
Red Hat JBoss A-MQ 6.0

Client Connectivity Guide

Creating and tuning clients connections to message brokers

Last Updated: 2017-10-13

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

Creating and tuning clients connections to message brokers

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2014 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat JBoss A-MQ supports a number of different wire protocols and message formats. This
guide provides a quick reference for understanding how to configure connections between clients
and message brokers.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
TRANSPORTS AND PROTOCOLS
SUPPORTED CLIENT APIS
CONFIGURATION

CHAPTER 2. CONNECTING TO A BROKER
2.1. CONNECTING WITH THE JAVA API
2.2. CONNECTING WITH THE C++ API
2.3. CONNECTING WITH THE .NET API

CHAPTER 3. STOMP HEARTBEATS
STOMP 1.1 HEARTBEATS
STOMP 1.0 HEARTBEAT COMPATIBILITY

CHAPTER 4. INTRA-JVM CONNECTIONS
OVERVIEW
EMBEDDED BROKERS
USING THE VM TRANSPORT
EXAMPLES

CHAPTER 5. PEER PROTOCOL
OVERVIEW
PEER ENDPOINT DISCOVERY
URI SYNTAX
SAMPLE URI

CHAPTER 6. MESSAGE PREFETCH BEHAVIOR
OVERVIEW
CONSUMER SPECIFIC PREFETCH LIMITS
SETTING PREFETCH LIMITS PER BROKER
SETTING PREFETCH LIMITS PER CONNECTION
SETTING PREFETCH LIMITS PER DESTINATION
DISABLING THE PREFETCH EXTENSION LOGIC

CHAPTER 7. MESSAGE REDELIVERY
OVERVIEW
REDELIVERY PROPERTIES
CONFIGURING THE BROKER'S REDELIVERY PLUG-IN
CONFIGURING THE REDELIVERY USING THE BROKER URI
SETTING THE REDELIVERY POLICY ON A CONNECTION
SETTING THE REDELIVERY POLICY ON A DESTINATION

INDEX

3
3
3
4

5
5
7

11

13
13
14

15
15
15
16
17

18
18
19
19
19

20
20
20
21
21
22
22

24
24
24
25
26
26
26

27

Table of Contents

1

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

2

CHAPTER 1. INTRODUCTION

Abstract

Red Hat JBoss A-MQ clients can connect to a broker using a variety of transports and APIs. The
connections are highly configurable and can be tuned for the majority of use cases.

TRANSPORTS AND PROTOCOLS

Red Hat JBoss A-MQ uses OpenWire as its default on the wire message protocol. OpenWire is a JMS
compliant wire protocol that is designed to be fully-featured and highly performant. It is the default
protocol of JBoss A-MQ. OpenWire can use a number of transports including TCP, SSL, and HTTP.

In addition to OpenWire, JBoss A-MQ clients can also use a number of other transports including:

Simple Text Orientated Messaging Protocol(STOMP)—allows developers to use a wide variety
of client APIs to connect to a broker.

Discovery—allows clients to connect to one or more brokers without knowing the connection
details for a specific broker. See Using Networks of Brokers.

VM—allows clients to directly communicate with other clients in the same virtual machine. See
Chapter 4, Intra-JVM Connections.

Peer—allows clients to communicate with each other without using an external message broker.
See Chapter 5, Peer Protocol.

For details of using the different the transports see the Connection Reference.

SUPPORTED CLIENT APIS

JBoss A-MQ provides a standard JMS client library. In addition to the standard JMS APIs the Java client
library has a few implementation specific APIs.

JBoss A-MQ also has a C++ client library and .Net client library that are developed as part of the Apache
ActiveMQ project. You can download them from them from the Red Hat customer portal. You will need to
compile them yourselves.

NOTE

This guide only deals with the JBoss A-MQ client libraries.

The STOMP protocol allows you to use a number of other clients including:

C clients

C++ clients

C# and .NET clients

Delphi clients

Flash clients

CHAPTER 1. INTRODUCTION

3

Perl clients

PHP clients

Pike clients

Python clients

CONFIGURATION

There are two types of properties that effects client connections:

transport options—configured on the connection. These options are configured using the
connection URI and may be set by the broker. They apply to all clients using the connection.

destination options—configured on a per destination basis. These options are configured when
the destination is created and impact all of the clients that send or receive messages using the
destination. They are always set by clients.

Some properties, like prefect and redelivery, can be configured as both connection options and
destination oprions.

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

4

CHAPTER 2. CONNECTING TO A BROKER

Abstract

The Red Hat JBoss A-MQ client APIs follow the standard JMS pattern.

Regardless of the API in use, the pattern for establishing a connection between a messaging client and a
message broker is the same. You must:

1. Get an instance of the Red Hat JBoss A-MQ connection factory.

Depending on the environment, the application can create a new instance of the connection
factory or use JNDI, or another mechanism, to look up the connection factory.

2. Use the connection factory to create a connection.

3. Get an instance of the destination used for sending or receiving messages.

Destinations are administered objects that are typically created by the broker. The JBoss A-MQ
allows clients to create destinations on-demand. You can also look up destinations using JNDI
or another mechanism.

4. Use the connection to create a session.

The session is the factory for creating producers and consumers. The session also is a factory
for creating messages.

5. Use the session to create the message consumer or message producer.

6. Start the connection.

NOTE

You can add configuration information when creating connections and destinations.

2.1. CONNECTING WITH THE JAVA API

Overview

Red Hat JBoss A-MQ clients use the standard JMS APIs to interact with the message broker. Most of the
configuration properties can be set using the connection URI and the destination specification used.

Developers can also use the JBoss A-MQ specific implementations to access JBoss A-MQ configuration
features. Using these APIs will make your client non-portable.

The connection factory

The connection factory is an administered object that is created by the broker and used by clients
wanting to connect to the broker. Each JMS provider is responsible for providing an implementation of
the connection factory and the connection factory is stored in JNDI and retrieved by clients using a JNDI
lookup.

The JBoss A-MQ connection factory, ActiveMQConnectionFactory, is used to create connections to
brokers and does not need to be looked up using JNDI. Instances are created using a broker URI that

CHAPTER 2. CONNECTING TO A BROKER

5

specifies one of the transport connectors configured on a broker and the connection factory will do the
heavy lifting.

Example 2.1, “Connection Factory Constructors” shows the syntax for the available
ActiveMQConnectionFactory constructors.

Example 2.1. Connection Factory Constructors

ActiveMQConnectionFactory(String brokerURI);
ActiveMQConnectionFactory(URI brokerURI);
ActiveMQConnectionFactory(String username,
 String password,
 String brokerURI);
ActiveMQConnectionFactory(String username,
 String password,
 URI brokerURI);
The broker URI also specifies connection configuration information. For details on how to construct a
broker URI see the Connection Reference.

The connection

The connection object is created from the connection factory and is the object responsible for maintaining
the link between the client and the broker. The connection object is used to create session objects that
manage the resources used by message producers and message consumers.

For more applications the standard JMS Connection object will suffice. However, JBoss A-MQ does
provide an implementation, ActiveMQConnection, that provides a number of additional methods for
working with the broker. Using ActiveMQConnection will make your client code less portable between
JMS providers.

The session

The session object is responsible for managing the resources for the message consumers and message
producers implemented by a client. It is created from the connection, and is used to create message
consumers, message producers, messages, and other objects involved in sending and receiving
messages from a broker.

Example

Example 2.2, “JMS Producer Connection” shows code for creating a message producer that sends
messages to the queue EXAMPLE.FOO.

Example 2.2. JMS Producer Connection

import org.apache.activemq.ActiveMQConnectionFactory;

import javax.jms.Connection;
import javax.jms.DeliveryMode;
import javax.jms.Destination;
import javax.jms.ExceptionListener;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

6

2.2. CONNECTING WITH THE C++ API

Overview

The CMS API is a C++ corollary to the JMS API. The CMS makes every attempt to maintain parity with
the JMS API as possible. It only diverges when a JMS feature depended on features in the Java
programming language. Even though there are some differences most are minor and for the most part
CMS adheres to the JMS spec. Having a firm grasp on how JMS works should make using the C++ API
easier.

NOTE

In order to use the CMS API, you will need to download the source and build it for your
environment.

The connection factory

The first interface you will use in the CMS API is the ConnectionFactory. A ConnectionFactory
allows you to create connections which maintain a connection to a message broker.

The simplest way to obtain an instance of a ConnectionFactory is to use the static
createCMSConnectionFactory() method that all CMS provider libraries are required to implement.
Example 2.3, “Creating a Connection Factory” demonstrates how to obtain a new
ConnectionFactory.

Example 2.3. Creating a Connection Factory

import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;

...

// Create a ConnectionFactory
ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory("tcp://localhost:61616");

// Create a Connection
Connection connection = connectionFactory.createConnection();

// Create a Session
Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

// Create the destination
Destination destination = session.createQueue("EXAMPLE.FOO");

// Create a MessageProducer from the Session to the Queue
MessageProducer producer = session.createProducer(destination);

// Start the connection
connection.start();

CHAPTER 2. CONNECTING TO A BROKER

7

The createCMSConnectionFactory() takes a single string parameter which a URI that defines the
connection that will be created by the factory. Additionally configuration information can be encoded in
the URI. For details on how to construct a broker URI see the Connection Reference.

The connection

Once you've created a connection factory, you need to create a connection using the factory. A
Connection is a object that manages the client's connection to the broker. Example 2.4, “Creating a
Connection” shows the code to create a connection.

Example 2.4. Creating a Connection

Upon creation the connection object attempts to connect to the broker, if the connection fails then an
CMSException is thrown with a description of the error that occurred stored in its message property.

The connection interface defines an object that is the client's active connection to the CMS provider. In
most cases the client will only create one connection object since it is considered a heavyweight object.

A connection serves several purposes:

It encapsulates an open connection with a JMS provider. It typically represents an open TCP/IP
socket between a client and a provider service daemon.

Its creation is where client authentication takes place.

It can specify a unique client identifier.

It provides a ConnectionMetaData object.

It supports an optional ExceptionListener object.

The session

After creating the connection the client must create a Session in order to create message producers and
consumers. Example 2.5, “Creating a Session” shows how to create a session object from the
connection.

Example 2.5. Creating a Session

std::auto_ptr<cms::ConnectionFactory> connectionFactory(
 cms::ConnectionFactory::createCMSConnectionFactory(
"tcp://127.0.0.1:61616"));

std::auto_ptr<cms::Connection> connection(connectionFactory-
>createConnection());

std::auto_ptr<cms::Session> session(connection-
>createSession(cms::Session::CLIENT_ACKNOWLEDGE));

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

8

When a client creates a session it must specify the mode in which the session will acknowledge the
messages that it receives and dispatches. The modes supported are summarized in Table 2.1, “Support
Acknowledgement Modes”.

Table 2.1. Support Acknowledgement Modes

Acknowledge Mode Description

AUTO_ACKNOWLEDGE The session automatically acknowledges a client's
receipt of a message either when the session has
successfully returned from a call to receive or when
the message listener the session has called to
process the message successfully returns.

CLIENT_ACKNOWLEDGE The client acknowledges a consumed message by
calling the message's acknowledge method.
Acknowledging a consumed message acknowledges
all messages that the session has consumed.

DUPS_OK_ACKNOWLEDGE The session to lazily acknowledges the delivery of
messages. This is likely to result in the delivery of
some duplicate messages if the broker fails, so it
should only be used by consumers that can tolerate
duplicate messages. Use of this mode can reduce
session overhead by minimizing the work the session
does to prevent duplicates.

SESSION_TRANSACTED The session is transacted and the acknowledge of
messages is handled internally.

INDIVIDUAL_ACKNOWLEDGE Acknowledges are applied to a single message only.

NOTE

If you do not specify an acknowledgement mode, the default is AUTO_ACKNOWLEDGE.

A session serves several purposes:

It is a factory for producers and consumers.

It supplies provider-optimized message factories.

It is a factory for temporary topics and temporary queues.

It provides a way to create a queue or a topic for those clients that need to dynamically
manipulate provider-specific destination names.

It supports a single series of transactions that combine work spanning its producers and
consumers into atomic units.

It defines a serial order for the messages it consumes and the messages it produces.

It retains messages it consumes until they have been acknowledged.

CHAPTER 2. CONNECTING TO A BROKER

9

It serializes execution of message listeners registered with its message consumers.

NOTE

A session can create and service multiple producers and consumers.

Resources

The API reference documentation for the A-MQ C++ API can be found at
http://activemq.apache.org/cms/api.html.

Example

Example 2.6, “CMS Producer Connection” shows code for creating a message producer that sends
messages to the queue EXAMPLE.FOO.

Example 2.6. CMS Producer Connection

#include <decaf/lang/Thread.h>
#include <decaf/lang/Runnable.h>
#include <decaf/util/concurrent/CountDownLatch.h>
#include <decaf/lang/Integer.h>
#include <decaf/util/Date.h>
#include <activemq/core/ActiveMQConnectionFactory.h>
#include <activemq/util/Config.h>
#include <cms/Connection.h>
#include <cms/Session.h>
#include <cms/TextMessage.h>
#include <cms/BytesMessage.h>
#include <cms/MapMessage.h>
#include <cms/ExceptionListener.h>
#include <cms/MessageListener.h>
...

using namespace activemq::core;
using namespace decaf::util::concurrent;
using namespace decaf::util;
using namespace decaf::lang;
using namespace cms;
using namespace std;

...

// Create a ConnectionFactory
auto_ptr<ConnectionFactory> connectionFactory(
 ConnectionFactory::createCMSConnectionFactory(
"tcp://127.1.0.1:61616?wireFormat=openwire"));

// Create a Connection
connection = connectionFactory->createConnection();
connection->start();

// Create a Session
session = connection->createSession(Session::AUTO_ACKNOWLEDGE);
destination = session->createQueue("EXAMPLE.FOO");

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

10

http://activemq.apache.org/cms/api.html

2.3. CONNECTING WITH THE .NET API

Overview

The Red Hat JBoss A-MQ NMS client is a .Net client that communicates with the JBoss A-MQ broker
using its native Openwire protocol. This client supports advanced features such as failover, discovery,
SSL, and message compression.

For complete details of using the .Net API see http://activemq.apache.org/nms/index.html.

NOTE

In order to use the NMS API, you can download the Red Hat JBoss A-MQ 6.2.0 .NET
Client binaries from the Red Hat Customer Portal. Binaries for version 6.0 are not
available, but the later versions of the .NET client binaries are compatible with 6.0 (the
OpenWire endpoint will negotiate down to the correct protocol version for the 6.0 broker).
Ideally, though, it is recommended that you upgrade your brokers to version 6.2.0 as well.

Resources

The API reference documentation for the A-MQ .Net API can be found at
http://activemq.apache.org/nms/nms-api.html.

You can find examples of using the A-MQ .Net API at http://activemq.apache.org/nms/nms-
examples.html.

Example

Example 2.7, “NMS Producer Connection” shows code for creating a message producer that sends
messages to the queue EXAMPLE.FOO.

Example 2.7. NMS Producer Connection

// Create a MessageProducer from the Session to the Queue
producer = session->createProducer(destination);

...

using System;
using Apache.NMS;
using Apache.NMS.Util;
...

// NOTE: ensure the nmsprovider-activemq.config file exists in the
executable folder.
IConnectionFactory factory = new
ActiveMQ.ConnectionFactory("tcp://localhost:61616);

// Create a Connection
IConnection connection = factory.CreateConnection();

CHAPTER 2. CONNECTING TO A BROKER

11

http://activemq.apache.org/nms/index.html
https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=38603&product=jboss.amq&version=6.2.0&downloadType=distributions.
http://activemq.apache.org/nms/nms-api.html
http://activemq.apache.org/nms/nms-examples.html

// Create a Session
ISession session = connection.CreateSession();

// Create the destination
IDestination destination = SessionUtil.GetDestination(session,
"queue://EXAMPLE.FOO");

// Create a message producer from the Session to the Queue
IMessageProducer producer = session.CreateProducer(destination);

// Start the connection
connection.Start();
...

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

12

CHAPTER 3. STOMP HEARTBEATS

Abstract

The Stomp 1.1 protocol support a heartbeat policy that allows clients to send keepalive messages to the
broker.

STOMP 1.1 HEARTBEATS

Stomp 1.1 adds support for heartbeats (keepalive messages) on Stomp connections. Negotiation of a
heartbeat policy is normally initiated by the client (Stomp 1.1 clients only) and the client must be
configured to enable heartbeats. No broker settings are required to enable support for heartbeats,
however.

At the level of the Stomp wire protocol, heartbeats are negotiated when the client establishes the Stomp
connection and the following messages are exchanged between client and server:

The CltSend, CltRecv, SrvSend, and SrvRecv fields are interpreted as follows:

CltSend

Indicates the minimum frequency of messages sent from the client, expressed as the maximum time
between messages in units of milliseconds. If the client does not send a regular Stomp message
within this time limit, it must send a special heartbeat message, in order to keep the connection alive.

A value of zero indicates that the client does not send heartbeats.

CltRecv

Indicates how often the client expects to receive message from the server, expressed as the
maximum time between messages in units of milliseconds. If the client does not receive any
messages from the server within this time limit, it would time out the connection.

A value of zero indicates that the client does not expect heartbeats and will not time out the
connection.

SrvSend

Indicates the minimum frequency of messages sent from the server, expressed as the maximum time
between messages in units of milliseconds. If the server does not send a regular Stomp message
within this time limit, it must send a special heartbeat message, in order to keep the connection alive.

A value of zero indicates that the server does not send heartbeats.

SrvRecv

Indicates how often the server expects to receive message from the client, expressed as the
maximum time between messages in units of milliseconds. If the server does not receive any
messages from the client within this time limit, it would time out the connection.

CONNECT
heart-beat:CltSend,CltRecv

CONNECTED:
heart-beat:SrvSend,SrvRecv

CHAPTER 3. STOMP HEARTBEATS

13

A value of zero indicates that the server does not expect heartbeats and will not time out the
connection.

In order to ensure that the rates of sending and receiving required by the client and the server are
mutually compatible, the client and the server negotiate the heartbeat policy, adjusting their sending and
receiving rates as needed.

STOMP 1.0 HEARTBEAT COMPATIBILITY

A difficulty arises, if you want to support an inactivity timeout on your Stomp connections when legacy
Stomp 1.0 clients are connected to your broker. The Stomp 1.0 protocol does not support heartbeats, so
Stomp 1.0 clients are not capable of negotiating a heartbeat policy.

To get around this limitation, you can specify the transport.defaultHeartBeat option in the
broker's transportConnector element, as follows:

The effect of this setting is that the broker now behaves as if the Stomp 1.0 client had sent the following
Stomp frame when it connected:

This means that the broker will expect the client to send a message at least once every 5000
milliseconds (5 seconds). The second integer value, 0, indicates that the client does not expect to
receive any heartbeats from the server (which makes sense, because Stomp 1.0 clients do not
understand heartbeats).

Now, if the Stomp 1.0 client does not send a regular message after 5 seconds, the connection will time
out, because the Stomp 1.0 client is not capable of sending out a heartbeat message to keep the
connection alive. Hence, you should choose the value of the timeout in
transport.defaultHeartBeat such that the connection will stay alive, as long as the Stomp 1.0
clients are sending messages at their normal rate.

<transportConnector name="stomp" uri="stomp://0.0.0.0:0?
transport.defaultHeartBeat=5000,0" />

CONNECT
heart-beat:5000,0

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

14

CHAPTER 4. INTRA-JVM CONNECTIONS

Abstract

Red Hat JBoss A-MQ uses a VM transport to allow clients to connect to each other inside the Java
Virtual Machine (JVM) without the overhead of network communication.

OVERVIEW

Red Hat JBoss A-MQ's VM transport enables Java clients running inside the same JVM to communicate
with each other without having to resort to a using a network connection. The VM transport does this be
implicitly creating an embedded broker the first time it is accessed. Figure 4.1, “Clients Connected
through the VM Transport” shows the basic architecture of the VM protocol.

Figure 4.1. Clients Connected through the VM Transport

EMBEDDED BROKERS

The VM transport uses a broker embedded in the same JVM as the clients to facilitate communication
between the clients. The embedded broker can be created in several ways:

explicitly defining the broker in the application's configuration

explicitly creating the broker using the Java APIs

automatically when the first client attempts to connect to it using the VM transport

The VM transport uses the broker name to determine if an embedded broker needs to be created. When
a client uses the VM transport to connect to a broker, the transport checks to see if an embedded broker

CHAPTER 4. INTRA-JVM CONNECTIONS

15

by that name already exists. If it does exist, the client is connected to the broker. If it does not exist, the
broker is created and then the client is connected to it.

IMPORTANT

When using explicitly created brokers there is a danger that your clients will attempt to
connect to the embedded broker before it is started. If this happens, the VM transport will
auto-create an instance of the broker for you. To avoid this conflict you can set the
waitForStart option or the create=false option to manage how the VM transport
determines when to create a new embedded broker.

USING THE VM TRANSPORT

The URI used to specify the VM transport comes in two flavors to provide maximum control over how the
embedded broker is configured:

simple

The simple VM URI is used in most situations. It allows you to specify the name of the
embedded broker to which the client will connect. It also allows for some basic broker
configuration.

Example 4.1, “Simple VM URI Syntax” shows the syntax for a simple VM URI.

Example 4.1. Simple VM URI Syntax

BrokerName specifies the name of the embedded broker to which the client connects.

TransportOptions specifies the configuration for the transport. They are specified in the form
of a query list. For details about the available options see the Connection Reference.

IMPORTANT

The broker configuration options specified on the VM URI are only meaningful
if the client is responsible for instantiating the embedded broker. If the
embedded broker is already started, the transport will ignore the broker
configuration properties.

advanced

The advanced VM URI provides you full control over how the embedded broker is configured. It
uses a broker configuration URI similar to the one used by the administration tool to configure
the embedded broker.

Example 4.2, “Advanced VM URI Syntax” shows the syntax for an advanced VM URI.

Example 4.2. Advanced VM URI Syntax

vm://BrokerName?TransportOptions

vm://(BrokerConfigURI)?TransportOptions

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

16

BrokerConfigURI is a broker configuration URI.

TransportOptions specifies the configuration for the transport. They are specified in the form
of a query list. For details about the available options see the Connection Reference.

EXAMPLES

Example 4.3, “Basic VM URI” shows a basic VM URI that connects to an embedded broker named
broker1.

Example 4.3. Basic VM URI

Example 4.4, “Simple URI with broker options” creates and connects to an embedded broker that uses a
non-persistent message store.

Example 4.4. Simple URI with broker options

Example 4.5, “Advanced VM URI” creates and connects to an embedded broker configured using a
broker configuration URI.

Example 4.5. Advanced VM URI

vm://broker1

vm://broker1?broker.persistent=false

vm:(broker:(tcp://localhost:6000)?persistent=false)?marshal=false

CHAPTER 4. INTRA-JVM CONNECTIONS

17

CHAPTER 5. PEER PROTOCOL

Abstract

The peer protocol enables messaging clients to communicate with each other directly, eliminating the
requirement to route messages through an external message broker. It does this by embedding a
message broker in each client and using the embedded brokers to mediate the interactions.

OVERVIEW

The peer protocol enables messaging clients to communicate without the need for a separate message
broker. It creates a peer-to-peer network by creating an embedded broker inside each peer endpoint and
setting up a network connector between them. The messaging clients are formed into a network-of-
brokers.

Figure 5.1, “Peer Protocol Endpoints with Embedded Brokers” illustrates the peer-to-peer network
topology for a simple two-peer network.

Figure 5.1. Peer Protocol Endpoints with Embedded Brokers

The producer sends messages to its embedded broker, broker1, by connecting to the local VM
endpoint, vm://broker1. The embedded brokers, broker1 and broker2, are linked together using a
network connector which allows messages to flow in either direction between the brokers. When the

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

18

producer sends a message to the queue, broker1 pushes the message across the network connector
to broker2. The consumer receives the message from broker2.

PEER ENDPOINT DISCOVERY

The peer protocol uses multicast discovery to locate active peers on the network. As the embedded
brokers are instantiated they use a multicast discovery agent to locate other embedded brokers in the
same multicast group. The multicast group ID is provided as part of the peer URI.

IMPORTANT

To use the peer protocol, you must ensure that the IP multicast protocol is enabled on
your operating system.

For more information about using multicast discovery and network connectors see Using
Networks of Brokers.

URI SYNTAX

A peer URI must conform to the following syntax:

Where the group name, PeerGroup, identifies the set of peers that can communicate with each other. A
given peer can connect only to the set of peers that specify the same PeerGroup name in their URLs.
The BrokerName specifies the broker name for the embedded broker. The broker options,
BrokerOptions, are specified in the form of a query list.

SAMPLE URI

The following is an example of a peer URL that belongs to the peer group, groupA, and creates an
embedded broker with broker name, broker1:

peer://PeerGroup/BrokerName?BrokerOptions

peer://groupA/broker1?persistent=false

CHAPTER 5. PEER PROTOCOL

19

CHAPTER 6. MESSAGE PREFETCH BEHAVIOR

OVERVIEW

Figure 6.1, “Consumer Prefetch Limit” illustrates the behavior of a broker, as it waits to receive
acknowledgments for the messages it has already sent to a consumer.

Figure 6.1. Consumer Prefetch Limit

If a consumer is slow to acknowledge messages, the broker may send it another message before the
previous message is acknowledged. If the consumer continues to be slow, the number of
unacknowledged messages can grow continuously larger. The broker does not continue to send
messages indefinitely. When the number of unacknowledged messages reaches a set limit—the prefetch
limit—the server ceases sending new messages to the consumer. No more messages will be sent until
the consumer starts sending back some acknowledgments.

NOTE

The broker relies on acknowledgement of delivery to determine if it can dispatch
additional messages to a consumer's prefetch buffer. So, if a consumer's prefetch buffer
is set to 1 and it is slow to acknowledge the processing of the message, it is possible that
the broker will dispatch an additional message to the consumer and the pending message
count will be 2.

Red Hat JBoss A-MQ has a provides a lot of options for fine tuning prefetch limits for specific
circumstances. The prefetch limits can be specified for different types of consumers. You can also set
the prefect limits on a per broker, per connection, or per destination basis.

CONSUMER SPECIFIC PREFETCH LIMITS

Different prefetch limits can be set for each consumer type. Table 6.1, “Prefect Limit Defaults” list the
property name and default value for each consumer type's prefetch limit.

Table 6.1. Prefect Limit Defaults

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

20

Consumer Type Property Default

Queue consumer queuePrefetch 1000

Queue browser queueBrowserPrefetch 500

Topic consumer topicPrefetch 32766

Durable topic subscriber durableTopicPrefetch 100

SETTING PREFETCH LIMITS PER BROKER

You can define the prefetch limits for all consumers that attach to a particular broker by setting a
destination policy on the broker. To set the destination policy, add a destinationPolicy element as a
child of the broker element in the broker's configuration, as shown in Example 6.1, “Configuring a
Destination Policy”.

Example 6.1. Configuring a Destination Policy

In Example 6.1, “Configuring a Destination Policy”, the queue prefetch limit for all queues whose names
start with queue. is set to 1 (the > character is a wildcard symbol that matches one or more name
segments); and the topic prefetch limit for all topics whose names start with topic. is set to 1000.

SETTING PREFETCH LIMITS PER CONNECTION

In a consumer, you can specify the prefetch limits on a connection by setting properties on the
ActiveMQConnectionFactory instance. Example 6.2, “Setting Prefetch Limit Properties Per
Connection” shows how to specify the prefetch limits for all consumer types on a connection factory.

Example 6.2. Setting Prefetch Limit Properties Per Connection

<broker ... >
 ...
 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry queue="queue.>" queuePrefetch=”1”/>
 <policyEntry topic="topic.>" topicPrefetch=”1000”/>
 </policyEntries>
 </policyMap>
 </destinationPolicy>
 ...
</broker>

ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory();

Properties props = new Properties();
props.setProperty("prefetchPolicy.queuePrefetch", "1000");
props.setProperty("prefetchPolicy.queueBrowserPrefetch", "500");
props.setProperty("prefetchPolicy.durableTopicPrefetch", "100");

CHAPTER 6. MESSAGE PREFETCH BEHAVIOR

21

NOTE

You can also set the prefetch limits using the consumer properties as part of the broker
URI used when creating the connection factory.

SETTING PREFETCH LIMITS PER DESTINATION

At the finest level of granularity, you can specify the prefetch limit on each destination instance that you
create in a consumer. Example 6.3, “Setting the Prefect Limit on a Destination” shows code create the
queue TEST.QUEUE with a prefetch limit of 10. The option is set as a destination option as part of the
URI used to create the queue.

Example 6.3. Setting the Prefect Limit on a Destination

DISABLING THE PREFETCH EXTENSION LOGIC

The default behavior of a broker is to use delivery acknowledgements to determine the state of a
consumer's prefect buffer. For example, if a consumer's prefect limit is configured as 1 the broker will
dispatch 1 message to the consumer and when the consumer acknowledges receiving the message, the
broker will dispatch a second message. If the initial message takes a long time to process, the message
sitting in the prefect buffer cannot be processed by a faster consumer.

This behavior can also cause issues when using the JCA resource adapter and transacted clients.

If the behavior is causing issues, it can be changed such that the broker will wait for the consumer to
acknowledge that the message is processed before refilling the prefetch buffer. This is accomplished by
setting a destination policy on the broker to disable the prefect extension for specific destinations.

Example 6.4, “Disabling the Prefetch Extension” shows configuration for disabling the prefect extension
on all of a broker's queues.

Example 6.4. Disabling the Prefetch Extension

props.setProperty("prefetchPolicy.topicPrefetch", "32766");

factory.setProperties(props);

Queue queue = new ActiveMQQueue("TEST.QUEUE?consumer.prefetchSize=10");

MessageConsumer consumer = session.createConsumer(queue);

<broker ... >
 ...
 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry queue=">" usePrefetchExtension=”false”/>
 </policyEntries>
 </policyMap>

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

22

 </destinationPolicy>
 ...
</broker>

CHAPTER 6. MESSAGE PREFETCH BEHAVIOR

23

CHAPTER 7. MESSAGE REDELIVERY

OVERVIEW

Messages are redelivered to a client when any of the following occurs:

A transacted session is used and rollback() is called.

A transacted session is closed before commit is called.

A session is using CLIENT_ACKNOWLEDGE and Session.recover() is called.

The policy used to control how messages are redelivered and when they are determined dead can be
configured in a number of ways:

On the broker, using the broker's redelivery plug-in,

On the connection factory, using the connection URI,

On the connection, using the RedeliveryPolicy,

On destinations, using the connection's RedeliveryPolicyMap.

REDELIVERY PROPERTIES

Table 7.1, “Redelivery Policy Options” list the properties that control message redelivery.

Table 7.1. Redelivery Policy Options

Option Default Description

collisionAvoidanceFacto
r

0.15 Specifies the percentage of range
of collision avoidance.

maximumRedeliveries 6 Specifies the maximum number of
times a message will be
redelivered before it is considered
a poisoned pill and returned to the
broker so it can go to a dead letter
queue. -1 specifies an infinite
number of redeliveries.

maximumRedeliveryDelay -1 Specifies the maximum delivery
delay that will be applied if the
useExponentialBackOff
option is set. -1 specifies that no
maximum be applied.

initialRedeliveryDelay 1000 Specifies the initial redelivery
delay in milliseconds.

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

24

redeliveryDelay 1000 Specifies the delivery delay, in
milliseconds, if
initialRedeliveryDelay
is 0.

useCollisionAvoidance false Specifies if the redelivery policy
uses collision avoidance.

useExponentialBackOff false Specifies if the redelivery time out
should be increased exponentially.

backOffMultiplier 5 Specifies the back-off multiplier.

Option Default Description

CONFIGURING THE BROKER'S REDELIVERY PLUG-IN

Configuring a broker's redelivery plug-in is a good way to tune the redelivery of messages to all of the
consumer's that use the broker. When using the broker's redelivery plug-in, it is recommended that you
disable redelivery on the consumer side (if necessary, by setting maximumRedeliveries to 0 on the
destination).

The broker's redelivery policy configuration is done through the redeliveryPlugin element. As
shown in Example 7.1, “Configuring the Redelivery Plug-In” this element is a child of the broker's
plugins element and contains a policy map defining the desired behavior.

Example 7.1. Configuring the Redelivery Plug-In

1

2

<broker xmlns="http://activemq.apache.org/schema/core" ... >

 <plugins>
 <redeliveryPlugin ... >
 <redeliveryPolicyMap>
 <redeliveryPolicyMap>

 <redeliveryPolicyEntries>
 <!-- a destination specific policy -->

 <redeliveryPolicy queue="SpecialQueue"
 maximumRedeliveries="3"
 initialRedeliveryDelay="3000" />
 </redeliveryPolicyEntries>
 <!-- the fallback policy for all other destinations -->

 <defaultEntry>
 <redeliveryPolicy maximumRedeliveries="3"

 initialRedeliveryDelay="3000" />
 </defaultEntry>
 </redeliveryPolicyMap>
 </redeliveryPolicyMap>
 </redeliveryPlugin>
 </plugins>
 ...
</broker>

CHAPTER 7. MESSAGE REDELIVERY

25

1

2

The redeliveryPolicyEntries element contains a list of redeliveryPolicy elements that
configures redelivery policies on a per-destination basis.

The defaultEntry element contains a single redeliveryPolicy element that configures the
redelivery policy used by all destinations that do not match the one with a specific policy.

CONFIGURING THE REDELIVERY USING THE BROKER URI

Clients can specify their preferred redelivery by adding redelivery policy information as part of the
connection URI used when getting the connection factory. Example 7.2, “Setting the Redelivery Policy
using a Connection URI” shows code for setting the maximum number of redeliveries to 4.

Example 7.2. Setting the Redelivery Policy using a Connection URI

For more information on connection URIs see the Connection Reference.

SETTING THE REDELIVERY POLICY ON A CONNECTION

The ActiveMQConnection class' getRedeliveryPolicy() method allows you to configure the
redelivery policy for all consumer's using that connection.

getRedeliveryPolicy() returns a RedeliveryPolicy object that controls the redelivery policy for
the connection. The RedeliveryPolicy object has setters for each of the properties listed in
Table 7.1, “Redelivery Policy Options”.

Example 7.3, “Setting the Redelivery Policy for a Connection” shows code for setting the maximum
number of redeliveries to 4.

Example 7.3. Setting the Redelivery Policy for a Connection

SETTING THE REDELIVERY POLICY ON A DESTINATION

For even more fine grained control of message redelivery, you can set the redelivery policy on a per-
destination basis. The ActiveMQConnection class' getRedeliveryPolicyMap() method returns a
RedeliveryPolicyMap object that is a map of RedeliveryPolicy objects with destination names
as the key.

ActiveMQConnectionFactory connectionFactory =
 new ActiveMQConnectionFactory("tcp://localhost:61616?
jms.redeliveryPolicy.maximumRedeliveries=4");

ActiveMQConnection connection =
 connectionFactory.createConnetion();

// Get the redelivery policy
RedeliveryPolicy policy = connection.getRedeliveryPolicy();

// Set the policy
policy.setMaximumRedeliveries(4);

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

26

NOTE

You can also specify destination names using wildcards.

Each RedeliveryPolicy object controls the redelivery policy for all destinations whose name match
the destination name specified in the map's key.

NOTE

If a destination does not match one of the entries in the map, the destination will use the
redelivery policy set on the connection.

Example 7.4, “Setting the Redelivery Policy for a Destination” shows code for specifying that messages
in the queue FRED.JOE can only be redelivered 4 times.

Example 7.4. Setting the Redelivery Policy for a Destination

INDEX
A

ActiveMQConnection, The connection, Setting the redelivery policy on a connection, Setting the
redelivery policy on a destination

ActiveMQConnectionFactory, The connection factory

B

backOffMultiplier, Redelivery properties

C

collisionAvoidanceFactor, Redelivery properties

Connection, The connection

ConnectionFactory, The connection factory

D

durableTopicPrefetch, Consumer specific prefetch limits

ActiveMQConnection connection =
 connectionFactory.createConnetion();

// Get the redelivery policy
RedeliveryPolicy policy = new RedeliveryPolicy();
policy.setMaximumRedeliveries(4);

//Get the policy map
RedeliveryPolicyMap map = connection.getRedeliveryPolicyMap();
map.put(new ActiveMQQueue("FRED.JOE"), queuePolicy);

INDEX

27

E

embedded broker, Embedded brokers

G

getRedeliveryPolicy(), Setting the redelivery policy on a connection

getRedeliveryPolicyMap(), Setting the redelivery policy on a destination

I

initialRedeliveryDelay, Redelivery properties

M

maximumRedeliveries, Redelivery properties

maximumRedeliveryDelay, Redelivery properties

P

prefetch

per broker, Setting prefetch limits per broker

per connection, Setting prefetch limits per connection

per destination, Setting prefetch limits per destination

Q

queueBrowserPrefetch, Consumer specific prefetch limits

queuePrefetch, Consumer specific prefetch limits

R

redeliveryDelay, Redelivery properties

redeliveryPlugin, Configuring the broker's redelivery plug-in

RedeliveryPolicy, Setting the redelivery policy on a connection, Setting the redelivery policy on a
destination

RedeliveryPolicyMap, Setting the redelivery policy on a destination

T

topicPrefetch, Consumer specific prefetch limits

U

useCollisionAvoidance, Redelivery properties

useExponentialBackOff, Redelivery properties

Red Hat JBoss A-MQ 6.0 Client Connectivity Guide

28

usePrefetchExtension, Disabling the prefetch extension logic

V

VM

advanced URI, Using the VM transport

broker name, Using the VM transport

create, Embedded brokers

embedded broker, Embedded brokers

simple URI, Using the VM transport

waitForStart, Embedded brokers

VM URI

advanced, Using the VM transport

simple, Using the VM transport

INDEX

29

	Table of Contents
	CHAPTER 1. INTRODUCTION
	TRANSPORTS AND PROTOCOLS
	SUPPORTED CLIENT APIS
	CONFIGURATION

	CHAPTER 2. CONNECTING TO A BROKER
	2.1. CONNECTING WITH THE JAVA API
	Overview
	The connection factory
	The connection
	The session
	Example

	2.2. CONNECTING WITH THE C++ API
	Overview
	The connection factory
	The connection
	The session
	Resources
	Example

	2.3. CONNECTING WITH THE .NET API
	Overview
	Resources
	Example

	CHAPTER 3. STOMP HEARTBEATS
	STOMP 1.1 HEARTBEATS
	STOMP 1.0 HEARTBEAT COMPATIBILITY

	CHAPTER 4. INTRA-JVM CONNECTIONS
	OVERVIEW
	EMBEDDED BROKERS
	USING THE VM TRANSPORT
	EXAMPLES

	CHAPTER 5. PEER PROTOCOL
	OVERVIEW
	PEER ENDPOINT DISCOVERY
	URI SYNTAX
	SAMPLE URI

	CHAPTER 6. MESSAGE PREFETCH BEHAVIOR
	OVERVIEW
	CONSUMER SPECIFIC PREFETCH LIMITS
	SETTING PREFETCH LIMITS PER BROKER
	SETTING PREFETCH LIMITS PER CONNECTION
	SETTING PREFETCH LIMITS PER DESTINATION
	DISABLING THE PREFETCH EXTENSION LOGIC

	CHAPTER 7. MESSAGE REDELIVERY
	OVERVIEW
	REDELIVERY PROPERTIES
	CONFIGURING THE BROKER'S REDELIVERY PLUG-IN
	CONFIGURING THE REDELIVERY USING THE BROKER URI
	SETTING THE REDELIVERY POLICY ON A CONNECTION
	SETTING THE REDELIVERY POLICY ON A DESTINATION

	INDEX

