broker nodes that are configured to replicate a levelDB store. The Replicated LevelDB persistence
adapter then synchronizes all slave LevelDB stores with the master LevelDB store by replicating the
master broker's updates to all slave brokers in the cluster.

Because the Replicated LevelDB store uses the same data files as the regular LevelDB store, you can
switch a broker's LevelDB configuration between replicated and regular at any time.

OVERVIEW

IMPORTANT

The Replicated LevelDB persistence adapter is provided for technical preview only, and is
not suitable for production environments. For details on what "technical preview" means,
see https://access.redhat.com/support/offerings/techpreview/.

The Replicated LevelDB message store uses the same file-based store implemented using Google's
LevelDB library. As such, it provides the same advantages and runs on the same platforms as the
LevelDB persistence adapter (for details, see Using the LevelDB Persistence Adapter).

The Replicated LevelDB store uses Apache ZooKeeper to coordinate and select which broker node in
the cluster becomes master. Only the master accepts and starts client connections. All other broker
nodes enter slave mode and connect to the master, synchronizing their persistence state with it. The
master node then replicates all persistent operations to the connected slaves.

When the master dies, Apache ZooKeeper selects a slave that has the latest updates to be the new
master. Once the new master is activated, the old master can be brought back online, at which time it
enters slave mode.

All messaging operations that require a sync-to-disk wait for the update to be replicated to a quorum of
slave nodes before the operations complete. For example, a store configured with replicas="3" has a
quorum size of (3/2)+1=2. In this case, the master stores the update locally, then waits for at least one
slave to store the update before it reports success.

To select a new master, a quorum of nodes must be online for ZooKeeper to find a slave with the latest
updates. Therefore, it's recommend that you run with at least three replica nodes, so you can take one
down without suffering a service outage.

DEPLOYMENT TIPS

Clients should use the Failover Transport to connect to the broker nodes in the replication
cluster; for example, using a URL like this:

To enable highly available ZooKeeper service, run at least three ZooKeeper server nodes.

NOTE

failover:(tcp://broker1:61616,tcp://broker2:61616,tcp://broker3:61616)

CHAPTER 5. USING THE REPLICATED LEVELDB PERSISTENCE ADAPTER

29

https://access.redhat.com/support/offerings/techpreview/

NOTE

Avoid overcommitting ZooKeeper servers. An overworked ZooKeeper server
might infer that a live broker replication node has gone offline due to delayed
processing of keep-alive messages.

For details on setting up and running a distributed cluster of Apache ZooKeeper servers, see the
ZooKeeper Getting Started document.

To enable highly available ActiveMQ service, run at least three replicated broker nodes.

NOTE

Though Example 5.1, “Configuring the Replicated LevelDB Message Store” configures
three replicated broker nodes and three ZooKeeper servers, having the same number of
ZooKeeper nodes as replicated broker nodes is not required. Both the ZooKeeper service
and the messaging service operate under the same outage probability formula, wherein
running three nodes allows one node to fail without incurring a service outage, running
five nodes allows two nodes to fail simultaneously without incurring a service outage, and
so on. Applications that must meet stringent high availability requirements might
configure more ZooKeeper nodes than replicated broker nodes, as the messaging service
depends on the ZooKeeper service and is limited by its availability.

BASIC CONFIGURATION

To configure the Replicated LevelDB message store, place a replicatedLevelDB element in the
persistenceAdapter element of your broker's configuration, and use the replicatedLevelDB element's
attributes to configure the message store.

IMPORTANT

All broker nodes in the same replication cluster must use the same value in the
brokerName attribute.

Example 5.1, “Configuring the Replicated LevelDB Message Store” shows a basic configuration of the
Replicated LevelDB message store. The Replicated LevelDB files are stored under the activemq-data
directory.

Example 5.1. Configuring the Replicated LevelDB Message Store

<broker brokerName="broker" persistent="true" ... >
 ...
 <persistenceAdapter>
 <replicatedLevelDB
 directory="activemq-data" />
 replicas="3"
 bind="tcp://0.0.0.0;0"
 zkAddress="zoo1.example.org:2181,zoo2.example.org:2181,zoo3.example.org:2181"
 zkPassword="password"
 zkPath="/activemq/leveldb-stores"
 />
 </persistenceAdapter>
 ...
</broker>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

30

http://zookeeper.apache.org/doc/r3.4.5/zookeeperStarted.html

CONFIGURATION ATTRIBUTES

The attributes listed in Table 5.1, “Configuration Properties of the Replicated LevelDB Message Store—
attributes which must be identical on all broker nodes in a replication cluster” must be configured with
the same value on all broker nodes in a replication cluster.

Table 5.1. Configuration Properties of the Replicated LevelDB Message Store—attributes which
must be identical on all broker nodes in a replication cluster

Attribute Default Value Description

replicas 3 Specifies the number of
replicated stores the replication
cluster will contain. At least
(replicas/2)+1 nodes must be
online to avoid messaging service
outages.

securityToken Specifies the security token to
use, which must match on all
replication nodes in the cluster for
the nodes to accept each other's
replication requests.

zkAddress 127.0.0.1:2181 A comma-separated list of
addresses that specify the
ZooKeeper servers managing the
LevelDB stores in the cluster.

zkPassword Specifies the password to use for
connecting to the ZooKeeper
servers.

zkPath /default Specifies the path to the
ZooKeeper directory in which
information about master/slave
selection is exchanged.

CHAPTER 5. USING THE REPLICATED LEVELDB PERSISTENCE ADAPTER

31

zkSessionTimeout 2s Specifies the time limit by which
the broker will detect a network
failure. Valid units are:

s = seconds

m = minutes

h = hours

d = days

w = weeks

M = months

y = years

Specifying a number without a
suffix (s, m, h,...y) selects
milliseconds.

You can also combine units for
more fine-grained scheduling; for
example, 10m30s.

sync quorum_mem Controls where updates are
stored before they are considered
as having completed.

The options are: local_mem,
local_disk, remote_mem,
remote_disk, quorum_mem,
and quorum_disk

If you specify multiple options—in
a comma-separated list—the
stronger guarantee is used.

For example, specifying
local_mem,local_disk is the
same as specifying local_disk;
specifying quorum_mem is the
same as specifying
local_mem,remote_mem; and
quorum_disk is the same as
specifying
local_disk,remote_disk.

Attribute Default Value Description

IMPORTANT

The broker uses zkSessionTimeout to detect when it has been disconnected from the
ZooKeeper server due to a network failure. When set to 2s, the replicated broker nodes
will detect a disconnect within two seconds of a network failure. Once the disconnect is
detected, the master broker gives up the master role, and the slave brokers begin the
election process. The lower the timeout value, the faster the process to select a new
master. However, setting the timeout value too low can result in false positives, causing
masters to switch when no disconnect has occurred.

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

32

The attributes listed in Table 5.2, “Configuration Properties of the Replicated LevelDB Message Store—
attributes which can be unique for each broker node in a replication cluster” can be unique per broker
node in a replication cluster.

Table 5.2. Configuration Properties of the Replicated LevelDB Message Store—attributes which
can be unique for each broker node in a replication cluster

Attribute Default Value Description

bind tcp://0.0.0.0:61619 Specifies the address and port to
which the broker will bind to
service the replication protocol,
when it becomes master.

To configure dynamic ports, use
tcp://0.0.0.0:0.

hostname Specifies the hostname to use for
advertising the replication service
when the broker node becomes
master. When left unset, the
messaging service automatically
determines the hostname.

It's possible for the messaging
service to incorrectly determine
the hostname. For example, it
might select localhost, which
would prevent remote slave
brokers from connecting to the
master broker.

NOTE

Except for the Pluggable Storage Lockers, the Replicated LevelDB store supports all of
the standard LevelDB store configuration attributes. For details, see Table 4.1,
“Configuration Properties of the LevelDB Message Store—standard LevelDB attributes”
in Using the LevelDB Persistence o Adapter .

CHAPTER 5. USING THE REPLICATED LEVELDB PERSISTENCE ADAPTER

33

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE
STORE

Abstract

Red Hat JBoss A-MQ supports the use of relational databases as a message store through JDBC.

6.1. BASICS OF USING THE JDBC PERSISTENCE ADAPTER

Overview

For long term persistence you may want to use a relational database as your persistent message store.
Red Hat JBoss A-MQ's default database when using the JDBC persistence adapter is Apache Derby.
JBoss A-MQ also supports most major SQL databases. You can enable other databases by properly
configuring the JDBC connection in the broker's configuration file.

Supported databases

JBoss A-MQ is known to work with the following databases:

MySQL

Oracle

PostgreSQL

Microsoft SQL Server

For full details of the compatible database versions, see Red Hat JBoss A-MQ Supported
Configurations.

Specifying the type of JDBC store to use

JBoss A-MQ support two types of JDBC store:

JDBC store:

The regular JDBC store is specified using the jdbcPersistenceAdapter element inside the
persistenceAdapter element. For more details see Section 6.2, “Using the Plain JDBC
Adapter”.

Journaled JDBC store:

(Deprecated) The journaled JDBC store is specified using the journaledJDBC element inside
the persistenceFactory element. For more details see Section 6.3, “Using JDBC with the High
Performance Journal”.

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

34

https://access.redhat.com/articles/310613

WARNING

The journaled JDBC store is incompatible with the JDBC master/slave
failover pattern—see Fault Tolerant Messaging .

The journaled JDBC store features better performance than the plain JDBC store.

WARNING

The journaled JDBC store is incompatible with the JDBC master/slave failover
pattern—see Fault Tolerant Messaging .

Prerequisites

Before you can use one of the JDBC persistence stores you need to ensure that the following are
installed in the broker's container:

The org.apache.servicemix.bundles.commons-dbcp bundle. You can install this bundle into a
standalone container using the following console command:

The JDBC driver for the database being used.

NOTE

Depending on the database being used, you may need to wrap the driver in an
OSGi bundle by using the wrap: URI prefix when adding it to the container.

Configuring your JDBC driver

JBoss A-MQ autodetects the JDBC driver that is in use at start-up. For the supported databases, the
JDBC adapter automatically adjusts the SQL statements and JDBC driver methods to work with the
driver. If you wish to customize the names of the database tables or work with an unsupported database,
you can modify both the SQL statements and the JDBC driver methods. See the section called
“Customizing the SQL statements used by the adapter” for information about modifying the SQL
statements. See the section called “Using generic JDBC providers” for information about changing the
JDBC methods.

JDBC configuration for Apache Derby

Example 6.1, “Configuration for the Apache Derby Database” shows the configuration for using the
default Apache Derby JDBC driver.





osgi:install mvn:org.apache.servicemix.bundles/org.apache.servicemix.bundles.commons-
dbcp/1.4_3

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE

35

Example 6.1. Configuration for the Apache Derby Database

JDBC configuration for Oracle

Example 6.2, “Configuration for the Oracle JDBC Driver” shows the configuration for using the Oracle
JDBC driver. The persistence adapter configuration refers to the Spring bean element that configures
the JDBC driver.

Example 6.2. Configuration for the Oracle JDBC Driver

<beans ...>
 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="localhost">
 ...
 <persistenceAdapter>
 <jdbcPersistenceAdapter
 dataDirectory="${activemq.base}/data"
 dataSource="#derby-ds"/>
 </persistenceAdapter>
 ...
 </broker>

 <!-- Embedded Derby DataSource Sample Setup -->
 <bean id="derby-ds" class="org.apache.derby.jdbc.EmbeddedDataSource">
 <property name="databaseName" value="derbydb"/>
 <property name="createDatabase" value="create"/>
 </bean>

</beans>

<beans ... >
 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="localhost">
 ...
 <persistenceAdapter>
 <jdbcPersistenceAdapter
 dataDirectory="${activemq.base}/data"
 dataSource="#oracle-ds"/>
 </persistenceAdapter>
 ...
 </broker>

 <!-- Oracle DataSource Sample Setup -->
 <bean id="oracle-ds"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="url" value="jdbc:oracle:thin:@localhost:1521:AMQDB"/>
 <property name="username" value="scott"/>
 <property name="password" value="tiger"/>
 <property name="maxActive" value="200"/>
 <property name="poolPreparedStatements" value="true"/>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

36

1

2

3

The JDBC drivers are configured using a Spring bean element. The id attribute specifies the name by
which you will refer to the driver when configuring the JDBC persistence adapter. The class attribute
specifies the class that implements the data source used to interface with the JDBC driver. The
destroy-method attribute specifies the name of the method to call when the JDBC driver is shutdown.

In addition to the bean element, the JDBC driver configuration includes a number of property
elements. Each property element specifies a property required by the JDBC driver. For information
about the configurable properties refer to your JDBC driver's documentation.

6.2. USING THE PLAIN JDBC ADAPTER

Overview

This section describes how to use the plain JDBC adapter, which is the recommended adapter to use for
most applications.

Example

Example 6.3, “Configuring Red Hat JBoss A-MQ to use the Plain JDBC Persistence Adapter” shows a
configuration fragment that configures the plain JDBC adapter to use the Apache Derby database.

Example 6.3. Configuring Red Hat JBoss A-MQ to use the Plain JDBC Persistence Adapter

The configuration in Example 6.3, “Configuring Red Hat JBoss A-MQ to use the Plain JDBC Persistence
Adapter” has three noteworthy elements:

The persistenceAdapter element wraps the configuration for the JDBC persistence adapter.

The jdbcPersistenceAdapter element specifies that the broker will use the plain JDBC
persistence adapter and that the JDBC driver's configuration is specified in a bean element with
the ID, derby-ds.

The bean element specified the configuration for the Derby JDBC driver.

 </bean>

</beans>

1
2

3

<beans ... >
 <broker ...>
 ...

 <persistenceAdapter>
 <jdbcPersistenceAdapter dataSource="#derby-ds" />
 </persistenceAdapter>

 ...
 <broker>
 ...

<bean id="derby-ds" class="org.apache.derby.jdbc.EmbeddedDataSource">
 <property name="databaseName" value="derbydb"/>

 <property name="createDatabase" value="create"/>
 </bean>

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE

37

Configuration

Table 6.1, “Attributes for Configuring the Plain JDBC Persistence Adapter” describes the attributes used
to configure the plain JDBC persistence adapter.

Table 6.1. Attributes for Configuring the Plain JDBC Persistence Adapter

Attribute Default Value Description

adapter Specifies the strategy to use when
accessing a non-supported
database. For more information
see the section called “Using
generic JDBC providers”.

cleanupPeriod 300000 Specifies, in milliseconds, the
interval at which acknowledged
messages are deleted.

createTablesOnStartup true Specifies whether or not new
database tables are created when
the broker starts. If the database
tables already exist, the existing
tables are reused.

dataDirectory activemq-data Specifies the directory into which
the default Derby database writes
its files.

dataSource #derby Specifies the id of the Spring bean
storing the JDBC driver's
configuration. For more
information see the section called
“Configuring your JDBC driver”.

transactionIsolation Connection.TRANSACTION_
READ_UNCOMMITTED

Specifies the required transaction
isolation level. For allowed values,
see java.sql.Connection.

useLock true Specifies in the adapter uses file
locking.

lockKeepAlivePeriod 30000 Specifies the time period, in
milliseconds, at which the current
time is saved in the locker table to
ensure that the lock does not
timeout. 0 specifies unlimited
time.

6.3. USING JDBC WITH THE HIGH PERFORMANCE JOURNAL

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

38

http://docs.oracle.com/javase/6/docs/api/java/sql/Connection.html

Overview

The journaled JDBC store is deprecated in this release. The journaled JDBC store was designed to
optimize performance where there is a slow connection to the remote database. With modern high-
speed networks, however, the advantage of this optimization is negligible.

WARNING

The journaled JDBC store is deprecated from JBoss A-MQ 6.2 onwards and may be
removed in a future release.

WARNING

The journaled JDBC store is incompatible with the JDBC master/slave failover
pattern—see Fault Tolerant Messaging .

Prerequisites

Before you can use the journaled JDBC persistence store you need to ensure that the activeio-core-
3.1.4.jar bundle is installed in the container.

The bundle is available in the archived ActiveMQ installation included in the InstallDir/extras folder or
can be downloaded from Maven at http://mvnrepository.com/artifact/org.apache.activemq/activeio-
core/3.1.4.

Example

Example 6.4, “Configuring Red Hat JBoss A-MQ to use the Journaled JDBC Persistence Adapter”
shows a configuration fragment that configures the journaled JDBC adapter to use a MySQL database.

Example 6.4. Configuring Red Hat JBoss A-MQ to use the Journaled JDBC Persistence Adapter





1
2

3

<beans ... >
 <broker ...>
 ...

 <persistenceFactory>
 <journalPersistenceAdapterFactory journalLogFiles="5" dataDirectory="${data}/kahadb"
dataSource="#mysql-ds" useDatabaseLock="true" useDedicatedTaskRunner="false />

 </persistenceFactory>
 ...
 <broker>
 ...

<bean id="mysql-ds"
 class="org.apache.commons.dbcp.BasicDataSource"

 destroy-method="close">

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE

39

http://mvnrepository.com/artifact/org.apache.activemq/activeio-core/3.1.4

1

2

3

The configuration in Example 6.4, “Configuring Red Hat JBoss A-MQ to use the Journaled JDBC
Persistence Adapter” has three noteworthy elements:

The persistenceFactory element wraps the configuration for the JDBC persistence adapter.

The journaledJDBC element specifies that the broker will use the JDBC persistence adapter with
the high performance journal. The element's attributes configure the following properties:

The journal will span five log files.

The configuration for the JDBC driver is specified in a bean element with the ID, mysql-
ds.

The data for the journal will be stored in ${data}/kahadb.

The bean element specified the configuration for the MySQL JDBC driver.

Configuration

Table 6.2, “Attributes for Configuring the Journaled JDBC Persistence Adapter” describes the
attributes used to configure the journaled JDBC persistence adapter.

Table 6.2. Attributes for Configuring the Journaled JDBC Persistence Adapter

Attribute Default Value Description

adapter Specifies the strategy to use when
accessing a non-supported
database. For more information
see the section called “Using
generic JDBC providers”.

createTablesOnStartup true Specifies whether or not new
database tables are created when
the broker starts. If the database
tables already exist, the existing
tables are reused.

dataDirectory activemq-data Specifies the directory into which
the default Derby database writes
its files.

 <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <property name="url" value="jdbc:mysql://localhost/activemq?relaxAutoCommit=true"/>
 <property name="username" value="activemq"/>
 <property name="password" value="activemq"/>
 <property name="poolPreparedStatements" value="true"/>
 </bean>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

40

dataSource #derby Specifies the id of the Spring bean
storing the JDBC driver's
configuration. For more
information see the section called
“Configuring your JDBC driver”.

journalArchiveDirectory Specifies the directory used to
store archived journal log files.

journalLogFiles 2 Specifies the number of log files
to use for storing the journal.

journalLogFileSize 20MB Specifies the size for a journal's
log file.

journalThreadPriority 10 Specifies the thread priority of the
thread used for journaling.

useJournal true Specifies whether or not to use
the journal.

useLock true Specifies in the adapter uses file
locking.

lockKeepAlivePeriod 30000 Specifies the time period, in
milliseconds, at which the current
time is saved in the locker table to
ensure that the lock does not
timeout. 0 specifies unlimited
time.

checkpointInterval 1000 * 60 * 5 Specifies the time period, in
milliseconds, between writing
metadata cache to disk. .

Attribute Default Value Description

6.4. CUSTOMIZING THE JDBC PERSISTENCE ADAPTER

Overview

Red Hat JBoss A-MQ provides options to customize the interaction between the JDBC persistence
adapter and the underlying database. In some cases you might be able to use these customization
options to integrate the JDBC persistence adapter with an unsupported database.

Customizing the SQL statements used by the adapter

You can customize the SQL statements that the JDBC persistence adapter uses to access the
database. This is done by adding a statements element to the JDBC persistence adapter configuration.
Example 6.5, “Fine Tuning the Database Schema” shows a configuration snippet that specifies that long

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE

41

strings are going to be stored as VARCHAR(128).

Example 6.5. Fine Tuning the Database Schema

The first statements element is a wrapper for one or more nested statements elements. Each nested
statements element specifies a single configuration statement. Table 6.3, “Statements for Configuring
the SQL Statements Used by the JDBC Persistence Adapter” describes the configurable properties.

Table 6.3. Statements for Configuring the SQL Statements Used by the JDBC Persistence Adapter

Attribute Default Description

tablePrefix Specifies a prefix that is added to
every table name. The prefix
should be unique per broker if
multiple brokers will be sharing
the same database.

messageTableName ACTIVEMQ_MSGS Specifies the name of the table in
which persistent messages are
stored.

durableSubAcksTableName ACTIVEMQ_ACKS Specifies the name of the
database table used to store
acknowledgment messages from
durable subscribers.

lockTableName ACTIVEMQ_LOCK Specifies the name of the lock
table used to determine the
master in a master/slave scenario.

binaryDataType BLOB Specifies the data type used to
store the messages.

containerNameDataType VARCHAR(250) Specifies the data type used to
store the destination name.

msgIdDataType VARCHAR(250) Specifies the data type used to
store a message id.

sequenceDataType INTEGER Specifies the datatype used to
store the sequence id of a
message.

<persistenceAdapter>
 <jdbcPersistenceAdapter ... >
 <statements>
 <statements stringIdDataType ="VARCHAR(128)"/>
 </statements>
 </jdbcPersistenceAdapter>
</persistenceAdapter>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

42

longDataType BIGINT Specifies the data type used to
store a Java long.

stringIdDataType VARCHAR(250) Specifies the data type used to
store long strings like client ids,
selectors, and broker names.

Attribute Default Description

The properties listed in Table 6.3, “Statements for Configuring the SQL Statements Used by the JDBC
Persistence Adapter” configure the default SQL statements used by the JDBC adapter and work with
all of the supported databases.

Customizing SQL statements for unsupported databases

If you need to override the default statements to work with an unsupported database, there are a
number of other properties that can be set. These include:

addMessageStatement

updateMessageStatement

removeMessageStatement

findMessageSequenceIdStatement

findMessageStatement

findAllMessagesStatement

findLastSequenceIdInMsgsStatement

findLastSequenceIdInAcksStatement

createDurableSubStatement

findDurableSubStatement

findAllDurableSubsStatement

updateLastAckOfDurableSubStatement

deleteSubscriptionStatement

findAllDurableSubMessagesStatement

findDurableSubMessagesStatement

findAllDestinationsStatement

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE

43

removeAllMessagesStatement

removeAllSubscriptionsStatement

deleteOldMessagesStatement

lockCreateStatement

lockUpdateStatement

nextDurableSubscriberMessageStatement

durableSubscriberMessageCountStatement

lastAckedDurableSubscriberMessageStatement

destinationMessageCountStatement

findNextMessageStatement

createSchemaStatements

dropSchemaStatements

Using generic JDBC providers

To use a JDBC provider not natively supported by Red Hat JBoss A-MQ, you can configure the JDBC
persistence adapter, by setting the persistence adapter's adapter attribute to reference the bean ID of
the relevant adapter. The following adapter types are supported:

org.activemq.store.jdbc.adapter.BlobJDBCAdapter

org.activemq.store.jdbc.adapter.BytesJDBCAdapter

org.activemq.store.jdbc.adapter.DefaultJDBCAdapter

org.activemq.store.jdbc.adapter.ImageJDBCAdapter

Various settings are provided to customize how the JDBC adapter stores and accesses BLOB fields in
the database. To determine the proper settings, consult the documentation for your JDBC driver and
your database.

Example 6.6, “Configuring a Generic JDBC Provider” shows a configuration snippet configuring the
journaled JDBC persistence adapter to use the blob JDBC adapter.

Example 6.6. Configuring a Generic JDBC Provider

<broker persistent="true" ... >
 ...
 <persistenceAdapter>
 <jdbcPersistenceAdapter adapter="#blobAdapter" ... />
 </persistenceAdapter>

 <bean id="blobAdapter"

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

44

6.5. TUTORIAL: JDBC PERSISTENCE

Overview

This tutorial provides complete instructions for installing a JDBC persistence layer into the JBoss A-MQ
broker, using the MySQL database to store the broker's data. This example uses a plain JDBC
persistence adapter and uses the default database schema.

This tutorial assumes you are using a standalone JBoss A-MQ container, which is the condition of the
container immediately after the product is installed. It does not cover the case of a Fabric container.

Prerequisites

Before following the instructions for this tutorial, make sure that your system satisfies the following
prerequisites:

You have already installed a MySQL database server (following the instructions in the MySQL
Installation Guide, including the post installation set-up and testing).

The MySQL database server is already running.

You have root access to the MySQL database server (that is, you have access to the root user
account in MySQL, which you can use to administer the database).

You have access to the Internet (so that you can install the MySQL JDBC driver bundle and the
Apache Commons data source bundle, both of which must be downloaded from the Maven
Central repository).

Steps to configure JDBC persistence with MySQL

To configure a standalone JBoss A-MQ broker to use JDBC persistence with MySQL, perform the
following steps:

1. Log into the MySQL database using the mysql client shell. Enter the following command to log
on as the root user:

You will be prompted to enter the root user password (alternatively, if the root user has no
associated password, you can omit the -p option).

2. Add the new user account, amq, to MySQL with password, amqPass, by entering the following
command at the mysql shell prompt:

If you would rather create the amq user without any password, you can omit the IDENTIFIED
BY clause, as follows:

 class="org.activemq.store.jdbc.adapter.BlobJDBCAdapter"/>
 ...
</broker>

mysql -u root -p

mysql> CREATE USER 'amq'@'localhost' IDENTIFIED BY 'amqPass';

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE

45

https://dev.mysql.com/doc/refman/5.6/en/installing.html

NOTE

This example assumes you are invoking the mysql shell from the same host
where the MySQL database server is running. If you are logging on to the MySQL
database remotely, however, you should replace localhost in the preceding
command (and subsequent commands) by the name of the host where you are
invoking the mysql shell.

3. Grant privileges to the amq user, enabling it to access the activemq database instance (which
has yet to be created). Enter the following GRANT command at the mysql shell prompt:

4. Create the activemq database instance, by entering the following command:

There is no need to create any database tables at this point. The broker's JDBC persistence will
automatically create the necessary tables when it starts up for the first time.

5. Start the JBoss A-MQ standalone container, with its default (unchanged) configuration:

6. Install the MySQL JDBC driver into the container, as follows:

7. Install the Apache Commons data source bundle, as follows:

8. Stop the JBoss A-MQ container (for example, by entering the shutdown command at the
console). Now configure the broker to use JDBC persistence by editing the
InstallDir/etc/activemq.xml file. Modify the broker/persistenceAdapter element and add a
new bean element (for the MySQL data source) as follows:

mysql> CREATE USER 'amq'@'localhost';

mysql> GRANT ALL PRIVILEGES ON activemq.* TO 'amq'@'localhost' WITH GRANT
OPTION;

mysql> CREATE DATABASE activemq;

cd InstallDir/bin
./amq

JBossA-MQ:karaf@root> osgi:install mvn:mysql/mysql-connector-java/5.1.27

JBossA-MQ:karaf@root> osgi:install
mvn:org.apache.servicemix.bundles/org.apache.servicemix.bundles.commons-dbcp/1.4_3

<beans ...>
 ...
 <bean id="mysql-ds"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <property name="url" value="jdbc:mysql://localhost/activemq?
relaxAutoCommit=true"/>
 <property name="username" value="amq"/>
 <property name="password" value="amqPass"/> <property

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

46

Where the bean with the ID, mysql-ds, creates a data source instance for connecting to the
MySQL database through the JDBC protocol. Note particularly the following property settings
for this bean:

url

Is used to specify a JDBC URL in the following format:

Where Hostname is the host where the MySQL database server is running; DBName is the
name of the database instance used to store the broker data (which is activemq, in this
example); and you can optionally set property values, Property=Value, after the ? character.

password

If you specified a password for the amq user when you created it, specify the password here.
Otherwise, if no password was defined, specify a blank string, "".

9. Restart the JBoss A-MQ container, as follows:

As the broker initializes, it automatically creates new tables in the activemq database instance
to hold the broker data (this is the default behavior).

10. To verify that the requisite tables have been created in the activemq database instance, enter
the following commands at the mysql client shell:

name="poolPreparedStatements" value="true"/> </bean>

 <broker ...>
 ...
 <persistenceAdapter>
 <jdbcPersistenceAdapter dataSource="#mysql-ds"/>
 </persistenceAdapter>
 ...
 </broker>

</beans>

jdbc:mysql://Hostame/DBName[?Property=Value]

./amq

mysql> USE activemq;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> SHOW TABLES;
+--------------------+
| Tables_in_activemq |
+--------------------+
| ACTIVEMQ_ACKS |
| ACTIVEMQ_LOCK |
| ACTIVEMQ_MSGS |
+--------------------+
3 rows in set (0.00 sec)

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE

47

6.6. TUTORIAL: CONFIGURING ACTIVEMQ JDBC PERSISTENCE ON
FABRIC CONTAINER WITH POSTGRESQL

Overview

This tutorial provides instructions for configuring ActiveMQ JDBC Persistence on Fabric Container using
PostgreSQL database to store the broker's data.

This tutorial assumes that the PostgreSQL is provided as a JAR file on the local filesystem of each
broker and referenced using a file:URI. If a filesystem location is used, then the location needs to be the
same on each broker instance, or the configuration becomes uncoordinated.

The brokers must have fixed, known port numbers. In this example, a single broker is used which has a
fixed port number. This port number is provided in a child profile. In case of multiple brokers, the brokers
in the group could have the same configuration but different port numbers. You can create additional
child profiles with different port numbers.

Prerequisites

Before following the instructions for this tutorial, make sure that your system satisfies the following
prerequisites:

You have already installed a PostgreSQL database server.

The PostgreSQL database server is already running.

You have root access to the PostgreSQL database server (that is, you have access to the root

mysql> describe ACTIVEMQ_LOCK;
+-------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+-------+
ID	bigint(20)	NO	PRI	NULL	
TIME	bigint(20)	YES		NULL	
BROKER_NAME	varchar(250)	YES		NULL	
+-------------+--------------+------+-----+---------+-------+
3 rows in set (0.00 sec)

mysql> describe ACTIVEMQ_MSGS
 -> ;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
ID	bigint(20)	NO	PRI	NULL	
CONTAINER	varchar(250)	YES	MUL	NULL	
MSGID_PROD	varchar(250)	YES	MUL	NULL	
MSGID_SEQ	bigint(20)	YES		NULL	
EXPIRATION	bigint(20)	YES	MUL	NULL	
MSG	longblob	YES		NULL	
PRIORITY	bigint(20)	YES	MUL	NULL	
XID	varchar(250)	YES	MUL	NULL	
+------------+--------------+------+-----+---------+-------+
8 rows in set (0.00 sec)

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

48

You have root access to the PostgreSQL database server (that is, you have access to the root
user account in PostgreSQL, which you can use to administer the database).

You have access to the internet so that you can install the PostgreSQL JDBC driver bundle and
the Apache Commons data source bundle, both of which must be downloaded from the Maven
Central repository.

Steps to configure JDBC persistence with PostgreSQL

To configure Red Hat JBoss A-MQ broker to use JDBC persistence with PostgreSQL on a fabric
container, perform following steps:

Procedure 6.1. Configure PostgreSQL database

1. Log into the PostgreSQL database. Enter the following command to log on as the root user:

2. Add the new user account amq to PostgreSQL with password amqPass, by entering the
following command:

3. Create the activemq database instance, by entering the following command:

4. Grant privileges to the amq user, enabling it to access the activemq database instance (which
has yet to be created). Enter the following GRANT command at the postgresql shell prompt:

There is no need to create any database tables at this point. The broker's JDBC persistence will
automatically create the necessary tables when it starts up for the first time.

5. Stop and restart the PostgreSQL server.

Procedure 6.2. Create A-MQ Broker Group

1. In JBoss A-MQ, start the local container as follows:

su - postgres
psql

postgres=# create ROLE amq LOGIN PASSWORD 'amqPass' SUPERUSER;
CREATE ROLE

postgres=# CREATE DATABASE activemq WITH OWNER = amq;
CREATE DATABASE

postgres=# GRANT CONNECT ON DATABASE activemq TO amq;
GRANT

service postgresql stop

Stopping postgresql service: [OK]

service postgresql start

Starting postgresql service:

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE

49

2. Create a broker group in a fabric container as follows:

3. Install the PostgreSQL JDBC driver into the container, as follows:

4. Install the Apache Commons data source bundle and osgi.compendium bundle as follows:

5. Create a child container:

6. Enter following command to view the newly created container.

7. Stop the JBoss A-MQ container by entering following command at the console:

Procedure 6.3. Create a custom JDBC broker configuration

When you use mq-create command, it creates a fabric profile which can be assigned to a container to
instantiate an A-MQ message broker in that container. However, that profile does not have its own
broker configuration file (for example, activemq.xml/broker.xml), but inherits it from the parent profile.
Since this is the default configuration file, it assumes KahaDB persistence and also defaults to other
settings. Hence it is necessary to create and configure a customized broker, without affecting the fabric
defaults. For this, you need to add a customized configuration XML file to this profile and instruct fabric
to use it. You can achieve this using Hawtio Web console.

1. Log in to Hawtio console and navigate to the mq-base profile in the console. Open the
broker.xml and copy its contents to a text editor.

2. Navigate to newly created profile mq-broker-BrokerGroup.AMQBroker and click the + Create
button in the top right hand corner.

3. Select XML document option. Enter the name of the file as jdbc-broker.xml and click Create.

cd InstallDir/bin
./amq

JBossA-MQ:karaf@root> fabric:create --clean --wait-for-provisioning
JBossA-MQ:karaf@root> fabric:mq-create --kind MasterSlave --group BrokerGroup
AMQBroker

JBossA-MQ:karaf@root> profile-edit --bundle wrap:file:///$DRIVER_PATH/postgresql-9.4-
1206-jdbc4.jar mq-broker-BrokerGroup.AMQBroker

JBossA-MQ:karaf@root> profile-edit --bundle
mvn:org.apache.servicemix.bundles/org.apache.servicemix.bundles.commons-dbcp/1.4_3
mq-broker-BrokerGroup.AMQBroker
JBossA-MQ:karaf@root> profile-edit --bundle mvn:org.osgi/org.osgi.compendium/4.3.1 mq-
broker-BrokerGroup.AMQBroker

JBossA-MQ:karaf@root> fabric:container-create-child --profile mq-broker-
BrokerGroup.AMQBroker root broker-container1

JBossA-MQ:karaf@root> container-list

JBossA-MQ:karaf@root> container-stop broker-container1

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

50

3. Select XML document option. Enter the name of the file as jdbc-broker.xml and click Create.
An empty xml document opens. Paste the content copied in the step 1. An example code is
given below.

<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:amq="http://activemq.apache.org/schema/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/activemq-
core.xsd">

 <!-- Allows us to use system properties and fabric as variables in this configuration file -->
 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="properties">
 <bean class="io.fabric8.mq.fabric.ConfigurationProperties"/>
 </property>
 </bean>

 <bean id="postgres-ds" class="org.postgresql.ds.PGSimpleDataSource">
 <property name="url" value="jdbc:postgresql://localhost/activemq"/>
 <property name="user" value="amq"/>
 <property name="password" value="amqPass"/>
 <property name="initialConnections" value="1"/>
 <property name="maxConnections" value="10"/>
 </bean>

 <broker xmlns="http://activemq.apache.org/schema/core" brokerName="${broker-name}"
dataDirectory="${data}" start="false" restartAllowed="false">

 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry topic=">" producerFlowControl="true">
 <pendingMessageLimitStrategy>
 <constantPendingMessageLimitStrategy limit="1000"/>
 </pendingMessageLimitStrategy>
 </policyEntry>
 <policyEntry queue=">" producerFlowControl="true" memoryLimit="1mb">
 </policyEntry>
 </policyEntries>
 </policyMap>
 </destinationPolicy>

 <managementContext>
 <managementContext createConnector="false"/>
 </managementContext>

 <persistenceAdapter>
 <jdbcPersistenceAdapter dataSource="#postgres-ds" lockKeepAlivePeriod="5000">
 <locker>
 <lease-database-locker lockAcquireSleepInterval="10000"/>
 </locker>
 </jdbcPersistenceAdapter>
 </persistenceAdapter>

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE

51

 <plugins>
 <jaasAuthenticationPlugin configuration="karaf" />
 <authorizationPlugin>
 <map>
 <authorizationMap
groupClass="org.apache.karaf.jaas.boot.principal.RolePrincipal">
 <!--
manager,viewer,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin,User -
->
 <authorizationEntries>
 <authorizationEntry queue=">"
read="manager,viewer,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin"
write="manager,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin"
admin="manager,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin"/>
 <authorizationEntry topic=">"
read="manager,viewer,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin"
write="manager,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin"
admin="manager,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin"/>
 <authorizationEntry topic="ActiveMQ.Advisory.>"
read="manager,viewer,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin,
User"
write="manager,viewer,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin,
User"
admin="manager,viewer,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin
,User" />
 </authorizationEntries>
 <tempDestinationAuthorizationEntry>
 <tempDestinationAuthorizationEntry
read="manager,viewer,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin"
write="manager,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin"
admin="manager,Operator,Maintainer,Deployer,Auditor,Administrator,SuperUser,admin"/>
 </tempDestinationAuthorizationEntry>
 </authorizationMap>
 </map>
 </authorizationPlugin>
 </plugins>

 <systemUsage>
 <systemUsage>
 <memoryUsage>
 <memoryUsage percentOfJvmHeap="70"/>
 </memoryUsage>
 <storeUsage>
 <storeUsage limit="100 gb"/>
 </storeUsage>
 <tempUsage>
 <tempUsage limit="50 gb"/>
 </tempUsage>
 </systemUsage>
 </systemUsage>

 <transportConnectors>
 <transportConnector name="openwire" uri="tcp://${bindAddress}:${bindPort}"/>
 </transportConnectors>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

52

4. Edit the broker/persistenceAdapter element in the jdbc-broker.xml as follows:

5. Add a new bean element for the PostgreSQL data source as follows:

6. Click Save to save the newly created jdbc-broker.xml document.

7. Navigate to mq-broker-BrokerGroup.AMQBroker broker profile. Edit the configuration
properties file io.fabric8.mq.fabric.server-broker.properties to assign newly created jdbc-
broker.xml file as shown below.

8. Click Save.

Procedure 6.4. Verify Broker configuration and creation of data tables

1. Restart the JBoss A-MQ container, as follows:

2. To verify that the requisite tables have been created in the activemq database instance, enter
the following commands at the postgres client shell:

 </broker>

<beans>

 <persistenceAdapter>
 <jdbcPersistenceAdapter dataSource="#postgres-ds" lockKeepAlivePeriod="5000">
 <locker>
 <lease-database-locker lockAcquireSleepInterval="10000"/>
 </locker>
 </jdbcPersistenceAdapter>
 </persistenceAdapter>

<beans...>

 <bean id="postgres-ds" class="org.postgresql.ds.PGSimpleDataSource">
 <property name="url" value="jdbc:postgresql://localhost/activemq"/>
 <property name="user" value="amq"/>
 <property name="password" value="amqPass"/>
 <property name="initialConnections" value="1"/>
 <property name="maxConnections" value="10"/>
 <bean>

<beans>

config = profile:jdbc-broker.xml

container-start broker-container1

$ su - postgres

Password:

-bash-4.1$ psql

CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE

53

connect to activemq schema

postgres=# \c activemq

check tables

activemq=# \dt

List of relations

Schema | Name | Type | Owner

--------+---------------+-------+----------

public | activemq_acks | table | activemq

public | activemq_lock | table | activemq

public | activemq_msgs | table | activemq

(3 rows)

run select query.

activemq=# select * from activemq_lock;

id | time | broker_name

----+---------------+--------------

1 | 1506947282760 | broker-container1

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

54

CHAPTER 7. MESSAGE CURSORS

Abstract

Red Hat JBoss A-MQ uses message cursors to improve the scalability of the persistent message store.
By default, a hybrid approach that uses an in memory dispatch queue for fast consumers and message
cursors for slower consumers is used. JBoss A-MQ also supports two alternative cursor
implementations. The type of cursor can be configured on a per-destination basis.

Message data is cached in the broker using message cursors , where a cursor instance is associated with
each destination. A message cursor represents a batch of messages cached in memory. When
necessary, a message cursor will retrieve persisted messages through the persistence adapter. But the
key point you need to understand about message cursors is that the cursors are essentially independent
of the persistence layer.

Message cursors provide a means for optimizing a persistent message store. They allow the persistent
store to maintain a pointer to the next batch of messages to pull from the persistent message store. Red
Hat JBoss A-MQ has three types of cursors that can be used depending on the needs of your
application:

Store-based cursors are used by default to handle persistent messages.

VM cursors are very fast, but cannot handle slow message consumers.

File-based cursors are used by default to handle non-persistent messages. They are useful when
the message store is slow and message consumers are relatively fast.

7.1. TYPES OF CURSORS

Store-based cursors

Store-based cursors are used, by default, for processing persistent messages. Store-based cursors are a
hybrid implementation that offers the robustness of typical cursor implementations and the speed of
in-memory message reference implementations.

Typically messaging systems will pull persistent messages from long-term storage in a batch when a
client is ready to consume them. A cursor will be used to maintain the position for the next batch of
messages. While this approach scales well and provides excellent robustness, it does not perform well
when message consumers keep pace with message producers.

As shown in Figure 7.1, “Store-based Cursors for a Fast Consumer” , the store-based cursor addresses
the fast consumer case just like the VM cursor. Messages are written to the persistent store and are also
directly stored in the pending cursor, which is held completely in memory. The pending cursor then feeds
the messages into the dispatch queue. However, since the store cursor can hold only a limited number of
messages in memory, it is a mapping of only a fraction of the persistent message store.

Figure 7.1. Store-based Cursors for a Fast Consumer

CHAPTER 7. MESSAGE CURSORS

55

Figure 7.1. Store-based Cursors for a Fast Consumer

When a consumer starts with a back log of messages or falls behind its message producers, JBoss A-MQ
changes the strategy used to dispatch messages. As shown in Figure 7.2, “Store-based Cursors for a
Slow Consumer”, messages are held in the message store and fed into the consumer's dispatch queue
using the pending cursor.

Figure 7.2. Store-based Cursors for a Slow Consumer

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

56

VM cursors

When speed is the top priority and the consumers can definitely keep pace with the message producers,
VM cursors could be the best approach. In this approach, shown in Figure 7.3, “VM Cursors” , messages
are written to the persistent store and are also stored in the pending cursor, which is held completely in
memory. The messages are fed into the dispatch queue from the pending cursor. Since it needs to hold
all messages in memory, the VM cursor is a snapshot of the entire persistent message store.

Figure 7.3. VM Cursors

Because the messages are dispatched from active memory when using VM cursors, this method is
exceptionally fast. However, if the number of unconsumed messages grows large, the producers are
throttled to avoid exceeding available memory.

File-based cursors

File-based cursors are a variation of VM cursors that provides a buffer against running out of memory
when a consumer falls behind. As shown in Figure 7.4, “File-based Cursors” , the broker pages messages
out to a temporary file when the broker's memory limit is reached.

Figure 7.4. File-based Cursors

CHAPTER 7. MESSAGE CURSORS

57

Figure 7.4. File-based Cursors

Using a temporary file cushions the broker against situations where a consumer occasionally falls behind
or messages are produced in a burst. The broker uses the temporary file instead of resorting to using
slower persistent storage.

File-based cursors do not scale well when consumers are frequently behind by a large margin. It is also
not ideal when a fast long term message store is available.

File-based cursors are used, by default, to process non-persistent messages.

7.2. CONFIGURING THE TYPE OF CURSOR USED BY A DESTINATION

Overview

By default, JBoss A-MQ uses store-based cursors for persistent messages and file-based cursors for
non-persistent messages. You can, however, configure your destinations to use a specified cursor
implementation by adding the appropriate policy entries into the destination's policy map.

You configure a destination's policy set using a destinationPolicy element. The destinationPolicy
element is a wrapper for a policyMap element. The policyMap element is a wrapper for a policyEntries
element. The policyEntries element is a wrapper for one or more policyEntry elements.

The cursor policies are entered as children to a policyEntry element. The configuration elements used
to specify the type of destination you are configuring. Topics use cursors for both durable subscribers
and transient subscribers, so it uses two sets of configuration elements. Queues only a single cursor and

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

58

only require a single set of configuration elements.

Configuring topics

Topics maintain a dispatch queue and a pending cursor for every consumer subscribed to the topic
regardless of whether the subscription is durable or transient. You can configure the cursor
implementation used by durable subscribers separately from the cursor implementation used by
transient subscribers.

You configure the cursor implementation used by durable subscribers by adding
PendingDurableSubscriberMessageStoragePolicy child element to the topic's policyEntry element.
Table 7.1, “Elements for Configuring the Type of Cursor to Use for Durable Subscribers” describes the
possible children of PendingDurableSubscriberMessageStoragePolicy.

Table 7.1. Elements for Configuring the Type of Cursor to Use for Durable Subscribers

Element Description

storeDurableSubscriberCursor Specifies that store-based cursors will be used. See
the section called “Store-based cursors” for more
information.

vmDurableCursor Specifies that VM cursors will be used. See the
section called “VM cursors” for more information.

fileDurableSubscriberCursor Specifies that file-based cursors will be used—only
suitable for non-persistent messages. See the
section called “File-based cursors” for more
information.

You configure the cursor implementation used by transient subscribers by adding
pendingSubscriberPolicy child element to the topic's policyEntry element. Table 7.2, “Elements for
Configuring the Type of Cursor to Use for Transient Subscribers” describes the possible children of
pendingSubscriberPolicy.

Table 7.2. Elements for Configuring the Type of Cursor to Use for Transient Subscribers

Element Description

Unspecified Default policy is to use store-based cursors. See the
section called “Store-based cursors” for more
information.

vmCursor Specifies the VM cursors will be used. See the
section called “VM cursors” for more information.

fileCursor Specifies that file-based cursors will be used. See
the section called “File-based cursors” for more
information.

Example 7.1, “Configuring a Topic's Cursor Usage” shows a configuration snip-it that configures a topic
to use VM cursors for its transient subscribers and file-based cursors for its durable subscribers.

CHAPTER 7. MESSAGE CURSORS

59

Example 7.1. Configuring a Topic's Cursor Usage

Configuring queues

Queues use a single pending cursor and dispatch queue. You configure the type of cursor to use by
adding a pendingQueuePolicy element to the queue's policyEntry element. Table 7.3, “Elements for
Configuring the Type of Cursor to Use for a Queue” describes the possible children elements of the
pendingQueuePolicy element.

Table 7.3. Elements for Configuring the Type of Cursor to Use for a Queue

Element Description

storeCursor Specifies that store-based cursors will be used. See
the section called “Store-based cursors” for more
information.

vmQueueCursor Specifies the VM cursors will be used. See the
section called “VM cursors” for more information.

fileQueueCursor Specifies that file-based cursors will be used. See
the section called “File-based cursors” for more
information.

Example 7.2, “Configuring a Queue's Cursor Usage” shows a configuration snippet that configures a
queue to use VM cursors.

<beans ... >
 <broker ... >
 ...
 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry topic="com.fusesource.>" >
 ...
 <pendingSubscriberPolicy>
 <vmCursor />
 </pendingSubscriberPolicy>
 <pendingDurableSubscriberPolicy>
 <storeDurableSubscriberCursor />
 </pendingDurableSubscriberPolicy>
 ...
 </policyEntry>
 ...
 </policyEntries>
 </policyMap>
 </destinationPolicy>
 ...
 </broker>
 ...
</beans>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

60

Example 7.2. Configuring a Queue's Cursor Usage

<beans ... >
 <broker ... >
 ...
 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry queue="com.fusesource.>" >
 ...
 <pendingQueuePolicy>
 <vmQueueCursor />
 </pendingQueuePolicy>
 ...
 </policyEntry>
 ...
 </policyEntries>
 </policyMap>
 </destinationPolicy>
 ...
 </broker>
 ...
</beans>

CHAPTER 7. MESSAGE CURSORS

61

CHAPTER 8. MESSAGE STORE LOCKERS

Abstract

Message store locks are used to elect the master broker in master/slave groups. They are also useful for
ensuring that multiple brokers are not attempting to share the same message store. Red Hat JBoss A-
MQ's lockers are configurable to allow for tuning.

8.1. LOCKER BASICS

Overview

Red Hat JBoss A-MQ provides two default lockers that are used based on the type of message store
being used:

shared file locker—used by KahaDB and LevelDB stores

database locker—used by the JDBC store

NOTE

JBoss A-MQ also provides a leased database locker that can be in cases where
the brokers may periodically lose their connection to the message store.

These default lockers are configurable to optimize their performance.

For further optimization, you can implement your own locker and plug it into the message store. Doing
so involves implementing a simple Java interface and adding some configuration to the persistence
adapter.

Message store locks are primarily leveraged by the broker for electing masters in master/slave
configurations. For more information on master/slave groups see chapter "Master/Slave" in "Fault
Tolerant Messaging".

Configuring a persistence adapter's locker

To configure the locker used by a persistence adapter you add a locker element as a child to the
adapter's configuration element as shown in Example 8.1, “Configuring a Message Store Locker” .

Example 8.1. Configuring a Message Store Locker

Standard locker configuration properties

<persistenceAdapter>
 <kahaDB directory = "target/activemq-data">
 <locker>
 ...
 </locker>
 </kahaDB>
</persistenceAdapter>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

62

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Fault_Tolerant_Messaging/FMQFaultTolMasterSlave.html

All locker implementations are required to have the two common configuration properties described in
Table 8.1, “Common Locker Properties” .

Table 8.1. Common Locker Properties

Property Default Value Description

lockAcquireSleepInterval 1000 Specifies the delay interval, in
milliseconds, between attempts to
acquire a lock.

failIfLocked false Specifies in the broker should
immediately fail if a lock cannot be
obtained.

The properties are specified as attributes to the locker's XML configuration element.

8.2. USING THE PROVIDED LOCKERS

Red Hat JBoss A-MQ includes three standard locker implementations:

shared file locker—used by file-based message stores like KahaDB and LevelDB

database locker—used as the default for JDBC message stores

lease database locker—used as an alternative locker for JDBC message stores in scenarios
where brokers have inconsistent connections to the message store

8.2.1. Shared File Locker

Overview

The shared file locker is used by file-based message stores to ensure that only one broker can modify
the files used by the message store.

Configuration

As shown in Example 8.2, “Configuring a Shared File Locker” , the shared file locker is configured using
the shared-file-locker element.

Example 8.2. Configuring a Shared File Locker

The shared file locker supports the common configuration properties described in Table 8.1, “Common

<persistenceAdapter>
 <kahaDB directory = "target/activemq-data" lockKeepAlivePeriod="2000">
 <locker>
 <shared-file-locker lockAcquireSleepInterval="10000"/>
 </locker>
 </kahaDB>
</persistenceAdapter>

CHAPTER 8. MESSAGE STORE LOCKERS

63

The shared file locker supports the common configuration properties described in Table 8.1, “Common
Locker Properties”.

8.2.2. Database Locker

Overview

The database locker is the default locker for all JDBC persistence adapters. It locks a database table in a
transaction to ensure that only one broker can modify the message store.

The database locker does not perform well in two scenarios:

intermittent database connectivity

database failover

Configuration

As shown in Example 8.3, “Configuring a Database Locker” , it is configured using the database-locker
element.

Example 8.3. Configuring a Database Locker

The database locker supports the common configuration properties described in Table 8.1, “Common
Locker Properties”.

Intermittent database connectivity

When the master broker loses its connection to the database, or crashes unexpectedly, the information
about the lock remains in the database until the database responds to the half-closed socket
connection via a TCP timeout. This can prevent the slave from starting for a period of time.

Database failover

When the database used for the message store supports failover issues can arise. When the database
connection is dropped in the event of a replica failover, the brokers see this as a database failure and all
of the brokers in the master/slave group will begin competing for the lock. This restarts the master
election process and can cause the group to failover to a new master. For more information see section
"Shared JDBC Master/Slave" in "Fault Tolerant Messaging".

8.2.3. Lease Database Locker

Overview

<persistenceAdapter>
 <jdbcPersistenceAdapter dataDirectory="${activemq.data}" dataSource="#mysql-ds"
lockKeepAlivePeriod="2000">
 <locker>
 <database-locker lockAcquireSleepInterval="10000"/>
 </locker>
 </jdbcPersistenceAdapter>
</persistenceAdapter>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

64

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Fault_Tolerant_Messaging/FMQMasterSlaveJDBC.html

The lease database locker is designed to overcome the shortcomings of the default database locker by
forcing the lock holder to periodically renew the lock. When the lock is first acquired the broker holds it
for the period specified in the persistence adapter's lockKeepAlivePeriod attribute. After the initial
period, the lock is renewed for the period specified by the locker's lockAcquireSleepInterval attribute.

When all of broker's system clocks are properly synchronized, the master broker will always renew the
lease before any of the slaves in the group can steal it. In the event of a master's failure, the lock will
automatically expire within the configured amount of time and one of the slave's in the group will be
able to acquire it.

IMPORTANT

For this to work correctly, give the leaseHolderId attribute, found on the lease-
database-locker tag, a unique value. This unique value is used to create a lease lock
definition.

Configuration

As shown in Example 8.4, “Configuring a Lease Database Locker” , it is configured using the lease-
database-locker element.

Example 8.4. Configuring a Lease Database Locker

The lease database locker supports the common configuration properties described in Table 8.1,
“Common Locker Properties”.

Default IOException Handler

In order to cope with reconnection to the JDBC database, it is essential to enable a
jDBCIOExceptionHandler exception handler to the configuration. The jDBCIOExceptionHandler will
pause and resume the transport connectors on any I/O exception related to database access.

In ActiveMQ 5.11 jDBCIOExceptionHandler is deprecated, however in Red Hat JBoss A-MQ 6.3 it is still
recommended and is not deprecated. The LeaseLockerIOExceptionHandler exception handler is
supported as well and it works with any persistence adapter that supports pluggable storage lockers
whether or not a locker is in use.

Dealing with unsynchronized system clocks

The lease database locker relies on each broker's system clock to enure the proper timing of lease

<ioExceptionHandler>
 <jDBCIOExceptionHandler/>
</ioExceptionHandler>

<persistenceAdapter>
 <jdbcPersistenceAdapter dataDirectory="${activemq.data}" dataSource="#mysql-ds"
lockKeepAlivePeriod="2000">
 <locker>
 <lease-database-locker lockAcquireSleepInterval="10000" leaseHolderId="broker1"/>
 </locker>
 </jdbcPersistenceAdapter>
</persistenceAdapter>

CHAPTER 8. MESSAGE STORE LOCKERS

65

expiration and lock requests. When all of the system clocks are synchronized, the timing works. Once the
system clocks start drifting apart, the timing can be thrown off and a slave broker could possibly steal
the lock from the group's master.

To avoid this problem the locker can make adjustments based on the database server's current time
setting. This feature is controlled by setting the locker's maxAllowableDiffFromDBTime to specify the
number of milliseconds by which a broker's system clock can differ from the database's before the
locker automatically adds an adjustment. The default setting is zero which deactivates the adjustments.

Example 8.5, “Configuring a Lease Database Locker to Adjust for Non-synchronized System Clocks”
shows configuration for making adjustments when a broker's clock differs from the database by one
second.

Example 8.5. Configuring a Lease Database Locker to Adjust for Non-synchronized System
Clocks

8.3. USING CUSTOM LOCKERS

Overview

If one of the provided lockers are not sufficient for your needs, you can implement a custom locker. All
lockers are implementations of the Red Hat JBoss A-MQ Locker interface. They are attached to the
persistence adapter as a spring bean in the locker element.

Interface

All lockers are implementations of the org.apache.activemq.broker.Locker interface. Implementing
the Locker interface involves implementing seven methods:

boolean keepAlive()
 throws IOException;
Used by the lock's timer to ensure that the lock is still active. If this returns false, the broker is
shutdown.

void setLockAcquireSleepInterval(long lockAcquireSleepInterval);
Sets the delay, in milliseconds, between attempts to acquire the lock.
lockAcquireSleepInterval is typically supplied through the locker's XML configuration.

public void setName(String name);
Sets the name of the lock.

<ioExceptionHandler>
 <jDBCIOExceptionHandler/>
</ioExceptionHandler>

<persistenceAdapter>
 <jdbcPersistenceAdapter ... >
 <locker>
 <lease-database-locker maxAllowableDiffFromDBTime="1000"/>
 </locker>
 </jdbcPersistenceAdapter>
</persistenceAdapter>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

66

public void setFailIfLocked(boolean failIfLocked);
Sets the property that determines if the broker should fail if it cannot acquire the lock at start-
up. failIfLocked is typically supplied through the locker's XML configuration.

public void configure(PersistenceAdapter persistenceAdapter)
 throws IOException;
Allows the locker to access the persistence adapter's configuration. This can be used to obtain
the location of the message store.

void start();
Executed when the locker is initialized by the broker. This is where the bulk of the locker's
implementation logic should be placed.

void stop();
Executed when the broker is shutting down. This method is useful for cleaning up any resources
and ensuring that all of the locks are released before the broker is completely shutdown.

Using AbstractLocker

To simplify the implementation of lockers, Red Hat JBoss A-MQ includes a default locker
implementation, org.apache.activemq.broker.AbstractLocker, that serves as the base for all of the
provided lockers. It is recommended that all custom locker implementations also extand the
AbstractLocker class instead of implementing the plain Locker interface.

AbstractLocker provides default implementations for the following methods:

keepAlive()—returns true

setLockAcquireSleepInterval()—sets the parameter to the value of the locker beans'
lockAcquireSleepInterval if provided or to 10000 if the parameter is not provided

setName()

setFailIfLocked()—sets the parameter to the value of the locker beans' failIfLocked if provided
or to false if the parameter is not provided

start()—starts the locker after calling two additional methods

IMPORTANT

This method should not be overridden.

stop()—stops the locker and adds a method that is called before the locker is shutdown and one
that is called after the locker is shutdown

IMPORTANT

This method should not be overridden.

AbstractLocker adds two methods that must be implemented:

void doStart()
 throws Exception;
Executed as the locker is started. This is where most of the locking logic is implemented.

void doStop(ServiceStopper stopper)

CHAPTER 8. MESSAGE STORE LOCKERS

67

void doStop(ServiceStopper stopper)
 throws Exception;
Executed as the locker is stopped. This is where locks are released and resources are cleaned up.

In addition, AbstractLocker adds two methods that can be implemented to provide additional set up
and clean up:

void preStart()
 throws Exception;
Executed before the locker is started. This method can be used to initialize resources needed by
the lock. It can also be used to perform any other actions that need to be performed before the
locks are created.

void doStop(ServiceStopper stopper)
 throws Exception;
Executed after the locker is stopped. This method can be used to clean up any resources that
are left over after the locker is stopped.

Configuration

Custom lockers are added to a persistence adapter by adding the bean configuration to the persistence
adapter's locker element as shown in Example 8.6, “Adding a Custom Locker to a Persistence Adapter” .

Example 8.6. Adding a Custom Locker to a Persistence Adapter

INDEX
A

AbstractLocker, Using AbstractLocker

B

broker element, Activating and deactivating persistence

persistent attribute, Activating and deactivating persistence

C

configuration

turning persistence on/off, Activating and deactivating persistence

<persistenceAdapter>
 <kahaDB directory = "target/activemq-data">
 <locker>
 <bean class="my.custom.LockerImpl">
 <property name="lockAcquireSleepInterval" value="5000" />
 ...
 </bean
 </locker>
 </kahaDB>
</persistenceAdapter>

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

68

cursors

file-based, File-based cursors

store-based, Store-based cursors

VM, VM cursors

D

database-locker, Configuration

destinationPolicy, Overview

durable subscribers

configuring cursors, Configuring topics

using file-based cursors, Configuring topics

using VM cursors, Configuring topics

F

failIfLocked, Standard locker configuration properties

fileCursor, Configuring topics

fileDurableSubscriberCursor, Configuring topics

fileQueueCursor, Configuring queues

filteredKahaDB, Configuration

filteredPersistenceAdapters, Configuration

J

JDBC

using generic providers, Using generic JDBC providers

JDBC message store

default locker, Database Locker

jdbcPersistenceAdapter, Configuration

adapter attribute, Configuration, Using generic JDBC providers

cleanupPeriod attribute, Configuration

createTablesOnStartup attribute, Configuration

dataDirectory attribute, Configuration

dataSource attribute, Configuration

journaled JDBC message store

default locker, Database Locker

INDEX

69

journaledJDBC, Configuration

adapter attribute, Configuration, Using generic JDBC providers

createTablesOnStartup attribute, Configuration

dataDirectory attribute, Configuration

dataSource attribute, Configuration

journalArchiveDirectory attribute, Configuration

journalLogFiles attribute, Configuration

journalLogFileSize attribute, Configuration

journalThreadPriority attribute, Configuration

useJournal attribute, Configuration

K

kahaDB element, Basic configuration

archiveCorruptedIndex attribute, Configuration attributes

archiveDataLogs attribute, Configuration attributes

checkForCorruptJournalFiles attribute, Configuration attributes

checkpointInterval attribute, Configuration attributes

checksumJournalFiles attribute, Configuration attributes

cleanupInterval attribute, Configuration attributes

compactAcksAfterNoGC attribute, Configuration attributes

compactAcksIgnoresStoreGrowth attribute, Configuration attributes

concurrentStoreAndDispatchQueues attribute, Configuration attributes

concurrentStoreAndDispatchTopics attribute, Configuration attributes

databaseLockedWaitDelay attribute, Configuration attributes

directory attribute, Configuration attributes

directoryArchive attribute, Configuration attributes

enableAckCompaction attribute, Configuration attributes

enableIndexWriteAsync attribute, Configuration attributes

enableJournalDiskSyncs attribute, Configuration attributes

ignoreMissingJournalfiles attribute, Configuration attributes

indexCacheSize attribute, Configuration attributes

indexDirectory, Configuration attributes

indexWriteBatchSize, Configuration attributes

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

70

journalMaxFileLength attribute, Configuration attributes

maxAsyncJobs attribute, Configuration attributes

preallocationScope attribute, Configuration attributes

preallocationStrategy attribute, Configuration attributes

storeOpenWireVersion attribute, Configuration attributes

KahaDB message store

architecture, Architecture

basic configuration, Basic configuration

configuration attributes, Configuration attributes

data logs, Data logs

default locker, Shared File Locker

metadata cache, Metadata cache

metadata store, Metadata store

multi, Using a Multi KahaDB Persistence Adapter

L

lease-database-locker, Configuration

levelDB element, Basic configuration

directory attribute, Basic configuration, Configuration attributes

failIfLocked attribute, Configuration attributes

indexBlockRestartInterval attribute, Configuration attributes

indexBlockSize attribute, Configuration attributes

indexCacheSize attribute, Configuration attributes

indexCompression attribute, Configuration attributes

indexFactory attribute, Configuration attributes

indexMaxOpenFiles attribute, Configuration attributes

indexWriteBufferSize attribute, Configuration attributes

logCompression attribute, Configuration attributes

logSize attribute, Configuration attributes

paranoidChecks attribute, Configuration attributes

readThreads attribute, Configuration attributes

sync attribute, Configuration attributes

useLock attribute, Configuration attributes

INDEX

71

verifyChecksums attribute, Configuration attributes

LevelDB message store

basic configuration, Basic configuration

configuration attributes, Configuration attributes

default locker, Shared File Locker

platform support, Platform support

lockAcquireSleepInterval, Standard locker configuration properties

locker, Configuring a persistence adapter's locker, Configuration

Locker, Interface

locker configuration, Standard locker configuration properties

M

maxAllowableDiffFromDBTime, Dealing with unsynchronized system clocks

message store

locker configuration, Configuring a persistence adapter's locker

mKahaDB, Configuration

multi Kahadb persistence adapter

transactions, Transactions

P

PendingDurableSubscriberMessageStoragePolicy, Configuring topics

pendingQueuePolicy, Configuring queues

pendingSubscriberPolicy, Configuring topics

persistenceAdapter, Configuring persistence adapter behavior

persistenceFactory, Configuring persistence adapter behavior

policyEntries, Overview

policyEntry, Overview

policyMap, Overview

R

Replicated LevelDB message store

configuration attributes, Configuration attributes

replicatedLevelDB element, Basic configuration

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

72

bind attribute, Configuration attributes

directory attribute, Basic configuration

hostname attribute, Configuration attributes

replicas attribute, Configuration attributes

securityToken attribute, Configuration attributes

sync attribute, Configuration attributes

zkAddress attribute, Configuration attributes

zkPassword attribute, Configuration attributes

zkPath attribute, Configuration attributes

zkSessionTimeout attribute, Configuration attributes

replicatedLevelDB message store

replicatedLevelDB basic configuration, Basic configuration

S

shared-file-locker, Configuration

SQL data types, Customizing the SQL statements used by the adapter

statements, Customizing the SQL statements used by the adapter

binaryDataType attribute, Customizing the SQL statements used by the adapter

containerNameDataType attribute, Customizing the SQL statements used by the adapter

durableSubAcksTableName attribute, Customizing the SQL statements used by the adapter

lockTableName attribute, Customizing the SQL statements used by the adapter

longDataType attribute, Customizing the SQL statements used by the adapter

messageTableName attribute, Customizing the SQL statements used by the adapter

msgIdDataType attribute, Customizing the SQL statements used by the adapter

sequenceDataType attribute, Customizing the SQL statements used by the adapter

stringIdDataType attribute, Customizing the SQL statements used by the adapter

tablePrefix attribute, Customizing the SQL statements used by the adapter

T

transactions

multi destination, Transactions

multi Kahadb persistence adapter, Transactions

multiple journals, Transactions

INDEX

73

transient subscribers

configuring cursors, Configuring topics

using file-based cursors, Configuring topics

using VM cursors, Configuring topics

V

vmCursor, Configuring topics

vmDurableCursor, Configuring topics

vmQueueCursor, Configuring queues

Red Hat JBoss A-MQ 6.3 Configuring Broker Persistence

74

	Table of Contents
	CHAPTER 1. INTRODUCTION TO RED HAT JBOSS A-MQ PERSISTENCE
	OVERVIEW
	PERSISTENT MESSAGE STORES
	MESSAGE CURSORS
	ACTIVATING AND DEACTIVATING PERSISTENCE
	CONFIGURING PERSISTENCE ADAPTER BEHAVIOR
	CUSTOMIZING THE STORE'S LOCKER

	CHAPTER 2. USING THE KAHADB MESSAGE STORE
	2.1. UNDERSTANDING THE KAHADB MESSAGE STORE
	Overview
	Architecture
	Data logs
	Metadata cache
	Metadata store

	2.2. CONFIGURING THE KAHADB MESSAGE STORE
	Overview
	Basic configuration
	Configuration attributes

	2.3. CONCURRENT STORE AND DISPATCH
	Overview
	Enabling concurrent store and dispatch
	Concurrent with slow consumers
	Concurrent with fast consumers
	Disabling concurrent store and dispatch
	Serialized store and dispatch
	JMS durability requirements

	2.4. OPTIMIZING THE METADATA CACHE
	Overview
	Synchronizing with the metadata store
	Setting the cache size
	Setting the write batch size

	2.5. CREATING AN OFFLINE BACKUP (OPENSHIFT)
	Overview
	Prerequisites
	Procedure

	2.6. RECOVERY
	Overview
	Clean shutdown
	Recovery from disorderly shutdown
	Forcing recovery by deleting the metadata store
	Missing journal files
	Checking for corrupted journal files

	CHAPTER 3. USING A MULTI KAHADB PERSISTENCE ADAPTER
	OVERVIEW
	CONFIGURATION
	WILDCARD SYNTAX
	EXAMPLE
	AUTOMATIC PER-DESTINATION PERSISTENCE ADAPTER
	TRANSACTIONS

	CHAPTER 4. USING THE LEVELDB PERSISTENCE ADAPTER
	OVERVIEW
	PLATFORM SUPPORT
	BASIC CONFIGURATION
	CONFIGURATION ATTRIBUTES

	CHAPTER 5. USING THE REPLICATED LEVELDB PERSISTENCE ADAPTER
	OVERVIEW
	DEPLOYMENT TIPS
	BASIC CONFIGURATION
	CONFIGURATION ATTRIBUTES

	CHAPTER 6. USING JDBC TO CONNECT TO A DATABASE STORE
	6.1. BASICS OF USING THE JDBC PERSISTENCE ADAPTER
	Overview
	Supported databases
	Specifying the type of JDBC store to use
	Prerequisites
	Configuring your JDBC driver
	JDBC configuration for Apache Derby
	JDBC configuration for Oracle

	6.2. USING THE PLAIN JDBC ADAPTER
	Overview
	Example
	Configuration

	6.3. USING JDBC WITH THE HIGH PERFORMANCE JOURNAL
	Overview
	Prerequisites
	Example
	Configuration

	6.4. CUSTOMIZING THE JDBC PERSISTENCE ADAPTER
	Overview
	Customizing the SQL statements used by the adapter
	Customizing SQL statements for unsupported databases
	Using generic JDBC providers

	6.5. TUTORIAL: JDBC PERSISTENCE
	Overview
	Prerequisites
	Steps to configure JDBC persistence with MySQL

	6.6. TUTORIAL: CONFIGURING ACTIVEMQ JDBC PERSISTENCE ON FABRIC CONTAINER WITH POSTGRESQL
	Overview
	Prerequisites
	Steps to configure JDBC persistence with PostgreSQL

	CHAPTER 7. MESSAGE CURSORS
	7.1. TYPES OF CURSORS
	Store-based cursors
	VM cursors
	File-based cursors

	7.2. CONFIGURING THE TYPE OF CURSOR USED BY A DESTINATION
	Overview
	Configuring topics
	Configuring queues

	CHAPTER 8. MESSAGE STORE LOCKERS
	8.1. LOCKER BASICS
	Overview
	Configuring a persistence adapter's locker
	Standard locker configuration properties

	8.2. USING THE PROVIDED LOCKERS
	8.2.1. Shared File Locker
	Overview
	Configuration

	8.2.2. Database Locker
	Overview
	Configuration
	Intermittent database connectivity
	Database failover

	8.2.3. Lease Database Locker
	Overview
	Configuration
	Default IOException Handler
	Dealing with unsynchronized system clocks

	8.3. USING CUSTOM LOCKERS
	Overview
	Interface
	Using AbstractLocker
	Configuration

	INDEX

