
Red Hat JBoss A-MQ 6.1

Managing and Monitoring a Broker

Administrative tasks made simple

Last Updated: 2017-10-13

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

Administrative tasks made simple

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2014 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat JBoss A-MQ provides many tools to ensure that it is running at peak performance.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
OVERVIEW
ROUTINE TASKS
TROUBLESHOOTING
TOOLS

CHAPTER 2. EDITING A BROKER'S CONFIGURATION
2.1. UNDERSTANDING THE RED HAT JBOSS A-MQ CONFIGURATION MODEL
2.2. EDITING A STANDALONE BROKER'S CONFIGURATION
2.3. MODIFYING A RUNNING STANDALONE BROKER'S XML CONFIGURATION
2.4. EDITING A BROKER'S CONFIGURATION IN A FABRIC

CHAPTER 3. SECURITY BASICS
3.1. SECURITY OVERVIEW
3.2. BASIC SECURITY CONFIGURATION
3.3. DISABLING BROKER SECURITY

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER
4.1. DEFINING JAAS REALMS
4.2. ENABLING LDAP AUTHENTICATION
4.3. USING ENCRYPTED PROPERTY PLACEHOLDERS
4.4. CONFIGURING ROLES FOR THE ADMINISTRATIVE PROTOCOLS

CHAPTER 5. SECURING FABRIC CONTAINERS
5.1. USING THE DEFAULT AUTHENTICATION SYSTEM
5.2. DEFINING JAAS REALMS IN A FABRIC
5.3. ENABLING LDAP AUTHENTICATION

CHAPTER 6. INSTALLING RED HAT JBOSS A-MQ AS A SERVICE
6.1. GENERATING THE WRAPPER
6.2. CONFIGURE THE SCRIPT
6.3. CONFIGURING THE WRAPPER
6.4. INSTALLING AND STARTING THE SERVICE

CHAPTER 7. STARTING A BROKER
OVERVIEW
STARTING IN CONSOLE MODE
STARTING IN DAEMON MODE
STARTING A BROKER IN A FABRIC

CHAPTER 8. SENDING COMMANDS TO THE BROKER
OVERVIEW
RUNNING THE ADMINISTRATION CLIENT
USING THE BROKER CONSOLE
CONNECTING A CONSOLE TO A REMOTE BROKER
STARTING A BASIC CONSOLE
AVAILABLE COMMANDS

CHAPTER 9. DEPLOYING A NEW BROKER
9.1. DEPLOYING A STANDALONE BROKER
9.2. DEPLOYING A NEW BROKER INTO A FABRIC

CHAPTER 10. SHUTTING DOWN A BROKER
10.1. SHUTTING DOWN A LOCAL BROKER

4
4
4
4
5

6
6
8

12
16

20
20
21
22

24
24
27
31
35

36
36
42
44

46
46
47
48
51

53
53
53
54
54

56
56
56
57
58
58
58

59
59
60

63
63

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

10.2. SHUTTING DOWN A BROKER REMOTELY

CHAPTER 11. CONNECTING A BROKER TO A FABRIC
11.1. JOINING A BROKER TO A FABRIC
11.2. CREATING A NEW FABRIC

CHAPTER 12. ADDING CLIENT CONNECTION POINTS
12.1. ADDING A TRANSPORT CONNECTOR TO A STANDALONE BROKER
12.2. ADDING A TRANSPORT CONNECTOR TO A FABRIC BROKER

CHAPTER 13. ADDING A QUEUE OR A TOPIC
AUTOMATIC DESTINATION CREATION
RESTRICTING DESTINATION CREATION

CHAPTER 14. USING LOGGING
14.1. LOGGING CONFIGURATION
14.2. VIEWING THE LOG

CHAPTER 15. USING JMX
15.1. CONFIGURING JMX
15.2. STATISTICS COLLECTED BY JMX
15.3. MANAGING THE BROKER WITH JMX

CHAPTER 16. APPLYING PATCHES
16.1. FINDING THE RIGHT PATCHES TO APPLY
16.2. PATCHING A STANDALONE CONTAINER
16.3. PATCHING STANDALONE APACHE ACTIVEMQ
16.4. PATCHING A CONTAINER IN A FABRIC

APPENDIX A. REQUIRED JARS
OVERVIEW
REQUIRED JARS FROM RED HAT JBOSS A-MQ
JEE JARS
PERSISTENT MESSAGING JARS

INDEX

64

67
67
71

74
74
75

78
78
78

79
79
81

83
83
85
88

95
95
98

100
101

104
104
104
104
104

105

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

2

Table of Contents

3

CHAPTER 1. INTRODUCTION

Abstract

Once a messaging solution is deployed it needs to be monitored to ensure it performs at peak
performance. When problems do arise, many of them can be solved using the broker's administrative
tools. The broker's administrative tools can also be used to provide important debugging information
when troubleshooting problems.

OVERVIEW

Message brokers are long lived and usually form the backbone of the applications of which they are a
part. Over the course of a broker's life span, there are a number of management tasks that you may
need to do to keep the broker running at peak performance. This includes monitoring the health of the
broker, adding destinations, and security certificates.

If applications run into trouble one of the first places to look for clues is the broker. The broker is
unlikely to be the root cause of the problem, but its logs and metrics will provide clues as to what is the
root cause. You may also be able to resolve the problem using the broker's administrative interface.

ROUTINE TASKS

While Red Hat JBoss A-MQ is designed to require a light touch for management, there are a few
routine management tasks that need to be performed:

installing SSL certificates

starting the broker

creating destinations

stopping the broker

maintaining the advisory topics

monitoring the health of the broker

monitoring the health of the destinations

TROUBLESHOOTING

If an application runs into issues the broker will usually be able to provide clues to what is going wrong.
Because the broker is central to the operation of any application that relies on messaging, it will be
able to provide clues even if the broker is functioning properly. You may also be able to solve the
problem by making adjustments to the broker's configuration.

Common things to check for clues as to the nature of a problem include:

the broker's log file

the advisory topics

the broker's overall memory footprint

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

4

the size of individual destination

the total number of messages in the broker

the size of the broker's persistent store

a thread dump of the broker

One or more of these items can provide information about the problem. For example, if a destination
grows to a very large size it could indicate that one of its consumers is having trouble keeping up with
the messages. If the broker's log also shows that the consumer is repeatedly connecting and
disconnecting from the destination, that could indicate a networking problem or a problem with the
machine hosting the consumer.

TOOLS

There are a number of tools that you can use to monitor and administer Red Hat JBoss A-MQ.

The following tools are included with JBoss A-MQ:

administration client—a command line tool that can be used to manage a broker and do
rudimentary metric reporting

console mode—a runtime mode that presents you with a custom console that provides a
number of administrative options

Red Hat also provides management tools that you can install as part of your subscription:

management console—a browser based console for viewing, monitoring, and deploying a group
of distributed brokers

JBoss Operations Network—an advanced monitoring and management tool that can provide
detailed metrics and alerting.

In addition to the Red Hat supplied tools there are a number of third party tools that can be used to
administer and monitor a broker including:

jconsole—a JMX tool that is shipped with the JDK

VisualVM—a visual tool integrating several command line JDK tools and lightweight profiling
capabilities

CHAPTER 1. INTRODUCTION

5

https://access.redhat.com/knowledge/docs/JBoss_Operations_Network/
http://visualvm.java.net/

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

Abstract

Red Hat JBoss A-MQ configuration uses a combination of an XML configuration template and OSGi PID
configuration. This combination makes it possible to change specified broker properties on the fly. How
you change the configuration depends on how the broker instance is deployed.

Configuring a broker involves making changes to a number of properties that are stored in multiple
locations including:

an XML configuration file

OSGi persistent identifier properties

How you make the changes depends on how the broker is deployed:

standalone—if a broker is deployed as a standalone entity and not a part of a fabric, you change
the configuration using a combination of directly editing the broker's configuration template
file and the console's config shell.

in a fabric—if a broker is deployed into a fabric its configuration is managed by the Fabric Agent
which draws all of the configuration from the fabric's registry. To modify the container of a
broker running as part of a fabric, you need to modify the profile(s) deployed into it. You can do
this by using either the fabric:profile-edit console command or the management
console.

NOTE

Many of the configuration properties are managed by the OSGi Admin Service and are
organized by persistent identifier or PID. The container services look in a specific PID for
particular properties, so it is important to set the properties in the correct PID.

2.1. UNDERSTANDING THE RED HAT JBOSS A-MQ CONFIGURATION
MODEL

Abstract

The broker configuration is comprised of an XML template file that provides the framework for how a
broker instance is configured, a default OSGi persistent identifier, and one or more OSGi persistent
identifiers created by the OSGi Admin service. The container uses the template file to seed the
configuration into the broker's runtime. The properties stored in the OSGi persistent identifiers
replace any property placeholders left in the template. This allows the OSGi Admin service to update
the broker's configuration on the fly.

Overview

One of the weaknesses of the Apache ActiveMQ configuration model is that any changes require a
broker restart. Red Hat JBoss A-MQ addresses this weakness by capitalizing on the OSGi Admin
service. The container combines both the Apache ActiveMQ XML configuration and OSGi persistent
identifier(PID) properties to manage a broker instances runtime configuration.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

6

In JBoss A-MQ your Apache ActiveMQ XML configuration file becomes a configuration template. It can
contain property placeholders for any settings that may need to be set on the fly. It can also be used as
a baseline for configuring a group of brokers and the placeholders represent settings that need to be
modified for individual brokers.

As shown in Figure 2.1, “Red Hat JBoss A-MQ Configuration System” , the configuration template is
combined with the OSGi PID properties. While the broker is running the OSGi Admin service monitors
the appropriate PIDs for changes. When it detects a change, the admin service will automatically
change the broker's runtime configuration.

Figure 2.1. Red Hat JBoss A-MQ Configuration System

Container

broker

Configuration templates

The JBoss A-MQ configuration template is an XML file that is based on the Apache ActiveMQ
configuration file. The main differences between an Apache ActiveMQ and a JBoss A-MQ configuration
template are:

configuration templates use property placeholders for settings that will be controlled via the
OSGi Admin service

configuration templates do not configure the broker's name

configuration templates do not configure the location of the data directory

configuration templates do not configure transport connectors

configuration templates do not configure network connectors

configuration templates do not control if a broker is a master or a slave node

configuration templates can be used as a baseline for multiple brokers on the same machine

The networking properties and role in a master/slave group are specified by the broker's PID and do
not need to appear in the template. The broker's name and data directory are replaced in the template
with property placeholders. Property placeholders can also be substituted for any attribute value or
element value in the XML configuration. This allows the OSGi Admin system populate them from the
broker's PID.

Property placeholders are specified using the syntax ${propName} and are resolved by matching
properties in the broker's PID. In order to use property placeholder the configuration template must
include the bean definition shown in Example 2.1, “Adding Property Placeholder Support to Red Hat
JBoss A-MQ Configuration”.

Example 2.1. Adding Property Placeholder Support to Red Hat JBoss A-MQ Configuration

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

7

http://fusesource.com/docs/mirrors/activemq/using-activemq-5/configure-version-5-brokers.html

The configuration template shown in Example 2.2, “Configuration with Property Placeholders” uses
three property placeholders that allow you to modify the base configuration using fabric properties.

Example 2.2. Configuration with Property Placeholders

OSGi PIDs

Persistent identifiers are described in chapter 104, [Configuration Admin Service Specification], of the
[OSGi Compendium Services Specification]. It is a unique key used by the OSGi framework's admin
service to associate configuration properties with active services. The PIDs for a JBoss A-MQ instance
have the prefix org.fusesource.mq.fabric.server.

Every PID has a physical representation as a file of name value pairs. For standalone brokers the files
are located in the etc/ folder and use the .cfg extension and are updated using the config shell. For
broker's in a fabric the files are stored in the Fabric Ensemble and are edited using the fabric shell's
profile management commands.

2.2. EDITING A STANDALONE BROKER'S CONFIGURATION

Abstract

A standalone Red Hat JBoss A-MQ message broker's configuration can be edited by directly modifying
the configuration template and using the command console commands.

<!-- Allows us to use system properties and fabric as variables in this
configuration file -->
<bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfi
gurer">
 <property name="properties">
 <bean class="org.fusesource.mq.fabric.ConfigurationProperties"/>
 </property>
</bean>

<broker ... >
 ...
</broker>

<broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="${broker-name}"
 dataDirectory="${data}"
 persistent="${persists}"
 start="false">
 ...
 <persistenceAdapter>
 <jdbcPersistenceAdapter dataDirectory="${data}/derby"
 dataSource="#derby-ds" />
 </persistenceAdapter>

</broker>

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

8

Overview

A standalone broker is one that is not part of a fabric. A standalone broker can, however, be part of a
network of broker, a master/slave cluster, or a failover cluster. The distinction is that a standalone is
responsible for managing and storing its own configuration.

All of the configuration changes are made directly on the local instance. You make changes using a
combination of edits to local configuration template and commands from the console's config shell.
The configuration template must be edited using an external editor. The configuration the control's the
behavior of the broker's runtime container is changed using the console commands.

Editing the configuration template

The default broker configuration template is etc/activemq.xml. You can the location of the
configuration template by changing the config property in the broker's
etc/org.fusesource.mq.fabric.server-default.cfg file.

The template can be edited using any text or XML editor.

The broker must be restarted for any changes in the template to take effect.

Splitting activemq.xml into multiple files

For complex broker configurations, you might prefer to split the etc/activemq.xml file into multiple
XML files. You can do this using standard XML entities, declared in a DTD internal subset. For example,
say you have an etc/activemq.xml file with the following outline:

<beans ... >
 ...
 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="${broker-name}"
 dataDirectory="${data}"
 start="false" restartAllowed="false">

 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry topic=">" producerFlowControl="true">
 <pendingMessageLimitStrategy>
 <constantPendingMessageLimitStrategy limit="1000"/>
 </pendingMessageLimitStrategy>
 </policyEntry>
 <policyEntry queue=">" producerFlowControl="true"
memoryLimit="1mb">
 </policyEntry>
 </policyEntries>
 </policyMap>
 </destinationPolicy>

 <!-- Rest of the broker configuration -->
 ...
 </broker>
</beans>

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

9

In this example, we assume you want to store the destinationPolicy element in a separate file.
First of all, create a new file, etc/destination-policy.xml, to store the destinationPolicy
element, with the following content:

You can then reference and include the contents of the etc/destination-policy.xml file in your
etc/activemq.xml file by editing activemq.xml, as follows:

Where the destinationPolicy element has now been replaced by the &destinationpolicy; entity
reference.

If you need to specify the absolute location of the destination-policy.xml file, use the URL
format, file:///path/to/file. For example, to reference the absolute location,
/var/destination-policy.xml, you would use the following DOCTYPE declaration at the start of
the file:

Format of the DOCTYPE declaration

<destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry topic=">" producerFlowControl="true">
 <pendingMessageLimitStrategy>
 <constantPendingMessageLimitStrategy limit="1000"/>
 </pendingMessageLimitStrategy>
 </policyEntry>
 <policyEntry queue=">" producerFlowControl="true" memoryLimit="1mb">
 </policyEntry>
 </policyEntries>
 </policyMap>
</destinationPolicy>

<!DOCTYPE beans [
<!ENTITY destinationpolicy SYSTEM "file:etc/destination-policy.xml">
]>
<beans ... >
 ...
 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="${broker-name}"
 dataDirectory="${data}"
 start="false" restartAllowed="false">

 &destinationpolicy;

 <!-- Rest of the broker configuration -->
 ...
 </broker>
</beans>

<!DOCTYPE beans [
<!ENTITY destinationpolicy SYSTEM "file:///var/destination-policy.xml">
]>
...

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

10

The recommended format of the DOCTYPE declaration to use with the etc/activemq.xml file is as
follows:

Note the following points about this format:

RootElement

This must always match the name of the root element in the current file. In the case of
activemq.xml, the root element is beans.

EntityName

The name of the entity you are defining with this ENTITY declaration. In the main part of the current
XML file, you can insert the contents of this entity using the entity reference, &EntityName;.

URL

To store the contents of the entity in a file, you must reference the file using the file: scheme.
Because of the way that ActiveMQ processes the XML file, it is not guaranteed to work, if you leave
out the file: prefix. Relative paths have the format file:path/to/file and absolute paths
have the format file:///path/to/file.

Editing the OSGi properties

The initial values for all of the OSGi properties configuring the broker are specified in the
etc/org.fusesource.mq.fabric.server-default.cfg file. You can edit these values using the
command console's config shell. The PID for these values are
org.fusesource.mq.fabric.server.id. The id is assigned by the container when the broker is
started.

In addition to the broker's messaging behavior, a number of the broker's runtime behavior such as
logging levels, the Fuse Management Console behavior, and the JMX behavior are controlled by by
OSGi properties stored in different PIDs.

To find the value for a broker's id use and the PIDs for the other runtime configuration settings, use the
config:list command.

Config shell

The config shell has a series of commands for editing OSGi properties:

config:list—lists all of the runtime configuration files and the current values for their
properties

config:edit—opens an editing session for a configuration file

config:propset—changes the value of a configuration property

config:propdel—deletes a configuration property

<!DOCTYPE RootElement [
<!ENTITY EntityName SYSTEM "URL">
]>
...

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

11

config:update—saves the changes to the configuration file being edited

2.3. MODIFYING A RUNNING STANDALONE BROKER'S XML
CONFIGURATION

Abstract

A select set of properties in a standalone Red Hat JBoss A-MQ message broker's .xml configuration
file can be modified, saved, then applied while the broker is running. This dynamic runtime
configuration feature is useful when you cannot disrupt the operation of existing producers or
consumers with a broker restart.

IMPORTANT

Take care when using this dynamic runtime configuration feature in production
environments as only the xml is validated, and changes to the broker's configuration
take effect according to the specified time interval.

Overview

You can edit a running broker's .xml configuration file (default is etc/activemq.xml) directly using
an external text or xml editor. Once the edits are saved, the runtime configuration plugin, which
monitors the broker's .xml configuration file, applies any detected runtime-supported changes to the
running broker. These changes persist through broker restarts.

You can dynamically change only a select set of properties by editing the broker's .xml configuration
file:

network connectors—add a network connector to a broker or modify the attributes of an
existing one

virtual destinations—add a virtual destination to a broker or modify the attributes of an existing
one

destination policy—add a subset of <policyEntry> attributes

authorization roles—add or modify roles that define read/write/admin access to queues and
topics.

Prerequisites

Disable configuration monitoring by the OSGi service factory

You need to prevent the OSGi service factory from restarting the broker when it detects a
change in the broker's configuration. To do so, you edit the
installDir/etc/org.fusesource.mq.fabric.server-default.cfg file to add the line
config.check=false.

IMPORTANT

If you fail to disable the OSGi service factory, it will override the
runtimeConfigurationPlugin and restart the broker when it detects a
change.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

12

If the broker is stopped, you can edit this file directly using an external text or xml editor. If the
broker is running, you must use the appropriate config: shell commands to edit this file (see
the section called “Editing the OSGi properties” .

Enable dynamic runtime configuration

To enable dynamic runtime configuration, you must set two values in the broker's .xml
configuration file:

In the <broker.../> element, add start="false"; for example:

This setting prevents Spring from starting the broker when the spring context is loaded. If
Spring starts the broker, the broker will not know the location of the resource that created
it, leaving the runtime configuration plugin with nothing to monitor.

In the <plugins> element, add <runtimeConfigurationPlugin
checkPeriod="1000"> to enable automated runtime configuration; for example:

The runtime configuration plugin monitors the broker's .xml configuration file at intervals
of checkPeriod and applies only the runtime-supported changes that it detects to the
running broker. Modifications made to the attributes of other properties in the broker's
.xml configuration file are ignored until the next broker restart.

NOTE

The unit of value for checkPeriod is milliseconds. The default is 0, which
disables checking for changes. Using the default, you must manually trigger
updates via JMX.

Dynamically updating network connectors

To dynamically update the broker's network connectors, you add a network connector or modify
attributes in an existing network connector in the <networkConnectors> section of the broker's .xml
configuration file.

For example:

Dynamically updating virtual destinations

To dynamically update the broker's virtual destinations, you add a virtual destination or modify
attributes in an existing virtual topic in the <destinationInterceptors> section of the broker's .xml
configuration file.

<broker xmlns="http://activemq.apache.org//schema/core" ...
start="false".../>

<plugins>
 <runtimeConfigurationPlugin checkPeriod="1000" />
</plugins>

<networkConnectors>
 <networkConnector uri="static:(tcp://localhost:5555)" networkTTL="1"
name="one" ... />
</networkConnectors>

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

13

For example:

NOTE

Changes take effect the next time a new consumer destination is added, not at the
runtime configuration plugin's checkPeriod interval.

NOTE

Out-of-the-box, virtual topics are enabled by default in the broker, without explicit
configuration in its .xml configuration file. The first time you add a virtual destination,
you must add the entire <destinationInterceptors> section to the broker's .xml
configuration file. Doing so replaces the broker's default <destinationInterceptors>
configuration.

Dynamically updating the destination policy

To dynamically update the broker's virtual destination policy, you edit the <destinationInterceptors>
section in the broker's .xml configuration file.

Table 2.1 lists the runtime-changeable attributes of the <policyEntry> element, which apply to
queues and topics.

Table 2.1. Dynamically changeable <policyEntry> attributes

Attribute Type Queues Topics

allConsumersBeforeDispatchStarts boolean Y N

alwaysRetroactive boolean Y N

advisoryForConsumed boolean Y N

advisoryForDelivery boolean Y N

advisoryForDiscardingMessages boolean Y N

advisoryForFastProducers boolean Y N

advisoryForSlowConsumers boolean Y N

advisoryWhenFull boolean Y N

<destinationInterceptors>
 <virtualDestinationInterceptor>
 <virtualDestinations>
 <virtualTopic name="B.>" selector="false" />
 </virtualDestinations>
 </virtualDestinationInterceptor>
</destinationInterceptors>

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

14

blockedProducerWarningInterval long Y N

consumersBeforeDispatchStarts int Y N

cursorMemoryHighWaterMark int Y N

doOptimizeMessageStore boolean Y N

gcIsInactiveDestinations boolean Y N

gcWithNetworkConsumers boolean Y N

inactiveTimeoutBeforeGC long Y N

lazyDispatch boolean Y Y

maxBrowsePageSize int Y N

maxExpirePageSize int Y N

maxPageSize int Y N

memoryLimit string Y Y

minimumMessageSize long Y N

optimizedDispatch boolean Y N

optimizeMessageStoreInFlightLimit int Y N

producerFlowControl boolean Y N

reduceMemoryFootprint boolean Y N

sendAdvisoryIfNoConsumers boolean Y N

storeUsageHighWaterMark int Y N

strictOrderDispatch boolean Y N

timeBeforeDispatchStarts int Y N

useConsumerPriority boolean Y N

Attribute Type Queues Topics

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

15

Destination policies to control paging

The following destination policies control message paging (the number of messages that are pulled
into memory from the message store, each time the memory is emptied):

maxPageSize

The maximum number of messages paged into memory for sending to a destination.

maxBrowsePageSize

The maximum number of messages paged into memory for browsing a queue (see).

NOTE

The number of messages paged in for browsing cannot exceed the destination's
memoryLimit setting.

maxExpirePageSize

The maximum number of messages paged into memory to check for expired messages.

Dynamically updating authorization roles

To dynamically add authorization roles for accessing the broker's queues and topics, you:

add the authorization plugin to the <plugins> section of the broker's .xml configuration file

configure the authorization plugin's <map> element

For example:

2.4. EDITING A BROKER'S CONFIGURATION IN A FABRIC

Abstract

<plugins>
 <runtimeConfigurationPlugin checkPeriod="1000" />
 <authorizationPlugin>
 <map>
 <authorizationMap>
 <authorizationEntries>
 <authorizationEntry queue=">" read="admins" write="admins"
admin="admins" />
 <authorizationEntry queue="USERS.>" read="users" write="users"
admin="users" />

 <authorizationEntry topic=">" read="admins" write="admins"
admin="admins" />
 <authorizationEntry topic="USERS.>" read="users" write="users"
admin="users" />
 ...

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

16

Red Hat JBoss A-MQ supports deploying brokers into a cluster called a fabric. When a broker is
deployed into a fabric, the Fabric Agent controls its configuration and you must use special commands
to update it.

Overview

When a broker is part of a fabric, it does not manage its configuration. The broker's configuration is
managed by the Fabric Agent. The agent runs along with the broker and updates the broker's
configuration based on information from the fabric's registry.

Because the configuration is managed by the Fabric Agent, any changes to the broker's configuration
needs to be done by updating the fabric's registry. In a fabric, broker configuration is determined by
one or more profiles that are deployed into the broker. To change a broker's configuration, you must
update the profile(s) deployed into the broker using either the console's fabric: shell or the
management console.

Profiles

All configuration in a fabric is stored as profiles in the Fabric Registry. One or more profiles are
assigned to brokers that are part of the fabric. A profile is a collection of configuration that specifies:

the Apache Karaf features to be deployed

OSGi bundles to be deployed

the repositories from which artifacts can be provisioned

properties that configure the broker's runtime behavior

The configuration profiles are collected into versions. Versions are typically used to make updates to
an existing profile without effecting deployed brokers. When a container is configured it is assigned a
profile version from which it draws the profiles. Therefore, when you create a new version and edit the
profiles in the new version, the profiles that are in use are not changed. When you are ready to test the
changes, you can roll them out incrementally by moving brokers to a new version one at a time.

When a broker joins a fabric, a Fabric Agent is deployed with the broker and takes control of the
broker's configuration. The agent will ask the Fabric Registry what version and profile(s) are assigned
to the broker and configure the broker based on the profiles. The agent will download and install of the
specified bundles and features. It will also set all of the specified configuration properties.

Procedure

The recommended approach to configuring brokers in a fabric is:

1. Create a configuration template.

See Section 2.1, “Understanding the Red Hat JBoss A-MQ Configuration Model” .

2. Create a base profile for all of the brokers in the fabric using the configuration template.

3. Create profiles that inherit from the base profile that will be assigned to one or more brokers.

4. Modify the properties in each of the profiles to the desired values for the brokers to which the
profile will be assigned.

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

17

5. Assign the new profiles to the desired brokers.

You should always create new profiles or a new version of the existing profiles before making
configuration changes. Changes to profiles that are assigned to running brokers take effect
immediately. Using new profiles, or a new version, allows you make the changes and test them on a
subset of your brokers before rolling the changes to the entire fabric.

Creating a base profile

To create a base profile:

1. Optionally create a new profile version using the fabric:version-create command.

This will create a new copy of the existing profiles.

2. Import the new XML template into the registry using the fabric:import command as shown
in Example 2.4, “Creating a Profile Using an XML Configuration Template” .

Example 2.3. Importing an XML Configuration Template

JBossA-MQ:karaf@root> fabric:import -t
/fabric/configs/versions/version/profiles/mq-base/xmlTemplate
xmlTemplatePath

3. Create a new configuration profile instance to hold the new XML template using the
fabric:mq-create command as shown in Example 2.4, “Creating a Profile Using an XML
Configuration Template”.

Example 2.4. Creating a Profile Using an XML Configuration Template

JBossAMQ:karaf@root> fabric:mq-create --config xmlTemplate
profileName

This will create a new profile that is based on the default broker profile but uses the imported
XML template.

Creating deployment profiles and assigning them to brokers

To create deployment profiles and assigned them to the brokers:

1. Create new profile using the fabric:profile-create command as shown in Example 2.5,
“Creating a Deployment Profile”.

Example 2.5. Creating a Deployment Profile

JBossA-MQ:karaf@root> fabric:profile-create --parents baseProfile
profileName

2. Add values for the property placeholders using the fabric:profile-edit command as
shown in Example 2.6, “Setting Properties in a Profile” .

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

18

Example 2.6. Setting Properties in a Profile

JBossAMQ:karaf@root> fabric:profile-edit -p
org.fusesource.mq.fabric.server-profileName/propName=propVal
profileName

The fabric properties for a broker are specified using the PID
org.fusesource.mq.fabric.server-profileName, so to specify a value for the broker-
name property for the profile called myBroker you would use the command shown in
Example 2.7, “Setting the Broker Name Property” .

Example 2.7. Setting the Broker Name Property

JBossAMQ:karaf@root> fabric:profile-edit -p
org.fusesource.mq.fabric.server-myBroker/broker-name=esmeralda
myBroker

3. Assign the new profile to one or more brokers using the fabric:container-add-profile
command as shown in Example 2.8, “Assigning a Profile to a Broker” .

Example 2.8. Assigning a Profile to a Broker

JBossAMQ:karaf@root> fabric:container-add-profile brokerName
profileName

Using the management console

The management console simplifies the process of configuring brokers in a fabric by providing an easy
to use Web-based interface and reducing the number of steps required to make the changes. For more
information on using the management console see Using the Management Console.

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

19

CHAPTER 3. SECURITY BASICS

Abstract

By default, Red Hat JBoss A-MQ is secure because none of its ports are remotely accessible. You want
to open a few basic ports for remote access for management purposes.

3.1. SECURITY OVERVIEW

Overview

The Red Hat JBoss A-MQ runtime exposes three ports for remote access. These ports, which are
mostly intended for managing the broker, are essentially disabled by default. They are configured to
require authentication, but have no defined users. This makes the broker immune to breaches, but is
not ideal for remote management.

Ports exposed by the Red Hat JBoss A-MQ container

Figure 3.1, “Ports Exposed by the Red Hat JBoss A-MQ Container” shows the ports exposed by the
JBoss A-MQ container by default.

Figure 3.1. Ports Exposed by the Red Hat JBoss A-MQ Container

Console port

JMX port

OSGi Container

The following ports are exposed by the container:

Console port—enables remote control of a container instance, through Apache Karaf shell
commands. This port is enabled by default and is secured both by JAAS authentication and by
SSL.

JMX port—enables management of the container through the JMX protocol. This port is enabled
by default and is secured by JAAS authentication.

Web console port—provides access to an embedded Jetty container that hosts the Fuse
Management Console.

Authentication and authorization system

Red Hat JBoss A-MQ uses Java Authentication and Authorization Service (JAAS) for ensuring the
users trying to access the broker have the proper credentials. The implementation is modular, with
individual JAAS modules providing the authentication implementations. JBoss A-MQ's command
console provides commands to configure the JAAS system.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

20

3.2. BASIC SECURITY CONFIGURATION

Overview

The default security settings block access to a broker's remote ports. If you want to access the Red Hat
JBoss A-MQ runtime remotely, you must first customize the security configuration. The first thing you
will want to do is create at least one JAAS user. This will enable remote access to the broker.

Other common configuration changes you may want to make are:

configure access to the Fuse Management Console

assign roles to each of the remote ports to limit access

strengthen the credentials needed to access the remote console

WARNING

If you are planning to enable SSL/TLS security, you must ensure that you explicitly
disable SSLv3 protocol, in order to safeguard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and
JBoss A-MQ 6.x.

Create a secure JAAS user

By default, no JAAS users are defined for the container, which effectively disables remote access (it is
impossible to log on).

To create a secure JAAS user, edit the InstallDir/etc/users.properties file and add a new
user field, as follows:

Where Username and Password are the new user credentials. The admin role gives this user the
privileges to access all administration and management functions of the container. For more details
about JAAS, see the Security Guide.

WARNING

It is strongly recommended that you define custom user credentials with a strong
password.

Assigning roles for remote access

You can independently configure roles for the following different administrative protocols:

Username=Password,admin

CHAPTER 3. SECURITY BASICS

21

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

SSH (remote console login)

To override the default role for the remote console add a sshRole property to the
org.apache.karaf.shell PID. The following sets the role to admin:

JMX management

To override the default role for JMX add a jmxRole property to the
org.apache.karaf.management PID. The following sets the role to jmx:

Strengthening security on the remote console port

You can employ the following measures to strengthen security on the remote console port:

Make sure that the JAAS user credentials have strong passwords.

Customize the X.509 certificate (replace the Java keystore file,
InstallDir/etc/host.key, with a custom key pair).

For more details, see the Security Guide.

3.3. DISABLING BROKER SECURITY

Overview

Prior to Fuse MQ Enterprise version 7.0.2, the Apache ActiveMQ broker was insecure (JAAS
authentication not enabled). This section explains how to revert the Apache ActiveMQ broker to an
insecure mode of operation, so that it is unnecessary to provide credentials when connecting to the
broker.

WARNING

After performing the steps outlined in this section, the broker has no protection
against hostile clients. This type of configuration is suitable only for use on
internal, trusted networks.

Standalone server

These instructions assume that you are running Red Hat JBoss A-MQ in standalone mode (that is,
running in an OSGi container, but not using Fuse Fabric). In your installation of Red Hat JBoss A-MQ,
open the InstallDir/etc/activemq.xml file using a text editor and look for the following lines:

sshRole=admin

jmxRole=jmx

...
<plugins>

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

22

To disable JAAS authentication, delete (or comment out) the jaasAuthenticationPlugin element.
The next time you start up the JBoss A-MQ container using the start script the broker will run with
unsecured ports.

 <jaasAuthenticationPlugin configuration="karaf" />
</plugins>
...

CHAPTER 3. SECURITY BASICS

23

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-
MQ CONTAINER

Abstract

The Red Hat JBoss A-MQ container is secured using JAAS. By defining JAAS realms, you can
configure the mechanism used to retrieve user credentials. You can also refine access to the
container's administrative interfaces by changing the default roles.

Red Hat JBoss A-MQ runs in an OSGi container that uses the Java Authentication and Authorization
Service(JAAS) to perform authorization. Changing the authorization scheme for the container involves
defining a new JAAS realm and deploying it into the container.

4.1. DEFINING JAAS REALMS

Overview

When defining a JAAS realm in the OSGi container, you cannot put the definitions in a conventional
JAAS login configuration file. Instead, the OSGi container uses a special jaas:config element for
defining JAAS realms in a blueprint configuration file. The JAAS realms defined in this way are made
available to all of the application bundles deployed in the container, making it possible to share the
JAAS security infrastructure across the whole container.

Namespace

The jaas:config element is defined in the http://karaf.apache.org/xmlns/jaas/v1.0.0
namespace. When defining a JAAS realm you will need to include the line shown in Example 4.1, “JAAS
Blueprint Namespace”.

Example 4.1. JAAS Blueprint Namespace

Configuring a JAAS realm

The syntax for the jaas:config element is shown in Example 4.2, “Defining a JAAS Realm in
Blueprint XML”.

Example 4.2. Defining a JAAS Realm in Blueprint XML

xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0">

 <jaas:config name="JaasRealmName"
 [rank="IntegerRank"]>
 <jaas:module className="LoginModuleClassName"
 [flags="
[required|requisite|sufficient|optional]"]>
 Property=Value
 ...

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

24

http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixB

The elements are used as follows:

jaas:config

Defines the JAAS realm. It has the following attributes:

name—specifies the name of the JAAS realm.

rank—specifies an optional rank for resolving naming conflicts between JAAS realms .
When two or more JAAS realms are registered under the same name, the OSGi container
always picks the realm instance with the highest rank.

jaas:module

Defines a JAAS login module in the current realm. jaas:module has the following attributes:

className—the fully-qualified class name of a JAAS login module. The specified class must
be available from the bundle classloader.

flags—determines what happens upon success or failure of the login operation. Table 4.1,
“Flags for Defining a JAAS Module” describes the valid values.

Table 4.1. Flags for Defining a JAAS Module

Value Description

required Authentication of this login module must
succeed. Always proceed to the next login
module in this entry, irrespective of success or
failure.

requisite Authentication of this login module must
succeed. If success, proceed to the next login
module; if failure, return immediately without
processing the remaining login modules.

sufficient Authentication of this login module is not
required to succeed. If success, return
immediately without processing the
remaining login modules; if failure, proceed to
the next login module.

 </jaas:module>
 ...
 <!-- Can optionally define multiple modules -->
 ...
 </jaas:config>

</blueprint>

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER

25

optional Authentication of this login module is not
required to succeed. Always proceed to the
next login module in this entry, irrespective of
success or failure.

Value Description

The contents of a jaas:module element is a space separated list of property settings, which are
used to initialize the JAAS login module instance. The specific properties are determined by the
JAAS login module and must be put into the proper format.

NOTE

You can define multiple login modules in a realm.

Converting standard JAAS login properties to XML

Red Hat JBoss A-MQ uses the same properties as a standard Java login configuration file, however
Red Hat JBoss A-MQ requires that they are specified slightly differently. To see how the Red Hat
JBoss A-MQ approach to defining JAAS realms compares with the standard Java login configuration
file approach, consider how to convert the login configuration shown in Example 4.3, “Standard JAAS
Properties”, which defines the PropertiesLogin realm using the Red Hat JBoss A-MQ properties
login module class, PropertiesLoginModule:

Example 4.3. Standard JAAS Properties

The equivalent JAAS realm definition, using the jaas:config element in a blueprint file, is shown in
Example 4.4, “Blueprint JAAS Properties”.

Example 4.4. Blueprint JAAS Properties

PropertiesLogin {
 org.apache.activemq.jaas.PropertiesLoginModule required
 org.apache.activemq.jaas.properties.user="users.properties"
 org.apache.activemq.jaas.properties.group="groups.properties";
};

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"

xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0">

 <jaas:config name="PropertiesLogin">
 <jaas:module
className="org.apache.activemq.jaas.PropertiesLoginModule"
flags="required">
 org.apache.activemq.jaas.properties.user=users.properties
 org.apache.activemq.jaas.properties.group=groups.properties

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

26

IMPORTANT

You do not use double quotes for JAAS properties in the blueprint configuration.

Example

Red Hat JBoss A-MQ also provides an adapter that enables you to store JAAS authentication data in
an X.500 server. Example 4.5, “Configuring a JAAS Realm” defines the LDAPLogin realm to use Red
Hat JBoss A-MQ's LDAPLoginModule class, which connects to the LDAP server located at
ldap://localhost:10389.

Example 4.5. Configuring a JAAS Realm

For a detailed description and example of using the LDAP login module, see Section 4.2, “Enabling
LDAP Authentication”.

4.2. ENABLING LDAP AUTHENTICATION

 </jaas:module>
 </jaas:config>

</blueprint>

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0">

 <jaas:config name="LDAPLogin" rank="1">
 <jaas:module
className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
 flags="required">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connection.username=uid=admin,ou=system
 connection.password=secret
 connection.protocol=
 connection.url = ldap://localhost:10389
 user.base.dn = ou=users,ou=system
 user.filter = (uid=%u)
 user.search.subtree = true
 role.base.dn = ou=users,ou=system
 role.filter = (uid=%u)
 role.name.attribute = ou
 role.search.subtree = true
 authentication = simple
 </jaas:module>
 </jaas:config>
</blueprint>

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER

27

Overview

Red Hat JBoss A-MQ supplies a JAAS login module that enables it to use LDAP to authenticate users.
The JBoss A-MQ JAAS LDAP login module is implemented by the
org.apache.karaf.jaas.modules.ldap.LDAPLoginModule class. It is preloaded in the
container, so you do not need to install it's bundle.

Procedure

To enable JBoss A-MQ to use LDAP for user authentication you need to create a JAAS realm that
includes the JBoss A-MQ LDAP login module. As shown in Example 4.6, “Red Hat JBoss A-MQ LDAP
JAAS Login Module”, this is done by adding a jaas:module element to the realm and setting its
className attribute to org.apache.karaf.jaas.modules.ldap.LDAPLoginModule.

Example 4.6. Red Hat JBoss A-MQ LDAP JAAS Login Module

You will also need to provide values for the properties described in Table 4.2, “Properties for the Red
Hat JBoss A-MQ LDAP Login Module”.

LDAP properties

Table 4.2, “Properties for the Red Hat JBoss A-MQ LDAP Login Module” describes the properties used
to configure the Red Hat JBoss A-MQ JAAS LDAP login module.

Table 4.2. Properties for the Red Hat JBoss A-MQ LDAP Login Module

Property Description

connection.url Specifies specify the location of the directory server
using an ldap URL, ldap://Host:Port. You can
optionally qualify this URL, by adding a forward
slash, /, followed by the DN of a particular node in
the directory tree.

connection.username Specifies the DN of the user that opens the
connection to the directory server. For example,
uid=admin,ou=system.

connection.password Specifies the password that matches the DN from
connection.username. In the directory server, the
password is normally stored as a userPassword
attribute in the corresponding directory entry.

<jaas:config ... >
 <jaas:module
className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
 flags="required">
 ...
 </jaas:module>
</jaas:config>

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

28

user.base.dn Specifies the DN of the subtree of the DIT to search
for user entries.

user.filter Specifies the LDAP search filter used to locate user
credentials. It is applied to the subtree selected by
user.base.dn. Before being passed to the LDAP
search operation, the value is subjected to string
substitution such that all occurrences of %u are
replaced by the user name extracted from the
incoming credentials.

user.search.subtree Specifies if the user entry search's scope includes
the subtrees of the tree selected by user.base.dn.

role.base.dn Specifies the DN of the subtree of the DIT to search
for role entries.

role.filter Specifies the LDAP search filter used to locate roles.
It is applied to the subtree selected by role.base.dn.
Before being passed to the LDAP search operation,
the value is subjected to string substitution such
that all occurrences of %u are replaced by the user
name extracted from the incoming credentials.

role.name.attribute Specifies the attribute type of the role entry that
contains the name of the role/group. If you omit this
option, the role search feature is effectively
disabled.

role.search.subtree Specifies if the role entry search's scope includes
the subtrees of the tree selected by role.base.dn.

authentication Specifies the authentication method used when
binding to the LDAP server. Valid values are

simple—bind with user name and
password authentication

none—bind anonymously

initial.context.factory Specifies the class of the context factory used to
connect to the LDAP server. This must always be set
to com.sun.jndi.ldap.LdapCtxFactory.

ssl Specifies if the connection to the LDAP server is
secured via SSL. If connection.url starts with
ldaps:// SSL is used regardless of this property.

Property Description

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER

29

ssl.provider Specifies the SSL provider to use for the LDAP
connection. If not specified, the default SSL provider
is used.

ssl.protocol Specifies the protocol to use for the SSL connection.
You must set this property to TLSv1, in order to
prevent the SSLv3 protocol from being used
(POODLE vulnerability).

ssl.algorithm Specifies the algorithm used by the trust store
manager.

ssl.keystore Specifies the keystore name.

ssl.keyalias Specifies the name of the private key in the
keystore.

ssl.truststore Specifies the trust keystore name.

Property Description

All of the properties are mandatory except the SSL properties.

Example

Example 4.7, “Configuring a JAAS Realm that Uses LDAP Authentication” defines a JASS realm that
uses the LDAP server located at ldap://localhost:10389.

Example 4.7. Configuring a JAAS Realm that Uses LDAP Authentication

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0">

 <jaas:config name="karaf" rank="1">
 <jaas:module
className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
 flags="sufficient">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connection.username=uid=admin,ou=system
 connection.password=secret
 connection.protocol=
 connection.url = ldaps://localhost:10636
 user.base.dn = ou=users,ou=system
 user.filter = (uid=%u)
 user.search.subtree = true
 role.base.dn = ou=roles,ou=system,dc=fusesource
 role.filter = (uid=%u)
 role.name.attribute = cn
 role.search.subtree = true

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

30

IMPORTANT

You must set ssl.protocol to TLSv1, in order to protect against the Poodle
vulnerability (CVE-2014-3566)

4.3. USING ENCRYPTED PROPERTY PLACEHOLDERS

Overview

When securing a container it is undesirable to use plain text passwords in configuration files. They
create easy to target security holes. One way to avoid this problem is to use encrypted property
placeholders when ever possible.

Red Hat JBoss A-MQ includes an extension to OSGi Blueprint that enables you to use Jasypt to
decrypt property placeholders in blueprint files. It requires that you:

1. Create a properties file with encrypted values.

2. Add the proper namespaces to your blueprint file.

3. Import the properties using the Aries property placeholder extension.

4. Configure the Jasypt encryption algorithm.

5. Use the placeholders in your blueprint file.

6. Ensure that the Jasypt features are installed into the Red Hat JBoss A-MQ container.

Encrypted properties

Encrypted properties are stored in plain properties files. They are identified by wrapping them in the
ENC() function as shown in Example 4.8, “Property File with an Encrypted Property” .

Example 4.8. Property File with an Encrypted Property

 authentication = simple
 ssl.protocol=TLSv1
 ssl.truststore=truststore
 ssl.algorithm=PKIX
 </jaas:module>
 ...
 </jaas:config>
</blueprint>

#ldap.properties
ldap.password=ENC(amIsvdqno9iSwnd7kAlLYQ==)
ldap.url=ldap://192.168.1.74:10389

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER

31

https://access.redhat.com/articles/1232123

IMPORTANT

You will need to remember the password and algorithm used to encrypt the values. You
will need this information to configure Jasypt.

Namespaces

To use encryted properties in your configuration, you will need to add the following namespaces to
your blueprint file:

Aries extensions—http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0

Apache Karaf Jasypt—http://karaf.apache.org/xmlns/jasypt/v1.0.0

Example 4.9, “Encrypted Property Namespaces” shows a blueprint file with the required namespaces.

Example 4.9. Encrypted Property Namespaces

Placeholder extension

In order to use encrypted property placeholders in a blueprint file you need to include an Aries
property-paceholder element to you blueprint file. As shown in Example 4.10, “Aries Placeholder
Extension”, it must come before the Jasypt configuration or the use of placeholders.

Example 4.10. Aries Placeholder Extension

The Aries property-paceholder element's location child specifies the location of the property
file that contains the properties to use for the configuration. You can specify multiple files by using
multiple location children.

Jasypt configuration

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">
...
</blueprint>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">

 <ext:property-placeholder>
 <location>file:etc/ldap.properties</location>
 </ext:property-placeholder>

...
</blueprint>

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

32

You configure Jasypt using the Apache Karaf property-placeholder element. It has one child,
encoder, that contains the actual Jasypt configuration.

The encoder element's mandatory class attribute specifies the fully qualified classname of the
Jasypt encryptor to use for decrypting the properties. The encoder element can take a property
child that defines a Jasypt PBEConfig bean for configuring the encryptor.

For detailed information on how to configure the different Jasypt encryptors, see the Jasypt
documentation.

Example 4.11, “Jasypt Blueprint Configuration” shows configuration for using the string encryptor and
retrieving the password from an environment variable.

Example 4.11. Jasypt Blueprint Configuration

Placeholders

The placeholder you use for encrypted properties are the same as you use for regular properties. The
use the form ${prop.name}.

Example 4.12, “Jasypt Blueprint Configuration” shows an LDAP JAAS realm that uses the properties
file in Example 4.8, “Property File with an Encrypted Property” .

Example 4.12. Jasypt Blueprint Configuration

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">

 <ext:property-placeholder>
 <location>file://ldap.properties</location>

 <enc:property-placeholder>
 <enc:encryptor
class="org.jasypt.encryption.pbe.StandardPBEStringEncryptor">
 <property name="config">
 <bean
class="org.jasypt.encryption.pbe.config.EnvironmentStringPBEConfig">
 <property name="algorithm" value="PBEWithMD5AndDES" />
 <property name="passwordEnvName"
value="FUSE_ENCRYPTION_PASSWORD" />
 </bean>
 </property>
 </enc:encryptor>
 </enc:property-placeholder>
...
</blueprint>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER

33

http://www.jasypt.org/general-usage.html

The ${ldap.password} placeholder will be replaced with the decrypted value of the
ldap.password property from the properties file.

Installing the Jasypt features

By default, Red Hat JBoss A-MQ does not have the Jasypt encryption libraries installed. In order to use
encrypted property placeholders, you will need to install the jasypt-encryption feature using the
features:install command as shown in Example 4.13, “Installing the Jasypt Feature” .

Example 4.13. Installing the Jasypt Feature

 <ext:property-placeholder>
 <location>file://ldap.properties</location>

 <enc:property-placeholder>
 <enc:encryptor
class="org.jasypt.encryption.pbe.StandardPBEStringEncryptor">
 <property name="config">
 <bean
class="org.jasypt.encryption.pbe.config.EnvironmentStringPBEConfig">
 <property name="algorithm" value="PBEWithMD5AndDES" />
 <property name="passwordEnvName"
value="FUSE_ENCRYPTION_PASSWORD" />
 </bean>
 </property>
 </enc:encryptor>
 </enc:property-placeholder>

 <jaas:config name="karaf" rank="1">
 <jaas:module
className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
flags="required">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 debug=true
 connectionURL=${ldap.url}

connectionUsername=cn=mqbroker,ou=Services,ou=system,dc=fusesource,dc=co
m
 connectionPassword=${ldap.password}
 connectionProtocol=
 authentication=simple
 userRoleName=cn
 userBase = ou=User,ou=ActiveMQ,ou=system,dc=fusesource,dc=com
 userSearchMatching=(uid={0})
 userSearchSubtree=true
 roleBase = ou=Group,ou=ActiveMQ,ou=system,dc=fusesource,dc=com
 roleName=cn
 roleSearchMatching= (member:=uid={1})
 roleSearchSubtree=true
 </jaas:module>
 </jaas:config>

</blueprint>

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

34

karaf@root> features:install jasypt-encryption

4.4. CONFIGURING ROLES FOR THE ADMINISTRATIVE PROTOCOLS

Overview

By configuring each of the administrative functions to use a different role for authorization, you can
provide fine grained control over who can monitor and manipulate running containers.

Administration protocols

You can independently configure roles for the following different administrative protocols:

SSH (remote console login)

JMX management

Default role

The default role name for all of the administration protocols is set by the karaf.admin.role
property in the broker's etc/system.properties file. For example, the default setting of
karaf.admin.role is:

You have the option of overriding the default admin role set by karaf.admin.role for each of the
administrative protocols.

Changing the remote console's role

To override the default role for the remote console add a sshRole property to the
etc/org.apache.karaf.shell.cfg file. The following sets the role to admin:

Changing the JMX role

To override the default role for JMX add a jmxRole property to the
etc/org.apache.karaf.management.cfg file.

karaf.admin.role=admin

sshRole=admin

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER

35

CHAPTER 5. SECURING FABRIC CONTAINERS

Abstract

By default, fabric containers uses text-based username/password authentication. Setting up a more
robust access control system involves creating and deploying a new JAAS realm to the containers in
the fabric.

The default fabric authentication mechanism uses a text-based authentication cache that is stored on
the fabric's registry. This authentication mechanism is used to control who can access fabric
containers, who can issue commands to remote containers, who can update fabric profiles, and who
can retrieve the details on the container's in the fabric. The management console also uses the fabric's
authentication scheme.

The authentication system uses the JAAS framework. The fabric uses the karaf JAAS realm. This
realm is defined in the fabric-jaas feature. It is deployed to all containers in the fabric as part of the
default profile.

IMPORTANT

The default authentication system is not recommended for production use.

You can configure the fabric to use a different authentication mechanism by overriding the karaf
JAAS realm to use a proper login module. The fabric containers include an LDAP module that is
preloaded and simply needs to be activated. Doing so requires that the new JAAS realm be defined in
OSGi blueprint files and deployed to the container's in the fabric.

5.1. USING THE DEFAULT AUTHENTICATION SYSTEM

Abstract

The default authentication system for the fabric can be managed using management console's Users.
It can also be enhanced to store passwords using encryption.

By default fabric uses a simple text-based authentication system. This system allows you to define user
accounts and assign passwords and roles to the users. Out of the box, the user credentials are stored in
the fabric registry unencrypted.

You can mange the users in the default realm using the Users tab. You can also strengthen the default
system by configuring it to use encryption when storing user credentials.

5.1.1. Managing Users

Viewing user data

To view the users configured to access fabric select the Users item from the main menu. This will open
the Users page.

The Users page lists all of the users along the left hand side of the page. If you select the user, the
user's roles will be displayed along the right hand of the page and you the buttons to edit the user will
become active.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

36

Adding a user

To add a user:

1. Click Users from the main menu.

The Users page opens.

2. Click Create User.

The Create New User dialog opens.

3. In the Username field, enter a unique name for the user.

The user name must be at least five characters long.

4. In the Password field, enter a password for the user.

The password must be atleast six characters long.

5. In the Repeat Password field, reenter the password for the user.

6. Click Create.

The dialog closes and the new user is added to the list.

Removing a user

To remove a user:

1. Click Users from the main menu.

The Users page opens.

2. Select the user to be deleted from the list.

3. Click Delete User.

A confirmation dialog opens.

4. Click Yes.

The dialog closes and the user is removed from the list.

Changing a user's password

To change a user's password:

1. Click Users from the main menu.

The Users page opens.

2. Select the user to update from the list.

3. Click Change Password.

The Change Password dialog opens.

CHAPTER 5. SECURING FABRIC CONTAINERS

37

4. In the Password field, enter a password for the user.

The password must be at least six characters long.

5. In the Repeat Password field, reenter the password for the user.

6. Click Change.

The dialog closes and a message shows that the password was changed.

Adding a role to a user

NOTE

Roles are not enforced.

To add a role to a user:

1. Click Users from the main menu.

The Users page opens.

2. Select the user to update from the list.

3. Click Add Role.

The Add New Role dialog opens.

4. In the Role Name field, enter a role for the user.

5. Click Add.

The dialog closes and a message shows that the role was added.

Deleting a role from a user

NOTE

Roles are not enforced.

To delete a role from a user:

1. Click Users from the main menu.

The Users page opens.

2. Select the user to update from the list.

The user's roles are listed on the right side of the page.

3. Click the X opposite the role to delete.

A confirmation dialog opens.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

38

4. Click Yes.

The dialog closes and the role is removed from the list.

5.1.2. Encrypting Stored Passwords

Overview

By default, the JAAS login modules store passwords as plain text. You can provide additional
protection to passwords by storing them in an encrypted format. This can be done by adding the
appropriate JAAS configuration to the profile defining the fabric's karaf realm. This can be done by
adding the appropriate configuration properties to the io.fabric8.jaas PID and ensuring that they
are applied to all of the containers in the fabric.

NOTE

Although message digest algorithms are not easy to crack, they are not invulnerable to
attack (for example, see the Wikipedia article on cryptographic hash functions). Always
use file permissions to protect files containing passwords, in addition to using password
encryption.

Editing the default profile

The easiest way to update all of the containers in a fabric is to modify the default profile. It is applied
to all containers in a fabric through inheritance.

IMPORTANT

Before making changes to the default profile, you should create a new profile version.
Editing the active default profile could make your fabric unstable.

To enable password encryption by editing the default profile:

1. Select the management console's Profiles tab.

2. Create a new version by clicking Create Version.

The Create New Version dialog appears.

3. Optionally enter a name for the new version in the Name

If you leave the Name field blank, the management console will use the name of the parent
version and append the next available version number, starting from 1, to the name. For
example, if version brokers1 existed, the management console would create version
brokers1.1.

4. From the Parent Version list, select the version from which the new version will originate.

By default Use most recently created version is selected.

5. Click Create to create the version.

The dialog will close and the new version will be listed in the Versions table.

CHAPTER 5. SECURING FABRIC CONTAINERS

39

http://en.wikipedia.org/wiki/Cryptographic_hash_function

6. Select the new version from the Versions list.

7. Select the default profile from the Profiles list.

The Profiles page for the selected profile opens.

8. Select the Config Files tab.

9. Select io.fabric8.jaas from the list.

A text editing window opens.

10. Enter values for the properties described in Table 5.1, “JAAS Encryption Properties” following
the example shown in Example 5.1, “Password Encryption Configuration”.

Example 5.1. Password Encryption Configuration

11. Click Save.

12. If you configure the encryption to use Jasypt, add the jasypt-encryption feature to the
profile.

a. Select the Repositories tab.

b. In the Add repository field enter
mvn:org.apache.karaf.assemblies.features/standard/2.3.0.fuse-71-
044/xml/features.

c. Click Add.

d. Select the Features tab.

e. From the Repository list select
mvn:org.apache.karaf.assemblies.features/standard/2.3.0.fuse-71-
044/xml/features.

f. From the Features list select jasypt-encryption.

13. Select the management console's Containers tab.

14. Click Migrate Containers.

15. Click Select All.

16. Select the version to which you added encryption from the Target Version table.

17. Click Apply.

encryption.enabled = true
encryption.name = jasypt
encryption.algorithm = SHA-256
encryption.encoding = base64
encryption.iterations = 100000
encryption.saltSizeBytes = 16

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

40

Configuration properties

Table 5.1, “JAAS Encryption Properties” describes the properties used to enable password encryption.

Table 5.1. JAAS Encryption Properties

Property Description

encryption.enabled Specifies if password encryption is enabled.

encryption.name Specifies the name of the encryption service, which
has been registered as an OSGi service. See the
section called “Encryption services”.

encryption.prefix Specifies the prefix for encrypted passwords.

encryption.suffix Specifies the suffix for encrypted passwords.

encryption.algorithm Specifies the name of the encryption algorithm—for
example, MD5 or SHA-1. You can specify one of the
following encryption algorithms:

MD2

MD5

SHA-1

SHA-256

SHA-384

SHA-512

encryption.encoding Specifies the encrypted passwords encoding:
hexadecimal or base64.

encryption.providerName (Jasypt only) Name of the java.security.Provider
instance that is to provide the digest algorithm.

encryption.providerClassName (Jasypt
only)

Specifies the class name of the security provider
that is to provide the digest algorithm.

encryption.iterations (Jasypt only) Specifies the number of times to apply the hash
function recursively.

encryption.saltSizeBytes (Jasypt only) Specifies the size of the salt used to compute the
digest.

encryption.saltGeneratorClassName
(Jasypt only)

Specifies the class name of the salt generator.

CHAPTER 5. SECURING FABRIC CONTAINERS

41

role.policy Specifies the policy for identifying role principals.
Can have the values, prefix or group.

role.discriminator Specifies the discriminator value to be used by the
role policy.

Property Description

Encryption services

An encryption service can be defined by inheriting from the
org.apache.karaf.jaas.modules.EncryptionService interface and exporting an instance of
the encryption service as an OSGi service. Two alternative implementations of the encryption service
are provided:

Basic encryption service—installed in the standalone container by default and you can
reference it by setting the encryption.name property to the value, basic. In the basic
encryption service, the message digest algorithms are provided by the SUN security provider
(the default security provider in the Oracle JDK).

Jasypt encryption—can be installed in the standalone container by installing the jasypt-
encryption feature. To access the Jasypt encryption service, set the encryption.name
property to the value, jasypt.

For more information about Jasypt encryption, see the Jasypt documentation.

5.2. DEFINING JAAS REALMS IN A FABRIC

Overview

Fabric containers, like standalone containers, use a special jaas:config element for defining JAAS
realms. The difference is that when containers are deployed in a fabric, the JAAS realms need to be
pushed out the fabric registry and all of the containers in the fabric need to share the same JAAS
realms.

Procedure

To change the JAAS realm used by the fabric containers for authentication:

1. Create a Maven project to package and deploy the JAAS realm to the fabric's Maven proxy as
shown in the section called “Creating a Maven project for deploying a JAAS realm” .

2. Create a JAAS realm that uses the LDAP login module:

a. Open the blueprint XML file in src/main/resources/OSGI-INF/my-service.xml in a
text editor.

b. Delete the bean and service elements.

c. Add a jaas:config element to the blueprint.

See Section 4.1, “Defining JAAS Realms” for details on configuring the JAAS realm.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

42

http://docs.oracle.com/javase/6/docs/technotes/guides/security/SunProviders.html#SUNProvider
http://www.jasypt.org/general-usage.html

3. Deploy the JAAS realm to the fabric's maven proxy using the mvn deploy command.

4. In the management console create a new profile for deploying the new realm.

5. Select the Bundles tab.

6. Add the bundle you uploaded for the JAAS realm to the profile.

Bundles are specified using Maven URLs. For example if your project's group ID is
my.jaas.realm and the artifact ID is jaas, the Maven URL for the bundle will be
mvn:my.jaas.realm/ldap/version.

7. Add the new profile to all of the containers in the fabric.

Creating a Maven project for deploying a JAAS realm

To create a Maven project for deploying a JAAS realm to a fabric registry:

1. Use the karaf-blueprint-archetype archetype to generate a template project.

Example 5.2, “Create a Maven Project” shows how to invoke the archetype from the command
line.

Example 5.2. Create a Maven Project

mvn archetype:generate -
DarchetypeGroupId=org.apache.karaf.archetypes -
DarchetypeArtifactId=karaf-blueprint-archetype -DgroupId=groupID -
DartifactId=artifactID

2. Remove the project's src/main/java folder.

This folder holds template Java classes for implementing an OSGi service, but the JAAS realm
does not require any Java classes.

3. Open the project's POM in a text editor.

4. Add a distributionManagement element, similar to the one shown in Example 5.3, “Fabric
Maven Proxy Distribution Settings”, to the POM.

Example 5.3. Fabric Maven Proxy Distribution Settings

<distributionManagement>
 <repository>
 <id>fabric-maven-proxy</id>
 <name>FMC Maven Proxy</name>

<url>http://username:password@localhost:8107/maven/upload/</url>
 </repository>
</distributionManagement>

CHAPTER 5. SECURING FABRIC CONTAINERS

43

You will need to modify the url element to include the connection details for your
environment:

The username and password are the credentials used access the Fabric Server to which you
are trying to connect.

The hostname, localhost in Example 5.3, “Fabric Maven Proxy Distribution Settings” , is
the address of the machine hosting the Fabric Server.

The port number, 8107 in Example 5.3, “Fabric Maven Proxy Distribution Settings” , is the
port number exposed by the Fabric Server. 8107 is the default setting.

The path, /maven/upload/ in Example 5.3, “Fabric Maven Proxy Distribution Settings” , is
the same for all Fabric Servers.

5.3. ENABLING LDAP AUTHENTICATION

Abstract

Fabric containers come with a preinstalled LDAP login module. To activate it you need to reconfigure
the default JAAS realm to use the LDAP login module and associate the new realm with all of the
containers in the fabric.

Overview

Fabric containers supply a JAAS login module that enables it to use LDAP to authenticate users. The
JAAS LDAP login module is implemented by the
org.apache.karaf.jaas.modules.ldap.LDAPLoginModule class. It is preloaded by the
containers, so you do not need to install its bundle.

To enable LDAP authentication, you need to create a new profile that redefines the default karaf
realm to use the LDAP login module and deploy it to every container in the management console's
fabric. Once this is done, all access to the management console Fuse Management Console, and all of
the fabric containers' command consoles, will be authenticated against your LDAP server.

Procedure

To enable the fabric containers to use LDAP for user authentication:

1. Create a Maven project to package and deploy the LDAP JAAS realm to the fabric's Maven
proxy as shown in the section called “Creating a Maven project for deploying a JAAS realm” .

2. Create a JAAS realm that uses the LDAP login module:

a. Open the blueprint XML file in src/main/resources/OSGI-INF/my-service.xml in a
text editor.

b. Delete the bean and service elements.

c. Add a jaas:config element to the blueprint.

d. Add a name attribute to the jaas:config element and set its value to karaf.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

44

NOTE

This will override the default realm used by the container.

e. Add a rank attribute to the jaas:config element and set its value to 5.

NOTE

This will insure that this realm is used by the container.

f. Add a jaas:module element to the jaas:config element.

g. Add a className attribute to the jaas:module element and set its value to
org.apache.karaf.jaas.modules.ldap.LDAPLoginModule.

Example 5.4, “LDAP JAAS Login Module” shows the blueprint file.

Example 5.4. LDAP JAAS Login Module

h. Provide values for the properties described in Table 4.2, “Properties for the Red Hat JBoss
A-MQ LDAP Login Module”.

3. Deploy the JAAS realm to the fabric's maven proxy using the mvn deploy command.

4. In the management console create a new profile for deploying the LDAP realm.

See Using the Management Console.

5. Select the Bundles tab.

6. Add the bundle you uploaded for the JAAS realm to the profile.

Bundles are specified using Maven URLs. For example if your project's group ID is
my.jaas.realm and the artifact ID is ldap, the Maven URL for the bundle will be
mvn:my.jaas.realm/ldap/version.

See Using the Management Console.

7. Add the new profile to all of the containers in the fabric.

See Using the Management Console.

<jaas:config ... >
 <jaas:module
className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
 flags="required">
 ...
 </jaas:module>
</jaas:config>

CHAPTER 5. SECURING FABRIC CONTAINERS

45

CHAPTER 6. INSTALLING RED HAT JBOSS A-MQ AS A
SERVICE

Abstract

Red Hat JBoss A-MQ can generate a service wrapper that can be easily configured to install Red Hat
JBoss A-MQ as a system service.

To install Red Hat JBoss A-MQ as a system service, perform the following steps:

1. Generate the service wrapper for your system.

See Section 6.1, “Generating the Wrapper”.

2. Configure the launch script for your system.

See Section 6.2, “Configure the Script” .

3. Configure the service wrapper for your system.

See Section 6.3, “Configuring the Wrapper”.

4. Install the service wrapper as system service.

See Section 6.4, “Installing and Starting the Service” .

6.1. GENERATING THE WRAPPER

Abstract

The service wrapper is generated by the Apache Karaf container using the wrapper:install
command.

Overview

The Red Hat JBoss A-MQ console's wrapper feature generates a wrapper around the JBoss A-MQ
runtime that allows you to install a message broker as a system service. The wrapper feature does not
come preinstalled in the console, so before you can generate the service wrapper you must install the
wrapper feature.

Once the feature is installed the console gains a wrapper:install command. Running this command
generates a generic service wrapper in the JBoss A-MQ installation.

Procedure

To generate the service wrapper:

1. Start JBoss A-MQ in console mode using the amq command.

2. Once the console is started and the command prompt appears, enter features:install
wrapper.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

46

The features:install command will locate the required libraries to provision the wrapper
feature and deploy it into the run time.

3. Generate the wrapper by entering wrapper:install -n serviceName -d
displayName -D description.

The wrapper:install command has the options described in Table 6.1, “Wrapper Install
Options”.

Table 6.1. Wrapper Install Options

Option Default Description

-s AUTO_START (Windows only) Specifies the
mode in which the service is
installed. Valid values are
AUTO_START or
DEMAND_START.

-n karaf Specifies the service name
that will be used when
installing the service.

-d Specifies the display name of
the service.

-D Specifies the description of the
service.

Generated files

The following files are generated and make up the service wrapper:

bin\ServiceName-wrapper[.exe]—the executable file for the wrapper.

bin\ServiceName-service[.bat]—the script used to install and remove the service.

etc\ServiceName-wrapper.conf—the wrapper's configuration file.

Three library files required by the service wrapper:

lib\libwrapper.so

lib\karaf-wrapper.jar

lib\karaf-wrapper-main.jar

6.2. CONFIGURE THE SCRIPT

Abstract

CHAPTER 6. INSTALLING RED HAT JBOSS A-MQ AS A SERVICE

47

The service launch script, ServiceName-service[.bat] file, is located under the
InstallDir/bin/ directory.

Overview

There are a few environment variables you can optionally customize in the ServiceName-
service[.bat] file, as described here.

RUN_AS_USER

When the RUN_AS_USER variable is set, the ServiceName-service[.bat] script runs as the
specified user. For example, to run the script as the user, mquser, search for the line, #RUN_AS_USER,
uncomment the line, and set the variable as follows:

IMPORTANT

Make sure that the specified user has the required privileges to write the PID file and
wrapper.log files. Failure to be able to write the log file will cause the Wrapper to exit
without any way to write out an error message.

PRIORITY

(LINUX and UNIX only) You can optionally assign a priority to the launched service using the system
nice command by setting the PRIORITY variable (it is not set by default).

6.3. CONFIGURING THE WRAPPER

Abstract

The service wrapper is configured by the ServiceName-wrapper.conf file, which is located under
the InstallDir/etc/ directory.

Overview

The service wrapper is configured by the ServiceName-wrapper.conf file, which is located under
the InstallDir/etc/ directory.

There are several settings you may want to change including:

the default environment settings

the properties passed to the JVM

the classpath

the JMX settings

the logging settings

RUN_AS_USER=mquser

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

48

Specifying the Red Hat JBoss A-MQ's environment

A broker's environment is controlled by three environment variables:

KARAF_HOME—the location of the Red Hat JBoss A-MQ install directory.

KARAF_BASE—the root directory containing the configuration and OSGi data specific to the
broker instance.

The configuration for the broker instance is stored in the KARAF_BASE/conf directory. Other
data relating to the OSGi runtime is also stored beneath the base directory.

KARAF_DATA—the directory containing the logging and persistence data for the broker.

Example 6.1, “Default Environment Settings” shows the default values.

Example 6.1. Default Environment Settings

Passing parameters to the JVM

If you want to pass parameters to the JVM, you do so by setting wrapper properties using the form
wrapper.java.additional.<n>. <n> is a sequence number that must be distinct for each
parameter.

One of the most useful things you can do by passing additional parameters to the JVM is to set Java
system properties. The syntax for setting a Java system property is
wrapper.java.additional.<n>=-DPropName=PropValue.

Example 6.2, “Default Java System Properties” shows the default Java properties.

Example 6.2. Default Java System Properties

set.default.KARAF_HOME=InstallDir
set.default.KARAF_BASE=InstallDir
set.default.KARAF_DATA=InstallDir\data

JVM
note that n is the parameter number starting from 1.
wrapper.java.additional.1=-Dkaraf.home="%KARAF_HOME%"
wrapper.java.additional.2=-Dkaraf.base="%KARAF_BASE%"
wrapper.java.additional.3=-Dkaraf.data="%KARAF_DATA%"
wrapper.java.additional.4=-Dcom.sun.managment.jmxremote
wrapper.java.additional.5=-Dkaraf.startLocalConsole=false
wrapper.java.additional.6=-Dkaraf.startRemoteShell=true
wrapper.java.additional.7=-
Djava.endorsed.dirs="%JAVA_HOME%/jre/lib/endorsed;%JAVA_HOME%/lib/endors
ed;%KARAF_HOME%/lib/endorsed"
wrapper.java.additional.8=-
Djava.ext.dirs="%JAVA_HOME%/jre/lib/ext;%JAVA_HOME%/lib/ext;%KARAF_HOME%
/lib/ext"

CHAPTER 6. INSTALLING RED HAT JBOSS A-MQ AS A SERVICE

49

Adding classpath entries

You add classpath entries using the syntax wrapper.java.classpath.<n>. <n> is a sequence
number that must be distinct for each classpath entry.

Example 6.3, “Default Wrapper Classpath” shows the default classpath entries.

Example 6.3. Default Wrapper Classpath

JMX configuration

The default service wrapper configuration does not enable JMX. It does, however, include template
properties for enabling JMX. To enable JMX:

1. Locate the line # Uncomment to enable jmx.

There are three properties, shown in Example 6.4, “Wrapper JMX Properties”, that are used to
configure JMX.

Example 6.4. Wrapper JMX Properties

2. Remove the # from in front of each of the properties.

3. Replace the n in each property to a number that fits into the sequence of addition properties
established in the configuration.

You can change the settings to use a different port or secure the JMX connection.

For more information about using JMX see Chapter 15, Using JMX.

Configuring logging

The wrapper's logging in configured using the properties described in Table 6.2, “Wrapper Logging
Properties”.

Table 6.2. Wrapper Logging Properties

wrapper.java.classpath.1=%KARAF_BASE%/lib/karaf-wrapper.jar
wrapper.java.classpath.2=%KARAF_HOME%/lib/karaf.jar
wrapper.java.classpath.3=%KARAF_HOME%/lib/karaf-jaas-boot.jar
wrapper.java.classpath.4=%KARAF_BASE%/lib/karaf-wrapper-main.jar

Uncomment to enable jmx
#wrapper.java.additional.n=-
Dcom.sun.management.jmxremote.port=1616
#wrapper.java.additional.n=-
Dcom.sun.management.jmxremote.authenticate=false
#wrapper.java.additional.n=-
Dcom.sun.management.jmxremote.ssl=false

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

50

Property Description

wrapper.console.format Specifies how the logging information sent to the
console is formated. The format consists of the
following tokens:

L—log level

P—prefix

D—thread name

T—time

Z—time in milliseconds

U—approximate uptime in seconds (based
on internal tick counter)

M—message

wrapper.console.loglevel Specifies the logging level displayed on the console.

wrapper.logfile Specifies the file used to store the log.

wrapper.logfile.format Specifies how the logging information sent to the log
file is formated.

wrapper.console.loglevel Specifies the logging level sent to the log file.

wrapper.console.maxsize Specifies the maximum size, in bytes, that the log file
can grow to before the log is archived. The default
value of 0 disables log rolling.

wrapper.console.maxfiles Specifies the maximum number of archived log files
which will be allowed before old files are deleted. The
default value of 0 implies no limit.

wrapper.syslog.loglevel Specifies the logging level for the sys/event log
output.

For more information about Red Hat JBoss A-MQ logging see Chapter 14, Using Logging.

6.4. INSTALLING AND STARTING THE SERVICE

Overview

The operating system determines the exact steps using to complete the installation of Red Hat JBoss
A-MQ as a service. The wrapper:install command provides basic instructions for your operating
system.

CHAPTER 6. INSTALLING RED HAT JBOSS A-MQ AS A SERVICE

51

Windows

To install the service run InstallDir\bin\ServiceName-service.bat install. If you used the
default start setting, the service will start when Windows is launched. If you specified DEMAND_START,
you will need to start the service manually.

To start the service manually run net start "ServiceName". You can also use the Windows
service UI.

To manually stop the service run net stop "ServiceName" You can also use the Windows service
UI.

You remove the installed the service by running InstallDir\bin\ServiceName-service.bat
remove.

Redhat Linux

To install the service and configure it to start when the machine boots, run the following commands:

ln -s InstallDir/bin/ServiceName-service /etc/init.d/
chkconfig ServiceName-service --add
chkconfig ServiceName-service on

To start the service manually run service ServiceName-service start.

To manually stop the service run service ServiceName-service stop.

You remove the installed the service by running the following commands:

#service ServiceName-service stop
chkconfig ServiceName-service --del
rm /etc/init.d/ServiceName-service

Ubuntu Linux

To install the service and configure it to start when the machine boots, run the following commands:

ln -s InstallDir/bin/ServiceName-service /etc/init.d/
update-rc.d ServiceName-service defaults

To start the service manually run /etc/init.d/ServiceName-service start.

To manually stop the service run /etc/init.d/ServiceName-service stop.

You remove the installed the service by running the following commands:

#/etc/init.d/ServiceName-service stop
rm /etc/init.d/ServiceName-service

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

52

CHAPTER 7. STARTING A BROKER

Abstract

You start a broker using a simple command. The broker can either be started so that it launches a
command console or so that it runs as a daemon process. When a broker is part of a fabric, you can
remotely start the broker remotely.

OVERVIEW

A broker can be run in one of two modes:

console mode—the broker starts up as a foreground process and presents the user with a
command shell

daemon mode—the broker starts up as a background process that can be manged using a
remote console or the provided command line tools

The default location for the broker's configuration for the broker is the
InstallDir/etc/activemq.xml configuration file. The configuration uses values loaded from the
InstallDir/etc/system.properties file and the
InstallDir/etc/org.fusesource.mq.fabric.server-default.cfg file.

STARTING IN CONSOLE MODE

When you start the broker in console mode you will be placed into a command shell that provides
access to a number of commands for managing the broker and its OSGi runtime.

IMPORTANT

When the broker is started in console mode, you cannot close the console without
killing the broker.

To launch a broker in console mode, change to InstallDir and run one of the commands in Table 7.1,
“Start up Commands for Console Mode”.

Table 7.1. Start up Commands for Console Mode

Windows bin\amq.bat

Unix bin/amq

If the server starts up correctly you should see something similar to Example 7.1, “Broker Console” on
the console.

Example 7.1. Broker Console

______ ___ ___ _____ | ___| | \/ || _ | | |_ _ _ ___ ___ | . . || | | |
| _|| | | |/ __| / _ \ | |\/| || | | | | | | |_| |__ \| __/ | | | |\
\/' / _| __,_||___/ ___| _| |_/ _/_\ Fuse MQ (7.0.0.fuse-036)
http://fusesource.org/mq/ Hit '<tab>' for a list of available commands

CHAPTER 7. STARTING A BROKER

53

and '[cmd] --help' for help on a specific command. Hit '<ctrl-d>' or
'osgi:shutdown' to shutdown Fuse MQ.
JBossA-MQ:karaf@root>

STARTING IN DAEMON MODE

Launching a broker in daemon mode runs Red Hat JBoss A-MQ in the background without a console.
To launch a broker in daemon mode, change to InstallDir and run one of the commands in Table 7.2,
“Start up Commands for Daemon Mode”.

Table 7.2. Start up Commands for Daemon Mode

Windows bin\start.bat

Unix bin/start

STARTING A BROKER IN A FABRIC

If a broker is deployed as part of a fabric you can start it remotely in one of three ways:

using the console of one of the other broker's in the fabric

If one of the brokers in the fabric is running in console mode you an use the
fabric:container-start command to start any of the other brokers in the fabric. The
command requires that you supply the container name used when creating the broker in the
fabric. For example to start a broker named fabric-broker3 you woul duse the command
shown in Example 7.2, “Starting a Broker in a Fabric” .

Example 7.2. Starting a Broker in a Fabric

JBossA-MQ:karaf@root> fabric:container-start fabric-broker3

using the administration client of one of the broker's in the fabric

If none of the brokers are running in console mode, you can use the administration client on
one of the brokers to execute the fabric:container-start command. The administration
client is run using the client command in Red Hat JBoss A-MQ's bin folder. Example 7.3,
“Starting a Broker in a Fabric with the Administration Client” shows how to use the remote
client to start remote broker in the fabric.

Example 7.3. Starting a Broker in a Fabric with the Administration Client

bin/client fabric:container-start fabric-broker3

using the management console

The management console can start and stop any of the brokers in the fabric it manages from a
Web based console.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

54

For more information see Using the Management Console.

CHAPTER 7. STARTING A BROKER

55

CHAPTER 8. SENDING COMMANDS TO THE BROKER

Abstract

Red Hat JBoss A-MQ provides a number of commands that can be used to manage a broker, deploy
new brokers, and report administrative details. You can send these commands to a broker using either
the broker command console or the administration client.

OVERVIEW

The default mode for running a Red Hat JBoss A-MQ broker is to run in daemon mode. In this mode,
the broker runs as a background process and you have no direct means for managing it or requesting
status information. You can access a broker in daemon mode in the following ways:

the JBoss A-MQ administration client that can be used to send any of the console commands
to a broker running in daemon mode

a broker running in console mode can connect to a remote broker and be used to manage the
remote broker

Red Hat JBoss A-MQ includes a vanilla Apache Karaf shell that can connect to a remote
broker and be used to manage the remote broker

If a broker is started in console mode, you can simply enter commands directly in the command
console.

RUNNING THE ADMINISTRATION CLIENT

The JBoss A-MQ administration client is run using the client in InstallDir/bin. Example 8.1,
“Client Command” shows the syntax for the command.

Example 8.1. Client Command

client [--help] [-a port] [-h host] [-u user] [-p password] [-v] [-r attempts] [-d delay] [
commands]

Table 8.1, “Administration Client Arguments” describes the command's arguments.

Table 8.1. Administration Client Arguments

Argument Description

--help Displays the help message.

-a Specifies the remote host's port.

-h Specify the remote host's name.

-u Specifies user name used to log into the broker.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

56

-p Specifies the password used to log into the broker.

-v Use verbose output.

-r Specifies the maximum number of attempts to
establish a connection.

-d Specifies, in seconds, the delay between retries. The
default is 2 seconds.

commands Specifies one or more commands to run. If no
commands are specified, the client enters an
interactive mode.

Argument Description

USING THE BROKER CONSOLE

The console provides commands that you can use to perform basic management of your JBoss A-MQ
environment, including managing destinations, connections and other administrative objects in the
broker.

The console uses prefixes to group commands relating to the same functionality. For example
commands related to configuration are prefixed config:, and logging-related commands are prefixed
log:.

The console provides two levels of help:

console help—list all of the commands along with a brief summary of the commands function

command help—a detailed description of a command and its arguments

To access the console help you use the help command from the console prompt. It will display a
grouped list of all the commands available in the console. Each command in the list will be followed by
a description of the command as shown in Example 8.2, “Console Help” .

Example 8.2. Console Help

JBossA-MQ:karaf@root> help
COMMANDS activemq:browse activemq:bstat activemq:list activemq:purge
activemq:query admin:change-opts Changes the Java options of an existing
container instance. admin:change-rmi-registry-port Changes the RMI
registry port (used by management layer) of an existing container
instance.
 ...
JBossA-MQ:karaf@root>

The help for each command includes the definition, the syntax, and the arguments and any options. To
display the help for a command, type the command with the --help option. As shown in Example 8.3,
“Help for a Command”, entering admin:start --help displays the help for that command.

CHAPTER 8. SENDING COMMANDS TO THE BROKER

57

Example 8.3. Help for a Command

JBossA-MQ:karaf@root> admin:start --help
DESCRIPTION admin:start Starts an existing container instance. SYNTAX
admin:start [options] name ARGUMENTS name The name of the container
instance OPTIONS --help Display this help message -o, --java-opts Java
options when launching the instance
JBossA-MQ:karaf@root>

CONNECTING A CONSOLE TO A REMOTE BROKER

How you connect a command console to a broker on a remote machine depends on if the brokers are
part of the same fabric. If the remote broker you want to command is a part of the same fabric as the
broker whose command console you are using, then you can use the fabric:container-connect
command to establish a connection to the remote broker.

The fabric:container-connect command has one required argument that specifies the name of
the container to which a connection will be opened. You can also specify a command to be executed by
the remote console connection. If you do not specify a command, you are presented with a prompt that
will pass commands to the remote broker's console..

If you are not using fabric, or the remote broker is not part of the same fabric as the broker whose
command console you are using, you create a remote connection using the ssh:ssh command. The
ssh:ssh command also only requires a single argument to establish the remote connection. In this
case, it is the hostname, or IP address, of the machine on which the broker is running. If the remote
broker is not using the default SSH port (8101), you will also need to specify the remote broker's SSH
port using the -p flag. You can also specify a command to be executed by the remote console
connection. If you do not specify a command, you are presented with a prompt that will pass
commands to the remote broker's console.

To disconnect from the remote console, you use the logout command or press Control+D.

STARTING A BASIC CONSOLE

Red Hat JBoss A-MQ includes a shell command that will open a vanilla command console without
starting a broker instance. You can use this command console to connect to remote brokers in the
same way as you would a broker's command console.

AVAILABLE COMMANDS

The remote client can execute any of the broker's console commands. For a complete list of commands
see the [Console Reference].

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

58

CHAPTER 9. DEPLOYING A NEW BROKER

Abstract

In most large messaging environments there will be multiple brokers deployed. This may be for load
management, high availability, or other business reasons. Using standalone brokers this requires
manually installing and configuring multiple instances of Red Hat JBoss A-MQ. Using a fabric, however,
you can deploy multiple brokers from a single location and easily reuse large portions of the
configuration.

When deploying multiple brokers, you need to decide how you want to manage the brokers:

as a collection of standalone brokers

a fabric of brokers

All of the advanced networking features such as fail over, network of brokers, load balancing, and
master/slave are available regardless of how you choose to manage your broker deployment. The
difference is in what is required to set up and maintain the deployment.

Using a collection of standalone brokers requires that you install, configure, and maintain each broker
separately. If you have three brokers, you will need to manually install Red Hat JBoss A-MQ on three
machines and configure each installation separately. This can be cumbersome and error prone
particularly when configuring a network of brokers. When issues arise or you need to update your
deployment, you will have to make the changes on each machine individually.

If you brokers are deployed into a fabric, you can perform the installation and configuration of all the
brokers in the deployment from a central location. In addition, using a fabric simplifies the
configuration process and makes it less error prone. Fabric provides tooling for auto-configuring
failover clusters, networks of brokers, and master/slave clusters. In addition, it also makes it possible
to place all of the common configuration into a single profile that all of the brokers share. When issues
arise or you need to update your deployment, having your brokers in a fabric allows you to do
incremental roll outs and provides a means for quickly rolling back any changes.

9.1. DEPLOYING A STANDALONE BROKER

Abstract

Deploying standalone brokers requires manually installing and configuring multiple instances of Red
Hat JBoss A-MQ.

Overview

Deploying a new standalone broker involves installing Red Hat JBoss A-MQ on a new machine and
modifying its configuration as needed. You will need to do this for all of the additional brokers in your
deployment.

Procedure

To deploy a new standalone broker:

1. Install JBoss A-MQ onto the target system as described in the Installation Guide.

CHAPTER 9. DEPLOYING A NEW BROKER

59

2. Modify the new installation's configuration for your environment as described in Chapter 2,
Editing a Broker's Configuration.

You will need to repeat this process for each standalone broker you want to deploy.

More information

For more information on configuring brokers to work together see:

Using Networks of Brokers

Fault Tolerant Messaging

9.2. DEPLOYING A NEW BROKER INTO A FABRIC

Abstract

Deploying a broker into a fabric allows you to deploy multiple brokers from a single location and easily
reuse large portions of the configuration.

Overview

Deploying a new broker instance into a fabric involves creating a new broker profile and deploying it to
a Fabric Container. The fabric infrastructure simplifies these tasks by:

allowing you to do them from a remote location

providing tools that assist in automatically configuring fail over clusters, networks of brokers,
and master/slave clusters.

allowing you to reuse parts of existing profiles to ensure consistency

providing tooling to do rolling updates

providing tooling to roll back changes when needed

From the Red Hat JBoss A-MQ console you can use the fabric:mq-create to create new broker
profiles and new containers for the brokers. You can also use the management console to perform to
create the profiles and assign them to containers.

Procedure

To deploy a new broker into a fabric:

1. Create a template JBoss A-MQ XML configuration file in a location that is accessible to the
container.

See Section 2.1, “Understanding the Red Hat JBoss A-MQ Configuration Model” .

2. In the command console, use the fabric:import command to upload the your XML
configuration template to the Fabric Ensemble as shown in Example 9.1, “Uploading a
Template to a Fabric Ensemble”.

Example 9.1. Uploading a Template to a Fabric Ensemble

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

60

JBossA-MQ:karaf@root> fabric:import -t
/fabric/configs/versions/version/profiles/mq-base/configFile
configFile

version must match the version of the new profile you will create for the new broker.

3. Use the fabric:mq-create command to create a profile for the new broker and assign it to a
container.

To deploy the new broker into an existing container use the command shown in
Example 9.2, “Creating a New Broker in an Existing Container”

Example 9.2. Creating a New Broker in an Existing Container

JBossA-MQ:karaf@root> fabric:mq-create --assign-container
containerName --config configFile profileName

This will create a new broker profile that inherits from the mq-base profile, but uses your
XML configuration template, and deploy it to the specified container.

To deploy the new broker into an new container use the command shown in Example 9.3,
“Creating a New Broker in a New Container”

Example 9.3. Creating a New Broker in a New Container

JBossA-MQ:karaf@root> fabric:mq-create --create-container
containerName --config configFile profileName

This will create a new broker profile that inherits from the mq-base profile, but uses your
XML configuration template, create a new container named containerName, and deploy the
broker profile to it.

NOTE

The new container will be a child of the container from which you execute
the fabric:mq-create command.

You can add network configuration settings to the profile as well.

4. Use the fabric:profile-edit command shown in Example 9.4, “Editing a Broker Profile”
to set the required properties.

Example 9.4. Editing a Broker Profile

JBossA-MQ:karaf@root> fabric:profile-edit --pid
org.fusesource.mq.fabric.server-profileName/property=value
profileName

CHAPTER 9. DEPLOYING A NEW BROKER

61

The properties that need to be set will depend on the properties you specified using property
place holders in the template XML configuration and the broker's network settings.

NOTE

The management console makes this process easier by providing a Web-based UI.

More information

For more information on configuring brokers to work together see:

Using Networks of Brokers

Fault Tolerant Messaging

For more information on using the management console, see Using the Management Console.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

62

CHAPTER 10. SHUTTING DOWN A BROKER

Abstract

Brokers can be shutdown from either the machine on which they are running or remotely from a
different machine.

IMPORTANT

If the broker is running in console mode it can only be shutdown locally.

10.1. SHUTTING DOWN A LOCAL BROKER

Abstract

Depending on how you started the local broker, you stop it using either a console command or
command line tool.

Overview

The method used to stop a broker running on the machine you logged into depends on the mode in
which the broker is running. If it is running in console mode, you use one of the console commands to
shut down the broker. If it is running in daemon mode, the broker doesn't have a command console. So,
you need to use one of the utility commands supplied with Red Hat JBoss A-MQ.

Stopping the broker from console mode

If you launched the broker by running amq, you shut it down using the shutdown -f command as
shown in Example 10.1, “Using the Console's Shutdown Command” .

Example 10.1. Using the Console's Shutdown Command

JBossA-MQ:karaf@root> shutdown -f
JBossA-MQ:karaf@root>
logout [Process completed]

NOTE

CTRL+D will also shutdown the broker.

Stopping a broker running in daemon mode

If you launched the broker by running the start command, log in to the machine where the broker is
running and run the stop command in the broker installation's bin folder.

CHAPTER 10. SHUTTING DOWN A BROKER

63

NOTE

You can stop a broker running in daemon mode remotely. See Section 10.2, “Shutting
Down a Broker Remotely”.

10.2. SHUTTING DOWN A BROKER REMOTELY

Abstract

You have a number of options for stopping a broker running on a remote machine. You can stop the
broker using a console or without using a console. You can also step a broker remotely using the
management console.

Overview

For many use cases logging into the machine running a broker instance is impractical. In those cases,
you need a way to stop a broker from a remote machine. Red Hat JBoss A-MQ offers a number of ways
to accomplish this task:

using the stop command—the stop command does not require starting an instance of the
broker

using a remote console connection—a broker's console can be used to remotely shutdown a
broker on another machine

using a fabric member's console—brokers that are part of a fabric can stop members of their
fabric

using the management console—brokers that are part of a fabric can be stopped using a
management console connected to their fabric

For more information see Using the Management Console.

Using the stop command

You can stop a remote instance without starting up Red Hat JBoss A-MQ on your local host by running
the stop command in the InstallDir/bin directory. The commands syntax is shown in
Example 10.2, “Stop Command Syntax”.

Example 10.2. Stop Command Syntax

stop [-a port] { -h hostname } { -u username } { -p password }

-a port

Specifies the SSH port of the remote instance. The default is 8101.

-h hostname

Specifies the hostname of the machine on which the remote instance is running.

-u username

Specifies the username used to connect to the remote broker.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

64

NOTE

The default username for a broker is karaf.

-p password

Specifies the password used to connect to the remote broker.

NOTE

The default password for a broker is karaf.

Example 10.3, “Stopping a Remote Broker” shows how to stop a remote broker on a machine named
NEBrokerHost2.

Example 10.3. Stopping a Remote Broker

bin/stop -u karaf -p karaf -h NEBrokerHost2

Using a remote console

Red Hat JBoss A-MQ's console can be connected to a remote broker using the ssh:ssh command.
Once the console is connected to the remote broker, you can shut it down by running the
osgi:shutdown command. Example 10.4, “Shutting Down a Broker using a Remote Console
Connection” shows the command sequence for using a remote console connection to shutdown a
broker running on a machine named NWBrokerHost.

Example 10.4. Shutting Down a Broker using a Remote Console Connection

JBossA-MQ:karaf@root> ssh -l karaf -P karaf NWBrokerHost
 _ ____ __ __ ____ | | _ \ /\ | \/ |/ __ \ | | |_) | ___ ___ ___ /
\ ______| \ / | | | | _ | | _ < / _ \/ __/ __| / /\ ______| |\/| | | |
| | |__| | |_) | (_) __ __ \ / ____ \ | | | | |__| | ____/|____/
___/|___/___/ /_/ _\ |_| |_|____\ JBoss A-MQ (6.0.0.redhat-012)
http://www.redhat.com/products/jbossenterprisemiddleware/amq/ Hit
'<tab>' for a list of available commands and '[cmd] --help' for help on
a specific command. Hit '<ctrl-d>' or 'osgi:shutdown' to shutdown JBoss
A-MQ.

JBossA-MQ:karaf@root> osgi:shutdown
Confirm: shutdown instance root (yes/no):
yes
JBossA-MQ:karaf@root> JBossA-MQ:karaf@root>

IMPORTANT

Pressing Control+D when connected to a remote broker closes the remote connection
and returns you to the local shell.

CHAPTER 10. SHUTTING DOWN A BROKER

65

Shutting down remote brokers in a fabric

If the broker you want to shutdown is part of a fabric, you can shut it down from any of the brokers in
the fabric using the fabric:container-stop console command. fabric:container-stop takes
the name of the fabric container hosting the broker as an argument. The command can be run either
from a broker in console mode or using the broker's administration client.

Example 10.5, “Shutting Down a Broker in a Fabric” shows how to use the administration client to
shutdown a broker running in a container named fabric-broker3.

Example 10.5. Shutting Down a Broker in a Fabric

./bin/client fabric-broker3 fabric:container-stop

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

66

CHAPTER 11. CONNECTING A BROKER TO A FABRIC

Abstract

If you want a standalone broker to become part of a fabric you can either create the fabric from the
standalone broker or join the broker to an existing fabric. Once a broker is added to a fabric, it reverts
to an empty fabric container.

When Red Hat JBoss A-MQ is installed it is set up to run a standalone broker. If you want the broker to
become part of a fabric you have two options:

join an existing fabric

This option is useful if you have an existing fabric and simply want to add the broker to it. You
can add the broker as a fully managed container in which the broker's existing configuration is
wiped out and replaced with a profile from the fabric's repository. You can also add the broker
as an unmanaged container that retains all of its configuration, but can be discovered through
the fabric's ensemble.

NOTE

This option can also be used to move a broker from one fabric to another.

create a new fabric

This option converts the standalone broker into a Fabric Server. You will then need to either
add a new broker to the fabric, or assign a broker profile to the server.

11.1. JOINING A BROKER TO A FABRIC

Any standalone broker can be joined to an existing fabric using the fabric:join. You need to supply
the URL of one of the Fuse Servers in the fabric and the standalone broker is added to the fabric. The
broker can join the fabric as either a managed container or a non-managed container:

A managed container is a full member of the fabric and is managed by a Fabric Agent. The agent
configures the container based on information provided by the fabric's ensemble. The
ensemble knows which profiles are associated with the container and the agent determines
what to install based on the contents of the profiles.

A non-managed container is not managed by a Fabric Agent. It's configuration remains intact
after it joins the fabric and is controlled as if the broker were a standalone broker. Joining the
fabric in this manner registers the broker with the fabric's ensemble and allows clients to
locate the broker using the fabric's discovery mechanism.

11.1.1. Joining a Fabric as a Managed Container

Overview

When a broker joins a fabric as a managed container, it stops being a broker because the default
behavior of the fabric:join command is to wipe out the container's configuration and replace it
with the fabric profile. To start up as broker, you need to ensure that the fabric has a profile with the
proper configuration and associate it with the container. The fabric:join command's -p argument
allows you to specify a profile to install into the container once the agent is installed.

CHAPTER 11. CONNECTING A BROKER TO A FABRIC

67

Becoming a managed container

Several things happen when a broker joins a fabric as a managed container:

1. The broker installs the required Fuse Fabric bundles to interact with the fabric's ensemble.

2. The broker contacts the specified Fabric Server and initiates the joining process.

3. The Fabric Server registers the container with the fabric's ensemble.

This adds the container's information to the fabric's registry using the container name as the
key. Because the container is a managed container, the registry creates an empty entry for the
container and only includes the information it needs to manage the container.

WARNING

If the container being added to the fabric has the same name as a
container already registered with the fabric, both containers will be reset
and will always share the same configuration.

4. The Fabric Server, as a delegate of the fabric's ensemble, takes control of the container.

This process clears the container and resets its configuration to a default state.

5. The ensemble installs the fabric profile into the container.

This loads the Fabric Agent into the container to facilitate the management of the container.

6. If the -p argument is passed the fabric:join, the container's agent installs the artifacts
and configuration settings from the specified profile.

The container sits empty and ready for you to associate one or more profiles with it.

7. The agent monitors the container and the ensemble for changes.

If the state of the container changes, the agent updates the ensemble's registry entry. If the
ensemble has updates for the container, such as a new profile being associated with the
container or a change to one of the profiles already associated with the container, the agent
updates the container.

Remaining a message broker

Joining a fabric as a managed container converts a standalone broker into a vanilla fabric container. It
can take on any characteristics that are required. If you want it to join the fabric and continue to
function as a message broker, then you must ensure that the fabric being joined has a profile that will
configure the container to be a message broker and assign that profile to the container.

The default set of profiles installed with Fuse Fabric include an mq profile that loads a default message
broker. You can also create a new profile for your brokers as described in Section 2.4, “Editing a
Broker's Configuration in a Fabric”.

The easiest way to assign the profile is to do so when executing the fabric:join by using the -p

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

68

flag. The specified profile will be assigned to the container as soon as the agent is installed. If you
would rather do it in two steps, you can assign the profile using the fabric:container-change-
profile command or the management console.

Procedure

To join a broker to a fabric and have it start up as a broker:

1. Create a profile for your broker.

For details on creating a broker profile see Section 2.4, “Editing a Broker's Configuration in a
Fabric”.

2. Get the URL for one of the Fabric Servers in the existing fabric.

The URL of a Server has the following format:

For example, given a fabric registry agent running on the host, myhost, the URL would be
myhost:2181. The IP port, 2181, is the default IP port used by a Fabric Server and is usually
the correct value to use. If you are in any doubt about which URL to use you can discover the
URLs of the Fabric Servers as follows:

1. Connect to the command console of one of the containers in the fabric.

2. Enter the following sequence of console commands:

JBossA-MQ:karaf@root> config:edit io.fabric8.zookeeper
JBossA-MQ:karaf@root> config:proplist
 service.pid = io.fabric8.zookeeper zookeeper.url =
myhostA:2181,myhostB:2181,myhostC:2181,myhostC:2182,myhostC:2183
fabric.zookeeper.pid = io.fabric8.zookeeper
JBossA-MQ:karaf@root> config:cancel

The zookeeper.url property holds a comma-separated list of Fabric Server URLs. You
can use any one of these URLs to join the fabric.

3. Connect to the standalone broker's command console.

4. Enter the following command:

JBossA-MQ:karaf@root> fabric:join -p brokerProfile fabricURL
brokerName

You need to provide values for:

brokerProfile—the name of the profile you created in Step 1

fabricURL—the Fabric Server URL you obtained in Step 2

brokerName—the name the broker will use to register with the fabric

HostName:IPPort

CHAPTER 11. CONNECTING A BROKER TO A FABRIC

69

IMPORTANT

The name should be unique among the containers in the fabric.

11.1.2. Joining a Fabric as a Non-Managed Container

Overview

When a broker joins a fabric as a non-managed container, it continues being a standalone broker
because a Fabric Agent does not take control of the container. The agent only registers the broker
with the fabric's ensemble and keeps the registry entries for it up to date. This enables consumers to
discover the broker using the fabric's discovery mechanism described in Using Networks of Brokers.

Becoming a non-managed container

Several things happen when a broker joins a fabric as a non-managed container:

1. The broker installs the required Fuse Fabric bundles to interact with the fabric's ensemble.

2. The broker contacts the specified Fabric Server and initiates the joining process.

3. The Fabric Server registers the container with the fabric's ensemble.

This adds the broker's information to the fabric's registry using the broker's name as the key.
Because the broker is non-managed, the registry creates an entry containing information for
all the message destinations hosted by the broker.

WARNING

If the container being added to the fabric has the same name as a
container already registered with the fabric, both containers will be reset
and will always share the same configuration.

4. The agent monitors the broker and updates the updates the ensemble's registry entry as
needed.

Procedure

To join a broker to a fabric a non-managed container:

1. Get the URL for one of the Fabric Servers in the existing fabric.

The URL of a Server has the following format:

For example, given a fabric registry agent running on the host, myhost, the URL would be
myhost:2181. The IP port, 2181, is the default IP port used by a Fabric Server and is usually
the correct value to use. If you are in any doubt about which URL to use you can discover the

HostName:IPPort

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

70

URLs of the Fabric Servers as follows:

1. Connect to the command console of one of the containers in the fabric.

2. Enter the following sequence of console commands:

JBossA-MQ:karaf@root> config:edit io.fabric8.zookeeper
JBossA-MQ:karaf@root> config:proplist
 service.pid = io.fabric8.zookeeper zookeeper.url =
myhostA:2181,myhostB:2181,myhostC:2181,myhostC:2182,myhostC:2183
fabric.zookeeper.pid = io.fabric8.zookeeper
JBossA-MQ:karaf@root> config:cancel

The zookeeper.url property holds a comma-separated list of Fabric Server URLs. You
can use any one of these URLs to join the fabric.

2. Connect to the standalone broker's command console.

3. Enter the following command:

JBossA-MQ:karaf@root> fabric:join -n fabricURL brokerName

You need to provide values for:

-n—specifies that the broker will not be managed by the fabric

fabricURL—the Fabric Server URL you obtained in Step 1

brokerName—the name the broker will use to register with the fabric

IMPORTANT

The name should be unique among the containers in the fabric.

11.2. CREATING A NEW FABRIC

Overview

If there is no existing fabric for a broker to join, you will need to create one from the standalone broker.
There are two options for how to do this:

The recommended approach is to create the fabric such that the broker is converted into a
managed Fabric Server. The container will revert to being a vanilla broker, so you will need to
either create a new broker with the desired configuration or deploy an updated broker profile
into the Fabric Server.

Ensuring that the new broker is configured properly requires creating a broker profile with the
proper settings. This can be done once the new fabric is created using the fabric:mq-
create command. The fabric:mq-create command can also create the new broker.

The alternative approach is to create the fabric such that the broker becomes a non-managed
Fabric Server. The broker becomes a Fabric Server that is fully capable of being part of a
fabric's ensemble. However, the broker retains control over its own configuration. It will

CHAPTER 11. CONNECTING A BROKER TO A FABRIC

71

continue to be managed as if it were a standalone broker and will not respond to fabric
commands that attempt to alter its configuration.

Becoming a new fabric

Several things happen when a fabric is created from a standalone broker:

1. The broker installs the required Fuse Fabric bundles to become a Fabric Server.

2. The Fabric Server starts up the ensemble process.

3. A new ensemble containing an empty configuration registry and a runtime registry with a
single entry for the Fabric Server is created.

4. The Fabric Server delegates control over its configuration to the ensemble.

NOTE

If the fabric is created with a non-managed server, this step is skipped.

5. The ensemble associates the profiles required to be a Fabric Server with the container.

6. Unless the --no-import flag is used, the ensemble imports a set of profiles.

If the --import-dir flag is used, the profiles are imported from the specified location.

If no location is specified the default set of profiles is imported from
InstallDir/fabric/import.

7. The ensemble installs the default mq profile to the container.

This starts a default broker instance in the container.

NOTE

If the fabric is created with a non-managed server, this step is skipped.

8. The ensemble waits for commands to update the fabric.

Procedure

To create a new fabric from a standalone broker:

1. Delete the standalone broker configuration(s) from your installation's /etc folder.

The configuration is stored in
/etc/org.fusesource.mq.fabric.server-configName.cfg.

2. Connect to the standalone broker's command console.

3. Remove any brokers running in the container.

a. Use config:list to locate any PIDs using the form
org.fusesource.mq.fabric.server.ID.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

72

b. Use config:delete to delete all of the PIDs using the form
org.fusesource.mq.fabric.server.ID.

4. Enter the following command:

JBossA-MQ:karaf@root> fabric:create

NOTE

If you want to import a predefined set of profiles, use the -p import-dir
option to specify the set of profiles to import.

5. Add a new broker to the fabric as described in Section 9.2, “Deploying a New Broker into a
Fabric”.

CHAPTER 11. CONNECTING A BROKER TO A FABRIC

73

CHAPTER 12. ADDING CLIENT CONNECTION POINTS

Abstract

Message brokers must explicitly create connection points for clients. These connection points are
called transport connectors. Red Hat JBoss A-MQ supports a number of transport flavors to facilitate
interoperability with the widest possible array of clients.

A message broker communicates with its clients using one or more ports. These ports are managed by
the broker's configuration. There are two required components to add a client connection point to a
broker:

a transportConnector element in the XML configuration template that provides the details
for the connection point

an entry in the broker's org.fusesource.mq.fabric.server.id PID's connectors
property to activate the connection point

The transportConnector element provides all of the details needed to create the connection point.
This includes the type of transport being used, the host and port for the connection, and any transport
properties needed. The connectors property is a space delimited list that specifies which transport
connectors to activate.

Red Hat JBoss Fuse supports a number of different transport flavors. Each transport has its own set of
strengths. For more information on the different transports see the Client Connectivity Guide and the
Connection Reference.

12.1. ADDING A TRANSPORT CONNECTOR TO A STANDALONE
BROKER

Adding a transport connector definition

To add a transport connector definition:

1. Open the broker's configuration template for editing.

2. Locate the transportConnectors element.

3. Add a transportConnector element as a child of the transportConnectors element.

4. Add a name attribute to the new transportConnector element.

The name attribute specifies a unique identifier for the transport connector. It is used in the
connectors property to identify the transport to be activated.

5. Add a uri attribute to the new transportConnector element.

The uri attribute specifies the connection details used to instantiate the connector. Clients
will use a similar URI to access the broker using this connector. For a complete list of the URIs
see the Connection Reference.

6. Save the changes to the configuration template.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

74

NOTE

The newly added transport connector is not available until it has been activated using
the connectors property.

Activating a connector

To activate a transport connector in a standalone broker:

1. Connect to the broker using a command console.

2. Open the broker's org.fusesource.mq.fabric.server.id PID for editing using the
config:editcommand.

JBossAMQ:karaf> config:edit org.fusesource.mq.fabric.server.098765

NOTE

You can use the config:list command to find the id for the broker.

3. Verify the value of the connectors property using the config:proplist command.

JBossAMQ:karaf> config:proplist connector

4. Change the value of the connectors property using the config:propset command.

JBossAMQ:karaf> config:propset connector "connector1 connector2..."

connector1 specifies the name of a transport to activate. The value corresponds the value of the
transportConnector element's name attribute.

5. Save the changes using the config:update command.

JBossAMQ:karaf> config:update

12.2. ADDING A TRANSPORT CONNECTOR TO A FABRIC BROKER

NOTE

The management console makes configuring fabric brokers easier. For more information
see Using the Management Console.

Adding a transport connector definition

To add a transport connector definition:

1. Create a configuration template.

See Section 2.1, “Understanding the Red Hat JBoss A-MQ Configuration Model” .

2. Locate the transportConnectors element.

CHAPTER 12. ADDING CLIENT CONNECTION POINTS

75

3. Add a transportConnector element as a child of the transportConnectors element.

4. Add a name attribute to the new transportConnector element.

The name attribute specifies a unique identifier for the transport connector. It is used in the
connectors property to identify the transport to be activated.

5. Add a uri attribute to the new transportConnector element.

The uri attribute specifies the connection details used to instantiate the connector. Clients
will use a similar URI to access the broker using this connector. For a complete list of the URIs
see the Connection Reference.

6. Save the changes to the configuration template.

7. In the command console, use the fabric:import command to upload the your XML
configuration template to the Fabric Ensemble.

JBossAMQ:karaf> fabric:import -t
/fabric/configs/versions/version/profiles/mq-base/configFile
configFile

version must match the version of the new profile.

8. Use the fabric:mq-create command to create a new profile.

JBossAMQ:karaf> fabric:mq-create --config configFile profileName

This will create a new broker profile that inherits from the mq-base profile, but uses your XML
configuration template.

NOTE

The newly added transport connector is not available until the profile containing it is
modified to activate the connector.

Activating a connector

To activate a transport connector in a fabric broker:

1. Connect to the broker using a command console.

2. Verify the value of the connectors property for the desired profile using the
fabric:profile-display command.

JBossAMQ:karaf> fabric:profile-display profileName

3. Change the value of the connectors property using the fabric:profile-edit command's -
p option.

JBossAMQ:karaf> fabric:profile-edit -p
org.fusesource.mq.fabric.server-profileName/connectors="connector1
connector2..." profileName

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

76

connector1 specifies the name of a transport to activate. The value corresponds the value of the
transportConnector element's name attribute.

4. Deploy the new profile to one or more brokers in the fabric to test the changes.

JBossAMQ:karaf> fabric:container-add-profile broker profileName

CHAPTER 12. ADDING CLIENT CONNECTION POINTS

77

CHAPTER 13. ADDING A QUEUE OR A TOPIC

Abstract

Normally, you do not need to add any queues or topics explicitly, because the broker automatically
creates destinations on the fly.

AUTOMATIC DESTINATION CREATION

By default, the broker automatically creates destinations on the fly. For example, when a JMS producer
client tries to write a message to a non-existent queue, the broker automatically (and transparently)
creates the requisite queue and puts the message on the queue. Consequently, administrators do not
need to execute a command to create a new queue or a new topic on a broker.

RESTRICTING DESTINATION CREATION

In some applications, however, you might not want the broker to create destinations dynamically. In
other words, you might want to restrict destination creation, so that only certain (privileged) users are
allowed to create a new destination. If you need to, you can restrict destination creation by
configuration of the broker's authorization plug-in. By restricting the admin role and not granting it to
certain user groups, you can ensure that those user groups are unable to create new destinations on
the fly.

The details of how to apply the admin role vary, depending on which authorization plug-in the broker
uses. For full details about how to configure broker authorization, please consult the Authorization
chapter of the JBoss A-MQ Security Guide.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

78

CHAPTER 14. USING LOGGING

Abstract

The broker's log contains information about all of the critical events that occur in the broker. You can
configure the granularity of the logged messages to provide the required amount of detail.

Red Hat JBoss A-MQ uses the OPS4j Pax Logging system. Pax Logging is an open source OSGi logging
service that extends the standard OSGi logging service to make it more appropriate for use in
enterprise applications. It uses Apache Log4j as the back-end logging service. Pax Logging has its own
API, but it also supports the following APIs:

Apache Log4j

Apache Commons Logging

SLF4J

Java Util Logging

14.1. LOGGING CONFIGURATION

Abstract

To configure the logging of a broker, you need to edit the ops4j configuration and the broker's runtime
configuration.

Overview

The logging system is configured by a combination of two OSGi Admin PIDs and one configuration file:

etc/system.properties—the configuration file that sets the logging level during the
broker’s boot process. The file contains a single property,
org.ops4j.pax.logging.DefaultServiceLog.level, that is set to ERROR by default.

org.ops4j.pax.logging—the PID used to configure the logging back end service. It sets the
logging levels for all of the defined loggers and defines the appenders used to generate log
output. It uses standard Log4j configuration. By default, it sets the root logger's level to INFO
and defines two appenders: one for the console and one for the log file.

NOTE

The console's appender is disabled by default. To enable it, add
log4j.appender.stdout.append=true to the configuration For example,
to enable the console appender in a broker, you would use the following
commands:

JBossA-MQ:karaf@root> config:edit org.ops4j.pax.logging
JBossA-MQ:karaf@root> config:propappend
log4j.appender.stdout.append true
JBossA-MQ:karaf@root> config:update

CHAPTER 14. USING LOGGING

79

org.apache.karaf.log.cfg—configures the output of the log console commands.

The most common configuration changes you will make are changing the logging levels, changing the
threshold for which an appender writes out log messages, and activating per bundle logging.

Changing the log levels

The default logging configuration sets the logging levels so that the log file will provide enough
information to monitor the behavior of the runtime and provide clues about what caused a problem.
However, the default configuration will not provide enough information to debug most problems.

The most useful logger to change when trying to debug an issue with Red Hat JBoss A-MQ is the root
logger. You will want to set its logging level to generate more fine grained messages. To do so you
change the value of the org.ops4j.pax.logging PID's log4j.rootLogger property so that the
logging level is one of the following:

TRACE

DEBUG

INFO

WARN

ERROR

FATAL

NONE

Example 14.1, “Changing Logging Levels” shows the commands for setting the root loggers log level in
a standalone broker.

Example 14.1. Changing Logging Levels

JBossA-MQ:karaf@root> config:edit org.ops4j.pax.logging
JBossA-MQ:karaf@root> config:propset log4j.rootLogger "DEBUG, out,
osgi:VmLogAppender"
JBossA-MQ:karaf@root> config:update

Changing the appenders' thresholds

When debugging a problem in JBoss A-MQ you may want to limit the amount of logging information
that is displayed on the console, but not the amount written to the log file. This is controlled by setting
the thresholds for each of the appenders to a different level. Each appender can have a
log4j.appender.appenderName.threshold property that controls what level of messages are
written to the appender. The appender threshold values are the same as the log level values.

Example 14.2, “Changing the Log Information Displayed on the Console” shows an example of setting
the root logger to DEBUG but limiting the information displayed on the console to WARN.

Example 14.2. Changing the Log Information Displayed on the Console

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

80

JBossA-MQ:karaf@root> config:edit org.ops4j.pax.logging
JBossA-MQ:karaf@root> config:propset log4j.rootLogger "DEBUG, out,
osgi:VmLogAppender"
JBossA-MQ:karaf@root> config:propappend log4j.appender.stdout.threshold
WARN
JBossA-MQ:karaf@root> config:update

14.2. VIEWING THE LOG

Abstract

You can view the log using your systems text display mechanisms, the Red Hat JBoss A-MQ console,
or the administration client.

Overview

There are three ways you can view the log:

using a text editor

using the broker's, or a remote broker's, console

using the administration client

Viewing the log in a text editor

The log files are stored as simple text files in InstallDir/data/log. The main log file is
karaf.log. If archiving is turned on, there may be archived log files also stored in the logging
directory.

Log entries are listed in chronological order with the oldest entries first. The default output displays
the following information:

the time of the entry

the log level of the entry

the thread that generated the entry

the bundle that generated the entry

an informational message about the cause of the entry

Viewing the log with the console

The JBoss A-MQ console provides the following commands for viewing the log:

log:display—displays the most recent log entries

By default, the number of entries returned and the pattern of the output depends on the size
and pattern properties in the org.apache.karaf.log.cfg file. You can override these using
the -p and -d arguments.

CHAPTER 14. USING LOGGING

81

log:display-exception—displays the most recently logged exception

log:tail—continuously display log entries

Viewing the log with the administration client

If you do not have a broker running in console mode, you can also use the administration client to
invoke the broker's log displaying commands. For example, entering client log:display into a
system terminal will display the most recent log entries for the local broker.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

82

CHAPTER 15. USING JMX

Abstract

Red Hat JBoss A-MQ is fully instrumented to provide statistics about its performance using JMX. You
can monitor a broker using any JMX aware monitoring tool.

By default Red Hat JBoss A-MQ creates MBeans, loads them into the MBean server created by the
JVM, and creates a dedicated JMX connector that provides a JBoss A-MQ-specific view of the MBean
server. The default settings are sufficient for simple deployments and make it easy to access the
statistics and management operations provided by a broker. For more complex deployments you easily
configure many aspects of how a broker configures itself for access through JMX. For example, you can
change the JMX URI of the JMX connector created by the broker or force the broker to use the
generic JMX connector created by the JVM.

By connecting a JMX aware management and monitoring tool to a broker's JMX connector, you can
view detailed information about the broker. This information provides a good indication of broker
health and potential problem areas. In addition to the collected statistics, JBoss A-MQ's JMX interface
provides a number of operations that make it easy to manage a broker instance. These include
stopping a broker, starting and stopping network connectors, and managing destinations.

15.1. CONFIGURING JMX

Abstract

By default, brokers have JMX activated. However, a broker's JMX behavior is highly configurable. You
can specify if JMX is used, if the broker uses a dedicated JMX connector, if the broker creates its own
MBean server, and the JMX URL it uses.

Overview

By default a broker is set up to allow for JMX management. It uses the JVM's MBean server and creates
its own JMX connector at service:jmx:rmi:///jndi/rmi://hostname:1099/karaf-containerName. If the
default configuration does not meet the needs of the deployment environment, the broker provides
configuration properties for customizing most aspects of its JMX behavior. For instance, you can
completely disable JMX for a broker. You can also force the broker to create its own MBean server.

Enabling and disabling

By default JMX is enabled for a Red Hat JBoss A-MQ broker. To disable JMX entirely you simply set
the broker element's useJmx attribute to false. This will stop the broker from exposing itself via
JMX.

IMPORTANT

Disabling JMX will also disable the commands in the activemq shell.

Securing access to JMX

CHAPTER 15. USING JMX

83

In a production environment it is advisable to secure the access to your brokers' management
interfaces. To set up authentication To override the default role for JMX access add a jmxRole
property to the etc/org.apache.karaf.management.cfg file.

Advanced configuration

If the default JMX behavior is not appropriate for your deployment environment, you can customize
how the broker exposes its MBeans. To customize a broker's JMX configuration, you add a
managementContext child element to the broker's broker element. The managementContext
element uses a managementContext child to configure the broker. The attributes of the inner
managementContext element specify the broker's JMX configuration.

Table 15.1, “Broker JMX Configuration Properties” describes the configuration properties for
controlling a broker's JMX behavior.

Table 15.1. Broker JMX Configuration Properties

Property Default Value Description

useMBeanServer true Specifies whether the broker will
use the MBean server created by
the JVM. When set to false, the
broker will create an MBean
server.

jmxDomainName org.apache.activemq Specifies the JMX domain used by
the broker's MBeans.

createMBeanServer true Specifies whether the broker
creates an MBean server if none
is found.

createConnector true[a] Specifies whether the broker
creates a JMX connector for the
MBean server. If this is set to
false the broker will only be
accessible using the JMX
connector created by the JVM.

connectorPort 1099 Specifies the port number used by
the JMX connector created by the
broker.

connectorHost localhost Specifies the host used by the
JMX connector and the RMI
server.

rmiServerPort 0 Specifies the RMI server port.
This setting is useful if port usage
needs to be restricted behind a
firewall.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

84

connectorPath /jmxrmi Specifies the path under which
the JMX connector will be
registered.

[a] The default configuration template for the broker sets this property to false so that the broker uses the container's
JMX connection.

Property Default Value Description

Example 15.1, “Configuring a Broker's JMX Connection” shows configuration for a broker that will only
use the JVM's MBean server and will not create its own JMX connector.

Example 15.1. Configuring a Broker's JMX Connection

15.2. STATISTICS COLLECTED BY JMX

Broker statistics

Table 15.2, “Broker JMX Statistics” describes the statistics collected for a broker.

Table 15.2. Broker JMX Statistics

Name Description

BrokerId Specifies the broker's unique ID.

BrokerName Specifies the broker's name.

BrokerVersion Specifies the version of the broker.

DataDirectory Specifies the pathname of the broker's data
directory.

TotalEnqueueCount Specifies the total number of messages that have
been sent to the broker.

<broker ... >
 ...
 <managementContext>
 <managementContext createMBeanServer="false"
 createConnector="false" />
 </managementContext>
 ...
</broker>

CHAPTER 15. USING JMX

85

TotalDequeueCount Specifies the number of messages that have been
acknowledged on the broker.

TotalConsumerCount Specifies the number of message consumers
subscribed to destinations on the broker.

TotalProducerCount Specifies the number of message producers active
on destinations on the broker.

TotalMessageCount Specifies the number of unacknowledged messages
on the broker.

MemoryLimit Specifies the memory limit, in bytes, used for
holding undelivered messages before paging to
temporary storage.

MemoryPercentageUsed Specifies the percentage of available memory in use.

StoreLimit Specifies the disk space limit, in bytes, used for
persistent messages before producers are blocked.

StorePercentageUsed Specifies the percentage of the store space in use.

TempLimit Specifies the disk space limit, in bytes, used for non-
persistent messages and temporary data before
producers are blocked.

TempPercentageUsed Specifies the percentage of available temp space in
use.

Name Description

Destination statistics

Table 15.3, “Destination JMX Statistics” describes the statistics collected for a destination.

Table 15.3. Destination JMX Statistics

Name Description

BlockedProducerWarningInterval Specifies, in milliseconds, the interval between
warnings issued when a producer is blocked from
adding messages to the destination.

MemoryLimit Specifies the memory limit, in bytes, used for
holding undelivered messages before paging to
temporary storage.

MemoryPercentageUsed Specifies the percentage of available memory in use.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

86

MaxPageSize Specifies the maximum number of messages that
can be paged into the destination.

CursorFull Specifies if the cursor has reached its memory limit
for paged messages.

CursorMemoryUsage Specifies, in bytes, the amount of memory the cursor
is using.

CursorPercentUsage Specifies the percentage of the cursor's available
memory is in use.

EnqueueCount Specifies the number of messages that have been
sent to the destination.

DequeueCount Specifies the number of messages that have been
acknowledged and removed from the destination.

DispatchCount Specifies the number of messages that have been
delivered to consumers, but not necessarily
acknowledged by the consumer.

InFlightCount Specifies the number of dispatched to, but not
acknowledged by, consumers.

ExpiredCount Specifies the number of messages that have expired
in the destination.

ConsumerCount Specifies the number of consumers that are
subscribed to the destination.

QueueSize Specifies the number of messages in the destination
that are waiting to be consumed.

AverageEnqueueTime Specifies the average amount of time, in
milliseconds, that messages sat in the destination
before being consumed.

MaxEnqueueTime Specifies the longest amount of time, in milliseconds,
that a message sat in the destination before being
consumed.

MinEnqueueTime Specifies the shortest amount of time, in
milliseconds, that a message sat in the destination
before being consumed.

MemoryUsagePortion Specifies the portion of the broker's memory limit
used by the destination.

Name Description

CHAPTER 15. USING JMX

87

ProducerCount Specifies the number of producers connected to the
destination.

Name Description

Subscription statistics

Table 15.4, “Connection JMX Statistics” describes the statistics collected for a subscription.

Table 15.4. Connection JMX Statistics

Name Description

EnqueueCounter Counts the number of messages that matched the
subscription.

DequeueCounter Counts the number of messages were sent to and
acknowledge by the client.

DispatchedQueueSize Specifies the number of messages dispatched to the
client and are awaiting acknowledgement.

DispatchedCounter Counts the number of messages that have been sent
to the client.

MessageCountAwaitingAcknowledge Specifies the number of messages dispatched to the
client and are awaiting acknowledgement.

Active Specifies if the subscription is active.

PendingQueueSize Specifies the number of messages pending delivery.

PrefetchSize Specifies the number of messages to pre-fetch and
dispatch to the client.

MaximumPendingMessageLimit Specifies the maximum number of pending
messages allowed.

15.3. MANAGING THE BROKER WITH JMX

Abstract

All of the exposed MBeans have operations that allow you to perform management tasks on the broker.
These operations allow you to stop a broker, start and stop network connectors, create and destroy
destinations, and create and destroy subscriptions. The MBeans also provide operations for browsing
destinations and passing test messages to destinations.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

88

Overview

The MBeans exposed by Red Hat JBoss A-MQ provide a number of operations for monitoring and
managing a broker instance. You can access these operations through any tool that supports JMX.

Broker actions

Table 15.5, “Broker MBean Operations” describes the operations exposed by the MBean for a broker.

Table 15.5. Broker MBean Operations

Operation Description

void start(); Starts the broker. In reality this operation is not
useful because you cannot access the MBeans if the
broker is stopped.

void stop(); Forces a broker to shut down. There is no guarantee
that all messages will be properly recorded in the
persistent store.

void stopGracefully(String queueName
);

Checks that all listed queues are empty before
shutting down the broker.

void enableStatistics(); Activates the broker's statistics plug-in.

void resetStatistics(); Resets the data collected by the statistics plug-in.

void disableStatistics(); Deactivates the broker's statistics plug-in.

String addConnector(String URI); Adds a transport connector to the broker and starts
it listening for incoming client connections and
returns the name of the connector.

boolean removeConnector(String conn
ectorName);

Deactivates the specified transport connector and
removes it from the broker.

String addNetworkConnector(String UR
I);

Adds a network connector to the specified broker
and returns the name of the connector.

boolean removeNetworkConnector(Stri
ng connectorName);

Deactivates the specified connector and removes it
from the broker.

void addTopic(String name); Adds a topic destination to the broker.

void addQueue(String name); Adds a queue destination to the broker.

void removeTopic(String name); Removes the specified topic destination from the
broker.

CHAPTER 15. USING JMX

89

void removeQueue(String name); Removes the specified queue destination from the
broker.

ObjectName createDurableSubscriber(
String clientId,

String subscriberId,

String topicName,

String selector);

Creates a new durable subscriber.

void destroyDurableSubscriber(Strin
g clientId,
 Strin
g subscriberId);

Destroys a durable subscriber.

void gc(); Runs the JVM garbage cleaner.

void terminateJVM(int exitCode); Shuts down the JVM.

void reloadLog4jProperties(); Reloads the logging configuration from
log4j.properties.

Operation Description

Connector actions

Table 15.6, “Connector MBean Operations” describes the operations exposed by the MBean for a
transport connector.

Table 15.6. Connector MBean Operations

Operation Description

void start(); Starts the transport connector so that it is ready to
receive connections from clients.

void stop(); Closes the transport connection and disconnects all
connected clients.

int connectionCount(); Returns the number of open connections using the
connector.

void enableStatistics(); Enables statistics collection for the connector.

void resetStatistics(); Resets the statistics collected for the connector.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

90

void disableStatistics(); Deactivates the collection of statistics for the
connector.

Operation Description

Network connector actions

Table 15.7, “Network Connector MBean Operations” describes the operations exposed by the MBean
for a network connector.

Table 15.7. Network Connector MBean Operations

Operation Description

void start(); Starts the network connector so that it is ready to
communicate with other brokers in a network of
brokers.

void stop(); Closes the network connection and disconnects the
broker from any brokers that used the network
connector to form a network of brokers.

Queue actions

Table 15.8, “Queue MBean Operations” describes the operations exposed by the MBean for a queue
destination.

Table 15.8. Queue MBean Operations

Operation Description

CompositeData getMessage(String mess
ageId);

Returns the specified message from the queue
without moving the message cursor.

void purge(); Deletes all of the messages from the queue.

boolean removeMessage(String messag
eId);

Deletes the specified message from the queue.

int removeMatchingMessages(String se
lector);

Deletes the messages matching the selector from
the queue and returns the number of messages
deleted.

int removeMatchingMessages(String se
lector,
 int maxMe
ssages);

Deletes up to the maximum number of messages
that match the selector and returns the number of
messages deleted.

CHAPTER 15. USING JMX

91

boolean copyMessageTo(String messag
eId,
 String destina
tion);

Copies the specified message to a new destination.

int copyMatchingMessagesTo(String se
lector,
 String de
stination);

Copies the messages matching the selector and
returns the number of messages copied.

int copyMatchingMessagesTo(String se
lector,
 String de
stination,
 int maxMe
ssages);

Copies up to the maximum number of messages that
match the selector and returns the number of
messages copied.

boolean moveMessageTo(String messag
eId,
 String destina
tion);

Moves the specified message to a new destination.

int moveMatchingMessagesTo(String se
lector,
 String de
stination);

Moves the messages matching the selector and
returns the number of messages moved.

int moveMatchingMessagesTo(String se
lector,
 String de
stination,
 int maxMe
ssages);

Moves up to the maximum number of messages that
match the selector and returns the number of
messages moved.

boolean retryMessage(String message
Id);

Moves the specified message back to its original
destination.

int cursorSize(); Returns the number of messages available to be
paged in by the cursor.

boolean doesCursorHaveMessagesBuffe
red();

Returns true if the cursor has buffered messages
to be delivered.

boolean doesCursorHaveSpace(); Returns true if the cursor has memory space
available.

CompositeData[] browse(); Returns all messages in the queue, without changing
the cursor, as an array.

Operation Description

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

92

CompositeData[] browse(String selec
tor);

Returns all messages in the queue that match the
selector, without changing the cursor, as an array.

TabularData browseAsTable(String se
lector);

Returns all messages in the queue that match the
selector, without changing the cursor, as a table.

TabularData browseAsTable(); Returns all messages in the queue, without changing
the cursor, as a table.

void resetStatistics(); Resets the statistics collected for the queue.

java.util.List browseMessages(Strin
g selector);

Returns all messages in the queue that match the
selector, without changing the cursor, as a list.

java.util.List browseMessages(); Returns all messages in the queue, without changing
the cursor, as a list.

String sendTextMessage(String body,
 String usern
ame,
 String passw
ord);

Send a text message to a secure queue.

String sendTextMessage(String body); Send a text message to a queue.

Operation Description

Topic actions

Table 15.9, “Topic MBean Operations” describes the operations exposed by the MBean for a topic
destination.

Table 15.9. Topic MBean Operations

Operation Description

CompositeData[] browse(); Returns all messages in the topic as an array.

CompositeData[] browse(String selec
tor);

Returns all messages in the topic that match the
selector as an array.

TabularData browseAsTable(String se
lector);

Returns all messages in the topic that match the
selector as a table.

TabularData browseAsTable(); Returns all messages in the topic as a table.

void resetStatistics(); Resets the statistics collected for the queue.

CHAPTER 15. USING JMX

93

java.util.List browseMessages(Strin
g selector);

Returns all messages in the topic that match the
selector as a list.

java.util.List browseMessages(); Returns all messages in the topic as a list.

String sendTextMessage(String body,
 String usern
ame,
 String passw
ord);

Send a text message to a secure topic.

String sendTextMessage(String body); Send a text message to a topic.

Operation Description

Subscription actions

Table 15.10, “Subscription MBean Operations” describes the operations exposed by the MBean for a
durable subscription.

Table 15.10. Subscription MBean Operations

Operation Description

void destroy(); Destroys the subscription.

CompositeData[] browse(); Returns all messages waiting for the subscriber.

TabularData browseAsTable(); Returns all messages waiting for the subscriber.

int cursorSize(); Returns the number of messages available to be
paged in by the cursor.

boolean doesCursorHaveMessagesBuffe
red();

Returns true if the cursor has buffered messages
to be delivered.

boolean doesCursorHaveSpace(); Returns true if the cursor has memory space
available.

boolean isMatchingQueue(String queu
eName);

Returns true if this subscription matches the given
queue name.

boolean isMatchingTopic(String topi
cName);

Returns true if this subscription matches the given
topic name.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

94

CHAPTER 16. APPLYING PATCHES

Abstract

Red Hat JBoss A-MQ supports incremental patching. Red Hat will supply you with easy to install
patches that only make targeted changes to a deployed broker.

Incremental patching allows you apply targets fixes to a broker without needing to reinstall an updated
version of Red Hat JBoss A-MQ. It also allows you to easily back the patch out if it causes problems
with your deployed applications.

Patches are ZIP files that contain the artifacts needed to update a targeted set of bundles in a
container. The patch file includes a .patch file that lists the contained artifacts. The artifacts are
typically one or more bundles. They can, however, include configuration files and feature descriptors.

You get a patch file in one of the following ways:

Customer Support sends you a patch.

Customer Support sends you a link to download a patch.

Download a patch directly from the Red Hat customer portal.

The process of applying a patch to a broker depends on how the broker is deployed:

standalone—the broker's command console's patch shell has commands for managing the
patching process

fabric—patching a fabric requires applying the patch to a profile and then applying the profile
to a broker. The management console is the recommended way to patch brokers in a fabric.
See Using the Management Console for more information.

16.1. FINDING THE RIGHT PATCHES TO APPLY

Abstract

This section explains how to find the patches for a specific version of JBoss A-MQ on the Red Hat
Customer Portal and how to figure out which patches to apply, and in which order.

Locate the patches on the customer portal

If you have a subscription for JBoss A-MQ, you can download the latest patches directly from the Red
Hat Customer Portal. Locate the patches as follows:

1. Login to the Red Hat Customer Portal using your customer account. This account must be
associated with an appropriate Red Hat software subscription, otherwise you will not be able to
see the patch downloads for JBoss A-MQ.

2. Navigate to the customer portal Software Downloads page.

3. In the Product dropdown menu, select the appropriate product (for example, A-MQ or Fuse),
and then select the version, 6.1.0, from the Version dropdown menu. A table of downloads
now appears, which has three tabs: Releases, Patches, and Security Advisories.

CHAPTER 16. APPLYING PATCHES

95

https://access.redhat.com/login
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

NOTE

Make sure you select the right GA version for your product. A micro version
release (for example, 6.1.1) is not the same thing as a patched release.

4. Click the Patches tab to view the regular patches (with no security-related fixes).

5. Click the Security Advisories tab to view the patches with security-related fixes.

TIP

To see the complete set of patches, you must look under both the Patches tab and the Security
Avisories tab.

Types of patch

The following types of patch can be made available for download:

Patches with GA baseline (for example, Patch 1, Patch 2, Patch 3, and so on)

Rollup patches (for example, Rollup 1, Rollup 2, and so on)

Patches with rollup baseline (for example, Rollup 1 Patch1, Rollup1 Patch2, and so on)

Patches with GA baseline

Patches with GA baseline (Patch1, Patch2, and so on) are released shortly after the GA date to provide
quick fixes for issues identified after GA. These patches can be applied directly to the GA product.
These patches are cumulative: that is, Patch 2 would contain all of the fixes from Patch 1; and Patch 3
would contain all of the fixes from Patch 1 and Patch 2; and so on.

Rollup patches

A rollup patch (Rollup 1, Rollup 2, and so on) is a cumulative patch that incorporates all of the fixes
from the preceding patches. Moreover, each rollup patch is regression tested and establishes a new
baseline for the application of future patches.

Patches with rollup baseline

Patches with rollup baseline (Rollup 1 Patch 1, Rollup 1 Patch2, and so on) are patches released after a
rollup patch, and they are intended to be applied on top of the corresponding rollup patch. For
example, Rollup 1 Patch 2 would be applied on top of the Rollup 1 patch; and Rollup 2 Patch 1 would be
applied on top of the Rollup 2 patch.

Which patches are needed to update the GA product to the latest patch level?

To figure out which patches are needed to update the GA product to the latest patch level, you need to
pay attention to the type of patches that have been released so far:

1. If the only patches released so far are patches with GA baseline (Patch 1, Patch 2, and so on),
apply the latest of these patches directly to the GA product.

2. If a rollup patch has been released and no patches have been released after the latest rollup
patch, simply apply the latest rollup patch to the GA product.

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

96

3. If the latest patch is a patch with a rollup baseline, you must apply two patches to the GA
product, as follows:

a. Apply the latest rollup patch, and then

b. Apply the latest patch with a rollup baseline.

Which patches to apply, if you only want to install regression-tested patches?

If you prefer to install only patches that have been regression tested, install the latest rollup patch.

Example of identifying patches to apply

To give a concrete example of how to identify which patches to apply, we take a snapshot of the
patches that were available in December 2014 and we discuss which patches you need to apply to get
to the latest patch level.

Patches available under the Patches tab

The patches available under the Patches tab are shown in Figure 16.1, “Patches Tab”.

Figure 16.1. Patches Tab

Patches available under the Security Advisories tab

The patches available under the Security Advisories tab are shown in Figure 16.2, “Security
Advisories Tab”.

Figure 16.2. Security Advisories Tab

Complete list of available patches

Taking all of the patches from the Patches tab and the Security Advisories tab together, we
come up with the following list of downloadable patches, in the order they were released:

Red Hat JBoss Fuse 6.1.0 Patch 1

Red Hat JBoss Fuse 6.1.0 Patch 2

Red Hat JBoss Fuse/A-MQ 6.1 Rollup 1

CHAPTER 16. APPLYING PATCHES

97

Red Hat JBoss Fuse/A-MQ 6.1 Rollup 1 Patch 1

Red Hat JBoss Fuse/A-MQ 6.1 Rollup 1 Patch 2

Patches you would apply to update to the latest patch level

In this case, to update the GA product to the very latest patch level, you would apply the following
sequence of patches:

1. Red Hat JBoss Fuse/A-MQ 6.1 Rollup 1

2. Red Hat JBoss Fuse/A-MQ 6.1 Rollup 1 Patch 2

16.2. PATCHING A STANDALONE CONTAINER

Abstract

You apply patches to a standalone container using the command console's patch shell. You can apply
and roll back patches as needed.

Overview

Patching a standalone container directs the container to load the patch versions of artifacts instead of
the non-patch versions. The patch shell provides commands to patch the container's environment,
see which bundles are effected by applying the patch, apply the patch to the container, and back the
patch out if needed (see chapter "Patch Console Commands" in "Console Reference").

To make sure that a patch can be rolled back Red Hat JBoss A-MQ applies the patch in a non-
destructive manner. The patching process does not overwrite the artifacts included in the original
installation. The patched artifacts are placed in the container's system folder. When the patch is
applied, the container's configuration is changed so that it points to the patched artifacts instead of the
artifacts from the original installation. This makes it easy for the system to be restored to its original
state or to selectively back out patches.

IMPORTANT

Patches do not persist across installations. If you delete and reinstall a JBoss A-MQ
instance you will need to download the patches and reapply them.

Applying a patch

To apply a patch to a standalone container:

1. Add the patch to the container's environment using the patch:add command.

Example 16.1, “Adding a Patch to a Broker's Environment” shows the command for adding the
patch contained in the patch file patch.zip from the local file system.

Example 16.1. Adding a Patch to a Broker's Environment

JBoss A-MQ> patch:add file://patch.zip

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

98

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.1/html/Console_Reference/Consolepatch.html

This command copies the specified patch file to the container's system folder and unpacks it.

2. Simulate installing the patch using the patch:simulate command.

This will generate a log of the changes that will be made to the container when the patch is
installed, but will not make any actual changes to the container.

NOTE

The patch:list command displays a list of all patches added to the
container's system folder.

3. Review the simulation log to understand the changes that will be made to the container.

4. Apply the patch to the container using the patch:install command.

WARNING

Running patch:install before the container is fully started and all of
the bundles are active will cause the container to hang.

NOTE

The patch:list command displays a list of all patches added to the
container's system folder.

5. Shut down the container that you just applied the patch to.

6. The extracted patch archive contains the manual_steps directory. Copy the content of the
manual_steps/xyz directory to the appropriate directory (bin, etc, lib) in the JBoss A-
MQ 6.1 installation directory. Copy the content in the manual_steps/fabric-system-
updates/system directory to the system directory in the JBoss A-MQ installation directory.
This is the system repository that contains some patched artifacts.

7. Start the container. If you are using a remote console, you will lose the connection to the
container. If you are using the container's local console, it will automatically reconnect when
the container restarts.

Rolling back a patch

Occasionally a patch will not work or introduce new issues to a container. In these cases you can easily
back the patch out of the system and restore it pre-patch behavior using the patch:rollback
command. As shown in Example 16.2, “Rolling Back a Patch” , the command takes the name of patch to
be backed out.

Example 16.2. Rolling Back a Patch

JBoss A-MQ> patch:rollback patch1

CHAPTER 16. APPLYING PATCHES

99

NOTE

The patch:list command displays a list of all patches added to the container's
system folder.

The container will need to restart to roll back the patch. If you are using a remote console, you will lose
the connection to the container. If you are using the container's local console, it will automatically
reconnect when the container restarts.

Adding features to a patched container

Since JBoss A-MQ 6.1, it is possible to add Karaf features to an already patched standalone container
without performing any special steps.

16.3. PATCHING STANDALONE APACHE ACTIVEMQ

Abstract

JBoss A-MQ provides a standalone distribution of Apache ActiveMQ (that is, Apache ActiveMQ without
the Apache Karaf container) under the InstallDir/extras directory. Patching the standalone
Apache ActiveMQ is a manual process, requiring you to copy some library files.

Patch files

The first step in patching a standalone Apache ActiveMQ instance is to figure out what patches need
to be applied. When it comes to determining which patches to apply, the same principles apply as for
patching the container.

See Section 16.1, “Finding the Right Patches to Apply” for details of how to work out which patches to
apply and download the relevant patches.

Apache ActiveMQ install directory

For the following patching instructions, it is assumed that you have already extracted the standalone
Apache ActiveMQ distribution from the extras/apache-activemq-5.9.0.redhat-610379.zip
file and installed standalone Apache ActiveMQ into the ApacheActiveMQInstall directory.

How to apply a patch to standalone Apache ActiveMQ

To apply a patch (or patches) to a standalone Apache ActiveMQ instance, perform the following steps:

1. After determining which patches to apply, download the relevant patches from the Customer
Portal, as described in Section 16.1, “Finding the Right Patches to Apply” .

2. Stop the ActiveMQ broker, if it is running.

3. Make a backup copy of the original standalone Apache ActiveMQ lib directory,
ApacheActiveMQInstall/lib

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

100

4. Starting with the first patch file, use an archive utility to open the downloaded patch (.zip)
file, and extract the patch to a convenient temporary location, ExtractedPatch.

5. The patched library files for the standalone Apache ActiveMQ instance are located in the
following subdirectory of the patch:

Copy the complete contents of this directory to the standalone Apache ActiveMQ lib
directory, ApacheActiveMQInstall/lib.

6. Delete the older versions of the patched library files in ApacheActiveMQInstall/lib. Only
one version of each library should be present in the lib directory, and it should be the patched
version.

For example, if you found two versions of the activemq-broker JAR file present in the lib
directory after copying the patch libraries:

You would delete the older version, activemq-broker-5.9.0.redhat-610379.jar.

7. If you need to install a second patch on top of the first, repeat steps 4, 5, and 6, for the second
patch.

8. Restart the ActiveMQ broker.

16.4. PATCHING A CONTAINER IN A FABRIC

Abstract

In a fabric patches are applied to profiles and the patched version of the profile is applied to the
container. The management console is the recommended tool for patching containers in a fabric. The
fabric shell also has the commands needed to apply a patch and roll it out to running containers.

Overview

The bundles loaded by a container in a fabric are controlled by the container's Fabric Agent. The agent
inspects the profiles applied to the container to determine what bundles to load, and the version of
each bundle, and then loads the specified version of each bundle for the container.

A patch typically includes a new version of one or more bundles, so to apply the patch to a container in
a fabric you need to update the profiles applied to it. This will cause the Fabric Agent to load the
patched versions of the bundles.

The management console is the recommended tool for patching containers in a fabric. However, the
command console's fabric shell also provides the commands needed to patch containers running in
a fabric.

Procedure

Patching a container in a fabric involves:

ExtractedPatch/apache-activemq-5.9.0.redhat-610379/lib

activemq-broker-5.9.0.redhat-610379.jar
activemq-broker-5.9.0.redhat-611423.jar

CHAPTER 16. APPLYING PATCHES

101

1. Getting a patch file.

Customer Support sends you a patch.

Customer Support sends you a link to download a patch.

You, or your organization, generate a patch file for an internally created application.

2. Uploading one or more patch files to the fabric's Maven repository.

3. Applying the patch(es) to a profile version.

This creates a new profile version that points to the new versions of the patched bundles and
repositories.

4. Migrate one or two containers to the patched profile version to ensure that the patch does not
introduce any new issues.

5. After you are certain that the patch works, migrate the remaining containers in the fabric to
the patched version.

Using the management console

The management console is the easiest and most verbose method of patching containers in a fabric. Its
Patching tab uploads patches to a fabric's Maven repository and applies the patch to a specified
profile version. You can then use the management console to roll the patch out to all of the containers
in the fabric.

See chapter "Patching a Fabric" in "Management Console User Guide" for more information.

Using the command console

The Red Hat JBoss Fuse command console can also be used to patch containers running in a fabric. To
patch a fabric container:

1. Create a new version, using the fabric:version-create command:

IMPORTANT

The version name must be a pure numeric string, such as 1.1, 1.2, 2.1, or 2.2.
You cannot incorporate alphabetic characters in the version name (such as
1.0.patch).

2. Apply the patch to the new version, using the fabric:patch-apply command. For example,
to apply the activemq.zip patch file to version 1.1:

JBossFuse:karaf@root> fabric:version-create 1.1
Created version: 1.1 as copy of: 1.0

JBossFuse:karaf@root> fabric:patch-apply --version 1.1
file:///patches/activemq.zip

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

102

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.1/html/Management_Console_User_Guide/FMCUG_Fabric_Patching.html

3. Upgrade the container using the fabric:container-upgrade command, specifying which
container you want to upgrade. For example, to upgrade the root container, enter the
following command:

4. You can check that the new patch profile has been created using the fabric:profile-list
command, as follows:

Where we presume that the patch was applied to profile version 1.1.

TIP

If you want to avoid specifying the profile version (with --version) every time you invoke a
profile command, you can change the default profile version using the fabric:version-
set-default Version command.

You can also check whether specific JARs are included in the patch, for example:

JBossFuse:karaf@root> fabric:container-upgrade 1.1 root
Upgraded container root from version 1.0 to 1.1

BossFuse:karaf@root> fabric:profile-list --version 1.1 | grep patch
default 0 patch-
activemq-patch
patch-activemq-patch

JBossFuse:karaf@root> list | grep -i activemq
[131] [Active] [Created] [] [50] activemq-osgi
(5.9.0.redhat-61037X)
[139] [Active] [Created] [] [50] activemq-
karaf (5.9.0.redhat-61037X)
[207] [Active] [] [] [60] activemq-
camel (5.9.0.redhat-61037X)

CHAPTER 16. APPLYING PATCHES

103

APPENDIX A. REQUIRED JARS

OVERVIEW

To simplify deploying Red Hat JBoss A-MQ it is recommended that you place the activemq-all.jar
file on the broker's CLASSPATH. It contains all of the classes needed by a message broker. This is the
default set up for a Red Hat JBoss A-MQ installation.

However, if you want more control over the JARs in the broker's CLASSPATH you can add the
individual JARs. There are several JARs that are required. In addition, there are a few that are only
needed when certain features are used.

REQUIRED JARS FROM RED HAT JBOSS A-MQ

The following JARs are installed with JBoss A-MQ and must be placed on the broker's CLASSPATH:

activemq-broker.jar

activemq-client.jar

activeio-core.jar

slf4j-api.jar

JEE JARS

The JARs containing the JEE APIs are also required by the broker. These could be located in one of
the following locations:

the jee.jar from Oracle

your JEE container's installation

the Geronimo specs JARs:

geronimo-spec-jms.jar

geronimo-spec-jta.jar

geronimo-spec-j2ee-management.jar

PERSISTENT MESSAGING JARS

If you want to use persistent messaging you will need to add JARs to the broker's CLASSPATH for the
desired persistence store. The JAR names follow the pattern activemq-store-store. The following
message stores are included:

activemq-amq-store.jar

activemq-jdbc-store.jar

activemq-kahadb-store.jar

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

104

activemq-leveldb-store.jar

Additionally, you will need to include any other JARs required by the persistence manager used by the
store:

For KahaDB you will need kahadb.jar.

For JDBC you will need the JARs for your database's JDBC driver.

INDEX
A

Active, Subscription statistics

activemq.xml, Editing the configuration template

administration client

running, Running the administration client

amq, Starting in console mode

Aries

namespaces, Namespaces

placeholder extension, Placeholder extension

authentication, LDAP properties

AverageEnqueueTime, Destination statistics

B

BlockedProducerWarningInterval, Destination statistics

broker

addConnector, Broker actions

addNetworkConnector, Broker actions

addQueue, Broker actions

addTopic, Broker actions

createDurableSubscriber, Broker actions

deploying

fabric container, Procedure

destroyDurableSubscriber, Broker actions

disableStatistics, Broker actions

enableStatistics, Broker actions

gc, Broker actions

reloadLog4jProperties, Broker actions

INDEX

105

removeConnector, Broker actions

removeNetworkConnector, Broker actions

removeQueue, Broker actions

removeTopic, Broker actions

resetStatistics, Broker actions

start, Broker actions

stop, Broker actions

stopGracefully, Broker actions

terminateJVM, Broker actions

useJmx, Enabling and disabling

BrokerId, Broker statistics

BrokerName, Broker statistics

BrokerVersion, Broker statistics

C

client, Running the administration client

command console

getting help, Using the broker console

remote access, Connecting a console to a remote broker

config shell, Editing the OSGi properties

config.properties, Overview

configuration

persistent identifier, OSGi PIDs

PID, OSGi PIDs

template, Configuration templates

connection.password, LDAP properties

connection.url, LDAP properties

connection.username, LDAP properties

connector

connectionCount, Connector actions

disableStatistics, Connector actions

enableStatistics, Connector actions

resetStatistics, Connector actions

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

106

start, Connector actions

stop, Connector actions

connectorHost, Advanced configuration

connectorPath, Advanced configuration

connectorPort, Advanced configuration

connectors, Activating a connector, Activating a connector

console

config shell, Editing the OSGi properties

console mode

starting, Starting in console mode

stopping, Stopping the broker from console mode

ConsumerCount, Destination statistics

createConnector, Advanced configuration

createMBeanServer, Advanced configuration

CursorFull, Destination statistics

CursorMemoryUsage, Destination statistics

CursorPercentUsage, Destination statistics

D

daemon mode

starting, Starting in daemon mode

stopping, Stopping a broker running in daemon mode

DataDirectory, Broker statistics

deploying

standalone broker, Deploying a Standalone Broker

DequeueCount, Destination statistics

DequeueCounter, Subscription statistics

DispatchCount, Destination statistics

DispatchedCounter, Subscription statistics

DispatchedQueueSize, Subscription statistics

E

encryptor, Jasypt configuration

INDEX

107

EnqueueCount, Destination statistics

EnqueueCounter, Subscription statistics

ExpiredCount, Destination statistics

F

fabric

profiles, Profiles

starting a broker, Starting a broker in a fabric

stopping a broker, Shutting down remote brokers in a fabric

versions, Profiles

fabric shell, Procedure

fabric:container-change-profile, Remaining a message broker

fabric:container-connect, Connecting a console to a remote broker

fabric:container-start, Starting a broker in a fabric

fabric:container-stop, Shutting down remote brokers in a fabric

fabric:container-upgrade, Using the command console

fabric:create, Creating a New Fabric

fabric:join, Joining a Broker to a Fabric

-n, Joining a Fabric as a Non-Managed Container

-p, Joining a Fabric as a Managed Container

fabric:mq-create, Procedure

features:install, Installing the Jasypt features

I

InFlightCount, Destination statistics

initial.context.factory, LDAP properties

J

JAAS

configuration syntax, Configuring a JAAS realm

converting to blueprint, Converting standard JAAS login properties to XML

namespace, Namespace

jaas:config, Configuring a JAAS realm

jaas:module, Configuring a JAAS realm

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

108

Jasypt

configuration, Jasypt configuration

libraries, Installing the Jasypt features

namespaces, Namespaces

jasypt-encryption, Installing the Jasypt features

JBoss Operations Network, Tools

jconsole, Tools

JMX

disabling, Enabling and disabling

roles, Changing the JMX role , Securing access to JMX

jmxDomainName, Advanced configuration

joining a fabric

managed container, Joining a Fabric as a Managed Container

non-managed container, Joining a Fabric as a Non-Managed Container

K

KARAF_BASE, Specifying the Red Hat JBoss A-MQ's environment

KARAF_DATA, Specifying the Red Hat JBoss A-MQ's environment

KARAF_HOME, Specifying the Red Hat JBoss A-MQ's environment

L

LDAP

authentication, LDAP properties

configuration, LDAP properties

connection.password, LDAP properties

connection.url, LDAP properties

connection.username, LDAP properties

enabling, Enabling LDAP Authentication, Enabling LDAP Authentication

initial.context.factory, LDAP properties

properties, LDAP properties

role.base.dn, LDAP properties

role.filter, LDAP properties

role.name.attribute, LDAP properties

role.search.subtree, LDAP properties

INDEX

109

ssl, LDAP properties

ssl.algorithm, LDAP properties

ssl.keyalias, LDAP properties

ssl.keystore, LDAP properties

ssl.protocol, LDAP properties

ssl.provider, LDAP properties

ssl.truststore, LDAP properties

user.base.dn, LDAP properties

user.filter, LDAP properties

user.search.subtree, LDAP properties

LDAPLoginModule, Enabling LDAP Authentication, Enabling LDAP Authentication

logging

console commands, Viewing the log with the console , Viewing the log with the administration
client

viewing as text, Viewing the log in a text editor

viewing in an editor, Viewing the log in a text editor

viewing in the console, Viewing the log with the console

viewing with the admin client, Viewing the log with the administration client

M

managed container, Joining a Fabric as a Managed Container

management console, Tools

managementContext, Advanced configuration

connectorHost, Advanced configuration

connectorPath, Advanced configuration

connectorPort, Advanced configuration

createConnector, Advanced configuration

createMBeanServer, Advanced configuration

jmxDomainName, Advanced configuration

rmiServerPort, Advanced configuration

useMBeanServer, Advanced configuration

MaxEnqueueTime, Destination statistics

MaximumPendingMessageLimit, Subscription statistics

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

110

MaxPageSize, Destination statistics

MemoryLimit, Broker statistics, Destination statistics

MemoryPercentageUsed, Broker statistics, Destination statistics

MemoryUsagePortion, Destination statistics

MessageCountAwaitingAcknowledge, Subscription statistics

MinEnqueueTime, Destination statistics

mq-create, Procedure

N

namespaces

Aries, Namespaces

Jasypt, Namespaces

network connector

start, Network connector actions

stop, Network connector actions

non-managed container, Joining a Fabric as a Non-Managed Container

O

org.apache.karaf.log, Overview

org.fusesource.mq.fabric.server-*, Activating a connector

org.fusesource.mq.fabric.server.*, Activating a connector

org.ops4j.pax.logging, Overview

org.ops4j.pax.logging.DefaultServiceLog.level, Overview

osgi:shutdown, Using a remote console

P

patch:add, Applying a patch

patch:install, Applying a patch

patch:list, Applying a patch, Rolling back a patch

patch:rollback, Rolling back a patch

patch:simulate, Applying a patch

patching

fabric

command console, Using the command console

INDEX

111

management console, Using the management console

standalone, Applying a patch

rollback, Rolling back a patch

PendingQueueSize, Subscription statistics

persistent identifier, OSGi PIDs

PID, OSGi PIDs

PrefetchSize, Subscription statistics

ProducerCount, Destination statistics

profile

creating, Procedure

properties

Apache Karaf placeholder extension, Jasypt configuration

Aries placeholder extension, Placeholder extension

encrypted, Encrypted properties

LDAP, LDAP properties

placeholder, Placeholders

property-placeholder, Placeholder extension, Jasypt configuration

Q

queue

browse, Queue actions

browseAsTable, Queue actions

browseMessages, Queue actions

copyMatchingMessagesTo, Queue actions

copyMessageTo, Queue actions

cursorSize, Queue actions

doesCursorHaveMessagesBuffered, Queue actions

doesCursorHaveSpace, Queue actions

getMessage, Queue actions

moveMatchingMessagesTo, Queue actions

moveMessageTo, Queue actions

purge, Queue actions

removeMatchingMessages, Queue actions

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

112

removeMessage, Queue actions

resetStatistics, Queue actions

retryMessage, Queue actions

sendTextMessage, Queue actions

QueueSize, Destination statistics

R

remote console

roles, Changing the remote console's role

rmiServerPort, Advanced configuration

role.base.dn, LDAP properties

role.filter, LDAP properties

role.name.attribute, LDAP properties

role.search.subtree, LDAP properties

roles

default, Default role

JMX, Changing the JMX role , Securing access to JMX

LDAP configuration, LDAP properties

remote console, Changing the remote console's role

routine tasks, Routine tasks

S

service wrapper

classpath, Adding classpath entries

JMX configuration, JMX configuration

JVM properties, Passing parameters to the JVM

logging, Configuring logging

shell, Starting a basic console

shutdown, Stopping the broker from console mode

ssh:ssh, Connecting a console to a remote broker , Using a remote console

ssl, LDAP properties

ssl.algorithm, LDAP properties

ssl.keyalias, LDAP properties

INDEX

113

ssl.keystore, LDAP properties

ssl.protocol, LDAP properties

ssl.provider, LDAP properties

ssl.truststore, LDAP properties

standalone broker

configuration template, Editing the configuration template

deploying, Deploying a Standalone Broker

runtime configuration, Editing the OSGi properties

start, Starting in daemon mode

stop, Stopping a broker running in daemon mode

StoreLimit, Broker statistics

StorePercentageUsed, Broker statistics

subscription

browse, Subscription actions

browseAsTable, Subscription actions

cursorSize, Subscription actions

destory, Subscription actions

doesCursorHaveMessagesBuffered, Subscription actions

doesCursorHaveSpace, Subscription actions

isMatchingQueue, Subscription actions

isMatchingTopic, Subscription actions

system service

Redhat, Redhat Linux

Ubuntu, Ubuntu Linux

Windows, Windows

T

TempLimit, Broker statistics

TempPercentageUsed, Broker statistics

tooling, Tools

topic

browse, Topic actions

browseAsTable, Topic actions

Red Hat JBoss A-MQ 6.1 Managing and Monitoring a Broker

114

browseMessages, Topic actions

resetStatistics, Topic actions

sendTextMessage, Topic actions

TotalConsumerCount, Broker statistics

TotalDequeueCount, Broker statistics

TotalEnqueueCount, Broker statistics

TotalMessageCount, Broker statistics

TotalProducerCount, Broker statistics

transportConnector, Adding a transport connector definition , Adding a transport connector
definition

transportConnectors, Adding a transport connector definition , Adding a transport connector
definition

U

useJmx, Enabling and disabling

useMBeanServer, Advanced configuration

user.base.dn, LDAP properties

user.filter, LDAP properties

user.search.subtree, LDAP properties

V

VisualVM, Tools

INDEX

115

	Table of Contents
	CHAPTER 1. INTRODUCTION
	OVERVIEW
	ROUTINE TASKS
	TROUBLESHOOTING
	TOOLS

	CHAPTER 2. EDITING A BROKER'S CONFIGURATION
	2.1. UNDERSTANDING THE RED HAT JBOSS A-MQ CONFIGURATION MODEL
	Overview
	Configuration templates
	OSGi PIDs

	2.2. EDITING A STANDALONE BROKER'S CONFIGURATION
	Overview
	Editing the configuration template
	Splitting activemq.xml into multiple files
	Format of the DOCTYPE declaration
	Editing the OSGi properties
	Config shell

	2.3. MODIFYING A RUNNING STANDALONE BROKER'S XML CONFIGURATION
	Overview
	Prerequisites
	Dynamically updating network connectors
	Dynamically updating virtual destinations
	Dynamically updating the destination policy
	Destination policies to control paging
	Dynamically updating authorization roles

	2.4. EDITING A BROKER'S CONFIGURATION IN A FABRIC
	Overview
	Profiles
	Procedure
	Creating a base profile
	Creating deployment profiles and assigning them to brokers
	Using the management console

	CHAPTER 3. SECURITY BASICS
	3.1. SECURITY OVERVIEW
	Overview
	Ports exposed by the Red Hat JBoss A-MQ container
	Authentication and authorization system

	3.2. BASIC SECURITY CONFIGURATION
	Overview
	Create a secure JAAS user
	Assigning roles for remote access
	Strengthening security on the remote console port

	3.3. DISABLING BROKER SECURITY
	Overview
	Standalone server

	CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER
	4.1. DEFINING JAAS REALMS
	Overview
	Namespace
	Configuring a JAAS realm
	Converting standard JAAS login properties to XML
	Example

	4.2. ENABLING LDAP AUTHENTICATION
	Overview
	Procedure
	LDAP properties
	Example

	4.3. USING ENCRYPTED PROPERTY PLACEHOLDERS
	Overview
	Encrypted properties
	Namespaces
	Placeholder extension
	Jasypt configuration
	Placeholders
	Installing the Jasypt features

	4.4. CONFIGURING ROLES FOR THE ADMINISTRATIVE PROTOCOLS
	Overview
	Administration protocols
	Default role
	Changing the remote console's role
	Changing the JMX role

	CHAPTER 5. SECURING FABRIC CONTAINERS
	5.1. USING THE DEFAULT AUTHENTICATION SYSTEM
	5.1.1. Managing Users
	Viewing user data
	Adding a user
	Removing a user
	Changing a user's password
	Adding a role to a user
	Deleting a role from a user

	5.1.2. Encrypting Stored Passwords
	Overview
	Editing the default profile
	Configuration properties
	Encryption services

	5.2. DEFINING JAAS REALMS IN A FABRIC
	Overview
	Procedure
	Creating a Maven project for deploying a JAAS realm

	5.3. ENABLING LDAP AUTHENTICATION
	Overview
	Procedure

	CHAPTER 6. INSTALLING RED HAT JBOSS A-MQ AS A SERVICE
	6.1. GENERATING THE WRAPPER
	Overview
	Procedure
	Generated files

	6.2. CONFIGURE THE SCRIPT
	Overview
	RUN_AS_USER
	PRIORITY

	6.3. CONFIGURING THE WRAPPER
	Overview
	Specifying the Red Hat JBoss A-MQ's environment
	Passing parameters to the JVM
	Adding classpath entries
	JMX configuration
	Configuring logging

	6.4. INSTALLING AND STARTING THE SERVICE
	Overview
	Windows
	Redhat Linux
	Ubuntu Linux

	CHAPTER 7. STARTING A BROKER
	OVERVIEW
	STARTING IN CONSOLE MODE
	STARTING IN DAEMON MODE
	STARTING A BROKER IN A FABRIC

	CHAPTER 8. SENDING COMMANDS TO THE BROKER
	OVERVIEW
	RUNNING THE ADMINISTRATION CLIENT
	USING THE BROKER CONSOLE
	CONNECTING A CONSOLE TO A REMOTE BROKER
	STARTING A BASIC CONSOLE
	AVAILABLE COMMANDS

	CHAPTER 9. DEPLOYING A NEW BROKER
	9.1. DEPLOYING A STANDALONE BROKER
	Overview
	Procedure
	More information

	9.2. DEPLOYING A NEW BROKER INTO A FABRIC
	Overview
	Procedure
	More information

	CHAPTER 10. SHUTTING DOWN A BROKER
	10.1. SHUTTING DOWN A LOCAL BROKER
	Overview
	Stopping the broker from console mode
	Stopping a broker running in daemon mode

	10.2. SHUTTING DOWN A BROKER REMOTELY
	Overview
	Using the stop command
	Using a remote console
	Shutting down remote brokers in a fabric

	CHAPTER 11. CONNECTING A BROKER TO A FABRIC
	11.1. JOINING A BROKER TO A FABRIC
	11.1.1. Joining a Fabric as a Managed Container
	Overview
	Becoming a managed container
	Remaining a message broker
	Procedure

	11.1.2. Joining a Fabric as a Non-Managed Container
	Overview
	Becoming a non-managed container
	Procedure

	11.2. CREATING A NEW FABRIC
	Overview
	Becoming a new fabric
	Procedure

	CHAPTER 12. ADDING CLIENT CONNECTION POINTS
	12.1. ADDING A TRANSPORT CONNECTOR TO A STANDALONE BROKER
	Adding a transport connector definition
	Activating a connector

	12.2. ADDING A TRANSPORT CONNECTOR TO A FABRIC BROKER
	Adding a transport connector definition
	Activating a connector

	CHAPTER 13. ADDING A QUEUE OR A TOPIC
	AUTOMATIC DESTINATION CREATION
	RESTRICTING DESTINATION CREATION

	CHAPTER 14. USING LOGGING
	14.1. LOGGING CONFIGURATION
	Overview
	Changing the log levels
	Changing the appenders' thresholds

	14.2. VIEWING THE LOG
	Overview
	Viewing the log in a text editor
	Viewing the log with the console
	Viewing the log with the administration client

	CHAPTER 15. USING JMX
	15.1. CONFIGURING JMX
	Overview
	Enabling and disabling
	Securing access to JMX
	Advanced configuration

	15.2. STATISTICS COLLECTED BY JMX
	Broker statistics
	Destination statistics
	Subscription statistics

	15.3. MANAGING THE BROKER WITH JMX
	Overview
	Broker actions
	Connector actions
	Network connector actions
	Queue actions
	Topic actions
	Subscription actions

	CHAPTER 16. APPLYING PATCHES
	16.1. FINDING THE RIGHT PATCHES TO APPLY
	Locate the patches on the customer portal
	Types of patch
	Patches with GA baseline
	Rollup patches
	Patches with rollup baseline
	Which patches are needed to update the GA product to the latest patch level?
	Which patches to apply, if you only want to install regression-tested patches?
	Example of identifying patches to apply
	Patches available under the Patches tab
	Patches available under the Security Advisories tab
	Complete list of available patches
	Patches you would apply to update to the latest patch level

	16.2. PATCHING A STANDALONE CONTAINER
	Overview
	Applying a patch
	Rolling back a patch
	Adding features to a patched container

	16.3. PATCHING STANDALONE APACHE ACTIVEMQ
	Patch files
	Apache ActiveMQ install directory
	How to apply a patch to standalone Apache ActiveMQ

	16.4. PATCHING A CONTAINER IN A FABRIC
	Overview
	Procedure
	Using the management console
	Using the command console

	APPENDIX A. REQUIRED JARS
	OVERVIEW
	REQUIRED JARS FROM RED HAT JBOSS A-MQ
	JEE JARS
	PERSISTENT MESSAGING JARS

	INDEX

