
Red Hat JBoss A-MQ 6.1

Client Connectivity Guide

Creating and tuning clients connections to message brokers

Last Updated: 2017-10-13

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

Creating and tuning clients connections to message brokers

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2014 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat JBoss A-MQ supports a number of different wire protocols and message formats. This
guide provides a quick reference for understanding how to configure connections between clients
and message brokers.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. JBOSS A-MQ CLIENT APIS
1.2. PREPARING TO USE MAVEN

CHAPTER 2. NATIVE ACTIVEMQ CLIENT APIS
2.1. NATIVE JMS CLIENT API
2.2. NATIVE C++ CLIENT API
2.3. NATIVE .NET CLIENT API
2.4. CONFIGURING NMS.ACTIVEMQ

CHAPTER 3. QPID JMS CLIENT API
3.1. GETTING STARTED WITH AMQP
3.2. A SIMPLE MESSAGING PROGRAM IN JAVA JMS
3.3. APACHE QPID JNDI PROPERTIES FOR AMQP MESSAGING
3.4. JAVA JMS MESSAGE PROPERTIES
3.5. JMS MAPMESSAGE TYPES
3.6. JMS CLIENT LOGGING
3.7. CONFIGURING THE JMS CLIENT

CHAPTER 4. STOMP HEARTBEATS
STOMP 1.1 HEARTBEATS
STOMP 1.0 HEARTBEAT COMPATIBILITY

CHAPTER 5. INTRA-JVM CONNECTIONS
OVERVIEW
EMBEDDED BROKERS
USING THE VM TRANSPORT
EXAMPLES

CHAPTER 6. PEER PROTOCOL
OVERVIEW
PEER ENDPOINT DISCOVERY
URI SYNTAX
SAMPLE URI

CHAPTER 7. MESSAGE PREFETCH BEHAVIOR
OVERVIEW
CONSUMER SPECIFIC PREFETCH LIMITS
SETTING PREFETCH LIMITS PER BROKER
SETTING PREFETCH LIMITS PER CONNECTION
SETTING PREFETCH LIMITS PER DESTINATION
DISABLING THE PREFETCH EXTENSION LOGIC

CHAPTER 8. MESSAGE REDELIVERY
OVERVIEW
REDELIVERY PROPERTIES
CONFIGURING THE BROKER'S REDELIVERY PLUG-IN
CONFIGURING THE REDELIVERY USING THE BROKER URI
SETTING THE REDELIVERY POLICY ON A CONNECTION
SETTING THE REDELIVERY POLICY ON A DESTINATION

INDEX

3
3
4

8
8

10
14
15

22
22
34
36
42
43
45
45

55
55
56

57
57
57
58
59

60
60
61
61
61

62
62
62
63
63
64
64

66
66
66
67
68
68
68

69

Table of Contents

1

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

2

CHAPTER 1. INTRODUCTION

Abstract

Red Hat JBoss A-MQ clients can connect to a broker using a variety of transports and APIs. The
connections are highly configurable and can be tuned for the majority of use cases.

1.1. JBOSS A-MQ CLIENT APIS

Transports and protocols

Red Hat JBoss A-MQ uses OpenWire as its default on the wire message protocol. OpenWire is a JMS
compliant wire protocol that is designed to be fully-featured and highly performant. It is the default
protocol of JBoss A-MQ. OpenWire can use a number of transports including TCP, SSL, and HTTP.

In addition to OpenWire, JBoss A-MQ clients can also use a number of other transports including:

Simple Text Orientated Messaging Protocol(STOMP)—allows developers to use a wide variety
of client APIs to connect to a broker.

Discovery—allows clients to connect to one or more brokers without knowing the connection
details for a specific broker. See Using Networks of Brokers.

VM—allows clients to directly communicate with other clients in the same virtual machine. See
Chapter 5, Intra-JVM Connections.

Peer—allows clients to communicate with each other without using an external message
broker. See Chapter 6, Peer Protocol.

For details of using the different the transports see the Connection Reference.

Supported Client APIs

JBoss A-MQ provides a standard JMS client library. In addition to the standard JMS APIs the Java
client library has a few implementation specific APIs.

JBoss A-MQ also has a C++ client library and .Net client library that are developed as part of the
Apache ActiveMQ project. You can download them from them from the Red Hat customer portal. You
will need to compile them yourselves.

NOTE

This guide only deals with the JBoss A-MQ client libraries.

The STOMP protocol allows you to use a number of other clients including:

C clients

C++ clients

C# and .NET clients

Delphi clients

CHAPTER 1. INTRODUCTION

3

Flash clients

Perl clients

PHP clients

Pike clients

Python clients

Configuration

There are two types of properties that effects client connections:

transport options—configured on the connection. These options are configured using the
connection URI and may be set by the broker. They apply to all clients using the connection.

destination options—configured on a per destination basis. These options are configured when
the destination is created and impact all of the clients that send or receive messages using the
destination. They are always set by clients.

Some properties, like prefect and redelivery, can be configured as both connection options and
destination oprions.

1.2. PREPARING TO USE MAVEN

Overview

This section gives a brief overview of how to prepare Maven for building Red Hat JBoss A-MQ projects
and introduces the concept of Maven coordinates, which are used to locate Maven artifacts.

Prerequisites

In order to build a project using Maven, you must have the following prerequisites:

Maven installation—Maven is a free, open source build tool from Apache. You can download the
latest version from the Maven download page .

Network connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. By default, Maven looks for
repositories that are accessed over the Internet. You can change this behavior so that Maven
will prefer searching repositories that are on a local network.

NOTE

Maven can run in an offline mode. In offline mode Maven will only look for
artifacts in its local repository.

Adding the Red Hat JBoss A-MQ repository

In order to access artifacts from the Red Hat JBoss A-MQ Maven repository, you need to add it to
Maven's settings.xml file. Maven looks for your settings.xml file in the .m2 directory of the
user's home directory. If there is not a user specified settings.xml file, Maven will use the system-
level settings.xml file at M2_HOME/conf/settings.xml.

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

4

http://maven.apache.org/download.html

To add the JBoss A-MQ repository to Maven's list of repositories, you can either create a new
.m2/settings.xml file or modify the system-level settings. In the settings.xml file, add the
repository element for the JBoss A-MQ repository as shown in bold text in Example 1.1, “Adding the
Red Hat JBoss A-MQ Repositories to Maven”.

Example 1.1. Adding the Red Hat JBoss A-MQ Repositories to Maven

<settings>
 <profiles>
 <profile>
 <id>my-profile</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>fusesource</id>

<url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository> <repository>
 <id>fusesource.snapshot</id>

<url>http://repo.fusesource.com/nexus/content/groups/public-
snapshots/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
 <repository>
 <id>apache-public</id>

<url>https://repository.apache.org/content/groups/public/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 ...
 </repositories>
 </profile>
 </profiles>
 ...
</settings>

CHAPTER 1. INTRODUCTION

5

The preceding example also shows repository element for the following repositories:

fusesource-snapshot repository—if you want to experiment with building your application
using an Red Hat JBoss A-MQ snapshot kit, you can include this repository.

apache-public repository—you might not always need this repository, but it is often useful to
include it, because JBoss A-MQ depends on many of the artifacts from Apache.

Artifacts

The basic building block in the Maven build system is an artifact. The output of an artifact, after
performing a Maven build, is typically an archive, such as a JAR or a WAR.

Maven coordinates

A key aspect of Maven functionality is the ability to locate artifacts and manage the dependencies
between them. Maven defines the location of an artifact using the system of Maven coordinates, which
uniquely define the location of a particular artifact. A basic coordinate tuple has the form, {groupId,
artifactId, version}. Sometimes Maven augments the basic set of coordinates with the
additional coordinates, packaging and classifier. A tuple can be written with the basic coordinates, or
with the additional packaging coordinate, or with the addition of both the packaging and classifier
coordinates, as follows:

Each coordinate can be explained as follows:

groupdId

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID—for example, org.fusesource.example.

artifactId

Defines the artifact name (relative to the group ID).

version

Specifies the artifact's version. A version number can have up to four parts: n.n.n.n, where the
last part of the version number can contain non-numeric characters (for example, the last part of
1.0-SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT).

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier

Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

The group ID, artifact ID, packaging, and version are defined by the corresponding elements in an
artifact's POM file. For example:

groupdId:artifactId:version
groupdId:artifactId:packaging:version
groupdId:artifactId:packaging:classifier:version

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

6

For example, to define a dependency on the preceding artifact, you could add the following
dependency element to a POM:

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,
because a bundle is just a particular kind of JAR file and jar is the default Maven
package type. If you do need to specify the packaging type explicitly in a dependency,
however, you can use the type element.

<project ... >
 ...
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <packaging>bundle</packaging>
 <version>1.0-SNAPSHOT</version>
 ...
</project>

<project ... >
 ...
 <dependencies>
 <dependency>
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 ...
</project>

CHAPTER 1. INTRODUCTION

7

CHAPTER 2. NATIVE ACTIVEMQ CLIENT APIS

Abstract

The Red Hat JBoss A-MQ client APIs follow the standard JMS pattern.

Regardless of the API in use, the pattern for establishing a connection between a messaging client and
a message broker is the same. You must:

1. Get an instance of the Red Hat JBoss A-MQ connection factory.

Depending on the environment, the application can create a new instance of the connection
factory or use JNDI, or another mechanism, to look up the connection factory.

2. Use the connection factory to create a connection.

3. Get an instance of the destination used for sending or receiving messages.

Destinations are administered objects that are typically created by the broker. The JBoss A-
MQ allows clients to create destinations on-demand. You can also look up destinations using
JNDI or another mechanism.

4. Use the connection to create a session.

The session is the factory for creating producers and consumers. The session also is a factory
for creating messages.

5. Use the session to create the message consumer or message producer.

6. Start the connection.

NOTE

You can add configuration information when creating connections and destinations.

2.1. NATIVE JMS CLIENT API

Overview

Red Hat JBoss A-MQ clients use the standard JMS APIs to interact with the message broker. Most of
the configuration properties can be set using the connection URI and the destination specification
used.

Developers can also use the JBoss A-MQ specific implementations to access JBoss A-MQ
configuration features. Using these APIs will make your client non-portable.

The connection factory

The connection factory is an administered object that is created by the broker and used by clients
wanting to connect to the broker. Each JMS provider is responsible for providing an implementation of
the connection factory and the connection factory is stored in JNDI and retrieved by clients using a
JNDI lookup.

The JBoss A-MQ connection factory, ActiveMQConnectionFactory, is used to create connections

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

8

to brokers and does not need to be looked up using JNDI. Instances are created using a broker URI that
specifies one of the transport connectors configured on a broker and the connection factory will do the
heavy lifting.

Example 2.1, “Connection Factory Constructors” shows the syntax for the available
ActiveMQConnectionFactory constructors.

Example 2.1. Connection Factory Constructors

ActiveMQConnectionFactory(String brokerURI);
ActiveMQConnectionFactory(URI brokerURI);
ActiveMQConnectionFactory(String username,
 String password,
 String brokerURI);
ActiveMQConnectionFactory(String username,
 String password,
 URI brokerURI);
The broker URI also specifies connection configuration information. For details on how to construct
a broker URI see the Connection Reference.

The connection

The connection object is created from the connection factory and is the object responsible for
maintaining the link between the client and the broker. The connection object is used to create session
objects that manage the resources used by message producers and message consumers.

For more applications the standard JMS Connection object will suffice. However, JBoss A-MQ does
provide an implementation, ActiveMQConnection, that provides a number of additional methods for
working with the broker. Using ActiveMQConnection will make your client code less portable
between JMS providers.

The session

The session object is responsible for managing the resources for the message consumers and message
producers implemented by a client. It is created from the connection, and is used to create message
consumers, message producers, messages, and other objects involved in sending and receiving
messages from a broker.

Example

Example 2.2, “JMS Producer Connection” shows code for creating a message producer that sends
messages to the queue EXAMPLE.FOO.

Example 2.2. JMS Producer Connection

import org.apache.activemq.ActiveMQConnectionFactory;

import javax.jms.Connection;
import javax.jms.DeliveryMode;
import javax.jms.Destination;
import javax.jms.ExceptionListener;
import javax.jms.JMSException;
import javax.jms.Message;

CHAPTER 2. NATIVE ACTIVEMQ CLIENT APIS

9

2.2. NATIVE C++ CLIENT API

Overview

The CMS API is a C++ corollary to the JMS API. The CMS makes every attempt to maintain parity with
the JMS API as possible. It only diverges when a JMS feature depended on features in the Java
programming language. Even though there are some differences most are minor and for the most part
CMS adheres to the JMS spec. Having a firm grasp on how JMS works should make using the C++ API
easier.

NOTE

In order to use the CMS API, you will need to download the source and build it for your
environment.

The connection factory

The first interface you will use in the CMS API is the ConnectionFactory. A ConnectionFactory
allows you to create connections which maintain a connection to a message broker.

The simplest way to obtain an instance of a ConnectionFactory is to use the static
createCMSConnectionFactory() method that all CMS provider libraries are required to
implement. Example 2.3, “Creating a Connection Factory” demonstrates how to obtain a new
ConnectionFactory.

import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;

...

// Create a ConnectionFactory
ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory("tcp://localhost:61616");

// Create a Connection
Connection connection = connectionFactory.createConnection();

// Create a Session
Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

// Create the destination
Destination destination = session.createQueue("EXAMPLE.FOO");

// Create a MessageProducer from the Session to the Queue
MessageProducer producer = session.createProducer(destination);

// Start the connection
connection.start();

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

10

Example 2.3. Creating a Connection Factory

The createCMSConnectionFactory() takes a single string parameter which a URI that defines the
connection that will be created by the factory. Additionally configuration information can be encoded
in the URI. For details on how to construct a broker URI see the Connection Reference.

The connection

Once you've created a connection factory, you need to create a connection using the factory. A
Connection is a object that manages the client's connection to the broker. Example 2.4, “Creating a
Connection” shows the code to create a connection.

Example 2.4. Creating a Connection

Upon creation the connection object attempts to connect to the broker, if the connection fails then an
CMSException is thrown with a description of the error that occurred stored in its message property.

The connection interface defines an object that is the client's active connection to the CMS provider.
In most cases the client will only create one connection object since it is considered a heavyweight
object.

A connection serves several purposes:

It encapsulates an open connection with a JMS provider. It typically represents an open
TCP/IP socket between a client and a provider service daemon.

Its creation is where client authentication takes place.

It can specify a unique client identifier.

It provides a ConnectionMetaData object.

It supports an optional ExceptionListener object.

The session

After creating the connection the client must create a Session in order to create message producers
and consumers. Example 2.5, “Creating a Session” shows how to create a session object from the
connection.

Example 2.5. Creating a Session

std::auto_ptr<cms::ConnectionFactory> connectionFactory(
 cms::ConnectionFactory::createCMSConnectionFactory(
"tcp://127.0.0.1:61616"));

std::auto_ptr<cms::Connection> connection(connectionFactory-
>createConnection());

std::auto_ptr<cms::Session> session(connection-
>createSession(cms::Session::CLIENT_ACKNOWLEDGE));

CHAPTER 2. NATIVE ACTIVEMQ CLIENT APIS

11

When a client creates a session it must specify the mode in which the session will acknowledge the
messages that it receives and dispatches. The modes supported are summarized in Table 2.1, “Support
Acknowledgement Modes”.

Table 2.1. Support Acknowledgement Modes

Acknowledge Mode Description

AUTO_ACKNOWLEDGE The session automatically acknowledges a client's
receipt of a message either when the session has
successfully returned from a call to receive or when
the message listener the session has called to
process the message successfully returns.

CLIENT_ACKNOWLEDGE The client acknowledges a consumed message by
calling the message's acknowledge method.
Acknowledging a consumed message acknowledges
all messages that the session has consumed.

DUPS_OK_ACKNOWLEDGE The session to lazily acknowledges the delivery of
messages. This is likely to result in the delivery of
some duplicate messages if the broker fails, so it
should only be used by consumers that can tolerate
duplicate messages. Use of this mode can reduce
session overhead by minimizing the work the
session does to prevent duplicates.

SESSION_TRANSACTED The session is transacted and the acknowledge of
messages is handled internally.

INDIVIDUAL_ACKNOWLEDGE Acknowledges are applied to a single message only.

NOTE

If you do not specify an acknowledgement mode, the default is AUTO_ACKNOWLEDGE.

A session serves several purposes:

It is a factory for producers and consumers.

It supplies provider-optimized message factories.

It is a factory for temporary topics and temporary queues.

It provides a way to create a queue or a topic for those clients that need to dynamically
manipulate provider-specific destination names.

It supports a single series of transactions that combine work spanning its producers and
consumers into atomic units.

It defines a serial order for the messages it consumes and the messages it produces.

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

12

It retains messages it consumes until they have been acknowledged.

It serializes execution of message listeners registered with its message consumers.

NOTE

A session can create and service multiple producers and consumers.

Resources

The API reference documentation for the A-MQ C++ API can be found at
http://activemq.apache.org/cms/api.html.

Example

Example 2.6, “CMS Producer Connection” shows code for creating a message producer that sends
messages to the queue EXAMPLE.FOO.

Example 2.6. CMS Producer Connection

#include <decaf/lang/Thread.h>
#include <decaf/lang/Runnable.h>
#include <decaf/util/concurrent/CountDownLatch.h>
#include <decaf/lang/Integer.h>
#include <decaf/util/Date.h>
#include <activemq/core/ActiveMQConnectionFactory.h>
#include <activemq/util/Config.h>
#include <cms/Connection.h>
#include <cms/Session.h>
#include <cms/TextMessage.h>
#include <cms/BytesMessage.h>
#include <cms/MapMessage.h>
#include <cms/ExceptionListener.h>
#include <cms/MessageListener.h>
...

using namespace activemq::core;
using namespace decaf::util::concurrent;
using namespace decaf::util;
using namespace decaf::lang;
using namespace cms;
using namespace std;

...

// Create a ConnectionFactory
auto_ptr<ConnectionFactory> connectionFactory(
 ConnectionFactory::createCMSConnectionFactory(
"tcp://127.1.0.1:61616?wireFormat=openwire"));

// Create a Connection
connection = connectionFactory->createConnection();
connection->start();

// Create a Session

CHAPTER 2. NATIVE ACTIVEMQ CLIENT APIS

13

http://activemq.apache.org/cms/api.html

2.3. NATIVE .NET CLIENT API

Overview

The Red Hat JBoss A-MQ NMS client is a .Net client that communicates with the JBoss A-MQ broker
using its native Openwire protocol. This client supports advanced features such as failover, discovery,
SSL, and message compression.

For complete details of using the .Net API see http://activemq.apache.org/nms/index.html.

NOTE

In order to use the NMS API, you will need to download the source and build it for your
environment.

Resources

The API reference documentation for the A-MQ .Net API can be found at
http://activemq.apache.org/nms/nms-api.html.

You can find examples of using the A-MQ .Net API at http://activemq.apache.org/nms/nms-
examples.html.

Example

Example 2.7, “NMS Producer Connection” shows code for creating a message producer that sends
messages to the queue EXAMPLE.FOO.

Example 2.7. NMS Producer Connection

session = connection->createSession(Session::AUTO_ACKNOWLEDGE);
destination = session->createQueue("EXAMPLE.FOO");

// Create a MessageProducer from the Session to the Queue
producer = session->createProducer(destination);

...

using System;
using Apache.NMS;
using Apache.NMS.Util;
...

// NOTE: ensure the nmsprovider-activemq.config file exists in the
executable folder.
IConnectionFactory factory = new
ActiveMQ.ConnectionFactory("tcp://localhost:61616);

// Create a Connection
IConnection connection = factory.CreateConnection();

// Create a Session

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

14

http://activemq.apache.org/nms/index.html
http://activemq.apache.org/nms/nms-api.html
http://activemq.apache.org/nms/nms-examples.html

2.4. CONFIGURING NMS.ACTIVEMQ

Abstract

All configuration settings can be accessed through URI-encoded options, which can be set either on a
connection or on a destination. Using the URI syntax, you can configure virtually every facet of an
NMS.ActiveMQ client.

Connection configuration using the generic NMSConnectionFactory class

Using the Generic NMSConnectionFactory class, you can configure an ActiveMQ endpoint as
follows:

Connection configuration using the ActiveMQ ConnectionFactory class

Using the ActiveMQ ConnectionFactory class, you can configure an ActiveMQ endpoint as follows:

Protocol variants

The following variants of the OpenWire protocol are supported:

Option Name Description

tcp Uses TCP/IP Sockets to connect to the Broker.

ssl Uses TCP/IP Sockets to connect to the Broker with
an added SSL layer.

ISession session = connection.CreateSession();

// Create the destination
IDestination destination = SessionUtil.GetDestination(session,
"queue://EXAMPLE.FOO");

// Create a message producer from the Session to the Queue
IMessageProducer producer = session.CreateProducer(destination);

// Start the connection
connection.Start();
...

var cf = new NMSConnectionFactory(
 "activemq:tcp://localhost:61616?
wireFormat.tightEncodingEnabled=true");

var cf = new Apache.NMS.ActiveMQ.ConnectionFactory(
 "tcp://localhost:61616?wireFormat.tightEncodingEnabled=true");

CHAPTER 2. NATIVE ACTIVEMQ CLIENT APIS

15

discovery Uses The Discovery Transport to find a Broker.

failover Uses the Failover Transport to connect and
reconnect to one or more Brokers.

TCP transport options

The tcp transport supports the following options:

Option Name Default Description

transport.useLogging false Log data that is sent across the
Transport.

transport.receiveBuffer
Size

8192 Amount of Data to buffer from
the Socket.

transport.sendBufferSiz
e

8192 Amount of Data to buffer before
writing to the Socket.

transport.receiveTimeou
t

0 Time to wait for more data, zero
means wait infinitely.

transport.sendTimeout 0 Timeout on sends, 0 means wait
forever for completion.

transport.requestTimeou
t

0 Time to wait before a Request
Command is considered to have
failed.

Failover transport options

The failover transport supports the following options:

Option Name Default Description

transport.timeout -1 Time that a send operation blocks
before failing.

transport.initialReconn
ectDelay

10 Time in Milliseconds that the
transport waits before attempting
to reconnect the first time.

transport.maxReconnectD
elay

30000 The max time in Milliseconds that
the transport will wait before
attempting to reconnect.

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

16

transport.backOffMultip
lier

2 The amount by which the
reconnect delay will be multiplied
by if useExponentialBackOff is
enabled.

transport.useExponentia
lBackOff

true Should the delay between
connection attempt grow on each
try up to the max reconnect
delay.

transport.randomize true Should the Uri to connect to be
chosen at random from the list of
available Uris.

transport.maxReconnectA
ttempts

0 Maximum number of time the
transport will attempt to
reconnect before failing (0 means
infinite retries)

transport.startupMaxRec
onnectAttempts

0 Maximum number of time the
transport will attempt to
reconnect before failing when
there has never been a
connection made. (0 means
infinite retries) (included in
NMS.ActiveMQ v1.5.0+)

transport.reconnectDela
y

10 The delay in milliseconds that the
transport waits before attempting
a reconnection.

transport.backup false Should the Failover transport
maintain hot backups.

transport.backupPoolSiz
e

1 If enabled, how many hot backup
connections are made.

transport.trackMessages false keep a cache of in-flight
messages that will flushed to a
broker on reconnect

transport.maxCacheSize 256 Number of messages that are
cached if trackMessages is
enabled.

transport.updateURIsSup
ported

true Update the list of known brokers
based on BrokerInfo messages
sent to the client.

Connection Options

Connection options can either be set using either the connection. prefix or the nms. prefix (in a
similar way to the Java client's jms. prefixed settings).

CHAPTER 2. NATIVE ACTIVEMQ CLIENT APIS

17

Option Name Default Description

connection.AsyncSend false Are message sent
Asynchronously.

connection.AsyncClose true Should the close command be
sent Asynchronously

connection.AlwaysSyncSe
nd

false Causes all messages a Producer
sends to be sent Asynchronously.

connection.CopyMessageO
nSend

true Copies the Message objects a
Producer sends so that the client
can reuse Message objects
without affecting an in-flight
message.

connection.ProducerWind
owSize

0 The ProducerWindowSize is the
maximum number of bytes in
memory that a producer will
transmit to a broker before
waiting for acknowledgement
messages from the broker that it
has accepted the previously sent
messages. In other words, this
how you configure the producer
flow control window that is used
for async sends where the client
is responsible for managing
memory usage. The default value
of 0 means no flow control at the
client. See also Producer Flow
Control

connection.useCompressi
on

false Should message bodies be
compressed before being sent.

connection.sendAcksAsyn
c

false Should message acks be sent
asynchronously

connection.messagePrior
itySupported

true Should messages be delivered to
the client based on the value of
the Message Priority header.

connection.dispatchAsyn
c

false Should the broker dispatch
messages asynchronously to the
connection's consumers.

connection.watchTopicAd
visories

true Should the client watch for
advisory messages from the
broker to track the creation and
deletion of temporary
destinations.

OpenWire options

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

18

http://activemq.apache.org/producer-flow-control.html
http://activemq.apache.org/consumer-dispatch-async.html

The following options are used to configure the OpenWire protocol:

Option Name Default Description

wireFormat.stackTraceEn
abled

false Should the stack trace of
exception that occur on the
broker be sent to the client? Only
used by openwire protocol.

wireFormat.cacheEnabled false Should commonly repeated
values be cached so that less
marshalling occurs? Only used by
openwire protocol.

wireFormat.tcpNoDelayEn
abled

false Does not affect the wire format,
but provides a hint to the peer
that TCP nodelay should be
enabled on the communications
Socket. Only used by openwire
protocol.

wireFormat.sizePrefixDi
sabled

false Should serialized messages
include a payload length prefix?
Only used by openwire protocol.

wireFormat.tightEncodin
gEnabled

false Should wire size be optimized
over CPU usage? Only used by the
openwire protocol.

wireFormat.maxInactivit
yDuration

30000 The maximum inactivity duration
(before which the socket is
considered dead) in milliseconds.
On some platforms it can take a
long time for a socket to appear
to die, so we allow the broker to
kill connections if they are
inactive for a period of time. Use
by some transports to enable a
keep alive heart beat feature. Set
to a value <= 0 to disable
inactivity monitoring.

maxInactivityDurationIn
italDelay

10000 The initial delay in starting the
maximum inactivity checks (and,
yes, the word 'Inital' is supposed
to be misspelled like that)

Destination configuration

A destination URI can be configured as shown in the following example:

General options

d = session.CreateTopic("com.foo?
consumer.prefetchSize=2000&consumer.noLocal=true");

CHAPTER 2. NATIVE ACTIVEMQ CLIENT APIS

19

The following destination URI options are generally supported for all protocols:

Option Name Default Description

consumer.prefetchSize 1000 The number of message the
consumer will prefetch.

consumer.maximumPending
MessageLimit

0 Use to control if messages are
dropped if a slow consumer
situation exists.

consumer.noLocal false Same as the noLocal flag on a
Topic consumer. Exposed here so
that it can be used with a queue.

consumer.dispatchAsync false Should the broker dispatch
messages asynchronously to the
consumer.

consumer.retroactive false Is this a Retroactive Consumer.

consumer.selector null JMS Selector used with the
consumer.

consumer.exclusive false Is this an Exclusive Consumer.

consumer.priority 0 Allows you to configure a
Consumer Priority.

OpenWire specific options

The following destination URI options are supported only for the OpenWire protocol:

Option Name Default Description

consumer.browser false

consumer.networkSubscri
ption

false

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

20

http://activemq.apache.org/what-is-the-prefetch-limit-for.html
http://activemq.apache.org/slow-consumer-handling.html
http://activemq.apache.org/consumer-dispatch-async.html
http://activemq.apache.org/retroactive-consumer.html
http://activemq.apache.org/exclusive-consumer.html
http://activemq.apache.org/consumer-priority.html

consumer.optimizedAckno
wledge

false Enables an optimised
acknowledgement mode where
messages are acknowledged in
batches rather than individually.
Alternatively, you could use
Session.DUPS_OK_ACKNOWL
EDGE acknowledgement mode
for the consumers which can
often be faster. WARNING:
enabling this issue could cause
some issues with auto-
acknowledgement on
reconnection

consumer.noRangeAcks false

consumer.retroactive false Sets whether or not retroactive
consumers are enabled.
Retroactive consumers allow
non-durable topic subscribers to
receive old messages that were
published before the non-durable
subscriber started.

CHAPTER 2. NATIVE ACTIVEMQ CLIENT APIS

21

CHAPTER 3. QPID JMS CLIENT API

WARNING

The Qpid JMS client API is a technical preview only, and is not supported in JBoss
A-MQ 6.1.

3.1. GETTING STARTED WITH AMQP

3.1.1. Introduction to AMQP

What is AMQP?

The Advanced Message Queuing Protocol (AMQP) is an open standard messaging system, which has
been designed to facilitate interoperability between messaging systems. The key features of AMQP are:

Open standard (defined by the OASIS AMQP Technical Committee)

Defines a wire protocol

Defines APIs for multiple languages (C++, Java)

Interoperability between different AMQP implementations

WARNING

The Qpid JMS client API is a technical preview only, and is not supported in JBoss
A-MQ 6.1.

JMS is an API

It is interesting to contrast the Java Message Service (JMS) with AMQP. The JMS is first and foremost
an API and is designed to enable Java code to be portable between different messaging products. JMS
does not describe how to implement a messaging service (although it imposes significant constraints
on the messaging behaviour), nor does JMS specify any details of the wire protocol for transmitting
messages. Consequently, different JMS implementations are generally not interoperable.

AMQP is a wire protocol

AMQP, on the other hand, does specify complete details of a wire protocol for messaging (in an open
standard). Moreover, AMQP also specifies APIs in several different programming languages (for
example, Java and C++). An implementation of AMQP is therefore much more constrained than a
comparable JMS implementation. One of the benefits of this is that different AMQP implementations
ought to be interoperable with each other.





Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

22

http://www.amqp.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp

AMQP-to-JMS requires message conversion

If you want to bridge from an AMQP messaging system to a JMS messaging system, the messages
must be converted from AMQP format to JMS format. Usually, this involves a fairly lightweight
conversion, because the message body can usually be left intact while message headers are mapped to
equivalent headers.

AMQP support in JBoss A-MQ

AMQP support in JBoss A-MQ is based on the following main components:

AMQP endpoint in the broker—an endpoint on the broker that supports the AMQP wire protocol
and implicitly converts messages between AMQP format and JMS format (which is used inside
the JBoss A-MQ broker).

AMQP JMS client—is based on the Apache Qpid JMS client , which is compatible with the
broker's AMQP endpoint.

Getting started with AMQP

To run a simple demonstration of AMQP in JBoss A-MQ, you need to set up the following parts of the
application:

Configure the broker to use AMQP—to enable AMQP in the broker, add an AMQP endpoint to the
broker's configuration. This implicitly activates the broker's AMQP integration, ensuring that
incoming messages are converted from AMQP message format to JMS message format, as
required.

Implement the AMQP clients—the AMQP clients are based on the Apache Qpid JMS client
libraries.

3.1.2. Configuring the Broker for AMQP

Overview

Configuring the broker to use AMQP is relatively straightforward in JBoss A-MQ, because the required
AMQP packages are pre-installed in the container. There are essentially two main points you need to
pay attention to:

Make sure that you have appropriate user entries in the etc/users.properties file, so that
the AMQP clients will be able to log on to the broker.

Add an AMQP endpoint to the broker (by inserting a transportConnector element into the
broker's XML configuration).

Steps to configure the broker

Perform the following steps to configure the broker with an AMQP endpoint:

1. This example assumes that you are working with a fresh install of a standalone JBoss A-MQ
broker, InstallDir.

2. Define a JAAS user for the AMQP clients, so that the AMQP clients can authenticate
themselves to the broker using JAAS security (security is enabled by default in the broker).
Edit the InstallDir/etc/users.properties file and add a new user entry, as follows:

CHAPTER 3. QPID JMS CLIENT API

23

https://qpid.apache.org/components/qpid-jms/index.html

At this point, you can add entries for any other secure users you want. In particular, it is
advisable to have at least one user with the admin role, so that you can log into the secure
container remotely (remembering to choose a secure password for the admin user).

3. Add an AMQP endpoint to the broker configuration. Edit the broker configuration file,
InstallDir/etc/activemq.xml. As shown in the following XML fragment, add the
highlighted transportConnector element as a child of the transportConnectors
element in the broker configuration:

4. To start the broker, open a new command prompt, change directory to InstallDir/bin, and
enter the following command:

Message conversion

The AMQP endpoint in the broker implicitly converts incoming AMQP format messages into JMS
format messages (which is the format in which messages are stored in the broker). The endpoint
configuration shown here uses the default options for this conversion.

Reference

#
This file contains the valid users who can log into JBoss A-MQ.
Each line has to be of the format:
#
USER=PASSWORD,ROLE1,ROLE2,...
#
All users and roles entered in this file are available after JBoss
A-MQ startup
and modifiable via the JAAS command group. These users reside in a
JAAS domain
with the name "karaf"..
#
You must have at least one users to be able to access JBoss A-MQ
resources

#admin=admin,admin
amqpuser=secret

<beans ...>
 ...
 <broker ...>
 ...
 <transportConnectors>
 <transportConnector name="openwire"
uri="tcp://0.0.0.0:0?maximumConnections=1000"/>
 <transportConnector name="amqp" uri="amqp://0.0.0.0:5672"/>
 </transportConnectors>
 </broker>

</beans>

./amq

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

24

For full details of how to configure an AMQP endpoint in the broker, see the "Advanced Message
Queueing Protocol (AMQP)" chapter from the Connection Reference. This also includes details of how to
customize the message conversion from AMQP format to JMS format.

3.1.3. AMQP Example Clients

Overview

This section explains how to implement two basic AMQP clients: an AMQP producer client, which sends
messages to a queue on the broker; and an AMQP consumer client, which pulls messages off the queue
on the broker. The clients themselves use generic JMS code to access the messaging system. The key
details of the AMQP configuration are retrieved using JNDI properties.

Prerequisites

Before building the example clients, you must install and configure the Apache Maven build tool, as
described in Section 1.2, “Preparing to use Maven” .

AMQP connection URI

The critical piece of configuration for establishing a connection with the broker is the AMQP URI
(defined as a JNDI property in the jndi.properties file, in this demonstration). This example uses
the following AMQP URI for the clients:

The first part of the URI, amqpuser:secret@localhost, has the format
Username:Password@ClientID. In order to authenticate the clients successfully with the broker, it
is essential that there is a corresponding JAAS user entry on the broker side.

The brokerlist option defines the location of the AMQP port on the broker, which is
tcp://localhost:5672 for this example.

Steps to implement and run the AMQP clients

Perform the following steps to implement and run an AMQP producer client and an AMQP consumer
client:

1. At any convenient location, create the directory, activemq-amqp-example, to hold the
example code:

2. Create the directory hierarchy for the example code. Change directory to activemq-amqp-
example and run the following script at a command prompt:

amqp://amqpuser:secret@localhost/test/?brokerlist='tcp://localhost:5672'

mkdir activemq-amqp-example

mkdir src
mkdir src/main
mkdir src/main/java
mkdir src/main/java/org
mkdir src/main/java/org/fusebyexample
mkdir src/main/java/org/fusebyexample/activemq
mkdir src/main/resources

CHAPTER 3. QPID JMS CLIENT API

25

https://maven.apache.org/

After executing the preceding commands, you should have the following directory structure
for the activemq-amqp-example project:

3. Create a POM file for the Maven project. Using a text editor, create a new file, activemq-
amqp-example/pom.xml, with the following contents:

activemq-amqp-example/
 src/
 main/
 java/
 org/fusebyexample/activemq
 resources/

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.fusebyexample.activemq</groupId>
 <artifactId>activemq-amqp-example</artifactId>
 <version>5.8.0</version>

 <name>ActiveMQ AMQP Example</name>

 <properties>
 <project.build.sourceEncoding>UTF-
8</project.build.sourceEncoding>

 <activemq.version>5.9.0.redhat-610379</activemq.version>

 <qpid.version>0.22</qpid.version>

 <slf4j-version>1.6.6</slf4j-version>
 <log4j-version>1.2.17</log4j-version>
 </properties>

 <repositories>
 <repository>
 <id>fusesource.releases</id>
 <name>FuseSource Release Repository</name>

<url>http://repo.fusesource.com/nexus/content/repositories/releases<
/url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

26

 <id>fusesource.releases</id>
 <name>FuseSource Release Repository</name>

<url>http://repo.fusesource.com/nexus/content/repositories/releases<
/url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>

 <dependencies>
 <dependency>
 <groupId>org.apache.qpid</groupId>
 <artifactId>qpid-amqp-1-0-client-jms</artifactId>
 <version>${qpid.version}</version>
 </dependency>

 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-jms_1.1_spec</artifactId>
 <version>1.1.1</version>
 </dependency>

 <!-- Logging -->
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>${slf4j-version}</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>${slf4j-version}</version>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>${log4j-version}</version>
 <scope>runtime</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>

CHAPTER 3. QPID JMS CLIENT API

27

 </configuration>
 </plugin>
 </plugins>
 </build>

 <profiles>
 <profile>
 <id>consumer</id>
 <build>
 <defaultGoal>package</defaultGoal>

 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.2.1</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>java</goal>
 </goals>
 <configuration>

<mainClass>org.fusebyexample.activemq.SimpleConsumer</mainClass>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>

 <profile>
 <id>producer</id>
 <build>
 <defaultGoal>package</defaultGoal>

 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.2.1</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>java</goal>
 </goals>
 <configuration>

<mainClass>org.fusebyexample.activemq.SimpleProducer</mainClass>
 </configuration>
 </execution>
 </executions>
 </plugin>

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

28

4. Define the Java implementation of an AMQP consumer class, SimpleConsumer. Using a text
editor, create the SimpleConsumer.java file under the activemq-amqp-
example/src/main/java/org/fusebyexample/activemq/ directory, with the following
contents:

 </plugins>
 </build>
 </profile>
 </profiles>

</project>

package org.fusebyexample.activemq;

import javax.jms.*;
import javax.naming.Context;
import javax.naming.InitialContext;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class SimpleConsumer {
 private static final Logger LOG =
LoggerFactory.getLogger(SimpleConsumer.class);

 private static final Boolean NON_TRANSACTED = false;
 private static final String CONNECTION_FACTORY_NAME =
"myJmsFactory";
 private static final String DESTINATION_NAME = "queue/simple";
 private static final int MESSAGE_TIMEOUT_MILLISECONDS = 120000;

 public static void main(String args[]) {
 Connection connection = null;

 try {
 // JNDI lookup of JMS Connection Factory and JMS
Destination
 Context context = new InitialContext();
 ConnectionFactory factory = (ConnectionFactory)
context.lookup(CONNECTION_FACTORY_NAME);
 Destination destination = (Destination)
context.lookup(DESTINATION_NAME);

 connection = factory.createConnection();
 connection.start();

 Session session =
connection.createSession(NON_TRANSACTED, Session.AUTO_ACKNOWLEDGE);
 MessageConsumer consumer =
session.createConsumer(destination);

 LOG.info("Start consuming messages from " +
destination.toString() + " with " + MESSAGE_TIMEOUT_MILLISECONDS +
"ms timeout");

 // Synchronous message consumer

CHAPTER 3. QPID JMS CLIENT API

29

5. Define the Java implementation of an AMQP producer class, SimpleProducer. Using a text
editor, create the SimpleProducer.java file under the activemq-amqp-
example/src/main/java/org/fusebyexample/activemq/ directory, with the following
contents:

 int i = 1;
 while (true) {
 Message message =
consumer.receive(MESSAGE_TIMEOUT_MILLISECONDS);
 if (message != null) {
 if (message instanceof TextMessage) {
 String text = ((TextMessage)
message).getText();
 LOG.info("Got " + (i++) + ". message: " +
text);
 }
 } else {
 break;
 }
 }

 consumer.close();
 session.close();
 } catch (Throwable t) {
 LOG.error("Error receiving message", t);
 } finally {
 // Cleanup code
 // In general, you should always close producers,
consumers,
 // sessions, and connections in reverse order of
creation.
 // For this simple example, a JMS connection.close will
 // clean up all other resources.
 if (connection != null) {
 try {
 connection.close();
 } catch (JMSException e) {
 LOG.error("Error closing connection", e);
 }
 }
 }
 }
}

package org.fusebyexample.activemq;

import javax.jms.*;
import javax.naming.Context;
import javax.naming.InitialContext;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class SimpleProducer {
 private static final Logger LOG =
LoggerFactory.getLogger(SimpleProducer.class);

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

30

 private static final Boolean NON_TRANSACTED = false;
 private static final long MESSAGE_TIME_TO_LIVE_MILLISECONDS = 0;
 private static final int MESSAGE_DELAY_MILLISECONDS = 100;
 private static final int NUM_MESSAGES_TO_BE_SENT = 100;
 private static final String CONNECTION_FACTORY_NAME =
"myJmsFactory";
 private static final String DESTINATION_NAME = "queue/simple";

 public static void main(String args[]) {
 Connection connection = null;

 try {
 // JNDI lookup of JMS Connection Factory and JMS
Destination
 Context context = new InitialContext();
 ConnectionFactory factory = (ConnectionFactory)
context.lookup(CONNECTION_FACTORY_NAME);
 Destination destination = (Destination)
context.lookup(DESTINATION_NAME);

 connection = factory.createConnection();
 connection.start();

 Session session =
connection.createSession(NON_TRANSACTED, Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer =
session.createProducer(destination);

producer.setTimeToLive(MESSAGE_TIME_TO_LIVE_MILLISECONDS);

 for (int i = 1; i <= NUM_MESSAGES_TO_BE_SENT; i++) {
 TextMessage message = session.createTextMessage(i +
". message sent");
 LOG.info("Sending to destination: " +
destination.toString() + " this text: '" + message.getText());
 producer.send(message);
 Thread.sleep(MESSAGE_DELAY_MILLISECONDS);
 }

 // Cleanup
 producer.close();
 session.close();
 } catch (Throwable t) {
 LOG.error("Error sending message", t);
 } finally {
 // Cleanup code
 // In general, you should always close producers,
consumers,
 // sessions, and connections in reverse order of
creation.
 // For this simple example, a JMS connection.close will
 // clean up all other resources.
 if (connection != null) {
 try {

CHAPTER 3. QPID JMS CLIENT API

31

6. Configure the JNDI properties for the AMQP clients. Using a text editor, create the
jndi.properties file under the activemq-amqp-example/src/main/resources/
directory, with the following contents:

 connection.close();
 } catch (JMSException e) {
 LOG.error("Error closing connection", e);
 }
 }
 }
 }
}

#
Copyright (C) Red Hat, Inc.
http://www.redhat.com
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing,
software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and
limitations under the License.
#

JNDI properties file to setup the JNDI server within ActiveMQ

#
Default JNDI properties settings
#
java.naming.factory.initial =
org.apache.qpid.amqp_1_0.jms.jndi.PropertiesFileInitialContextFactor
y
java.naming.provider.url = src/main/resources/jndi.properties

#
Set the connection factory name(s) as well as the destination
names. The connection factory name(s)
as well as the second part (after the dot) of the left hand side
of the destination definition
must be used in the JNDI lookups.
#
connectionfactory.myJmsFactory =
amqp://amqpuser:secret@localhost/test/?
brokerlist='tcp://localhost:5672'

queue.queue/simple = test.queue.simple

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

32

7. Configure the client logging with log4j. Using a text editor, create the log4j.properties file
under the activemq-amqp-example/src/main/resources/ directory, with the following
contents:

8. Make sure that the broker is already configured and running with an AMQP endpoint, as
described in Section 3.1.2, “Configuring the Broker for AMQP”.

9. Run the AMQP producer client as follows. Open a new command prompt, change directory to
the project directory, activemq-amqp-example/, and enter the following Maven command:

#
Copyright (C) Red Hat, Inc.
http://www.redhat.com
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing,
software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and
limitations under the License.
#

#
The logging properties used by the standalone ActiveMQ broker
#
log4j.rootLogger=INFO, stdout

CONSOLE appender
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{HH:mm:ss} %-5p
%m%n

Log File appender
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d [%-15.15t] %-5p
%-30.30c{1} - %m%n
log4j.appender.logfile.file=./target/log/exercises.log
log4j.appender.logfile.append=true

#
You can change logger levels here.
#
log4j.logger.org.apache.activemq=INFO
log4j.logger.org.apache.activemq.spring=WARN

mvn -P producer

CHAPTER 3. QPID JMS CLIENT API

33

After building the code (and downloading any packages required by Maven), this target
proceeds to run the producer client, which sends 100 messages to the test.queue.simple
queue in the broker. If the producer runs successfully, you should see output like the following
in the console window:

10. Run the AMQP consumer client as follows. Open a new command prompt, change directory to
the project directory, activemq-amqp-example/, and enter the following Maven command:

After building the code, this target proceeds to run the consumer client, which reads messages
from the test.queue.simple queue. You should see output like the following in the console
window:

3.2. A SIMPLE MESSAGING PROGRAM IN JAVA JMS

The following program shows how to send and receive a message using the Qpid JMS client. JMS
programs typically use JNDI to obtain connection factory and destination objects which the application
needs. In this way the configuration is kept separate from the application code itself.

In this example, we create a JNDI context using a properties file, use the context to lookup a
connection factory, create and start a connection, create a session, and lookup a destination from the
JNDI context. Then we create a producer and a consumer, send a message with the producer and
receive it with the consumer. This code should be straightforward for anyone familiar with Java JMS.

Example 3.1. "Hello world!" in Java

13:31:43 INFO Sending to destination:
org.apache.qpid.amqp_1_0.jms.impl.QueueImpl@fabdfd0b this text: '1.
message sent
13:31:43 INFO Sending to destination:
org.apache.qpid.amqp_1_0.jms.impl.QueueImpl@fabdfd0b this text: '2.
message sent
13:31:43 INFO Sending to destination:
org.apache.qpid.amqp_1_0.jms.impl.QueueImpl@fabdfd0b this text: '3.
message sent
...
13:31:53 INFO Sending to destination:
org.apache.qpid.amqp_1_0.jms.impl.QueueImpl@fabdfd0b this text: '99.
message sent
13:31:53 INFO Sending to destination:
org.apache.qpid.amqp_1_0.jms.impl.QueueImpl@fabdfd0b this text:
'100. message sent

mvn -P consumer

13:32:12 INFO Start consuming messages from
org.apache.qpid.amqp_1_0.jms.impl.QueueImpl@fabdfd0b with 120000ms
timeout
13:32:12 INFO Got 1. message: 1. message sent
13:32:12 INFO Got 2. message: 2. message sent
13:32:12 INFO Got 3. message: 3. message sent
...
13:32:12 INFO Got 99. message: 99. message sent
13:32:12 INFO Got 100. message: 100. message sent

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

34

1
2

3
4

5

6

7

8

9

10

11
12

 package org.apache.qpid.example.jmsexample.hello;

 import javax.jms.*;
 import javax.naming.Context;
 import javax.naming.InitialContext;
 import java.util.Properties;

 public class Hello {

 public Hello() {
 }

 public static void main(String[] args) {
 Hello producer = new Hello();
 producer.runTest();
 }

 private void runTest() {
 try {
 Properties properties = new Properties();

properties.load(this.getClass().getResourceAsStream("hello.properties"))

;
 Context context = new InitialContext(properties);

 ConnectionFactory connectionFactory
 = (ConnectionFactory)

context.lookup("qpidConnectionfactory");
 Connection connection = connectionFactory.createConnection();

 connection.start();

 Session
session=connection.createSession(false,Session.AUTO_ACKNOWLEDGE);
 Destination destination = (Destination)
context.lookup("topicExchange");

 MessageProducer messageProducer =
session.createProducer(destination);
 MessageConsumer messageConsumer =
session.createConsumer(destination);

 TextMessage message = session.createTextMessage("Hello world!");
 messageProducer.send(message);

 message = (TextMessage)messageConsumer.receive();
 System.out.println(message.getText());

 connection.close();
 context.close();
 }

 catch (Exception exp) {
 exp.printStackTrace();
 }
 }
 }

CHAPTER 3. QPID JMS CLIENT API

35

1

2

3

4

5

6

7

8

9

10

11

12

1

2

Loads the JNDI properties file, which specifies connection properties, queues, topics, and
addressing options. See Section 3.3, “Apache Qpid JNDI Properties for AMQP Messaging” for
details.

Creates the JNDI initial context.

Creates a JMS connection factory for Qpid.

Creates a JMS connection.

Activates the connection.

Creates a session. This session is not transactional (transactions='false'), and messages are
automatically acknowledged.

Creates a destination for the topic exchange, so senders and receivers can use it.

Creates a producer that sends messages to the topic exchange.

Creates a consumer that reads messages from the topic exchange.

Reads the next available message.

Closes the connection, all sessions managed by the connection, and all senders and receivers
managed by each session.

Closes the JNDI context.

The contents of the hello.properties file are shown below.

Example 3.2. JNDI Properties File for "Hello world!" example

Defines a connection factory from which connections can be created. The syntax of a
ConnectionURL is given in Section 3.3, “Apache Qpid JNDI Properties for AMQP Messaging” .

Defines a destination for which MessageProducers and/or MessageConsumers can be created to
send and receive messages. The value for the destination in the properties file is an address
string. In the JMS implementation MessageProducers are analogous to senders in the Qpid
Message API, and MessageConsumers are analogous to receivers.

3.3. APACHE QPID JNDI PROPERTIES FOR AMQP MESSAGING

1

2

java.naming.factory.initial =
org.apache.qpid.jndi.PropertiesFileInitialContextFactory

connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory =

amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672'

destination.[jndiname] = [address_string]
destination.topicExchange = amq.topic

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

36

Apache Qpid defines JNDI properties that can be used to specify JMS Connections and Destinations.
Here is a typical JNDI properties file:

Example 3.3. JNDI Properties File

The following sections describe the JNDI properties that Qpid uses.

3.3.1. JNDI Properties for Apache Qpid

Apache Qpid supports the properties shown in the following table:

Table 3.1. JNDI Properties supported by Apache Qpid

Property Purpose

connectionfactory.<jndiname> The Connection URL that the connection factory
uses to perform connections.

queue.<jndiname> A JMS queue, which is implemented as an
amq.direct exchange in Apache Qpid.

topic.<jndiname> A JMS topic, which is implemented as an amq.topic
exchange in Apache Qpid.

destination.<jndiname> Can be used for defining all amq destinations,
queues, topics and header matching, using an
address string. [a]

[a] Binding URLs, which were used in earlier versions of the Qpid Java JMS client, can still be used instead of address
strings.

3.3.2. Connection URLs

In JNDI properties, a Connection URL specifies properties for a connection. The format for a
Connection URL is:

java.naming.factory.initial =
org.apache.qpid.jndi.PropertiesFileInitialContextFactory

connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory =
amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672'

destination.[jndiname] = [address_string]
destination.topicExchange = amq.topic

amqp://[<user>:<pass>@][<clientid>]<virtualhost>[?<option>='<value>'[&
<option>='<value>']]

CHAPTER 3. QPID JMS CLIENT API

37

For instance, the following Connection URL specifies a user name, a password, a client ID, a virtual host
("test"), a broker list with a single broker, and a TCP host with the host name “localhost” using port
5672:

Apache Qpid supports the following properties in Connection URLs:

Table 3.2. Connection URL Properties

Option Type Description

brokerlist see below List of one or more broker
addresses.

maxprefetch integer The maximum number of pre-
fetched messages per consumer.
If not specified, default value of
500 is used.

Note: You can also set the default
per-consumer prefetch value on
a client-wide basis by configuring
the client using Java system
properties.

sync_publish {'persistent' | 'all'} A sync command is sent after
every persistent message to
guarantee that it has been
received; if the value is
'persistent', this is done only for
persistent messages.

sync_ack boolean A sync command is sent after
every acknowledgement to
guarantee that it has been
received.

use_legacy_map_msg_form
at

boolean If you are using JMS Map
messages and deploying a new
client with any JMS client older
than 0.8 release, you must set
this to true to ensure the older
clients can understand the map
message encoding.

amqp://username:password@clientid/test?brokerlist='tcp://localhost:5672'

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

38

failover {'singlebroker' | 'roundrobin' |
'failover_exchange' | 'nofailover' |
'<class>'}

This option controls failover
behaviour. The method
singlebroker uses only the
first broker in the list,
roundrobin will try each
broker given in the broker list
until a connection is established,
failover_exchange
connects to the initial broker
given in the broker URL and will
receive membership updates via
the failover exchange.
nofailover disables all retry
and failover logic. Any other
value is interpreted as a
classname which must implement
the
org.apache.qpid.jms.fai
lover.FailoverMethod
interface.

The broker list options retries
and connectdelay (described
below) determine the number of
times a connection to a broker
will be retried and the the length
of time to wait between
successive connection attempts
before moving on to the next
broker in the list. The failover
option cyclecount controls
the number of times to loop
through the list of available
brokers before finally giving up.

Defaults to roundrobin if the
brokerlist contains multiple
brokers, or singlebroker
otherwise.

ssl boolean If ssl='true', use SSL for all
broker connections. Overrides
any per-broker settings in the
brokerlist (see below) entries. If
not specified, the brokerlist entry
for each given broker is used to
determine whether SSL is used.

Introduced in version 0.22.

Option Type Description

Broker lists are specified using a URL in this format:

For instance, this is a typical broker list:

brokerlist=<transport>://<host>[:<port>](?<param>='<value>')(&
<param>='<value>')*

CHAPTER 3. QPID JMS CLIENT API

39

A broker list can contain more than one broker address; if so, the connection is made to the first
broker in the list that is available. In general, it is better to use the failover exchange when using
multiple brokers, since it allows applications to fail over if a broker goes down.

Example 3.4. Broker Lists

A broker list can specify properties to be used when connecting to the broker, such as security
options. This broker list specifies options for a Kerberos connection using GSSAPI:

This broker list specifies SSL options:

This broker list specifies two brokers using the connectdelay and retries broker options. It also
illustrates the failover connection URL property.

The following broker list options are supported.

Table 3.3. Broker List Options

Option Type Description

heartbeat integer frequency of heartbeat messages
(in seconds)

brokerlist='tcp://localhost:5672'

amqp://guest:guest@test/test?sync_ack='true'
&brokerlist='tcp://ip1:5672?sasl_mechs='GSSAPI''

amqp://guest:guest@test/test?sync_ack='true'
&brokerlist='tcp://ip1:5672?ssl='true'&ssl_cert_alias='cert1''

amqp://guest:guest@/test?failover='roundrobin?cyclecount='2''
&brokerlist='tcp://ip1:5672?
retries='5'&connectdelay='2000';tcp://ip2:5672?
retries='5'&connectdelay='2000''

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

40

sasl_mechs -- For secure applications, we
suggest CRAM-MD5, DIGEST-
MD5, or GSSAPI. The
ANONYMOUS method is not
secure. The PLAIN method is
secure only when used together
with SSL. For Kerberos,
sasl_mechs must be set to
GSSAPI, sasl_protocol must be
set to the principal for the qpidd
broker, e.g. qpidd/, and
sasl_server must be set to the
host for the SASL server, e.g.
sasl.com. SASL External is
supported using SSL certification,
e.g.
ssl='true'&sasl_mechs='
EXTERNAL'

sasl_encryption Boolean If
sasl_encryption='true',
the JMS client attempts to
negotiate a security layer with
the broker using GSSAPI to
encrypt the connection. Note that
for this to happen, GSSAPI must
be selected as the sasl_mech.

sasl_protocol -- Used only for Kerberos.
sasl_protocol must be set to
the principal for the qpidd broker,
e.g. qpidd/

sasl_server -- For Kerberos, sasl_mechs must be
set to GSSAPI, sasl_server must
be set to the host for the SASL
server, e.g. sasl.com.

trust_store -- path to trust store

trust_store_password -- Trust store password

key_store -- path to key store

key_store_password -- key store password

Option Type Description

CHAPTER 3. QPID JMS CLIENT API

41

ssl Boolean If ssl='true', the JMS client
will encrypt the connection to this
broker using SSL.

This can also be set/overridden
for all brokers using the
Connection URL options.

ssl_verify_hostname Boolean When using SSL you can enable
hostname verification by using
ssl_verify_hostname='tr
ue' in the broker URL.

ssl_cert_alias -- If multiple certificates are present
in the keystore, the alias will be
used to extract the correct
certificate.

retries integer The number of times to retry
connection to each broker in the
broker list. Defaults to 1.

connectdelay integer Length of time (in milliseconds)
to wait before attempting to
reconnect. Defaults to 0.

connecttimeout integer Length of time (in milliseconds)
to wait for the socket connection
to succeed. A value of 0
represents an infinite timeout, i.e.
the connection attempt will block
until established or an error
occurs. Defaults to 30000.

tcp_nodelay Boolean If tcp_nodelay='true', TCP
packet batching is disabled.
Defaults to true since Qpid 0.14.

Option Type Description

3.4. JAVA JMS MESSAGE PROPERTIES

The following table shows how Qpid Messaging API message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table msg refers to the Message class defined in
the Qpid Messaging API, mp refers to an AMQP 0-10 message-properties struct, and dp refers to
an AMQP 0-10 delivery-properties struct.

Table 3.4. Java JMS Mapping to AMQP 0-10 Message Properties

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

42

Java JMS Message Property AMQP 0-10 Property[a]

JMSMessageID mp.message_id

qpid.subject[b] mp.application_headers["qpid.subject"]

JMSXUserID mp.user_id

JMSReplyTo mp.reply_to[c]

JMSCorrelationID mp.correlation_id

JMSDeliveryMode dp.delivery_mode

JMSPriority dp.priority

JMSExpiration dp.ttl[d]

JMSRedelivered dp.redelivered

JMS Properties mp.application_headers

JMSType mp.content_type

[a] In these entries, mp refers to an AMQP message property, and dp refers to an AMQP delivery property.

[b] This is a custom JMS property, set automatically by the Java JMS client implementation.

[c] The reply_to is converted from the protocol representation into an address.

[d] JMSExpiration = dp.ttl + currentTime

3.5. JMS MAPMESSAGE TYPES

Qpid supports the Java JMS MapMessage interface, which provides support for maps in messages. The
following code shows how to send a MapMessage in Java JMS.

Example 3.5. Sending a Java JMS MapMessage

 import java.util.ArrayList;
 import java.util.HashMap;
 import java.util.List;
 import java.util.Map;

 import javax.jms.Connection;
 import javax.jms.Destination;
 import javax.jms.MapMessage;
 import javax.jms.MessageProducer;
 import javax.jms.Session;

CHAPTER 3. QPID JMS CLIENT API

43

The following table shows the datatypes that can be sent in a MapMessage, and the corresponding
datatypes that will be received by clients in Python or C++.

Table 3.5. Java Datatypes in Maps

Java Datatype Python C++

boolean bool bool

short int | long int16

int int | long int32

long int | long int64

 import java.util.Arrays;

 // !!! SNIP !!!

 MessageProducer producer = session.createProducer(queue);

 MapMessage m = session.createMapMessage();
 m.setIntProperty("Id", 987654321);
 m.setStringProperty("name", "Widget");
 m.setDoubleProperty("price", 0.99);

 List<String> colors = new ArrayList<String>();
 colors.add("red");
 colors.add("green");
 colors.add("white");
 m.setObject("colours", colors);

 Map<String,Double> dimensions = new HashMap<String,Double>();
 dimensions.put("length",10.2);
 dimensions.put("width",5.1);
 dimensions.put("depth",2.0);
 m.setObject("dimensions",dimensions);

 List<List<Integer>> parts = new ArrayList<List<Integer>>();
 parts.add(Arrays.asList(new Integer[] {1,2,5}));
 parts.add(Arrays.asList(new Integer[] {8,2,5}));
 m.setObject("parts", parts);

 Map<String,Object> specs = new HashMap<String,Object>();
 specs.put("colours", colors);
 specs.put("dimensions", dimensions);
 specs.put("parts", parts);
 m.setObject("specs",specs);

 producer.send(m);

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

44

float float float

double float double

java.lang.String unicode std::string

java.util.UUID uuid qpid::types::Uuid

java.util.Map[a] dict Variant::Map

java.util.List list Variant::List

[a] In Qpid, maps can nest. This goes beyond the functionality required by the JMS specification.

Java Datatype Python C++

3.6. JMS CLIENT LOGGING

The JMS Client logging is handled using the Simple Logging Facade for Java (SLF4J). As the name
implies, slf4j is a facade that delegates to other logging systems like log4j or JDK 1.4 logging. For more
information on how to configure slf4j for specific logging systems, please consult the slf4j
documentation.

When using the log4j binding, please set the log level for org.apache.qpid explicitly. Otherwise log4j
will default to DEBUG which will degrade performance considerably due to excessive logging. The
recommended logging level for production is WARN.

The following example shows the logging properties used to configure client logging for slf4j using the
log4j binding. These properties can be placed in a log4j.properties file and placed in the CLASSPATH, or
they can be set explicitly using the -Dlog4j.configuration property.

Example 3.6. log4j Logging Properties

3.7. CONFIGURING THE JMS CLIENT

The Qpid JMS Client allows several configuration options to customize it's behaviour at different levels
of granualarity.

JVM level using JVM arguments : Configuration that affects all connections, sessions,
consumers and producers created within that JVM.

 log4j.logger.org.apache.qpid=WARN, console
 log4j.additivity.org.apache.qpid=false

 log4j.appender.console=org.apache.log4j.ConsoleAppender
 log4j.appender.console.Threshold=all
 log4j.appender.console.layout=org.apache.log4j.PatternLayout
 log4j.appender.console.layout.ConversionPattern=%t %d %p [%c{4}] %m%n

CHAPTER 3. QPID JMS CLIENT API

45

http://www.slf4j.org/

Ex. -Dmax_prefetch=1000 property specifies the message credits to use.

Connection level using Connection/Broker properties : Affects the respective connection and
sessions, consumers and produces created by that connection.

Ex. amqp://guest:guest@test/test?max_prefetch='1000'
&brokerlist='tcp://localhost:5672' property specifies the message credits to use.
This overrides any value specified via the JVM argument max_prefetch.

Please refer to the Section 3.3.2, “Connection URLs” section for a complete list of all
properties and how to use them.

Destination level using Addressing options : Affects the producer(s) and consumer(s) created
using the respective destination.

Ex. my-queue; {create: always, link:{capacity: 10}}, where capacity option
specifies the message credits to use. This overrides any connection level configuration.

Some of these config options are available at all three levels (Ex. max_prefetch), while others are
available only at JVM or connection level.

3.7.1. Qpid JVM Arguments

Table 3.6. Config Options For Connection Behaviour

Property Name Type Default Value Description

qpid.amqp.version string 0-10 Sets the AMQP version
to be used - currently
supports one of {0-8,0-
9,0-91,0-10}.

The client will begin
negotiation at the
specified version and
only negotiate
downwards if the Broker
does not support the
specified version.

qpid.heartbeat int 120 (secs) The heartbeat interval
in seconds. Two
consective misssed
heartbeats will result in
the connection timing
out. This can also be set
per connection using
the Connection URL
options.

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

46

ignore_setclientID boolean false If a client ID is specified
in the connection URL
it's used or else an ID is
generated. If an ID is
specified after it's been
set Qpid will throw an
exception. Setting this
property to 'true' will
disable that check and
allow you to set a client
ID of your choice later
on.

Property Name Type Default Value Description

Table 3.7. Config Options For Session Behaviour

Property Name Type Default Value Description

qpid.session.command_l
imit

int 65536 Limits the # of unacked
commands

qpid.session.byte_limit int 1048576 Limits the # of unacked
commands in terms of
bytes

qpid.use_legacy_map_m
essage

boolean false If set will use the old
map message encoding.
By default the Map
messages are encoded
using the 0-10 map
encoding.

This can also be set per
connection using the
Connection URL
options.

qpid.jms.daemon.dispat
cher

boolean false Controls whether the
Session dispatcher
thread is a daemon
thread or not. If this
system property is set
to true then the Session
dispatcher threads will
be created as daemon
threads. This setting is
introduced in version
0.16.

Table 3.8. Config Options For Consumer Behaviour

Property Name Type Default Value Description

CHAPTER 3. QPID JMS CLIENT API

47

max_prefetch int 500 Maximum number of
pre-fetched messages
per consumer. This can
also be defaulted for
consumers created on a
particular connection
using the Connection
URL options, or per
destination (see the
capacity option
under link properties in
addressing)

qpid.session.max_ack_d
elay

long 1000 (ms) Timer interval to flush
message acks in buffer
when using AUTO_ACK
and DUPS_OK.

When using the above
ack modes, message
acks are batched and
sent if one of the
following conditions are
met (which ever
happens first).

When the ack
timer fires.

if
un_acked_msg
_count >
max_prefetch/
2.

The ack timer can be
disabled by setting it to
0.

Property Name Type Default Value Description

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

48

sync_ack boolean false If set, each message will
be acknowledged
synchronously. When
using AUTO_ACK mode,
you need to set this to
"true", in order to get
the correct behaviour as
described by the JMS
spec.

This is set to false by
default for performance
reasons, therefore by
default AUTO_ACK
behaves similar to
DUPS_OK.

This can also be set per
connection using the
Connection URL
options.

Property Name Type Default Value Description

Table 3.9. Config Options For Producer Behaviour

Property Name Type Default Value Description

sync_publish string "" (disabled) If one of {persistent|all}
is set then persistent
messages or all
messages will be sent
synchronously.

This can also be set per
connection using the
Connection URL
options.

Table 3.10. Config Options For Threading

Property Name Type Default Value Description

qpid.thread_factory string org.apache.qpid.thread.
DefaultThreadFactory

Specifies the thread
factory to use.

If using a real time JVM,
you need to set the
above property to
org.apache.qpid.
thread.RealtimeT
hreadFactory.

qpid.rt_thread_priority int 20 Specifies the priority (1-
99) for Real time
threads created by the
real time thread factory.

CHAPTER 3. QPID JMS CLIENT API

49

Table 3.11. Config Options For I/O

Property Name Type Default Value Description

qpid.transport string org.apache.qpid.transpo
rt.network.io.IoNetwork
Transport

The transport
implementation to be
used.

A user could specify an
alternative transport
mechanism that
implements the
interface
org.apache.qpid.
transport.networ
k.OutgoingNetwor
kTransport.

qpid.sync_op_timeout long 60000 The length of time (in
milliseconds) to wait for
a synchronous
operation to complete.

For compatibility with
older clients, the
synonym
amqj.default_syn
cwrite_timeout is
supported.

qpid.tcp_nodelay boolean true Sets the TCP_NODELAY
property of the
underlying socket. The
default was changed to
true as of Qpid 0.14.

This can also be set per
connection using the
Connection URL
options.

For compatibility with
older clients, the
synonym
amqj.tcp_nodelay
is supported.

qpid.send_buffer_size integer 65535 Sets the SO_SNDBUF
property of the
underlying socket.
Added in Qpid 0.16.

For compatibility with
older clients, the
synonym
amqj.sendBufferS
ize is supported.

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

50

qpid.receive_buffer_size integer 65535 Sets the SO_RCVBUF
property of the
underlying socket.
Added in Qpid 0.16.

For compatibility with
older clients, the
synonym
amqj.receiveBuff
erSize is supported.

qpid.failover_method_ti
meout

long 60000 During failover, this is
the timeout for each
attempt to try to re-
establish the
connection. If a
reconnection attempt
exceeds the timeout,
the entire failover
process is aborted.

It is only applicable for
AMQP 0-8/0-9/0-9-1
clients.

Property Name Type Default Value Description

Table 3.12. Config Options For Security

Property Name Type Default Value Description

qpid.sasl_mechs string PLAIN The SASL mechanism to
be used. More than one
could be specified as a
comma separated list.

We currently support
the following
mechanisms {PLAIN |
GSSAPI | EXTERNAL}.

This can also be set per
connection using the
Connection URL
options.

qpid.sasl_protocol string AMQP When using GSSAPI as
the SASL mechanism,
sasl_protocol
must be set to the
principal for the qpidd
broker, e.g. qpidd.

This can also be set per
connection using the
Connection URL
options.

CHAPTER 3. QPID JMS CLIENT API

51

qpid.sasl_server_name string localhost When using GSSAPI as
the SASL mechanism,
sasl_server must
be set to the host for the
SASL server, e.g.
example.com.

This can also be set per
connection using the
Connection URL
options.

Property Name Type Default Value Description

Table 3.13. Config Options For Security - Standard JVM properties needed when using GSSAPI as
the SASL mechanism.[a]

Property Name Type Default Value Description

javax.security.auth.useS
ubjectCredsOnly

boolean true If set to 'false', forces
the SASL GASSPI client
to obtain the kerberos
credentials explicitly
instead of obtaining
from the "subject" that
owns the current thread.

java.security.auth.login.
config

string Specifies the jass
configuration file.

Ex-
Djava.security.a
uth.login.config
=myjas.conf

Here is the sample
myjas.conf JASS
configuration file:

com.sun.securi
ty.jgss.initia
te {

com.sun.securi
ty.auth.module
.Krb5LoginModu
le required
useTicketCache
=true;
 };

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

52

[a] Please refer to the Java security documentation for a complete understanding of the above properties.

Property Name Type Default Value Description

Table 3.14. Config Options For Security - Using SSL for securing connections or using EXTERNAL
as the SASL mechanism.

Property Name Type Default Value Description

qpid.ssl_timeout long 60000 Timeout value used by
the Java SSL engine
when waiting on
operations.

qpid.ssl.KeyManagerFac
tory.algorithm

string - The key manager
factory algorithm name.
If not set, defaults to the
value returned from the
Java runtime call
KeyManagerFactor
y.getDefaultAlgo
rithm()

For compatibility with
older clients, the
synonym
qpid.ssl.keyStor
eCertType is
supported.

qpid.ssl.TrustManagerFa
ctory.algorithm

string - The trust manager
factory algorithm name.
If not set, defaults to the
value returned from the
Java runtime call
TrustManagerFact
ory.getDefaultAl
gorithm()

For compatibility with
older clients, the
synonym
qpid.ssl.trustSt
oreCertType is
supported.

Table 3.15. Config Options For Security - Standard JVM properties needed when Using SSL for
securing connections or using EXTERNAL as the SASL mechanism.[a]

Property Name Type Default Value Description

CHAPTER 3. QPID JMS CLIENT API

53

javax.net.ssl.keyStore string jvm default Specifies the key store
path.

This can also be set per
connection using the
Connection URL
options.

javax.net.ssl.keyStorePa
ssword

string jvm default Specifies the key store
password.

This can also be set per
connection using the
Connection URL
options.

javax.net.ssl.trustStore string jvm default Specifies the trust store
path.

This can also be set per
connection using the
Connection URL
options.

javax.net.ssl.trustStore
Password

string jvm default Specifies the trust store
password.

This can also be set per
connection using the
Connection URL
options.

[a] Qpid allows you to have per connection key and trust stores if required. If specified per connection, the JVM
arguments are ignored.

Property Name Type Default Value Description

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

54

CHAPTER 4. STOMP HEARTBEATS

Abstract

The Stomp 1.1 protocol support a heartbeat policy that allows clients to send keepalive messages to
the broker.

STOMP 1.1 HEARTBEATS

Stomp 1.1 adds support for heartbeats (keepalive messages) on Stomp connections. Negotiation of a
heartbeat policy is normally initiated by the client (Stomp 1.1 clients only) and the client must be
configured to enable heartbeats. No broker settings are required to enable support for heartbeats,
however.

At the level of the Stomp wire protocol, heartbeats are negotiated when the client establishes the
Stomp connection and the following messages are exchanged between client and server:

The CltSend, CltRecv, SrvSend, and SrvRecv fields are interpreted as follows:

CltSend

Indicates the minimum frequency of messages sent from the client, expressed as the maximum time
between messages in units of milliseconds. If the client does not send a regular Stomp message
within this time limit, it must send a special heartbeat message, in order to keep the connection
alive.

A value of zero indicates that the client does not send heartbeats.

CltRecv

Indicates how often the client expects to receive message from the server, expressed as the
maximum time between messages in units of milliseconds. If the client does not receive any
messages from the server within this time limit, it would time out the connection.

A value of zero indicates that the client does not expect heartbeats and will not time out the
connection.

SrvSend

Indicates the minimum frequency of messages sent from the server, expressed as the maximum time
between messages in units of milliseconds. If the server does not send a regular Stomp message
within this time limit, it must send a special heartbeat message, in order to keep the connection
alive.

A value of zero indicates that the server does not send heartbeats.

SrvRecv

CONNECT
heart-beat:CltSend,CltRecv

CONNECTED:
heart-beat:SrvSend,SrvRecv

CHAPTER 4. STOMP HEARTBEATS

55

Indicates how often the server expects to receive message from the client, expressed as the
maximum time between messages in units of milliseconds. If the server does not receive any
messages from the client within this time limit, it would time out the connection.

A value of zero indicates that the server does not expect heartbeats and will not time out the
connection.

In order to ensure that the rates of sending and receiving required by the client and the server are
mutually compatible, the client and the server negotiate the heartbeat policy, adjusting their sending
and receiving rates as needed.

STOMP 1.0 HEARTBEAT COMPATIBILITY

A difficulty arises, if you want to support an inactivity timeout on your Stomp connections when legacy
Stomp 1.0 clients are connected to your broker. The Stomp 1.0 protocol does not support heartbeats,
so Stomp 1.0 clients are not capable of negotiating a heartbeat policy.

To get around this limitation, you can specify the transport.defaultHeartBeat option in the
broker's transportConnector element, as follows:

The effect of this setting is that the broker now behaves as if the Stomp 1.0 client had sent the
following Stomp frame when it connected:

This means that the broker will expect the client to send a message at least once every 5000
milliseconds (5 seconds). The second integer value, 0, indicates that the client does not expect to
receive any heartbeats from the server (which makes sense, because Stomp 1.0 clients do not
understand heartbeats).

Now, if the Stomp 1.0 client does not send a regular message after 5 seconds, the connection will time
out, because the Stomp 1.0 client is not capable of sending out a heartbeat message to keep the
connection alive. Hence, you should choose the value of the timeout in
transport.defaultHeartBeat such that the connection will stay alive, as long as the Stomp 1.0
clients are sending messages at their normal rate.

<transportConnector name="stomp" uri="stomp://0.0.0.0:0?
transport.defaultHeartBeat=5000,0" />

CONNECT
heart-beat:5000,0

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

56

CHAPTER 5. INTRA-JVM CONNECTIONS

Abstract

Red Hat JBoss A-MQ uses a VM transport to allow clients to connect to each other inside the Java
Virtual Machine (JVM) without the overhead of network communication.

OVERVIEW

Red Hat JBoss A-MQ's VM transport enables Java clients running inside the same JVM to
communicate with each other without having to resort to a using a network connection. The VM
transport does this be implicitly creating an embedded broker the first time it is accessed. Figure 5.1,
“Clients Connected through the VM Transport” shows the basic architecture of the VM protocol.

Figure 5.1. Clients Connected through the VM Transport

EMBEDDED BROKERS

The VM transport uses a broker embedded in the same JVM as the clients to facilitate communication
between the clients. The embedded broker can be created in several ways:

explicitly defining the broker in the application's configuration

explicitly creating the broker using the Java APIs

automatically when the first client attempts to connect to it using the VM transport

The VM transport uses the broker name to determine if an embedded broker needs to be created.
When a client uses the VM transport to connect to a broker, the transport checks to see if an

CHAPTER 5. INTRA-JVM CONNECTIONS

57

embedded broker by that name already exists. If it does exist, the client is connected to the broker. If it
does not exist, the broker is created and then the client is connected to it.

IMPORTANT

When using explicitly created brokers there is a danger that your clients will attempt to
connect to the embedded broker before it is started. If this happens, the VM transport
will auto-create an instance of the broker for you. To avoid this conflict you can set the
waitForStart option or the create=false option to manage how the VM transport
determines when to create a new embedded broker.

USING THE VM TRANSPORT

The URI used to specify the VM transport comes in two flavors to provide maximum control over how
the embedded broker is configured:

simple

The simple VM URI is used in most situations. It allows you to specify the name of the
embedded broker to which the client will connect. It also allows for some basic broker
configuration.

Example 5.1, “Simple VM URI Syntax” shows the syntax for a simple VM URI.

Example 5.1. Simple VM URI Syntax

BrokerName specifies the name of the embedded broker to which the client connects.

TransportOptions specifies the configuration for the transport. They are specified in the
form of a query list. For details about the available options see the Connection Reference.

IMPORTANT

The broker configuration options specified on the VM URI are only
meaningful if the client is responsible for instantiating the embedded
broker. If the embedded broker is already started, the transport will ignore
the broker configuration properties.

advanced

The advanced VM URI provides you full control over how the embedded broker is configured. It
uses a broker configuration URI similar to the one used by the administration tool to configure
the embedded broker.

Example 5.2, “Advanced VM URI Syntax” shows the syntax for an advanced VM URI.

Example 5.2. Advanced VM URI Syntax

vm://BrokerName?TransportOptions

vm://(BrokerConfigURI)?TransportOptions

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

58

BrokerConfigURI is a broker configuration URI.

TransportOptions specifies the configuration for the transport. They are specified in the
form of a query list. For details about the available options see the Connection Reference.

EXAMPLES

Example 5.3, “Basic VM URI” shows a basic VM URI that connects to an embedded broker named
broker1.

Example 5.3. Basic VM URI

Example 5.4, “Simple URI with broker options” creates and connects to an embedded broker that uses
a non-persistent message store.

Example 5.4. Simple URI with broker options

Example 5.5, “Advanced VM URI” creates and connects to an embedded broker configured using a
broker configuration URI.

Example 5.5. Advanced VM URI

vm://broker1

vm://broker1?broker.persistent=false

vm:(broker:(tcp://localhost:6000)?persistent=false)?marshal=false

CHAPTER 5. INTRA-JVM CONNECTIONS

59

CHAPTER 6. PEER PROTOCOL

Abstract

The peer protocol enables messaging clients to communicate with each other directly, eliminating the
requirement to route messages through an external message broker. It does this by embedding a
message broker in each client and using the embedded brokers to mediate the interactions.

OVERVIEW

The peer protocol enables messaging clients to communicate without the need for a separate message
broker. It creates a peer-to-peer network by creating an embedded broker inside each peer endpoint
and setting up a network connector between them. The messaging clients are formed into a network-
of-brokers.

Figure 6.1, “Peer Protocol Endpoints with Embedded Brokers” illustrates the peer-to-peer network
topology for a simple two-peer network.

Figure 6.1. Peer Protocol Endpoints with Embedded Brokers

The producer sends messages to its embedded broker, broker1, by connecting to the local VM
endpoint, vm://broker1. The embedded brokers, broker1 and broker2, are linked together using a
network connector which allows messages to flow in either direction between the brokers. When the

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

60

producer sends a message to the queue, broker1 pushes the message across the network connector
to broker2. The consumer receives the message from broker2.

PEER ENDPOINT DISCOVERY

The peer protocol uses multicast discovery to locate active peers on the network. As the embedded
brokers are instantiated they use a multicast discovery agent to locate other embedded brokers in the
same multicast group. The multicast group ID is provided as part of the peer URI.

IMPORTANT

To use the peer protocol, you must ensure that the IP multicast protocol is enabled on
your operating system.

For more information about using multicast discovery and network connectors see
Using Networks of Brokers.

URI SYNTAX

A peer URI must conform to the following syntax:

Where the group name, PeerGroup, identifies the set of peers that can communicate with each other. A
given peer can connect only to the set of peers that specify the same PeerGroup name in their URLs.
The BrokerName specifies the broker name for the embedded broker. The broker options,
BrokerOptions, are specified in the form of a query list.

SAMPLE URI

The following is an example of a peer URL that belongs to the peer group, groupA, and creates an
embedded broker with broker name, broker1:

peer://PeerGroup/BrokerName?BrokerOptions

peer://groupA/broker1?persistent=false

CHAPTER 6. PEER PROTOCOL

61

CHAPTER 7. MESSAGE PREFETCH BEHAVIOR

OVERVIEW

Figure 7.1, “Consumer Prefetch Limit” illustrates the behavior of a broker, as it waits to receive
acknowledgments for the messages it has already sent to a consumer.

Figure 7.1. Consumer Prefetch Limit

If a consumer is slow to acknowledge messages, the broker may send it another message before the
previous message is acknowledged. If the consumer continues to be slow, the number of
unacknowledged messages can grow continuously larger. The broker does not continue to send
messages indefinitely. When the number of unacknowledged messages reaches a set limit—the prefetch
limit—the server ceases sending new messages to the consumer. No more messages will be sent until
the consumer starts sending back some acknowledgments.

NOTE

The broker relies on acknowledgement of delivery to determine if it can dispatch
additional messages to a consumer's prefetch buffer. So, if a consumer's prefetch buffer
is set to 1 and it is slow to acknowledge the processing of the message, it is possible that
the broker will dispatch an additional message to the consumer and the pending
message count will be 2.

Red Hat JBoss A-MQ has a provides a lot of options for fine tuning prefetch limits for specific
circumstances. The prefetch limits can be specified for different types of consumers. You can also set
the prefect limits on a per broker, per connection, or per destination basis.

CONSUMER SPECIFIC PREFETCH LIMITS

Different prefetch limits can be set for each consumer type. Table 7.1, “Prefect Limit Defaults” list the
property name and default value for each consumer type's prefetch limit.

Table 7.1. Prefect Limit Defaults

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

62

Consumer Type Property Default

Queue consumer queuePrefetch 1000

Queue browser queueBrowserPrefetch 500

Topic consumer topicPrefetch 32766

Durable topic subscriber durableTopicPrefetch 100

SETTING PREFETCH LIMITS PER BROKER

You can define the prefetch limits for all consumers that attach to a particular broker by setting a
destination policy on the broker. To set the destination policy, add a destinationPolicy element as
a child of the broker element in the broker's configuration, as shown in Example 7.1, “Configuring a
Destination Policy”.

Example 7.1. Configuring a Destination Policy

In Example 7.1, “Configuring a Destination Policy”, the queue prefetch limit for all queues whose names
start with queue. is set to 1 (the > character is a wildcard symbol that matches one or more name
segments); and the topic prefetch limit for all topics whose names start with topic. is set to 1000.

SETTING PREFETCH LIMITS PER CONNECTION

In a consumer, you can specify the prefetch limits on a connection by setting properties on the
ActiveMQConnectionFactory instance. Example 7.2, “Setting Prefetch Limit Properties Per
Connection” shows how to specify the prefetch limits for all consumer types on a connection factory.

Example 7.2. Setting Prefetch Limit Properties Per Connection

<broker ... >
 ...
 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry queue="queue.>" queuePrefetch=”1”/>
 <policyEntry topic="topic.>" topicPrefetch=”1000”/>
 </policyEntries>
 </policyMap>
 </destinationPolicy>
 ...
</broker>

ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory();

Properties props = new Properties();
props.setProperty("prefetchPolicy.queuePrefetch", "1000");
props.setProperty("prefetchPolicy.queueBrowserPrefetch", "500");
props.setProperty("prefetchPolicy.durableTopicPrefetch", "100");

CHAPTER 7. MESSAGE PREFETCH BEHAVIOR

63

NOTE

You can also set the prefetch limits using the consumer properties as part of the broker
URI used when creating the connection factory.

SETTING PREFETCH LIMITS PER DESTINATION

At the finest level of granularity, you can specify the prefetch limit on each destination instance that
you create in a consumer. Example 7.3, “Setting the Prefect Limit on a Destination” shows code create
the queue TEST.QUEUE with a prefetch limit of 10. The option is set as a destination option as part of
the URI used to create the queue.

Example 7.3. Setting the Prefect Limit on a Destination

DISABLING THE PREFETCH EXTENSION LOGIC

The default behavior of a broker is to use delivery acknowledgements to determine the state of a
consumer's prefect buffer. For example, if a consumer's prefect limit is configured as 1 the broker will
dispatch 1 message to the consumer and when the consumer acknowledges receiving the message, the
broker will dispatch a second message. If the initial message takes a long time to process, the message
sitting in the prefect buffer cannot be processed by a faster consumer.

This behavior can also cause issues when using the JCA resource adapter and transacted clients.

If the behavior is causing issues, it can be changed such that the broker will wait for the consumer to
acknowledge that the message is processed before refilling the prefetch buffer. This is accomplished
by setting a destination policy on the broker to disable the prefect extension for specific destinations.

Example 7.4, “Disabling the Prefetch Extension” shows configuration for disabling the prefect
extension on all of a broker's queues.

Example 7.4. Disabling the Prefetch Extension

props.setProperty("prefetchPolicy.topicPrefetch", "32766");

factory.setProperties(props);

Queue queue = new ActiveMQQueue("TEST.QUEUE?consumer.prefetchSize=10");

MessageConsumer consumer = session.createConsumer(queue);

<broker ... >
 ...
 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry queue=">" usePrefetchExtension=”false”/>
 </policyEntries>
 </policyMap>

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

64

 </destinationPolicy>
 ...
</broker>

CHAPTER 7. MESSAGE PREFETCH BEHAVIOR

65

CHAPTER 8. MESSAGE REDELIVERY

OVERVIEW

Messages are redelivered to a client when any of the following occurs:

A transacted session is used and rollback() is called.

A transacted session is closed before commit is called.

A session is using CLIENT_ACKNOWLEDGE and Session.recover() is called.

The policy used to control how messages are redelivered and when they are determined dead can be
configured in a number of ways:

On the broker, using the broker's redelivery plug-in,

On the connection factory, using the connection URI,

On the connection, using the RedeliveryPolicy,

On destinations, using the connection's RedeliveryPolicyMap.

REDELIVERY PROPERTIES

Table 8.1, “Redelivery Policy Options” list the properties that control message redelivery.

Table 8.1. Redelivery Policy Options

Option Default Description

collisionAvoidanceFacto
r

0.15 Specifies the percentage of range
of collision avoidance.

maximumRedeliveries 6 Specifies the maximum number of
times a message will be
redelivered before it is
considered a poisoned pill and
returned to the broker so it can
go to a dead letter queue. -1
specifies an infinite number of
redeliveries.

maximumRedeliveryDelay -1 Specifies the maximum delivery
delay that will be applied if the
useExponentialBackOff
option is set. -1 specifies that no
maximum be applied.

initialRedeliveryDelay 1000 Specifies the initial redelivery
delay in milliseconds.

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

66

redeliveryDelay 1000 Specifies the delivery delay, in
milliseconds, if
initialRedeliveryDelay
is 0.

useCollisionAvoidance false Specifies if the redelivery policy
uses collision avoidance.

useExponentialBackOff false Specifies if the redelivery time
out should be increased
exponentially.

backOffMultiplier 5 Specifies the back-off multiplier.

Option Default Description

CONFIGURING THE BROKER'S REDELIVERY PLUG-IN

Configuring a broker's redelivery plug-in is a good way to tune the redelivery of messages to all of the
consumer's that use the broker. When using the broker's redelivery plug-in, it is recommended that you
disable redelivery on the consumer side (if necessary, by setting maximumRedeliveries to 0 on the
destination).

The broker's redelivery policy configuration is done through the redeliveryPlugin element. As
shown in Example 8.1, “Configuring the Redelivery Plug-In” this element is a child of the broker's
plugins element and contains a policy map defining the desired behavior.

Example 8.1. Configuring the Redelivery Plug-In

1

2

<broker xmlns="http://activemq.apache.org/schema/core" ... >

 <plugins>
 <redeliveryPlugin ... >
 <redeliveryPolicyMap>
 <redeliveryPolicyMap>

 <redeliveryPolicyEntries>
 <!-- a destination specific policy -->

 <redeliveryPolicy queue="SpecialQueue"
 maximumRedeliveries="3"
 initialRedeliveryDelay="3000" />
 </redeliveryPolicyEntries>
 <!-- the fallback policy for all other destinations -->

 <defaultEntry>
 <redeliveryPolicy maximumRedeliveries="3"

 initialRedeliveryDelay="3000" />
 </defaultEntry>
 </redeliveryPolicyMap>
 </redeliveryPolicyMap>
 </redeliveryPlugin>
 </plugins>
 ...
</broker>

CHAPTER 8. MESSAGE REDELIVERY

67

1

2

The redeliveryPolicyEntries element contains a list of redeliveryPolicy elements that
configures redelivery policies on a per-destination basis.

The defaultEntry element contains a single redeliveryPolicy element that configures the
redelivery policy used by all destinations that do not match the one with a specific policy.

CONFIGURING THE REDELIVERY USING THE BROKER URI

Clients can specify their preferred redelivery by adding redelivery policy information as part of the
connection URI used when getting the connection factory. Example 8.2, “Setting the Redelivery Policy
using a Connection URI” shows code for setting the maximum number of redeliveries to 4.

Example 8.2. Setting the Redelivery Policy using a Connection URI

For more information on connection URIs see the Connection Reference.

SETTING THE REDELIVERY POLICY ON A CONNECTION

The ActiveMQConnection class' getRedeliveryPolicy() method allows you to configure the
redelivery policy for all consumer's using that connection.

getRedeliveryPolicy() returns a RedeliveryPolicy object that controls the redelivery policy
for the connection. The RedeliveryPolicy object has setters for each of the properties listed in
Table 8.1, “Redelivery Policy Options” .

Example 8.3, “Setting the Redelivery Policy for a Connection” shows code for setting the maximum
number of redeliveries to 4.

Example 8.3. Setting the Redelivery Policy for a Connection

SETTING THE REDELIVERY POLICY ON A DESTINATION

For even more fine grained control of message redelivery, you can set the redelivery policy on a per-
destination basis. The ActiveMQConnection class' getRedeliveryPolicyMap() method returns a

ActiveMQConnectionFactory connectionFactory =
 new ActiveMQConnectionFactory("tcp://localhost:61616?
jms.redeliveryPolicy.maximumRedeliveries=4");

ActiveMQConnection connection =
 connectionFactory.createConnetion();

// Get the redelivery policy
RedeliveryPolicy policy = connection.getRedeliveryPolicy();

// Set the policy
policy.setMaximumRedeliveries(4);

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

68

RedeliveryPolicyMap object that is a map of RedeliveryPolicy objects with destination names
as the key.

NOTE

You can also specify destination names using wildcards.

Each RedeliveryPolicy object controls the redelivery policy for all destinations whose name match
the destination name specified in the map's key.

NOTE

If a destination does not match one of the entries in the map, the destination will use the
redelivery policy set on the connection.

Example 8.4, “Setting the Redelivery Policy for a Destination” shows code for specifying that
messages in the queue FRED.JOE can only be redelivered 4 times.

Example 8.4. Setting the Redelivery Policy for a Destination

INDEX
A

ActiveMQConnection, The connection , Setting the redelivery policy on a connection , Setting the
redelivery policy on a destination

ActiveMQConnectionFactory, The connection factory

B

backOffMultiplier, Redelivery properties

C

collisionAvoidanceFactor, Redelivery properties

Connection, The connection

ConnectionFactory, The connection factory

ActiveMQConnection connection =
 connectionFactory.createConnetion();

// Get the redelivery policy
RedeliveryPolicy policy = new RedeliveryPolicy();
policy.setMaximumRedeliveries(4);

//Get the policy map
RedeliveryPolicyMap map = connection.getRedeliveryPolicyMap();
map.put(new ActiveMQQueue("FRED.JOE"), queuePolicy);

INDEX

69

D

durableTopicPrefetch, Consumer specific prefetch limits

E

embedded broker, Embedded brokers

G

getRedeliveryPolicy(), Setting the redelivery policy on a connection

getRedeliveryPolicyMap(), Setting the redelivery policy on a destination

I

initialRedeliveryDelay, Redelivery properties

M

maximumRedeliveries, Redelivery properties

maximumRedeliveryDelay, Redelivery properties

P

prefetch

per broker, Setting prefetch limits per broker

per connection, Setting prefetch limits per connection

per destination, Setting prefetch limits per destination

Q

queueBrowserPrefetch, Consumer specific prefetch limits

queuePrefetch, Consumer specific prefetch limits

R

redeliveryDelay, Redelivery properties

redeliveryPlugin, Configuring the broker's redelivery plug-in

RedeliveryPolicy, Setting the redelivery policy on a connection , Setting the redelivery policy on a
destination

RedeliveryPolicyMap, Setting the redelivery policy on a destination

T

topicPrefetch, Consumer specific prefetch limits

U

Red Hat JBoss A-MQ 6.1 Client Connectivity Guide

70

useCollisionAvoidance, Redelivery properties

useExponentialBackOff, Redelivery properties

usePrefetchExtension, Disabling the prefetch extension logic

V

VM

advanced URI, Using the VM transport

broker name, Using the VM transport

create, Embedded brokers

embedded broker, Embedded brokers

simple URI, Using the VM transport

waitForStart, Embedded brokers

VM URI

advanced, Using the VM transport

simple, Using the VM transport

INDEX

71

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. JBOSS A-MQ CLIENT APIS
	Transports and protocols
	Supported Client APIs
	Configuration

	1.2. PREPARING TO USE MAVEN
	Overview
	Prerequisites
	Adding the Red Hat JBoss A-MQ repository
	Artifacts
	Maven coordinates

	CHAPTER 2. NATIVE ACTIVEMQ CLIENT APIS
	2.1. NATIVE JMS CLIENT API
	Overview
	The connection factory
	The connection
	The session
	Example

	2.2. NATIVE C++ CLIENT API
	Overview
	The connection factory
	The connection
	The session
	Resources
	Example

	2.3. NATIVE .NET CLIENT API
	Overview
	Resources
	Example

	2.4. CONFIGURING NMS.ACTIVEMQ
	Connection configuration using the generic NMSConnectionFactory class
	Connection configuration using the ActiveMQ ConnectionFactory class
	Protocol variants
	TCP transport options
	Failover transport options
	Connection Options
	OpenWire options
	Destination configuration
	General options
	OpenWire specific options

	CHAPTER 3. QPID JMS CLIENT API
	3.1. GETTING STARTED WITH AMQP
	3.1.1. Introduction to AMQP
	What is AMQP?
	JMS is an API
	AMQP is a wire protocol
	AMQP-to-JMS requires message conversion
	AMQP support in JBoss A-MQ
	Getting started with AMQP

	3.1.2. Configuring the Broker for AMQP
	Overview
	Steps to configure the broker
	Message conversion
	Reference

	3.1.3. AMQP Example Clients
	Overview
	Prerequisites
	AMQP connection URI
	Steps to implement and run the AMQP clients

	3.2. A SIMPLE MESSAGING PROGRAM IN JAVA JMS
	3.3. APACHE QPID JNDI PROPERTIES FOR AMQP MESSAGING
	3.3.1. JNDI Properties for Apache Qpid
	3.3.2. Connection URLs

	3.4. JAVA JMS MESSAGE PROPERTIES
	3.5. JMS MAPMESSAGE TYPES
	3.6. JMS CLIENT LOGGING
	3.7. CONFIGURING THE JMS CLIENT
	3.7.1. Qpid JVM Arguments

	CHAPTER 4. STOMP HEARTBEATS
	STOMP 1.1 HEARTBEATS
	STOMP 1.0 HEARTBEAT COMPATIBILITY

	CHAPTER 5. INTRA-JVM CONNECTIONS
	OVERVIEW
	EMBEDDED BROKERS
	USING THE VM TRANSPORT
	EXAMPLES

	CHAPTER 6. PEER PROTOCOL
	OVERVIEW
	PEER ENDPOINT DISCOVERY
	URI SYNTAX
	SAMPLE URI

	CHAPTER 7. MESSAGE PREFETCH BEHAVIOR
	OVERVIEW
	CONSUMER SPECIFIC PREFETCH LIMITS
	SETTING PREFETCH LIMITS PER BROKER
	SETTING PREFETCH LIMITS PER CONNECTION
	SETTING PREFETCH LIMITS PER DESTINATION
	DISABLING THE PREFETCH EXTENSION LOGIC

	CHAPTER 8. MESSAGE REDELIVERY
	OVERVIEW
	REDELIVERY PROPERTIES
	CONFIGURING THE BROKER'S REDELIVERY PLUG-IN
	CONFIGURING THE REDELIVERY USING THE BROKER URI
	SETTING THE REDELIVERY POLICY ON A CONNECTION
	SETTING THE REDELIVERY POLICY ON A DESTINATION

	INDEX

